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ORIGINAL ARTICLE

Kindergarten allocation in Norway: An integer programming approach

A. H. Geitlea, Ø. K. Johnsena, H. F. E. Ruuda, K. Fagerholta and C. A. Julsvollb

aDepartment of Industrial Economics and Technology Management, Norwegian University of Science and Technology,
Trondheim, Norway; bVisma, Oslo, Norway

ABSTRACT
Kindergartens are vital to society in many countries, and in Norway, the municipalities are
the local authorities that facilitate a coordinated admission process involving all their kinder-
gartens. Allocating children to kindergartens is a very time-consuming task that is usually
done manually. Therefore, we propose two integer programming (IP) models to support this
task. Both models include the children’s prioritized kindergarten, prioritization of children
with special needs, siblings already placed in a kindergarten and traveling times, while the
second (extended) model also ensures gender and age balance in the kindergartens. To
solve the largest instances found in Norway, we propose a heuristic variable reduction
scheme. The models are solved with a commercial solver and have been tested on real data
from Tønsberg municipality, as well as on larger instances reflecting the municipalities of
Trondheim and Oslo. The model solutions are compared to the solutions from the allocation
scheme used in Tønsberg and it is shown that the optimization models provide significantly
better solutions. The models are being implemented into an existing kindergarten adminis-
tration software and will be tested by a few selected municipalities. If this is successful, it
will be rolled out to more than 50 municipalities currently using this software.
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1. Introduction

Norwegian municipalities spend 46 billion NOK yearly
to cover kindergarten operations, equivalent to 15% of
their expenses (UDIR., 2017a). Kindergartens have sig-
nificant societal importance, making it possible for the
parents to work, and have direct impact on early child
development. According to The Norwegian
Kindergarten Act, all children have an equal right to
education, regardless of where they live, their gender,
social and cultural background or any special needs
(Kunnskapsdepartementet, 2011). Consequently, more
than 280,000 children in Norway had kindergarten
placement in 2017, corresponding to 91% of all chil-
dren aged between one and five years, and as many as
97% of the ones in the age group three to five years
(SSB. , 2018). While education for children past the
age of six is compulsory, enrollment in kindergarten is
optional. A child is entitled to a place in a kindergarten
from August if the child has turned one by the end of
August the same year.

The Kindergarten Act also states that municipalities
are the local authorities for kindergartens. They must
ensure that kindergartens are operated in accordance
with current rules, and facilitate a coordinated admis-
sion process involving all kindergartens within the
municipality. This process must take into account the

distinctive profiles of the kindergartens, in addition to
the requests and needs of its users, such as siblings
wanting to attend the same kindergarten.
Additionally, by law, children with special require-
ments have to be given priority. Therefore, those
responsible within the municipality must keep an
overview of the capacity, and together with the boards
from the kindergartens, treat the applications as well
as prioritize and assign seats. In most cases, the kinder-
garten allocation is characterized by manual and time-
consuming processes that can last for several months.

The Kindergarten Allocation Problem (KAP) con-
sists of determining an optimal allocation of children
to the kindergarten and is a special version of the gen-
eral matching problem with preferences, which was
surveyed by Bir�o (2017). The KAP is not a heavily
studied problem within the operations research litera-
ture. However, it seems that the few papers largely
agree on some important aspects to optimize. Both
Veski, Bir�o, P~oder, and Lauri (2017) and Kennes,
Monte, and Tumennasan (2014) agree that outside of
regulatory requirements, children with siblings
already placed in a kindergarten should have priority.
Veski et al. (2017) argue that distance from home to
kindergarten also should be taken into account. Their
paper discusses several representations of distance,
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such as distance zones. The distance zones in Veski
et al. (2017) only represent kindergartens within
walking distance, while the mathematical model pre-
sented in this paper divides kindergartens into three
zones; walking distance, short driving distance, and
outside of short driving distance. Kennes et al. (2014),
which study the KAP in Denmark, propose a modi-
fied version of the deferred acceptance (DA) algo-
rithm presented in Gale and Shapley (1962), while
Veski et al. (2017) solve multiple versions of their
problem with the original DA algorithm. This is
where our work really distinguishes itself from previ-
ous research, as no previous studies use integer pro-
gramming (IP) to solve the KAP.

