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Abstract 
 

Nickel (Ni) is a versatile metal with an abundance of applications, namely its role in stainless steel, 

electronics, and batteries, making it a popular choice in industry. Unfortunately, with increasing demand 

and production comes higher amounts of Ni pollution. Nickel enters ocean waters - either directly or 

indirectly - and can have profound effects on marine life. Nickel has been established as a toxicant to a 

variety of aquatic biota, with the divalent cation (Ni2+) thought to be the most bioavailable fraction and 

thus the most toxic. Having a reliable means of quantifying free Ni ion is pertinent toward establishing 

appropriate water quality recommendations for aquatic life protection. The objective of this study was to 

compare two speciation techniques to quantify Ni2+ in natural samples. The methods studied in this work 

were ion-selective electrode (ISE) and fluorescence quenching (FQ) titrations. 

Results indicated that a Ni-ISE is more easily applicable in low ionic strength samples since 

electrode potential changes to added Ni were only seen in freshwater. Fluorescence excitation-emission 

matrices were scanned to identify fluorophores within the samples, and variable angle synchronous 

spectra were used to monitor titrations. Binding constants (log K) as well as complexing capacities (LT) 

were derived using nonlinear regression, and Monte Carlo analysis was used to relate these values to EC50 

Ni levels from toxicity tests (conducted by a collaborative group) on the same samples. Results showed 

that the predicted Ni2+ concentrations at EC50 levels had overlapping 95% confidence intervals for Mytilus 

edulis. The free Ni2+ concentration did not overlap for Strongylocentrotus purpuratus, though it should be 

noted that there was only one data point. The Mytilus edulis results also agreed with the artificial seawater 

(ASW) control, highlighting the validity and usefulness of a Biotic Ligand Model (BLM) for marine Ni. 
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1.0 Introduction 

1.1 Nickel in the Environment 

1.1.1 Sources in the Atmosphere and Water Systems 
 

Nickel (Ni) is a ubiquitous element found in soil, air, and water, with an average crustal 

concentration of 75 μg/g (Poonkothai and Vijayavathi, 2012). Ni is the fifth most abundant element by 

weight (Cempel and Nikel, 2005), and has numerous deposits worldwide. Ni is number 28 on the periodic 

table, and is a group VIII element in the first row of transition metals (Poonkothai and Vijayavathi, 2012). 

It dissolves readily in aqueous systems and coordinates octahedrally in the form of Ni[(H20)6]2+ (Chau and 

Kulikovsky-Cordeiro, 1995), and natural concentrations range from 0.2 to 0.7 µg/L in the open ocean and 

from 0.1 to 10 µg/L in fresh water (Wood et al., 2012). Coastal environments can have much higher values 

of 90 µg/L (Wells et al., 2000). 

Large quantities of Ni are introduced into the environment every year from both natural and 

anthropogenic activities. Natural inputs include mineral erosion, volcanic eruptions, and forest fires 

(Cempel and Nikel, 2005). Ni inputs resulting from human activity include waste incineration, mining 

effluent, factory discharge, and surface run-off (Nriagu, 1990); these sources account for roughly 20% of 

anthropogenic Ni released each year, while the remaining 80% comes from coal combustion alone 

(Nriagu, 1990). Coastal Ni mining and smelting operations are located in Russia, Australia, New Caledonia 

and Indonesia, to name a few (Kuck, 2012). 

1.1.2 Supply and Demand 
 

Ni has great industrial appeal owing to its corrosion resistance, stability at elevated temperatures, 

malleability, and conductive characteristics (Wood et al., 2012). The bulk of primary Ni is used in stainless 

steel production – approximately 60-68% (Kuck, 2012; Reck et al., 2008). Other uses include batteries 

(including nickel-cadmium batteries), wiring for electronics and machinery, and Ni-plating (Reck et al., 

2008). 
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Ni is found in ores, the two most common being sulfide and laterite (Mudd, 2010). Sulfides result 

from hydrothermal processes and contain other elements, namely cobalt, copper, and some precious 

metals (Hoatson et al., 2006), while laterite ores are shallow deposits resulting from weathering of 

ultramafic rocks (Mudd, 2010). Approximately 60% of global Ni is reserved in laterite ores, but due to the 

complex nature of the laterite composition, they are costlier to refine than sulfide ores (Mudd, 2010). 

Until recently, sulfides provided the bulk of industrial Ni, accounting for up to 90% in the year 1950 (Oxley, 

2016). Ni production has since increased tenfold, and to meet rising demands there has been more focus 

on laterite ore extraction (Mudd 2010); it is predicted that 72% of Ni will be sourced from laterites by 

2022 (Oxley, 2016). Ni-laterite deposits are commonly located near the equator (Elias, 2002), with mining 

developments in New Caledonia, Indonesia, and the Philippines (USGS, 2012). Many of these mining sites 

are in coastal areas, creating a direct route for Ni to enter marine ecosystems. 

The largest Ni deposit in the world is located in Sudbury, Ontario, and is sulfide-rich (Wood et al., 

2012). Other Ni mines around the world include major sites in Russia, Australia, and others in Canada 

(USGS, 2012). Ten countries and territories account for nearly 70% of worldwide Ni production and 

manufacturing (Reck et al., 2008), with roughly 25% originating from the Sudbury deposit alone (Wood et 

al., 2012). In 2011, an all-time high of 2.05 Mt of mined nickel was produced around the world, and in the 

following year 1.66 Mt of primary nickel was used in industry, breaking the record for the third year in a 

row (USGS, 2012). 

Prices of Ni have fluctuated over time as demands and global economy change and evolve. The 

years from 1970 to 1975 showed a slight rise in Ni prices, which had been relatively stable for a decade 

prior (USGS, 2010). In 1979, Ni contracts were made with the London Metal Exchange (LME) and it became 

the seventh most traded metal through the LME (USGS, 2010). Shortly after, however, the recession in 

1981 caused a decrease in Ni demand, resulting in lower prices (USGS, 2010). 



3 
 

Between 1986 and 1988, Ni prices went from an all-time low to an all-time high when demands 

for stainless steel increased (USGS, 2010). Until the mid 1990’s LME prices for Ni lessened because of an 

abundance of primary Ni production, but between 2001 and 2005 global Ni consumption increased 

steadily (~3.4% per year) (USGS, 2010). In the beginning of 2006, the price of Ni was $6.60 per pound, and 

in May 2007, it increased dramatically to $23.66 per pound (USGS, 2010). 

In early 2016, global Ni prices were the lowest they had been in 13 years at $8,480 per metric ton 

($3.81 per pound), owing to an oversupply of the metal, but the price rose to $10,262 per metric ton by 

October ($4.65 per pound; USGS, 2017); this was partially due to a 50% decrease in Ni production from 

the Philippines – the world’s primary Ni ore producer – after failing to follow standard environmental 

procedures (USGS, 2017). 

1.1.3 Pollution and Toxic Effects 
 

Unfortunately, with elevated manufacturing and consumption rates comes increased 

environmental exposure to massive amounts of Ni every year. For example, areas surrounding the 

Sudbury mine are heavily contaminated: nearly 7,000 lakes are impacted and the Ni concentration ranges 

from 7 to 338 μg/L (Wood et al., 2012). While evidence suggests that nickel is likely essential to fish, it can 

be toxic in certain forms and high concentrations (Wood et al., 2012). For example, EC50 values of 14 µg/L 

have been reported for Evechinus chloroticus – a common marine organism (Blewett et al., 2016). 

Toxicity mechanisms for Ni are not as well-defined in seawater as they are for fresh water (Blewett 

et al., 2015). Although it is hypothesized that the difference in water chemistry between freshwater and 

saltwater should change the bioavailability of Ni, it is not understood what effect differences in physiology 

between marine and freshwater organisms might have on toxicity (Blewett and Leonard, 2017). Ni toxicity 

toward marine species is not the direct focus of this project, but it is recognized that there may be 

implications for toxicity mitigation by better understanding how Ni reacts in marine environments. 
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1.1.4 Recycling 
 

Ni is an easy metal to recycle (Mudd, 2010) since it is typically used in large amounts and not in 

complex, difficult-to-separate mixtures (Reck and Graedel, 2012). Metals in general can theoretically be 

recycled an infinite number of times (Norgate et al., 2007), and recycling scrap Ni is much less harmful to 

the environment than is mining virgin Ni. As of 2007, global energy use in stainless steel production was 

reduced by 33% through recycling scrap, and CO2 emissions lowered by 32% (Reck et al., 2008). Energy 

consumption and subsequent CO2 release could theoretically be reduced by 67% and 70%, respectively, if 

austenitic stainless steel (35% Ni composition) were to be produced solely from scrap rather than from 

virgin-based sources (Reck et al., 2008). 

While recycling is the obvious choice from an environmental perspective, it is costlier due to the 

collecting and sorting processes; therefore, mining new Ni is more economically viable (Graedel and Reck, 

2012; Mudd, 2010). Recycling Ni may also not be as commonly practiced due to its abundance: the total 

estimated global reserve of Ni is 140 Tg, which is equivalent to 140,000,000,000 kg (Reck et al.., 2008), 

and a shortage is not expected in the foreseeable future. 

Ni recycling is done in many countries, including the U.S., Taiwan, Germany, Canada, Russia, and 

the United Kingdom. In the United States, the largest source of scrap steel is automobiles, which are 

manufactured using austenitic steel (USGS, 2012). In 2016 the U.S. recycled approximately 43% of its total 

consumed Ni (USGS, 2017). 

1.2 Nickel Speciation and Bioavailability 
 

The most common form of nickel in natural waters within a normal pH range – between 5 and 9 
 

– is the divalent ion, Ni2+ (Nriagu, 1980; Wood et al., 2012); this free ion is also the most toxic to aquatic 

organisms owing to it being the most bioavailable (Niyogi and Wood, 2004). The bioavailability of a 

chemical species is the portion available for biological uptake by organisms, and a chemical does not have 
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toxic effects on biota unless it is in a bioavailable form and at sufficiently high concentrations (CCME, 

2007). 

The range, or distribution, of an element in a system is termed speciation (Templeton et al., 2000), 

and research suggests that there is a direct correlation between the speciation and bioavailability of metal 

ions (Campbell, 1995; Blewett and Leonard, 2017). The amount of Ni2+ ions present is dependent on 

several parameters: ambient pH, behavior of surrounding compounds in the water, and the tendency of 

the free metal ion to form complexes with organic and inorganic matter (CCME, 2008). Increasing 

complexation results in lower free ion concentrations, and with fewer Ni2+ ions comes reduced potential 

toxic effects toward aquatic organisms (Saar and Weber, 1980; Benedetti et al., 1996). 

Of the speciation-modifying factors, complexing ligands are specifically relevant (Di Toro et al., 

2001). There is a good understanding of inorganic materials and their interactions with nickel, for example 

established stability constants (Shadiq, 1989), but Ni-DOM complexation in general is not as clearly 

defined (Carson and Hansell, 2002). 

1.3 Organic Matter 
 

Natural organic matter (NOM) is a class of compounds that result from decomposed plant, animal, 

and microbial waste. The fraction of NOM able to pass through a 0.45 μm filter is operationally defined as 

dissolved organic matter (DOM), while the remainder is classified as particulate matter (Thurman, 1985). 

DOM is quantified by dissolved organic carbon (DOC), which composes approximately 50% of DOM (Wood 

et al., 2011). DOM originates from both terrestrial sources (termed allochthonous) and within the water 

column (autochthonous) (Thurman, 1985). 
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Allochthonous DOM has a high percentage of aromatic rings and is dark in color (Wood et al., 

2011), whereas autochthonous DOM has relatively low aromaticity, is light in color and more protein-rich 

(McKnight et al., 2001). Both allochthonous and autochthonous DOM are present in seawater, though 

amounts of autochthonous DOM are higher (Merdy et al., 2011). DOM from both origins contains humic 

substances (HS) which are further categorized into humic acid (HA), fulvic acid (FA) and humin; FA 

accounts for 85% of marine HS, with HA as the remaining 15%; seawater HS concentrations range from 

60 to 600 μg C/L, comprising up to 30% of oceanic DOC (Packham, 1964). Examples of theoretical 

molecular structures for HA and FA molecules are shown in Figures 1.1 and 1.2, respectively. HS are groups 

of large, heterogeneous polyfunctional hydrocarbons: FA tends to have molecular weights of <2,000 

g/mol, and HA molecules are typically 2,000-5,000 g/mol (Thurman et al., 1982). 

