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Abstract 

 

The speciation of copper plays a strong role in determining bioavailability and 

toxicity upon copper exposure in marine environments.  Specifically, natural organic 

matter (NOM) can complex with copper, influencing speciation and decreasing 

bioavailability.  The aim of this research was to determine accurate copper speciation 

values using literature and new techniques and applying the techniques that reflect the 

most accurate speciation values to investigate the influence of NOM quantity and quality 

on copper speciation and toxicity.  The results from this study will have implications on 

the development of a marine Biotic Ligand Model (BLM).  Free copper was measured 

using a flow-through ion selective electrode (ISE) system.  A published external 

calibration Cu ISE method showed a wide variability in measured free copper values and 

so method improvements were investigated. This resulted in the development of an 

internal calibration flow-through ISE method.  This new method showed an increase in 

sample reproducibility and agreed well with modeled free copper values for well defined 

systems.   This method was then applied to measure free copper at the LC50 for toxicity 

assays performed for nine sample locations using the rotifer, Brachionus plicatilis. NOM 

was characterized for each site through dissolved organic carbon (DOC) concentrations, 

fluorescence excitation-emission matrices  (FEEM) and fluorescence quenching, 

combined with spectral resolution techniques to quantify humic-, fulvic-, tryptophan- and 

tyrosine-like fractions.  The toxicity results showed two trends with DOC.  In the first 

case, DOC was protective against copper toxicity (r
2
 = 0.72, p-value = 0.016), however a 

plateau in protective effect was observed above DOC concentrations above 

approximately 2 mg C L
-1

.  This suggests salt- induced colloid formation could be 

occurring resulting in a decrease of binding sites available to complex free copper.   The 

second relationship between LC50 and DOC can be described by the equation LC50 (µg L
-

1
) = 25.15DOC

0.47
 (r

2
 = 0.61, p-value = 0.008) including two outlier sites in statistical 

analysis or LC50 (µg L
-1

) = 22.86DOC
0.45

 (r
2
 = 0.71, p-value = 0.009) excluding the 

outlier sites.  Humic- and fulvic-like fractions showed a linear correlation with toxicity 

however tryptophan and tyrosine showed no correlation.  Overall, only fulvic-like 

fractions were significant.   Free copper at the LC50 for each site remained constant 

(average pCu = 10.14), within the Biotic Ligand Model (BLM) prediction factor of two, 
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while the LC50 values ranged from 333 to 980 nM.  This suggests that differences in 

water chemistries alter the total amount of copper that needs to be added to a system to 

reach a critical free copper concentration required to cause toxicity.  This was supported 

by fluorescence quenching data that was used to determine binding capacities and 

stability constants for the different fluorescent fractions within DOC.  Binding capacities 

at multiple fluorophores ranged from 4 to 1614 nmole mg C
-1

.  The sum of the binding 

capacities were linearly correlated with LC50 (r
2
 = 0.67, p-value = 0.008) which supports 

the observed toxicity data that more total copper was required to reach the same free 

copper.  Binding sites ranged from one to three ligands per sample.  Binding was 

relatively strong for all sites, with logK values ranging from 9.33 to 11.22.  In addition, 

free copper was calculated using this data and the results agreed with the ISE data within 

± 0.3 pCu.  This supports the theory that a critical free copper concentration is required to 

cause toxicity.   As well these results confirm the applicability of fluorescence quenching 

techniques in marine water. 
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Chapter 1 Introduction 

 

1.1 Copper in Marine Systems 

 

Copper is a trace element that is essential for proper functioning of plants, animals 

and microorgansims due to its requirement for many specific metabolic processes (ICA 

1995).  One key function is the dependence of copper for many oxygen defense systems 

such as Cu/Zn superoxide dismutase (SOD) which converts superoxide to hydrogen 

peroxide (ICA 1995, Ullrich & Duppel 1975).  However, only low amounts are necessary 

for normal metabolic functioning and at increased concentrations can prove to be toxic 

(ICA 1995).  Toxicity is usually due to copper interference with ion transport, most 

notably interference of sodium transport causing electrolyte imbalance and 

ionoregulatory failure (Grosell & Wood 2002; De Polo & Scrimshaw 2012).  This can 

occur due to the affinity of copper for thiol (-SH) groups within enzymes such as Na
+
/K

+
 

ATPase where copper binding causes a disruption in enzyme activity (Stauber and 

Florence 1985).  In addition, the redox properties of copper can lead to the generation of 

reactive oxygen species when cellular copper levels are increased (Harris and Gitlin 

1996). 

Anthropogenic release of copper into marine systems has resulted in increasing 

trace levels of copper in the environment (Flemming & Trevors 1989).  In marine 

systems, this is most often due to the use of copper as a biocide in antifouling paints and 

coatings used on the underside of ships (Chadwick et al. 2008).  With over 53% of the 

United States population living along coastal regions (NOAA 2004) and Canada having 

the longest marine coastline of any country (Government of Canada 2003) there is an 
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increased concern of contamination of metals in the ocean due to anthropogenic inputs.  

Typical copper concentrations range from 0.12 – 0.38 µg L
-1

 in areas of open ocean 

(Mackey 1983) to levels over 6 µg L
-1

 in heavily impacted areas such as San Francisco 

Bay (Donat et al. 1994). Current U.S. EPA criteria for copper limits in seawater are a 

dissolved criterion continuous concentration (CCC) of 3.1 µg L
-1

 and a criteria maximum 

concentration (CMC) of 4.8 µg L
-1

 (U.S. EPA 2007).  Currently there is no copper load 

limit into marine systems set by the Canadian government (CCREM 1987).  However, 

British Columbia has set provincial limits with a total copper CCC of less than or equal to 

2 µg L
-1

 and a CMC of 3 µg L
-1

 (BC MOE 1987).    

The bioavailability of copper is influenced by the species of copper present in the 

system (ICA 1995, Chadwick et al. 2008; Eriksen et al. 2001; Eriksen et al. 2001a; Sunda 

& Hanson 1979).  Determination of the true speciation of copper in marine systems is 

crucial in understanding and determining the bioavailability of copper for uptake into 

marine organisms. As such, true copper speciation and its relation to toxicity in salt 

waters will be the main focus of this project. 

Copper can exist in many different forms in aquatic environments and factors 

within these environments can affect the speciation of copper to increase or decrease its 

toxicity to organisms.  Most copper is found in the form of inorganic and organic 

complexes (Kogut & Voelker 2001; Paquin et al. 2000).  Inorganic complexes include 

species such as copper hydroxides and copper carbonates.   Organic ligands have been 

found to play a larger role on copper speciation and are generically classified as natural 

organic matter (NOM) (Sunda & Hanson 1979).  NOM will be discussed in further detail 

in Section 1.2. The copper in both organic and inorganic complexes is unavailable or less 
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available to interact with organisms to cause toxicity.  As such, free copper, Cu
2+

, is often 

used as an indicator for toxicity since it is the species most available to be taken up by an 

organism (Chadwick et al. 2008; Eriksen et al. 2001, Sunda & Hanson 1979). 

1.2 Natural Organic Matter 

 

Natural organic matter (NOM) is a heterogenous mixture of organic compounds 

that contain potential binding sites for metals such as copper.  Copper can form 

complexes with NOM at binding sites such as amino (Cu-NHR, [Cu-NH2R]
+
), carboxyl 

(Cu-CO2H), phenolic (Cu-OAr) and sulfide or thiol groups (Cu-SH) (Smith et al. 2002).  

Although 90% of NOM in seawater remains to be properly characterized, within this 

fraction humic and fulvic acids are the most abundant, comprising anywhere from 5-25% 

of dissolved organic carbon (DOC) in marine surface waters (Benner 2002; Hunter & 

Liss 1981).  Other components include carbohydrates, fatty acids and proteins/amino 

acids (Eikebrokk et al. 2006; Hunter & Liss 1981).  These humic and fulvic acid fractions 

can be defined based on their solubility under different pH conditions.  Humic acids are 

insoluble under acidic conditions (pH < 2), but solubility increases as pH increases, 

whereas fulvic acids are soluble under all pH conditions (Eikebrokk et al 2006; Thurman 

1985).  The concentration of NOM is usually measured as dissolved organic carbon 

(DOC).   DOC is operationally defined as organic carbon that passes through a 0.45µm 

filter. Typical concentrations of dissolved organic carbon (DOC) in marine systems range 

from 0.5 – 10 mg C L
-1

 from open ocean to coastal waters (Benner 2002). 

The origin of natural organic matter also plays a role in the composition of NOM.   

Allochthonous, or terrigenous, organic matter is terrestrially-derived from the 
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decomposition and leaching from soil and plant materials such as lignin, tannins and 

detritus and typically contains a higher humic and fulvic substance content (Birdwell & 

Engel 2009; McKnight et al. 2001). These humic and fulvic substances are heterogenous 

in structure, however Figure 1.1 and Figure 1.2 depicts the representative structures of 

humic and fulvic acids, respectively.   

 
 

Figure 1.1 Molecular structure of humic acid. 

 

 

 

Figure 1.2 Molecular structure of fulvic acid. 

 

Autochthonous organic matter is microbially-derived organic matter from 

bacterial and algal processes occurring in the water column.  This type of organic matter 

usually contains a higher proteinaceous content containing amino acids such as tyrosine 
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and tryptophan (Birdwell & Engel 2009; McKnight et al. 2001).   The structures of 

tyrosine and tryptophan can be found in Figure 1.3 and Figure 1.4, respectively. 

 

Figure 1.3 Molecular structure of tyrosine. 

 

 

Figure 1.4 Molecular structure of tryptophan. 

 

Typically, terrigenous organic matter is associated with a darker colour and 

relatively high amounts of aromatic and phenolic compounds, while autochthonous 

organic matter is lighter in colour and contains relatively low amounts of aromatic and 

phenolic groups (Eikebrokk et al. 2006).  This colour can be described by the specific 

absorption coefficient of the DOC at 340 nm (SAC340).  A higher SAC340 (indicating 

terrigenous C) has been shown to decrease Cu bioavailability more than organic matter 

with a lower SAC340 (Schwartz et al. 2004).  NOM origin can also be approximated using 
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fluorescence indices, as proposed by McKnight et al. (2001).  A fluorescence index (FI) 

of approximately 1.4 and 1.9 indicates terrestrially-derived and microbially-derived 

NOM, respectively. 

1.3 Effect of NOM on Copper Toxicity 

 

The wide variety of binding sites in NOM decreases the toxicity of copper.  

Binding to NOM allows copper to form complexes that reduce the bioavailability of 

copper resulting in a protective effect (Arnold 2005; Santore et al. 2001).  Increased 

NOM concentrations has been shown to be protective in marine organisms such as the 

blue mussel, Mytilus sp. (DePalma et al. 2011a; Nadella et al. 2009), the rotifer, 

Branchionus plicatilus (Arnold et al. 2010), and the sea urchin (Parecentrotus lividus) 

(Lorenzo et al. 2006).  For instance, in the case of the blue mussel, Mytilus trossolus, the 

addition of 2.5 - 20 mg C L
-1

 DOC increased the reported EC50 value from 9.6 µg/L to 24 

- 39 µg/L (Nadella et al. 2009).  

The amount of DOC present in the system has been found to be predictive of 

toxicity to an organism.  The relationship can be described using the equation EC50 = 

11.22 DOC
0.6

 (Arnold et al. 2006).  However this relationship does not take into account 

the source and molecular composition of the organic matter.  The different sources and 

compositions of organic matter may influence the ability of NOM to protect against 

copper toxicity despite current toxicity models utilizing NOM in a homogeneous manner.  

Different NOM sources show variation in copper complexing capacities that could have 

an overall effect on NOM protection to copper toxicity (De Schamphelaere et al. 2004).  

Darker, terrigeneous organic matter has been found to provide a larger protective effect 
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against copper toxicity to organisms than ligher, microbially-derived organic matter 

(Luider et al. 2004; Pempkowiak et al. 1999; Schwartz et al. 2004).   This is in agreement 

with Lorenzo et al. in which humic acids (2002) and fulvic acids (2006) (associated with 

terrigeneous NOM) proved protective to the sea urchin, Paracentrotus lividus against 

copper toxicity.  Lorenzo and associates also suggest that fulvic substances are more 

relevant and protective than humic substances as it was found that the copper-humic 

substance complex may be partially available for uptake by an organism thereby reducing 

the protective effect (Lorenzo et al. 2005).  These results were also observed in the blue 

mussel, Mytilus trossolus, when three different freshwater isolate NOM sources were 

studied (Nadella et al. 2009).  The most protective NOM source was found to contain a 

20% and 40% higher fulvic substance content than the two less protective NOM sources.  

This corresponded to 40% and 60% less protectivity, respectively, to the blue mussel 

(Nadella et al. 2009).  In contrast, De Palma et al. (2011 & 2011a) found that the 

molecular composition of NOM from natural water samples did not significantly affect 

NOM protectivity to copper toxicity. Thus, the predictive EC50 equation determined by 

Arnold et al. (2006) remained consistent regardless of the NOM quality in this case.  Due 

to the limited knowledge of how differences in NOM affects copper toxicity in marine 

systems, there is a need for further research in this area. 
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1.4 Biotic Ligand Model 

 

In freshwater, a biotic ligand model (BLM) has been implemented as a predictive 

tool to estimate site-specific bioavailability and subsequent toxicity of metals, including 

copper.  The BLM is a quantitative framework that can assess metal toxicity using bulk 

water quality measurements such as alkalinity, hardness, pH and DOC (measure of 

NOM).  These qualities are used as input parameters to predict toxicity, thereby allowing 

site-specific water criteria guidelines to be determined (Paquin et al 2002). It predicts 

toxicity at the biotic ligand (ex. the gill of a fish) based on equilibration calculations of 

metal speciation.  This model also takes into account the metal-biotic ligand interactions 

and the effect of competing cations in the system (Di Toro et al. 2001).  The BLM for 

freshwater has been adopted as a regulatory tool by the U.S. EPA (2007) for copper 

however there is need for a BLM in saltwater environments.  Investigations pertaining to 

salt water are currently underway for application of a marine BLM; however more 

information is needed before being accepted for regulatory use (Arnold 2005).  This 

research supplements the development and implementation of a BLM for use in marine 

environments with focus on the free copper species.  

A schematic of the BLM can be found in Figure 1.5. The BLM assumes that 

toxicity is proportional to the accumulation of metal at the biotic ligand. However, 

different factors in the water can affect this interaction.  Cations such as calcium and 

sodium can compete with the bioavailable metal for binding to the biotic ligand.  As well, 

organic and inorganic ligands in the water can form metal complexes decreasing the 

availability of the metal to interact with the biotic ligand.  Some of the factors influencing 
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the bioavailability of copper are pH, alkalinity, salinity and NOM (Santore et al. 2001).  

At low pH, organic particle surface sites for binding become less available to bind metals, 

thus more free metal exists to cause toxicity (Millero et al. 2009).  However, as pH 

increases the copper is able to form more copper complexes since fewer binding sites on 

NOM are protonated, thus decreasing the bioavailability of copper to cause toxicity 

(Santore et al. 2001).  As well, there is an increase in copper hydroxide formation, 

reducing the amount of free copper (Paquin et al. 2000; Santore et al. 2001).  Alkalinity 

with respect to copper toxicity has also shown to be protective.  Increased cations such as 

Ca
2+

 and Mg
2+

 protect against copper toxicity by increasing the competition for copper 

binding at the biotic ligand (Santore et al. 2001).   This is similar to salinity which also 

has been found to protect marine organisms against copper toxicity.  Increased salinity 

increases the amount of inorganic ligand-copper complexation as well as increases the 

competition for uptake by the marine organisms with other cations such as Na
+
, Mg

2+
 and 

Ca
2+ 

(De Polo & Scrimshaw 2012)..  As mentioned in Sections 1.2 and 1.3, the wide 

variety of binding sites in NOM also decreases the toxicity of copper.  Binding to NOM 

allows copper to form complexes that reduce the bioavailability of copper resulting in a 

protective effect (Arnold 2005; Santore et al. 2001).   
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Figure 1.5 Schematic diagram of the Biotic Ligand Model (Adapted from Di Toro et al. 

2001). 

 

1.5 Toxicity Assays 

 

Toxicity assays performed for this research used the rotifer species, Branchionus 

plicatilus.  Assays were performed following the protocol recommended by the American 

Society for the Testing of Materials (ASTM 2004).  Modifications described by Arnold et 

al. (2010) to increase the acute exposure time from 24 to 48 hours was also applied to the 

ASTM (2004) method.  Further information regarding the toxicity assay parameters can 

be found in Chapter 3.  Brachionus plicatilis is a euryhaline rotifer which are small 

zooplankton with a typical size of 0.1-1 mm in length (Biodiversity Institute of Ontario 

2008).  Rotifers are named for the corona at their head which resembles spinning wheels 

(rota (latin) = wheel and fera (latin) = to bear).  The corona is used for movement and 

food acquisition. The mastax is the muscular pharynx of the rotifer containing a set of 
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hard jaws for grinding food.  The posterior end of the rotifer is called the foot which can 

be used to anchor the rotifer (Biodiversity Institute of Ontario). A schematic of the 

rotifer, Brachionus plicatilis can be seen in Figure 1.6. Brachionus plicatilis have been 

previously reported as osmoconformers (Epp and Winston 1977) however recent 

literature suggests they are osmoregulators due to increased Na
+
/K

+
 ATPase activity in 

response to salinity consistent with other osmoregulating euryhaline invertebrates (Lowe 

et al. 2005).  An increase in salinity results in an increase in Na
+
/K

+
 ATPase.  This 

suggests that at increased salinities rotifers may be more sensitive due to an increase of 

stress on the rotifer from an increase in energetic cost to osmoregulate at higher salinities 

(Lowe et al. 2005).   

 

Figure 1.6 Schematic drawing of the rotifer, Brachionus plicatilis (Adapted from FAO 

1996). 

 

Rotifers are an ideal organism for aquatic toxicity testing due to their ecological 

impact in coastal marine environments.  Rotifers exert grazing pressures due to feeding 

on phytoplankton and bacteria (Gilbert & Bogdan 1984), and are an important food 
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source for planktivorous fish, copepods and insect larvae (Biodiversity Institute of 

Ontario 2008; O‟Brian 1979).  In addition to the ecological significance of rotifers, there 

are many other reasons why they are an ideal organism to study copper toxicity in 

saltwater systems.  Brachionus plicatilis have been found to be very sensitive to toxicants 

such as copper (Arnold et al. 2010).  As well, these rotifers can survive 80 hours before 

the effect of food deprevation begins to cause toxicity allowing for acute studies without 

a feeding requirement (ASTM 2004).  Brachionus plicatilis can be successfully cultured 

in a wide range of salinities from 0 to 40 ppt (Minkoff et al. 1983) and up to 97 ppt 

(Lubzens et al. 2001) allowing for the study of estuarine environments.  In addition, 

rotifers are commercially available and toxicity assays are relatively easy and fast to 

perform due to their rapid reproduction rates and short generation times (ASTM 2004). 

1.6 Ion Selective Electrode 

 

An ion selective electrode (ISE) is a non-destructive tool that can be used to 

measure free copper (Cu
2+

) by measuring the electrical potential developed across the 

sensing membrane of the electrode (Skoog et al. 2007).  In the case of copper, this 

membrane is composed of a mixture of silver sulfide with copper sulfide (Ag2S/CuS).  

The membrane contains a fixed activity of cupric ion, which is permeable to the 

membrane (Ross 1969).  When the electrode is placed in a sample there is a flux of cupric 

ions across the membrane in the direction of lesser cupric ion activity.  Since these ions 

carry a charge, a potential is developed across the membrane (Ross 1969). The developed 

potential is dependent on the concentration of free copper in the sample.  This potential is 
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measured against a constant reference potential using a reference electrode and can be 

described by the Nernst equation (Ross 1969; Skoog et al. 2007) where,  

      
  

  
               Equation 1.1 

  

Where, E and E° are the measured electrode potential and the reference potential 

(constant), respectively.  R is the gas constant (8.315 J mol
-1

 K
-1

), T is the temperature in 

Kelvin, n is the ionic charge, and F is the Faraday constant (96487 C mol
-1

).  Q is the 

reaction quotient in terms of activity of the reactant (αcu2+) and product species.  For 

copper, this becomes 

      
  

  
  

 

     
         Equation 1.2 

 

Accounting for the constants, assuming room temperature (298 K) and converting 

from the natural logarithm to the base ten logarithm by multiplying by 2.303, the 

equation can now be written as 

     
      

 
    

 

     
        Equation 1.3 

 

The resulting electrode slope should therefore be approximately 29.6 mV per 

decade in a correctly working copper electrode.  For copper, pCu is the negative 

logarithm of the cupric ion activity, thus the copper electrode provides a direct measure 

of the pCu in solution (Skoog et al. 2007).  Thus the equation can now become, 

                       Equation 1.4 
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Since free copper is thought to be the most bioavailable species to cause toxicity, 

accurate values of free copper are needed and it is believed that ISE techniques may 

reflect the true speciation of copper in aquatic systems.  However, the observance of 

chloride interference of the Cu ISE in high chloride media has limited the use of Cu ISEs 

in sea water (Jasinski, Trachtenberg & Andrychuk 1974; Westall, Morel & Hume 1979).  

Belli and Zirino (1993) examined the performance of the Cu ISE across a range of 

chloride concentrations (0 to 1.0 M NaCl) and found that the Cu ISE responded well in 

all cases.  The Cu ISE has since been used to measure free copper at at a variety of sites 

including San Diego Bay (Rivera-Duarte & Zirino 2004) and Pearl Harbour (Chadwick et 

al. 2008).  Recent literature has also found that free Cu
2+

 better correlated to observed 

toxicity than anodic stripping voltammetry (Eriksen et al. 2001, 2001a). Thus, Cu ISE 

will be used to measure free copper in this project.  

 

1.7 Anodic Stripping Voltammetry 

 

Anodic stripping voltammetry (ASV) techniques were utilized to determine total 

copper throughout the course of this project.  ASV is a non-destructive technique that 

involves the deposition of the analyte onto the working electrode which behaves as a 

cathode during this first step.  The working electrode is a mercury drop (Skoog et al. 

2007).  For copper, this deposition step concentrates the copper in the solution by plating 

it onto the electrode to form a copper amalgam by reducing the free copper in solution 

from Cu
2+

 to Cu
0
.  After the deposition stage, the electrode carries out an anodic sweep in 

which the potential of the electrode is increased to more positive potential values.  This 

redissolves (or strips) the copper from the electrode back into solution.  During this 
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stripping step, the copper is being oxidized back to its original form (from Cu
0
 to Cu

2+
) 

(Skoog et al. 2007). The analyte will be stripped from the working electrode based on its 

oxidation potential, which is unique to each metal (Wang 2006).  For copper, the peak 

potential can be found at -0.1 V versus an Ag/AgCl reference electrode. This method is 

advantageous in trace metal analysis since the preconcentration step allows for very low 

detection limits (Skoog et al. 2007).  A longer deposition time results in lower detection 

limits. Figure 1.7 shows an example of the excitation signal as voltage versus time as 

well as the resulting voltammogram for cadmium and copper.  The peak height of each 

analyte is proportional to the concentration of the analyte in the bulk solution.  This is 

due to the flow of electrons during the stripping step.  Electrons are generated during 

oxidation of the analyte and these electrons create a current which is measured.  With 

increasing analyte concentrations, more electrons are released during the oxidation 

process, thus the generated current (and therefore peak height) will also be increased. 
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Figure 1.7 Example of the excitation signal (top) and resulting voltammogram (bottom) 

using anodic stripping voltammetry for the analytes, cadmium and copper (Wang 2006). 

Note: The peak height, ip,  of each analyte from the voltammogram is proportional to the 

concentration of the analyte in the bulk sample solution. 

 

To determine the total metal concentration, standard addition techniques are 

typically performed after oxidation (H2O2) and UV digestion.  Voltammetry only 

measures labile copper (free copper and copper complexed to inorganic ligands).  Copper 

complexed by organic matter are not detected by ASV.  Thus, digestion of the NOM in 

each sample is performed prior to analysis to ensure all the copper in the sample exists in 

the form of free or inorganic copper complexes. 

Standard addition is a technique which involves the successive addition of a 

standard solution containing the analyte being measured in one or more increments to the 

sample solution (Skoog et al. 2007).  The original sample and the sample after each 

addition are measured.  The original concentration of the sample can then be determined 
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by extrapolating a line through the data back through the x-intercept (Skoog et al. 2007). 

An example of the standard addition method can be seen in Figure 1.8.  The standard 

addition technique is advantageous because it ensures that the instrument response is due 

only to changes in analyte concentration, rather than from components within the sample 

matrix that could interfere with the analyte signal (Skoog et al. 2007). 

 
Figure 1.8 Visual representation of the standard addition technique showing 

experimental data points and extrapolation back through the x-intercept to determine 

original sample concentration (Recreated from Skoog et al. 2007). 

 

1.8 Fluorescence 

 

Fluorescence techniques can be used to characterize NOM and metal speciation 

(Chen et al. 2003; da Silva et al. 1998; Mackey 1983; Smith & Kramer 2000).  NOM can 

be used for fluorescence techniques due to the presence of aromatic structural groups 

with electron-donating functional groups (Chen et al. 2003).  A Jablonski diagram 

(Figure 1.9) illustrates the electron transfers which can occur.  The first step is the 

transition of an electron from a lower energy level to a higher energy level. When light 
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from an external source interacts with a fluorescent molecule (fluorophore) the molecule 

can absorb the light energy and be promoted to a higher energy (excited) state.  Once 

excited, a molecule can return to ground state through a variety of non-radiative 

transitions (vibrational relaxation and internal conversion) or through radiative processes 

(fluorescence and phosphorescence) (Skoog et al. 2007).  Relaxation of the electron 

within vibrational levels results in vibrational relaxation.  Internal conversion occurs in 

cases where a vibrational energy level is coupled to a vibrational level in a lower 

electronic energy level. Phosphorescence occurs due to intersystem crossing of an 

electron from an excited singlet state to an excited triplet state then deactivation back to 

ground state.  The probability of this occurring is enhanced if the vibrational levels of two 

states overlap (like internal conversion).  Both phosphorescence and fluorescence occurs 

when a photon is emitted. 

 
Figure 1.9 Jablonski diagram (Recreated from Skoog et al. 2007) 
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1.8.1 Fluorescence Excitation-Emission Matrix 

 

The different fluorophores within a heterogenous system can be distinguished 

based on different fluorescent properties.  The compilation of data from simultaneously 

measuring excitation and emission wavelengths result in a fluorescence excitation-

emission matrix (FEEM). An FEEM provides qualitative information on the chemical 

composition of NOM based on the intensities and positions of the fluorophores in the 

matrix.  Terrigenous components (humic and fulvic acids) fluoresce at longer 

wavelengths than proteinaceous components (Baker 2001).  Fulvic and humic-like 

components can be detected in the Ex/Em ranges of 300-350 nm/400-450 nm and 250-

390 nm/460-520 nm, respectively (McKnight et al. 2001; Smith & Kramer 1999; 

Stedmon & Markager 2005; Wu et al 2003).  Microbially-derived carbon can be detected 

in the Ex/Em ranges of 225-275 nm/350 nm and 225-270 nm/300 nm representing 

tryptophan and tyrosine-like components, respectively (Baker 2001; Stedmon and 

Markager 2005).  NOM characterization using this method has been used to identify 

components in aquatic systems ranging from freshwater (Cory & McKnight 2005; Winter 

et al. 2007) to seawater (Coble 1996; Cory & McKnight 2005).  An example of an FEEM 

contour plot can be seen in Figure 1.10. 



20 

 

 

Figure 1.10 FEEM contour plot for the freshwater NOM isolate Luther Marsh. Between 

approximately 400 – 500 nm there are emission maxima corresponding to two excitation 

maxima at approximately 270 nm and 325 nm representing humic and fulvic fractions.   

 

Parallel factor analysis (PARAFAC) can be used to determine the relative 

quantities of the humic, fulvic, tryptophan and tyrosine-like components observed by 

fluorescence.  Through spectral deconvolution of a stack of FEEMs, PARAFAC is able 

to quantify the minimum number of components to describe each FEEM (Stedmon & Bro 

2008).  PARAFAC models 3-way data sets of excitation, emission and fluorescence 

intensity using the following equation (Stedmon & Bro 2008), 

 

      ∑                                             
     Equation 1.5 

 

Where xijk is the FEEM with of the i
th

 sample with j emission wavelength and k excitation 

wavelength with dimensions I, J and K. Ɛijk is the residual mathematical noise 
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(unexplained signal) not accounted for in PARAFAC.  a, b and c represent the abundance 

(concentration), emission spectra, and excitation spectra of the resolved fluorophores, 

respectively.  For F number of resolved fluorophores, the measured signal is the sum of 

the contribution from each and can be calculated using the above equation (Stedmon & 

Bro 2008). 

