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Abstract 
 

 

Natural Organic Matter (NOM) is known to reduce metal, such as copper, toxicity in aquatic 

environments. Copper is essential for organisms, but elevated concentrations of dissolved copper 

can potentially be toxic. The toxicity of copper is related to its bioavailability, which is 

influenced by toxicity modifying factors, such as NOM (quantified as Dissolved Organic Carbon 

(DOC) in mg C/L), alkalinity, pH and major cation and anion concentrations.  The principles are 

the same for fresh and saltwater, but the influence of high salt concentrations, such as in 

estuaries, and associated activity corrections, can modify NOM complexation of metals (i.e., 

modify logK values).  The magnitude of such corrections has not been systematically studied in 

the context of risk assessment tools such as the Biotic Ligand Model (BLM), and the 

mathematical tools currently used to correct logK values for salt effects have not been fully 

tested experimentally.  The purpose of this study is to address these gaps by determining logK 

values across a range of salinities for copper association with salicylic acid as a proxy to NOM. 

This study used varying concentrations of salt, either as artificial seawater (10 to 100%) or 

simply as sodium sulfate salt (Na2SO4).  In these salt solutions, logK values for copper binding 

to salicylic acid were determined using fluorescence quenching titrations and nonlinear 

regression (the so-called Ryan-Weber method). Salicylic acid is a well-defined compound, so 

these logK values were compared to certified values from the National Institute of Standards and 

Technology (NIST) measured at different ionic strengths.  In addition, comparisons of logK 

values were made between measured values, NIST interpolations, and calculations using the 

extended Debye-Huckel (DH) equation. The results show that the extended DH calculation has a 

great agreement with the certified NIST values. However, the fluorescence quenching method 

has disagreement compared to other methods. It was off by an order magnitude. As a future 

study, it is better to test different methods such as Ion Selective Electrode and how the results 

match others. 
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Chapter 1 

Introduction 

 

1.1 Overview 

 Metals play a significant role in aquatic environmental pollution. Many metals are 

essential for aquatic organisms, but elevated concentrations of dissolved metal cations, including 

Cu2+and Ni2+, could seriously affect the aquatic environment due to their potential toxicity at 

higher concentrations (Chapman et al., 1998; Howard, 1998; Mason, 2013; Nadella et al., 2009; 

Smith et al., 2017; Smith et al., 2011). 

 

1.2 Copper 

Copper (Cu) is found in water in different forms including complexes with 

Disolved Organic Matter (DOM) as well as inorganic species (e.g., Cu(OH)+, CuCl+, and 

CuHCO3) (Kogut & Voelker, 2001; Sunda & Hanson, 1979). Both the organic and 

inorganic complexed forms have limited availability Cu(OH)+ to be toxic to organisms 

(Kogut & Voelker, 2001; Sunda & Hanson, 1979). Consequently, free copper (Cu2+) is 

widely used as a predictor of toxicity, since it can be proportional to the bioavailable 

fraction of total copper (Glasby & Schulz, 1999; González-Dávila et al., 2009). Also, free 

copper can bind with the biotic ligand (BL) on organisms (e.g., gill) and potentially block 
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ion channels and potentially causing death by ion regulatory disturbance (Di Toro et al., 

2001; Grosell & Wood, 2002). 

The Biotic Ligand Model (BLM) can be used to predict copper toxicity based on 

calculations of copper speciation. From BLM perspective, anything that prevents copper 

accumulation at the BL is expected to decrease Cu toxicity. For instance, alkalinity has an 

influence on metal toxicity. In Fig.1, when the alkalinity increases cations like Na+ and 

Ca2+ increase, the toxicity decreases because these cations will reduce the binding 

between metal (e.g. Cu2+) and BLs of the organism. Also, increasing alkalinity increase 

anions species, such as (bicarbonate HCO3
− and carbonate CO3

2−), which will reduce the 

toxicity of metals because metals like Ca2+ will bind with these anions in solution instead 

of binding to the BL. 

 

 

Figure 1. Schematic diagram of the Biotic Ligand Model (Adapted from Di Toro et al., 2001). 
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1.3 Predicting the toxicity and bioavailability of metals 

 Many studies predict the toxicity and bioavailability of dissolved copper in water by 

using the BLM (Figure 1) ( Di Toro et al., 2001; Mart et al., 1985; Pagenkopf, 1983; Paquin et 

al., 2002; Smith et al., 2017; Sunda & Hanson, 1979; Wang et al., 2012). The BLM could be 

defined as a chemical equilibrium-based model that depends on the log K values for reactions 

involving metals, ligands and competing species (Figure 1) (Di Toro et al., 2001). The BLM is a 

predictive tool to estimate toxicity as a function of water quality variables and can be used to 

assess the risk of aqueous metals (Engel & Sunda, 1979; D. S. Smith et al., 2017; Wang et al., 

2012). The bioavailability of metals and ultimately toxicity is predicted by toxicity modifying 

factors, such as pH, dissolved organic matter, sodium, cation concentration, alkalinity, and other 

factors (Paquin et al., 2002). Predictions of the binding between BL and dissolved metals (e.g., 

Cu2+) aids in the establishment of the environmental regulation for surface water. Furthermore, 

the BLM allows regulators to take site specific chemical characteristic of the receiving water into 

account when assessing risk of copper discharge. 

 

1.4 Estuary 

1.4.1 The estuarine environment 

There are several types of surface waters potentially impacted by metal pollution. 

Depending on salinity, water might be classified as salt water or fresh water, or intermediate 

between the two, such intermediate salinity water is referred to as estuarine. The pH range of salt 

water is between 7.8 and 8.3 (Millero, 2001); however, fresh water contains a wider range of pH 
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between 5.5 to 7.5 (Shirlie, 2018). An estuarine system has pH range between 7.5 and 8.8 (Day 

et al., 1989). The estuary system is classified as a special type of water because it contains a high 

range of various salinity and pH levels where the fresh river water and marine salt water mix 

(Whitfield, 1999). The multiple levels of salinity have influences on several toxicity modifying 

factors of the BLM such as pH, alkalinity, ionic strength and dissolved organic matter (DOM). 

Salinity in particular will modify the K values that form the basis of the BLM, and the model 

needs to be modified to take this into account. Thus, it is important to include the role of salinity 

in BLMs. Currently, there is limited resources on how best to make these corrections. This thesis 

will address this important data gap. 

 

1.4.2 Copper toxicity to selected marine invertebrates 

 There is a study by Smith et al. (2010) that reports a comparison of some organisms 

present in saltwater and their sensitivities to copper. These invertebrate species include Mytilus 

galloprovincialis, Strongylocen-trotus purpuratus, Eurytemora affinis, Crassostrea virginica, 

Mytilus edulis, Eurytemora affinis, and Dendraster excentricus. The most sensitive species was 

Mytilus galloprovincialis, which was affected by a low amount of copper that was EC50 (mg 

Cu/L) = 8.53 DOC (mg C/L)0.87. The equation of the prediction for EC50 was used as a function 

of DOC. The EC50 is the half-maximal effective concentration of the agonist that raises a 

response halfway between the lowest line and the highest response of the curve. Compared to 

organisms, they are classified based on sensitivity factors as more or less sensitive depending on 

the conditions. The study focused on measuring the quality of various Natural Organic Matter 

(presented as Dissolved Organic Carbon (DOC)) as inhibitor to the toxicity of free copper in salt 

water, including different concentrations of DOC. Although the researcher found that there is a 
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relationship between Cu2+ toxicity and DOC, there are no significant differences between 

sources of DOC. 

 

1.4.3 The influence of salinity on BLM  

The BLM has different behavior based on salinity. Each type of water has different 

quality standards. For instance, the estuaries system is a special type of water because it has 

various salinity levels. This various salinity levels have influences on several factors present in 

the system such as pH, alkalinity, ionic strength, and metal speciations. These factors affect the 

results of BLM. Moreover, one of these factors that affects the BLM is ionic strength. Ions can 

make the ionic atmosphere, which can prevent the potential reactivity of the species, and that 

will affect the results of BLM. For example, using a saturated solution of CaSO4 in distilled 

water with 𝐾𝑠𝑝 of 2.4 × 10−5, it showed a solubility of 0.015 M. However, adding inert salt, 

such as KNO3 will increase the solubility of the sparingly soluble salt. 

 

1.5 Thesis objective 

The objective of this research is to experimentally characterize the effect of various ionic 

strengths on copper binding to salicylic acid (logK values for formation of copper complexes) in 

simulated estuary waters and determine, using modeling, the impacts of this variable ionic 

strength estuary system on BLM predictions. This prediction of variable ionic strength is testing 

two activity correction approaches, which are fluorescence quenching and extended Debye-

Huckel (DH) that is compared to measured values from National Institute of Standard and 

Technology (NIST). 
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1.6 The significance of the study 

 BLM depends on logK values, and logK values are depending on salinity. The current 

BLM framework can easily be modified to use the extended DH to correct for ionic strength 

effects. Such modifications need to be validated experimentally though. This study assesses the 

effect of various salt concentrations on the measured and modelled logK values and can help 

inform future saltwater developments of the BLM. There are two main aspects of this study: 

1) Is the DH correction appropriate for estuarine and saltwater BLMs? 

2) Is fluorescence quenching an appropriate method to measure the salinity dependence of 

the formation constant logK values of copper binding to salicylic acid? 

This study is used the mathematical Kf correction using extended DH equation for salicylic acid 

binding copper. It is important to point out that DH can be used only for a small molecule, such 

as salicylic acid, but it is not possible to use DH in large molecules, such as NOM. Thus, 

fluorescence quenching method is going to be used to test its effectiveness to measure the 

variable ionic strength dependent Kf values for NOM-Cu complex formation. 

 

1.7 The theory 

1.7.1 Activity correction 

The activity of the species is the thermodynamically reactive concentrations of these 

species. Equilibrium constant are only truly constant when expressed in activity unit. The 

activity for species C is present in equation (1) as: 

𝒜C = γC[C]          (1) 
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where 𝒜C the activity for species C. γC is the activity coefficient of species C, and [C] is the 

concentration of the species C in molar units. The activity correction concept is used in the 

equilibrium constant equation (i.e. law of mass action). To correct the concentration-based 

equilibrium constant equation including activity, there are several steps that must be applied. An 

equilibrium general reaction is presented in equation (2): 

aA + bB = cC + dD        (2) 

The equilibrium constant for reaction (2) without including any activity correction is in equation 

(3): 

Kconc =  
[C]c[D]d

[A]a[B]b         (3) 

Equation (3) is defined the equilibrium constant (Kconc) values in terms of concentration, 

in molar units. The result of (K) value in equation (3) is only constant at a constant ionic 

strength. The ionic strength (µ) is related to the concentration of the species in the solution and 

charge, and it is used to find the total concentration of ions in the solution. Ionic strength, (µ) is 

defined in equation (4): 

         μ =  
1

2
 ∑ cizi

2
    (4) 

where zi is the charge of the species, and ci is the concentration of the ith species.  