 

Figure 1.1: Representative humic acid molecule (Stevenson, 1982). This molecule has many aromatic 

moieties, as well as numerous functional groups (-COOH, -OH, -NH). The words in brackets indicate a sugar 

group (in this case, a carbohydrate) and a peptide. 
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Figure 1.2: Representative fulvic acid molecule (Buffle, 1977). 
 

Humin is insoluble throughout the pH range, and was not considered for the purposes of this 

project. HA molecules are soluble at pH > 2 and FA compounds are soluble throughout the pH range 

(Thurman, 1985). Both HA and FA have a variety of functional groups to which metal atoms can bind, 

including carboxyl-, amine-, ketone-, and phenol groups (examples in Figure 1.3) (Chon et al., 2013; Chen 

et al., 2003). Ni has a higher affinity for sites containing nitrogen and oxygen than it does for sulfur-based 

functional groups (Wood et al., 2012). 

 
 
 
 
 

Figure 1.3: Generic functional groups, from left to right: a primary amine, a ketone, phenol, and a 

carboxylic acid. 

DOM chemical composition is complex: there is a multiplicity of molecular forms of fulvic and 

humic acid, each with unquantified numbers of metal binding sites (Smith et al., 2002). Additionally, the 

range of chemical bonds between metals and these ligands - from predominantly electrostatic to 

predominantly covalent - is not well-defined for all metals, especially transition metals (Smith et al., 2002). 

1.4 Current Water Quality Guidelines and Criteria 

In efforts to protect aquatic life, Water Quality Guidelines (WQG) and Water Quality Criteria 

(WQC) have been established in Canada and the United States, respectively. These guidelines and criteria 
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specify concentrations of Ni (in µg/L) that should not be exceeded; the Ni concentrations are based on 

toxicity assessment and evaluation tests, and the most current information available is used when 

established (CCME, 2007). 

 

1.4.1 United States Criteria 
 
 

The United States Environmental Protection Agency (USEPA) published ambient freshwater WQC 

for Ni in 1980 (USEPA, 1980). These included criteria for both acute and chronic Ni concentrations (in 

µg/L), using Equations 1 and 2, respectively (USEPA, 1980). Criteria for saltwater were also included in the 

1980 document: Ni concentrations should not exceed 7.1 µg/L over a 24-hour average, and they should 

never exceed 140 µg/L. These values are expressed in terms of total recoverable metal (USEPA, 1980). 

Acute [Ni] = exp {0.846 [ln(hardness)] + 2.255} Equation 1 

Chronic [Ni] = exp {0.846 [ln(hardness)] + 0.0584} Equation 2 
 

To quantify total recoverable metal, EPA criteria stipulate digestion of the sample with heated HCl 

and HNO3 prior to quantitative analysis (USEPA, 2014). Dissolved metal concentrations are recognized as 

being the more accurate representation of the bioavailable fraction, but present criteria are still based on 

total recoverable concentrations (USEPA, 1993). To express them in terms of dissolved metal, the 

equations can be multiplied by a conversion factor (CF) (USEPA, 1993). The acute CF for saltwater is 0.990 

(USEPA 2004). A chronic CF for saltwater has not been established, so the acute value is used for both 

acute and chronic Ni concentrations (USEPA 2004). 

 

1.4.2 Canadian Guidelines 
 

The first official Canadian Guidelines for the protection of aquatic life were released to the public 

by the Canadian Council of Resource and Environment Ministers - who later adopted the title ‘Canadian 

Council of Ministers of the Environment’ (CCME) - in 1987 (CCME, 2008). The most recent WQG are shown 

in Table 1.1. 
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Table 1.1: CCME Chronic Freshwater Quality Guidelines for the Protection of Aquatic Life (2017). 
 
 

Water Hardness (in mg/L CaCO3) Maximum Ni Concentration (µg/L) 

≤ 60 25 

> 60 to ≤ 180 65 - 149* 

> 180 150 

* These values were determined by using Equation 3. 
 

[Ni] = exp{0.76[ln(hardness)] + 1.06} Equation 3 
 
 

To date, WQG are based solely on water hardness levels, in mg/L of CaCO3 (CCME, 2007). 

Realistically, there are additional factors that influence how nickel behaves toward organisms, including 

pH, alkalinity, organic carbon, and the presence and concentration of other metals (CCME, 2003 & 2008). 

By only considering water hardness, WQG may be over- or under-protective depending on the site, since 

water chemistry varies between locations (CCME, 2003). All Canadian WQG, unless stated otherwise, 

pertain to total metal concentrations in unfiltered water (CCME, 2003 & 2007), though it is recognized 

that total metal concentrations are not an accurate measure of bioavailable fractions and that dissolved 

metal concentrations are more appropriate for understanding Ni toxicity (Campbell, 1995; Di Toro et al., 

2001). 

 

It should be noted that no Canadian WQG are in place for Ni in salt water (CCME, 2007). This issue 

can be mediated by developing a predictive model which incorporates the many metal speciation 

modifiers, that in turn affect the bioavailability - and ultimately toxicity - toward aquatic species; 

incorporating them will allow for more appropriate guidelines (CCME, 2007). 

 

1.5 Biotic Ligand Model 
 

The Biotic Ligand Model (BLM) is a computational tool used to predict metal toxicity toward 

different aquatic organisms. It does so by incorporating numerous biological and chemical variables: 
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organic and inorganic ligands in the water that can bind metal ions, sensitivity of different biota to the 

metals in question, and surrounding cations which compete for a binding site on the organism (the biotic 

ligand) (Niyogi and Wood, 2004). It has been demonstrated in some freshwater organisms, for example, 

that Ni toxicity depends on ambient Ni concentration, dissolved organic carbon, pH, hardness, salinity, 

and the unique physiology of the class of organism (Blewett and Leonard, 2017). 

 

An example of a biotic ligand is gills on a fish (Di Toro et al., 2001; Niyogi and Wood, 2004). 

Essential metal ions bind to these sites and cause different biological reactions, however non-essential 

ions can also interact with the biotic ligand and inhibit natural functions (Di Toro et al., 2001). For example, 

Ni has been shown to interfere with magnesium receptors due to Mg2+ and Ni2+ having similar ionic radii 

(Lock et al., 2007). For fish and daphnids, Ni is a respiratory toxicant and an ion-exchange disruptor, 

respectively (Pane et al., 2003; Niyogi and Wood, 2004). Details on the modes of toxicity are outside the 

scope of this project, but multiple toxicity studies have been done (Blewett et al., 2017; Lock et al., 2007; 

Blewett and Leonard, 2017; Gissi et al., 2016; Tellis et al., 2014). A schematic overview of the BLM is 

pictured in Figure 1.4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.4: Simplified BLM Diagram (Di Toro et al., 2001). 
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A BLM for copper has been implemented by Windward Environmental; the publicly available 

software allows analysis of between 1 and 1000 water samples simultaneously. Input variables of 

temperature, pH, DOC (in mg C/L), major cations, major anions, alkalinity, and sulfide concentrations are 

required for each sample (Windward, 2015). 

 

This predictive model is a vision that has been in the making for many years (Di Toro et al., 2001). 

An acute Ni BLM is being researched for freshwater, although it is in the primary stage (Niyogi and Wood, 

2004). At present, no marine-specific Ni BLM has been established, however progress is promising and a 

freshwater copper BLM has successfully been integrated in establishing WQC (USEPA, 2007; Tyle, 2008). 

 

1.6 Speciation Techniques 
 

The BLM bases toxicity predictions on the bioavailable fraction (i.e., Ni2+). Therefore, a speciation 

technique able to reliably quantify Ni2+, particularly at environmentally-relevant concentrations, is 

necessary. This project considered two speciation techniques: potentiometry via an ion-selective 

electrode, and fluorescence spectroscopy. 

1.6.1 Ion-selective Electrode 
 

Popular speciation technique tools are ion-selective electrodes (ISEs). An ISE is comprised of a 

semi-permeable membrane that ideally allows migration of only one specific ion through the pores, an 

inner solution, and an inner reference electrode (Harris, 2010). Membranes used for metal ion detection, 

for example K+, can be liquid-based, which refers to an organic polymer containing an ion exchanger 

(ionophore) (Harris, 2010). Ionophores are ligands with high affinity for the desired analyte (Harris, 2010). 

The solution inside the ISE (inner solution) containing the analyte at a higher concentration than 

that in the sample being measured (Pretsch, 2002). The inner solution is in contact with the membrane, 

and the membrane is in contact with the sample. Due to the concentration difference on either side of 

the  membrane,  analyte  ions  will  diffuse  from  the  more  concentrated  inner  solution,  through  the 
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membrane, to the less concentrated sample; this results in a charge imbalance which can be measured 

(Harris, 2010). The charge imbalance results in a potential that can be quantified as the difference 

between the internal reference electrode in the ISE, and an external reference electrode (Harris, 2010). 

The external reference electrode has a constant concentration; therefore, any changes in potential are a 

direct result of the analyte activity in the ISE (Harris, 2010). The potential is related to the analyte activity 

by the Nernst equation, shown below at equilibrium (Equation 4). 

𝐄° = 
𝟎.𝟎𝟓𝟗𝟏𝟔 𝐕 

𝐥𝐨𝐠[𝐀±𝐧] Equation 4 
𝐧 

 
Where E° is the standard reduction potential; n is the valence of the analyte; and A is the analyte. In the 

case of Ni2+, n = 2, and the expected slope is therefore approximately 0.3 V, or 30 mV, per decade of 

concentration. 

ISEs typically produce quick readings that are not influenced by color or turbidity, and samples 

measured by ISE do not require pretreatment; they also have a large detection range - generally on the 

order of 4 to 6 orders of magnitude (Harris, 2010). Unfortunately, no commercially available Ni-ISE exists 

(Doig and Liber, 2006; Saar and Weber, 1980); however, different groups have reported success with in- 

house Ni-ISEs (Abbaspour and Izadyar, 2001; Ganjali et al., 2002). 

1.6.2 Fluorescence 
 

Fluorescence is the phenomenon involving the release of a photon when electrons that are in an 

excited energy state return to the ground state (Valeur and Berberan-Santos, 2011). When radiation 

comes in contact with a compound and the amount of energy is exactly equal to the energy gap between 

the ground state and an excited state, the molecule absorbs this energy and the electrons get promoted 

to higher energy levels; after approximately 10-5 seconds, the electrons shift back to the lower energy 

state, emitting photons (Valeur and Berberan-Santos, 2011). 
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Fluorescence spectroscopy is an established technique for studying qualitative properties of 

organic compounds (Hudson et al., 2007) because organic matter - and its dissolved fraction - fluoresces 

due to high levels of aromaticity (Lakowicz, 2006). This technique allows for differentiation of fluorescent 

components within a sample based on the wavelengths where fluorescence intensity is measured, and 

can serve as an indicator of DOM source (Merdy et al., 2012). There are two main types of fluorophores 

when considering DOM: “humic-like,” which emit energy between wavelengths of 400 and 500 nm (Coble, 

1996), and “protein-like,” which emit between 300 and 380 nm (Birdwell and Engel, 2011; Chen et al., 

2003). 