1.8.2 Fluorescence Quenching 

 

The fluorescence of NOM is known to be quenched in the presence of metals such 

as copper (da Silva et al. 1998).  Since there is a relationship between fluorescence 

intensity and metal concentration, fluorescence quenching techniques can be used for 

copper speciation analysis and will be used in this study (Chen et al. in press; da Silva et 

al. 1998; Smith & Kramer 2000).  Fluorescence quenching of NOM due to increasing 

concentrations of copper is primarily due to static quenching (da Silva et al. 1998), in 

which the quencher interacts with the ground state fluorophore to form the „dark‟ 

complex, thereby decreasing the fluorescence (Skoog et al. 2007).  

The fluorescence quenching curve can be fitted with a Ryan Weber equilibrium 

model (See Equation 1.6) where I is the overall fluorescence intensity, CM and CL are the 

total metal and ligand concentrations, respectively, K is the conditional stability constant 

and IML is a limiting value below which fluorescence will no longer decrease with metal 

addition (Ryan & Weber 1982).   Using this model, the stability constants (logK) and 

binding capacities (LT) of the NOM can be determined.   

 

  (
         

    
) [             √                    ] Equation 1.6 
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The amount of free NOM and copper-NOM complexes can be calculated as a 

function of the logK and binding capacities of the NOM (da Silva et al. 1998; Smith & 

Kramer 2000).  From these values, the total metal concentration can be calculated and the 

amount of free and bound copper can then be determined (Smith & Kramer 2000).  

Fluorescence quenching in freshwater has been validated for aluminum with salicyclic 

acid and 2-hydroxy-3-napthoic acid by Smith et al. (1998). Hernández et al. (2006) were 

able to solve for logK and binding capacity of copper with humic acids in pig slurries and 

amended soils.  Suwannee River fulvic acid (SRFA) titrations with copper validated 

copper fluorescence quenching by its ability to predict free copper (Smith & Kramer 

2000).  In addition, preliminary work using fluorescence quenching techniques has 

validated fluorescence quenching methods for copper in marine environments using 

Luther Marsh organic matter in artificial seawater (Diamond 2012).   

 

1.9 Research Goals and Objectives 

 

The objectives of this research are summarized as follow: 

1. To determine true copper speciation in seawater using literature methods and new 

techniques to determine which techniques offer the most accurate measurement of 

copper speciation.  

 

2. To validate a new method for determining free copper using a Cu ISE in seawater. 

 

3. To apply an integrated approach to investigate the effect of DOC source on 

copper speciation and toxicity in aquatic organisms.   
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The first and second objectives will be addressed in Chapter 2: Internal calibration 

flow-through ISE method for determining Free Cu in salt water.  A published literature 

Cu ISE method was used to measure free copper of natural marine waters.  A new 

method for measuring free copper using ISE was developed, validated and compared to 

the data from the published literature to establish a more reliable method to measure free 

copper.   

Objective three will be fulfilled by Chapter 3: Influence of DOC source on free 

copper and toxicity to Brachionus plicatilis.  Toxicity studies while simultaneously 

measuring copper speciation will be performed using the rotifer, Brachionus plicatilis.  

Copper speciation during these toxicity studies will be measured using ISE, ASV and 

fluorescence quenching techniques. DOC quality will be characterized using fluorescence 

techniques. 

Chapter 4: Characterization of NOM interactions with copper in natural sea water 

using fluorescence quenching will also tie into objective one and three.  In this chapter, 

DOC characteristics such as stability constants and binding capacities of the DOC will be 

determined using fluorescence quenching techniques.  The relation of these parameters to 

the toxicity observed in Chapter 3 will be discussed.  In addition, free copper will be 

calculated using the fluorescence data and compared to free copper measurements made 

in Chapter 3.  These comparisons will help validate both the Cu ISE and fluorescence 

spectroscopy methods for measuring free copper in marine systems, thereby helping to 

accomplish objective one. 

The findings of these three chapters and future work in these areas will be 

summarized in Chapter 5: Conclusions and Future Work.  Supplementary information 
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can be found in the attached Appendices.  Appendix A includes an example for solving 

simultaneous chemical equilibria and the resulting MATLAB scripts used to determine 

free copper in Chapter 2.  Appendix B provides supplementary information related to 

Chapter 3 including the DOC characteristics of all water samples, the effects of salting up 

of samples on toxicity and fluorescence excitation-emission contour plots.  Appendix C 

provides the matlab scripts for determining contribution of fluorophores within NOM to 

total fluorescence and the resulting multiresponse fitting to determine binding 

characteristics and copper speciation.  Plots of the resulting fitting and comparison of 

modelled and measured free copper are also provided. 

 

1.10 Significance of Research 

 

It has been suggested that in some cases there is an overestimation of copper 

toxicity when determining copper load limits into the environment due to different water 

chemistries and what metal species are present in the system (Paquin et al. 2002).  

Understanding the speciation of copper and the species that are bioavailable to cause 

toxicity can help determine more accurate site-specific guidelines for copper water 

quality criteria in saltwater environments.  Obtaining reliable and true copper speciation 

measurements in saltwater environments is crucial if bioavailability models are to be 

accurate and provide a robust method for determining and predicting toxicity.  

Information resulting from this study can be used to expand the use of the BLM for 

application in salt water and strengthen the validity of a saltwater BLM to be used for 

regulatory purposes.   



25 

 

The measurement of true copper speciation is also crucial for determining copper 

toxicity over different NOM concentrations and compositions. Currently only the 

concentration of DOC is used as an input parameter for the BLM (U.S. EPA 2007). If 

DOC composition relationships are found to have an effect on toxicity then this 

information can be incorporated into a saltwater BLM to provide a better estimate of 

toxicity.  The information obtained from this project will aid in the development and 

implementation of a saltwater BLM to determine site-specific regulations and guidelines 

for copper load limits into marine systems. 
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Chapter 2 Internal calibration flow-through ISE method for determining free Cu in 

salt water 

 

2.0 Abstract 

 

Copper can exist in many different forms in aquatic environments and factors 

within these environments can affect the speciation and bioavailability of copper. Copper 

bound to organic and inorganic ligands is unavailable to interact with organisms to cause 

toxicity.  As such, free copper is often used as an indicator for copper toxicity since it is 

the species most available to be taken up by an organism. Thus, the determination of 

copper speciation is important in understanding the bioavailability of copper and its 

potential to cause toxicity to marine organisms. Free ionic copper was measured using a 

flow-through ion selective electrode (ISE).  Four different marine samples were collected 

from various locations and analyzed during a fixed pH copper titration using a published 

external standard calibration ISE method.  Free cupric determinations in the range 10
-12

 to 

10
-7

 mol L
-1

 were consistent with published literature but replicate measures showed up 

to two orders of magnitude variability.  To improve reproducibility an internal calibration 

method was developed.  The new method was validated using artificial seawater with 

added tryptophan as the model ligand.  The free Cu was modelled using NIST binding 

constants and compared well to measured values.  The free copper measured using the 

improved method showed the same trends as the external calibration data but 

reproducibility increased to an order of magnitude or better.  For example, in one natural 

sea water sample the external calibration yielded a concentration range from 10
-10.5

 to10
-

7.5
 mol L

-1
 and this was reduced to 10

-9.9
 to 10

-9.5
 mol L

-1
 using the internal calibration 

method.  This ability to more reliably measure free copper is significant for predicting 

and measuring toxicity upon copper exposure. 

  



34 

 

2.1 Introduction 

 

Copper is an important trace element required for proper functioning of aquatic 

organisms however can be toxic at increased concentrations due to interference with ion 

transport (Grosell & Wood 2002; De Polo & Scrimshaw 2012).  The ability for copper to 

cause toxicity is based on its speciation.  Copper is mostly found as inorganic and organic 

complexes which renders copper unavailable to interact with an organism to cause 

toxicity (Paquin et al. 2000).  As such, free copper, Cu
2+

, is often used as an indicator for 

toxicity since it is the species most available to be taken up by an organism (Chadwick et 

al. 2008; Eriksen et al. 2001, Sunda & Hanson 1979).  Therefore, it is important that the 

measurement of free copper be accurate and reliable for assessing copper toxicity in 

aquatic environments. 

Previous use of Cu ion-selective electrodes (ISEs) in sea water has been limited 

due to the observance of chloride interference (Jasinski, Trachtenberg & Andrychuk 

1974; Westall, Morel & Hume 1979).  However, this phenomemon was examined in 

Belli & Zirino (1993) and it was found that the Cu ISE was suitable for use in high 

chloride media such as seawater.  The Cu ISE has since been used to measure free copper 

at metal impacted sites such San Diego Bay (Rivera-Duarte & Zirino 2004) as well as for 

use in comparing free Cu to observed toxicity (Erikson et al. 2001 & 2001a).  

Nonetheless, in some cases up to two orders of magnitude variability between 

measurments have been seen in copper titration data (Chadwick et al. 2008).  This 

variability has two potential sources.  The first is differences in sample characteristics, 

like time of collection between samples from the same location, causing the resulting 
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variability in the data.  The second is due to method reproducibility issues.  This work 

will attempt to examine the source of variability seen in the literature.   

A flow-through Cu ISE system was previously developed by Eriksen et al. (1999).   

A flow through system is advantageous because membrane fouling by membrane 

dissolution or silver chloride precipitation is negligible or non-existent since the solution 

is always being flushed through the system and not static (Eriksen et al. 1999).  Copper 

released from the ISE itself is also flushed through the system instead of accumulating at 

the electrode surface, allowing for a more accurate measurement of copper in the sample 

(Eriksen et al. 1999).  This published method and a new internal calibration flow-through 

method will be utilized to determine free copper concentrations in natural and artificial 

sea water samples.  Validation of the internal calibration method will also be presented.  

The reproducibility of the new method will also be compared to the published method 

from Eriksen et al. (1999). 

2.2 Methods 

2.2.1 Instrumentation 

 

All studies were conducted in a flow-through system using an Orion copper electrode 

(Model 94-29, Boston, MA, USA) contained within an ISE micro-Flowcell (FIAlab, 

Bellevue, WA).  The flow cell was contained within a faraday cage made from wire 

wrapped to electrical ground (a water tap).  An Orion double junction Ag/AgCl reference 

electrode (Model 900200, Boston, MA, USA) using ASW prepared using OECD Annex 

10 (OECD 2001; Annex 10 2007) (Refer to Section 2.2.2 Sample Preparation) as the 

outer filling solution was located in a separate compartment at the end of the system 
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(waste stream) to avoid interference of the CuISE by silver.  Each electrode was 

connected to a potentiometer (Tanager, Model 9501, Ancaster, ON).  A valveless 

metering pump, the Cerampump FMI “Q” Pump (GQ6, Fluid Metering Inc., Syosset, 

NY) was used to deliver the test solution through the system.   For measurements of free 

copper following the literature method, a KD Scientific syringe pump (Model KDS100; 

Massachusetts, USA) was used for sample delivery.  A schematic of the flow-through 

system can be seen in Figure 2.1. 

 
Figure 2.1 Schematic of the free copper ion selective electrode flow-through system. 

 

2.2.2 Sample Preparation  

 

A copper ion buffer containing 15 mM ethylenediamine (ReagentPlus ≥ 99%, 

Sigma Aldrich, St. Louis, MO), 1 mM CuSO4·5H2O (BioShop Canada Inc., Burlington, 

ON) and 0.6 M NaCl (Fisher Scientific, New Jersey, NY) was prepared as in Eriksen et 

al. (1999).  The pCu (pCu = -log[Cu
2+

]) of this buffer solution could be varied by 

Sample Output 

(waste)

Sample

Pump Flow Cell

Cu ISE pH 

Electrode
Ref 

Electrode

Potentiometer
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adjusting the pH of the sample with the pCu calculated as a function of pH (Eriksen et al. 

1999): 

                                                    Equation 2.1 

                                       

At higher pH values pCu is higher, corresponding to a lower amount of free Cu.  

The buffer was pH adjusted to around pH 8 for a pCu of 14.86.  For the literature method, 

a low pCu buffer was also made by adjusting the pH to 6 for a pCu of 8.31. 

An artificial seawater solution was prepared following the marine medium 

chemical composition from the Organization for the Economic Co-operation and 

Development (OECD) Annex 10 (OECD 2001; Annex 10 2007).  The chemical 

composition can be found in Table 2.1. All test solutions were prepared using this 

synthetic seawater. 

Table 2.1 Chemical composition of artificial seawater (OECD 2001; Annex 10 2007). 

Chemical Amount  

Sodium fluoride (NaF)
a
 3 mg

 
L

-1
 

Strontium chloride hexahydrate (SrCl2·6H2O)
a
 20 mg

 
L

-1
 

Boric acid (H3BO3)
b
 30 mg

 
L

-1
 

Potassium bromide (KBr)
c
 100 mg

 
L

-1
 

Potassium chloride (KCl)
b
 700 mg

 
L

-1
 

Calcium chloride dihydrate (CaCl2·2H2O)
a
 1.47 g

 
L

-1
 

Sodium sulfate (Na2SO4)
a
 4.0 g

 
L

-1
 

Magnesium chloride (MgCl2·6H2O)
c
 10.78 g

 
L

-1
 

Sodium chloride (NaCl)
a
 23.5 g

 
L

-1
 

Sodium metasilicate nonahydrate (Na2SiO3·9H2O)
a
 20 mg

 
L

-1
 

Sodium bicarbonate (NaHCO3)
d
 200 mg

 
L

-1
 

a
 Fisher Scientific (New Jersey, NY), 

b
 Sigma Aldrich (St. Louis, MO), 

c
 BDH (West 

Chester PA), 
d
 EMD Chemicals (Gibstown, NJ). 
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A 1.0 x 10
-2

 M stock solution of reagent-grade L-tryptophan (Trp) (> 98% pure, 

Sigma Aldrich, St. Louis, MO) and  a 1.0 M stock solution of cupric sulfate pentahydrate 

(CuSO4·5H2O) (BioShop Canada Inc., Burlington, ON) were prepared using ultrapure 

water (18.2 MΩ, MilliQ). Discrete copper titrations were prepared by adding 10 µM Trp 

to the ASW to act as a model ligand.  Tryptophan was added as the model ligand since it 

is known that it will bind copper and the stability constant for binding to copper is 

known.  Thus, speciation could be modeled using National Institute of Standards and 

Technology (NIST) values (Martell & Smith 2001) and compared to experimental 

findings.  An example of solving for simultaneous chemical equilibria required to model 

speciation can be found in Appendix A1. Copper additions of 78.4, 157.4, 392.7 and 

786.8 nmol L
-1

 Cu (5, 10, 25 and 50 ppb Cu, respectively) was added to the ASW + Trp 

solutions and allowed to equilibrate overnight before free copper was measured using the 

flow-through system. 

Marine water samples from Duxbury (Massachusetts), PNNL (Washington), 

Jimbo (Florida) and Bearcut (Florida) were collected in polypropylene bottles and stored 

at 4°C (Table 2.2).  These samples were filtered using a 0.45µm pore size cellulose 

nitrate membrane filter (Whatman, Germany).  Copper additions of 0, 78.4, 157.4, 392.7 

and 786.8 nmol L
-1

 Cu (0, 5, 10, 25 and 50 ppb Cu, respectively) were added to 50 mL 

aliquots of the filtered sample and allowed to equilibrate overnight before free copper 

was measured.  Each sample was pH adjusted to pH 8.0 ± 0.1 before analysis.   
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Table 2.2 Location and basic water characteristics of marine samples. 

Sample Location (lat/long) Salinity (ppt) DOC (mg C L
-1

) 

Bearcut (FL) 25.7307 / -80.1611 35 2.06 

Jimbo (FL) 25.7747 / -80.1454 36 3.47 

Duxbury (MA) 42.0364 / -70.6710 36 1.77 

PNNL (WA) 46.3481 / -119.280 35 1.80 

 

2.2.3 Internal Calibration Analysis Procedure 

 

The CuISE was polished weekly using aluminum oxide (< 10 micron, 99.7%, 

Sigma Aldrich, St. Louis, MO) followed by silver electrode polish (Corning Inc, 

Tewksbury, MA).  Following polishing and for overnight storage the CuISE was left in 

the flow cell in the pH 8 copper ion buffer with the sample delivery pump turned off after 

running buffer at a fast flow rate (~160 ml h
-1

) for two minutes. 

A fast flow rate (~160 ml h
-1

) was used initially to ensure the sample was through 

the system and that a complete electric circuit was maintained.  The flow rate was then 

reduced to the measuring flow rate of 10 ml h
-1

 and measured until stabilization of the 

potential signal was achieved.     Typically, stabilization of the sample required 2 to 5 

hours to satisfy the stability criteria of a less than 0.1 mV min
-1

 change. After 

stabilization the final pH was measured.   For ASW samples, the process was repeated at 

various pH points from pH 8.0 down to pH 3.3.  For determination of pCu in a sample the 

whole range of pH adjustments need not be performed.  Instead, the samples were 

measured at a pH of 8 and at two lower pH points ranging from pH 3.3 to pH 5 for a total 

of three measurements per sample per copper concentration.  After the lowest pH 
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measurement, the system was flushed with ASW for 2 min at the fast flow rate, followed 

by the copper ion buffer for 2 min before the next sample was measured.  

It should be noted that at higher concentrations of free copper (lower pH) there 

was some slight noise associated with the potential reading.  In these cases, the average 

potential of the noise was used as the measured potential once the stability criterion was 

met and did not seem to impact the final results.  This is consistent with the observations 

noted in Belli & Zirino (1993) in which the noise increased with increasing 

concentrations of copper. 

2.2.4 Literature Method Analysis Procedure 

 

For the full procedure of the literature method for determining free copper using 

flow-through analysis please refer to Eriksen et al. (1999). This method was applied to all 

four marine samples.  The Cu ISE was calibrated each day before any samples were run 

using the low and high pCu copper ion buffers after which a calibration curve was 

generated and used to determine free Cu of each sample.  Like above, a fast flow rate 

(129 ml h
-1

) was used to ensure the sample was distributed through the system.  The flow 

rate was then reduced to a measuring flow rate of 1.0 ml h
-1

. The same stability criterion 

as the internal calibration method was applied for these measurements. 

2.2.5 Internal Calibration Data Analysis 

 

All data analysis was performed in MATLAB™ (MathWorks Inc., MA, USA).  

For the one-point internal calibration, the stable potential readings for the lowest pH 

points allow for a one-point internal calibration to be performed to determine free Cu.  At 

the lowest pH points it was assumed that total copper is equal to the free copper, 
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corrected for chloride complexation using NIST values (Martell & Smith 2001).  The 

potential for the two lowest pH measurements for each sample were averaged to 

determine the measured electrode potential (E).  The reference potential (E°) is calculated 

using E, and assuming a Nernstian slope (m) of 29.6 mV per decade along with the 

adjusted total copper (CuTadjust) as seen in Equation 2.2. Once E° has been calculated then 

logCu
2+

 can be calculated for the pH 8 measurement using Equation 2.3. 

                         Equation 2.2 

 

        
(    )

 
        Equation 2.3 

 

A copy of the MATLAB script used to determine free copper in the model system over 

varying pH and at a constant pH of 8 can be found in Appendix A2 and A3, respectively. 
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2.3 Results and Discussion 

 

A typical sample kinetic curve can be observed in Figure 2.2. The shape of the 

kinetic curve was similar for all samples using both the internal and external calibration 

methods.    

 
Figure 2.2 Kinetic curve for ASW + 10 µM Trp + 786.8 nmol L

-1
 (50 ppb) Cu showing 

potential as a function of time.  The stability criteria of less than 0.1 mV min
-1

 change 

was achieved at 192 minutes.  

 

2.3.1 Literature Method Sample Variability  

 

The free copper measurement results from the titration of the four marine samples 

with copper can be seen in Figure 2.3.  This figure also shows free copper data from 

Chadwick et al. (2008) for comparison.  The titration data of the seawater samples 

measured using the Eriksen et al. (1999) method compared well to the literature data 

from San Diego Bay.  Free copper concentrations ranged from approximately 10
-12

 mol 

L
-1

 to 10
-7

 mol L
-1

 which is consistent with the concentration range seen in the literature. 
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Figure 2.3 Measured free copper concentrations using Eriksen et al. method compared to 

San Diego Bay Results from Chadwick et al. (2008).  Grey = Chadwick et al. (2008) data, 

Red = Bearcut (FL), Green = Jimbo (FL), Blue = PNNL (WA), Magenta = Duxbury 

(MA). 

 

Also comparable to the literature data, the titration data from sample replicates 

showed up to two orders of magnitude difference in free copper concentrations.  Figure 

2.3 illustrates the wide variability between titrations.  The variability seen in the 

Chadwick et al. (2008) data could have been due to sample variation such as location and 

time of year the samples were collected. However, the free copper titrations measured in 

our lab were replicates from the same sample from one collection period and one 

location.  This suggests that measurement reproducibility was an issue, rather than being 

due to sample differences.  This confirms the need for improvements to the literature 

method to increase reproducibility of results.  These improvements resulted in the 

development of the internal calibration method with the results discussed below.  
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2.3.2 Internal Calibration Validation 

 

An internal calibration is advantageous over an external calibration method since 

it takes into account any electrode fouling that may have occurred.  In this method 

solutions with copper additions are pH adjusted from a range of pH 8 to pH 3.3 and a 

one-point calibration is performed to determine free copper.  Validation was performed 

using ASW with added tryptophan as a model ligand so that free copper could be 

modeled in this system.  Figure 2.4 shows the strong agreement of modeled versus 

measured free copper concentrations over varying pH.  At low pH, organic particle 

surface sites for binding become less available to bind copper, thus more free metal exists 

(Millero et al. 2009).  However, as pH increases the copper is able to form more copper 

complexes since fewer binding sites on NOM are protonated, thus decreasing the amount 

of free copper present (Santore et al. 2001).  As well, there is an increase in copper 

hydroxide formation, also reducing the amount of free copper (Paquin et al. 2001; 

Santore et al. 2001). There is a slight discrepancy between the measured and expected 

values at 78.7 nmol L
-1

 Cu (5 ppb Cu) at pH 8.  However the detection limit of the CuISE 

is around 31.5 nmol L
-1

 Cu (2 ppb) total copper.  Thus, at the 78.7 nmol L
-1

 total Cu 

concentration the limit of detection is being approached with respect to free copper. 
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Figure 2.4 Measured (circles) and modeled (lines) free copper for ASW + 10 µM Trp 

with 78.7 nmol L
-1

 Cu (5 ppb Cu; light blue), 157.4 nmol L
-1

 Cu (10 ppb Cu; red), 392.7 

nmol L
-1

 Cu (25 ppb Cu; blue), and 786.8 nmol L
-1

 Cu (50 ppb Cu; magenta) added over 

a pH range from 8.0 to 3.3. 

 

To understand the quantitative effects of the internal versus external calibration 

methods at a constant pH of 8, the free copper at each total copper concentration was 

calculated using the internal (●) and external calibration method (◊) and can be seen in 

Figure 2.5.  The external calibration values were calculated using the average calibration 

curve (mV = -28.549pCu + 255.7) from all calibration performed previously using the 

literature method. This figure shows the free copper values calculated using the external 

calibration method are relatively constant, regardless of the total copper added.  

However, as expected, when the one-point internal calibration is performed the amount of 

free copper increases with increased total copper.  
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Figure 2.5 Free copper measured over a concentration range of 78.7 to 786.8 nmol L

-1
 

(5-50 ppb) Cu at a constant pH (pH = 8) calculated using the external (◊) and internal (●) 

calibration methods. Dashed line represents the trend in the external calibration data 

while the solid line represents the trend of the internal calibration data. 

 

The internal calibration data can be compared to the expected free copper at each 

concentration in Figure 2.6.  Figure 2.6 shows good agreement with the model, adding 

strength to the validity of the method.   
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Figure 2.6 Measured (triangles) and modeled (circles with lines) copper speciation of 

ASW + 10 µM Trp over concentration range of 78.7 to 786.8 nmol L
-1

 (5-50 ppb) Cu at a 

constant pH (pH = 8). 

 

2.3.3 Applicability in Marine Samples 

 

Discrete copper titrations of ASW using the new internal calibration flow-through 

ISE method were found to yield successful results. As such, discrete copper titrations of 

natural marine samples were performed to determine whether the new method would be 

successful in these waters.  Copper titrations of Duxbury (MA) and PNNL (WA) samples 

using the new internal calibration method were performed and the results compared to the 

literature method in Figure 2.7.  As can be seen in Figure 2.7, the free copper 

concentrations are similar between methods.  The variability between replicates was also 

considerably reduced using the internal calibration method as compared to the external 

calibration method.  For example, Duxbury spiked with 392.7 nmol L
-1 

(25 ppb) Cu 

showed a free copper concentration ranging from 10
-10.5

 to 10
-7.5

 mol L
-1

 using the 
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external calibration method.  However, this variability was reduced to between 10
-9.9

 – 

10
-9.5

 mol
 
L

-1
 using the new internal calibration method.  These results show that the 

internal calibration method is applicable and increases the reproducibility of 

measurements in natural marine waters. 

 
Figure 2.7 Comparison of copper speciation measurements using the external calibration 

method and internal calibration method. a. Duxbury; magenta – Internal Calibration 

method, grey – External calibration method. b. PNNL; blue – Internal Calibration 

method, grey – External calibration method. 
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2.4 Conclusions 

 

Replicate measurements of sea water samples using a published method showed 

up to two orders of magnitude variability between free copper measurements.  This 

suggests that method reproducibility issues cause the variability seen in free copper 

measurements rather than sample differences.  This resulted in the development of a new 

method for determining free copper in sea water.  The work presented here describes a 

new method for the determination of free copper in sea water using an internal calibration 

flow-through ISE method.  The new method was successfully validated using a model 

system and comparison of methods in natural water samples showed the ability of the 

new method to accurately measure free copper in the environment.  The increased 

reproducibility from two orders of magnitude to within an order of magnitude using the 

new method ensures more reliable results are obtained.  This is important as accurate 

measurement of free copper is significant for predicting and measuring bioavailability 

and toxicity of copper to aquatic organisms.  
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Chapter 3 Influence of DOC source on free copper and toxicity to Brachionus 

plicatilis 

3.0 Abstract 

 

The toxicity of copper in marine systems is dependent on its speciation and 

bioavailability.  Natural organic matter (NOM) can complex copper resulting in 

decreased bioavailability of copper to cause toxicity.  At a molecular level, NOM quality 

can vary which may alter copper binding and the resulting speciation and toxicity.  The 

purpose of this study was to measure acute copper LC50 values in natural marine waters 

and identify the relationships between NOM quality on toxicity and copper speciation. 

This has implications on the development and application of a marine biotic ligand model 

(BLM) for copper in salt water.  NOM was characterized using dissolved organic carbon 

(DOC) concentration, absorbance and fluorescence measurements to determine NOM 

source and quantify humic-, fulvic-, tryptophan- and tyrosine-like fractions within NOM.  

Static acute copper toxicity tests (48-h LC50) were performed using the euryhaline rotifer, 

Brachionus plicatilis.  Ion selective electrode (ISE) measurements of free copper were 

performed at the LC50 concentrations to determine the influence of DOC source on 

copper speciation.  LC50 values ranged from 333 nM to 980 nM with DOC concentrations 

ranging from 0.55 mg C L
-1

 to 7.57 mg C L
-1

.  DOC was found to be protective, however 

the degree of protectivity decreased as DOC increased (r
2
 = 0.72, p-value = 0.016).  This 

suggests salt induced colloid formation could be occurring resulting in a decrease of 

binding sites available to complex free copper.  Free copper remained relatively constant 

(within the BLM prediction factor of two) between each sample site with an average pCu 

of 10.14.  Overall, this study is consistent with other studies that suggest free copper is 

the best species for predicting toxicity.  As well, no significant correlation between NOM 

source and copper toxicity were observed as compared to total DOC concentration and 

copper toxicity, suggesting that NOM quality does not need to be taken into account for 

copper toxicity modeling in salt water. 
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3.1 Introduction 

 

Copper is a trace element that is essential for proper functioning of plants, animals 

and microorgansims due to its requirement for many specific metabolic processes (ICA 

1995).  However, only low amounts are necessary for normal metabolic functioning and 

at increased concentrations copper can be toxic.  Toxicity is usually due to copper 

interference with ion transport, most notably interference of sodium transport causing 

electrolyte imbalance and ionoregulatory failure (Grosell & Wood 2002; De Polo & 

Scrimshaw 2012). 

With over 53% of the United States population living along coastal regions 

(NOAA 2004) and Canada having the longest marine coastline of any country 

(Government of Canada 2003) there is an increased concern of contamination of metals 

in the ocean due to anthropogenic input.  Typical copper concentrations range from 0.12 

– 0.38 µg L
-1

 in areas of open ocean (Mackey 1983) to levels over 6 µg L
-1

 in heavily 

impacted areas such as San Francisco Bay (Donat et al. 1994). Current U.S. EPA criteria 

for copper limits in seawater are a dissolved copper criterion continuous concentration 

(CCC) of 3.1 µg L
-1

 and a criteria maximum concentration (CMC) of 4.8 µg L
-1

 (U.S. 