The KAP has similarities also to other matching
problems with preferences, see for example Church
and Schoepfle (1993), Ehlers, Hafalir, Yenmez, and
Yildirim (2014) and Sutcliffe, Board, and Cheshire
(1984) for school assignment, and Roth (1984) and
Kwanashie and Manlove (2014) for hospital/resi-
dents assignment.

The purpose of this paper is to propose two alter-
native IP models to solve the KAP and make the
process more efficient, objective and fair, while still
obeying all formal laws. The IP models have been
used in a pilot project with Tønsberg municipality,
with about 2200 children and 43 kindergartens, but
also tested on larger instances to show the scalability
of the models. Compared to the manual solution,
which can take several months to produce, the IP
models can be solved within minutes and provide
significantly better solutions. The models can also
be used to create a set of solutions that are equally
good but exhibit different characteristics. One of the
two models (denoted the extended model) is also
able to take into account gender and age balance,
which today’s manual process completely ignores.

The main contribution of this paper is a real case
study where novel IP models provide valuable deci-
sion support and are shown to have a huge positive
impact for society. This work has been done in col-
laboration with a Norwegian municipality and
Visma. Visma is a provider of business software and
services and has a cloud-based service named Visma
Flyt Barnehage (VFB), used by more than 50
Norwegian municipalities to administer their kin-
dergartens (Visma, 2018). In addition to being an
administration tool to keep track of all children and
kindergartens, the service also provides all the
necessary data about the admission process to be
able to go from a manual allocation to a digitalized
solution for the allocation of children to kindergart-
ens. By integrating the models into VFB, which is
now being done, the allocation can be done without
the need for manual work, as all the input data and
updates are taken care of within the software.

The remainder of the paper is organized as fol-
lows. The KAP is formally described in Section 2,
while the two models are presented in Section 3.
The computational study is shown in Section 4,
before we conclude in Section 5.

2. The kindergarten allocation problem

When parents apply for kindergarten placement on
behalf of their children, they have to complete an
application form. The application includes informa-
tion such as gender, age, home address and siblings
already placed in a kindergarten. Together with this
information, the parents provide a prioritized list of
the top three preferred kindergartens. In addition, the
application describes which days the child require
placement, e.g. every day except for Fridays. The kin-
dergarten can then offer the available place on Fridays
to another child. Therefore, the capacity requirement
for kindergartens will restrict the total number of chil-
dren placed in the kindergarten each weekday.
However, a child can only be placed in one kindergar-
ten, i.e. it cannot be placed in one kindergarten some
days of the week and in another the remaining week-
days. The rules and regulations that Norwegian
municipalities follow state that a full-time request
should not be prioritized over a part-time request.

Kindergartens have certain requirements to fulfill
when allocating the children, some that are strict,
while others are soft (or objectives). First of all, kin-
dergartens have a strict capacity on how many chil-
dren they can accommodate. This number is based
on the total floor and outdoor space, in addition to
how many employees they have. Some kindergartens
are exclusive to certain age groups. For instance, a
few kindergartens only accept children between the
age of zero and two years.

In addition to kindergarten specific requirements,
regulatory requirements state that children with
functional impairment get their priorities first as
long as there is available capacity. Children who are
the objects of an administrative decision of the
Child Welfare Service Act also get priority. For the
rest of this paper, these children are referred to as
children with special requirements.

There are also some soft or guiding requirements
when placing children in kindergartens. Even though
it is not a requirement by law that siblings are placed
in the same kindergarten, it is very much desired by
the parents. Other soft requirements concern the
driving distance between the children’s home and
their assigned kindergarten, as well as both the age
and gender distribution in each kindergarten.