Benefits of fluorescence spectroscopy include small sample volume requirements, little- to no 

sample pretreatment, and highly sensitive results; it is also non-destructive, allowing for the sample to be 

used again for further analysis (Birdwell and Valsaraj, 2010). Unfortunately, a limitation of fluorescence 

spectroscopy is its inability to detect non-fluorescent ligands (Cabaniss, 1992; Tait et al., 2016); thus, using 

fluorescence to estimate log K and LT values for metals may not be representative. However, a study 

comparing ISE measurements with fluorescence data for copper yielded results that were all within a 95% 

confidence interval of one another, suggesting that fluorescence spectroscopy can provide sufficient 

information on speciation of metals (Tait et al., 2016). 

Different types of fluorescence measurements were performed during this project, namely 

fluorescence excitation emission matrices (FEEMs) and synchronous scans. A FEEM is a 3-dimensional 

spectrum resulting from scanning the sample over a range of both excitation (Ex) and emission (Em) 

wavelengths. Merdy et al. (2011) described FEEMs as ‘fingerprints’ since the technique can differentiate 

between whether the organic matter is derived from bacteria, or if it is terrestrial in origin. FEEMs provide 

both qualitative and quantitative information (Huguet et al., 2009). An example FEEM is shown in Figure 

1.5. 
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Figure 1.5: Example FEEM of DOM, taken from present study; x-axis is emission wavelength (nm) and y- 

axis is excitation wavelength (nm). The different colours represent the fluorescence intensity in arbitrary 

units (au), ranging from dark blue (least intense) to red (most intense). 

Synchronous scans are a 2-dimensional spectrum ‘slice’ within a FEEM. These scans span a range 

of Ex and Em wavelengths (Hudson et al., 2007) and can monitor changes in fluorescence intensity during 

titrations of DOM with metals; these scans are useful because they provide the same information as a 

FEEM, but take only a fraction of the time to scan. 

Both log K and LT values can be determined from the resulting data by using the famous Ryan- 

Weber equation (Equation 5) (Ryan and Weber, 1982). Unlike DOM, most metal ions do not fluoresce. 

Saar and Weber (1980) reported fluorescence quenching of soil fulvic acid when titrated with Ni2+, and 

highlighted that fluorescence spectroscopy can provide valuable information on metal ion complexes for 

species such as Ni2+ where no commercial ISE exists. More recent studies have also reported similar results 

for copper interactions (Smith and Kramer, 2000; Chen et al., 2013), and for mercury (Chen et al., 2013). 
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𝑴𝑳 (

The Ryan-Weber equation allows both the complexing capacity and the stability constant to be solved for 

through nonlinear regression; the equation is as follows: 

 
𝑰     −𝟏𝟎𝟎 

𝑰 = ( ) [ 𝑲𝑪 
𝟐𝑲𝑪𝑳 

 

+ 𝑲𝑪𝑴 + 𝟏) − √(𝑲𝑪𝑳 

 

+ 𝑲𝑪𝑴 + 𝟏)𝟐 − 𝟒𝑲𝟐𝑪𝑳𝑪𝑴 

 

] + 𝟏𝟎𝟎 Equation 5 

 
Where I is the measured fluorescence intensity; IML is the fluorescence intensity value that will no 

longer decrease even with further addition of metal; K is the stability constant; CL is the complexing 

capacity; and CM is the total metal ion added (Ryan and Weber, 1982). The stability constant is a measure 

of how strongly the metal ion associates with the ligand, and is usually determined by measuring free 

metal ions in a solution where concentrations of both the ligand and total metal are known (Saar and 

Weber, 1980). However, in instances where free ion concentration is not easily quantified, measuring the 

amount of complexed and/or uncomplexed ligand can serve as a way to solve for the stability constant 

Equation 6 (Saar and Weber, 1980; Harris, 2010). 

 

𝐊 = 
[𝐌𝐋] 

([𝐌][𝐋]) 

 

Equation 6 
 

Where [ML] is the concentration of metal-ligand complex, and [M] and [L] are the concentrations 

of unbound metal and unbound ligand, respectively. Another piece of information that can be extracted 

from fluorescence data sets is fluorescence index (FI). FI is the ratio of fluorescence intensities occurring 

at emission wavelengths 450 nm and 500 nm after an excitation wavelength of 370 nm (Ex = 370 nm, Em 

= 450/500 nm) (McKnight et al., 2001). Values up to 1.4 signify that the DOM is allochthonous, and values 

of 1.9 or greater signify proteinaceous DOM; therefore, FI can indicate the source of DOM (Birdwell and 

Engel, 2010). 

1.7 Research Objectives and Significance 
 

The purpose of this study was to identify an effective speciation measurement technique for Ni 

in seawater, and to analyze the interactions of Ni with DOM in a variety of real samples. It was 

𝑳
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hypothesized that if the idea behind the BLM is correct, Ni2+ concentrations at EC50 levels will be the same 

for an organism, regardless of sample composition. Cooper et al. (2014) made this connection for copper 

in saltwater, and thus validated BLM applications for marine copper. 

In other words, the BLM theorises that the amount of Ni2+ accumulated at the biotic ligand at the 

EC50 level is the same for organisms of the same species. DOM quality and other variables affect Ni2+ 

binding such that the amount of Ni required to reach the same concentration at the biotic ligand is 

different between water samples, but that ultimately the same concentration of Ni2+ is present each time. 

Therefore, this study aimed to reliably measure [Ni2+] in seawater by using fluorescence and ISE 

techniques. 
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Chapter 2: Materials and Methods 
 

2.1 Sample Preparation 
 

2.1.1 East Coast Samples 
 

Water samples used for the purposes of this project were collected at various coastal sites in the 

northeastern United States, hereafter referred to as the East Coast samples (for map, see Appendix F1). 

There were three collection trips: July 2015, October 2015, and June 2016. Originally there were ten 

sampling sites (Table 2.1) and all water samples collected were used for blue mussel and purple sea urchin 

embryo toxicity studies (Blewett et al., 2017). The test results indicated which samples were protective 

against Ni toxicity relative to the control (artificial seawater, ASW); based on this information, only certain 

sites were revisited during the second and third collections. 
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Table 2.1: East Coast sampling site information. 
 
 

Sample Name Site & Description GPS Coordinates 

0 KMS Artificial seawater: Kent Marine Salt in MilliQ water. -- 

1 SVP Seaview Park: Terrestrial inputs. 41° 45' 40.6'' 
071° 23' 11.5'' 

2 BTP Barbara Tufts Playground: Sewage inputs. 41° 39' 30.9'' 
071° 26' 51.7'' 

3 PCA Perry Creek Access: Salt marsh. 41° 21' 49.4'' 
071°37' 36.1'' 

4 BBP Beebe Pond: Mud flat. 41° 20' 14.4'' 
071° 59' 29.7'' 

5 ELM 80 Elm Street: Ocean coast with abundance of seaweed. 41° 19' 46.4'' 
071° 59' 26.8'' 

6 GCT Guilford Land Conservation: Tidal salt marsh, muddy. 41° 17' 04.8'' 
072° 41' 14.3'' 

7 CCHT Audubon Coastal Centre (high tide): Salt marsh, many plants. 41° 10' 34.7'' 
073° 06' 04.2'' 

8 IR Indian River: Terrestrial inputs to salt marsh. 41°13' 39.9'' 
073° 02' 13.8'' 

9 WB Walnut Beach: Open sandy beach, no large vegetation. 41° 11' 49.6'' 
073° 04' 28.5'' 

10 CCLT Audubon Coastal Centre (low tide): Site 7, but at low tide. 41° 10' 34.7'' 
073° 06' 04.2'' 

 
 
 

All samples were collected in new, 1 L Nalgene bottles that were rinsed with sample prior to filling. 

During each collection, measures were taken to reduce exposure of the samples to air by capping bottles 

while submerged. Sample containers were transported in ice-filled coolers. Once in the lab, all samples 
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were brought to full-strength seawater salinity (~32 mg/L) through the addition of Kent Marine Reef Salt 

Mix (KMS; purchased at Big Al’s Aquarium in Kitchener, ON). Salinities were measured with a YSI salinity 

probe (Professional Plus), and ambient salinities are shown in Table 2.2. Samples from the first two 

collections were then filtered through 0.45 µm membranes (WhatmanTM cellulose nitrate membrane 

filters) to remove particulate matter. Third collection samples were filtered on-site with a 0.3 µm 

membrane (Rainfresh® ceramic cartridge with activated carbon core, purchased at Canadian Tire) and 

were not filtered a second time after adding salt. All samples from each sampling trip were stored at 4° C 

in the dark prior to titrations and toxicity testing, and while not in use. 

Table 2.2: Ambient salinities of East Coast samples (before addition of Kent Marine Salt). 
 
 

Sample Salinity (ppt)  Sample Salinity (ppt) 

SVP 5.5 GCT 11.63 

BTP 13.07 CCHT 16.76 

PCA 27.11 IR 24.05 

BBP 25.52 WB 24.38 

ELM 27.46 CCLT 12.81 

 
 

2.1.2 Other Samples 
 

Several other samples were used as side studies in this project, including several samples of 

protein skimmer waste from a local aquarium store (Living Aquarium in Cambridge, ON), and a grab 

sample from Belize (GPS coordinates: 17° 13' 12.4'', 87° 35 '36.9''). The salinities of all samples were 

brought to a final salinity of ~32 mg/L by adding Kent Marine Salt while constantly stirring. Prior to 

experimentation, the samples were filtered through a clean, 0.45 µm polyethersulfone membrane (25 

mm syringe filter, VWR International, USA). FEEMs were run of all samples, but only the Belize and ‘Small 

Solid’ protein samples were titrated. 
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2.2 Ion-selective Electrode 
 

2.2.1 Design and Assembly 
 

An electrode kit was purchased (Electrode Body ISE 45137, Fluka Analytical, distributed by Sigma- 

Aldrich Production GmbH), which included an inner reference electrode and an outer casing to hold the 

filling solution and membrane inside. A 

diagram is shown in Figure 2.1. Two 

membranes were prepared, each using a 

different ionophore: dithizone  (1,5- 

diphenylthiocarbazone)  and BBTC 

(benzylbis(thiosemi-carbazone)). 

Chemical structures of dithizone and 

BBTC are shown in Figures 2.2 and 2.3, 

respectively. 

Figure 2.1: Diagram of electrode kit 

(left). 

The procedure by Abbaspour and Izadyar (2001) was followed for the dithizone membrane, the 

only change being that the membrane mixture was allowed to dry prior to assembling the ISE. This was 

done by pouring the mixture into a ring on a glass surface for 48 hours. Once dry, a small, circular 

membrane was cut from the master membrane and placed into the tip of the electrode. The filling solution 

of 0.05 M Ni(NO3)2 and 0.05 M KNO3 was prepared, and after assembly the electrode was placed in a 

conditioning solution of 0.05 M Ni standard for 24 hours (Abbaspour and Izadyar, 2001). 
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Figure 2.2: Chemical structure of dithizone 

(1,5-diphenylthiocarbazone). 

 

Figure 2.3: Chemical structure of BBTC 

(benzylbis(thiosemi-carbazone)). 

A membrane using the BBTC ionophore was also prepared (Ganjali et al., 2002). As with 

preparation of the dithizone membrane, the BBTC mixture was poured into a glass ring to dry, and then 

the dried membrane was cut and placed into the electrode body. The filling solutions were varied to 

optimize the electrode’s response, and the conditioning solution was 0.01 M Ni(NO3)2 for 24 hours prior 

to calibration. Both membranes used polyvinyl chloride (PVC) as the polymer matrix (Abbaspour and 

Izadyar, 2001; Ganjali et al., 2002); PVC is a hydrophobic compound that holds the ionophore in place 

(Harris, 2010). 