EPA 2007).  Currently there is no copper load limit into marine systems set by the 

Canadian government (CCREM 1987) but provinces, like British Columbia, have their 

own provincial limits with a total copper CCC of less than or equal to 2 µg L
-1

 and a 

CMC of 3 µg L
-1

 (BC MOE 1987).    

The Biotic Ligand Model (BLM) is a predictive tool used to estimate site-specific 

bioavailability and subsequent toxicity of metals (Di Toro et al. 2001; Santore et al. 2001; 
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Paquin et al. 2002).  Modeling is based on bulk water chemistries and the interaction 

between the metal and the site of toxic action, which is called the biotic ligand (eg. The 

gills of a fish).  The freshwater BLM has been adopted as a regulatory tool by the U.S. 

EPA (2007) for copper however there is need for a BLM in saltwater environments.  

Investigations pertaining to salt water are currently underway for application of a marine 

BLM; however more information is needed on copper speciation and natural organic 

matter (NOM) source before the BLM is accepted for regulatory use (Arnold 2005).  The 

focus of this study was to characterize each of these parameters for further development 

of the marine BLM.  

The bioavailability of copper is influenced by the species of copper present in the 

system (Chadwick et al. 2008; Eriksen et al. 2001; Eriksen et al. 2001a; Sunda & Hanson 

1979).  Copper can exist in many different forms in aquatic environments and factors 

within these environments can affect its toxicity to organisms.  Most copper is found in 

the form of inorganic and organic complexes (Kogut & Voelker 2001; Paquin et al. 

2000).  Organic ligands have been found to play a larger role on copper speciation and 

are generically classified as natural organic matter (NOM) (Sunda & Hanson 1979).  The 

copper in both organic and inorganic complexes is unavailable to interact with organisms 

to cause toxicity.  As such, free copper, Cu
2+

, is often used as an indicator for toxicity 

since it is the species most available to be taken up by an organism (Chadwick et al. 

2008; Eriksen et al. 2001, Sunda & Hanson 1979). 

The concentration of NOM is usually measured as dissolved organic carbon 

(DOC).  DOC is operationally defined as organic carbon that passes through a 0.45µm 

filter. Typical concentrations of dissolved organic carbon (DOC) in marine systems range 
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from 0.5 – 10 mg C L
-1

 from open ocean to coastal waters (Benner 2002). Increased DOC 

concentrations have been shown to be protective in marine organisms such as the blue 

mussel, Mytilus sp. (DePalma et al. 2011), the rotifer, Branchionus plicatilus (Arnold et 

al. 2010), and the sea urchin (Parecentrotus lividus) (Lorenzo et al. 2006).  However, 

variation in NOM source may influence copper toxicity. Different NOM sources show 

variation in copper complexing capacities that could have an overall effect on NOM 

protection (De Schamphelaere et al. 2004).  This was seen by Nadella et al. (2009) in 

which marine water spiked with three different sources of exogenous NOM resulted in 

different levels of protection to copper toxicity in Mytilus trossolus.  The most protective 

NOM source was found to contain 20% and 40% higher fulvic substance content than the 

two less protective NOM sources.  This corresponded to 40% and 60% less protectivity, 

respectively, to the blue mussel (Nadella et al. 2009). 

NOM can be broadly classified into two groups, allochthonous and autochthonous 

(McKnight et al. 2001). Allochthonous, or terrigenous, organic matter is terrestrially-

derived from the decomposition and leaching from soil and plant materials such as lignin, 

tannins and detritus and typically contains a higher humic and fulvic substance content. 

Autochthonous organic matter is microbially-derived organic matter from bacterial and 

algal processes occurring in the water column and usually contains a higher 

proteinaceous content (Birdwell & Engel 2009; McKnight et al. 2001). Typically, 

terrigenous organic matter is associated with a darker colour and relatively high amounts 

of aromatic and phenolic compounds, while autochthonous organic matter is lighter in 

colour and contains relatively low amounts of aromatic and phenolic groups (Eikebrokk 

et al. 2006).  This colour can be described by the specific absorption coefficient of the 
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DOC at 340 nm (SAC340).  Darker, terrigeneous organic matter (higher SAC340) has been 

found to be more protective to copper toxicity than ligher, microbially-derived organic 

matter (lower SAC340) (Luider et al. 2004; Pempkowiak et al. 1999; Schwartz et al. 

2004).   NOM origin can also be approximated using fluorescence indices, as proposed 

by McKnight et al. (2001).  A fluorescence index (FI) of approximately 1.4 and 1.9 

indicates terrestrially-derived and microbially-derived NOM, respectively.  

Fluorescence spectroscopy can be used to distinguish different fluorescent 

molecules (fluorophores) within a heterogenous system.  The compilation of data from 

simultaneously measuring excitation and emission wavelengths result in a fluorescence 

excitation-emission matrix (FEEM). The intensity and position of the fluorophores within 

the matrix provides information on the chemical composition of NOM.  Terrigenous 

components (humic and fulvic acids) fluoresce at longer wavelengths than proteinaceous 

components (Baker 2001).  Fulvic- and humic-like components can be detected in the 

Ex/Em ranges of 300-350 nm/400-450 nm and 250-390 nm/460-520 nm, respectively 

(McKnight et al. 2001; Smith & Kramer 1999; Stedmon & Markager 2005; Wu et al 

2003).  Tyrosine and Tryptophan can be detected in the Ex/Em ranges of 225-275 

nm/350 nm and 225-270 nm/300 nm, respectively, representing microbially-derived 

carbon sources (Baker 2001; Stedmon and Markager 2005).  NOM characterization using 

this method has been used to identify components in aquatic systems ranging from 

freshwater (Cory & McKnight 2005; Winter et al. 2007) to seawater (Coble 1996; Cory 

& McKnight 2005).  

Parallel factor analysis (PARAFAC) can be used to determine the relative 

quantities of the humic-, fulvic-, tryptophan- and tyrosine-like components observed by 
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fluorescence.  Through spectral deconvolution of a stack of FEEMs, PARAFAC is able 

to quantify the minimum number of components to describe each FEEM (Stedmon & Bro 

2008).  Here, four components, humic-, fulvic-, tyrosine- and tryptophan-like fractions 

will be analysed for correlations with copper toxicity.  De Palma et al. (2011) looked at 

the same components for correlations with copper toxicity to Mytilus sp., however no 

significant correlations were found suggesting DOC was predictive of toxicity 

independent of dissolved organic matter (DOM) quality. 

The objectives of this study were to (1) Measure acute toxicity of copper in the 

rotifer, Brachionus plicatilis in natural marine waters, (2) Identify relationships between 

LC50 in rotifers and the free Cu, concentrations of humic-, fulvic-, tyrosine- and 

tryptophan-like components of DOC, SAC340 and FI, (3) Identify the relationship 

between DOC source and free copper, and (4) Evaluate whether NOM quality should be 

included as an input parameter into a marine BLM for copper. 

3.2 Methods 

 

3.2.1 Sampling, Storage and Selection 

 

Ambient water samples were collected from marine and estuarine sites along the 

coasts of Canada and the USA. Samples were collected in high density polyethylene 

bottles while submerged to ensure no airspace in the bottle.  Samples were transported to 

Wilfrid Laurier University, Waterloo, ON, Canada in coolers.  The bottles were stored at 

4°C.  After sub-sampling, Ar was used to fill the headspace.  In total, 28 samples were 

collected.  DOC quality was used to determine a subset of samples to measure copper 

toxicity (refer to Section 3.2.3).  Samples were chosen to encompass low and high 
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concentrations (and combinations within) of each of the four parameters (humic, fulvic, 

tryptophan and tyrosine content). The DOC quality of all 28 sample sites can be found in 

Appendix B1.  The locations of the 9 sites that were selected for toxicity assays are 

described in Table 3.1 

Table 3.1 Description of sampling sites used for toxicity assays. 

Sample Location Coordinates 

(lat / long) 

Collection 

Date Bouctouche (BT) NB 46.471532 / -64.717283 Nov 2011 

Petit Rocher (PR)  NB 47.783534 / -65.708606 May 2012 

Major Kollock Creek (MKC) NB 46.813469 / -64.912441 May 2012 

Naufrage Harbour (NH) PEI 46.46763 / -62.417343 May 2012 

Rathtrevor Beach (RB) BC 49.321793 / -124.264684 Aug 2012 

Hawke‟s Bay (HB) NFLD 50.616142 / -57.182465 Aug 2012 

Blackberry Bay (BB) BC 49.151791 / -125.89802 Nov 2012 

Chesterman Beach (CB) BC 49.11336 / -125.88692 Nov 2012 

Jimbo Miami, FL 25.77471 / -80.1454 Jan 2013 

 

3.2.2 Dissolved Organic Carbon (DOC) Analysis 

 

DOC concentrations of all ambient and salinity adjusted grab samples were 

measured using a Shimadzu TOC-LCPH/CPN (Shimadzu Corporation). Filtered (0.45µm 

cellulose nitrate membrane filter; Whatman, Germany) samples (20 mL) were acidified 

with 2-3 drops of concentrated OmniTrace HCl (EMD Chemicals, Gibstown, NJ). 

Standard total carbon solutions of 5, 10 and 20 mg C L
-1

 prepared from potassium 

hydrogen phthalate (BDH, West Chester, PA) and dissolved in ASW were measured with 

samples to allow for an external calibration.  Refer to Section 3.2.4 for the chemical 
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composition of ASW.  MilliQ water rinses were performed after every sample to ensure 

removal of any salt deposits from the analyzer syringe.  

3.2.3 Fluorescence Measurement and Analysis 

 

Daily standards of 2.4 µM tyrosine, 1.0 µM tryptophan and 5 mg C L
-1

 (Nordic 

Reservoir) or 10 mg C L
-1

 (Southhampton) were prepared.  These solutions were 

prepared from stock solutions of reagent grade L-tyrosine (1.0 x10
-3

M) (>98% pure, 

Sigma-Aldrich, St. Louis, MO) and L-tryptophan (1.0x10
-2

M) (>98% pure, Sigma-

Aldrich, St. Louis, MO) prepared using ultrapure water (18.2MΩ, MilliQ). Organic 

matter was commercially available terrestrial reverse osmosis organic matter isolate, 

Nordic Reservoir NOM (IHSS, MA, USA) or Southhampton DOC, a reverse osmosis and 

cation exchange resin (Amberlite IR-118H, Sigma) organic matter isolate from a wetland 

near Southampton, PEI, Canada.  Details on sample location, preparation, storage and 

characterization for Southampton DOC can be found in Cooper et al. (2013). This daily 

standard was used to determine relative fluorophore component concentrations using a 

one point calibration and PARAFAC (see below).
 

An aliquot of each water sample was passed through a 0.45 µm cellulose nitrate 

membrane filter (Whatman, Germany) and the filtrate measured in a 1 cm quartz cuvette 

using a Varian Cary Eclipse Fluorescence Spectrophotometer (Varian, Mississauga, ON).  

Fluorescence emission wavelengths were measured from 250 nm to 600 nm in 1 nm 

increments for every 10 nm excitation wavelengths between 200 nm and 450 nm.  Both 

the excitation and emission monochromator slit widths were set to 5 nm for all 

measurements. The photomultiplier tube was set to high sensitivity (800 V).  When 
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sample fluorescence intensity was very low the photomultiplier tube was set to 1000 V 

and the daily standard was diluted by a factor of 10 in these cases.  The use of daily 

standards at the same operating conditions as the samples allowed for relative 

concentrations of each component to be determined, corrected for instrument settings, 

thereby allowing a comparison between samples measured at different instrument 

settings. 

A Varian Cary 50 UV/VIS Spectrophotometer (Varian, Mississauga, ON) was 

used to measure absorbance on each sample following fluorescence measurements.  

Absorbance was measured from 250 nm to 600 nm in order to correct for inner filter 

effects (if needed) as well as to determine SAC340 for each sample. SAC340 was 

calculated based on the following equation (Schwartz et al. 2004), 

 

             
      

   
        Equation 3.1 

 

Fluorescence indices to estimate NOM source were calculated for each water 

sample as in McKnight et al. (2001) using the following equation: 

 

         
     

     
        Equation 3.2 

 

where FIex370 is the fluorescent index at 370 nm excitation, and em450 and em500 are the 

emission intensities at 450 nm and 500 nm, respectively. 

MATLAB™ (MathWorks Inc., MA, USA) was used to generate a three-

dimensional fluorescence excitation-emission matrix (FEEM) for each sample. Rayleigh 
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scattering was removed from the spectra during preprocessing to prevent mathematical 

interferences in later spectral analysis.  For sample measurements in which the 

absorbance at 254 nm was less than 0.3 units, inner filter effect corrections were not 

necessary (Ohno 2002).  Data that required inner filter corrections were performed using 

Equation 3.3 (Larsson et al. 2007) where F is the corrected fluorescence intensity, Fo is 

the observed fluorescence, b is the path length, Aex is the absorbance at the excitation 

wavelength and Aem is the absorbance at the emission wavelength. 

 

                            Equation 3.3 

 

 

Fluorescence intensities were expressed in arbitrary fluorescence units (counts) to 

avoid propagation of errors and additional assumptions in data analysis. The same 

instrument was used for all fluorescence measurements.  The FEEMs were resolved using 

PARAFAC and constrained to four fluorescent components.  Pure spectras of tyrosine 

and tryptophan were processed and weighted to recover pure tyrosine and tryptophan as 

components during analysis (DePalma et al. 2011).  These made up the proteinaceous 

component of the resolved components.  The spectra of the terrigenous material was 

labelled as humic-like and fulvic-like components.  These spectra were based on the 

observation that higher molecular weight material fluoresces at longer wavelengths 

(DePalma et al. 2011; Wu et al. 2003).  Therefore, after processing tyrosine-like, 

tryptophan-like, humic-like and fulvic-like components were defined.  The 

concentrations of these components within each sample were determined using the 

resolved component concentrations from the daily standards. 
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3.2.4 Toxicity Assay 

 

All toxicity tests on the nine selected samples were conducted using the 

euryhaline rotifer, Brachionus plicatilis purchased from Florida Aqua Farms Inc. (Dade 

City, Florida).  Static acute toxicity tests (48-h) were performed following ASTM (2004) 

guidelines with modifications from Arnold et al. (2010).  A summary of these 

recommendations can be seen in Table 3.2. B. plicatilis resting cysts were hatched in 6-

well tissue culture plates (Falcon, Becton Dickinson) in artificial seawater (ASW) 

(ASTM 2004) at 30 ppt and a pH of 8.0 ± 0.1.  Hatching took place under continuous 

light (2500 lux) at 25°C. Newly hatched rotifers (<6 hr old) were transferred to the 

exposure chamber, a 24-well tissue culture plate (Falcon, Becton Dickinson) containing 2 

mL of the test solution.  6 replicates of 10 rotifers per exposure concentration (ctrl + 5 

concentrations) were performed for each sea water sample. The test chamber was in 

continuous darkness and maintained at 25 ± 1 °C.  The rotifers were observed at the end 

of the 48-h exposure under a microscope.  Individual rotifers were considered dead if 

there was no movement of body or body parts within 5 s of observation (ASTM, 2004).  

Test acceptability was less than 10% mortality in the control (ASTM 2004). 
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Table 3.2 Summary of test conditions for the rotifer species, Branchionus plicatilus, as 

recommended by the American Society for the Testing of Materials (ASTM 2004) and 

actual experimental conditions applied (Adapted from Arnold et al. 2010). 

Parameter 
ASTM (2004) 

Recommendations 
Experimental 

Hatching salinity 15 g L
-1

 30 g L
-1

 

Light during hatching 1000-3000 lux 2500 lux 

Test type Static acute Static acute 

Test container Multiwell tissue culture plate 
24 well high-grade 

polystyrene 

Duration 24 h 48 h 

End point LC50 LC50 

Temperature 25 ± 1°C 25 ± 1°C 

pH 8.00 7.90 – 8.06 

Dilution water Reconstituted seawater ASW 

Test salinity 15 g L
-1

 30 g L
-1

 

Photoperiod Continuous darkness Continuous darkness 

Test chamber size 2.5 mL 3.25 mL 

Test solution volume 1.0 mL 2.0 mL 

Test concentration 5 plus a control 5 plus a control 

Age of test animals 0-2 h  0-6 h 

No. of reps per [Cu] 3 6 

No. of neonates per 

[Cu] 
30 60 

Feeding None None 

Aeration None None 

End point Mortality  Mortality  

Test acceptability ≤ 10% control mortality ≤ 10% control mortality 
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The ASW was made using the following concentrations of salts: 11.31 g NaCl, 

0.36 g KCl, 0.54 g CaCl2, 1.97 g MgCl2·6H2O, 2.39 g MgSO4·7H2O, and 0.17 g NaHCO3 

dissolved in 1 L ultrapure water (18.2MΩ, MilliQ) (Guillard, 1983; ASTM, 2004). 

Salinity was adjusted to 30 ± 0.1 ppt using ultrapure water.   

The nine samples used for the toxicity assays were adjusted to a salinity of 30 ± 

0.1 ppt using a mixture of the ASW salts or ultrapure water.  The sample was then 

filtered through a 0.45 µm cellulose nitrate filter (Whatman, Germany).  The filtrate was 

pH adjusted to 8.0 ± 0.1 using 0.1 M NaOH (Orion 91-57BN pH electrode and Orion 

420A+ meter, Thermo Electron Corp.).  The effects of salinity adjustment of the samples 

on the resulting toxicity can be found in Appendix B2. Sub-aliquots of the filtrate were 

distributed into 6 separate teflon (Nalgene) containers.  A 1.0 mM solution of 

CuSO4·5H2O (BioShop Canada Inc., Burlington, ON) was prepared in ultrapure water 

and was used to spike the test concentrations into the appropriate containers.  

Concentrations ranged from zero added copper (control) up to 300 µg L
-1

 Cu depending 

on the sample water tested.  These solutions were allowed to equilibrate for 24 h in 

darkness before rotifer transfer to the test solutions was initiated. 

The LC50 values for the toxicity data were determined using Probit analysis.  For 

statistical analysis of relationships to toxicity, both linear and non-linear regression was 

applied depending on the observed trend. 
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3.2.5 Total Copper Analysis 

 

Total copper measurements were made on sub-aliquots of the control sample and 

samples spiked with copper for the toxicity assay as well as solutions containing copper 

concentrations equivalent to the 48-h LC50. UV digestion of each sample to remove 

organic components was required prior to total copper analysis using differential pulse 

anodic stripping voltammetry (DPASV).   UV digestion was performed using a 705 UV 

Digester (Metrohm). 100 µL of 30% H2O2 was added to 10 mL of sample within the 

sample vessel.  Irradiation time was 60 min at a temperature of 89 ± 2°C. 

DPASV analyses were carried out with a Static Mercury Drop electrode (SMDE)  

and a Pt rod counter electrode (Metrohm) held in a Metrohm 663 VA stand (Metrohm) 

coupled to a computer controlled AutoLab PGSTAT128N potentiostat/galvanostat  (Eco 

Chemie, Metrohm).  Nova 1.7 software (Eco Chemie, Metrohm) was used for analysis of 

peaks.  The experimental conditions followed manufacturer recommendations (Metrohm 

Application Bulletin No. 231/2e).  These conditions were: 1mL of KCl-sodium acetate 

buffer (1.5 mol L
-1

 KCl, 0.5 mol L
-1

 CH3COONa and 50 mL 30% w/v NaOH L
-1

) was 

added to 10 mL of sample.  The pH was then adjusted to 6.400 (±0.005).   Problems with 

metal contamination of the KCl resulted in some samples being run using a KNO3-

sodium acetate buffer (1.5 mol L
-1

 KNO3, 0.5 mol L
-1

 CH3COONa and 50 mL 30% w/v 

NaOH L
-1

). The sample was purged for 5 min with Ar after which copper was 

accumulated on a mercury drop for 90 s with stirring.  The equilibration time was 10 s 

and the differential pulse ranged from -1.250 to 0.000 V.  The original sample along with 

successive additions of copper to the sample solution was measured. The standard 
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addition solution was prepared daily at a concentration of 157 µM from a 1000 mg L
-1

 

copper standard solution (Assurance grade, SPEXCertiPrep, New Jersey). Standard 

addition analysis by linear regression (Refer to Chapter 1, Section 1.7) was then used to 

determine the original concentration of copper in the sample. 

3.2.6 Free Copper Analysis 

 

Solutions containing total copper concentrations equivalent to the 48-h LC50 for 

all marine samples were prepared and allowed to equilibrate for 24 h before analysis. 

Free copper was measured using the internal calibration flow-through method described 

in Chapter 1.  All measurements were conducted in a flow-through system using an Orion 

copper electrode (Model 94-29, Boston, MA, USA) contained within an ISE micro-

Flowcell (FIAlab, Bellevue, WA).  The flow cell was contained within a faraday cage 

made from wire wrapped to electrical ground (a water tap).  An Orion double junction 

Ag/AgCl reference electrode (Model 900200, Boston, MA, USA) using ASW prepared 

using OECD Annex 10 (OECD 2001; Annex 10 2007) as the outer filling solution was 

located in a separate beaker at the end of the system to avoid interference of the Cu ISE 

by silver.  Each electrode was connected to a potentiometer (Tanager, model 9501, 

Ancaster, ON).  A valveless metering pump, the Cerampump FMI “Q” Pump (GQ6, 

Fluid Metering Inc., Syosset, NY) was used to deliver the test solution through the 

system at a flow rate of 10 ml h
-1

.  The CuISE was polished weekly using aluminum 

oxide (< 10 micron, 99.7%, Sigma Aldrich, St. Louis, MO) followed by silver electrode 

polish (Corning Inc, Tewksbury, MA).  Following polishing and for overnight storage the 

CuISE was left in the flow cell in the copper ion buffer (15 mM ethylenediamine 
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(ReagentPlus ≥ 99%, Sigma Aldrich, St. Louis, MO), 1 mM CuSO4·5H2O (BioShop 

Canada Inc., Burlington, ON) and 0.6 M NaCl (Fisher Scientific, New Jersey, NY)) at pH 

8.0 with the sample delivery pump turned off after running buffer at a fast flow rate 

(~160 ml h
-1

) for two minutes. 

Before analysis, the sample was pH adjusted to 8.0 ± 0.1.  A fast flow rate (~160 

ml h
-1

) was used to ensure the sample was through the system and that a complete electric 

circuit was maintained after which the flow rate was reduced to the measuring flow rate 

of 10 ml h
-1

.  The sample was delivered through the system until stabilization of the 

potential signal was achieved, which generally took 2 to 5 hours.  The measurement was 

satisfied when the acceptable criterion of a less than 0.1 mV min
-1

 change was achieved. 

After stabilization the final pH was measured.   The process was repeated at a pH of 3.3 ± 

0.1.  After the lowest pH measurement, the system was flushed with ASW for 2 min at 

the fast flow rate, followed by the copper ion buffer for 2 min before the next sample was 

measured.  

A one-point internal calibration was performed using the lower pH measurement 

to determine free Cu. The electrode is assumed to have a linear Nerstian response with a 

slope of 29.6 mV per decade.  For the low pH sample it is assumed that the total copper 

equals the free copper, corrected for chloride complexation using the NIST logKCuCl of 

0.3 (NIST, 2001). This allows the free copper to be determined at pH 8.0.  Statistical 

comparisons of the free copper measurements were determined using a two-way 

ANOVA followed by the Student-Newman-Keuls post-hoc test. A limit of p < 0.05 was 

used to indicate significance. 
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3.3 Results and Discussion 

 

3.3.1 DOC Analysis 

 

DOC concentrations were measured as an approximation of NOM in each of the 

nine grab samples before and after salinity adjustment and filtration and are shown in 

Table 3.3. DOC concentrations of the nine samples ranged from 0.55 mg C L
-1

 to 7.57 

mg C L
-1

 after salinity adjustment and filtration. It was expected that there may have been 

some loss of DOC when increasing the salinity of the samples due to the salting-out 

effect.  This effect refers to the decrease in solubility of non-electrolytes with an increase 

in ionic strength (Xie et al. 1997; Millero 2001).  This effect has been observed for DOC 

in marine coastal waters (Mantoura & Woodward 1983). This was not always the case in 

this data set.   A comparison of the DOC measurements before and after salinity 

adjustment and filtration can be seen in Figure 3.1.  Most samples showed a slight 

decrease in DOC after adjustment, however there was no apparent trend between the 

percent change in DOC and the direction and percent change of salinity suggesting that 

variability may have been due to instrumental error (Figure 3.2).  
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Table 3.3 Measurements of DOC and salinity of the sea water samples used for the 

toxicity assays.  Measurements are shown from both before and after salinity adjustment 

and filtration. 

Sample DOC (mg C L
-1

) Salinity 

 
Before After Before After 

Bouctouche 4.36 4.83 19.1 30.1 

Petit Rocher 2.13 2.10 23.2 30.2 

Major Kollock Creek 7.86 7.57 12.8 29.9 

Naufrage Harbour 5.50 5.20 4.3 29.9 

Rathtrevor Beach 1.52 1.37 24.4 30.1 

Hawke‟s Bay 1.54 1.28 25.0 30.0 

Blackberry Bay 1.45 2.03 8.3 29.9 

Chesterman Beach 0.82 0.55 30.3 30.1 

Jimbo 1.34 1.13 34.8 30.1 

 

 
Figure 3.1 Comparison of DOC measurements before and after salinity adjustment and 

filtration. A 1:1 line is represented by the solid black line. 
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Figure 3.2 Comparison of the percent change in DOC as a function of the percent change 

in salinity of water samples. 

 

3.3.2 Fluorescence Measurements 

 

The fluorophores within NOM can be distinguished based on different fluorescent 

properties.  Fluorescence spectroscopy can be used to produce FEEMs.  These FEEMs 

were visualized as contour plots using MATLAB™ to show the fluorescence intensity 

trends with Ex/Em wavelengths. These plots showed a clear qualitative indication of the 

presence of humic-, fulvic-, tyrosine- and tryptophan-like fractions for each of the 

samples based on their unique Ex/Em intensity signals.  Two examples of contour plots 

can be found in Figure 3.3.  Higher intensities at Ex/Em ranges of 340 nm/425 nm and  

260 nm/460 nm identify fulvic- and humic-like components.  Tryptophan and tyrosine 

components show higher intensities at 275 nm/350 nm and 225 nm/300 nm, respectively. 
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 Figure 3.3a represent Major Kollock Creek (MKC) and Figure 3.3b corresponds 

to Chesterman Beach (CB).  These two FEEMs illustrate the differences in optical 

properties between samples.  MKC shows a large intensity peak at emissions at 420 nm 

and 460 nm, corresponding to fulvic- and humic-like components.  In contrast, CB 

showed large intensity peaks at emissions of 300 nm and 350 nm, corresponding to 

tyrosine- and tryptophan-like components. Contour plots for all samples can be found in 

Appendix B3.  

 
Figure 3.3 Fluorescence excitation-emission contour plots for two water samples. Major 

Kollock Creek (a) has higher fulvic- and humic-like components. Chesterman Beach (b) 

has higher tyrosine- and tryptophan-like components. 

 

Application of the PARAFAC algorithm identified four operationally-defined 

fractions with the FEEMs.  These were humic-, fulvic-, tryptophan- and tyrosine-like 

components as illustrated in Figure 3.4.  This analysis described 97.7% of the variability 

within the fluorescent data. 
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Figure 3.4 Spectra of the four components used to describe fluorescent organic matter 

quality within the water samples. The spectra represent (a) humic-like, (b) tryptophan-

like, (c) fulvic-like, and (d) tyrosine-like fractions. 

 

The relative concentrations of each component, measured as arbitrary 

fluorescence units (arb), obtained by PARAFAC are shown in Table 3.4.  The toxicity 

assays were performed with the samples that had undergone salinity adjustment and 

filtration therefore all future correlations to toxicity in this study used the “after” values.  

The results show a large difference in fluorophore concentrations before and after salinity 

adjustment ranging from 0 to >1500% change in measured values.  Rathtrevor Beach 

showed the largest change in all fluorophore components with a large increase in all 

values after salinity adjustment and filtration.  These differences can also be viewed in 

Figure 3.5 which compares before and after measurements for each component compared 

to a 1:1 line.  These plots show that the concentration of each component typically 

increases after salinity adjustment and filtration with the exception of the tryptophan-like 
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component however there is random scattering across the 1:1 lines.  Humic-(a) and 

fulvic-like (b) components showed the least amount of change before and after salinity 

adjustment and filtration as compared to tyrosine- and tryptophan-like components.  Note 

that component concentrations after salinity adjustment and filtration were used to 

compare to toxicity assays. 

 

Table 3.4 Fluorescent measurements of humic- (HA), fulvic- (FA), tryptophan- (Trp) and 

tyrosine-like (Tyr) components of water used for toxicity assays.  Measurements are from 

before and after salinity adjustments and filtration. 