If the concentrations are replaced by activities in the equilibrium constant, it represents 

Kthermo (equation 5). Modifying equation (3) by including the activity coefficient γ, which is a 

function of ionic strength, gives a true constant independent of ionic strength that is present in 

equation (5). 

Kthermo =  
𝒜C

c   𝒜D
d   

𝒜A
a   𝒜B

b =  
[C]cγC

c   [D]dγD
d

[A]aγA
a   [B]b γB

b            (5) 
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Equation (5) is presents the thermodynamic equilibrium constant including activity correction. 

By rearranging equation (5), Kthermowill be in equation (6) that includes a multiplication of 

equation (3) with are the activity coefficients: 

Kthermo =  
[C]c [D]d

[A]a [B]b  .
γC

c   γD
d   

γA
a   γB

b            (6) 

To simplify, the following expression can be derived by substituting Kconc (equation 3) into the 

equation (7): 

Kthermo =  Kconc  
γC

c   γD
d   

γA
a   γB

b            (7) 

Equation (7) presents the expression for K values including activities corrections. The γ values 

are constant for a constant ionic strength; thus, Kconc is constant at a constant ionic strength (i.e., 

salinity). To estimate the activity coefficient (γ), in equation (7), one of the activity correction 

models such as extended Debye-Huckel equation, Davies equation, and Pitzer equation could be 

used (Harris, 2010). Both the Davies and Pitzer equation are explained in 3.2.5 LogK values for 

speciation in seawater section. 

 

This study will focus on using the extended Debye-Huckel equation (equation 8) to correct the 

logK values used in the BLM. This extended Debye-Huckel equation is appropriate and easy to 

implement as suggested by the Space and Naval Warfare Systems Command (SPAWAR) in a 

recent study (Chadwick et al., 2008) to solve Kconc. values, as used by BLM, in equation 8. 

       log γ =  
− 0.51 z2

√μ

1+(α√μ/305)
    (8) 
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where z is a charge for the species, and µ is the ionic strength mol/L of the solutions. α is the ion 

size, in picometers (pm). Values for alpha are determined experimentally and tabulated (Harris, 

2010). 

 

1.8 Analytical methods 

1.8.1 Fluorescence 

Fluorescence occurs as the emission of a photon during a transition between states with 

the same spin quantum numbers (e.g. 𝑆1 → 𝑆0). The fluorescence phenomenon is measured as 

emitted light from sample that absorbed light. This emitted light has a wavelength longer (lower 

energy) than the absorbed wavelength (high energy). Fluorescence is instantaneous, when the 

excitation light source is turned off, the emitted light fluorescence will stop immediately (Harris, 

2010). 
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Figure 2. The components of a fluorescence spectrometer (adapted from Hooijschuur, 2018). 

 

The components of the fluorescence spectroscopy are light source, excitation and 

emission monochromator, sample holder (cuvette), and detector (Fig. 2). The light source 

typically emits light in the ultraviolet range. This light has multiple wavelengths, and the 

excitation monochromator selects one specific wavelength (𝜆𝑒𝑥). This specific wavelength (𝜆𝑒𝑥) 

enters into the liquid sample in a cuvette, and part of the light is absorbed by the sample. 

Additionally, when the sample absorbs the UV light, which means absorbing a photon, the 

molecules in the sample become excited, and there are several events that may occur. One of 

 

Fluorescenc

e 

Detector 

Filter 

Light source 

Cuvette sample  
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these possible events is the fluorescent phenomenon. Figure 3 illustrates the transformation of 

electrons between the ground state and exited state from Jablonski diagram (Harris, 2010, Fig. 

3). 

 

 

Figure 3. Jablonski diagram for radiative and non-radiative transitions (Adapted from Harris, 

2010). 

 

Similar to excitation, the emitted light has various wavelengths, and the emission 

monochromator selects one for intensity measurement at the detector (𝜆𝑒𝑚). The detector is 

measured the emitted radiation, and the results of the fluorescence are shown as a wavelength 

that is described the relationship between the intensity of the fluorescence versus the wavelength 

in nanometer (nm) unit (Figure 2). 
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1.8.2 Fluorescence Quenching 

Fluorescence quenching technique (FQ) is a useful tool that determines both the density 

of sites (LT) and the conditional stability (𝐾′) of multi-sites for metal-natural organic matter 

(NOM) interactions (Smith & Kramer, 2000). The fluorescence of NOM can be quenched in the 

presence of metal cations such as Cu2+ (da Silva, Machado, Oliveira, & Pinto, 1998). 

Fluorescence can monitor the interaction between metal and ligand (ML) and the ligand (L) 

species. During the titration, each addition of metal will decrease the intensity of the 

fluorescence at a given excitation/emission wavelength. The decrease of the intensity of the 

fluorescence at a given excitation/emission wavelength will be dependent on the amount of 

bound ligand. For example, humic substances can complex Cu in natural waters (Merdy et al., 

2012). The range of fluorescence emission for humic substances is between 400 and 500 nm 

(Coble, 1996). 

A plot of the fluorescence versus added metal can be fit by using the Ryan-Weber (RW) 

equation (Ryan & Weber, 1982) (equation 9) below. There is a study by Smith and Kramer 

(2000) assumes the responsibility of the fluorescence as a linear line with the concentrations, so a 

linear fit line was made for each experiment separately. Also, the tableau (Appendix1) of the 

seawater species was considered in the measurements as well to get logK values metal-ligand 

complex formation. 

 

I = ((
IML−100

2KLT
) [(KLT + KMT + 1) − √(KLT + KMT + 1)2 − 4K2LTMT] + 100)     (9) 

I= the percentage of fluorescence intensity 
I

I0
×  100. 

IML= the intensity of the fluorescence when all ligand bounds to metal. 
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K= the conditional stability constant. 

LT= the total ligand concentration. 

MT= the total metal concentration. 

The relevant fitted parameter from the RW equation are K and LT values. Thus, for different 

salinities, it is possible to measure Kconc using this method. 

Moreover, fluorescence can quench statically or dynamically. There is a collision in the 

excited state for electrons, and they can be returned back to the ground state in two ways as a 

radiative or non-radiative. The radiative way of the electrons is by losing energy through 

emitting light; however, the non- radiative way is going through the pathway and most of the 

electrons do that, which means that they do not fluorescent. One of the non-radiative ways is 

collisions in the excited state that collides with copper. Copper is a ground state complex, and it 

is reducing fluorescence as a statistic quenching. However, there is some contribution that can be 

quenched with the fluorescence as a dynamic quenching, which affects the results of logK 

values. 
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Chapter 2 

Materials and Methods 

This study determined the influence of varying ionic strength on the binding of copper to 

simulated organic matter (OM) in an estuarine system. Salicylic acid was used for this simulation 

as a ligand because it is a proxy of NOM since it has the same functional groups (carboxylic and 

phenolic). Fluorescence quenching (Aqua-log machine) was used to determine log K values as a 

function of salinity. All experiments were used ultra-pure water (MilliQ water) that has a 

resistivity of 18.2 . 

 

2.1 Synthetic seawater 

 Artificial seawater (ASW) was prepared according to the method provided by the 

Organization for Economic Co-operation and Development in table 1 (Annex 10, 2007; OECD, 

2001). The salinity range of ASW is between 0.5 to 35 g/L. 

 

Table 1. The species present in seawater with their concentrations in molar unit from (OECD) to 

create an artificial seawater in 1L of MilliQ.  

 

Species Concentrations 

Sodium fluoride (NaF)a 3 mg.L−1 

Strontium chloride hexahydrate (SrCl2. 6H2O)a
 20 mg.L−1 
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Boric acid (H3. BO3)b 30 mg.L−1 

Potassium bromide (KBr)c 100 mg.L−1 

Potassium chloride (KCl)b 700 mg.L−1 

Calcium chloride dihydrate (CaCl2. 2H2O)a 1.47 g.L−1 

Sodium sulfate (Na2. SO4)a 4.0 g.L−1 

Magnesium chloride hexahydrate (MgCl2. 6H2O)c 10.78 g.L−1 

Sodium chloride (NaCl)a 23.5 g.L−1 

Sodium metasilicate nonahydrate (Na2SiO39H2O)a 20 mg.L−1 

Sodium bicarbonate (NaHCO3)d 200 mg.L−1 

a 
Fisher Scientific (New Jersey, NY), 

b 
Sigma Aldrich (St. Louis, MO), 

c 
BDH (West  

Chester PA), 
d 
EMD Chemicals (Gibstown, NJ) 

 

2.2 Copper 

 Copper stock solution was made from an ACS grade of cupric sulfate pentahydrate 

CuSO4. 5H2O(s). The initial stock was made in 0.1 mol. L−1 of copper. Then, the standard 

solutions were made from the dilution of the first stock. These standard solutions were 100, 

1000, and 10000 μM of copper, and they were stored in acid-washed, sealed plastic bottles 

(HDPE). 

 

2.3 Salicylic acid 

Salicylic acid C7H6O3(s) (ACS grade, 99.9% pure, Fisher Chemical) was used as a ligand 

to bind copper. The initial stock standard was made in 0.1 mol. L−1. It was stored in acid-washed, 
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sealed plastic bottles (HDPE). Then, 10 μM of salicylic acid was used in each experiment. The 

structure of salicylic acid is in figure 4. 

 

 

Figure 4. Molecular structures of Salicylic acid. 

 

 

2.4 Titration 

 The ASW solution was used to create 100%, 75%, 50%, and 25% seawater samples by 

dilution with ultrapure water. These samples contained 10 μmol. L−1 of salicylic acid. The pH 

was adjusted to 8.0 by using the dilution of either hydrochloric acid  HCl(aq) or sodium 

hydroxide NaOH(aq) as needed. The salt concentrations included in this study in 0.01, 0.05, 0.25, 

0.5, and 1 mol. L−1 of sodium sulfate anhydrous salt Na2SO4(s) (ACS grade, 99.9% pure, Fisher 

Chemical). In addition, the solution was titrated by copper standards that are discussed above, 

and the range of the total concentrations of copper was added from 0 to 350 μmol. L−1. Each 

addition of copper was equilibrated overnight in the samples that contained 10 μmol. L−1 of 
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salicylic acid and the specified concentration of ASW before the fluorescence was measured, to 

allow sufficient time for copper and ligand to bind to each other (Smith & Kramer, 1998). 

twenty-four hours equilibration is standard in BLM experiments. Then, part of the solution for 

each sample was taken into a quartz cuvette to measure the sample using the fluorescence 

spectrometer (model, manufacturer). Additionally, all experiments were performed at room 

temperature, which was measured the bioavailability of copper in each sample at 25−
+ 0.2 ℃. 