2.2.2 Calibration 
 

Once conditioned, each electrode was calibrated. Starting with a solution of 1.0 ⨯ 10-6 M Ni(NO3)2, 

small volumes of Ni(NO3)2 were added after the response stabilized (≤ ±0.5 mV over 5 minutes). The Ni 

ISE was connected to a potentiometer (Tanager Scientific Systems Inc., Model 9501, Ancaster, ON), as was 

an external Ag/AgCl reference electrode (Orion™ 900200 Sure-Flow™ Reference Half-Cell Electrode, 

Thermo Fisher Scientific, Beverly, MA, USA). The concentration range of calibration solutions was 5.0 ⨯ 

10-6 M to 1.0 ⨯ 10-2 M, and potentiometric measurements were recorded every 2 minutes. Solutions were 

continuously stirred (using a stir plate and magnetic stir bar) for the duration of the calibration, and the 

pH was periodically measured using a Beckman Coulter pH meter (Model pHi 570 Benchtop). The Ni ISE 
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was removed from solution while the pH was measured due to interference between the two electrodes. 

All calibration data was plotted as potential versus added [Ni] as per the Nernst equation (Equation 4 in 

Section 1.6.1) to determine the slope of the calibration curve. 

2.3 Fluorescence 
 

2.3.1 Fluorescence Excitation-Emission Matrices 
 

Fluorescence excitation-emission matrices (FEEMs) were scanned for each DOM sample to 

determine the optimal wavelength range ‘slice’ at which to perform fluorescence-monitored titrations. 

The same parameters were used each time (Table 2.3), except for third collection samples which used 

PMT detector settings of 1000 V to enhance low-intensity signals. All scans were done with a Varian Cary 

Eclipse Fluorescence Spectrophotometer (Agilent Technologies, Santa Clara, CA), and the samples were 

held in a 1 cm pathlength quartz cuvette (Type 3-Q-10, Lightpath Optical (UK) Ltd.). FEEMs were plotted 

in MATLAB (MathWorks, Natick, MA, USA) using an in-house Matlab code (see Appendix C1). 

Table 2.3: Fluorescence spectrophotometer settings for FEEMs. 
 
 

Parameter Settings 

Excitation range (nm) 200 – 450 

Emission range (nm) 250 – 600 

Slit width (nm) 5 

3D mode On 

Excitation increment (nm) 10 

Scan speed (nm/min) 600 

PMT detector (V) 800 
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2.3.2 Fluorescence Monitoring 
 

Samples from the second and third collections were scanned every few days with a portable 

fluorimeter (SMF4 Fluorimeter, Safety Training Systems Ltd.) as a quick means of monitoring composition 

changes over time. While not an extensive technique, the fluorimeter is a convenient, easy-to-use tool 

that gives a reading within a matter of seconds. A 1 cm pathlength quartz cuvette was used, and before 

each sample it was thoroughly rinsed with MilliQ. The sensitivity of the fluorimeter was set to ‘high’ and 

five scans were taken of each sample. 

2.3.3 Fluorescence Quenching Titrations 
 

Fluorescence quenching (FQ) titrations were also performed on the Varian Cary Eclipse 

Fluorescence Spectrophotometer, with a 1 cm pathlength flow-through quartz cuvette (Starna Cells Inc., 

Atascadero, CA). Polyvinyl chloride tubing (Gilson, 2.79 mm I.D.) was connected to the cuvette, and a 

peristaltic pump (Gilson Minipuls 2, France) was used to circulate the sample from a beaker to the cuvette. 

Before and after each titration, the setup was thoroughly rinsed with MilliQ water, and a FEEM of MilliQ 

was scanned before titrating to ensure that the tubing and cuvette were clean and free of contamination. 

If contamination was suspected - and after 3-4 titrations regardless - an acidified rinse was circulated 

through the system, followed by a thorough MilliQ rinse. The acidified rinse was made by adding several 

drops of ACS grade HCl (EMD Chemicals, Gibstown, NJ, USA) to MilliQ until a pH of ~2 was achieved. 

Nickel titrant was prepared by dissolving NiSO4⦁6H2O crystals (Fisher Chemical, Certified ACS 

Grade) in MilliQ water. All samples were brought to - and maintained at - a pH of 8.00 ± 0.05 with 1.0 M 

and 0.1 M samples of both NaOH (J.T. Baker) and HNO3 (Fisher Scientific). Samples were stirred 

continuously during the titrations, and the titrant was added in increments until a final concentration of 

approximately 530 ppb Ni was reached in the sample. After each addition, the sample was stirred for 15 

minutes before synchronous scans were done in triplicate (see Appendix C2). 
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2.4 Sample Analysis 
 

2.4.1 Graphite Furnace Atomic Absorption Spectrometry 
 

After the FQ titrations, the Ni in the samples was measured with a graphite furnace atomic 

absorption spectrometer (PinAAcle 900T AA, Perkin Elmer, Waltham, MA). For referencing purposes, ASW 

was prepared with a mixture of salts in MilliQ water, as per specifications by the Organisation for 

Economic Co-operation and Development (OECD); the recipe is shown in Table 2.4. This OECD ASW was 

used to in the calibration solutions, along with certified Ni standard (Ultra Scientific, Kingstown, RI, USA). 

All calibration solutions and samples were acidified with 2% trace metal grade HNO3 (OmniTrace Ultra™, 

Millipore Sigma, Darmstadt, Germany). 

Table 2.4: OECD recipe for artificial seawater. 
 
 

Salt Mass (for 1 L ASW) Supplier 

NaF 3 mg Fisher Chemicals 

SrCl2⦁6H2O 20 mg Fisher Chemicals 

H3BO3 30 mg Sigma-Aldrich Corp. 

KBr 100 mg BDH 

KCl 700 mg Sigma-Aldrich Corp. 

CaCl2⦁2H2O 1.47 g Fisher Chemicals 

Na2SO4 4.0 g Fluka Analytical, Sigma-Aldrich Corp. 

MgCl2⦁6H2O 10.78 g Sigma-Aldrich Corp. 

NaCl 23.5 g Anachemia Canada Co. 

Na2SiO3⦁9H2O 20 mg Fisher Chemicals 

NaHCO3 200 mg EMD Chemicals 
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2.4.2 Total Organic Carbon Analysis 
 

All samples were measured on a Carbon Analyzer (TOC-LCPH Carbon and Nitrogen Analyzer, 

Shimadzu Corp., Kyoto, Japan) to quantify both the total and dissolved organic carbon. Samples were 

passed through 0.45 µm syringe filter membranes if DOC was being measured; otherwise they were left 

unfiltered to determine TOC. If highly coloured, the samples were diluted with MilliQ. All samples were 

brought to a pH of 2-3 with ACS grade HCl prior to analysis to help purge the dissolved inorganic carbon 

(EMD Chemicals, Gibstown, NJ, USA). 

2.4.3 Computational (Matlab) Analysis 
 

Raw titration data from each sample were entered into Matlab, and a SIMPLISMA (“SIMPLe to use 

Interactive Self-modeling Mixture Analysis”) code was applied to solve for relative fluorophore 

concentrations within each sample (see Appendix C3). The data needed for this was the range of emission 

wavelengths, as well as the fluorescence intensity throughout this range after each Ni addition. 

Parameters were adjusted to ‘zoom in’ to the data where the largest change in fluorescence intensity 

occurred. SIMPLISMA is commended for making it straightforward for the user to recognize poor spectral 

resolution (Windig et al., 1992). This code was written to account for two fluorophores, although if the 

resolved spectra overlapped, it was assumed that only one fluorescent component was present. More 

than two components gave uninterpretable spectroscopic results. 

The SIMPLISMA results were entered into a Matlab code (see Appendix C4) and fitted to the Ryan- 

Weber equation (Equation 5). Values for ‘logK,’ ‘logLT,’ and ‘%inefficiency’ were adjusted in the code to 

create a manual best fit and to minimize potential error. Running this code yielded log K, log LT, and the 

percent inefficiency - the factor by which the fluorescence intensity has changed (ie. if quenching 

occurred, this value will be <1.0; if enhancement occurred, it will be >1.0). This procedure was followed 

from Tait et al., 2016. 



26 
 

𝑴𝑳 (
𝑰     −𝟏𝟎𝟎 

𝑰 = ( ) [ 𝑲𝑪 
𝟐𝑲𝑪𝑳 

+ 𝑲𝑪𝑴 + 𝟏) − √(𝑲𝑪𝑳 + 𝑲𝑪𝑴 + 𝟏)𝟐 − 𝟒𝑲𝟐𝑪𝑳𝑪𝑴 ] + 𝟏𝟎𝟎 Equation 5 

 
The last step of computational analysis was quantifying free Ni2+ concentrations at EC50 levels in 

some of the samples from toxicity tests performed by Blewett et al. (2017). This was done with Monte 

Carlo analysis (see Appendix C5), and inputting values from the Ryan-Weber analysis (averages and 

standard deviations of both log K and log LT) as well as the total Ni concentrations at EC50 values for each 

sample. Monte Carlo analysis is a probability simulation that varies input parameters according to their 

standard deviations, and runs simulations hundreds to thousands of times with different variations; it can 

estimate uncertainty based on the distribution of results (RiskAMP, 2017). 

For both the Ryan-Weber fitting and the Monte Carlo analysis, an inorganic complexation model 

was assumed. A tableau of Ni and probable inorganic chemical species is shown in Figure 2.4. Each column 

corresponds to the element at the top, and the log K values were obtained from the National Institute of 

Standards and Technology (NIST) for the respective compounds in seawater ionic strength (Martell and 

Smith, 2004). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4: Tableau of inorganic Ni complexes used in Matlab analyses. 

𝑳
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Chapter 3: Results and Discussion 
 

3.1 Ion-Selective Electrode 
 

3.1.1 Dithizone (1,5-diphenylthiocarbazone) 
 

The first ionophore used was 1,5-diphenylthiocarbazone (Dithizone) and was expected to have a 

response of 29.1 mV/decade over a Ni(NO3)2 concentration range of 5.0 x 10-6 M to 1.0 x 10-2 M 

(Abbaspour and Izadyar, 2001). Several calibration conditions were tested (Table 3.1), however the results 

were either unreliable or not reproducible – slopes ranged from 0.1533 to 32.879 mV/decade, and the 

ISEs tended to respond differently from one calibration to the next. For example, Test 8 conditions gave 

a slope of -3.2261 mV/decade when repeated in Test 12. 

Table 3.1: Summary of calibration tests with Dithizone membrane. 
 
 

 
Test 

 
Filling Solution 

Calibrating Solutions 
(5.0 x 10-6 M – 1.0 x 10-2 M) 

 
Slope (mV/decade) 

 
R2 

0 0.05 M Ni(NO3)2 
+ 0.05 M KNO3 

Ni(NO3)2 29.1 
(Abbaspour & Izadyar, 2001) 

0.999 

1 0.05 M Ni std. 
+ 0.05 M KNO3 

Ni std. * 32.879 0.995 

2 0.05 M Ni std. 
+ 0.05 M KNO3 

NiSO4 (in ASW) 
(1.0 x 10-9 M – 1.0 x 10-4 M) 

0.1533 0.005 

3 0.05 M Ni std. 
+ 0.05 M KNO3 

NiSO4 (in ASW) 
(1.0 x 10-9 M – 1.0 x 10-4 M) 

1.7411 0.248 

4 0.05 M NiSO4 
+ 0.1 M NaCl 

Ni std. 
in 0.01 M acetic acid ** 

-8.5086 0.640 

5 0.05 M NiSO4 
+ 0.1 M NaCl 

NiSO4 30.541 0.783 

6 0.05 M Ni(NO3)2 Ni std. 11.498 0.909 
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 + 0.05 M KNO3 
   

7 0.05 M Ni(NO3)2 
+ 0.05 M KNO3 

Ni(NO3)2 -23.893 0.996 

8 0.05 M Ni(NO3)2 
+ 0.05 M KNO3 

NiSO4 7.6059 0.9548 

9 0.05 M Ni(NO3)2 
+ 0.05 M KCl 

NiSO4 8.9761 0.846 

10 0.05 M Ni(NO3)2 
+ 0.05 M KNO3 
+ 0.05 M EDTA 

NiSO4 6.5167 0.9885 

11 0.05 M Ni(NO3)2 
+ 0.05 M KCl 
+ 0.05 M EDTA 

NiSO4 -4.6833 0.8969 

12 0.05 M Ni(NO3)2 
+ 0.05 M KNO3 

NiSO4 -3.2261 0.7365 

13 0.05 M Ni(NO3)2 
+ 0.05 M KNO3 
+ 0.05 M EDTA 

NiSO4 0.7888 0.6333 

*Ni std. is a certified Ni standard (Ultra Scientific, Kingstown, RI, USA) 
**pH was adjusted to 4 with 0.1 M NaOH 

 
 
 

Of all trials, the calibration that yielded the most Nernstian result was Test 1 with a slope of 32.879 

mV/decade. However, the same electrode showed no response in ASW (Tests 2 and 3), likely due to 

calcium and magnesium accumulation at the ISE surface which would prevent further change in response. 