Sample 

HA (arb) FA (arb) Trp (arb) Tyr (arb) 

Before After 
% 

Change 
Before After 

% 

Change 
Before After 

% 

Change 
Before After 

% 

Change 

Bouctouche 2.29 2.12 7.7 0.95 0.84 11.5 0.033 0.000 100.0 0.16 0.10 38.8 

Petit Rocher 
0.57 0.53 7.6 0.50 0.41 17.5 0.120 0.072 39.6 0.26 0.15 40.6 

Major 

Kollock 

Creek 
4.74 4.51 5.0 1.53 1.49 2.7 0.000 0.000 0.0 0.11 0.08 24.4 

Naufrage 

Harbour 2.89 3.28 13.6 0.92 1.12 21.0 0.000 0.000 0.0 0.03 0.06 69.2 

Rathtrevor 

Beach 0.02 0.17 764.0 0.04 0.42 972.9 0.004 0.079 2037.8 0.01 0.20 1568.8 

Hawke‟s 

Bay 0.19 0.22 14.7 0.29 0.36 20.9 0.007 0.036 387.0 0.04 0.08 135.1 

Blackberry 

Bay 0.58 0.57 1.8 0.59 0.68 15.6 0.042 0.066 55.4 0.11 0.12 4.4 

Chesterman 

Beach 0.09 0.08 2.8 0.18 0.28 54.4 0.066 0.121 82.1 0.11 0.20 89.9 

Jimbo 0.21 0.16 20.8 0.40 0.36 10.2 0.049 0.044 10.8 0.10 0.08 24.1 
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Figure 3.5 Comparison of (a) humic-, (b) fulvic-, (c) tryptophan-, and (d) tyrosine-like 

components before and after salinity adjustment and filtration.  The 1:1 line is 

represented by the solid line. 

 

The contributions of each of the four components to the total fluorescence are 

plotted against DOC in Figure 3.6.  Both (a) humic- and (b) fulvic-like components are 

strongly correlated with DOC (r
2
 values of 0.90 and 0.87, respectively). The tryptophan-

like fraction (c) showed a correlation with DOC with an r
2
 of 0.66, however only a very 

weak correlation was found between DOC and tyrosine (Figure 3.6d, r
2
 = 0.32). 
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Figure 3.6 Contributions of each component as a function of DOC to the observed 

fluorescence including (a) humic-like, (b) fulvic like, (c) tryptophan-like and (d) tyrosine-

like. 

 

SAC340 and FI measurements can be observed in Table 3.5.  SAC340 

measurements of the samples indicated a range from approximately 10 to 40.  FI ranged 

from approximately 1.25 to 1.8 suggesting samples ranged from terrestrially to microbial 

sources (McKnight et al. 2001).  Most sources were terrestrially-derived with FI indexes 

of 1.25 to 1.45.  Jimbo had a FI of 1.64 suggesting both terrestrial and microbial input.  

Petit Rocher and Chesterman Beach had relatively high FI of 1.76 and 1.77, respectively, 

indicating microbial sources. 
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Table 3.5 SAC340 and Fluorescence Index (FI) of each water sample used for toxicity 

assay. 

Sample  SAC340  FI 

Bouctouche  21.19  1.33 

Petit Rocher  14.89  1.76 

Major Kollock Creek  39.37  1.25 

Naufrage Harbour  28.46  1.26 

Rathtrevor Beach  12.69  1.28 

Hawke‟s Bay  20.75  1.27 

Blackberry Bay  26.32  1.43 

Chesterman Beach  31.61  1.77 

Jimbo  10.06  1.64 

 

3.3.3 DOC Quantity on LC50 

 

The LC50 ranged from 333 nM to 980 nM (21.1 µg L
-1

 to 62.3 µg L
-1

) over a 

range of DOC from approximately 0.5 to 8.0 mg C L
-1

.  Overall DOC was found to be 

protective against copper toxicity to Brachionus plicatilis.  This is consistent with 

literature for which increased NOM concentrations has been shown to be protective to 

Brachionus plicatilis (Arnold et al. 2010) as well as in other marine organisms such as 

the blue mussel, Mytilus sp. (DePalma et al. 2011; Nadella et al. 2009) and the sea urchin 

(Parecentrotus lividus) (Lorenzo et al. 2006).  As well, Arnold et al. (2010b) also found a 

significant relationship between DOC and EC50 values in six different species (the blue 

mussels, Mytilus galloprovincialis and M. edulis, the oyster, Crassostrea virginica, the 

sand dollar, Dendraster excentricus, the sea urchin, Strongylocentrotus purpuratus, and 

the copepod, Eurytemora affinis).  However, from this data, two potential trends were 

observed.  The first trend shows a plateauing out of the protective effect of DOC.  This 
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trend can be observed in Figure 3.7.  A low DOC (< 0.5 mg C L
-1

) in ASW sample from 

Arnold et al. (2010) for Brachionus plicatilis using the same ASTM (2004) protocol was 

added to the data set as a control.  The dashed lines represent the trend in the data.  A 

steep increase in LC50 is observed when going from zero DOC to approximately 2 mg C 

L
-1

 DOC.  This resulted in a linear correlation with an r
2
 of 0.72 and significant p-value 

of 0.016. At DOC concentrations above this point, further increases in DOC did not 

significantly affect copper toxicity and a plateauing of the line is observed.   

 
Figure 3.7 Total dissolved copper LC50 as a function of DOC representing a salt-induced 

colloid formation trend.  The dash lines show the salting out effect trend of the data.  A 

steep increase in LC50 is observed until approximately 2 mg C L
-1

 DOC (r
2
 = 0.72, p-

value = 0.016) then a plateau effect is observed suggesting salt-induced colloid 

formation.  Circle (○) data point represents a control ASW sample from Arnold et al. 

(2010). Cross (×) data points represent potential outliers. 
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It was hypothesized that the decrease in protectivity as DOC concentrations 

increased was due to salt induced colloid formation of DOC particles that could occur at 

high salinities.  This can be described using the Derjanguin-Landau-Verwey-Overbeek 

(DLVO) theory (Christenson, 1984).  The force between two surfaces in liquid is 

predicted by the continuum theory which predicts this force by the sum of van der Waals 

force and electrostatic force.   Van der Waals force allows for attraction between two 

similar surfaces while electrostatic forces result in repulsion between surfaces of the same 

charge.  However, at high ionic strength, repulsive forces decrease due to collapse of the 

electrical double layer.  This allows for the possibility of colloidal particles in a liquid 

medium to form persistent aggregates due to van der Waals force of attraction (Liang et 

al. 2007).  At a constant salinity, DOC-DOC interactions increase at higher DOC.  The 

increased DOC-DOC interactions results in less binding sites available for copper to bind 

and therefore more copper is bioavailable to cause toxicity.  As supported by the data in 

Figure 3.7 at low DOC a linear trend should be seen and then plateau at high DOC.  This 

trend has been seen in another rotifer toxicity study in which exogenous DOC was added 

to artificial water (Cooper et al. 2013).  At 30 ppt salinity, a plateau effect was seen at 

DOC concentrations above approximately 5 mg C L
-1

.   Brooks et al. (2007) found a 

comparable trend in the pacific oyster, Crassostrea gigas.  In this case, humic acid 

concentrations great than 1.02 mg C L
-1

 did not provide any further protection against 

copper toxicity.  Similarly, copper toxicity in the marine blue mussel (Mytilus trossolus) 

increased in a linear trend when moving from 0 to 10 mg C L
-1

 with EC50 values from 

148 nM to 582 nM, respectively. However, when the DOC was doubled to 20 mg C L
-1

, 

the EC50 plateaued with an EC50 value of 614 nM (Nadella et al. 2009).  This relationship 
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has also been observed for lead toxicity. In M. trossolus and M. galloprovincialis an 

increase in DOC from 0 to 2 mg C L
-1

 increased the EC50 of lead significantly from 217 

nM and 304 nM to 564 nM and 738 nM for M. trossolus and M. galloprovincialis, 

respectively (Nadella et al. in press).  However, above 2 mg C L
-1

 up to 12 mg C L
-1

, 

there was no significant change in the EC50 of M. trossolus (521 nM) and M. 

galloprovincialis (758 nM) (Nadella et al. in press).   

 The second potential relationship between LC50 and DOC is suggested if the two 

sample sites around 2 mg C L
-1

 (Petit Rocher and Blackberry Bay) are considered 

outliers.  These two sample sites show a large increase in protective effect at low DOC, 

resulting in the observance of a salt-induced colloid formation trend at increase DOC 

concentrations.  However, if these samples are outliers, then there is less support for the 

salt-induced colloid formation trend.  The suggested reasoning for these sites being 

outliers may be due to sample location.  Both Petit Rocher and Blackberry Bay samples 

were the only samples obtained from marina waters.  As such, the water of the marina 

may not be representative of the water in the surrounding area resulting in the increased 

protectivity at these sites compared to the other sites.  Differences in water quality 

resulting from proximity to a marina that would result in an increased protectivity at these 

locations were not characterized. As well, to further support that these sites are outliers 

are the results from the free copper measurements at the LC50 (see Section 3.3.5) which 

shows that free copper measurements for these two sites differ from the other sites.  If 

these two sample sites are considered outliers and do not actually reflect salt-induced 

colloid formation then the relationship between LC50 and DOC can be described by the 

equation LC50 (µg L
-1

) = 25.15DOC
0.47

 including the two outlier sites in statistical 
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analysis or LC50 (µg L
-1

) = 22.86DOC
0.45

 without including the outlier sites.  This 

equation is given in µg L
-1

 units to compare with toxicity equations for other species in 

and Arnold et al. (2006) and Arnold et al. (2010).  The relationship has an r
2
 of 0.61 and 

is significant with a p-value of 0.008 including outliers or an r
2
 of 0.71 and p-value of 

0.009 excluding outliers. 

 

Figure 3.8 Total dissolved copper LC50 as a function of DOC.  Solid trendline represents 

the relationship including outliers with LC50 (µg L
-1

) = 25.15DOC
0.47

.  Dashed trendline 

represents relationship excluding outliers with LC50 (µg L
-1

) = 22.86DOC
0.45

. Circle (○) 

data point represents a control ASW sample from Arnold et al. (2010). Cross (×) data 

points represent potential outliers. 
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The relationship between LC50 and DOC for Brachionus plicatilis can be 

compared to the relationship observed in other species in Figure 3.9.  This figure shows 

the relationship between LC50 and DOC from this study as well as for Mytilus sp. 

(EC50(µg L
-1

) = 11.22DOC
0.6

; Arnold et al. 2006), the oyster, Crassostrea virginica 

(EC50(µg L
-1

) = 12.7DOC
0.65

), the sand dollar, Dendraster excentricus (EC50(µg L
-1

) = 

18.4DOC
0.83

), and the sea urchin, Strongylocentrotus purpuratus (EC50(µg L
-1

) = 

12.8DOC
0.76

) (Arnold et al. 2010).  From these comparisons it can be seen that 

Brachionus plicatilis has a similar relationship to other copper-sensitive aquatic 

organisms.  However, Brachionus plicatilis appears to have increased protectivity at 

lower DOC concentrations and decreased protectivity at increased DOC concentrations 

compared to the other organisms shown here.  This is illustrated by the steeper slope at 

lower DOC concentrations moving to a shallower slope at increasing DOC 

concentrations as compared to the other model lines.   
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Figure 3.9 Comparison of predictive toxicity equations for Mytilus sp., Crassostrea 

virginica, Dendraster excentricus, and Strongylocentrotis purpuratus. Brachionus 

plicatilis (a) represents the toxicity equation including the outlier data while (b) 

represents the toxicity equation excluding the outlier data. 
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quality (Schwartz et al. 2004).  SAC340 has shown a good correlation to metal toxicity in 

freshwater with a higher SAC340 (indicating terrigenous C) shown to decrease Cu 

bioavailability more than organic matter with a lower SAC340 (Schwartz et al. 2004). 

Using the SAC340 data from Table 3.5, in the marine samples measured, no correlation 

was observed between SAC340 and LC50 normalized to DOC (Figure 3.10a).   This is 
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consistent with De Palma (2009) in which only a very weak correlation (r
2
 = 0.28) was 

observed from ten estuarine and marine samples. 

 An approximation of NOM origin was determined using fluorescence indices 

(McKnight et al. 2001).  A FI of approximately 1.4 and 1.9 indicates terrestrially-derived 

and microbially-derived NOM, respectively.  Following the idea that terrestrially-derived 

organic matter is more protective (Schwartz et al. 2004), as FI increases, a decrease in 

protectivity should be observed.  However, the opposite was observed when the FI data 

from Table 3.5 was plotted with LC50 (Figure 3.10b).  An increase in LC50 normalized for 

DOC is observed as FI increases.  This correlation is significant with a p-value of 0.008 

and an r
2
 of 0.66.  This correlation may be due to the fact that samples with higher total 

DOC were predominantly terrestrially-derived sources.  Therefore, when normalized to 

DOC, the LC50 decreased substantially more than microbially-derived sources that 

contained lower total DOC.  This could also mean that microbially-derived sources had 

stronger ligands than predicted or that terrestrially-derived organic matter copper 

complexes have the ability to be taken up by an organism resulting in less protectivity. 

 
Figure 3.10 Copper LC50 as a function of (a) SAC340, and (b) fluorescence index (FI). 

a b 
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It has been found that terrestrial organic material is more protective than 

microbially-derived organic material (Luider et al. 2004; Pempkowiak et al. 1999; 

Schwartz et al. 2004).  Since terrestrial organic matter is mostly composed of fulvic and 

humic acids (Birdwell & Engel 2009; McKnight et al. 2001) it was thought that DOC will 

show more protectiveness when these components are in higher concentrations.  The 

relationship between the four different fluorescent components of DOC and the LC50 is 

shown in Figure 3.11.  Both humic- and fulvic-like fractions with LC50 show a positive 

correlation with LC50.  For fulvic-like (b) fractions a significant linear increase is 

observed (r
2
 = 0.53, p-value = 0.027).  Humic-like (a) fractions were just outside the 

range of significance with a p-value of 0.062 and an r
2
 of 0.41. Tryptophan (c) and 

tyrosine (d) show a very weak, slightly negative correlation with LC50 with an r
2
 of 0.18 

and 0.14, respectively.  Both tryptophan and tyrosine showed no significance with p-

values of 0.261 and 0.328, respectively.  The very low correlation of tryptophan- and 

tyrosine- like fluorophores could be due to the low fluorescent intensities that have larger 

relative errors which may mask any potential correlations.  Similar trends were seen in 

De Palma et al. (2011) where the total contribution of tyrosine- and tryptophan-like 

components were found to be a constant fraction of the total fluorescence, independent of 

DOC. 

The protective effect of humic- and fulvic-like fractions agree with data presented 

in Lorenzo et al. in which humic acids (2002) and fulvic acids (2006) proved protective 

to the sea urchin, Paracentrotus lividus against copper toxicity.  As well, Nadella et al. 

(2009) estimated fulvic-like fraction concentrations from three different NOM sources 

using fluorescence techniques and found a strong protective effect. The most protective 
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NOM source was found to contain 20% and 40% higher fulvic substance content than the 

two less protective NOM sources (Nadella et al. 2009).  

 

Figure 3.11 Copper LC50 as a function of fluorescent (a) humic-, (b) fulvic-, (c), 

tryptophan-, and (d) tyrosine-like components. Cross (×) data points represent the 

potential outlier sites. 

 

Figure 3.12 visually illustrates that the marine samples varied in organic matter 

quality.  In this figure, the size of the symbols indicate the percent contribution to total 

fluorescence of each component within each sample. For both (a) humic-, and (b) fulvic-

like components the contributing fluorescence to total fluorescence increases with DOC 
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values.  In contrast, (c) tryptophan-like fractions and (d) tyrosine-like fractions showed a 

higher percent contribution to total fluorescence in samples with low DOC values 

compared to high DOC values.  This is consistent with the results from Figure 3.11 where 

tyrosine and tryptophan remained constant within DOC.  As DOC increased, the humic- 

and fulvic-like components increased as well resulting in a larger contribution to total 

fluorescence causing a relative decrease in the proportion of tyrosine- and tryptophan-like 

factors.  

 
Figure 3.12 Plots of DOC versus LC50 weighted by contribution of fluorescence for (a) 

humic-, (b) fulvic-, (c) tryptophan-, and (d) tyrosine-like components. The larger symbols 

correspond to the largest contributions and the smallest symbols correspond to the 

smallest contributions.  Arrows indicate position of samples in which there was very 

little/no component present. 
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3.3.5 Free Copper and LC50 

 

The free copper at the LC50 for each sample was measured using the Cu ISE.  The 

comparison of free copper, reported as pCu (-log[Cu
2+

]), for each site can be found in 

Figure 3.13.   

 
Figure 3.13 Free copper measurements at the LC50 for each site (Refer to Table 3.1 for 

full names of sampling sites). Error bars represent 95% confidence intervals. 

 

Seven of the nine samples measured were found to be statistically similar.  Petit 

Rocher (PR) was found to be significantly different from all sites excluding Bouctouche 

(BT) and Blackberry Bay (BB).  BB was found to be similar to BT, PR and Naufrage 

Harbour (NH) but significantly different from the other sites.  This supports the 

suggestion that Petit Rocher and Blackberry Bay are outliers as discussed in Section 
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3.3.3. These results suggest that although differences in free copper are observed, most of 

these differences are not significant and free copper is statistically similar in these sites.   

Another way to look at this data is by plotting the free copper as a function of 

LC50.  This can be seen in Figure 3.14.   The solid line represents the mean of the data 

and the dashed lines represent a factor of two around the data.  This factor of two was 

added since the BLM currently predicts toxicity within a factor of two (Arnold et al. 

2010).  In this study, all samples, save one (PR), fall within the factor of two about the 

mean.  The LC50 for free copper spans a range from 333 nM to 980 nM but as LC50 

increases, there is no significant increase in free copper with free copper pCu values 

ranging from 9.64 to 10.4 (2.5 - 14.4 ng L
-1

).  As mentioned above, Petit Rocher and 

Blackberry Bay measured slightly higher free copper at the LC50 than the other samples.  

Without these measured free copper concentrations, the free copper is very constant 

ranging from only 9.98 to 10.40 (2.5 – 6.7 ng L
-1

).  The slight increase in free copper of 

Petit Rocher and Blackberry Bay may be related to differences in DOC that may affect 

copper uptake.  However, these differences were not characterized by the methods used 

in this study.  Future work could apply high performance size exclusion chromatography 

(HPSEC) (Landry & Tremblay 2012; Wu et al. 2003) or immobilized metal ion affinity 

chromatography (IMAC) (Midorikawa & Tanoue 1998; Wu & Tanoue 2001) before 

fluorescence or other NOM characterization to obtain more information on size and 

composition of the organic matter.  For instance, Landry and Tremblay (2012) used 

HPSEC with Fourier transform infrared spectroscopy (FTIR) and found that low 

molecular weight (LMW) marine NOM was enriched with sulfate groups as compared to 

high molecular weight (HMW) marine NOM which was the most amide-rich size 
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fraction.  Using IMAC with absorption and fluorescent techniques, Midorikawa & 

Tanoue (1998) found that LMW fractions showed weaker ligand sites while HMW 

fractions had stronger copper-complexing ligand sites. These methods may provide some 

insight on the relationship of size of NOM and influence on free copper and toxicity that 

were not examined in this study. 

 
Figure 3.14 Free copper at the LC50 as a function of total copper at the LC50. The solid 

line represents the mean free copper and the dashed lines represent a factor of two of the 

ISE data.  Error bars represent 95% confidence intervals. Cross (×) data points represent 

the potential outlier sites. 
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plicatilis at an average pCu of 10.1, which adds strength to these measurements since 

toxicity was observed at higher free copper concentrations than ambient water samples in 

which copper toxicity is not observed.  In addition, the pCu values found in this study is 

consistent with pCu values observed in other copper toxicity assays.  In Eriksen et al. 

(2001), the marine alga, Nitzschia closterium was found to have decreased growth rates 

over a pCu range from 11.3 to 8.2.  Sunda and Guillard (1976) reported reduced growth 

rates of the marine diatom, Thalassiosira pseudonana, from pCu values of 11.2 to 8.2.  

As well, reduced growth rates of seven marine diatom species showed reduced growth 

rates at pCu values from 10.5 to 11.0 (Brand et al. 1986). 

Free copper is often considered the best indicator of toxicity due to this species 

being most available to interact with an organism (Chadwick et al. 2008; Eriksen et al. 

2001, Sunda & Hanson 1979). Eriksen et al. (2001) reported that free copper 

measurements directly correlated to growth rate inhibition of the marine diatom, 

Nitzschia closterium, while anodic stripping voltammetry (ASV) labile copper (free 

copper + free copper bound to inorganic ligands) significantly overestimated the toxicity.  

Stauber et al. (1996) also found similar results where ASV measurements predicted 

growth inhibition to N. closterium based on the concentrations measured, however no 

toxicity was observed.  These results lend credence to the theory that free copper is the 

best estimate of toxicity. 

Following this idea, it is proposed that differences in LC50 values are due to 

differences in water chemistry interactions that affect how much total copper is needed to 

reach the critical free copper concentration required to cause toxicity.  For example, in 

cases where DOC is high, more copper is able to bind and become unavailable for 
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uptake, thus a higher total copper concentration is needed to reach a free copper 

concentration that causes toxicity.  Constant free copper values are clearly illustrated by 

the free copper corresponding to the lowest and highest LC50 values obtained in this 

study.  Hawke‟s Bay resulted in the lowest LC50 with a value of 333 nM, and Major 

Kollock Creek had the highest LC50 value of 980 nM.  However, the free copper 

measured for both of these sites were identical with a pCu of 10.40.  This has also been 

observed for labile copper in the pacific oyster, Crassostrea gigas (Brooks et al. 2007).  

In this case, the labile copper EC50 concentration remained constant at an average 

concentration of 109 nM, despite total copper EC50 ranging from 327 nM to 638 nM. 

3.3.6 Effect of DOC on free copper 

 

The relationship between free copper at the LC50 and DOC is fairly constant and 

is illustrated in Figure 3.15.  Although Blackberry Bay (DOC = 2.03 mg C L
-1

) was not 

statistically different than Bouctouche or Naufrage Harbour (DOC values of 4.83 mg C L
-

1
 and 5.20 mg C L

-1
, respectively), this site along with Petit Rocher (DOC = 2.10 mg C L

-

1
) showed slightly more free copper at the LC50 as compared to the other sample sites 

which showed toxicity at pCu values between 10 and 10.4.  The more protective effect at 

these sites, resulting in higher concentrations of free copper before toxicity occurs, was 

discussed in Section 3.3.5.  However, overall this figure displays no significant trend in 

free copper concentrations with DOC.  This was expected since free copper at the LC50 

was similar (within a factor of two) for all sites.  This data is consistent with the results 

from Brooks et al. (2007) in which labile copper at the LC50 was constant across a DOC 

range from 0.12 mg C L
-1

 to 3.13 mg C L
-1 

for the pacific oyster.  This data further 
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supports the theory that a critical concentration of free copper is required to cause 

toxicity.   

 
Figure 3.15 Free copper at the LC50 as a function of DOC. The mean (solid line) and 

factor of two (dashed lines) are also included. Error bars represent 95% confidence 

intervals. Cross (×) data points represent the potential outlier sites. 

 

With respect to the fluorophore components within NOM, there was no 

significant correlation between the free copper and any of the four components (Figure 

3.16).  
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Figure 3.16 Free copper at the LC50 as a function of fluorescent (a) humic-, (b) fulvic-, 

(c), tryptophan-, and (d) tyrosine-like components. The mean is depicted by the solid line 

and a factor of two is represented by the dashed lines. 

 

Overall, the lack of significant trends of DOC characteristics with free Cu at the 

LC50 add strength to the notion that free copper, within variation, is constant despite the 

change in total copper LC50.  This suggests that free copper is a good predictor of 

toxicity.   
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3.4 Conclusions 

 

The findings of this study suggest that DOC is protective against copper toxicity 

in marine environments independent of DOC source and quality which is consistent with 

De Palma et al. (2011).  DOC was found to be protective to Brachionus plicatilis.  

However, it was shown that two possible relationships between LC50 and DOC exist.  For 

the first trend, a plateau effect in which the amount of increased protectivity decreased as 

DOC increased above 2 mg C L
-1

 was observed.  The suggested reasoning for this plateau 

effect in LC50 as DOC increases is due to salt-induced colloid formation.  The increase in 

DOC-DOC interactions at high salinity reduce the available binding sites for copper 

thereby allowing more copper to be bioavailable to cause toxicity.  This is supported by 

other studies with copper (Brooks et al. 2007; Cooper et al. 2013; Nadella et al. 2009) 

and lead (Nadella et al. in press) which show the same trend.  The second trend showed a 

relationship where LC50 (µg L
-1

) = 25.15DOC
0.47

 including the outlier data or LC50 (µg L
-

1
) = 22.86DOC

0.45
 excluding the outlier data.  Similar relationships between LC50 and 

DOC have been observed in other marine organisms (Arnold 2005; Arnold et al. 2006, 

Arnold et al. 2010, Arnold et al. 2010a; DePalma et al. 2011).   

Free copper has been deemed the best predictor of copper toxicity as it is the 

species most bioavailable. The data here shows that regardless of water chemistry, free 

copper concentrations are relatively constant, within a factor of two, at the LC50.  This 

suggests that a critical free copper concentration is required to cause toxicity, however 

the amount of total copper needed to reach this critical concentration changes depending 

on the water chemistry.   
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The overall BLM implication of this study is that a source dependent parameter 

for DOC is not necessary to include in equilibrium models to predict site specific LC50 

values.  In addition, the free copper data presented here is consistent with the BLM which 

suggests that bound Cu at the site of the biotic ligand is proportional to toxicity. Future 

work consists of applying these methods to more natural seawater samples, ideally in 

samples with DOC ranges between 2 and 4 mg C L
-1

 to determine which trend most 

accurately represents the correlation between LC50 and DOC.  As well, future studies will 

further address the influence of DOC source on free Cu and toxicity.  DOC can be further 

characterized by the use of HPSEC or IMAC as discussed in Section 3.3.5.  Applying 

accumulation studies to these methods while utilizing a different organism to which 

copper accumulation can be measured would also be useful.  This will give a better 

understanding of the interactions of copper at the site of the biotic ligand.  For instance, 

some studies have suggested organic-metal complexes increase metal uptake with respect 

to copper (Lorenzo et al. 2005), lead (Sánchez-Marín et al. 2011) and cadmium (George 

& Coombs 1977; Kozuch & Pempkowiak 1996; Pempkowiak & Kozuch 1994) in marine 

water. Current modeling considers only the free metal available for interaction and 

uptake by an organism so applying accumulation studies specifically in the presence of 

increased humic and fulvic acid content to determine bioavailability of these copper-

organic complexes would also be beneficial.  
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Chapter 4 Characterization of NOM interactions with copper in natural sea water 

using fluorescence quenching: Influence on toxicity 

4.0 Abstract 

 

Speciation of copper in marine systems strongly influences the ability of copper to 

cause toxicity.  Natural organic matter (NOM) contains many binding sites for copper 

which provides a protective effect on copper toxicity.  Fluorescence quenching 

techniques to characterize NOM in marine systems is limited but has recently been 

validated in artificial seawater. The purpose of this study was to characterize copper 

binding with NOM using fluorescence quenching techniques.  Fluorescence quenching of 

NOM with copper was performed on nine sea water samples.  Ligands for copper binding 

ranged from one to three ligands.  The resulting stability constants and binding capacities 

were consistent with literature values of marine NOM, showing strong binding with logK 

values from 9.33 to 11.22 and binding capacities for ligands ranged from 4 to 1614 nmole 

mg C
-1

.  Binding capacities were strongly correlated with the LC50 for rotifer (Brachionus 

plicatilis) acute toxicity assays (r
2
 = 0.67, p-value = 0.008). Free copper concentrations 

calculated using fluorescence quenching were compared to previously measured free 

copper using a copper ion-selective electrode.  There was strong agreement between free 

copper values with a less than 0.3 pCu difference between methods with free copper 

concentrations remaining constant within the generally accepted factor of two for Biotic 

Ligand Model (BLM) predictions.  These results support the theory that water 

chemistries affect the amount of total copper needed to be added to a system to reach a 

critical free copper concentration required to cause toxicity.  As well, this data confirms 

the applicability of fluorescence spectroscopy techniques for NOM and copper speciation 

characterization in sea water. 
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4.1 Introduction 

 

Trace metals, such as copper, are essential to life yet at increased concentrations 

toxicity can result. Anthropogenic release of copper has made it a common contaminant 

in marine waters (Chadwick et al. 2008).  As such, there is an increased concern of the 

fate and bioavailability of copper in marine systems.   