 

2.5 Methods 

 There were three methods that were used in this study to measure the formation constant 

of copper binding to salicylic acid in variable salt concentrations. These methods were (1) 

experimental determination of the fluorescence quenching, (2) NIST interpolation and (3) 

theoretical correction of zero ionic strength. 

 

2.5.1 Experimental Determination 

 For fluorescent salicylic acid, Kf values were determined experimentally using the 

fluorescence quenching technique. Each trial was prepared at various salt concentrations. The 

fluorescence spectra were measured for each sample after each addition of copper. Then, the 

fluorescence intensity at the peak was used to determine I/I0 (equation 9) as a function of the 

total copper added. The steepness of the curves was determined and using nonlinear regression 

of the RW equation the logK values were predicted for each of these determinations. 

 

2.5.2 NIST Interpolation 
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 National Institute of Standards and Technology has measured tabulated standard values 

of Kconc (equation 3) for copper binding to salicylic acid. These measured values were in 

variable ionic strength in a range of 0.0 to 1 mol/L (NIST, 2010). The logK values from NIST 

were interpolated between these values because there is an assumption that the interpolated line 

is determined logK for any ionic strength from 0.0 to 1.0 even though these values were not 

measured directly. The correction of NIST measured values was used as a code in Matlab 

program (Appendice 3) that not only includes the correction of Cu-Sal but also includes the other 

reactions for the species present in seawater. The reason for including the correction for other 

reactions is to determine the corrected logK for the reaction between Cu-Sal. 

 

2.5.3 Theoretical Correction of Zero Ionic Strength 

 The theoretical correction of zero ionic strength was used the formation constant of the 

binding between copper and salicylic acid. This correction used the activity coefficient that is 

determined from the DH equation, which is related to the ionic strength and ion size. Then, all of 

these activities were multiplied with the formation constant, and that predicted the corrected 

logK values (Appendice 2), which explains the matlab example code of the DH calculations. 

 

2.6 Matlab 

Matlab was used to complete the determination for all modelling sections. Matlab is a 

software that has a high-performance for a computational study, modelling species, and others. 

Matlab was used to model the predicted logK values for salicylic acid binding to copper at 

various ionic strengths. The species and parameters of all reactions were included to complete 
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this modelling process, and the logK values were determined. This measurement of logK values 

was useful to predict the change of logK based on changing the ionic strength. All examples of 

the Matlab codes were presented in appendices section from A1 to A4. 

 

2.7 Experiments direction 

 Table 2 presents the overall experiments. There were three steps of the operations to test 

the change in the formation constant of copper-salicylic acid. The first procedure was 

determining the experiment between copper and salicylic acid without adding salt. Then, five 

experiments were designed with various ionic strengths. Lastly, five tests were designed with 

multiple concentrations of ASW. Each experiment was replicated three times (Table 2). 

 

Table 2. The overall experimental work. 

Experiments Data Analysis 

1) Salicylic Acid a) First experiment: 

 pH 8 

 10 μM of Salicylic acid 

 Titrate Cu: 0           316 μM 

 Determine logK using RW. 

 Determine theoretical logK by DH. 

 Determine logK by interpolation of 

NIST data. 

 b) Second experiment: 

 Repeat section (a). 
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 Adding inert salt Na2SO4(s) with ionic 

strengths of: 

[0, 0.03, 0.15, 0.75, 1.2] 

 c) Third experiment: 

 Repeat section (b). 

 In artificial seawater condition with 

concentrations of [10%, 25%, 50%, 75% 

and 100%] 

 

  



 21 

Chapter 3 

Results and Discussion 

 

3.1 Ryan-Weber curve prediction 

Experiments had been conducted on the effect of various ionic strength on the formation 

constant of Cu-Sal, which used artificial seawater and Na2SO4 salt. The response of the 

fluorescence with each addition of copper in multiple concentrations of Na2SO4 (S) and artificial 

seawater at pH 8 can be found in both Fig. 5 and 6, respectively. For each point of the curves, it 

showed the replicate of each experiment 3 times and was used 10 μM of salicylic acid. For all 

concentrations of media, the fluorescence was quenched by each addition of copper, which 

indicates the binding between copper and salicylic acid. For these RW plots, the fluorescence is 

plotted as a function of the total copper added at the maximum (ex= 282, em= 404.6) of salicylic 

acid. Each fluorescent value was normalized fluorescence for that titration. Thus, all titrations 

start with a relative fluorescence value of 1.0. These fluorescence responses were fitted by using 

RW equation as described above in equation 9 of the fluorescence quenching section above. 

 Figure 5 presents five best fit lines. It illustrates the intensity of the fluorescence 

quenching versus the total copper with varying ionic strength in Na2SO4 (S) media. The initial 

red curve determines the steepness of the curve between copper and salicylic acid at zero ionic 

strength, which is influenced by the logK value. It shows the steepness curve between copper 
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and ligand compare to other curves as the fluorescence quenched differently by changing the 

ionic strength in the solution. The reason for this steep curve is because there is no effect of other 

ions in the solution or competing species, so the interaction between copper and salicylic acid is 

unimpeded. By increasing the ionic strength of the solution, as seen in Fig 5, the steepness of the 

curves is decreased because of the effect of ions in the solution. The ionic strength of 0.4 line is a 

smaller rate of change versus added copper and has the highest ionic strength. The high ionic 

strength means high concentrations of ions. When the concentrations of ions are increased in the 

solution, the ions will form the ionic atmosphere around the copper and salicylate ions. This 

ionic atmosphere will reduce the actual bonding between copper and salicylic acid. Thus, the 

fluorescence quenching is decreased by increasing the ionic strength while the greater changes 

were determined at lower ionic strength Fig. 5. 

In addition, the intensity of the fluorescence quenching versus the total copper at varying 

ionic strength in artificial seawater media demonstrates in Fig. 6. The initial experiments of 

artificial seawater media were at 10% of seawater. This lower concentration of seawater has the 

steepest curve between copper and salicylic acid close to the initial data point for the media that 

does not contain any amount of salt. The curves show only slight differences at higher ionic 

strength. However, they are varied in logK predicted. This is because of the effect of the 

competing species and other ligand complexations that present in seawater. By increasing the 

concentrations of seawater, the steepness of the curve was decreased. Although the activity 

corrections for seawater were included in these fitting curves, there are no significant differences 

in the bending of the curve determined for copper bind to salicylic acid at higher salt 

concentrations. However, the change is still greater compared to lower salt concentration. The 

steepest curve was determined at zero ionic strength compared to other curves because there are 
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no other reactions influenced the binding between copper and salicylic acid, so the complex can 

form easily Fig. 6. 

 

 

Figure 5. A decrease in the intensity of the normalized fluorescence quenching versus the 

total concentrations of copper with the varying ionic strength of Na2SO4 (S). 
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Figure 6. A decrease in the intensity of the fluorescence quenching versus the total 

concentrations of copper with the varying ionic strength of artificial seawater media. 

 

3.2 logK values determination 

The predicted logK values determined by fitting the RW equation for both types of media 

are shown in Fig. 7 and 8. The figures present the logK values versus ionic strength in both 
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media with the error bars (95% confidence interval) for the measured values. The equation of the 

error bars calculation is shown below: 

Confidence interval = + −⁄
ts

√n
                   (10) 

t = student’s t for 95% confidence and n-1 the degrees of freedom 

s = standard deviation 

n = number of values in average = 3 

 

Moreover, the measured fluorescence quenching in the blue data points present the best 

fit of the logK values for copper binding to salicylic acid model versus the ionic strength for the 

measured values while the yellow data points indicate the NIST interpolations. Finally, the 

measured red lines were from the calculation of the theoretical activity correction using the 

extended DH equation. The predicted logK values for all media can be found in Table 3 for 

media that contains different concentrations of Na2SO4 (S) and Table 4 for media that contains 

various concentrations of artificial seawater. 

 

3.2.1 Model ligand study in 𝐍𝐚𝟐𝐒𝐎𝟒 (𝐒) 

The measured blue data points (Fig. 7) shows the direct measurements of the logK value 

for copper and salicylic acid, as determined by fluorescence quenching. These experiments were 

used 10 μmol. L−1 of salicylic acid as a model ligand to bind with copper metal at pH 8. The 

ionic strength of the solutions was change by adding various concentrations of Na2SO4 (S), which 

affect the results of logK values. The logK value for the given reaction was 12.28 (NIST, 2010) 

for zero ionic strength; however, by increasing the ionic strength, the logK values were 
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decreased. This is because of the effect of the ionic atmosphere, which is affected by the 

concentrations and activity of ions. When the ionic strength increases in the solution, several 

events occur. One of these events is that cations and anions can bind to each other, such as 

binding between copper and salicylic acid. Also, the cation can be surrounded anions or vice 

versa to create an ionic atmosphere. The ionic atmosphere has a lower effective charge than the 

actual ion charge. As a result, there is less attraction between copper and salicylate and a reduced 

Kf value. 

 In addition, there is no significant difference predicted in the results of logK values for 

solutions that contain 0.75 and 1.2 ionic strength because of the high concentrations of ions. 
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Figure 7. The determination of logK values versus ionic strength of copper binding 

salicylic acid as Model ligand study, NIST interpolation, and theoretical study in varying 

concentrations of Na2SO4 (S). Each logK values predicted was replicated three times, and the 

pH was 8. 

 

Table 3. Predicted logK values of measured values from direct measurements, NIST 

interpolation, and extended DH equation in varying concentrations of Na2SO4 (S). 

Ionic strength 

(M) 

Direct measurement 

(logK) 
NIST 

(logK) 
DH 

(logK) 

0 12.29 11.01 11.01 

0.03 11.73 10.90 10.75 

0.15 10.75 10.56 10.56 

0.75 10.57 10.25 10.36 

1.2 10.51 10.19 10.30 

 

3.2.2 Comparison between NIST and DH in 𝐍𝐚𝟐𝐒𝐎𝟒 (𝐒) 

 In Fig 7 below, the measured values in yellow data points (Fig. 7) present the NIST 

interpolations. NIST has measured values that were calculated the formation constant of copper 

binding to salicylic acid at various ionic strength. These measured values were interpolated 

assuming that the logK values for any ionic strength between these measured values should be 

followed the interpolated line. Each of these measured values form NIST was titrated and 

measured experimentally again using the fluorescence quenching technique. Then, all of the 
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measured values were plotted using the RW equation to determine the logK values for each 

experiment. Thus, the results of the logK values determined versus ionic strength were 

interpolated to make a comparison between NIST and measured data interpolation. This 

interpolation is useful because this study does not measure every single ionic strength. The 

results of the compression between the logK values of NIST and measured FQ show that the 

logK values predicted of FQ measurement are higher than the logK of NIST. 