Therefore, no sample titrations were performed with Dithizone-based membranes. 

3.1.2 BBTC (Benzylbis(thiosemicarbazone)) 
 

Results for the Ni ISE with the benzylbis(thiosemicarbazone) (BBTC) ionophore were more 

promising. Ganjali et al. (2002) reported slopes of 29.0 ± 0.5 mV/decade over a Ni(NO3)2 concentration 
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range of 1.0 x 10-7 M to 1.0 x 10-2 M. While values from the present study were not Nernstian (Table 3.2), 

the electrode was responsive and the results were reasonable (i.e. no negative slopes and consistently 

high R2 values). 

Table 3.2: Summary of calibration tests with BBTC membrane; all tests were performed with the same 

filling solution (0.05 M Ni(NO3)2 + 0.05 M KCl + 0.05 M EDTA) and calibrating solutions (1.0 x 10-6 M – 1.0 

x 10-2 M NiSO4). 

 

 

Test 
Slope 

(mV/decade) 
R2 

  

Test 
Slope 

(mV/decade) 
R2 

1 22.732 0.9982 10 8.5698 0.9757 

2 20.698 0.9989 11 7.3125 0.9897 

3 10.881 0.9847 12 11.833 0.9897 

4 9.2094 0.9707 13 11.155 0.9236 

5 8.9263 0.9972 14 12.169 0.9855 

6 8.2007 0.9974 15 10.653 0.9642 

7 8.2329 0.9916 16 14.709 0.9917 

8 7.1545 0.9724 17 16.864 0.9994 

9 7.5677 0.9838 18 18.068 0.9946 

 
 
 

Samples of freshwater DOC were titrated including two samples from the International Humic 

Substances Society (IHSS), an Amazon grab sample, and an Amazon concentrate. The Amazon sample was 

a composite of surface waters, collected at the same time as the study by Johannsson et al. (2017), and 

concentration of the sample was achieved through reverse osmosis (RO) (Duarte et al., 2016). Figure 3.1 

shows a 1:1 dashed line where [Ni]Total is equal to [Ni2+], and everything below this line is indicative of Ni 

binding. Luther Marsh samples displayed very little to no Ni2+ binding, while Suwannee River samples 

showed substantial binding in comparison. Amazon samples fell in the middle, suggesting moderate 
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binding. 
 

Figure 3.1: All freshwater Ni-DOC titrations done with BBTC membrane; x-axis is log of [Ni]Total added, and 

y-axis is log of [Ni2+]. DOC concentration within each sample is included in the legend in brackets. 

While the Ni-ISE showed potential for freshwater, no response was detected during titrations in 

salt water (an example trial is shown in Figure 3.2); this is likely owing to cation competition. High 

concentrations of calcium ions (Ca2+) and magnesium ions (Mg2+) in sea water can interfere with Ni2+ 

uptake. Therefore, focus toward identifying a reliable speciation technique was shifted to fluorescence. 
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Figure 3.2: ASW calibration with BBTC membrane, showing no response to Ni2+; x-axis is log [Ni2+], and y- 

axis is response in mV. 

3.2 Fluorescence 
 

3.2.1 Fluorescence Excitation-Emission Matrices 
 

FEEMs were scanned for each sample from every collection. Figure 3.3 shows FEEMs for sites SVP, 

BTP, BBP, ELM, CCHT, and CCLT each time they were collected (see Table 2.1 for sample details). Figure 

3.4 shows FEEMs for Belize and ‘Small Solid’ samples. For all other sample FEEMs, refer to Appendix F2. 
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Figure 3.3: FEEMs of select east coast samples 1 (SVP), 2 (BTP), 4 (BBP), 5 (ELM), 7 (CCHT), and 10 (CCLT). 

Labels in upper left corners denote sample number and collection number (i.e. Collections 1, 2, and 3 are 

represented by ‘C1’, ‘C2’, and ‘C3’, respectively); x-axis is emission wavelength (nm), and y-axis is 

excitation wavelength (nm). 

Based on the FEEMs, there were obvious fluorescence changes in samples between collection 

times; the intensity of the fluorescent fractions decreased in each sample between collections 1 and 2, 

and between 2 and 3. Areas of red and yellow were much smaller or absent by the third collection. This 

trend has been reported previously, where the fluorophores remain the same (and hence there is no shift 

in wavelength), but the signal intensity is decreased (McKnight et al., 2001). A possible reason for this 

change could be due to dilution as a result of more freshwater entering the water body, such as snow 

melt, rainfall, et cetera. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4: FEEMs of Belize (left) and ‘Small Solid’ (right) samples; x-axis is emission wavelength (nm) 

and y-axis is excitation wavelength (nm). 
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FEEMs were scanned over excitation wavelengths of 200-450 nm and emission wavelengths of 

250-600 nm. All east coast samples displayed peaks in the fulvic region (Ex = 320-340 and 230 nm; Em = 

400-450 nm). SVP, BTP, CCHT, and CCLT also showed fluorescence in the humic area (Ex = 360-390 or 265 

nm; Em = 460-520 nm). SVP (C1 + C2), BTP (C2), ELM (C2), and CCLT (C2) suggested proteinaceous 

composition as well, with excitation wavelengths around 340 nm. 

The Belize sample appears to be strictly humic in origin, with the most intense peak occurring at 

approximately Ex = 360 nm and Em = 460 nm. The ‘Small Solid’ protein sample appears to have humic- 

fulvic- and proteinaceous peaks, making it compositionally interesting. It should be noted, however, that 

a sample such as this would not likely be found in nature since it was the result of concentrated protein 

sludge mixed with MilliQ water and salted up with KMS. The strongest peaks appear in the protein region, 

which is expected since the sample was derived from protein skimmer waste at an aquarium store. 

The FI values for each of the above samples were measured and are shown in Table 3.3. It was 

expected that FI values for SVP, BBP, and ELM would be lower than the others because of terrestrial input 

at the sample locations. This proved to be the case, and CCLT also had a low FI – likely owing to the sample 

being collected at low tide. BTP had sewage inputs which could be attributed to proteinaceous matter. 

CCHT had the highest FI of all samples, perhaps owing to the influx of autochthonous DOM from the open 

ocean during high tide. The Belize sample had the same FI value as BTP, and ‘Small Solid’ had the second 

highest FI of all samples. This could be explained by both samples having more autochthonous properties 

– Belize was collected slightly inland but near the coast, and ‘Small Solid’ was from saltwater tank waste 

(and open ocean DOM is expected to be primarily autochthonous) (Merdy et al., 2011). 
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Table 3.3: Fluorescence indices of East Coast (Blewett et al., 2017), Belize, and ‘Small Solid’ samples. 
 
 

Sample 
FI 

(Ex = 370 nm; Em = 450 nm/500 nm) 
BBP 1.03 

ELM 1.09 

SVP 1.16 

CCLT 1.17 

BTP 1.35 

Belize 1.35 

Small Solid 1.42 

CCHT 1.58 

 
 
 

3.2.2 Fluorescence Monitoring 
 

East coast samples from the second and third collections were scanned every few days with a 

portable fluorimeter as a means of monitoring changes in concentration (Figure 3.5). Both sets of samples 

were stored at 4°C in the dark, but third collection samples were also stored under argon. For both 

collections, a linear regression was run to determine whether the changes in concentration were 

significant. Unfortunately, concentrations changed to a significant degree (p value <0.05) for several 

samples from both collections (highlighted boxes in Table 3.4), and argon did not appear to help preserve 

the samples. Cooper et al. (2017) observed similar changes in samples with proteinaceous fluorophores. 

A more intensive storage procedure is therefore required. 
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Table 3.4: Linear regression results for portable fluorimeter readings; grey boxes indicate significant 

differences. Note that P-values were calculated for all days where data was collected. 

 
Sample Second Collection 

P-values 
R2 Third Collection 

P-values 
R2 

SVP 0.03 0.45 0.07 0.13 

BTP 0.01 0.55 <0.05 0.63 

BBP N/A N/A <0.05 0.56 

ELM 0.21 0.19 0.03 0.19 

CCHT 0.002 0.70 N/A N/A 

CCLT 0.003 0.69 0.84 0.002 
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Figure 3.5: Plots of portable fluorimeter readings versus time for second east coast collection (C2) and 

third east coast collection (C3); x-axis is number of days, and y-axis is fluorescence intensity (au). 

3.2.3 Fluorescence Quenching Titrations 
 

A ‘slice’ from the FEEMs was established based on where the largest change in fluorescence 

intensity occurred (example FEEM with line in Figure 3.6). The corresponding excitation and emission 

wavelengths are shown in Table 3.5. For each sample, the respective wavelength ranges were used during 

the FQ titrations. 
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Table 3.5: Excitation and emission wavelength ranges for East Coast, Belize, and ‘Small Solid’ samples. 
 

Sample Excitation Wavelength (nm) Emission Wavelength (nm) 

SVP 200-415 250-510 

BTP 200-410 250-525 

BBP 200-430 250-550 

ELM 205-380 250-540 

CCHT 200-300 250-500 

CCLT 200-410 250-525 

Belize 200-440 300-550 

Sm. Sol. 200-330 250-550 

 

 
 

Figure 3.6: Example FEEM with ‘slice’ parameters, taken from this work; x-axis is emission wavelength 

(nm), and y-axis is excitation wavelength (nm). 
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The fluorescence-monitored titrations showed enhancement for BBP (Figure 3.7) and ELM, and 

quenching for SVP (Figure 3.7), CCHT, and Belize. Interestingly, BTP (Figure 3.8) and CCLT showed 

quenching for one or two of the three collections, and enhancement for the other(s); this could be due to 

the large decrease in fluorescence intensity between collections for these two sites. 

 

 
Figure 3.7: Titration of 3rd collection BBP (left), and 2nd collection SVP (right); x-axis is emission wavelength 

(nm), and y-axis is fluorescence intensity (au). 

 

 

Figure 3.8: Titration of 1st collection BTP (left) versus 3rd collection BTP (right); x-axis is emission 

wavelength (nm), and y-axis is fluorescence intensity (au). 
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3.3 Quantitative Analysis 
 

3.3.1 DOC Measurements 
 

East coast samples from each collection, as well as the Belize grab sample, were analyzed on a 

Shimadzu TOC-LCPH Carbon and Nitrogen Analyzer to quantify DOC (Table 3.6). 

Table 3.6: Concentration of DOC in East Coast, Belize, and ‘Small Solid’ samples. 
 
 

Sample [DOC] (mg C/L) Coll. 1 [DOC] (mg C/L) Coll. 2 [DOC] (mg C/L) Coll. 3 

SVP 4.50 4.52 2.69 

BTP 3.29 2.56 1.67 

BBP 2.97 N/A 3.31 

ELM 2.43 1.91 0.78 

CCHT 3.52 2.41 N/A 

CCLT 3.35 2.36 1.07 

Belize 28.91 N/A N/A 

Small Solid 27.58 N/A N/A 

 
 
 

The ‘Small Solid’ sample was made from a concentrated sludge, and so its high [DOC] is not 

surprising, but the Belize sample was a real sample with no prior concentration. Mangroves are rich in 

DOM and have been shown to contribute up to 21% of DOM in open oceans (Cawley et al., 2014). 