The Biotic Ligand Model (BLM) is a predictive tool used to estimate site-specific 

bioavailability and toxicity of metals.  The BLM is able to predict toxicity at the biotic 

ligand (ex. the gill of a fish) based on equilibration calculations of metal speciation using 

bulk water chemistries, such as pH, salinity and natural organic matter (NOM) as input 

parameters (Di Toro et al. 2001; Santore et al. 2001; Paquin et al. 2002).  The BLM has 

been adopted as a regulatory tool for freshwater by the U.S. EPA (2007) for copper 

however there is need for a BLM in saltwater environments.  Investigations pertaining to 

saltwater are currently underway for application of a marine BLM; however more 

information is needed before being accepted for regulatory use (Arnold 2005).  The focus 

of this study is to characterizate marine dissolved organic carbon (DOC) binding 

characteristics with copper using fluorescence spectroscopy techniques. 

The speciation of copper plays a strong role on copper bioavailability and toxicity 

(Chadwick et al. 2008; Eriksen et al. 2001; Eriksen et al. 2001a; Sunda & Hanson 1979).  

In particular, natural organic matter (NOM) is a heterogenous mixture of organic 
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compounds that contain many potential binding sites for metals such as copper.  Copper 

can form complexes with NOM at binding sites such as amino (Cu-NHR, [Cu-NH2R]
+
), 

carboxyl (Cu-CO2H), phenolic (Cu-OAr) and sulfide or thiol groups (Cu-SH) (Smith et 

al. 2002). NOM can be broadly categorized into two groups, allochthonous and 

autochthonous.  Allochthonous, or terrestrially-derived organic matter comes from the 

decomposition and leaching of soil and plant materials such as lignin, tannins and detritus 

and typically contains a higher humic and fulvic substance content.  Autochthonous, or 

microbially-derived organic matter comes from bacterial and algal processes occurring 

within the water column and typically contains a higher proteinaceous content (Birdwell 

& Engel 2009; McKnight et al. 2001).  

Due to the wide variety of binding sites within NOM, the determination of metal 

binding constants is difficult. Typical stability constants for copper-NOM have been 

found to range from a logK of 4 to 15 (Playle et al. 1993). However, NOM fluoresces due 

to the presence of aromatic structural groups with electron-donating functional groups. 

This quality allows fluorescence techniques to be used to characterize NOM and metal 

speciation (Chen et al. 2003; da Silva et al. 1998; Mackey 1983; Smith & Kramer 2000).  

The fluorescence of NOM is known to be quenched in the presence of metals such as 

copper and have been used to determine conditional stability constants (logK) and 

binding capacities (LT) for fluorescent NOM (da Silva et al. 1998).  Initial efforts for this 

characterization were performed by Ryan and Weber (1982), resulting in the well-known 

Ryan-Weber equation (Equation 4.1) 
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  (
         

    
) [             √                    ] Equation 4.1 

 

Since then, fluorescence quenching has been used to determine binding 

characteristics for copper in a variety of media (Chen et al. in press; da Silva et al. 1998; 

Hernández et al. 2006; Smith & Kramer 2000; Wu and Tanoue 2001).  Wu and Tanoue 

(2001) determined conditional stability constants for two different molecular sized 

fractions of NOM with respect to copper, however did not solve for binding capacities.  

Fulvic acid binding characteristics with copper have also been studied using fluorescence 

techniques (da Silva et al. 1998; Smith & Kramer 2000). Smith and Kramer (2000) 

validated copper fluorescence quenching in freshwater by its ability to predict free copper 

using Suwannee River fulvic acid (SRFA) titrations with copper.  da Silva et al. (1998) 

isolated fulvic acid from three different sources and solved for conditional stability 

constants and binding capacities with copper, however in two cases no reasonable values 

were obtained for binding capacities (da Silva et al. 1998). In addition, Hernández et al. 

(2006) were able to solve for logK and binding capacity of copper with humic acids in 

pig slurries and amended soils.  Preliminary work using fluorescence quenching 

techniques has validated fluorescence quenching methods for copper in marine 

environments using Luther Marsh organic matter, containing both humic and fulvic 

components, in artificial seawater (Diamond et al. 2012).  In addition, Diamond (2012) 

also determined the stability constants and binding capacities for two ligands found 

within a natural sea water sample.   
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The objectives of this study were to (1) Determine conditional stability constants 

and binding capacities of copper with DOC in nine natural seawater samples, (2) Relate 

DOC binding characteristics to observed copper toxicity of these nine samples.  Copper 

toxicity in these samples were previously measured and discussed in Chapter 3. 

4.2 Methods 

 

4.2.1 Experimental protocol 

 

The method for storage, selection and preparation of samples is given in Chapter 

3.  For a brief description of sampling site locations and characteristics please refer to 

Table 4.1. A full description of sampling sites and characteristics are given in Chapter 3.  

The samples used in this study were the prepared samples for the toxicity assays (after 

salinity adjustments and filtration) in order to compare the results to the toxicity assay 

results from Chapter 3. 
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Table 4.1 Characteristics of water samples 

Sample 
Coordinates 

(lat / long) 

LC50
*
  

(nM) 

DOC
†
  

(mg C L
-1

) 

Salinity
‡
  

(ppt) 

Bouctouche (BT) 
46.471532 / 

-64.717283 
662 4.83 30.1 

Petit Rocher (PR)  
47.783534 / 

-65.708606 
778 2.10 30.2 

Major Kollock Creek (MKC) 
46.813469 / 

-64.912441 
980 7.57 29.9 

Naufrage Harbour (NH) 
46.46763 / 

-62.417343 
725 5.20 29.9 

Rathtrevor Beach (RB) 
49.321793 / 

-124.264684 
395 1.37 30.1 

Hawke‟s Bay (HB) 
50.616142 / 

-57.182465 
333 1.28 30.0 

Blackberry Bay (BB) 
49.151791 / 

-125.89802 
915 2.03 29.9 

Chesterman Beach (CB) 
49.11336 / 

-125.88692 
422 0.55 30.1 

Jimbo 
25.77471 / 

-80.1454 
559 1.13 30.1 

* 48h static acute LC50 to the rotifer, Brachionus plicatilis following ASTM (2004) 

guidelines with modifications from Arnold et al. (2010). 

† DOC measurements after salinity adjustment and filtration through a 0.45 µm filter. 

‡ Adjusted salinity using a mixture of artificial seawater salts (ASTM 2004). 

 

The copper titrant solution was prepared at 157 µM from a 1000 mg L
-1

 copper 

standard solution (Assurance grade, SPEXCertiPrep, New Jersey).  The sample was pH 

adjusted to pH 8.01 ± 0.01 using dilute NaOH or HCl, as required.  Smith and Kramer 

(2000) determined stabilization of the fluorescence signal within 10 minutes after Cu 

addition. Thus, the solution was allowed to equilibrate for 15 minutes after each copper 

addition between fluorescent measurements.  Three titrations were performed for each 

sample with three replicate fluorescent measurements per addition of titrant.  
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The sample was contained within a beaker with constant stirring.  Aliquots were 

taken from the beaker and measured in a 1 cm quartz cuvette using a Varian Cary Eclipse 

Fluorescence Spectrophotometer (Varian, Mississauga, ON).  Fluorescence emission 

wavelengths were measured from 300 nm to 700 nm at an excitation wavelength of 270 

nm.  Depending on the sample the excitation and emission monochromator slit widths 

were set from 5 to 20 nm and the photomultiplier tube (PMT) was set to between 800 V 

and 1000 V.  The excitation and emission monochromator slit widths and PMT were 

varied between the given ranges in order to optimize the fluorescence intensity of the 

sample.  After measurement, the aliquot was returned to the beaker and the next addition 

of titrant was added. This process was repeated until the decrease in maximum intensity 

plateaued or until the total copper added to the sample was double the LC50 value.  

 

4.2.2 Data processing 

 

All data processing was performed using MATLAB™ (MathWorks Inc., MA, 

USA). The fluorescent components are resolved using the total fluorescence excitation 

versus emission surface.  Fluorescence for the pth fluorescent component can be 

represented as 

       
[  ]      

             Equation 4.2 

 

  



109 

 

Where, 

[  ]   (         )       Equation 4.3 

[   ]               

 

Ultimately, fluorescence can be solved as a function of four parameters, 

 

               
    

        Equation 4.4 

 

For these equations p=1,…, P for a total of P different fluorescent components, Lp 

corresponds to the pth free ligand and MLp to the pth bound ligand (M:Lp = 1:1), and k is 

the respective proportionality constants.  The components for each sample resolved using 

PARAFAC performed in Chapter 3 (See Chapter 3 Section 3.2.3) are used to constrain 

the quenching data to four different fluorescent components: humic-, fulvic-, tryptophan- 

and tyrosine-like.  A „slice‟ of the contour spectra at 270 nm excitation is taken, as this is 

the excitation wavelength used for all the fluorescence quenching titrations.   It is 

assumed that the fluorescence response is linear with concentration (Smith & Kramer 

2000) so a linear model is used to interpolate the contribution of each fluorophore to the 

total fluorescence curve, constrained to the four components resolved using PARAFAC.  

An initial guess of the contribution of each fluorophore is used and then optimized to a 

final constant (k) for each component. This results in the equation for total fluorescence 

(FT): 

                                                  Equation 4.5 

 

Where each component (i.e. humic, fulvic, tryptophan and tyrosine) is the PARAFAC 

resolved emission at 270 nm excitation.  The model is applied to the quenching data for 



110 

 

each copper addition.  An example of the resulting spectra showing the contributions of 

each fluorophore to total fluorescence can be seen for Bouctouche before any addition of 

copper in Figure 4.1.  The solid black line represents the modeled fluorescence curve 

which compares well to the measured fluorescence (black circles).  In this example, the 

humic-like fraction (blue) contributes the most to total fluorescence, followed by the 

fulvic-like fraction (red). Tryptophan- (magenta) and tyrosine- (green) like fractions 

show very little contribution to total fluorescence. The MATLAB script used to 

determine these contributions can be found in Appendix C1. Appendix C2 has the plots 

showing the contribution of fluorophores to the total fluorescence for all sites. 

 

 

Figure 4.1 Contribution of humic- (blue), fulvic- (red), tryptophan- (pink), and tyrosine-

like (green) fractions to total fluorescence in Bouctouche.  Dotted black line is the 

measured fluorescence while the solid black line is the modeled curve to determine 

fluorophore contributions. 
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After obtaining the contribution to fluorescence for each component, a multi-site 

Ryan-Weber model was applied to the data to allow for determination of stability 

constants (reported as logK’) and binding capacities (LT) of the fluorophores within each 

sample (Smith and Kramer 2000). Components which remained constant or increased in 

contribution with copper additions were excluded from this fitting.  It is assumed that 

components in which fluorescence intensity increased with copper additions may have 

been due to displacement of a more efficient quencher causing an increase in 

fluorescence.  

 For all calculations concentrations were used rather than activities and a one to 

one metal-ligand stoichiometry was assumed.  From Section 4.2.1, it can be noted that a 

fixed pH was used for all metal titrations therefore the results are only valid for the 

specified pH.  The speciation distribution for the metal and the ligand between free and 

bound can be calculated using the P+1 mass balance expressions for total metal (MT) and 

total ligand (   
) 

        ∑      
 

   
 

   
                    Equation 4.6 

  
   

            

 

 

The above expressions can be expanded and after susbstitution of each of the P 

stability constant expressions, the result is expressed as a polynomial in [M] of degree 

P+1.  For one and two ligands, the result is a quadratic and cubic expression, respectively 

and can be solved explicitly.  For greater than two ligands numerical techniques for root 

finding must be performed to determine [M].  Once [M] is determined then the result can 
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be substituted back in to the expression to determine the concentration of free and bound 

ligand (Smith & Kramer 2000). 

The fluorescence at all identified fluorescent sites can be expressed as a function 

of 3P parameters.  The parameters include K’, LT and a proportionality constant for ML 

for each of the P sites.  In this case, the proportionality constant for L was determined 

from the measured data in order to decrease the number of adjustable parameters.  These 

parameters are fit using the multiresponse parameter fitting, as a function of total metal 

added (MT) and the observed fluorescence responses (Smith & Kramer 2000).  In 

multiresponse fitting the error criteria to be minimized is det(Z
T
Z), where det stands for 

determinant and T is for the matrix transpose. The NxP matrix Z is a matrix of residuals, 

with a column of „observed - calculated‟ for each of the N fluorescence responses. A 

general example of the matrix of residuals (Z) can be shown in full for the ith addition of 

titrant and the ith fluorescent response for i=1,…,N and j=1,…,P 

  [

      
         

       
         

   
      

         
       

         

]     Equation 4.7 

 

For P fluorescent responses corresponding to P proposed fluorescent sites and for N 

additions of titrant.  Using this criteria, it is assumed that the errors are distributed as a P-

dimensional normal distribution, and that there are correlations between responses, but 

not between metal additions (Smith & Kramer 2000).  An initial guess of K’ and LT is 

then optimized in this way to determine the final fit.  This guess is important in order to 

obtain practical and realistic stability constants and binding capacities as well as to avoid 

the chance of fitting local minima which is common in nonlinear regression.  An example 
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of the MATLAB script used for the multiresponse fitting combined with the free copper 

modeling is found in Appendix C3. 

 

4.3 Results and Discussion 

 

An example of the resolved quenching curves for two fluorophores are shown for 

Bouctouche in Figure 4.2.  In this example, Figure 4.2a represents the humic-like 

component and Figure 4.2b represents the fulvic-like component.  Resolved quenching 

curves with Ryan Weber fitting for all sample sites can be found in Appendix C4. 

 
Figure 4.2 Ryan Weber fitting of the resolved fluorophores for Bouctouche. The humic-

like fraction is represented in a, and b displays the fulvic-like fraction. 
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Using the fluorescence quenching data and applying a multiresponse Ryan-Weber 

model, the logK and binding capacities were determined for each site and are tabulated in 

Table 4.2.  The binding capacities are expressed as per milligram of carbon as it is 

assumed that the abundance of these sites would change with DOC concentration.  For all 

fluorophores, the binding is relatively strong for all sites ranging from 9.33 to 11.22.  

This is consistent with the results from Chadwick et al. (2008) in San Diego Bay in which 

logK values for three different ligands ranged from 9.14 to 12.9.    As well the binding 

capacities shown here covers a broad range from 4 to 1614 nmole mg C
-1

 which 

encompasses the range seen in Chadwick et al. (2008) from 33.5 – 878 nmole mg C
-1

.  

This is also consistent with binding parameter values found in other literature for marine 

DOC in which logK values range from 10.0 to 14.3 and binding capacities have been 

found from approximately 2.5 to >150 nmole mg C
-1

 (Buck & Bruland 2005; Hurst & 

Bruland 2005; Kogut & Voelker 2001).   

The Jimbo site was previously measured using fluorescence quenching techniques 

in Diamond (2012).  In this case, the humic-like fraction had a logK of 9.20 and a binding 

capacity of 890 nmole mg C
-1

.  The fulvic-like fraction displayed stronger binding with a 

logK of 10.38 and a binding capacity of 78 nmole mg C
-1

.  The results of this study show 

stronger binding for both fluorophore fractions with a logK of 10.34 and 10.41 for humic- 

and fulvic-like fractions respectively.  For humic-like fractions the binding capacity was 

similar with 998 nmole mg C
-1

, however binding capacity of the humic-like fraction was 

reduced by a factor 16 at 5 nmole mg C
-1

.  The differences in binding parameters may 

have been due to differences in the sampling site between times of collection. The sample 

collection of Jimbo for Diamond (2012) occurred January 2011 while collection for this 
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study occurred two years later in January 2013. During the time between sampling dates, 

remediation efforts in the area had begun and so changes in DOC characteristics were not 

necessarily unexpected.   

Table 4.2 Binding characteristics (stability constant, LogK and binding capacity, LT) of 

nine sea water samples with copper. 

Site 

Humic-like Fulvic-like Tryptophan-like 

LogK 
LT 

(nmole mg C
-1

) 
LogK 

LT  

(nmole mg C
-1

) 
LogK 

LT  

(nmole mg C
-1

) 

BT 9.86 47 9.82 220 - - 

PR 9.94 21 9.33 1340 - - 

MKC 9.74 15 9.59 154 9.74 151 

NH 10.10 189 10.18 20 - - 

RB 11.22 373 - - - - 

HB 9.89 885 9.99 29 - - 

BB 10.07 33 9.63 1614 - - 

CB 10.63 965 - - 11.20 4 

Jimbo 10.34 998 10.41 5 - - 

 

The sum of the binding capacities of the DOC fractions (not normalized for DOC 

concentration) was compared to the LC50 values for each site and the results are shown in 

Figure 4.3.  It was expected that binding capacity would increase with LC50 to support the 

findings in Chapter 3; that more total copper is added to obtain the same free copper 

concentration required to cause toxicity.  A fairly strong significant positive correlation 

(r
2
 = 0.67 and p-value of 0.007) was found between binding capacity and LC50 thus 

adding strength to the findings from Chapter 3.  An increase in binding capacity would 

result in an increase of total copper needed to be added to the system in order to reach the 
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same free copper concentration required to cause toxicity as another site with a smaller 

binding capacity. 

 
Figure 4.3 Total binding capacity (LT) as a function of LC50 for the binding sites found in 

each sample (r
2
 = 0.67, p-value = 0.007).  

 

To further support this theory, free copper at the LC50 was calculated for each site 

using the fluorescence quenching data.  These results are compared to the free copper at 

the LC50 measured using the copper ion-selective electrode (ISE), shown as pCu (-

log[Cu
2+

]) in Table 4.3.  For details on measuring free copper at the LC50 using the 

copper ISE refer to Chapter 3 Section 3.2.6.  Plots comparing the free copper modeled via 

the fluorescence data compared to the measured ISE data can be found in Appendix C5. 

For each sample, the free copper results agree with differences between the ISE measured 

data and fluorescence quenching calculated free copper at the LC50 within a factor of two 
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(no more than a 0.3 pCu difference). As well, compared internally all measurements, save 

one (Rathtrevor Beach), are within a factor of two about the mean of all fluorescence 

determined pCu values.  This factor of two comes from the current criteria for the BLM 

in which predictions are considered acceptable within a factor of two. This is similar to 

the free copper measured in Chapter 3 in which free copper was relatively constant.  The 

strong agreement between the free copper results from the two methods further validates 

the fluorescence quenching method for application in marine water.   

Table 4.3 Comparison of free Cu at the LC50 measured using the copper ion-selective 

electrode and calculated using the fluorescence data. The values in brackets denote a 

factor of two about the mean. 

Site ISE Free Cu (pCu) 
Fluorescence Free Cu 

(pCu) 

BT 9.98 9.82 

PR 9.64 9.94 

MKC 10.40 10.10 

NH 10.11 9.83 

RB 10.35 10.56 

HB 10.40 10.30 

BB 9.79 10.06 

CB 10.37 10.10 

Jimbo 10.25 10.36 

Ave 
10.14 

(9.84 – 10.44) 

10.12 

(9.82 – 10.42) 

 

This free copper data can also be compared using a 1:1 line as shown in Figure 

4.4.  As can be seen from this plot, the data is randomly scattered across the 1:1 line.  As 

well, all data are found within a factor of two from the 1:1 line.  This illustrates the strong 

agreement between methods.  
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Figure 4.4 Comparison of free copper measured using the ion-selective electrode 

(pCuISE) and fluorescence quenching data (pCuFl).  Solid line represents 1:1 and dashed 

lines are a factor of two from the 1:1 line. 

 

Overall, the linear correlation between binding capacity and LC50 and the constant 

free copper measured is consistent with the free copper and toxicity results found in 

Chapter 3.  This adds strength to the theory that differences in water chemistry, such as 

binding capacities of the waters, alter the total amount of copper required to reach a 

critical free copper concentration that results in toxicity. 

4.4 Conclusions 

 

Fluorescence quenching techniques have been widely used to characterize NOM 

interactions with copper in a variety of media (da Silva et al. 1998; Hernández et al. 

2006; Smith & Kramer 2000; Wu and Tanoue 2001).  However there has been limited 

use of these techniques in sea water.  Previous validation of fluorescence quenching 

techniques to characterize NOM and copper binding in artificial seawater was performed 

by Diamond et al. (2012) and suggested good applicability in marine waters.  In this 
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study, Diamond et al. (2012) recovered known tryptophan speciation from fluorescence 

quenching titrations with copper in ASW.  The findings of this study further validate the 

use of these methods in marine water.  Binding sites ranged from one to three ligands 

with all ligands displaying strong logK values ranging from 9.33 to 11.22.  Binding 

capacity of these ligands broadly ranged from 4 to 1614 nmole mg C
-1

.  These values are 

consistent with literature data for marine NOM.  A positive correlation was found 

between binding capacity and LC50. Along with the free copper values determined via the 

fluorescence data that showed constant free copper concentrations at the various LC50 

values, these findings agree with, and support the results from Chapter 3.  The data 

presented here supports the theory that a critical free copper concentration is required to 

cause toxicity, however differences in water chemistry, such as binding capacity, alter the 

total amount of copper needed to be added to a system to reach this critical concentration. 

Comparison between free copper concentrations calculated from the fluorescence data 

and ISE measured free copper also agree strongly.  Overall, the results demonstrate the 

strong influence of binding characteristics on copper speciation, bioavailability and 

toxicity to aquatic organisms upon copper exposure and confirm the applicability of 

fluorescence quenching techniques in marine waters.   
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Chapter 5 Conclusions and Future Work 

5.1 Conclusions and Future Work 

 

The following chapter is a brief summary of the findings and conclusions from 

the experimental chapters of this thesis.  In each section the original objectives will be 

addressed and ideas for future work will be shared. 

5.1.1 Objective 1 and 2 

 

Objective 1 and 2 were as follows: 

 

Objective 1: To determine true copper speciation in seawater using literature methods 

and new techniques to determine which techniques offer the most accurate measurement 

of copper speciation.  

 

Objective 2: To validate a new method for determining free copper using a Cu ISE in 

seawater. 

 

These objectives were met by Chapter 2: Internal calibration flow-through ISE 

method for determining Free Cu in salt water.  In this chapter a literature flow-through 

Cu ISE method (Eriksen et al. 1999) was used to measure free copper of four marine grab 

samples.  The free copper measurements compared well to literature measurements, 

however both literature and experimental measurements showed up to two orders of 

magnitude variability.  This resulted in the question as to whether or not this variability 

was due to sample differences or from instrumental variability.  To answer this question a 
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new flow-through internal calibration Cu ISE method was developed and validated using 

a model system of artificial seawater and tryptophan.  Titration of the model system with 

copper resulted in measured free copper measurements that strongly agreed with modeled 

free copper using NIST binding constants.  In addition variability between measurements 

was reduced to within an order of magnitude. These results fulfilled Objective 2.   

After the successful validation of the new method, two of the marine grab samples 

measured using the external calibration literature method were measured using the new 

method.  Results showed similar measured free copper with each copper addition, 

however reproducibility improved to within an order of magnitude.  These results suggest 

that the variability seen in the literature between measurements were due to instrumental 

method variability rather than sample differences.  The new method provides more 

reliable speciation results, thus fulfilling Objective 1.  Chapter 3: Influence of DOC 

source on free copper and toxicity to Brachionus Plicatilis, measured free copper at the 

LC50 for different water samples using the new Cu ISE method.  It was found that free 

copper remained relatively constant (within a factor of two), independent of total copper 

LC50 values.  This is consistent with the Biotic Ligand Model (BLM) assumption that 

bound metal at the biotic ligand is constant.  These results also contribute to Objective 1.  

In the future, this method will be applied to measure free copper in marine samples due to 

the increased reliability of this method. 

Chapter 4: Characterization of NOM interactions with copper in natural sea water 

using fluorescence quenching: Influence on toxicity, also fulfilled objective 1.  Free 

copper concentrations determined via fluorescence quenching techniques showed the 

same free value copper concentrations at the LC50 as free copper values measured using 
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the Cu ISE method validated in Chapter 2.  The free copper results presented in Chapter 4 

further support the applicability of fluorescence spectroscopy for accurate determination 

of copper speciation in sea water. 

 

5.1.2 Objective 3 

 

Objective 3 is as follows: 

 

Objective 3: To apply an integrated approach to investigate the effect of DOC source on 

copper speciation and toxicity in aquatic organisms.   

The majority of this objective was fulfilled by Chapter 3: Influence of DOC 

source on free copper and toxicity to Brachionus Plicatilis.  In this chapter DOC was 

characterized using fluorescence contour plots that showed the water samples collected 

for toxicity assays were different at a molecular level.  Four components (humic-, fulvic-, 

tryptophan- and tyrosine-like fractions of NOM) were identified within each of the nine 

samples.  As well, qualitative indices of DOC source were determined via SAC340 and 

fluorescence indices.  Toxicity assays using the rotifer, Brachionus plicatilis, were then 

performed for each of the water samples.  The influence of DOC quality on rotifer 

toxicity and copper speciation were then discussed with two trends found.  A linear trend 

(r
2
 = 0.72, p-value = 0.016) was observed until approximately 2 mg C L

-1
 DOC and then 

a plateau effect was observed.  This trend was suggested to be due to salt-induced colloid 

formation.  In this case, at high salinity, DOC-DOC interactions are more frequent 

resulting in less copper binding and a plateauing out of the linear trend. Thus, there is no 

significant increase in protective effect with increasing DOC concentrations above 
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approximately 2 mg C L
-1

. This trend has also been observed in the literature (Brooks et 

al. 2007; Cooper et al. 2013; Nadella et al. in press).  The second trend resulting in a 

correlation between LC50 and DOC where LC50 (µg L
-1

) = 25.15DOC
0.47

 including outlier 

data or LC50 (µg L
-1

) = 22.86DOC
0.45

 excluding outlier data.  Similar relationships 

between LC50 and DOC have been observed in other marine organisms (Arnold 2005; 

Arnold et al. 2006, Arnold et al. 2010, Arnold et al. 2010a; DePalma et al. 2011).  

Overall, these results stress the need for more toxicity assays to be performed, 

particularly between 2 – 4 mg C L
-1

 in order to determine which trend most accurately 

represents the correlation between LC50 and DOC. 

It was found in Chapter 3 that the relationship between LC50 and humic- and 

fulvic-like components were significantly correlated (p = 0.030 and p = 0.013) with 

LC50 values while proteinaceous components were not (p = 0.39 and 0.53 for tryptophan 

and tyrosine, respectively).  In addition, humic- and fulvic-like fractions both exhibited a 

positive correlation with LC50 although only the fulvic-like fraction showed a significant 

p-value.  Overall, it was found that DOC quality does not need to be added as input 

models to current prediction models.  Within the acceptable factor of two for BLM 

toxicity predictions, total DOC is sufficient to predict toxicity.  

The free copper at the LC50 for each site was measured using the new Cu ISE 

method developed in Chapter 2.  As mentioned above, the mean free copper value 

remained constant within the BLM prediction factor of two. These results suggest that a 

critical free copper concentration is required to cause toxicity however differences in 

water chemistry affect how much total copper is required to reach this threshold.  This 

theory is supported by the findings of Chapter 4.  In Chapter 4, fluorescence quenching of 
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NOM with copper was performed for each site.  From this data the stability constants and 

binding capacities of the binding sites in NOM could be determined and the amount of 

free copper present could be calculated.  It was found that one to three ligands for copper 

binding were available for the sample sites measured and that all ligands had relatively 

strong binding with stability constants ranging from a logK from 9.33 to 11.22 and 

binding capacities ranging from 4 to 1614 nmole mg C
-1

.  This data is consistent with 

binding parameters found in other marine NOM.  It was also found that the sum of the 

binding capacities had a significant linear correlation with LC50 (r
2
 = 0.67, p-value = 

0.007).  This supports the theory that free copper is constant to cause toxicity.   An 

increase in total copper LC50 is due to water parameters, such as a larger binding 

capacity, which allows more copper to bind thereby reducing bioavailability.  This means 

that more copper needs to be added to the system to reach a critical concentration of free 

copper that is available to interact with the organism to cause toxicity. 

  Future work related to this aspect of the data is to apply accumulation studies to 

these DOC characterization and copper speciation methods, especially in the presence of 

increased humic and fulvic acid content, to determine bioavailability of these copper-

organic complexes.  In addition, more NOM characterization techniques such as high 

performance size exclusion chromatography (HPSEC) or immobilized metal ion affinity 

chromatography (IMAC) could be included to better identify size and composition of 

NOM. 
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5.1.3 Implications of Research 

 

Currently, national water quality guidelines for copper may be over- or under-

protective at sites with unique conditions (CCME 2003).  For example, chemical 

characteristics (e.g. pH, salinity, DOC etc.) at a site may alter the bioavailability and 

toxicity of copper.  It is crucial that water quality guidelines for copper accurately reflect 

the toxicity of copper under these various conditions to ensure protection of each aquatic 

environment while being economically practical.  This can result in the development of 

site-specific criteria for copper.  Models, such as the Biotic Ligand Model (BLM), can be 

used as predictive tools to estimate site-specific bioavailability and toxicity in an 

environment based on chemistry characteristics.  The results from this research help to 

supplement a marine BLM for copper. 