 The theoretical study using the extended DH equation was determined in Fig. 7 as a red 

line. The initial point of this calculations was at zero ionic strength, and it has a logK value of 

11.01. At zero ionic strength, the logK value for both theoretical and thermodynamic value are 

constant for the given reaction, but they are shown a slight difference by one order magnitude 

compared to the other points because of the effect of ions in the system. Moreover, in the initial 

point for the thermodynamic reaction, there is no any other competing species to make other 

reactions in the system; thus, the logK value determine only for ligand complexation that the 

study focused on. For the initial point of the theoretical prediction, it used the formation constant 

only that already predicted for the binding between copper and salicylic acid. There is a table 

present the formation constant for most known reactions. 

 In addition, in the theoretical calculations to determine the thermodynamic logK values, it 

used the formation constant, which is 11.01 for the binding between copper and salicylic acid. 

Then, this formation constant was multiplied with the calculated activity by using the extended 

DH equation, which is related to the ionic strength and concentrations. This multiplication of the 

formation constant and activity gave the corrected logK value. Although both the theoretical and 

thermodynamic logK values included corrections, there are negligible difference in the logK 

values predicted as stated above. 
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Furthermore, in a high concentration of the ionic strength, such 0.75 and 1.2, the logK 

values that predicted using the extended DH equation were between the logK values predicted 

for direct measurement and NIST interpolation. The reason of this varying is because the activity 

of ions is influenced the results. The changes of the curve are still much lower in higher 

concentrations. 

 As a comparison for the results of the titrations, the logK values determined from FQ 

were greater compared to the NIST and DH values. One of the possible reasons for this 

difference is because the FQ can be quenched in two ways, which are dynamically or statically 

as stated above in the method section. The dynamic quenching could contribute to the static 

quenching, which can influence the consequence of the logK values predicted. It is important to 

point out that is difficult to separate the static and dynamic portion of the quenching. 

Furthermore, the results of the extended DH agree with the NIST interpolation. This agreement 

shows that we can use the extended DH for BLM for estuary system. It is important to point out 

that the extended DH works with a small molecule only, such as salicylic acid, and not for humic 

and fulvic acid molecules because the activity coefficients for large molecules, which is 

important for DH calculations, are unknown (Harris, 2010). 

 

3.2.3 Model ligand study in artificial seawater 

 Fig 8 demonstrates the determination of logK values versus ionic strength in artificial 

seawater. The blue data points present the direct measurements of copper binding to salicylic 

acid in the seawater condition at pH 8. The ionic strength was change in these experiments by 

using variable concentrations of artificial seawater. The initial point was measured at 10% of 
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artificial seawater. This percentage of the species for seawater was the lowest studied, and it has 

ionic strength of 0.069. The logK value predicted was 10.9. At the 25% and 50% of seawater, the 

logK values for both percentages were decreased and determined at 10.8. After the half 

concentration of seawater, the logK values started to increase again. The reason for this increase 

could be the effect of the speciation in seawater. There are more complicated reactions present in 

seawater compare to the media that contained Na2SO4 (S). The measured logK values from 

NIST, as well as the extended DH calculation, do not show such an increase. This increase was 

not observed in Na2SO4 solution. 

 

3.2.4 Compare the theoretical study with artificial 

seawater 

 The red line in Fig. 8 illustrates the theoretical calculation using the DH equation the 

same one that used in Fig. 7. Also, the NIST was predicted similar to the Na2SO4 media graph 

(Fig.7). It was expected to see less quenching in high concentrations of seawater. The logK 

values were predicted much higher in the direct measurements compare to the DH calculation 

and NIST interpolation. These results mean that the direct fluorescence measurements do not 

match with other predicted logK values method in seawater. They were off by an order 

magnitude. 

In addition, fluorescence quenching has some assumptions. One of these assumptions 

assumes the response of the fluorescence is linear with the concentrations (D. S. Smith & 

Kramer, 2000). The second assumption is that this quenching of the fluorescence is static. It 

assumes that a complex for salicylic acid binding to copper is less fluorescent than the original 
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molecule, which is present a ground-state complex, so the fluorescence goes down. Compare to 

the direct measurements predicted, the results show more florescent than what is expected. The 

reason for increased florescence could be related to the effect of other species present in seawater 

that are not taken into account. Even though the seawater species, which present in the tableau, 

were considered to determine the logK values for the reaction of interest (Cu-Sal), these results 

stated that the fluorescence measurements do not work well in sea water media. 

 

 

 

Figure 8. The determination of logK values versus ionic strength of copper binding 

salicylic acid as model ligand study, NIST interpolation, and theoretical study in varying 

(M) 



 32 

concentrations of artificial seawater. Each logK values predicted was replicated three times, and 

the pH was 8. 

 

Table 4. Predicted logK values as direct measurements, NIST interpolation, and extended DH 

equation in varying concentrations of artificial seawater. 

Ionic strength and 

percentage in seawater 
 

Ionic strength (M)     Percentage 

Direct measurement 

(logK) 
NIST 

(logK) 

0.07 10% 10.90 10.70 

0.17 25% 10.85 10.54 

0.35 50% 10.86 10.37 

0.52 75% 10.97 10.28 

0.70 100% 11.13 10.24 

 

3.2.5 LogK values for speciation in seawater 

Fig. 9 illustrates the determination of logK values versus ionic strength for inorganic side 

reactions see (Tableau, appendices A1) present in seawater. The measured blue data points in 

figure 9 present the NIST measured values while the lines present the extended DH calculations. 

For most reactions, the extended DH calculations have a better agreement compared to NIST 

measured values. However, some of the reactions are totally disagreed such as H2O and CuOH+, 

and this disagreement could be related to the effect of hydroxide ion. The hydroxide ion is 

capable of forming a strong hydrogen bond in water, which could result in an increase in the 

stability of hydroxide ion and lower the logK values experimentally. Another reason could be the 
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high concentrations of ions because the extended DH equation is intended for low ionic strength 

(Harris, 2010). There are other equations that could be used to calculate the activity, such as 

Davies equation. The Davies equation is an extension of the DH theory to measure the activity 

coefficient for electrolyte solution in a high concentration at 25°C. Davies equation in equation 

(10) is: 

− log 𝑓± =  .5 𝑧1𝑧2 (
√𝐼

1+√𝐼
− .30 𝐼)      (10) 

where 𝑓 ± is the activity coefficient in molal unit, and both 𝑧1 𝑎𝑛𝑑 𝑧2 are the charges. 𝐼 is the 

ionic strength. Furthermore, in equation (10), when the ionic strength tends to be zero, the 

extended DH equation should be used at the low concentration 0.1 M. In addition, Davies 

equation is worthless for ionic strength greater than 0.3 M. For solutions with ionic strength 

above 0.1 there is Pitzer equations usually used for more complicated solutions. Pitzer equations 

are in equation 11 and 12, respectively. These equations work well with higher concentrations 

until about 6 mol.kg−1. 

ln γ−
+ =  

p ln γM+ q ln γX

p+q
      (11) 

ln γ−
+ = (z+z−)ℱγ + m (

2pq

p+q
) BMX

γ
+ m2 [2

(pq)
3
2

p+q
] CMX

γ
      (12) 

ln γ−
+ = activity coefficient 

z+z− = charge 

ℱγ, m, p, q, BMX
γ

, CMX
γ

 = calibration parameters 

As a result of the calculation using the extended DH equation for the inorganic species, it shows 

a good agreement between the results of NIST interpolation and the extended DH equation.
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Figure 9. The determination of logK values versus ionic strength of some reactions for 

speciations present in seawater using extended DH equation. 
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3.2.6 Relationship between logK values 

 Fig. 10 determines a comparison of logK values between DH and direct measurements 

compared to NIST as one-to-one (1:1) line. The graphs show the predicted logK values for both 

measured (as blue data points for Na2SO4 and black data point for ASW solutions) and DH (as 

red data points) values versus logK for NIST. The NIST has certified accepted values, so it 

explains the quality of using FQ and DH methods to determine logK at different ionic strength 

compared to NIST values. The extended DH works well; however, the measured values using 

FQ is not very well. They do tend to work better at the higher ionic strength when K values are 

lower, as seen in the previous figure (Fig.7), the lower logK values at higher ionic strength. It is 

off by order magnitude but that is not very far from other methods determined the logK; 

however, in a very dilute sample, it would show greater disagreements. 
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Figure 10. The determination of logK values for NIST interpolation versus the predicted 

logK values for the direct measurement and extended DH calculations in Na2SO4 (S) and ASW 

solutions.  
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Chapter 4 

Conclusion and Future Work 

 

4.1 Summary of research 

 In summary, impacts of multiple ionic strength on copper binding to salicylic acid has 

tested in this study, and how they affect the chemical side of the BLM in estuary systems by 

using fluorescence quenching. The predicted logK values for the direct measurements were off 

by an order of magnitude factor 10 compared to the NIST interpolation and DH equation. This 

study found that the fluorescence quenching method is not a good tool to use for testing the 

copper speciations in the estuarine environment because it does not agree with NIST measured 

values. There could be something fundamentally wrong with the fluorescence method, in 

particular, the RW method assumes static quenching. If there was additional dynamic quenching, 

then the logK values tend to be overestimated. 

 Furthermore, this study show agreement between the NIST values and DH calculation. 

The DH calculations includes the ionic strength and the ion size for each species in the system. 

There is a table present the ion size for most small known molecules (Harris, 2010). The results 

show that DH works well for small molecules. For a large molecule such as NOM, it could not 

be easily calculated using the DH equation. It remains necessary to develop methods for Cu-

NOM speciation studies in salt water. 
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Accordingly, neither the DH can be used for a large molecule nor the results of the fluorescence 

work well, so these methods are not a promising tool to test the effect of various ionic strength 

on the bioavailability of copper in a large molecule. 

 

4.2 Future work 

 As a future work for this research, it could be used a different method such as Ion-

Selective Electrode (ISE) to test the bioavailability of copper in the varying ionic strength using 

salicylic acid as a ligand. If the results of the ISE work well and match with the NIST 

interpolation and DH calculations, another ligand can be used to bind with copper such as NOM. 