3.3.2 Computational (Matlab) Analysis 
 

After all titrations were completed, SIMPLISMA was applied to the data to solve for relative 

fluorophore concentrations within each sample (code in Appendix C3). Figure 3.8 is a plot of the relative 

concentrations of the ‘pure spectra’ (ie. the fluorescent fractions of the sample) derived through 
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SIMPLISMA for a representative sample. The topmost plot is the primary fraction detected, the middle 

plot is the second fraction, and the bottom plot is the third fraction, as seen by the relative amounts. It 

was noted that the third fraction had a relative concentration three orders of magnitude smaller than the 

first fraction. It also does not possess a clear peak; therefore, the code was written to account for only the 

first two components. 

 

Figure 3.9: Relative amounts of pure components in sample (BTP, third collection); x-axis is emission 

wavelength (nm), and y-axis is relative amount (au). 

These concentrations were then fit to a Ryan-Weber model, also using Matlab (code in Appendix 

C4) based on the log K determination described in Tait et al. (2016). An example of Matlab-fitted data is 

shown in Figure 3.10. After running the code, values for log K, LT, and percent inefficiency were given 

(Table 3.7). Titrations of CCHT did not show change in fluorescence intensity, and could therefore not be 

fitted to the Ryan-Weber model. 
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Table 3.7: Results from Ryan-Weber fitting for East Coast, Belize, and ‘Small Solid’ samples. 
 
 

Sample Log K Log K (2) LT 
(µmol/mg C) 

LT (2) 
(µmol/mg C) 

% 1 % 2 

SVP 6.76 5.05 0.016 0.095 0.89 0.96 

BTP 6.26 6.72 0.204 0.099 1.14 0.99 

BBP 6.91 6.23 0.018 0.275 1.23 0.93 

ELM 7.08 6.61 0.037 0.007 1.31 0.95 

CCLT 6.77 6.04 0.013 0.171 1.01 1.01 

Belize 5.61 -- 0.012 -- 0.92 -- 

Sm. Sol. 6.77 -- 0.002 -- 0.85 -- 

 
 

 

Figure 3.10: Example of data fitted to Ryan-Weber equation via Matlab; x-axis is [Ni]Total (μmol/L), and y- 

axis is fluorescence intensity (au). 

While this project was underway, toxicity tests were conducted using sub-samples of the same 

east coast DOC collections (Blewett et al., 2017). The DOC samples were used to identify possible 
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protective effects toward blue mussels, Mytilus edulis, and purple sea urchins, Strongylocentrotus 

purpuratus, against Ni toxicity. Several DOC samples showed significant protective effects (SVP, BTP, 

CCHT, and CCLT), and the Monte Carlo analysis outlined in Section 2.4.3 was used to quantify free Ni 

concentrations at the EC50 levels, as well as to define the 95% confidence intervals (C.I.) (Table 3.8). CCHT 

was not included in the comparison since it could not be fit to the Ryan-Weber model. An example of the 

Monte Carlo output is shown in Figure 3.11. 

Table 3.8: Quantification of free [Ni2+] at EC50 levels for blue mussels (unless otherwise noted), calculated 

with Monte Carlo method. 

 

Sample EC50 (µM) Free [Ni2+] (µM) St. Dev. [Ni2+] Low End of C.I. (µM) High End of C.I. (µM) 

ASW 2.27 1.37 0.156 1.27 1.49 

SVP 3.32 0.99 0.200 0.62 1.36 

BTP 3.07 1.26 0.053 1.16 1.36 

CCLT 2.90 1.15 0.074 1.01 1.28 

SVP* 6.71 3.59 0.199 3.20 3.98 

Belize 2.32 1.27 0.026 1.22 1.32 

Sm. Sol. 2.27 1.02 0.066 0.93 1.15 

*Urchin embryo results 
Note: Values for Belize and ‘Small Solid’ samples are estimates, assuming FQ-derived speciation is correct. 
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Figure 3.11: Calculated [Ni2+] (in µmol Ni/L) at EC50 value for Mytilus edulis in CCLT sample. 
 

Plots of EC50’s are in Figure 3.12, and the calculated [Ni2+] at the EC50 values based on the samples 

is shown in Figure 3.13. The dashed lines represent the 95% confidence interval of the ASW control in 

both cases. 

 

 

Figure 3.12: EC50 values for select east coast sites for Mytilus edulis (left) and Strongylocentrotus 

purpuratus (right); x-axis is DOC sample, and y-axis is EC50 in μg Ni/L. 
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Figure 3.13: Free [Ni2+] at EC50 values for Mytilus edulis (left) and Strongylocentrotus purpuratus (right); 

x-axis is DOC sample, and y-axis is free [Ni2+] in μg/L. 

In Figure 3.12, the samples have EC50 values which are significantly higher than the ASW control - 

this is what makes them protective (Blewett et al., 2017). The hypothesis that free Ni2+ concentrations will 

be constant at EC50 levels (and match the control) is reaffirmed in Figure 3.13 for Mytilus edulis. The three 

sites in question - SVP, BTP, and CCLT - had different properties, yet all showed the same [Ni2+] at EC50 

values (within a 95% C.I.). They also all fell within the range of [Ni2+] at the EC50 level for ASW. Results for 

Strongylocentrotus purpuratus did not show the same relationship however, which could be due to 

limitations with fluorescence as a speciation technique since it only detects fluorescent ligands. 

Of all samples, the most interesting was that from Belize. Without prior concentration, it had a 

[DOC] of nearly 30 mg C/L, and an ambient salinity of 18.34 ppt. These qualities make the sample 

especially relevant for studying Ni-DOM interactions in a sample that is naturally high in speciation- 

modifying factors. Also, because of existing and prospective Ni mines in equatorial regions for the 

extraction of lateritic Ni ores (Indonesia, The Philippines, et cetera), the Belize sample provided a real 

example of seawater DOM where Ni could have major impacts. It was disappointing, therefore, to 

conclude that the Belize sample did not bind as much Ni (or as strongly) as was anticipated. However, this 

simply highlights the need for further information on sample composition in tropical areas and possibly 

stricter water quality recommendations in areas where DOM is not as protective. 
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Chapter 4: Conclusion and Future Work 
 

Two speciation techniques were tested in efforts to quantify free Ni in a variety of DOC samples: 

a Ni-ISE and fluorescence-monitored titrations. Ion-selective electrodes are a popular choice for 

measuring free metal ions since it is a direct speciation technique, but unfortunately a Ni ISE suitable for 

marine samples was not constructed during this project. The responses detected were not reproducible 

for dithizone membranes, and a large variation in slopes resulted while calibrating in freshwater; as well, 

these membranes did not respond in saltwater at all. BBTC membranes showed more reliability and gave 

slopes that, although not Nernstian, were consistent; they responded during titrations for multiple 

freshwater DOC samples, however no response was detected in salt water. 

Fluorescence proved to be a reasonably strong technique, and log K values and binding capacities 

were determined for multiple marine samples. A Monte Carlo analysis showed that when log K and LT 

values - derived from FQ titration data through Ryan-Weber analysis - were applied to [Ni]Total at EC50 

levels, the predicted Ni2+ concentrations overlap with each other. Values for the mussel studies also 

overlap with the predicted free Ni2+ concentrations at the EC50 values based on the ASW blank. This 

confirms the hypothesis that while EC50 values can vary depending on water chemistry, the free Ni2+ 

concentrations remain constant. While fluorescence spectroscopy may not be a completely 

representative technique, it has shown to provide valuable results and may be an important tool toward 

Ni speciation determination. 

Presently, WQG and WQC are based off of total metal concentrations, though it is recognized that 

dissolved fractions provide a much better understanding of toxicity toward aquatic organisms. This study 

has demonstrated that a connection can be made between effective concentrations and metal speciation 

through fluorescence data; it has highlighted that Ni-DOM complexes are quantifiable, and that 

fluorescence as a speciation technique can provide valuable information toward binding capacities and 

binding constants in real samples. 
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Future work should include testing other speciation measures that are more well-established, for 

example competitive ligand-based techniques. A reliable ISE would be ideal, so further investigation 

toward optimizing the response of the in-house membrane should be considered. 

Developing and implementing a marine BLM for Ni is a necessary step toward stipulating 

appropriate water quality parameters in seawater, and being able to quantify Ni2+ is an important part in 

BLM development and has positive implications toward establishing site-appropriate WQG and WQC in 

marine systems. 
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Appendix 
 

Figures 

F1: Map of Sampling Sites in Eastern United States 
F2: FEEMs of all samples 

F2.1: FEEMs of protein skimmer waste samples 
F2.2: FEEMs of other East Coast samples 

F3: All FQ titrations 
 

Codes 

C1: MATLAB code to plot FEEM 
C2: ADL code for synchronous scan 
C3: MATLAB code for SIMPLISMA 
C4: MATLAB code for Ryan-Weber analysis 
C5: MATLAB code for Monte Carlo analysis 
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F1: Map of Sampling Sites in Eastern United States (Google Maps. (2015). Rhode Island, USA. Retrieved from 
https://www.google.ca/maps/place/Rhode+Island,+USA/@41.5885016,-
72.5687484,145397m/data=!3m1!1e3!4m5!3m4!1s0x89e43514620ed70f:0x1e4e18bce7c106e7!8m2!3d41.
5800945!4d-71.4774291. October 2015). 
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F2: FEEMs of all samples 

 

F2.1: FEEMs of other aquarium store protein skimmer waste samples. 
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F2.2: FEEMs of other East Coast samples. 
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F3: All FQ titration curves 
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C1: MATLAB code to plot FEEM 

function II=FEEM_code 
figure(1); clf 
scatterfactor=0.02; 
[F,em,ex]=Fdata(scatterfactor); [Fr,emr]=resample(F,em); 
makecontourplot(F,em,ex) 
h=title(‘FEEM’); set(h,'fontsize',12) 
%print Fcontour.eps -depsc2 
%print Fcontour.tiff -r300 -dtiff 
%print Fcontour.png -dpng 
print Fcontour.jpg -djpeg 
figure(2); clf 
makesurfaceplot(Fr,emr,ex) 
h=title('Fluorescence'); set(h,'fontsize',12) 
%print Fsurf.eps -depsc2 
%print Fsurf.tiff -r300 -dtiff 
%print Fsurf.png -dpng 
print Fsurf.jpg -djpeg 
save Fname 
end 
function [F,em,ex]=Fdata(scatterfactor) 
data=[... 
200 200 210 210 220 220 230 230 240 240 250 250 260 260 270 270 280 280 290 290 300 300 310 310 
320 320 330 330 340 340 350 350 360 360 370 370 380 380 390 390 400 400 410 410 420 420 430 430 
440 440 450 450 
% Enter raw data from spectrophotometer excel output 
]; 
[F,em,ex]=Fprocess(data,scatterfactor); 
end 
function [F,em,ex]=Fprocess(data,fraction) 
[N,M]=size(data) 
c=0; 
for i=2:2:M 

c=c+1; F(:,c)=data(2:N,i)-min(data(2:N,i)); 
ex(c)=data(1,i); 

end 
F=F'; em=data(2:N,1); [N,M]=size(F); 
em 
for i=1:N 

for j=1:M 
EM=em(j); 
EX=ex(i); 
if EM>=EX*(1-fraction) 
if EM<=EX*(1+fraction) 
F(i,j)=NaN; 
end 
end 
end 
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end 
for i=1:N 

for j=1:M 
EM=em(j); 
EX=ex(i); 
if EM>=(2*EX)*(1-fraction) 
if EM<=(2*EX)*(1+fraction) 
F(i,j)=NaN; 
end 
end 
end 

end 
 

end 
function [G,H]=resample(data,em) 
%Try to resample so things look better 
[N,M]=size(data); %M is em points N is ex points. Resample every 10 nm for M 
for i=1:N 