 One of the crucial elements in developing a reliable BLM is the ability to 

accurately measure copper speciation in sea water.  This was achieved by the 

development of a new flow-through ion-selective electrode (ISE) method that utilized an 

internal calibration method in order to improve reproducibility of free copper 

measurements.  As well, fluorescence quenching techniques were utilized to determine 

free copper concentrations in marine waters and agreed well with the internal calibration 

flow-through ISE measurements.  The result is two methods that can be used to reliably 

measure free copper in sea water. 

 Using the two methods for determining free copper in seawater, toxicity assays 

using the rotifer, Brachionus plicatilis, were performed to investigate the influence of 

DOC source on copper speciation and toxicity.   Through these toxicity assays it was 

found that free copper was constant at the LC50, despite changes in LC50 and DOC 
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concentrations.  This has significant impacts for toxicity modeling as this supports the 

current assumptions of the BLM.  A constant free copper concentration, despite changing 

LC50 values implies that there is a constant concentration of copper bound to the biotic 

ligand.  This concentration would be a critical concentration required to cause toxicity.  

The change in total copper LC50 values would be due to differences in water chemistry 

that affect how much total copper is needed to be added to a system to reach a critical 

free copper concentrations required for toxicity.  This was supported by fluorescence 

quenching techniques which showed that copper binding capacity of the different sea 

water samples used for the toxicity assays increased with increasing LC50 values.  

 Interestingly, the relationship between LC50 and DOC showed two potential 

trends. The first was a salt-induced colloid formation trend in which DOC concentrations 

above 2 mg C L
-1

 showed no increase in a protective effect against coper toxicity.  The 

second trend resulted in an LC50 model equation for rotifer toxicity where LC50 (µg L
-1

) = 

25.15DOC
0.47

 (including outlier data) or LC50 (µg L
-1

) = 22.86DOC
0.45

 (excluding outlier 

data).   However, there was no significant effect of DOC source/composition on LC50 

which suggests that total DOC concentrations alone are a sufficient parameter for toxicity 

modeling without the need for DOC quality parameters.  Overall, a summary of the 

chemical effects on copper toxicity in marine environments using the results from this 

reaserch only can be seen in Figure 5.1. 
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Figure 5.1 Summary schematic of the interaction of DOC on free copper and toxicity to 

the rotifer, Brachionus plicatilis.  Dashed line represents the potential influence of salinity 

on DOC (salt-induced colloid formation). 

 

In this figure, the dashed line represents the influence of salt-induced colloid 

formation on DOC.  In this case, salinity reduces the capacity of DOC to bind copper, 

thereby reducing the ability of DOC to have a protective effect on copper toxicity.  If 

salt-induced colloid formation is not occurring then, based from this research alone, there 

is no relationship between salinity and DOC.  Instead there is only a direct relationship 

between DOC, free copper and toxicity of the organism.  In either case, the major 

assumption of the BLM is supported in which toxicity is proportional to the amount of 

copper bound to the biotic ligand. 
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APPENDIX A 

A1. Solving for chemical equilibrium using MATLAB™ 

 

Modelling experimental data requires simultaneously solving for the chemical 

equilibria in solution while subject to the constraints of mass balance and mass action.  

Mass balance and mass action can be represented in Tableau notation (Morel & Hering 

1993).  The tableau notation defines the chemical equilibria and the stoichiometric 

coefficients required for the formation of each species are input into the columns (Smith 

2010). An example of a basic tableau is given in Figure A1. 

 

Figure A1. Example of tableau notation for basic copper system. 

 

Multiplication across each row will determine the respective species 

concentration while summation down each column will determine total concentrations 

(mass balance) (Smith 2010).  The species present in the tableau are dependent on each 

other and therefore components from the tableau can be selected to solve for the chemical 

equilibria. Four vectors are created labeled C, T, K and A.  C contains the species 
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concentrations and T comprises the total concentrations.  The vector, K includes the logK 

values and A containes the stoichiometric coefficients.  These vectors are then solves for 

using the equation: 

 

              
 

Where, 

                
 

 

 The Newton-Raphson method is used to minimize the sum of the residuals of the 

species concentrations determined. Using an initial guess, the residual vector and 

Jacobian (gradient matrix) is calculated for each iteration. The Jacobian finds the 

direction of decrease for the sum of the residuals. This process is then repeated to 

produce a new estimate that refines the guess until sum of the residuals is minimized  

(Smith 2010). 
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A2. MATLAB script for modeling free Cu over a pH range 

 

function II=Internal_calib_Trp_Cu_varypH2 

 figure(1); clf 

 % determine free Cu 

 CuTppb=25; %ug/L 

CuT=(CuTppb*1e-6)/63.5; 

TrpT=10e-6; %mol/L 

ClT=0.6; KCuCl=10^0.3; 

NaHCO3=200; %mg/L from recipe 

NaHCO3AW=100; %g/mol 

DIC=(NaHCO3*1e-3)/NaHCO3AW; 

  

pH=[8.15 7.43 6.78 6.05 4.87 3.46]; 

%H=10.^(-1*pH); H=(1/0.74)*H; pH=-log10(H); 

  

CumV=[-24.65 3.3 31.7 41.7 51.7 50.5]; 

  

%plot(pH,CumV,'ko','markersize',10,'markerfacecolor','b') 

  

% one point calibration 

% E=Eo+mlogCu 

% Eo=E-mlogCu assume m=59.2/2 = 29.6; 

% free Cu just determined by Cl complexation 

  

CuTadjust=CuT./(1+KCuCl*ClT); 

  

CumVend=mean([51.7 50.5]); m=29.6; 

logCucalpoint=log10(CuTadjust); Eo=CumVend-m*logCucalpoint; 

  

% apply calibration 

  

logCu=(CumV-Eo)./m; 

  

% plot it 

  

plot(pH,logCu,'ko','markersize',12,'markerfacecolor','b') 

set(gca,'linewidth',2,'fontsize',16) 

xlabel('pH','fontsize',16, 'fontweight', 'bold') 

ylabel('log[Cu^{2+}]','fontsize',16, 'fontweight', 'bold') 

%title('25 ppb Cu and 10 uM Trp in seawater','fontsize',12) 

  

print internal_calib.png -dpng  
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hold on 

CuTppb=25; %ug/L 

CuT=(CuTppb*1e-6)/63.5; 

TrpT=10e-6; %mol/L 

ClT=0.6; KCuCl=10^0.3; 

NaHCO3=200; %mg/L from recipe 

NaHCO3AW=100; %g/mol 

DIC=(NaHCO3*1e-3)/NaHCO3AW; 

  

pH=[8.00 4.94 3.37]; 

%H=10.^(-1*pH); H=(1/0.74)*H; pH=-log10(H); 

  

CumV=[-50.6 43.65 51.6]; 

  

% one point calibration 

 

CuTadjust=CuT./(1+KCuCl*ClT); 

  

CumVend=mean([43.65 51.6]); m=29.6; 

logCucalpoint=log10(CuTadjust); Eo=CumVend-m*logCucalpoint; 

  

% apply calibration 

  

logCu=(CumV-Eo)./m; 

  

% plot it 

  

plot(pH,logCu,'ko','markersize',12,'markerfacecolor','b') 

 

print internal_calib.eps -depsc2 

 

hold on 

CuTppb=25; %ug/L 

CuT=(CuTppb*1e-6)/63.5; 

TrpT=10e-6; %mol/L 

ClT=0.6; KCuCl=10^0.3; 

NaHCO3=200; %mg/L from recipe 

NaHCO3AW=100; %g/mol 

DIC=(NaHCO3*1e-3)/NaHCO3AW; 

  

pH=[8.28 7.36 6.56 5.79 4.59 3.44]; 

%H=10.^(-1*pH); H=(1/0.74)*H; pH=-log10(H); 

  

CumV=[-33.3 1.3 32.2 49.9 54.8 54.1]; 

  

% one point calibration 
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CuTadjust=CuT./(1+KCuCl*ClT); 

  

CumVend=54.1; m=29.6; 

logCucalpoint=log10(CuTadjust); Eo=CumVend-m*logCucalpoint; 

  

% apply calibration 

  

logCu=(CumV-Eo)./m; 

  

% plot it 

  

plot(pH,logCu,'ko','markersize',12,'markerfacecolor','b')  

  

hold on 

CuTppb=10; %ug/L 

CuT=(CuTppb*1e-6)/63.5; 

TrpT=10e-6; %mol/L 

ClT=0.6; KCuCl=10^0.3; 

NaHCO3=200; %mg/L from recipe 

NaHCO3AW=100; %g/mol 

DIC=(NaHCO3*1e-3)/NaHCO3AW; 

  

pH=[8.10 7.34 6.70 5.94 4.78 3.29]; 

%H=10.^(-1*pH); H=(1/0.74)*H; pH=-log10(H); 

  

CumV=[-45.6 -6.0 3.2 8.7 25.3 24.1]; 

  

 

% one point calibration 

 

CuTadjust=CuT./(1+KCuCl*ClT); 

  

CumVend=mean([25.3 24.1]); m=29.6; 

logCucalpoint=log10(CuTadjust); Eo=CumVend-m*logCucalpoint; 

  

% apply calibration 

  

logCu=(CumV-Eo)./m; 

  

% plot it 

  

plot(pH,logCu,'ko','markersize',12,'markerfacecolor','r') 

 

print internal_calib.eps -depsc 
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hold on 

CuTppb=10; %ug/L 

CuT=(CuTppb*1e-6)/63.5; 

TrpT=10e-6; %mol/L 

ClT=0.6; KCuCl=10^0.3; 

NaHCO3=200; %mg/L from recipe 

NaHCO3AW=100; %g/mol 

DIC=(NaHCO3*1e-3)/NaHCO3AW; 

  

pH=[8.06 4.70 3.34]; 

%H=10.^(-1*pH); H=(1/0.74)*H; pH=-log10(H); 

  

CumV=[-43.8 56.6 55.5]; 

  

 

% one point calibration 

 

CuTadjust=CuT./(1+KCuCl*ClT); 

  

CumVend=mean([56.6 55.5]); m=29.6; 

logCucalpoint=log10(CuTadjust); Eo=CumVend-m*logCucalpoint; 

  

% apply calibration 

  

logCu=(CumV-Eo)./m; 

  

% plot it 

  

plot(pH,logCu,'ko','markersize',12,'markerfacecolor','r') 

 

print internal_calib.eps -depsc 

  

hold on 

CuTppb=10; %ug/L 

CuT=(CuTppb*1e-6)/63.5; 

TrpT=10e-6; %mol/L 

ClT=0.6; KCuCl=10^0.3; 

NaHCO3=200; %mg/L from recipe 

NaHCO3AW=100; %g/mol 

DIC=(NaHCO3*1e-3)/NaHCO3AW; 

  

pH=[8.00 4.64 3.22]; 

%H=10.^(-1*pH); H=(1/0.74)*H; pH=-log10(H); 

  

CumV=[-32.5 54.4 51.6]; 
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% one point calibration 

 

CuTadjust=CuT./(1+KCuCl*ClT); 

  

CumVend=mean([54.4 51.6]); m=29.6; 

logCucalpoint=log10(CuTadjust); Eo=CumVend-m*logCucalpoint;  

  

% apply calibration 

  

logCu10=(CumV-Eo)./m; 

  

% plot it 

  

plot(pH,logCu10,'ko','markersize',12,'markerfacecolor','r') 

 

print internal_calib.eps -depsc 

  

hold on 

CuTppb=10; %ug/L 

CuT=(CuTppb*1e-6)/63.5; 

TrpT=10e-6; %mol/L 

ClT=0.6; KCuCl=10^0.3; 

NaHCO3=200; %mg/L from recipe 

NaHCO3AW=100; %g/mol 

DIC=(NaHCO3*1e-3)/NaHCO3AW; 

  

pH=[8.48 7.59 6.95 5.91 4.53 3.29]; 

%H=10.^(-1*pH); H=(1/0.74)*H; pH=-log10(H); 

  

CumV=[-28.2 -10.4 -3.5 -8.75 9.5 14.3]; 

  

% one point calibration 

 

CuTadjust=CuT./(1+KCuCl*ClT); 

  

CumVend=mean([14.3 9.5]); m=29.6; 

logCucalpoint=log10(CuTadjust); Eo=CumVend-m*logCucalpoint; 

  

% apply calibration 

  

logCu=(CumV-Eo)./m; 

  

% plot it 

  

plot(pH,logCu,'ko','markersize',12,'markerfacecolor','b') 
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Hold on 

CuTppb=5; %ug/L 

CuT=(CuTppb*1e-6)/63.5; 

TrpT=10e-6; %mol/L 

ClT=0.6; KCuCl=10^0.3; 

NaHCO3=200; %mg/L from recipe 

NaHCO3AW=100; %g/mol 

DIC=(NaHCO3*1e-3)/NaHCO3AW; 

  

pH=[8.21  4.60 3.61]; 

%H=10.^(-1*pH); H=(1/0.74)*H; pH=-log10(H); 

  

CumV=[-30.3 66.7 65.2]; 

  

% one point calibration 

 

CuTadjust=CuT./(1+KCuCl*ClT); 

  

CumVend=mean([66.7 65.2]); m=29.6; 

logCucalpoint=log10(CuTadjust); Eo=CumVend-m*logCucalpoint; 

  

% apply calibration 

  

logCu=(CumV-Eo)./m; 

  

% plot it 

  

plot(pH,logCu,'ko','markersize',12,'markerfacecolor','c') 

 

hold on 

CuTppb=5; %ug/L 

CuT=(CuTppb*1e-6)/63.5; 

TrpT=10e-6; %mol/L 

ClT=0.6; KCuCl=10^0.3; 

NaHCO3=200; %mg/L from recipe 

NaHCO3AW=100; %g/mol 

DIC=(NaHCO3*1e-3)/NaHCO3AW; 

  

pH=[7.93 4.72 3.38]; 

%H=10.^(-1*pH); H=(1/0.74)*H; pH=-log10(H); 

  

CumV=[-47.2 60.05 60.15]; 

  

% one point calibration 
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CuTadjust=CuT./(1+KCuCl*ClT); 

  

CumVend=mean([60.05 60.15]); m=29.6; 

logCucalpoint=log10(CuTadjust); Eo=CumVend-m*logCucalpoint; 

  

% apply calibration 

  

logCu=(CumV-Eo)./m; 

  

% plot it 

  

plot(pH,logCu,'ko','markersize',12,'markerfacecolor','c') 

 

hold on 

CuTppb=5; %ug/L 

CuT=(CuTppb*1e-6)/63.5; 

TrpT=10e-6; %mol/L 

ClT=0.6; KCuCl=10^0.3; 

NaHCO3=200; %mg/L from recipe 

NaHCO3AW=100; %g/mol 

DIC=(NaHCO3*1e-3)/NaHCO3AW; 

  

pH=[8.07 4.90 3.30]; 

%H=10.^(-1*pH); H=(1/0.74)*H; pH=-log10(H); 

  

CumV=[-38.8 50.0 55.5]; 

  

% one point calibration 

 

CuTadjust=CuT./(1+KCuCl*ClT); 

  

CumVend=mean([50.0 55.5]); m=29.6; 

logCucalpoint=log10(CuTadjust); Eo=CumVend-m*logCucalpoint; 

  

% apply calibration 

  

logCu=(CumV-Eo)./m 

  

% plot it 

  

plot(pH,logCu,'ko','markersize',12,'markerfacecolor','c') 

 

Hold on 

CuTppb=50; %ug/L 

CuT=(CuTppb*1e-6)/63.5; 

TrpT=10e-6; %mol/L 
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ClT=0.6; KCuCl=10^0.3; 

NaHCO3=200; %mg/L from recipe 

NaHCO3AW=100; %g/mol 

DIC=(NaHCO3*1e-3)/NaHCO3AW; 

  

pH=[7.98 7.5 6.74 5.82 4.60 3.44]; 

%H=10.^(-1*pH); H=(1/0.74)*H; pH=-log10(H); 

  

CumV=[-19.3 -16.1 29.3 44.4 57.1 48]; 

  

% one point calibration 

CuTadjust=CuT./(1+KCuCl*ClT); 

  

CumVend=mean([57 48]); m=29.6; 

logCucalpoint=log10(CuTadjust); Eo=CumVend-m*logCucalpoint; 

  

% apply calibration 

  

logCu=(CumV-Eo)./m; 

  

% plot it 

  

plot(pH,logCu,'ko','markersize',12,'markerfacecolor','m') 

 

hold on 

CuTppb=50; %ug/L 

CuT=(CuTppb*1e-6)/63.5; 

TrpT=10e-6; %mol/L 

ClT=0.6; KCuCl=10^0.3; 

NaHCO3=200; %mg/L from recipe 

NaHCO3AW=100; %g/mol 

DIC=(NaHCO3*1e-3)/NaHCO3AW; 

  

pH=[4.74 3.28]; 

%H=10.^(-1*pH); H=(1/0.74)*H; pH=-log10(H); 

  

CumV=[66.1 63.5]; 

  

CuTadjust=CuT./(1+KCuCl*ClT); 

  

CumVend=mean([66.1 63.5]); m=29.6; 

logCucalpoint=log10(CuTadjust); Eo=CumVend-m*logCucalpoint; 

  

% apply calibration 

  

logCu=(CumV-Eo)./m; 
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% plot it 

  

plot(pH,logCu,'ko','markersize',12,'markerfacecolor','m') 

 

hold on 

CuTppb=50; %ug/L 

CuT=(CuTppb*1e-6)/63.5; 

TrpT=10e-6; %mol/L 

ClT=0.6; KCuCl=10^0.3; 

NaHCO3=200; %mg/L from recipe 

NaHCO3AW=100; %g/mol 

DIC=(NaHCO3*1e-3)/NaHCO3AW; 

  

pH=[8.01 5.20 3.39]; 

%H=10.^(-1*pH); H=(1/0.74)*H; pH=-log10(H); 

  

CumV=[-27.1 41.1 50.4]; 

  

% one point calibration 

 

CuTadjust=CuT./(1+KCuCl*ClT); 

  

CumVend=mean([41.1 50.4]); m=29.6; 

logCucalpoint=log10(CuTadjust); Eo=CumVend-m*logCucalpoint; 

  

% apply calibration 

  

logCu=(CumV-Eo)./m 

  

% plot it 

  

plot(pH,logCu,'ko','markersize',12,'markerfacecolor','m') 

  

% model calc no ppte 

  

c=0; pHplot=[3:0.2:9]; 

  

for i=1:size(pHplot,2) 

     

    

[species,names]=Cumodel_highIS_Cl_DIC_Trp_ppte(CuT,pHplot(i),DIC,ClT,TrpT,3);  

    % flag=2 malachite only 

    % flag=1 tenorite only 

    % flag=3 no ppte 
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    c=c+1; 

    for j=1:size(species,2) 

        txt=[names(j,:),'(c)=species(:,j);'];  eval(txt) 

    end 

    species_summary(i,:)=species; 

end 

  

figure(1); hold on;  plot(pHplot,log10(Cu),'r','linewidth',4);  

  

print internal_calib2.eps -depsc2 

  

hold on; Internal_calib_Trp_Cu_varypH 

  

print internal_calib3.eps -depsc2 

  

Internal_calib_Trp_Cu_varypH_5ppb 

Internal_calib_Trp_Cu_varypH_50ppb 

Internal_calib_Trp_Cu_varypH_10ppb2 

  

print internal_calib4.eps -depsc2 

  

end 

  

% subfunctions % 

  

function [II,GG]=Cumodel_highIS_Cl_DIC_Trp_ppte(CuT,pH,DIC,ClT,TrpT,flag) 

  

warning('off') 

  

[KSOLUTION,KSOLID,ASOLUTION,ASOLID,SOLUTIONNAMES,SOLIDNAMES]

=get_equilib_defn(flag); 

  

%CuT=3.9592e-7; 

  

%pH=[6:0.1:9]; % fixed pH 

numpts=size(pH,2);  

Ncp=size(ASOLID,1); 

solid_summary=zeros(numpts,Ncp); 

  

for i=1:size(SOLIDNAMES,1) 

    txt=[SOLIDNAMES(i,:),'=zeros(numpts,1);']; eval(txt) 

end 

  

for i=1:size(pH,2) 

    %H=10.^(-1*pH(i)); Ka1=10^(-6.3); Ka2=10.^(-10.3); Kh=10.^(-1.47); 

    %CT=Kh*PCO2+(Kh*PCO2*Ka1)./H+(Kh*PCO2*Ka1*Ka2)./(H.^2); 
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    CT=DIC; 

    CTrun(i)=CT; 

     

    % adjust for fixed pH 

     

    

[Ksolution,Ksolid,Asolution,Asolid]=get_equilib_fixed_pH(KSOLUTION,KSOLID,AS

OLUTION,ASOLID,pH(i)); 

  

    Asolid_SI_check=Asolid; Ksolid_SI_check=Ksolid; 

     

    % number of different species 

    Nx=size(Asolution,2); Ncp=size(Asolid,1); Nc=size(Asolution,1); 

     

    % initial guess 

    Cu_guess=[-10.5]; CuOH2s_guess=0.1*CuT;  CuCO3s_guess=0.1*CT; 

    guess=[10.^Cu_guess CT./10 CuOH2s_guess CuCO3s_guess]; iterations=1000; 

criteria=1e-16; 

    T=[CuT CT ClT TrpT]; guess=T./10; 

     

    % calculate species using NR 

   

    solids=zeros(1,Ncp); 

   

    if i==1; 

[species,err,SI]=NR_method_solution(Asolution,Asolid,Ksolid,Ksolution,T',[guess(1:Nx

)]',iterations,criteria); end 

    if i>1;  

        

[species,err,SI]=NR_method_solution(Asolution,Asolid,Ksolid,Ksolution,T',[species(2:N

x+1)],iterations,criteria);  

    end 

  

    for qq=1:Ncp 

     

        [Y,I]=max(SI); 

     

        if Y>1.000000001 

            Iindex(qq)=I; 

            Asolidtemp(qq,:)=Asolid_SI_check(I,:);  

            Ksolidtemp(qq,:)=Ksolid_SI_check(I,:);  

            solidguess(qq)=T(I)*0.5; 

           % solidguess(qq)=min(T)*0.015; 

            if i>1; 

                %if max(solids)>0 

                txt=['solidguess(qq)=',SOLIDNAMES(I,:),'(i-1);']; eval(txt); 
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                %end 

            end 

            guess=[species(2:Nx+1)' solidguess]; 

            

[species,err,SItst,solids]=NR_method(Asolution,Asolidtemp',Ksolidtemp,Ksolution,T',gu

ess',iterations,criteria); 

             for q=1:size(solids,1);  

                txt=[SOLIDNAMES(Iindex(q),:),'(i)=solids(q);']; eval(txt) 

              end 

        end 

     

        Q=Asolid*log10(species(2:Nx+1)); SI=10.^(Q+Ksolid); Ifirst=I; 

     

    end 

     

    Q=Asolid*log10(species(2:Nx+1)); SI=10.^(Q+Ksolid); 

    SI_summary(i,:)=SI; 

     

    species_summary(i,:)=species; 

    mass_err_summary(i,:)=(err(1)); 

     

    Asolidtemp=[]; Ksolidtemp=[]; 

  

end 

  

for i=1:size(species_summary,2) 

    txt=[SOLUTIONNAMES(i,:),'=species_summary(:,i);']; eval(txt) 

end 

  

II=[species_summary tenorite malachite CuCO3s CuOH2s]; 

GG=strvcat(SOLUTIONNAMES,'tenorite','malachite','CuCO3s','CuOH2s'); 

  

end 

  

% -------------------- NR method solids present 

  

function 

[species,err,SI,solids]=NR_method(Asolution,Asolid,Ksolid,Ksolution,T,guess,iterations,

criteria) 

  

Nx=size(Asolution,2); Ncp=size(Asolid,2); Nc=size(Asolution,1); X=guess; 

  

for II=1:iterations 

  

    Xsolution=X(1:Nx); Xsolid=[]; if Ncp>0; Xsolid=X(Nx+1:Nx+Ncp); end 
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    logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc species 

     

    if Ncp>0;  

        Rmass=Asolution'*C+Asolid*Xsolid-T;  

    end 

  

  

    if Ncp==0; Rmass=Asolution'*C-T; end % calc residuals in mass balance  

     

    Q=Asolid'*log10(Xsolution); SI=10.^(Q+Ksolid); 

    RSI=ones(size(SI))-SI;  

     

    % calc the jacobian 

  

    z=zeros(Nx+Ncp,Nx+Ncp);  

  

    for j=1:Nx;  

        for k=1:Nx;  

                for i=1:Nc; z(j,k)=z(j,k)+Asolution(i,j)*Asolution(i,k)*C(i)/Xsolution(k); end 

        end 

    end 

  

    if Ncp>0; 

    for j=1:Nx; 

        for k=Nx+1:Nx+Ncp;  

                t=Asolid'; 

                z(j,k)=t(k-Nx,j); 

        end 

    end 

    end 

     

    if Ncp>0 

    for j=Nx+1:Nx+Ncp;  

        for k=1:Nx 

                z(j,k)=-1*Asolid(k,j-Nx)*(SI(j-Nx)/Xsolution(k)); 

        end 

    end 

    end 

     

    if Ncp>0 

    for j=Nx+1:Nx+Ncp 

        for k=Nx+1:Nx+Ncp 

            z(j,k)=0; 

        end 

    end 

    end 
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    R=[Rmass; RSI]; X=[Xsolution; Xsolid]; 

     

    deltaX=z\(-1*R); 

    %deltaX=-1*inv(z)*(R); 

    one_over_del=max([1, -1*deltaX'./(0.5*X')]); 

    del=1/one_over_del; 

    X=X+del*deltaX; 

     

    %X=X+deltaX; 

  

    tst=sum(abs(R)); 

    if tst<=criteria; break; end 

       

end 

  

logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc species 

RSI=ones(size(SI))-SI; 

  

if Ncp>0; Rmass=Asolution'*C+Asolid*Xsolid-T; end % calc residuals in mass balance  

if Ncp==0; Rmass=Asolution'*C-T; end % calc residuals in mass balance  

  

err=[Rmass]; 

  

species=[C]; 

solids=Xsolid; 

  

end 

  

% ----------- NR method just solution species 

  

function 

[species,err,SI]=NR_method_solution(Asolution,Asolid,Ksolid,Ksolution,T,guess,iteratio

ns,criteria) 

  

Nx=size(Asolution,2); Ncp=size(Asolid,1); Nc=size(Asolution,1); X=guess; 

  

for II=1:iterations 

  

    Xsolution=X(1:Nx);  

     

    logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc species 

     

    Rmass=Asolution'*C-T; 

     

    Q=Asolid*log10(Xsolution); SI=10.^(Q+Ksolid); 
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    RSI=ones(size(SI))-SI; 

  

    % calc the jacobian 

  

    z=zeros(Nx,Nx);  

  

    for j=1:Nx;  

        for k=1:Nx;  

                for i=1:Nc; z(j,k)=z(j,k)+Asolution(i,j)*Asolution(i,k)*C(i)/Xsolution(k); end 

        end 

    end 

  

    R=[Rmass]; X=[Xsolution]; 

     

    deltaX=z\(-1*R); 

    %deltaX=-1*inv(z)*(R); 

    one_over_del=max([1, -1*deltaX'./(0.5*X')]); 

    del=1/one_over_del; 

    X=X+del*deltaX; 

     

    %X=X+deltaX; 

  

    tst=sum(abs(R)); 

    if tst<=criteria; break; end 

       

end 

  

logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc species 

RSI=ones(size(SI))-SI; 

  

Q=Asolid*log10(Xsolution); SI=10.^(Q+Ksolid); 

RSI=ones(size(SI))-SI; 

     

Rmass=Asolution'*C-T;  

  

err=[Rmass]; 

  

species=[C]; 

  

end 

  

% ----- equilib definition ---------------- 

  

function 

[KSOLUTION,KSOLID,ASOLUTION,ASOLID,SOLUTIONNAMES,SOLIDNAMES]

=get_equilib_defn(flag); 
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logKw=-14.082; 

logKh1=-7.982; 

logKh1=-7.182; 

logBh2=-15.2; 

logBh2=-14.8; 

logBh3=-27.2; 

logBh4=-40.4; 

logBh22=-10.98; 

pKa1=6.3; 

pKa2=10.3; 

logKCuCO3=6.77; 

%logKCuCO3=6.47; 

logKCuCO32=10.2; 

logKCuHCO3=1.03; 

logKCuCl=0.3; 

logKCuTrp=8.29; 

pKa1Trp=2.1; %2.35; 

pKa2Trp=9.33; %9.33; 

logKCuTrp2=15.5; 

logKCuHTrp=2.47; 

  

KSOLUTION=[... 

     0 

     0 

     0 

     0 

     0 

     logKw 

     logKh1 

     logBh2 

     logBh3 

     logBh4 

     logBh22 

     pKa2 

     pKa2+pKa1 

     logKCuCO3 

     logKCuCO32 

     logKCuHCO3 

     logKCuCl 

     logKCuTrp 

     pKa2Trp 

     pKa2Trp+pKa1Trp 

     logKCuTrp2 

     logKCuHTrp]; 
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ASOLUTION=[... 