Then, the change in the results can be compared to each other. However, it should be considered 

that the DH could not be used for a large molecule such as NOM.  
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Appendices 

A1. Tableau of the speciation in seawater 
 
%H    Cu     CO3   Cl  L  SO4  logK          species 
1      0     0     0   0  0     0            {'H'} 
0      1     0     0   0  0     0            {'Cu'} 
0      0     1     0   0  0     0            {'CO3'} 
0      0     0     1   0  0     0            {'Cl'} 
0      0     0     0   1  0     0            {'L'} 
0      0     0     0   0  1     0            {'SO4'} 
-1     0     0     0   0  0     logKw        {'OH'} 
-1     1     0     0   0  0     logKh1       {'CuOH'}    
-2     1     0     0   0  0     logBh2       {'CuOH2'} 
-3     1     0     0   0  0     logBh3       {'CuOH3'} 
-4     1     0     0   0  0     logBh4       {'CuOH4'} 
-2     2     0     0   0  0     logBh22      {'Cu2OH2'}      
1      0     1     0   0  0     H2CO3pKa2    {'HCO3'} 
2      0     1     0   0  0     H2CO3pBa2    {'H2CO3'} 
0      1     1     0   0  0     logKCuCO3    {'CuCO3'} 
0      1     2     0   0  0     logKCuCO32   {'CuCO32'} 
1      1     1     0   0  0     logKCuHCO3   {'CuHCO3'} 
0      1     0     1   0  0     logKCuCl    {'CuCl'} 
0      1     0     0   1  0     logKCuL      {'CuL'} 
1      0     0     0   1  0     H2LpKa2      {'HL'} 
2      0     0     0   1  0     H2LpBa2      {'H2L'} 
0      1     0     0   0  1     logKCuSO4    {'CuSO4'} 
0      1     0     0   2  0     logBCuL2     {'CuL2'} 
1      1     0     0   1  0     logKCuHL    {'CuHL'} 
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A2. Matlab example code of DH calculations 

% x-DH equation 

figure(1); subplot(221); clf 

subplot(222); clf 

subplot(223); clf 

subplot(224); clf 

  

%reaction Cu+OH=CuOH -------------------------------------------------

----- 

  

I=[0 0.03 0.15 0.75 1]; 

logK=[-7.4970 -7.5582 -7.6668 -7.5848 -7.4700]; 

  

K0=10^-7.4970;  

mu=[0:0.1:1.1]; 

loggamma=@(z,mu,a) (-0.51*z^2*sqrt(mu))/(1+(a*sqrt(mu)/305)); 

%loggamma=@(z,mu,a) (-0.51*z^2*sqrt(mu)); % debye huckel 

for i=1:size(mu,2) 

  

    loggammaCu=loggamma(2,mu(i),600); gammaCu=10^loggammaCu; 

    loggammaCuOH=loggamma(1,mu(i),900); gammaCuOH=10^loggammaCuOH; 

    loggammaOH=loggamma(-1,mu(i),300); gammaOH=10^loggammaOH; 

  

    Kconc=K0*((gammaCu*gammaOH)/gammaCuOH); 

    logKconc(i)=log10(Kconc); 

end 

  

figure(1); subplot(221) 

plot(I,logK,'ko','markersize',10,'markerfacecolor','b') 

hold on 

plot(mu,logKconc,'k','linewidth',2) 

set(gca,'linewidth',2,'fontsize',12) 

xlabel('\mu (mol/L)'); ylabel('logK') 

title('CuOH^+') 

  

  

%reaction Cu+2OH=Cu(OH)2 ---------------------------------------------

--------- 

  

I=[0 0.03 0.15 0.75 1]; 

logK=[16.6810 16.4823 15.9349 15.5245 16.4700]; 

  

K0=10^16.6810;  

mu=[0:0.1:1.1]; 

loggamma=@(z,mu,a) (-0.51*z^2*sqrt(mu))/(1+(a*sqrt(mu)/305)); 

%loggamma=@(z,mu,a) (-0.51*z^2*sqrt(mu)); % debye huckel 

for i=1:size(mu,2) 

  

    loggammaCu=loggamma(2,mu(i),600); gammaCu=10^loggammaCu; 
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    loggammaCuOH2=loggamma(0,mu(i),1250); gammaCuOH=10^loggammaCu; 

    loggammaOH=loggamma(-1,mu(i),350); gammaOH=10^loggammaCu; 

  

    Kconc=K0*((gammaCu*gammaOH)/gammaCuOH); 

    logKconc(i)=log10(Kconc); 

end 

  

figure(1); subplot(222) 

plot(I,logK,'ko','markersize',10,'markerfacecolor','b') 

hold on 

plot(mu,logKconc,'k','linewidth',2) 

set(gca,'linewidth',2,'fontsize',12) 

xlabel('\mu (mol/L)'); ylabel('logK') 

title('Cu(OH)2') 

  

  

% Cu+ Cl=CuCl --------------------------------------------------- 

  

I=[0 0.03 0.15 0.75 1]; 

logK=[0.3 0.2577 0.0660 -0.2 -0.2]; 

  

K0=10^0.3;  

mu=[0:0.1:1.1]; 

loggamma=@(z,mu,a) (-0.51*z^2*sqrt(mu))/(1+(a*sqrt(mu)/305)); 

%loggamma=@(z,mu,a) (-0.51*z^2*sqrt(mu)); % debye huckel 

for i=1:size(mu,2) 

  

    loggammaCu=loggamma(2,mu(i),600); gammaCu=10^loggammaCu; 

    loggammaCuCl=loggamma(1,mu(i),900); gammaCuCl=10^loggammaCuCl; 

    loggammaCl=loggamma(-1,mu(i),300); gammaCl=10^loggammaCl; 

  

    Kconc=K0*((gammaCu*gammaCl)/gammaCuCl); 

    logKconc(i)=log10(Kconc); 

end 

  

figure(1); subplot(223) 

plot(I,logK,'ko','markersize',10,'markerfacecolor','b') 

hold on 

plot(mu,logKconc,'k','linewidth',2) 

set(gca,'linewidth',2,'fontsize',12) 

xlabel('\mu (mol/L)'); ylabel('logK') 

title('CuCl^+') 

  

% reaction SO4+Cu=CuSO4 ----------------------------------------------

--- 

  

I=[0 0.03 0.15 0.75 1]; 

logK=[2.36 2.0159 1.1586 0.7999 0.7200]; 
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K0=10^2.36;  

mu=[0:0.1:1.1]; 

loggamma=@(z,mu,a) (-0.51*z^2*sqrt(mu))/(1+(a*sqrt(mu)/305)); 

%loggamma=@(z,mu,a) (-0.51*z^2*sqrt(mu)); % debye huckel 

for i=1:size(mu,2) 

  

    loggammaCu=loggamma(2,mu(i),600); gammaCu=10^loggammaCu; 

    gammaCuSO4=1; % neutral 

    loggammaSO4=loggamma(-2,mu(i),400); gammaSO4=10^loggammaSO4; 

    Kconc=K0*((gammaCu*gammaSO4)/gammaCuSO4); 

    logKconc(i)=log10(Kconc); 

end 

  

figure(1); subplot(224) 

plot(I,logK,'ko','markersize',10,'markerfacecolor','b') 

hold on 

plot(mu,logKconc,'k','linewidth',2) 

set(gca,'linewidth',2,'fontsize',12) 

xlabel('\mu (mol/L)'); ylabel('logK') 

title('CuSO_4') 
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A3. Matlab example of the NIST interpolated measured vales code 

% find seawater appropriate logK values relevant to Cu speciation 

% with salicylic acid as an added ligand 

% just use 25 degrees C values 

  

figure(1); clf 

% ionic strength for interpolation 

  

I0pt6=0; 

  

  

%% 

% OH 

% reaction H+OH=H2O 

  

I=[0 0.1 0.5 0.7 1]; 

logK=[13.997 13.78 13.73 13.75 13.77]; 

Iinterp=0:0.1:1; 

YI = interp1(I,logK,Iinterp,'cubic'); 

  

logKcorr = interp1(I,logK,I0pt6,'cubic'); logKw=-1*logKcorr; 

logKcorrtxt=num2str(logKcorr,5); 

  

plot(I,logK,'ko','markersize',10,'markerfacecolor','b') 

hold on 

plot(Iinterp,YI,'k','linewidth',2) 

set(gca,'fontsize',12,'linewidth',2) 

isstr=num2str(I0pt6); 

txt=['ionic strength (M), at ',isstr,'M logK = ',logKcorrtxt]; 

xlabel(txt,'fontsize',12) 

ylabel('logK') 

plot([I0pt6 I0pt6],[min(logK)-0.005*(min(logK)) logKcorr],'b--

','linewidth',2) 

plot([0 I0pt6],[logKcorr logKcorr],'b--','linewidth',2) 

  

logKw=logKw 

print Kwcorrection.eps -depsc2 

  

%% 

  

% CuOH 

% reaction Cu+OH=CuOH 

%% 

  

figure(1); clf 

  

I=[0 0.1 0.5 0.7 1]; 

logK=[6.5 6.1 6.1 6.2 6.3]; 
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Iinterp=0:0.1:1; 

YI = interp1(I,logK,Iinterp,'cubic'); 

  

%I0pt6=1.05; 

logKcorr = interp1(I,logK,I0pt6,'cubic'); logKOH1=logKcorr; 

logKcorrtxt=num2str(logKcorr,5); 

  

plot(I,logK,'ko','markersize',10,'markerfacecolor','b') 

hold on 

plot(Iinterp,YI,'k','linewidth',2) 

isstr=num2str(I0pt6); 

txt=['ionic strength (M), at ',isstr,'M logK = ',logKcorrtxt]; 

xlabel(txt,'fontsize',12) 

ylabel('logK') 

plot([I0pt6 I0pt6],[min(logK)-0.005*(min(logK)) logKcorr],'b--

','linewidth',2) 

plot([0 I0pt6],[logKcorr logKcorr],'b--','linewidth',2) 

  

%Cu+H20=CuOH for tableau 

logKh1=logKOH1+logKw 

%% 

  

% H2CO3 

% reaction CO3+H=HCO3 

%% 

  

figure(1); clf 

  

I=[0 0.1 0.5 0.7 1.0]; 

logK=[10.329 9.90 9.61 9.53 9.52]; 

Iinterp=0:0.1:1; 

YI = interp1(I,logK,Iinterp,'cubic'); 

  

logKcorr = interp1(I,logK,I0pt6,'cubic'); logKa2=logKcorr; 

logKcorrtxt=num2str(logKcorr,5); 

  

plot(I,logK,'ko','markersize',10,'markerfacecolor','b') 

hold on 

plot(Iinterp,YI,'k','linewidth',2) 

set(gca,'fontsize',12,'linewidth',2) 

isstr=num2str(I0pt6); 

txt=['ionic strength (M), at ',isstr,'M logK = ',logKcorrtxt]; 

xlabel(txt,'fontsize',12) 

ylabel('logK') 

plot([I0pt6 I0pt6],[min(logK)-0.005*(min(logK)) logKcorr],'b--

','linewidth',2) 

plot([0 I0pt6],[logKcorr logKcorr],'b--','linewidth',2) 

%H+CO3=HCO3 for tableau 

logKa2=logKa2 

  

print H2CO3pKa2.eps -depsc2 
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%% 

  