Fem=data(i,:); c=0; 
for j=1:10:M 
c=c+1; Femred(c)=Fem(j); emred(c)=em(j); 
end 
%figure(3); plot(em,Fem,'k',emred,Femred,'ko') 
%k=waitforbuttonpress 
datare(i,:)=Femred; 

end 
G=datare; 
H=emred; 
end 
function makesurfaceplot(F,em,ex) 
colormap('jet') 
h=surf(em,ex,F) 
set(gca,'linewidth',2) 
view([-26 48]) 
axis([250 600 200 450 0 max(max(F))*1.1]) 
h=xlabel('Emission (nm)'); set(h,'fontsize',12) 
h=ylabel('Excitation (nm)'); set(h,'fontsize',12) 
h=zlabel('Intensity (arb.)'); set(h,'fontsize',12) 
end 
function makecontourplot(F,em,ex) 
colormap('jet') 
h=surf(em,ex,F) 
shading interp 
hold on; [C,h]=contour3(em,ex,F,3,'k'); set(h,'linewidth',2); 

set(gca,'linewidth',2) 
axis([250 600 200 450 0 max(max(F))]) 

view([0 90]) 
% hold on; plot3([250 600],[450 450],[0 0],'k','linewidth',2) 
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% hold on; plot3([600 600],[220 450],[0 0],'k','linewidth',2) 
h=xlabel('Emission (nm)'); set(h,'fontsize',12) 
h=ylabel('Excitation (nm)'); set(h,'fontsize',12) 
end 
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C2: ADL code for synchronous scans 
*Note: this code results in one scan, so it was entered three times to produce three scans 

ex_start = 200 

ex_end = 440 

em_start = 250 

em_end = 600 

num_samples = 300 

delta_ex = (ex_end - ex_start)/(num_samples-1) 

delta_em = (em_end - em_start)/(num_samples -1) 

For sample = 0 to (num_samples-1) 

current_ex = ex_start + delta_ex*sample 

current_em = em_start + delta_em*sample 

REM SETVAL("Goto Wavelength", current_ex) 

REM SETUPINST LPRINT(current_ex, current_em, READ(current_ex, current_em) ) 

Next 
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C3: Code for SIMPLISMA 
 

% SIMPLISMA 

function II=process_titrationdata_SIMPLISMA_template 

clear; figure(1); close; figure(2); close; figure(3); close; figure(4); close 

data=getdata; [n,m]=size(data); 

%********************************************** 

lowpercent=10; highpercent=90; 
%Enter percents between 0 and 100 but highpercent has be be bigger than lowpercent 

%********************************************** 

startdata=round(n*(lowpercent/100)); 

enddata=round(n*(highpercent/100)) ; 

wavelength=data(startdata:enddata,1); 

data=data(startdata:enddata,2:m); data=data'; 

 
 

figure(1); plot(wavelength,data); %k=waitforbuttonpress; 

xlabel('Added Ni (ppb)','fontsize',12) 

ylabel('Emission Wavelength (nm)','fontsize',12) 

k=waitforbuttonpress; 

%********************************************** 

n=2; %Number of components 

offset=0; %Value 1-15 depending on necessary correction factor 

%********************************************** 

varlist=[wavelength]'; % wavelengths in real spectra 

[purspec,purint,purity_spec]=simplisma(data,varlist,offset,n); 

figure(1); close 

%********************************************** 
conc=[ 
%Enter nominal Ni concentrations from titration 
]; 
%********************************************** 

%figure(1); plot(wavelength,purspec(1,:),wavelength,purspec(2,:),wavelength,purspec(3,:),'linewidth',2) 
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figure(1); plot(wavelength,purspec(1,:),wavelength,purspec(2,:),'linewidth',2) 

set(gca,'linewidth',2,'fontsize',12) 

xlabel('Emission Wavelength (nm)','fontsize',12) 

ylabel('Pure Spectra Intensity (arb)','fontsize',12) 

%Axis([340 520 0 15e-3]) 

print componentspectra.eps -depsc2 

figure(2); close; figure(2); h=plot(conc*1e6,purint(:,1),'bo',conc*1e6,purint(:,2),'go','markersize',8) 

set(h(1),'markerfacecolor','b'); set(h(2),'markerfacecolor','g') 

set(gca,'linewidth',2,'fontsize',12) 

xlabel('Added Ni (M*1e-6)','fontsize',12) 

ylabel('Flurophore Concentration (arb)','fontsize',12) 

%Axis([0 4 1.5e4 6e4]) 

size(conc) 

size(purint) 

export=[... 

conc*1e6 purint./1e4] 

figure(1) 

end 
 

%********************************************** 

function II=getdata 

data=[... 
% Enter data: first column is range of emission wavelengths; following columns are measured 
% fluorescence intensities at each of the emission wavelengths 
]; 

II=data; 

end 

% SIMPLISMA function 

function [purspec,purint,purity_spec]=simplisma(data,varlist,offset,n,data2); 

%function [purspec,purint,purity_spec]=simplisma(data,varlist,offset,n,data2); 
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% It is a short non interactive version of SIMPLISMA taken from Windig's article Chemometrics and 
% Intelligent Laboratory Systems, 36, 1997, 3-16. 

 
% INPUT: data contains the data matrix (spectra in rows), data 2 can be ignored or empty 
% For second derivative applications data contains the conventional data and data2 contains 
% the inverted 2nd data 
% To create data2 use function: data2=invder(data); 
% Varlist contains the variable identifiers 
% Offset is a correction factor for low intensity variables (1- no offset, 15 - large offset), n is a number of 
% components 

 
 

% OUTPUT: purespec contains the pure spectra, purint contains the intensities ('concentrations') of the 
% pure spectra in the mixtures 
% purity_spec - spectra containing purity spectra 
% The program will plot the purity and standard deviation spectra, where the pure variables selected 
will 
% be marked by a '*'. After each plot, any key needs to be pressed to continue 

 
 

% INITIALIZE; 

if nargin==5; 

temp=data;data=data2;data2=temp;clear temp 

end 

[nspec,nvar]=size(data); purvarindex=[]; 

if nargin==4; 

data2=[]; 

end; 

% CACULATE STATISTICS 

stddata=std(data)*sqrt(nspec-1)/sqrt(nspec); 

meandata=mean(data); 

meandataoffset=meandata+((offset/100)*max(meandata)); 

lengthdata=sqrt((stddata.*stddata+meandataoffset.*meandataoffset)*... 

sqrt(nspec)); 

lengthmatrix=lengthdata(ones(1,nspec),:); 

datalengthscaled=data./lengthmatrix; 
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puredata=stddata./meandataoffset; 
 
 

% DETERMINE PURE VARIABLES 

purity_spec=0*[1:nvar]; 

max_index=0; 

for i=1:n+1; 

purvar=datalengthscaled(:,purvarindex); 

for j=1:nvar; 

addcolumn=datalengthscaled(:,j); 

purvartest=[purvar addcolumn]; 

matrix=purvartest'*purvartest; 

weight(j)=det(matrix); 

end; 

purityspec=weight.*puredata; 

purity_spec=[purity_spec; purityspec]; 

maxindex=find(purityspec==max(purityspec)); 

maxindex=maxindex(1); 

%********************************************** 

% Figure 2: fluorophore concentration versus total Ni 

figure(2) 

subplot(3,2,1); plot(varlist,purityspec,'g',varlist(maxindex),... 

purityspec(maxindex),'g*'); 

max_index=[max_index, maxindex]; 

axis([sort([varlist(1) varlist(length(varlist))]) 0 1.1*max(purityspec)]); 

if varlist(1)>varlist(2); 

set(gca,'Xdir','reverse'); 

end; 

title(['purity spectrum # ', num2str(i)]); 

stdspec=weight.*stddata; 

subplot(3,2,2);plot(varlist, stdspec,'g',varlist(maxindex),... 
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stdspec(maxindex),'g*'); 

axis([sort([varlist(1) varlist(length(varlist))]) 0 1.1*max(stdspec)]) ; 

if varlist(1)>varlist(2); 

set(gca,'Xdir','reverse'); 

end; 

title(['standard deviation spectrum # ', num2str(i)]); 
 

%pause 
 

purvarindex=[purvarindex maxindex]; 

end 

close(2) 

purvarindex(n+1)=[]; 

 
 

%RESOLVE SPECTRA 
 
 

purematrix=(data(:,purvarindex)); 

if isempty(data2) 

purspec=purematrix\data; 

else; 

purspec=purematrix\data2; 

end; 

 
% RESOLVE INTENSITIES 

if isempty(data2); 

purint=data/purspec; 

else; 

purint=data2/purspec; 

end; 

 
 

%SCALE 
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if isempty(data2); 

tsi=sum(data')'; 

else; 

tsi=sum(data2')'; 

end; 

a=purint\tsi; 

purint=purint*diag(a); 

purspec=inv(diag(a))*purspec; 

H2.Position=[264 188 339 423]; 

figure(H2) 

subplot(2,1,1),plot(varlist,purspec), %set(gca,'Xdir','reverse') 

title ('pure spectra') 

subplot(2,1,2), plot(purint), title ('pure intensity') 

H3.Position=[616 190 339 423]; 

figure(H3) 

for i=1:n+1; 

subplot(n+1,1,i), plot(abs(varlist),purity_spec(i+1,:)) 

hold on, plot(abs(varlist(max_index(i+1))),purity_spec(max_index(i+1)),'g*'); 

set(gca,'Xdir','reverse') 

hold off 

end 

end 
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C4: MATLAB code for Ryan-Weber analysis 

% Ryan Weber fit of fluorescence data 
% Needs modeltwoligandmarineNispeciation.m 
function II=RyanWeber_optimization_2fluorophore_code 
figure(1); clf 
logK=[6.3 6.6]; LT=10.^[-6.2 -6.5]; 
[NiT,F1,F2]=returndata; 
pguess=[logK log10(LT) 0.90 1.05]; flag=1; 
% logKs logLTs then how much less efficient each fluorophore is (fraction) 
% Test initial guess 
error=calc2F(pguess,NiT,F1,F2,flag); k=waitforbuttonpress; 
% Now optimize fminunc 
% options = optimset(@fminunc); 
% options = optimset(options,'Display','iter','TolFun',1e-4,'TolX',1e-3,'MaxFunEvals',1000); 
% flag=0; % no plotting 
% Now optimzie fminsearch (Simplex) 
options = optimset(@fminsearch); 
options = optimset(options,'Display','iter','TolFun',1e-1,'TolX',1e-1,'MaxFunEvals',1000); 
flag=0; % no plotting 
f = @(p)calc2F(p,NiT,F1,F2,flag); 
[p2] = fminsearch(f,pguess,options) 
%[p2] = fminunc(f,pguess,options) 
% Look at best fit 
figure(1); clf; flag =1; % plot it 
error=calc2F(p2,NiT,F1,F2,flag); 
% Compare free Ni with and without ligands 
% Use 4 uM NiT for comparison 
NiT=4e-6; 
[Cnoligand,names]=modeltwoligandmarineNispeciation_NR(NiT,[p2(1) p2(2)],1e-20*[10^p2(3) 
10^p2(4)]); 
for j=1:size(Cnoligand,1) 

txt=[names(j,:),'=Cnoligand(j);']; 
eval(txt) 

end 
Ninoligand=Ni 
[Cwithligands,SOLUTIONNAMES]=modeltwoligandmarineNispeciation_NR(NiT,[p2(1) p2(2)],[10^p2(3) 
10^p2(4)]); 
for j=1:size(Cwithligands,1) 

txt=[names(j,:),'=Cwithligands(j);']; 
eval(txt) 

end 
Niwithligand=Ni 

 
end 
function [MT,F1,F2]=returndata 
data=[... 
% [NiT] F1 F2 
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% Enter data from SIMPLISMA anaylsis: first column is nominal concentrations of Ni added during 
% titration; second and third columns are relative concentrations of fluorophores 
]; 
conc=data(:,1)*1e-6; MT=conc; F1=data(:,2); F2=data(:,3); 
end 
function [C,SOLUTIONNAMES]=modeltwoligandmarineNispeciation_NR(NiT,logK,LT) 
global Asolution Ksolution T 
% Start by defining tableau, with two K values for two unknown ligands 
K=logK; %logK of two K values 
L1T=LT(1); L2T=LT(2); 
[KSOLUTION,ASOLUTION,SOLUTIONNAMES]=get_equilib_defn(K); 
% Reduced problem for fixed pH 
pH=8.0; [Ksolution,Asolution]=get_equilib_fixed_pH(KSOLUTION,ASOLUTION,pH); 
% Specify totals 