    %H      M     CO3   Cl  Trp 

     1      0     0     0   0  

     0      1     0     0   0 

     0      0     1     0   0 

     0      0     0     1   0  

     0      0     0     0   1 

     -1     0     0     0   0  

     -1     1     0     0   0 

     -2     1     0     0   0 

     -3     1     0     0   0 

     -4     1     0     0   0 

     -2     2     0     0   0  

     1      0     1     0   0 

     2      0     1     0   0  

     0      1     1     0   0 

     0      1     2     0   0  

     1      1     1     0   0  

     0      1     0     1   0 

     0      1     0     0   1  

     1      0     0     0   1  

     2      0     0     0   1 

     0      1     0     0   2 

     1      1     0     0   1]; 

  

SOLUTIONNAMES=strvcat('H','Cu','CO3','Cl','Trp','OH','CuOH','CuOH2','CuOH3','Cu

OH4','Cu2OH2','HCO3','H2CO3','CuCO3aq','CuCO32aq','CuHCO3','CuCl','CuTrp','HTrp

','H2Trp','CuTrp2','CuHTrp'); 

  

    % -------------- solid values 

  

    logKsp=-18.7; 

    logKcuoh2s=-logKsp+2*logKw; 

    logKCuCO3s=11.5; 

    logKmalachite=33.18+2*logKw; 

    logKmalachite=32.0+2*logKw; 

    logKtenorite=20.48+2*logKw; 

    if flag==1; logKmalachite=1; end 

    if flag==2; logKtenorite=-100; end 

    if flag==3; logKtenorite=-100; logKmalachite=1; end 

     

    logKcuoh2s=-10; 

    logKCuCO3s=1; 

    %logKtenorite=-100; 

    %logKmalachite=1; 
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    KSOLID=[... 

    logKtenorite 

    logKmalachite 

    logKcuoh2s 

    logKCuCO3s]; 

  

    ASOLID=[... 

     -2      1   0       0  0 

     -2     2    1       0  0  

     -2     1    0      0   0  

     0      1    1      0   0]; 

  

 SOLIDNAMES=strvcat('tenorite','malachite','CuOH2s','CuCO3s'); 

  

end 

  

% ----------- for fixed pH ---------------- 

  

function 

[Ksolution,Ksolid,Asolution,Asolid]=get_equilib_fixed_pH(KSOLUTION,KSOLID,AS

OLUTION,ASOLID,pH) 

  

    [N,M]=size(ASOLUTION); 

    Ksolution=KSOLUTION-ASOLUTION(:,1)*pH; 

    Asolution=[ASOLUTION(:,2:M)]; 

    [N,M]=size(ASOLID); 

    Ksolid=KSOLID-ASOLID(:,1)*pH; 

    Asolid=[ASOLID(:,2:M)]; 

  

end 

 

  



152 

 

A3. MATLAB script for free copper at a constant pH 

 

function II=Internal_calib_Trp_Cu_varypH_multiCu 

 

figure(1); clf 

 

CuTppb=5; %ug/L 

CuT=(CuTppb*1e-6)/63.5; 

TrpT=10e-6; %mol/L 

ClT=0.6; KCuCl=10^0.3; 

NaHCO3=200; %mg/L from recipe 

NaHCO3AW=100; %g/mol 

DIC=(NaHCO3*1e-3)/NaHCO3AW; 

 

pH=[4:1:9]; 

 

% model calc no ppte 

 

c=0; pHplot=[3:0.2:9]; pHplot=8.2; 

 

for i=1:size(pHplot,2) 

     

    

[species,names]=Cumodel_highIS_Cl_DIC_Trp_ppte(CuT,pHplot(i),DIC,ClT,TrpT,3);  

    % flag=2 malachite only 

    % flag=1 tenorite only 

    % flag=3 no ppte 

     

    c=c+1; 

    for j=1:size(species,2) 

        txt=[names(j,:),'(c)=species(:,j);'];  eval(txt) 

    end 

    species_summary(i,:)=species; 

end 

Cuplot(1)=Cu; 

%figure(1); hold on;  plot(pHplot,log10(Cu),'b','linewidth',2); 

%set(gca,'linewidth',2,'fontsize',12) 

%xlabel('pH','fontsize',12) 

%ylabel('log[Cu^{2+}]','fontsize',12) 

%title('Trp modelled Cu in seawater','fontsize',12) 

 

CuTppb=10; %ug/L 

CuT=(CuTppb*1e-6)/63.5; 

c=0; 

 

for i=1:size(pHplot,2) 
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[species,names]=Cumodel_highIS_Cl_DIC_Trp_ppte(CuT,pHplot(i),DIC,ClT,TrpT,3);  

    % flag=2 malachite only 

    % flag=1 tenorite only 

    % flag=3 no ppte 

     

    c=c+1; 

    for j=1:size(species,2) 

        txt=[names(j,:),'(c)=species(:,j);'];  eval(txt) 

    end 

    species_summary(i,:)=species; 

end 

Cuplot(2)=Cu; 

%figure(1); hold on;  plot(pHplot,log10(Cu),'r','linewidth',2); 

 

CuTppb=25; %ug/L 

CuT=(CuTppb*1e-6)/63.5; 

c=0; 

 

for i=1:size(pHplot,2) 

     

    

[species,names]=Cumodel_highIS_Cl_DIC_Trp_ppte(CuT,pHplot(i),DIC,ClT,TrpT,3);  

    % flag=2 malachite only 

    % flag=1 tenorite only 

    % flag=3 no ppte 

     

    c=c+1; 

    for j=1:size(species,2) 

        txt=[names(j,:),'(c)=species(:,j);'];  eval(txt) 

    end 

    species_summary(i,:)=species; 

end 

Cuplot(3)=Cu; 

%figure(1); hold on;  plot(pHplot,log10(Cu),'m','linewidth',2); 

 

CuTppb=50; %ug/L 

CuT=(CuTppb*1e-6)/63.5; 

c=0; 

 

for i=1:size(pHplot,2) 

     

    

[species,names]=Cumodel_highIS_Cl_DIC_Trp_ppte(CuT,pHplot(i),DIC,ClT,TrpT,3);  

    % flag=2 malachite only 
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    % flag=1 tenorite only 

    % flag=3 no ppte 

     

    c=c+1; 

    for j=1:size(species,2) 

        txt=[names(j,:),'(c)=species(:,j);'];  eval(txt) 

    end 

    species_summary(i,:)=species; 

end 

Cuplot(4)=Cu;  

%figure(1); hold on;  plot(pHplot,log10(Cu),'g','linewidth',2); 

CuT=(([5 10 25 50])/63.55) ; 

 

figure(1);  

%h = (plot([5 10 25 50],log10(Cuplot),'ko-',[5 10 25 50],[-10.7 -9.6 -9.6 -9.3],'k<', [5 10 

25 50], [-10.4 -9.8 -9.3 -8.8], 'k<')) 

 

h = (plot(CuT,log10(Cuplot),'ko-',CuT,[-10.7 -9.6 -9.6 -9.3],'k<', CuT, [-10.4 -9.8 -9.3 -

8.8], 'k<')) 

set (h(1), 'markerfacecolor', 'k','markersize',12, 'LineWidth', 4) 

set (h(2), 'markerfacecolor', 'b', 'markersize', 12) 

set (h(3), 'markerfacecolor', 'g', 'markersize', 12) 

set(gca,'linewidth',2,'fontsize',16) 

xlabel('Cu_T (\mumol L^{-1})','fontsize',16, 'fontweight', 'bold') 

ylabel('log[Cu^{2+}]','fontsize',16, 'fontweight', 'bold') 

axis([0 0.8 -11 -8.5]) 

end 

  

% subfunctions % 

 

function [II,GG]=Cumodel_highIS_Cl_DIC_Trp_ppte(CuT,pH,DIC,ClT,TrpT,flag) 

 

warning('off') 

 

[KSOLUTION,KSOLID,ASOLUTION,ASOLID,SOLUTIONNAMES,SOLIDNAMES]

=get_equilib_defn(flag); 

 

%CuT=3.9592e-7; 

 

%pH=[6:0.1:9]; % fixed pH 

numpts=size(pH,2);  

Ncp=size(ASOLID,1); 

solid_summary=zeros(numpts,Ncp); 

 

for i=1:size(SOLIDNAMES,1) 

    txt=[SOLIDNAMES(i,:),'=zeros(numpts,1);']; eval(txt) 
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end 

 

for i=1:size(pH,2) 

    %H=10.^(-1*pH(i)); Ka1=10^(-6.3); Ka2=10.^(-10.3); Kh=10.^(-1.47); 

    %CT=Kh*PCO2+(Kh*PCO2*Ka1)./H+(Kh*PCO2*Ka1*Ka2)./(H.^2); 

    CT=DIC; 

    CTrun(i)=CT; 

     

    % adjust for fixed pH 

     

    

[Ksolution,Ksolid,Asolution,Asolid]=get_equilib_fixed_pH(KSOLUTION,KSOLID,AS

OLUTION,ASOLID,pH(i)); 

 

    Asolid_SI_check=Asolid; Ksolid_SI_check=Ksolid; 

     

    % number of different species 

    Nx=size(Asolution,2); Ncp=size(Asolid,1); Nc=size(Asolution,1); 

     

    % initial guess 

    Cu_guess=[-10.5]; CuOH2s_guess=0.1*CuT;  CuCO3s_guess=0.1*CT; 

    guess=[10.^Cu_guess CT./10 CuOH2s_guess CuCO3s_guess]; iterations=1000; 

criteria=1e-16; 

    T=[CuT CT ClT TrpT]; guess=T./10; 

     

    % calculate species using NR 

   

    solids=zeros(1,Ncp); 

   

    if i==1; 

[species,err,SI]=NR_method_solution(Asolution,Asolid,Ksolid,Ksolution,T',[guess(1:Nx

)]',iterations,criteria); end 

    if i>1;  

        

[species,err,SI]=NR_method_solution(Asolution,Asolid,Ksolid,Ksolution,T',[species(2:N

x+1)],iterations,criteria);  

    end 

 

    for qq=1:Ncp 

     

        [Y,I]=max(SI); 

     

        if Y>1.000000001 

            Iindex(qq)=I; 

            Asolidtemp(qq,:)=Asolid_SI_check(I,:);  

            Ksolidtemp(qq,:)=Ksolid_SI_check(I,:);  
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            solidguess(qq)=T(I)*0.5; 

           % solidguess(qq)=min(T)*0.015; 

            if i>1; 

                %if max(solids)>0 

                txt=['solidguess(qq)=',SOLIDNAMES(I,:),'(i-1);']; eval(txt); 

                %end 

            end 

            guess=[species(2:Nx+1)' solidguess]; 

            

[species,err,SItst,solids]=NR_method(Asolution,Asolidtemp',Ksolidtemp,Ksolution,T',gu

ess',iterations,criteria); 

             for q=1:size(solids,1);  

                txt=[SOLIDNAMES(Iindex(q),:),'(i)=solids(q);']; eval(txt) 

              end 

        end 

     

        Q=Asolid*log10(species(2:Nx+1)); SI=10.^(Q+Ksolid); Ifirst=I; 

     

    end 

     

    Q=Asolid*log10(species(2:Nx+1)); SI=10.^(Q+Ksolid); 

    SI_summary(i,:)=SI; 

     

    species_summary(i,:)=species; 

    mass_err_summary(i,:)=(err(1)); 

     

    Asolidtemp=[]; Ksolidtemp=[]; 

 

end 

 

for i=1:size(species_summary,2) 

    txt=[SOLUTIONNAMES(i,:),'=species_summary(:,i);']; eval(txt) 

end 

 

II=[species_summary tenorite malachite CuCO3s CuOH2s]; 

GG=strvcat(SOLUTIONNAMES,'tenorite','malachite','CuCO3s','CuOH2s'); 

 

end 

 

% -------------------- NR method solids present 

 

function 

[species,err,SI,solids]=NR_method(Asolution,Asolid,Ksolid,Ksolution,T,guess,iterations,

criteria) 

 

Nx=size(Asolution,2); Ncp=size(Asolid,2); Nc=size(Asolution,1); X=guess; 
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for II=1:iterations 

 

    Xsolution=X(1:Nx); Xsolid=[]; if Ncp>0; Xsolid=X(Nx+1:Nx+Ncp); end 

     

 logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc species 

  

    if Ncp>0;  

        Rmass=Asolution'*C+Asolid*Xsolid-T;  

    end 

 

 

    if Ncp==0; Rmass=Asolution'*C-T; end % calc residuals in mass balance  

     

    Q=Asolid'*log10(Xsolution); SI=10.^(Q+Ksolid); 

    RSI=ones(size(SI))-SI;  

     

 % calc the jacobian 

 

 z=zeros(Nx+Ncp,Nx+Ncp);  

 

 for j=1:Nx;  

  for k=1:Nx;  

    for i=1:Nc; 

z(j,k)=z(j,k)+Asolution(i,j)*Asolution(i,k)*C(i)/Xsolution(k); end 

        end 

    end 

 

    if Ncp>0; 

    for j=1:Nx; 

  for k=Nx+1:Nx+Ncp;  

                t=Asolid'; 

    z(j,k)=t(k-Nx,j); 

        end 

    end 

    end 

     

    if Ncp>0 

    for j=Nx+1:Nx+Ncp;  

  for k=1:Nx 

    z(j,k)=-1*Asolid(k,j-Nx)*(SI(j-Nx)/Xsolution(k)); 

       end 

    end 

    end 

     

    if Ncp>0 
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    for j=Nx+1:Nx+Ncp 

        for k=Nx+1:Nx+Ncp 

            z(j,k)=0; 

        end 

    end 

    end 

 

    R=[Rmass; RSI]; X=[Xsolution; Xsolid]; 

     

    deltaX=z\(-1*R); 

    %deltaX=-1*inv(z)*(R); 

 one_over_del=max([1, -1*deltaX'./(0.5*X')]); 

 del=1/one_over_del; 

 X=X+del*deltaX; 

     

    %X=X+deltaX; 

 

 tst=sum(abs(R)); 

 if tst<=criteria; break; end 

       

end 

 

logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc species 

RSI=ones(size(SI))-SI; 

 

if Ncp>0; Rmass=Asolution'*C+Asolid*Xsolid-T; end % calc residuals in mass balance  

if Ncp==0; Rmass=Asolution'*C-T; end % calc residuals in mass balance  

 

err=[Rmass]; 

 

species=[C]; 

solids=Xsolid; 

 

end 

 

% ----------- NR method just solution species 

 

function 

[species,err,SI]=NR_method_solution(Asolution,Asolid,Ksolid,Ksolution,T,guess,iteratio

ns,criteria) 

 

Nx=size(Asolution,2); Ncp=size(Asolid,1); Nc=size(Asolution,1); X=guess; 

 

for II=1:iterations 

 

    Xsolution=X(1:Nx);  
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 logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc species 

  

    Rmass=Asolution'*C-T; 

     

    Q=Asolid*log10(Xsolution); SI=10.^(Q+Ksolid); 

    RSI=ones(size(SI))-SI; 

  

 % calc the jacobian 

 

 z=zeros(Nx,Nx);  

 

 for j=1:Nx;  

  for k=1:Nx;  

    for i=1:Nc; 

z(j,k)=z(j,k)+Asolution(i,j)*Asolution(i,k)*C(i)/Xsolution(k); end 

        end 

    end 

 

    R=[Rmass]; X=[Xsolution]; 

     

    deltaX=z\(-1*R); 

    %deltaX=-1*inv(z)*(R); 

 one_over_del=max([1, -1*deltaX'./(0.5*X')]); 

 del=1/one_over_del; 

 X=X+del*deltaX; 

     

    %X=X+deltaX; 

 

 tst=sum(abs(R)); 

 if tst<=criteria; break; end 

       

end 

 

logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc species 

RSI=ones(size(SI))-SI; 

 

Q=Asolid*log10(Xsolution); SI=10.^(Q+Ksolid); 

RSI=ones(size(SI))-SI; 

     

Rmass=Asolution'*C-T;  

 

err=[Rmass]; 

 

species=[C]; 
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end 

 

% ----- equilib definition ---------------- 

 

function 

[KSOLUTION,KSOLID,ASOLUTION,ASOLID,SOLUTIONNAMES,SOLIDNAMES]

=get_equilib_defn(flag); 

 

logKw=-14.082; 

logKh1=-7.982; 

logKh1=-7.182; 

logBh2=-15.2; 

logBh2=-14.8; 

logBh3=-27.2; 

logBh4=-40.4; 

logBh22=-10.98; 

pKa1=6.3; 

pKa2=10.3; 

logKCuCO3=6.77; 

%logKCuCO3=6.47; 

logKCuCO32=10.2; 

logKCuHCO3=1.03; 

logKCuCl=0.3; 

logKCuTrp=8.29; 

pKa1Trp=2.1; %2.35; 

pKa2Trp=9.33; %9.33; 

logKCuTrp2=15.5; 

logKCuHTrp=2.47; 

 

KSOLUTION=[... 

     0 

     0 

     0 

     0 

     0 

     logKw 

     logKh1 

     logBh2 

     logBh3 

     logBh4 

     logBh22 

     pKa2 

     pKa2+pKa1 

     logKCuCO3 

     logKCuCO32 

     logKCuHCO3 
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     logKCuCl 

     logKCuTrp 

     pKa2Trp 

     pKa2Trp+pKa1Trp 

     logKCuTrp2 

     logKCuHTrp]; 

  

ASOLUTION=[... 

    %H      M   CO3   Cl  Trp 

     1      0     0     0   0  

     0      1     0     0   0 

     0      0     1     0   0 

     0      0     0     1   0  

     0      0     0     0   1 

     -1     0     0     0   0  

     -1     1     0     0   0 

     -2     1     0     0   0 

     -3     1     0     0   0 

     -4     1     0     0   0 

     -2     2     0     0   0  

     1      0     1     0   0 

     2      0     1     0   0  

     0      1     1     0   0 

     0      1     2     0   0  

     1      1     1     0   0  

     0      1     0     1   0 

     0      1     0     0   1  

     1      0     0     0   1  

     2      0     0     0   1 

     0      1     0     0   2 

     1      1     0     0   1]; 

 

SOLUTIONNAMES=strvcat('H','Cu','CO3','Cl','Trp','OH','CuOH','CuOH2','CuOH3','Cu

OH4','Cu2OH2','HCO3','H2CO3','CuCO3aq','CuCO32aq','CuHCO3','CuCl','CuTrp','HTrp

','H2Trp','CuTrp2','CuHTrp'); 

 

  

    % -------------- solid values 

 

    logKsp=-18.7; 

    logKcuoh2s=-logKsp+2*logKw; 

    logKCuCO3s=11.5; 

    logKmalachite=33.18+2*logKw; 

    logKmalachite=32.0+2*logKw; 

    logKtenorite=20.48+2*logKw; 

    if flag==1; logKmalachite=1; end 
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    if flag==2; logKtenorite=-100; end 

    if flag==3; logKtenorite=-100; logKmalachite=1; end 

     

    logKcuoh2s=-10; 

    logKCuCO3s=1; 

    %logKtenorite=-100; 

    %logKmalachite=1; 

     

    KSOLID=[... 

    logKtenorite 

    logKmalachite 

    logKcuoh2s 

    logKCuCO3s]; 

 

    ASOLID=[... 

     -2      1   0       0  0 

     -2     2    1       0  0  

     -2     1    0      0   0  

     0      1    1      0   0]; 

  

 SOLIDNAMES=strvcat('tenorite','malachite','CuOH2s','CuCO3s'); 

 

 

end 

 

% ----------- for fixed pH ---------------- 

 

function 

[Ksolution,Ksolid,Asolution,Asolid]=get_equilib_fixed_pH(KSOLUTION,KSOLID,AS

OLUTION,ASOLID,pH) 

 

    [N,M]=size(ASOLUTION); 

    Ksolution=KSOLUTION-ASOLUTION(:,1)*pH; 

    Asolution=[ASOLUTION(:,2:M)]; 

    [N,M]=size(ASOLID); 

    Ksolid=KSOLID-ASOLID(:,1)*pH; 

    Asolid=[ASOLID(:,2:M)]; 

 

end 
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APPENDIX B  

B1. DOC quality of water samples collected 

 

Table B1. Dissolved organic carbon and fluorescent measurements in arbitrary 

fluorescent units (arb) of humic- (HA), fulvic- (FA), tryptophan- (Trp) and tyrosine-like 

(Tyr) components of ambient water samples.   

Sample Site Location 
DOC 

(mg C L
-1

) 

HA 

(arb) 

FA 

(arb) 

Trp 

(arb) 

Tyr 

(arb) 

Bouctouche NB 4.36 2.29 0.95 0.033 0.16 

Petit Rocher NB 2.13 0.57 0.50 0.120 0.26 

Major Kollock 

Creek 
NB 7.86 4.74 1.53 0.000 0.11 

Naufrage Harbour PEI 5.5 2.89 0.92 0.000 0.03 

Rathtrevor Beach BC 1.52 0.02 0.04 0.004 0.01 

Hawke's Bay NFLD 1.54 0.19 0.29 0.007 0.04 

Blackberry Bay BC 1.45 0.58 0.59 0.042 0.11 

Chesterman Beach BC 0.82 0.09 0.18 0.066 0.11 

Jimbo 
Miami, 

FL 
1.34 0.21 0.40 0.049 0.10 

Bathurst #1 NB 2.21 0.74 0.58 0.031 0.17 

Bathhurst #2 NB 3.72 1.76 1.20 0.030 0.23 

Shippaggan NB 2.05 0.59 0.54 0.022 0.13 

Salt Marsh S of 

Shippaggan 
NB 3.96 1.46 1.03 0.008 0.15 

Neguac NB 3.93 1.71 1.13 0.000 0.15 

Loggiecroft (KB 

Park) 
NB 5.17 3.09 1.60 0.000 0.11 

Escuminac NB 3.41 1.45 0.95 0.000 0.12 

Baie Sainte Anne NB 3.91 2.44 1.56 0.000 0.14 

St Peters Harbour PEI 2.42 0.76 0.59 0.060 0.15 

St Peters Bay PEI 2.39 1.11 0.84 0.021 0.13 

North Lake PEI 2.43 1.32 0.73 0.000 0.12 
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Ryan‟s (KB Park) NB 2.96 1.82 1.05 0.000 0.10 

Richibucto NB 2.59 1.26 0.91 0.056 0.17 

Bouchtouche (BT) NB 3.27 1.30 1.04 0.016 0.14 

Little BT River NB 2.84 1.12 0.88 0.022 0.13 

Cocagne NB 2.90 1.42 1.07 0.000 0.12 

Grande Digue NB 4.29 2.16 1.62 0.000 0.11 

Port Alberni BC 0.62 0.09 0.19 0.027 0.10 

Longbeach 

Incinerator Rock 
BC 2.08 0.12 0.28 0.009 0.10 
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B2. Effects of salinity adjustment on LC50 

 

Three water samples were chosen to measure toxicity at ambient salinity and after 

salinity adjustment to observe whether the LC50 is significantly affected by salinity 

adjustment to 30 ppt.  These samples were chosen to represent low, mid and high salinity 

before adjustment. The results of the toxicity assays are shown Table B1. For Bouctouche 

and Naufrage Harbour which represented the low and high ambient salinities, there was 

no significant difference in LC50 before and after salinity adjustment. Major Kollock 

Creek, with a mid-range ambient salinity of 12.8 ppt did show a significant difference in 

LC50 values before and after salinity adjustment.  The ambient salinity was significantly 

more protective than the salted up sample.  These results suggest LC50 may be influenced 

by the salting up of the water samples to 30 ppt.  However, the data shown here suggest a 

site-specific influence on salting up and change in LC50. 

Table B2. Copper LC50 to Brachionus plicatilis before and after salinity adjustment. 

Sample 

 

Salinity (ppt) LC50 (nM) 

Before After Before After 

Bouctouche 19.1 30.1 686 

(602-785) 

662 

(589-748) 

Major Kollock Creek 12.8 29.9 1247 

(1104-1416) 

980 

(883-1087) 

Naufrage Harbour 4.3 30.1 862 

(740-1013) 

725 

(647-813) 
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B3. Contour plots for sampling sites used in toxicity assays 
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Figure B1. Fluorescence excitation-emission contour plots for a. Bouctouche, b. Petit 

Rocher, c. Major Kollock Creek, d. Naufrage Harbour, e. Rathtrevor Beach, f. Hawke‟s 

Bay, g. Blackberry Bay, h. Chesterman Beach, and i. Jimbo.  
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APPENDIX C 

 

C1. MATLAB script for determining contribution of fluorophores to total 

fluorescence during fluorescence quenching titrations with copper 

 

function II=Quenching_fitting_HB_4_components 

 

global humicspeci Tyrspeci Trpspeci fulvicspeci 

 

figure(1); clf; 

 

load /home/clear/Desktop/Tara_PARAFAC_and_Quenching/TaraFinalfour.mat 

 

%ex of 270 nm is the 8th excitation wavelength in the surfaces for each component 

 

humicspec=surf1(8,:); % determined which is which by looking at spec 

Tyrspec=surf4(8,:); % determined which is which by looking at spec 

Trpspec=surf3(8,:);% determined which is which by looking at spec 

fulvicspec=surf2(8,:); 

 

plot(em,humicspec,'b',em,Tyrspec,'g',em,Trpspec,'r',em,fulvicspec,'m','linewidth',2) 

set(gca,'fontsize',14,'linewidth',2) 

xlabel('emission wavelength (nm)','fontsize',14) 

ylabel('Fluorescence intensity (arb)','fontsize',14) 

 

print fourcomponentEMspec.eps -depsc2 

print fourcomponentEMspec.png -dpng 

 

% now want to load the data from the quenching expt. 

 

lowEM=250; highEM=600; % need to specify range of data 

scatter=270*2; scatterwidth=25; % need to specify the scatter data to NaN 

 

[CuT,EM,F]=getquenchingdata(lowEM,highEM,scatter,scatterwidth); 

 

%plot(EM,F) 

 

% need to interpolate so same em for model spec components as for 

% measurements 

 

humicspeci=interp1(em,humicspec,EM,'spline',0); 

Tyrspeci=interp1(em,Tyrspec,EM,'spline',0); 

Trpspeci=interp1(em,Trpspec,EM,'spline',0); 

fulvicspeci=interp1(em,fulvicspec,EM,'spline',0); 
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beta0=log10([20000 5000 5000 20000]); % initial guess and log so force positive values 

betatst=10.^beta0; 

%  

Ftst=betatst(1)*humicspeci+betatst(2)*Tyrspeci+betatst(3)*Trpspeci+betatst(4)*fulvicsp

eci; 

%  

figure(1); clf; 

plot(EM,F(:,1),'ko','markersize',4) 

hold on 

plot(EM,Ftst,'k','linewidth',2) 

plot(EM,betatst(1)*humicspeci,'b--','linewidth',2) 

plot(EM,betatst(2)*Tyrspeci,'g--','linewidth',2) 

plot(EM,betatst(3)*Trpspeci,'r--','linewidth',2) 

plot(EM,betatst(4)*fulvicspeci,'m--','linewidth',2) 

 

[beta,resid,J,Sigma,mse] = nlinfit(EM,F(:,1),@linearmodel,beta0); 

 

rBETA=10.^beta; 

 

Ftst=rBETA(1)*humicspeci+rBETA(2)*Tyrspeci+rBETA(3)*Trpspeci+rBETA(4)*fulvi

cspeci; 

 

figure(1); clf; 

plot(EM,F(:,1),'ko','markersize',2,'markerfacecolor','b') 

hold on 

plot(EM,Ftst,'k','linewidth',2) 

plot(EM,rBETA(1)*humicspeci,'b--','linewidth',2) 

plot(EM,rBETA(2)*Tyrspeci,'g--','linewidth',2) 

plot(EM,rBETA(3)*Trpspeci,'r--','linewidth',2) 

plot(EM,rBETA(4)*fulvicspeci,'m--','linewidth',2) 

 

set(gca,'fontsize',14,'linewidth',2) 

xlabel('emission wavelength (nm)','fontsize',14) 

ylabel('Fluorescence intensity (arb)','fontsize',14) 

 

print example4fit.eps -depsc2 

print example4fit.png -dpng 

 

% now fit them all 

 

for i=1:size(CuT,2) 

    [beta,resid,J,Sigma,mse] = nlinfit(EM,F(:,i),@linearmodel,beta0); 

    betas(i,:)=10.^beta; 

end 

 

figure(1); clf 
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subplot(221); plot(CuT,betas(:,1),'ko','markersize',8,'markerfacecolor','b') 

hold on; 

subplot(222); plot(CuT,betas(:,2),'ko','markersize',8,'markerfacecolor','g') 

subplot(223); plot(CuT,betas(:,3),'ko','markersize',8,'markerfacecolor','r') 

subplot(224); plot(CuT,betas(:,4),'ko','markersize',8,'markerfacecolor','m') 

 

set(gca,'fontsize',14,'linewidth',2) 

xlabel('emission wavelength (nm)','fontsize',14) 

ylabel('CuT (ppb)','fontsize',14) 

 

print RW4plot.png -dpng 

 

display=[betas] 

 

II=1; % to complete syntax of the function 

 

end 

 

 

 

function II=linearmodel(beta,EM) 

 

global humicspeci Tyrspeci Trpspeci fulvicspeci 

 

k1=10^beta(1); k2=10^beta(2); k3=10^beta(3); k4=10^beta(4); 

 

Fmodel=humicspeci*k1+Tyrspeci*k2+k3*Trpspeci+k4*fulvicspeci; 

 

II=Fmodel; 

 

end 

 

 

function [CuT,EM,F]=getquenchingdata(EMlow,EMhigh,scatter,scatterwidth) 

 

data=[... 