% H2CO3 

% reaction HCO3+H=H2CO3 

%% 

  

figure(1); clf 

  

I=[0 0.1 0.5 0.7 1.0]; 

logK=[6.352 6.13 6.00 5.97 6.95]; 

Iinterp=0:0.1:1; 

YI = interp1(I,logK,Iinterp,'cubic'); 

  

logKcorr = interp1(I,logK,I0pt6,'cubic'); logBa2=logKcorr+logKa2; 

logKcorrtxt=num2str(logKcorr,5); 

  

plot(I,logK,'ko','markersize',10,'markerfacecolor','b') 

hold on 

plot(Iinterp,YI,'k','linewidth',2) 

set(gca,'fontsize',12,'linewidth',2) 

isstr=num2str(I0pt6); 

txt=['ionic strength (M), at ',isstr,'M logK = ',logKcorrtxt]; 

xlabel(txt,'fontsize',12) 

ylabel('logK') 

plot([I0pt6 I0pt6],[min(logK)-0.005*(min(logK)) logKcorr],'b--

','linewidth',2) 

plot([0 I0pt6],[logKcorr logKcorr],'b--','linewidth',2) 

  

print H2CO3pKa1.eps -depsc2 

  

%2H+CO3=H2CO3 for tableau 

logBa2=logBa2 

%% 

% H2CO3 

% reaction Cu+CO3=CuCO3 

%% 

  

figure(1); clf 

  

I=[0 0.1 0.7 1]; 

logK=[6.77 6 5.73 5.73]; 

Iinterp=0:0.1:1; 

YI = interp1(I,logK,Iinterp,'cubic'); 

  

logKcorr = interp1(I,logK,I0pt6,'cubic'); logKCuCO3=logKcorr; 

logKcorrtxt=num2str(logKcorr,5); 

  

plot(I,logK,'ko','markersize',10,'markerfacecolor','b') 

hold on 

plot(Iinterp,YI,'k','linewidth',2) 

set(gca,'fontsize',12,'linewidth',2) 
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isstr=num2str(I0pt6); 

txt=['ionic strength (M), at ',isstr,'M logK = ',logKcorrtxt]; 

xlabel(txt,'fontsize',12) 

ylabel('logK') 

plot([I0pt6 I0pt6],[min(logK)-0.005*(min(logK)) logKcorr],'b--

','linewidth',2) 

plot([0 I0pt6],[logKcorr logKcorr],'b--','linewidth',2) 

  

%Cu+CO3=CuCO3 for tableau 

logKCuCO3=logKCuCO3 

%% 

  

% H2CO3 

% reaction Cu+2CO3=Cu(CO3)2 

%% 

figure(1); clf 

  

I=[0 0.1 0.7 1]; 

logK=[10.2 10 9.23 9.32]; 

Iinterp=0:0.1:1; 

YI = interp1(I,logK,Iinterp,'cubic'); 

  

logKcorr = interp1(I,logK,I0pt6,'cubic'); logKCuCO32=logKcorr; 

logKcorrtxt=num2str(logKcorr,5); 

  

plot(I,logK,'ko','markersize',10,'markerfacecolor','b') 

hold on 

plot(Iinterp,YI,'k','linewidth',2) 

set(gca,'fontsize',12,'linewidth',2) 

isstr=num2str(I0pt6); 

txt=['ionic strength (M), at ',isstr,'M logK = ',logKcorrtxt]; 

xlabel(txt,'fontsize',12) 

ylabel('logK') 

plot([I0pt6 I0pt6],[min(logK)-0.005*(min(logK)) logKcorr],'b--

','linewidth',2) 

plot([0 I0pt6],[logKcorr logKcorr],'b--','linewidth',2) 

%Cu+2CO3=Cu(CO3)2 for tableau 

logKCuCO32=logKCuCO32 

%% 

  

% H2CO3 

% reaction Cu+HCO3=CuHCO3 

%% 

figure(1); clf 

  

I=[0 0.7 1]; 

logK=[1.8 1.03 1.04]; 

Iinterp=0:0.1:1; 

YI = interp1(I,logK,Iinterp,'cubic'); 

  

logKcorr = interp1(I,logK,I0pt6,'cubic'); logKCuHCO3=logKcorr; 
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logKcorrtxt=num2str(logKcorr,5); 

  

plot(I,logK,'ko','markersize',10,'markerfacecolor','b') 

hold on 

plot(Iinterp,YI,'k','linewidth',2) 

set(gca,'fontsize',12,'linewidth',2) 

isstr=num2str(I0pt6); 

txt=['ionic strength (M), at ',isstr,'M logK = ',logKcorrtxt]; 

xlabel(txt,'fontsize',12) 

ylabel('logK') 

plot([I0pt6 I0pt6],[min(logK)-0.005*(min(logK)) logKcorr],'b--

','linewidth',2) 

plot([0 I0pt6],[logKcorr logKcorr],'b--','linewidth',2) 

%Cu+CO3+H=CuHCO3 for tableau 

logKCuHCO3=logKCuHCO3+logKa2 

%% 

  

% CuCl 

% reaction Cu+Cl=CuCl 

%% 

figure(1); clf 

  

I=[0 0.5 0.7 1.0]; 

logK=[0.3 -0.2 -0.2 -0.2]; 

Iinterp=0:0.1:1; 

YI = interp1(I,logK,Iinterp,'cubic'); 

  

logKcorr = interp1(I,logK,I0pt6,'cubic'); logKCuCl=logKcorr; 

logKcorrtxt=num2str(logKcorr,5); 

  

plot(I,logK,'ko','markersize',10,'markerfacecolor','b') 

hold on 

plot(Iinterp,YI,'k','linewidth',2) 

set(gca,'fontsize',12,'linewidth',2) 

isstr=num2str(I0pt6); 

txt=['ionic strength (M), at ',isstr,'M logK = ',logKcorrtxt]; 

xlabel(txt,'fontsize',12) 

ylabel('logK') 

plot([I0pt6 I0pt6],[min(logK)-0.005*(min(logK)) logKcorr],'b--

','linewidth',2) 

plot([0 I0pt6],[logKcorr logKcorr],'b--','linewidth',2) 

%Cu+Cl=CuCl for tableau 

logKCuCl=logKCuCl 

%% 

  

% SO4 

% reaction SO4+H=HSO4 

%% 

figure(1); clf 

  

I=[0 0.1 0.5 1]; 
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logK=[1.99 1.54 1.27 1.08]; 

Iinterp=0:0.1:1; 

YI = interp1(I,logK,Iinterp,'cubic'); 

  

logKcorr = interp1(I,logK,I0pt6,'cubic'); logKHSO4=logKcorr; 

logKcorrtxt=num2str(logKcorr,5); 

  

plot(I,logK,'ko','markersize',10,'markerfacecolor','b') 

hold on 

plot(Iinterp,YI,'k','linewidth',2) 

set(gca,'fontsize',12,'linewidth',2) 

isstr=num2str(I0pt6); 

txt=['ionic strength (M), at ',isstr,'M logK = ',logKcorrtxt]; 

xlabel(txt,'fontsize',12) 

ylabel('logK') 

plot([I0pt6 I0pt6],[min(logK)-0.005*(min(logK)) logKcorr],'b--

','linewidth',2) 

plot([0 I0pt6],[logKcorr logKcorr],'b--','linewidth',2) 

  

%H+SO4=HSO4 for tableau 

logKHSO4=logKHSO4 

%% 

  

% SO4 

% reaction SO4+Cu=CuSO4 

%% 

figure(1); clf 

  

I=[0 0.1 0.5 1]; 

logK=[2.36 1.26 0.85 0.72]; 

Iinterp=0:0.1:1; 

YI = interp1(I,logK,Iinterp,'cubic'); 

  

logKcorr = interp1(I,logK,I0pt6,'cubic'); logKCuSO4=logKcorr; 

logKcorrtxt=num2str(logKcorr,5); 

  

plot(I,logK,'ko','markersize',10,'markerfacecolor','b') 

hold on 

plot(Iinterp,YI,'k','linewidth',2) 

set(gca,'fontsize',12,'linewidth',2) 

isstr=num2str(I0pt6); 

txt=['ionic strength (M), at ',isstr,'M logK = ',logKcorrtxt]; 

xlabel(txt,'fontsize',12) 

ylabel('logK') 

plot([I0pt6 I0pt6],[min(logK)-0.005*(min(logK)) logKcorr],'b--

','linewidth',2) 

plot([0 I0pt6],[logKcorr logKcorr],'b--','linewidth',2) 

  

%Cu+SO4=CuSO4 for tableau 

logKCuSO4=logKCuSO4 

%% 
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% Salicylic acid 

% reaction H+Sal=HSal 

%% 

figure(1); clf 

  

I=[0 0.1 1.0 3.0]; 

logK=[13.7 13.4 13.3 13.1]; 

Iinterp=0:0.1:3.1; 

YI = interp1(I,logK,Iinterp,'cubic'); 

  

logKcorr = interp1(I,logK,I0pt6,'cubic'); logKHSal=logKcorr; 

logKcorrtxt=num2str(logKcorr,5); 

  

plot(I,logK,'ko','markersize',10,'markerfacecolor','b') 

hold on 

plot(Iinterp,YI,'k','linewidth',2) 

set(gca,'fontsize',12,'linewidth',2) 

isstr=num2str(I0pt6); 

txt=['ionic strength (M), at ',isstr,'M logK = ',logKcorrtxt]; 

xlabel(txt,'fontsize',12) 

ylabel('logK') 

plot([I0pt6 I0pt6],[min(logK)-0.005*(min(logK)) logKcorr],'b--

','linewidth',2) 

plot([0 I0pt6],[logKcorr logKcorr],'b--','linewidth',2) 

  

%H+Sal=HSal for tableau 

logKHSal=logKHSal 

%% 

  

  

% Salicylic acid 

% reaction H+HSal=H2Sal 

%% 

figure(1); clf 

  

I=[0 0.1 0.5 1.0 3.0]; 

logK=[2.972 2.80 2.75 2.84 3.16]; 

Iinterp=0:0.1:3.1; 

YI = interp1(I,logK,Iinterp,'cubic'); 

  

logKcorr = interp1(I,logK,I0pt6,'cubic'); logKH2Sal=logKcorr; 

logKcorrtxt=num2str(logKcorr,5); 

  

plot(I,logK,'ko','markersize',10,'markerfacecolor','b') 

hold on 

plot(Iinterp,YI,'k','linewidth',2) 

set(gca,'fontsize',12,'linewidth',2) 

isstr=num2str(I0pt6); 

txt=['ionic strength (M), at ',isstr,'M logK = ',logKcorrtxt]; 

xlabel(txt,'fontsize',12) 
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ylabel('logK') 

plot([I0pt6 I0pt6],[min(logK)-0.005*(min(logK)) logKcorr],'b--

','linewidth',2) 

plot([0 I0pt6],[logKcorr logKcorr],'b--','linewidth',2) 