 
ClT=0.546; NaHCO3=200; %mg/L from recipe 
NaHCO3AW=100; %g/mol 
CT=(NaHCO3*1e-3)/NaHCO3AW; ST=28e-3; 
T=[NiT; CT; ST; ClT; L1T; L2T]; X=T; 
[masserror,J,C]=nl_massbalancerrnosolid_NR(X); 
end 
% Equilibrium definition ----------------Tableau_varymetal_fixedpHSmFQ.m 
function [KSOLUTION,ASOLUTION,SOLUTIONNAMES]=get_equilib_defn(K); 
%********************************************** 
% H+ M    CO3    SO4  Cl   L1 L2 logK species name 

Tableau=[... 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
%********************************************** 

n=size(Tableau,2); 

1 0 0 0 0 0 0 0 {‘H'} 
0 1 0 0 0 0 0 0 {'Ni'} 
0 0 1 0 0 0 0 0 {'CO3'} 
0 0 0 1 0 0 0 0 {'SO4'} 
0 0 0 0 1 0 0 0 {'Cl'} 
0 0 0 0 0 1 0 0 {'L1'} 
0 0 0 0 0 0 1 0 {'L2'} 
-1 0 0 0 0 0 0 -14 {'OH'} 
1 0 1 0 0 0 0 9.53 {'HCO3'} 
2 0 1 0 0 0 0 15.5 {'H2CO3'} 
1 0 0 1 0 0 0 0.7197 {'HSO4'} 
-1 1 0 0 0 0 0 -10.02 {'NiOH'} 
0 1 1 0 0 0 0 3.57 {'NiCO3'} 
0 1 0 1 0 0 0 0.7737 {'NiSO4'} 
1 1 1 0 0 0 0 11.12 {'NiHCO3'} 
0 1 0 0 1 0 0 -0.46 {'NiCl'} 
0 1 0 0 0 1 0 K(1) {'NiL1'} 
0 1 0 0 0 0 1 K(2) {'NiL2'} 
];        
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ASOLUTION=cell2mat(Tableau(:,1:n-2)); 
KSOLUTION=cell2mat(Tableau(:,n-1)); 
SOLUTIONNAMES=strvcat(Tableau(:,n)); 
end 
% For fixed pH 

 
 

function [Ksolution,Asolution]=get_equilib_fixed_pH(KSOLUTION,ASOLUTION,pH) 
[N,M]=size(ASOLUTION); 
Ksolution=KSOLUTION-ASOLUTION(:,1)*pH; 
Asolution=[ASOLUTION(:,2:M)]; 

 
end 

 
function [F,J,C] = nl_massbalancerrnosolid_NR(X) 
global Asolution Ksolution T 
[Nc,Nx]=size(Asolution); %Xsolution=X(1:Nx); 
criteria=1e-16; 
for i=1:1000 
logC=(Ksolution)+Asolution*log10(X); C=10.^(logC); % calc species 
R=Asolution'*C-T; 
% Evaluate the Jacobian 

z=zeros(Nx,Nx); 
for j=1:Nx; 

for k=1:Nx; 
for i=1:Nc; z(j,k)=z(j,k)+Asolution(i,j)*Asolution(i,k)*C(i)/X(k); end 
end 

end 
J = z; 
deltaX=z\(-1*R); 

one_over_del=max([1, -1*deltaX'./(0.5*X')]); 
del=1/one_over_del; X=X+del*deltaX; 

 
 
 

end 

tst=sum(abs(R)); 
if tst<=criteria; break; end 

 

F=[R]; 
end 
function II=calc2F(p,NiT,F1,F2,flag) 
logK1=p(1); logK2=p(2); LT1=10^p(3); LT2=10^p(4); 
kfracNiL1=p(5); kfracNiL2=p(6); 
kL1=F1(1)/LT1; kNiL1=kfracNiL1*kL1; 
kL2=F2(1)/LT2; kNiL2=kfracNiL2*kL2; 
for i=1:size(NiT,1) 
[C,names]=modeltwoligandmarineNispeciation_NR(NiT(i),[logK1 logK2],[LT1 LT2]); 
for j=1:size(C,1) 

txt=[names(j,:),'=C(j);']; 
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eval(txt) 
end 
vNiL1(i)=NiL1; vNiL2(i)=NiL2; vL1(i)=L1;vL2(i)=L2; 
end 
% For plotting 

 
N=size(NiT,1); NiTp=min(NiT):(NiT(N)-NiT(N-1))/10:max(NiT)*1.1; 
for i=1:size(NiTp,2) 
[C,names]=modeltwoligandmarineNispeciation_NR(NiTp(i),[logK1 logK2],[LT1 LT2]); 
for j=1:size(C,1) 

txt=[names(j,:),'=C(j);']; 
eval(txt) 

end 
pNiL1(i)=NiL1; pNiL2(i)=NiL2; pL1(i)=L1;pL2(i)=L2; 
end 
F1calcp=kL1*pL1+kNiL1*pNiL1; 
F2calcp=kL2*pL2+kNiL2*pNiL2; 
if flag==1; 

plot(1e6*NiTp,F1calcp./F1calcp(1),'k','linewidth',2); hold on 
plot(1e6*NiTp,F2calcp./F2calcp(1),'b','linewidth',2); 
plot(1e6*NiT,F1./F1(1),'ko','markersize',10,'markerfacecolor','k'); 
plot(1e6*NiT,F2./F2(1),'ko','markersize',10,'markerfacecolor','b'); 
set(gca,'linewidth',2,'fontsize',12) 

end 
% For error 
F1calc=kL1*vL1+kNiL1*vNiL1; 
F2calc=kL2*vL2+kNiL2*vNiL2; 
Z=[F1calc'-F1 F2calc'-F2]; 
II=log10(det(Z'*Z)); 
end 
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C5: MATLAB code for Monte Carlo analysis 

% Monte Carlo analysis 
function II=Speciation_with_uncertainty 
figure(1); clf 
logK=[6.4   6.3]; logKsd=[0.2 0.3]; 
LT=[0.8e-6 0.5e-6]; LTsd=[0.01e-6 0.01e-6]; % in mol/L 
NiT=4e-6; % in mol/L 
% Put EC50 values from toxicity tests in as NiT, where applicable 
for i=1:1000 
LOGK=normrnd(logK,logKsd); lt=normrnd(LT,LTsd); 

 
[Cwithligands,SOLUTIONNAMES]=modeltwoligandmarineNispeciation_NR(NiT,LOGK,lt); 
for j=1:size(Cwithligands,1) 

txt=[SOLUTIONNAMES(j,:),'=Cwithligands(j);']; 
eval(txt) 

end 
Nicalc(i)=Ni; 
end 
histfit(Nicalc*1e6,15) 
xlabel('[Ni^{2+}] calculated'); ylabel('frequency') 
set(gca,'linewidth',2) 
Nimean=mean(Nicalc) 
Nisd=std(Nicalc) 
dist = abs(Nicalc-Nimean); 
[sortDist, sortIndex] = sort(dist); 
index_95perc = sortIndex(1:floor(0.95 * numel(Nicalc))); 
x_95percent = Nicalc(index_95perc); 
lowend=min(x_95percent) 
highend=max(x_95percent) 
hold on 
plot([lowend lowend]*1e6,[0 250],'k--','linewidth',2) 
plot([highend highend]*1e6,[0 250],'k--','linewidth',2) 

 
end 
function [C,SOLUTIONNAMES]=modeltwoligandmarineNispeciation_NR(NiT,logK,LT) 
global Asolution Ksolution T 
% Start by defining tableau, with two K values for two unknown ligands 
K=logK; %logK of two K values 
L1T=LT(1); L2T=LT(2); 
[KSOLUTION,ASOLUTION,SOLUTIONNAMES]=get_equilib_defn(K); 
% Reduced problem for fixed pH 
pH=8.0; [Ksolution,Asolution]=get_equilib_fixed_pH(KSOLUTION,ASOLUTION,pH); 
% Specify totals 
ClT=0.546; NaHCO3=200; %mg/L from recipe 
NaHCO3AW=100; %g/mol 
CT=(NaHCO3*1e-3)/NaHCO3AW; ST=28e-3; 
T=[NiT; CT; ST; ClT; L1T; L2T]; X=T; 
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[masserror,J,C]=nl_massbalancerrnosolid_NR(X); 
end 
% Equilibrium definition ----------------Tableau_varymetal_fixedpHSmFQ.m 
function [KSOLUTION,ASOLUTION,SOLUTIONNAMES]=get_equilib_defn(K); 
%********************************************** 
% H+   M CO3 SO4 Cl L1  L2 logK species name 

Tableau=[... 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

%********************************************** 

n=size(Tableau,2); 
ASOLUTION=cell2mat(Tableau(:,1:n-2)); 
KSOLUTION=cell2mat(Tableau(:,n-1)); 
SOLUTIONNAMES=strvcat(Tableau(:,n)); 
end 
% For fixed pH 
function [Ksolution,Asolution]=get_equilib_fixed_pH(KSOLUTION,ASOLUTION,pH) 

[N,M]=size(ASOLUTION); 
Ksolution=KSOLUTION-ASOLUTION(:,1)*pH; 
Asolution=[ASOLUTION(:,2:M)]; 

 
end 
function [F,J,C] = nl_massbalancerrnosolid_NR(X) 
global Asolution Ksolution T 
[Nc,Nx]=size(Asolution); %Xsolution=X(1:Nx); 
criteria=1e-16; 
for i=1:1000 
logC=(Ksolution)+Asolution*log10(X); C=10.^(logC); % calc species 
R=Asolution'*C-T; 
% Evaluate the Jacobian 

1 0 0 0 0 0 0 0 {'H'} 
0 1 0 0 0 0 0 0 {'Ni'} 
0 0 1 0 0 0 0 0 {'CO3'} 
0 0 0 1 0 0 0 0 {'SO4'} 
0 0 0 0 1 0 0 0 {'Cl'} 
0 0 0 0 0 1 0 0 {'L1'} 
0 0 0 0 0 0 1 0 {'L2'} 
-1 0 0 0 0 0 0 -14 {'OH'} 
1 0 1 0 0 0 0 9.53 {'HCO3'} 
2 0 1 0 0 0 0 15.5 {'H2CO3'} 
1 0 0 1 0 0 0 0.7197 {'HSO4'} 
-1 1 0 0 0 0 0 -10.02 {'NiOH'} 
0 1 1 0 0 0 0 3.57 {'NiCO3'} 
0 1 0 1 0 0 0 0.7737 {'NiSO4'} 
1 1 1 0 0 0 0 11.12 {'NiHCO3'} 
0 1 0 0 1 0 0 -0.46 {'NiCl'} 
0 1 0 0 0 1 0 K(1) {'NiL1'} 
0 1 0 0 0 0 1 K(2) {'NiL2'} 
];        
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z=zeros(Nx,Nx); 
for j=1:Nx; 

for k=1:Nx; 
for i=1:Nc; z(j,k)=z(j,k)+Asolution(i,j)*Asolution(i,k)*C(i)/X(k); end 
end 

end 
J = z; 
deltaX=z\(-1*R); 

one_over_del=max([1, -1*deltaX'./(0.5*X')]); 
del=1/one_over_del; X=X+del*deltaX; 

 
 
 

end 
F=[R]; 
end 

tst=sum(abs(R)); 
if tst<=criteria; break; end 