 

Quenching Data inserted here 

 

]; 

 

[N,M]=size(data); c=0; 

 

CuT=data(1,2:M); 

EM=data(2:N,1); 
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F=data(2:N,2:M); 

 

for i=1:size(EM,1) 

   EMtst=EM(i); 

   if EMtst>=EMlow;  

       if EMtst<=EMhigh;  

           c=c+1; 

           EMM(c)=EM(i); 

           f(c,:)=F(i,:); 

       end 

   end 

end 

 

EM=EMM'; F=f; 

 

for i=1:size(EM,1) 

    EMtst=EM(i); 

    if EMtst>=scatter-scatterwidth 

        if EMtst<=scatter+scatterwidth 

            F(i,:)=NaN*ones(size(F(i,:))) 

        end 

    end 

end 

 

end 
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C2. MATLAB script for Ryan-Weber fitting combined with modeling free copper 

 

function II=testBT_2D 

 

figure(1); clf;  

pH=8.0;  

p2run=[ 9.8558    9.8213   -6.6461   -5.9737   -0.1394   -0.0954] 

% error -3.6348 delta -0.1597 

 

logK1=p2run(1); logK2=p2run(2);  

LT1=10^p2run(3); LT2=10^p2run(4);  

lessefficient1=10^p2run(5); lessefficient2=10^p2run(6);  

 

flag=2; 

%lessefficient1=0.5; lessefficient2=0.702; flag=3; % flag for solid species 

% flag=2 malachite only 

% flag=1 tenorite only 

% flag=3 no ppte 

 

[CuT,F1meas, F2meas]=returndata; % note CuT=0 replaced by 0.01 ppb.  can't have zero 

value in equilib solver. 

% need to replace with measured CuT. 

 

CuTplot=[1e-8:0.05e-6:max(CuT)*1.1]; CuT=CuT'; 

 

[L1,CuL1,L2,CuL2,Cu]=Cu_seawater_calculate_fluorescence_two_ligand(CuTplot,pH,l

ogK1,logK2,LT1,LT2,flag); 

 

n=size(F1meas,1); constantF=0; %constantF=1.4; 

k11=mean(F1meas(1:3)-constantF)/LT1; %k12=mean(F1meas(n-2:n)-constantF)/LT1; 

%k12=0; 

k12=lessefficient1*k11; 

F1calc=k11*L1+k12*CuL1+constantF; 

 

n=size(F2meas,1); constantF=0; %constantF=0.64; 

k21=mean(F2meas(1:3)-constantF)/LT2; %k22=mean(F2meas(n-2:n)-constantF)/LT2; 

%k22=0; 

k22=lessefficient2*k21; 

F2calc=k21*L2+k22*CuL2+constantF; 

 

figure(1); %subplot(221) 

plot(CuT,F1meas,'ko',CuTplot,F1calc,'b--

','markersize',8,'markerfacecolor','b','linewidth',2) 

set (gca, 'linewidth', 2, 'fontsize', 16) 

xlabel ('Cu_T (M)', 'fontsize', 16, 'fontweight', 'bold') 
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ylabel ('Fluorescence (arb)', 'fontsize', 16, 'fontweight', 'bold') 

 

figure(2); %subplot(222) 

plot(CuT,F2meas,'ko',CuTplot,F2calc,'r--

','markersize',8,'markerfacecolor','r','linewidth',2) 

set (gca, 'linewidth', 2, 'fontsize', 16) 

xlabel ('Cu_T (M)', 'fontsize', 16, 'fontweight', 'bold') 

ylabel ('Fluorescence (arb)', 'fontsize', 16, 'fontweight', 'bold') 

 

figure(3); %subplot(223) 

plot(CuTplot,log10(Cu),'k--','linewidth',2) 

LC50=662e-9; freeCuatLC50=10^(-9.98); 

hold on 

plot(LC50,log10(freeCuatLC50),'ko','markersize',10,'markerfacecolor','b') 

set (gca, 'linewidth', 2, 'fontsize', 16) 

xlabel ('Cu_T (M)', 'fontsize', 16, 'fontweight', 'bold') 

ylabel ('log[Cu^{2+}]', 'fontsize', 16, 'fontweight', 'bold') 

 

% now fitting 

 

pguess=[logK1 logK2 log10(LT1) log10(LT2) log10(lessefficient1) 

log10(lessefficient2)]; 

lbfactor=0.8; ubfactor=1.2; 

LBfactor=[lbfactor lbfactor   1/lbfactor 1/lbfactor 1/lbfactor 1/lbfactor]; 

UBfactor=[ubfactor ubfactor  1/ubfactor 1/ubfactor 1/ubfactor 1/ubfactor]; 

lb=LBfactor.*pguess; 

ub=UBfactor.*pguess; 

%lb=[6 6]; %lb=[]; 

%ub=[10 10]; %ub=[]; 

%options = optimset(@fmincon); 

options = optimset(@fminunc); 

%options = optimset(@fminsearch); 

%options = optimset(options,'Display','iter','TolFun',1e-6,'TolX',1e-

6,'MaxFunEvals',1000,'TolCon',0.3,'ScaleProblem','obj-and-constr'); 

options = optimset(options,'Display','iter','TolFun',1e-4,'TolX',1e-

4,'MaxFunEvals',1000,'ScaleProblem','obj-and-constr'); 

 

%x = fmincon(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon) 

%[p2] = fmincon(@returnFerr,pguess,[],[],[],[],lb,ub,[],options,CuT',F1,F2,pH,flag) 

 

f = @(p)returnFerr(p,CuT,F1meas,F2meas,pH,flag); 

c = @(p)mycon(p,662e-9,pH,flag); 

t=f(pguess) 

[tc,tcc]=myconreal(pguess,662e-9,pH,flag) 

 

pause 
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 [p2] = fminunc(f,pguess,options) 

%[p2]=fminsearch(f,pguess,options) 

%p2 = fmincon(f,pguess,[],[],[],[],lb,ub,c,options) 

 

t=f(p2) 

[tc,tcc]=myconreal(p2,662e-9,pH,flag) 

 

logK1=p2(1); logK2=p2(2); LT1=10^p2(3); LT2=10^p2(4); lessefficient1=10^p2(5); 

lessefficient2=10^p2(6); 

 

[L1,CuL1,L2,CuL2,Cu]=Cu_seawater_calculate_fluorescence_two_ligand(CuTplot,pH,l

ogK1,logK2,LT1,LT2,flag); 

 

n=size(F1meas,1); constantF=0; %constantF=1.4; 

k11=mean(F1meas(1:3)-constantF)/LT1; %k12=mean(F1meas(n-2:n)-constantF)/LT1; 

%k12=0; 

k12=lessefficient1*k11; 

F1calc=k11*L1+k12*CuL1+constantF; 

 

n=size(F2meas,1); constantF=0; %constantF=0.64; 

k21=mean(F2meas(1:3)-constantF)/LT2; %k22=mean(F2meas(n-2:n)-constantF)/LT2; 

%k22=0; 

k22=lessefficient2*k21; 

F2calc=k21*L2+k22*CuL2+constantF; 

 

figure(1); subplot(221); hold on 

plot(CuTplot,F1calc,'linewidth',2) 

 

figure(1); subplot(222); hold on 

plot(CuTplot,F2calc,'r','linewidth',2) 

 

figure(1); subplot(223); hold on 

plot(CuTplot,log10(Cu),'k','linewidth',2) 

 

end 

 

function II=returnFerr(p,CuT,F1meas,F2meas,pH,flag) 

 

logK1=p(1); logK2=p(2); LT1=10^p(3); LT2=10^p(4); lessefficient1=10^p(5); 

lessefficient2=10^p(6); 

%LT1=5e-6; LT2=2e-6; 

 

[L1,CuL1,L2,CuL2,Cu]=Cu_seawater_calculate_fluorescence_two_ligand(CuT,pH,logK

1,logK2,LT1,LT2,flag); 
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n=size(F1meas,1); constantF=0; %constantF=1.4; 

k11=mean(F1meas(1:3)-constantF)/LT1; %k12=mean(F1meas(n-2:n)-constantF)/LT1; 

%k12=0; 

k12=lessefficient1*k11; 

F1calc=k11*L1+k12*CuL1+constantF; 

 

n=size(F2meas,1); constantF=0; %constantF=0.64; 

k21=mean(F2meas(1:3)-constantF)/LT2; %k22=mean(F2meas(n-2:n)-constantF)/LT2; 

%k22=0; 

k22=lessefficient2*k21; 

F2calc=k21*L2+k22*CuL2+constantF; 

 

residuals=[F1meas-F1calc' F2meas-F2calc']; 

 

II=log10(det(residuals'*residuals)); 

%II=(det(residuals'*residuals)); 

 

end 

 

function 

[II,GG,HH,QQ,RR]=Cu_seawater_calculate_fluorescence_two_ligand(CuT,pH,logK1,lo

gK2,LT1,LT2,flag) 

 

%CuT=1e-7:5e-7:10e-6; pH=8.2; logK1=8; LT1=1e-6; flag=3; % flag for solid species 

% flag=2 malachite only 

% flag=1 tenorite only 

% flag=3 no ppte 

     

[species, 

names]=Cu_seawater_species_two_ligand(CuT,pH,logK1,logK2,LT1,LT2,flag); 

 

for i=1:size(CuT,2) 

for j=1:size(species,2) 

        txt=[names(j,:),'(i)=species(i,j);']; 

        eval(txt) 

end 

end 

 

%plot(CuT,L1,'ko') 

 

II=L1; GG=CuL1; HH=L2; QQ=CuL2; RR=Cu; 

 

end 

 

function [II,GG]=Cu_seawater_species_two_ligand(CuT,pH,logK1,logK2,LT1,LT2,flag) 
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warning('off') 

 

% seawater concentrations 

 

ClT=0.6;  

NaHCO3=200; %mg/L from recipe 

NaHCO3AW=100; %g/mol 

CT=(NaHCO3*1e-3)/NaHCO3AW; 

 

[KSOLUTION,KSOLID,ASOLUTION,ASOLID,SOLUTIONNAMES,SOLIDNAMES]

=get_equilib_defn(logK1,logK2,flag); 

% flag determines what solids can form. 

 

numpts=size(CuT,2);  

Ncp=size(ASOLID,1); 

solid_summary=zeros(numpts,Ncp); 

 

for i=1:size(SOLIDNAMES,1) 

    txt=[SOLIDNAMES(i,:),'=zeros(numpts,1);']; eval(txt) 

end 

 

for i=1:size(CuT,2) 

     

    % adjust for fixed pH 

     

    

[Ksolution,Ksolid,Asolution,Asolid]=get_equilib_fixed_pH(KSOLUTION,KSOLID,AS

OLUTION,ASOLID,pH); 

 

    Asolid_SI_check=Asolid; Ksolid_SI_check=Ksolid; 

     

    % number of different species 

    Nx=size(Asolution,2); Ncp=size(Asolid,1); Nc=size(Asolution,1); 

     

    % initial guess 

    Cu_guess=[-10.5]; CuOH2s_guess=0.1*CuT(i);  CuCO3s_guess=0.1*CT; 

    guess=[10.^Cu_guess CT./10 CuOH2s_guess CuCO3s_guess]; iterations=1000; 

criteria=1e-16; 

    T=[CuT(i) CT ClT LT1 LT2]; guess=T./10; 

     

    % calculate species using NR 

   

    solids=zeros(1,Ncp); 
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    if i==1; 

[species,err,SI]=NR_method_solution(Asolution,Asolid,Ksolid,Ksolution,T',[guess(1:Nx

)]',iterations,criteria); end 

    if i>1;  

        

[species,err,SI]=NR_method_solution(Asolution,Asolid,Ksolid,Ksolution,T',[species(2:N

x+1)],iterations,criteria);  

    end 

 

    for qq=1:Ncp 

     

        [Y,I]=max(SI); 

     

        if Y>1.000000001 

            Iindex(qq)=I; 

            Asolidtemp(qq,:)=Asolid_SI_check(I,:);  

            Ksolidtemp(qq,:)=Ksolid_SI_check(I,:);  

            solidguess(qq)=T(I)*0.5; 

           % solidguess(qq)=min(T)*0.015; 

            if i>1; 

                %if max(solids)>0 

                txt=['solidguess(qq)=',SOLIDNAMES(I,:),'(i-1);']; eval(txt); 

                %end 

            end 

            guess=[species(2:Nx+1)' solidguess]; 

            

[species,err,SItst,solids]=NR_method(Asolution,Asolidtemp',Ksolidtemp,Ksolution,T',gu

ess',iterations,criteria); 

             for q=1:size(solids,1);  

                txt=[SOLIDNAMES(Iindex(q),:),'(i)=solids(q);']; eval(txt) 

              end 

        end 

     

        Q=Asolid*log10(species(2:Nx+1)); SI=10.^(Q+Ksolid); Ifirst=I; 

     

    end 

     

    Q=Asolid*log10(species(2:Nx+1)); SI=10.^(Q+Ksolid); 

    SI_summary(i,:)=SI; 

     

    species_summary(i,:)=species; 

    mass_err_summary(i,:)=(err(1)); 

     

    Asolidtemp=[]; Ksolidtemp=[]; 

 

end 
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for i=1:size(species_summary,2) 

    txt=[SOLUTIONNAMES(i,:),'=species_summary(:,i);']; eval(txt) 

end 

 

II=[species_summary tenorite malachite CuCO3s CuOH2s]; 

GG=strvcat(SOLUTIONNAMES,'tenorite','malachite','CuCO3s','CuOH2s'); 

 

 

end 

 

% -------------------- NR method solids present 

 

function 

[species,err,SI,solids]=NR_method(Asolution,Asolid,Ksolid,Ksolution,T,guess,iterations,

criteria) 

 

Nx=size(Asolution,2); Ncp=size(Asolid,2); Nc=size(Asolution,1); X=guess; 

 

for II=1:iterations 

 

    Xsolution=X(1:Nx); Xsolid=[]; if Ncp>0; Xsolid=X(Nx+1:Nx+Ncp); end 

     

 logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc species 

  

    if Ncp>0;  

        Rmass=Asolution'*C+Asolid*Xsolid-T;  

    end 

 

 

    if Ncp==0; Rmass=Asolution'*C-T; end % calc residuals in mass balance  

     

    Q=Asolid'*log10(Xsolution); SI=10.^(Q+Ksolid); 

    RSI=ones(size(SI))-SI;  

     

 % calc the jacobian 

 

 z=zeros(Nx+Ncp,Nx+Ncp);  

 

 for j=1:Nx;  

  for k=1:Nx;  

    for i=1:Nc; 

z(j,k)=z(j,k)+Asolution(i,j)*Asolution(i,k)*C(i)/Xsolution(k); end 

        end 

    end 
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    if Ncp>0; 

    for j=1:Nx; 

  for k=Nx+1:Nx+Ncp;  

                t=Asolid'; 

    z(j,k)=t(k-Nx,j); 

        end 

    end 

    end 

     

    if Ncp>0 

    for j=Nx+1:Nx+Ncp;  

  for k=1:Nx 

    z(j,k)=-1*Asolid(k,j-Nx)*(SI(j-Nx)/Xsolution(k)); 

       end 

    end 

    end 

     

    if Ncp>0 

    for j=Nx+1:Nx+Ncp 

        for k=Nx+1:Nx+Ncp 

            z(j,k)=0; 

        end 

    end 

    end 

 

    R=[Rmass; RSI]; X=[Xsolution; Xsolid]; 

     

    deltaX=z\(-1*R); 

    %deltaX=-1*inv(z)*(R); 

 one_over_del=max([1, -1*deltaX'./(0.5*X')]); 

 del=1/one_over_del; 

 X=X+del*deltaX; 

     

    %X=X+deltaX; 

 

 tst=sum(abs(R)); 

 if tst<=criteria; break; end 

       

end 

 

logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc species 

RSI=ones(size(SI))-SI; 

 

if Ncp>0; Rmass=Asolution'*C+Asolid*Xsolid-T; end % calc residuals in mass balance  

if Ncp==0; Rmass=Asolution'*C-T; end % calc residuals in mass balance  
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err=[Rmass]; 

 

species=[C]; 

solids=Xsolid; 

 

end 

 

% ----------- NR method just solution species 

 

function 

[species,err,SI]=NR_method_solution(Asolution,Asolid,Ksolid,Ksolution,T,guess,iteratio

ns,criteria) 

 

Nx=size(Asolution,2); Ncp=size(Asolid,1); Nc=size(Asolution,1); X=guess; 

 

for II=1:iterations 

 

    Xsolution=X(1:Nx);  

     

 logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc species 

  

    Rmass=Asolution'*C-T; 

     

    Q=Asolid*log10(Xsolution); SI=10.^(Q+Ksolid); 

    RSI=ones(size(SI))-SI; 

  

 % calc the jacobian 

 

 z=zeros(Nx,Nx);  

 

 for j=1:Nx;  

  for k=1:Nx;  

    for i=1:Nc; 

z(j,k)=z(j,k)+Asolution(i,j)*Asolution(i,k)*C(i)/Xsolution(k); end 

        end 

    end 

 

    R=[Rmass]; X=[Xsolution]; 

     

    deltaX=z\(-1*R); 

    %deltaX=-1*inv(z)*(R); 

 one_over_del=max([1, -1*deltaX'./(0.5*X')]); 

 del=1/one_over_del; 

 X=X+del*deltaX; 

     

    %X=X+deltaX; 
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 tst=sum(abs(R)); 

 if tst<=criteria; break; end 

       

end 

 

logC=(Ksolution)+Asolution*log10(Xsolution); C=10.^(logC); % calc species 

RSI=ones(size(SI))-SI; 

 

Q=Asolid*log10(Xsolution); SI=10.^(Q+Ksolid); 

RSI=ones(size(SI))-SI; 

     

Rmass=Asolution'*C-T;  

 

err=[Rmass]; 

 

species=[C]; 

 

end 

 

 

 

% ----- equilib definition ---------------- 

 

function 

[KSOLUTION,KSOLID,ASOLUTION,ASOLID,SOLUTIONNAMES,SOLIDNAMES]

=get_equilib_defn(logK1,logK2,flag); 

 

logKw=-14.082; 

logKh1=-7.982; 

logKh1=-7.182; 

logBh2=-15.2; 

logBh2=-14.8; 

logBh3=-27.2; 

logBh4=-40.4; 

logBh22=-10.98; 

pKa1=6.3; 

pKa2=10.3; 

logKCuCO3=6.77; 

%logKCuCO3=6.47; 

logKCuCO32=10.2; 

logKCuHCO3=1.03; 

logKCuCl=0.3; 

logKCuL1=logK1; 

logKCuL2=logK2; 
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KSOLUTION=[... 

     0 

     0 

     0 

     0 

     0 

     0 

     logKw 

     logKh1 

     logBh2 

     logBh3 

     logBh4 

     logBh22 

     pKa2 

     pKa2+pKa1 

     logKCuCO3 

     logKCuCO32 

     logKCuHCO3 

     logKCuCl 

     logKCuL1 

     logKCuL2]; 

  

ASOLUTION=[... 

    %H      M   CO3   Cl  L1  L2 

     1      0     0     0   0   0 

     0      1     0     0   0   0 

     0      0     1     0   0   0 

     0      0     0     1   0   0 

     0      0     0     0   1   0 

     0      0     0     0   0   1 

     -1     0     0     0   0   0 

     -1     1     0     0   0   0 

     -2     1     0     0   0   0 

     -3     1     0     0   0   0 

     -4     1     0     0   0   0 

     -2     2     0     0   0   0 

     1      0     1     0   0   0 

     2      0     1     0   0   0 

     0      1     1     0   0   0 

     0      1     2     0   0   0 

     1      1     1     0   0   0 

     0      1     0     1   0   0 

     0      1     0     0   1   0 

     0      1     0     0   0   1]; 
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SOLUTIONNAMES=strvcat('H','Cu','CO3','Cl','L1','L2','OH','CuOH','CuOH2','CuOH3','

CuOH4','Cu2OH2','HCO3','H2CO3','CuCO3aq','CuCO32aq','CuHCO3','CuCl','CuL1','Cu

L2'); 

 

  

    % -------------- solid values 

 

    logKsp=-18.7; 

    logKcuoh2s=-logKsp+2*logKw; 

    logKCuCO3s=11.5; 

    logKmalachite=33.18+2*logKw; 

    logKmalachite=32.0+2*logKw; 

    logKtenorite=20.48+2*logKw; 

    if flag==1; logKmalachite=1; end 

    if flag==2; logKtenorite=-100; end 

    if flag==3; logKtenorite=-100; logKmalachite=1; end 

     

    logKcuoh2s=-10; 

    logKCuCO3s=1; 

    %logKtenorite=-100; 

    %logKmalachite=1; 

     

    KSOLID=[... 

    logKtenorite 

    logKmalachite 

    logKcuoh2s 

    logKCuCO3s]; 

 

    ASOLID=[... 

     -2      1   0       0  0 0 

     -2     2    1       0  0 0 

     -2     1    0      0   0 0 

     0      1    1      0   0 0]; 

  

 SOLIDNAMES=strvcat('tenorite','malachite','CuOH2s','CuCO3s'); 

 

 

end 

 

% ----------- for fixed pH ---------------- 

 

function 

[Ksolution,Ksolid,Asolution,Asolid]=get_equilib_fixed_pH(KSOLUTION,KSOLID,AS

OLUTION,ASOLID,pH) 

 

    [N,M]=size(ASOLUTION); 
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    Ksolution=KSOLUTION-ASOLUTION(:,1)*pH; 

    Asolution=[ASOLUTION(:,2:M)]; 

    [N,M]=size(ASOLID); 

    Ksolid=KSOLID-ASOLID(:,1)*pH; 

    Asolid=[ASOLID(:,2:M)]; 

 

end 

 

function [MT,F1,F2]=returndata 

 

% BT data 

 

data=[... 

% Humic Fulvic Tyr Trp 

0.01 3.6139 0.7321 0.6127 0.2414 

9.99 3.3868 0.7062 0.6823 0.2871 

29.9 3.1425 0.6647 0.6311 0.2053 

59.6 2.8862 0.6281 0.6017 0.1281 

99 2.6422 0.6102 0.582 0.1037 

% 138.1 2.4727 0.5915 0.5852 0.0889 

% 186.5 2.3094 0.5687 0.5678 0.0702 

% 234.4 2.1965 0.545 0.5622 0.073 

% 291.3 2.0608 0.5264 0.5755 0.1107 

% 347.5 1.9673 0.5665 0.6333 0.1481 

0.01 3.672 0.7538 0.6637 0.5073 

9.99 3.4398 0.7104 0.7338 0.724 

29.9 3.1916 0.6757 0.7053 0.6178 

59.6 2.9207 0.6512 0.6726 0.5436 

99 2.7041 0.6235 0.6685 0.5763 

% 138.1 2.513 0.6234 0.6425 0.4652 

% 186.5 2.3577 0.5857 0.6249 0.4913 

% 234.4 2.218 0.5671 0.6345 0.4695 

% 291.3 2.1269 0.5578 0.653 0.4415 

% 347.5 2.0218 0.5509 0.6711 0.436 

% 403.1 1.9008 0.5699 0.6676 0.3396 

0.01 3.434 0.7024 0.6416 0.4035 

9.99 3.2329 0.6677 0.6449 0.4041 

29.9 3.0366 0.6138 0.62 0.4474 

59.6 2.8426 0.6006 0.6198 0.4395 

99 2.6294 0.5797 0.5999 0.3948 

% 138.1 2.472 0.5642 0.5879 0.3711 

% 186.5 2.3653 0.5617 0.6198 0.3898 

% 234.4 2.21 0.5394 0.5979 0.3308 

% 291.3 2.0911 0.5268 0.6049 0.3103 

% 347.5 1.978 0.5192 0.6207 0.2818 

% 403.1 1.8896 0.5057 0.6285 0.2659 
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]; 

 

MT=data(:,1); % ppb conc of Cu 

MT=(MT*1e-6)./63.5463; 

humic=data(:,2); 

% fulvic=data(:,4); 

fulvic=data(:,3); 

% tyr=data(:,3); 

tyr=data(:,4); 

trp=data(:,5); 

 

subdata=[MT humic fulvic trp]; 

sortdata=sortrows(subdata,1); 

 

MT=sortdata(:,1); 

F1=sortdata(:,2); 

F2=sortdata(:,3); 

F3=sortdata(:,4); 

 

end 

 

function [c,ceq] = mycon(p,CuT,pH,flag) 

 

logK1=p(1); logK2=p(2); LT1=10^p(3); LT2=10^p(4); 

 

[species, 

names]=Cu_seawater_species_two_ligand(CuT,pH,logK1,logK2,LT1,LT2,flag); 

 

for i=1:size(CuT,2) 

for j=1:size(species,2) 

        txt=[names(j,:),'(i)=species(i,j);']; 

        eval(txt) 

end 

end 

 

c = [];     % Compute nonlinear inequalities at x. 

testceq = [(-9.98-log10(Cu))];   % Compute nonlinear equalities at x. 

if abs(testceq)<=0.3; testceq=0; end 

ceq=testceq; 

%ceq = [(-9.98-log10(Cu))]; 

end 

 

function [c,ceq] = myconreal(p,CuT,pH,flag) 

 

logK1=p(1); logK2=p(2); LT1=10^p(3); LT2=10^p(4); 
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[species, 

names]=Cu_seawater_species_two_ligand(CuT,pH,logK1,logK2,LT1,LT2,flag); 

 

for i=1:size(CuT,2) 

for j=1:size(species,2) 

        txt=[names(j,:),'(i)=species(i,j);']; 

        eval(txt) 

end 

end 

 

c = [];     % Compute nonlinear inequalities at x. 

ceq = [(-9.98-log10(Cu))]; 

end 
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C3. Plots of contribution of fluorophores to total fluorescence 
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Figure C1.Contribution of humic- (blue), fulvic (red), tryptophan (pink), and tyrosine 

(green) fractions to total fluorescence in a. Bouctouche, b. Petit Rocher, c. Major Kollock 

Creek, d. Naufrage Harbour, e. Rathtrevor Beach, f. Hawke‟s Bay, g. Blackberry Bay, h. 

Chesterman Beach, and i. Jimbo.  Dotted black line is the measured fluorescence while 

the solid black line is the modeled curve to determine fluorophore contributions. 
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C4. Resolved fluorescence quenching curves with Ryan-Weber fitting 

 

 
Figure C2. Resolved quenching curves with Ryan-Weber fitting for a. humic- and b. 

fulvic-like fractions of Bouctouche. 

 

 
Figure C3. Resolved quenching curves with Ryan-Weber fitting for a. humic- and b. 

fulvic-like fractions of Petit Rocher. 
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Figure C4. Resolved quenching curves with Ryan-Weber fitting for a. humic-, b. fulvic-, 

and c. tryptophan-like fractions of Major Kollock Creek. 

 

 

 
Figure C5. Resolved quenching curves with Ryan-Weber fitting for a. humic- and b. 

fulvic-like fractions of Naufrage Harbour. 
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Figure C6. Resolved quenching curves with Ryan-Weber fitting for the humic-like 

fraction of Rathtrevor Beach. 

 

 

Figure C7. Resolved quenching curves with Ryan-Weber fitting for a. humic- and b. 

fulvic-like fractions of Hawke‟s Bay. 
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Figure C8. Resolved quenching curves with Ryan-Weber fitting for a. humic- and b. 

fulvic-like fractions of Blackberry Bay. 

 

 

Figure C9. Resolved quenching curves with Ryan-Weber fitting for a. humic- and b. 

tryptophan-like fractions of Chesterman Beach. 

 



193 

 

 

Figure C10. Resolved quenching curves with Ryan-Weber fitting for a. humic- and b. 

fulvic-like fractions of Jimbo. 
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C5. Comparison of modeled free copper using fluorescence quenching data and 

measured free copper using the Cu ISE 
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Figure C11. Comparison of modeled free copper (dashed) using fluorescence data and 

measured free copper (circle) using a copper ion-selective electrode for a. Bouctouche, b. 

Petit Rocher, c. Major Kollock Creek, d. Naufrage Harbour, e. Rathtrevor Beach, f. 

Hawke‟s Bay, g. Blackberry Bay, h. Chesterman Beach, and i. Jimbo. 

 

 

 

 

 