  

%2H+Sal=H2Sal for tableau 

logKH2Sal=logKH2Sal+logKHSal 

%% 

  

% Sal 

% reaction Cu+HSal=CuSal+H 

%% 

figure(1); clf 

  

I=[0.1 0.5 1.0]; 

logK=[-2.78 -3.05 -3.11]; 

Iinterp=0:0.1:1; 

YI = interp1(I,logK,Iinterp,'cubic'); 

  

logKcorr = interp1(I,logK,I0pt6,'cubic'); logKCuSal=logKcorr; 

logKcorrtxt=num2str(logKcorr,5); 

  

plot(I,logK,'ko','markersize',10,'markerfacecolor','b') 

hold on 

plot(Iinterp,YI,'k','linewidth',2) 

set(gca,'fontsize',12,'linewidth',2) 

isstr=num2str(I0pt6); 

txt=['ionic strength (M), at ',isstr,'M logK = ',logKcorrtxt]; 

xlabel(txt,'fontsize',12) 

ylabel('logK') 

plot([I0pt6 I0pt6],[min(logK)-0.005*(min(logK)) logKcorr],'b--

','linewidth',2) 

plot([0 I0pt6],[logKcorr logKcorr],'b--','linewidth',2) 

  

%Cu+Sal=CuSal for tableau 

logKCuSal=logKCuSal+logKHSal 

  

% ignore 2ligand 1 metal reaction. 
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A4. Matlab example code of RW equation 

function name_0MNa2SO4 

  

% first load and plot the data 

  

[CuT,Fmeas]=getdata;  

  

figure(1); 

plot(CuT*1e6,Fmeas,'ko','markersize',10,'markerfacecolor','r') 

set(gca,'linewidth',2,'fontsize',12); xlabel('Cu_T (\muM)'); ylabel('F 

(arb)'); 

  

% calculate the fluorescence as a function of the logK for Cu+L=CuL 

% and fraction less efficeint CuL fluorescence is (efficeincey factor 

EF) 

% LT is fixed and so is pH 

% estimate kHL for fluorescence from the first point 

  

%#################################################################### 

logK=10.2; EF=0.2; %change if necessary to get a good initial guess 

%#################################################################### 

  

logEF=log10(EF); p=[logK logEF]; LT=10e-6; pH=8; 

CuTplot=[1e-8:1e-6:max(CuT)*1.1]; kHL=Fmeas(1)/LT;  

  

flag=1; % return F if flag =1.  return error if flag =0; 

  

F=returnForerr(p,CuTplot,LT,pH,kHL,Fmeas,flag); 

  

%figure(1); hold on 

%plot(CuTplot*1e6,F,'b--','linewidth',2) 

%pause 

% now fitting ---------------------------------- 

  

pguess=[logK logEF]; 

options = optimset(@fminsearch); 

options = optimset(options,'Display','iter','TolFun',1e-4,'TolX',1e-

4,'MaxFunEvals',1000); 

  

flag=0; % return error 

%tst=returnForerr(pguess,CuT,LT,pH,kHL,Fmeas,flag) 

%pause 

  

f = @(p)returnForerr(p,CuT,LT,pH,kHL,Fmeas,flag); 

[pbest]=fminsearch(f,pguess,options) 

  

% now plot best fit 

flag=1; 
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Fbest=returnForerr(pbest,CuTplot,LT,pH,kHL,Fmeas,flag); 

  

figure(1); hold on 

plot(CuTplot*1e6,Fbest,'r','linewidth',2) 

end 

  

function II=returnForerr(p,CuT,LT,pH,kHL,Fmeas,flag) 

  

logK=p(1); EF=10^p(2); kCuL=EF*kHL; 

  

if flag==1 % solve for fluorescence 

    %solve for the speciation 

    [HL,CuL]=CuLspeciation(CuT,pH,logK,LT); 

    %solve for fluorescence 

    F=kHL*HL+kCuL*CuL; 

    II=F; 

end 

  

if flag==0 % solve for error 

    %solve for the speciation 

    [HL,CuL]=CuLspeciation(CuT,pH,logK,LT); 

    %solve for fluorescence 

    Fcalc=kHL*HL+kCuL*CuL; 

    residuals=Fcalc-Fmeas; 

    err=log10(sum(residuals.^2)); 

    II=err; 

end 

  

end 

  

function [HL,CuL]=CuLspeciation(CuT,pH,logK,LT) 

  

%#################################################################### 

 

% seawater concentrations (100%) 

ClT=1e-16;  

CT=1e-16; 

SO4T=1; 

 

%#################################################################### 

  

for i=1:size(CuT,2) 

  

    

[concs,masserr,SOLUTIONNAMES]=SOLVE_TABLEAU(pH,CuT(i),CT,SO4T,ClT,LT,l

ogK); 

  

    c=0;  

    for k=1:size(SOLUTIONNAMES,1) 

        txt=[SOLUTIONNAMES(k,:),'(i)=concs(k);']; 
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        eval(txt) 

        c=c+1; 

    end 

     

end 

  

end 

  

function 

[concs,masserr,SOLUTIONNAMES]=SOLVE_TABLEAU(pH,CuT,CT,SO4T,ClT,LT,logK

) 

  

global Asolution Ksolution T TYPX 

  

[KSOLUTION,ASOLUTION,SOLUTIONNAMES]=get_equilib_defn(logK); 

  

% adjust for fixed pH 

[Ksolution,Asolution]=get_equilib_fixed_pH(KSOLUTION,ASOLUTION,pH); 

  

%%%%%%%%%%%%%%%%%%%%%%TOTAL VECTOR  

T=[CuT; CT; ClT; LT; SO4T]; 

 

%%%%%%%%%%%%%%% solve solution only problem %%%%%%%%%%%%%%%%%%%%%%%% 

  

X=T./10; [xguess,masserr,J,C] = nl_massbalancerrnosolid_NR(X);  

concs=C; 

  

end 

  

% SUBFUNCTIONS 

#################################################################### 

 

function [KSOLUTION,ASOLUTION,SOLUTIONNAMES] = get_equilib_defn(logK) 

  

%#################################################################### 

 

% from NIST K values. adjusted using interpolation mfile 

% for specific ionic strength. and entered mannually here 

  

logKw=  -13.9970; 

logKh1=  -7.4970; 

H2CO3pBa2=   16.6810;  

H2CO3pKa2=    10.3290; 

logKCuCO3=    6.7700; 

logKCuCO32=    10.2000; 

logKCuHCO3=   12.1290; 

logKCuCl=  0.3000; 

logKCuL=logK; %this is our unknown we are fitting 

H2LpBa2=   16.6720; 

H2LpKa2=   13.7000; 
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logKCuSO4=    2.3600; 

  

%#################################################################### 

  

logBh2=-14.8; % use fixed value. negigible species 

logBh3=-27.2; % use fixed value. negligible species 

logBh4=-40.4; % use fixed value. negligible species 

logBh22=-10.98; % use fixed value. negligible species 

logBCuL2=18.54; % use fixed value. negligible species 

logKCuHL=15.24; % from that 1975 paper.  negligible species. 

  

Tableau=[... 

%H    Cu     CO3   Cl  L  SO4  logK          species 

1      0     0     0   0  0     0            {'H'} 

0      1     0     0   0  0     0            {'Cu'} 

0      0     1     0   0  0     0            {'CO3'} 

0      0     0     1   0  0     0            {'Cl'} 

0      0     0     0   1  0     0            {'L'} 

0      0     0     0   0  1     0            {'SO4'} 

-1     0     0     0   0  0     logKw        {'OH'} 

-1     1     0     0   0  0     logKh1       {'CuOH'}    

-2     1     0     0   0  0     logBh2       {'CuOH2'} 

-3     1     0     0   0  0     logBh3       {'CuOH3'} 

-4     1     0     0   0  0     logBh4       {'CuOH4'} 

-2     2     0     0   0  0     logBh22      {'Cu2OH2   '} 

%make name longer so solid and solution dimensions match when put 

together name vector         

1      0     1     0   0  0     H2CO3pKa2    {'HCO3'} 

2      0     1     0   0  0     H2CO3pBa2    {'H2CO3'} 

0      1     1     0   0  0     logKCuCO3    {'CuCO3'} 

0      1     2     0   0  0     logKCuCO32   {'CuCO32'} 

1      1     1     0   0  0     logKCuHCO3   {'CuHCO3'} 

0      1     0     1   0  0     logKCuCl     {'CuCl'} 

0      1     0     0   1  0     logKCuL      {'CuL'} 

1      0     0     0   1  0     H2LpKa2      {'HL'} 

2      0     0     0   1  0     H2LpBa2      {'H2L'} 

0      1     0     0   0  1     logKCuSO4    {'CuSO4'} 

0      1     0     0   2  0     logBCuL2     {'CuL2'} 

1      1     0     0   1  0     logKCuHL     {'CuHL'} 

]; 

  

n=size(Tableau,2); 

ASOLUTION=cell2mat(Tableau(:,1:n-2)); 

KSOLUTION=cell2mat(Tableau(:,n-1)); 

SOLUTIONNAMES=strvcat(Tableau(:,n)); 

  

end 

  

% ----------- for fixed pH ---------------- 
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function 

[Ksolution,Asolution]=get_equilib_fixed_pH(KSOLUTION,ASOLUTION,pH) 

  

    [N,M]=size(ASOLUTION); 

    Ksolution=KSOLUTION-ASOLUTION(:,1)*pH; 

    Asolution=[ASOLUTION(:,2:M)]; 

  

end 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

function [X,F,J,C] = nl_massbalancerrnosolid_NR(X) 

  

global Asolution Ksolution T 

  

[Nc,Nx]=size(Asolution); %Xsolution=X(1:Nx); 

criteria=1e-16; 

  

for i=1:1000 

  

logC=(Ksolution)+Asolution*log10(X); C=10.^(logC); % calc species 

R=Asolution'*C-T;  

  

% Evaluate the Jacobian  

   z=zeros(Nx,Nx);  

for j=1:Nx;  

    for k=1:Nx;  

        for i=1:Nc; 

z(j,k)=z(j,k)+Asolution(i,j)*Asolution(i,k)*C(i)/X(k); end 

    end 

end 

  

J = z; 

  

deltaX=z\(-1*R); 

one_over_del=max([1, -1*deltaX'./(0.5*X')]); 

del=1/one_over_del; X=X+del*deltaX; 

tst=sum(abs(R)); 

if tst<=criteria; break; end 

  

end 

  

F=[R];  

  

end 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

function [CuT,F]=getdata 
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%#################################################################### 

data=[... 

% CuT (uM) and F 

1.00E-16    1 

1   0.988983592 

3   0.926690888 

%10 0.788341761 

30  0.745248443 

60  0.688347577 

100 0.596926301 

200 0.475403332 

350 0.369698027 

]; 

%#################################################################### 

  

CuT=data(:,1)*1e-6; F=data(:,2);  

CuT=CuT'; F=F'; 

  

end 
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A5. Matlab figures 

 
 

A1. A decrease in the intensity of the fluorescence quenching versus the total concentrations of 

copper in MQ water. 



 59 

 

 

A2. A decrease in the intensity of the fluorescence quenching versus the total concentrations of 

copper in a solution with (0.01) of Na2SO4 salt. 
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A3. A decrease in the intensity of the fluorescence quenching versus the total concentrations of 

copper in a solution with (0.05) of Na2SO4 salt. 
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A4. A decrease in the intensity of the fluorescence quenching versus the total concentrations of 

copper in a solution with (0.25) of Na2SO4 salt. 
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A5. A decrease in the intensity of the fluorescence quenching versus the total concentrations of 

copper in a solution with (0.4) of Na2SO4 salt. 
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A6. A decrease in the intensity of the fluorescence quenching versus the total concentrations of 

copper in a solution with (10%) of artificial seawater. 
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A7. A decrease in the intensity of the fluorescence quenching versus the total concentrations of 

copper in a solution with (25%) of artificial seawater. 
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A8. A decrease in the intensity of the fluorescence quenching versus the total concentrations of 

copper in a solution with (50%) of artificial seawater. 
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A9. A decrease in the intensity of the fluorescence quenching versus the total concentrations of 

copper in a solution with (75%) of artificial seawater. 
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A10. A decrease in the intensity of the fluorescence quenching versus the total concentrations of 

copper in a solution with (100%) of artificial seawater. 

  



 68 

References 

Annex 10: Guidance on transformation/dissolution of metals and metal compounds. (2007). 

Chadwick, D. B., Rivera-Duarte, I., Rosen, G., Wang, P.-F., Santore, R. C., Ryan, A. C., … 

Choi, W. (2008). Demonstration of an Integrated Compliance Model for Predicting Copper 

Fate and Effects in DoD Harbors. 

Coble, P. G. (1996). Characterization of Marine and Terrestrial DOM in Seawater Using 

Excitation-Emission Matrix Spectroscopy. Marine Chemistry, 51(4), 325–346. 

da Silva, J. C. G. ., Machado, A. A. S. C., Oliveira, C. J. S., & Pinto, M. S. S. D. S. (1998). 

Fluorescence quenching of anthropogenic fulvic acids by Cu(II), Fe(III) and UO2+2, 45, 

1155–1165. 

Day, J. J., Hall, C., Kemp, W., & Janez-Arancibia, A. (1989). Estuarine Ecology. 

Di Toro, D. M., Allen, H. E., Bergman, H. L., Meyer, J. S., Paquin, P. R., & Santore, R. C. 

(2001). Biotic Ligand Model of the Acute Toxicity of Metals. 1. Technical basis. 

Environmental Toxicology and Chemistry, 20(10), 96–2383. 

Engel, D., & Sunda, W. (1979). Toxicity of Cupric lon to Eggs of the Spot Leiostomus 

Xanthurus and the Atlantic Silverside Menidia menidia. Marine Biology, 50(2), 121–126. 

Glasby, G., & Schulz, H. (1999). pH Diagrams for Mn, Fe, Co, Ni, Cu and As under seawater 

conditions: application of two new types of Eh, pH diagrams to the study of specific 

problems in marine geochemistry. Aquatic Geochemistry, 5(3), 227–248. 

González-Dávila, M., Santana-Casiano, J. M., González, A. G., Pérez, N., & Millero, F. J. 

(2009). Oxidation of copper(I) in seawater at nanomolar levels. Marine Chemistry, 115(1–

2), 118–124. Retrieved from 



 69 

https://sfx.scholarsportal.info/laurier?frbrVersion=5&ctx_ver=Z39.88-

2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2018-05-

22T17%3A24%3A35IST&url_ver=Z39.88-

2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo

3-Article-sciverses 

Grosell, M., & Wood, C. M. (2002). Copper Uptake Across Rainbow Trout Gills. Journal of 

Experimental Biology, 205(8), 1179–1188. 

Harris, D. C. (2010). Quantitative Chemical Analysis (8th ed.). 

Hooijschuur, J. H. (2018). Flourescence Spectromety. Retrieved from 

http://www.chromedia.org/chromedia?waxtrapp=mkqjtbEsHiemBpdmBlIEcCArB&subNav

=cczbdbEsHiemBpdmBlIEcCArBP 

Howard, A. G. (1998). Aquatic Environmental Chemistry. 

Kogut, M. B., & Voelker, B. M. (2001). Strong Copper-Binding Behavior of Terrestrial Humic 

Substances in Seawater. Environmental Science and Technology, 35, 1149–1156. 

Mart, L., Bruland, K. W., & Coale, K. H. (1985). Analysis of Seawater for Dissolved Cadmium, 

Copper and Lead: An Intercomparison of Voltammetric and Atomic Absorption Methods. 

Marine Chemistry, 17(4), 285–300. 

Mason, R. P. (2013). Trace Metals in Aquatic Systems. 

Merdy, P., Bonnefoy, A., Martias, C., Garnier, C., & Huclier, S. (2012). Use of Fluorescence 

Spectroscopy and Voltammetry for the Analysis of Metal-Organic Matter Interactions in the 

New Caledonia lagoon. International Journal of Environmental Analytical Chemistry, 

92(7), 868–893. 

Millero, F. J. (2001). Physical Chemistry of Natural Waters. 



 70 

Nadella, S. R., Fitzpatrick, J. L., Franklin, N., Bucking, C., Smith, S., & Wood, C. M. (2009). 

Toxicity of dissolved Cu, Zn, Ni and Cd to developing embryos of the blue mussel (Mytilus 

trossolus) and the protective effect of dissolved organic carbon. Comparative Biochemistry 

and Physiology, 149(3), 340–348. 

NIST. (2010). NIST Critically Selected Stability Constants of Metal Complexes. National 

Institute of Standards and Technology. Retrieved from http://www.nist.gov/srd/nist46.cfm 

OECD. (2001). Environment Health and Safety Publications (Testing and Assessment No. 29 

Environment Directorate). 

Paquin, P. R., Gorsuch, J. W., Apte, S., Batley, G. E., Bowles, K. C., Campbell, P. G. C., … Wu, 

K. B. (2002). The Biotic Ligand Model: A Historical Overview. Comparative Biochemistry 

and Physiology, 133(1), 3–35. 

Ryan, D. K., & Weber, J. H. (1982). Fluorescence Quenching Titration for Determination of 

Complexing Capacities and Stability Constant of Fulfil Acid. Analytical Chemistry, 54(6), 

986–990. 

Shirlie, S. (2018). Aquarium Water pH Maintenance. 

Smith, D. S., Arnold, W. R., Cotsifas, J. S., Ogle, S. R., & DePalma, S. G. S. (2010). A 

COMPARISON OF THE COPPER SENSITIVITY OF SIX INVERTEBRATE SPECIES 

INAMBIENT SALT WATER OF VARYING DISSOLVED ORGANIC MATTER 

CONCENTRATIONS. Environmental Toxicology and Chemistry, 29(2), 311–319. 

Smith, D. S., Cooper, C. A., & Wood, C. M. (2017). Measuring Biotic Ligand Model (BLM) 

Parameters in Vitro: Copper and Silver Binding to Rainbow Trout Gill Cells as Cultured 

Epithelia or in Suspension. Environmental Science and Technology, 51(3), 1733–1741. 

https://doi.org/10.1021/acs.est.6b04823 



 71 

Smith, D. S., & Kramer, J. R. (1998). Multi-site aluminum speciation with natural organic matter 

using multiresponse ¯ uorescence data, 363, 21–29. 

Smith, D. S., & Kramer, J. R. (2000). Multisite Metal Binding to Fulfil Acid Determined Using 

MultiResponse Fluorescence. Analytica Chimica Acta, 416(2), 211–220. 

Smith, S., Arnold, R., James, M., Dixon, G., & DePalma, S. (2011). Effects of dissolved organic 

matter and reduced sulphur on copper bioavailability in coastal marine environments. 

Ecotoxicology and Environmental Safety, (3), 230–237. 

Wang, X., Hua, L., & Ma, Y. (2012). A biotic ligand model predicting acute copper toxicity for 

barley (hordeum vulgare): Influence of calcium, magnesium, sodium, potassium and pH. 

Chemosphere, 89(1), 89–95. 

Whitfield, A. K. (1999). Ichthyofaunal Assemblages in an Estuarine a South African Case Study. 

Reviews in Fish Biology and Fisheries, 9(2), 151–186. 

 


	Influence of Salinity on Copper-Ligand Formation Constants
	Recommended Citation

	THESIS
	1.7.1 Activity correction…………...………………………………………6
	1.8 Analytical method……………………………………………………………9
	1.8.1 Fluorescence…………………………………………………....…….9
	2.1 Synthetic seawater…………………………………………………………..14
	2.2 Copper…………………………………………………………………....…15
	2.3 Salicylic acid……………..…………………………………………………15
	2.4 Titration………………..………………………………………………....…16
	1.7.1 Activity correction
	1.8 Analytical methods
	1.8.1 Fluorescence
	Fluorescence occurs as the emission of a photon during a transition between states with the same spin quantum numbers (e.g. ,𝑆-1.→,𝑆-0.). The fluorescence phenomenon is measured as emitted light from sample that absorbed light. This emitted light ha...
	The components of the fluorescence spectroscopy are light source, excitation and emission monochromator, sample holder (cuvette), and detector (Fig. 2). The light source typically emits light in the ultraviolet range. This light has multiple wavelengt...
	Similar to excitation, the emitted light has various wavelengths, and the emission monochromator selects one for intensity measurement at the detector (,𝜆-𝑒𝑚.). The detector is measured the emitted radiation, and the results of the fluorescence are...
	Fluorescence quenching technique (FQ) is a useful tool that determines both the density of sites (,L-T.) and the conditional stability (𝐾′) of multi-sites for metal-natural organic matter (NOM) interactions (Smith & Kramer, 2000). The fluorescence of...
	A plot of the fluorescence versus added metal can be fit by using the Ryan-Weber (RW) equation (Ryan & Weber, 1982) (equation 9) below. There is a study by Smith and Kramer (2000) assumes the responsibility of the fluorescence as a linear line with th...
	Moreover, fluorescence can quench statically or dynamically. There is a collision in the excited state for electrons, and they can be returned back to the ground state in two ways as a radiative or non-radiative. The radiative way of the electrons is ...
	2.1 Synthetic seawater
	2.2 Copper
	2.3 Salicylic acid
	2.4 Titration