The kindergarten allocation problem (KAP) can
simply be defined as to determine the “optimal”
allocation of children to kindergartens. However, a
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wide range of solutions can be found when optimiz-
ing the different objectives. For example, the num-
ber of children getting their first priority could be a
good measurement of utility, but this would most
likely result in many children not being allocated to
any of their prioritized kindergartens. The problem
can thus be described as one with multiple objec-
tives, with different weights representing how
important each objective is. These weights are sub-
jective depending on what perspective one takes
when solving the allocation. For this paper it is
assumed that the following should be in
the objective:

� Children placed in a prioritized kindergarten,
where higher priority is better

� Children placed in the same kindergarten as their
sibling

� Distance from each children’s home to the
assigned kindergarten

3. Mathematical formulations

In this section we propose two integer programming
(IP) models for the KAP. We start in Section 3.1 by
presenting the notations and definitions used in
both models, before presenting what we have
denoted as the basic model in Section 3.2. An
extended model, which also includes additional con-
straints and terms in the objective function to han-
dle age and gender balance in the kindergartens, as
well as the minimization of the maximum driving
time for the parents, is presented in Section 3.3. To
ease the solvability of the models, we propose a
variable reduction scheme in Section 3.4.

3.1. Notation

This section introduces the sets, indices, parameters
and variables used in the mathematical models.

3.1.1. Sets and indices
The set of children that have applied for kindergar-
ten is denoted by C, and the index c is used to ref-
erence elements in the set. The set of children is
split up in different subsets, namely children with
special requirements, children without special
requirements, young children, and old children,
denoted by CS, CH , CY and CO, respectively, where
C ¼ CS [ CH and C ¼ CY [ CO: The set representing
the available kindergartens is denoted K and refer-
enced by the index k. We introduce two subsets of
kindergartens, namely kindergartens only accepting
young children (0� 2 years) and kindergartens only
accepting old children (3� 5 years), denoted KY and
KO, respectively. We introduce a dummy

kindergarten, denoted by the parameter KD, which
is included in K: This means that children not being
placed in a kindergarten are assigned to KD in
the model.

Some children apply for a place in kindergarten
only on specific weekdays. To handle this, the set of
weekdays denoted by D is introduced and refer-
enced by the index d.

3.2.2. Parameters
Kindergarten k has a given capacity of children for
each day given by �Qkd: Ocd is a binary parameter,
where 1 indicates that child c wants kindergarten
placement on day d. Each child provides a priori-
tized list of three kindergartens when applying for a
kindergarten seat. P1

ck,P
2
ck and P3

ck are either 0 or 1,
where 1 indicates that child c ranks kindergarten k
as first, second or third, respectively. The parame-
ters K1

c ,K
2
c , and K3

c are also introduced, which rep-
resent the kindergartens that are the first, second
and third choice, respectively, of child c. In other
words, Kv

c ¼ k if Pv
ck ¼ 1, for v¼ 1, 2, 3. The binary

parameter Sck is 1 if child c has one or more siblings
in kindergarten k, and 0 otherwise.

Traveling times are divided into three zones,
where the binary parameter TW

ck is 1 if the traveling
time between child c and kindergarten k is classified
as walking distance. The same applies for short driv-
ing distance with TD

ck and for distances greater than
short driving distance with TF

ck: Therefore, only one
of these parameters are set to 1, while the two
others are 0.

The mathematical models introduce seven
weights, where W1 is the penalty for a child that
does not get a place in any kindergarten, while W2

and W3 are the penalties for children not getting
their second and third priority, respectively. The
weight parameter W4 is the penalty for children not
getting any of their priorities, while W5 is the pen-
alty for children not getting a seat in the same kin-
dergarten as their siblings. Finally, W6 and W7 are
penalties for children being placed in kindergartens
outside of walking distance and driving distance,
respectively.

3.2.3. Variables
The models introduce three types of binary varia-
bles. The solution to the problem is given by the xck
variable, which is 1 if child c is placed in kindergar-
ten k, and 0 otherwise. qc is 1 if child c is placed in
a different kindergarten than its sibling, and 0 if it
does not have a sibling or it is placed in the same
kindergarten as its sibling.

The next three variables d1k, d
2
k, d

3
k are 1 if all chil-

dren with special requirements that have kindergar-
ten k as first, second, or third choice, respectively,
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are placed in kindergarten k or a kindergarten with
higher priority on their list, else 0. Lastly, dk is 1 if
and only if d1k, d

2
k, d

3
k are all 1. Hence, this variable

indicates if all children with special requirements
with kindergarten k on their priority list are placed.

3.2. Basic model

3.2.1. Objective function
The objective function (1) consists of seven terms
with associated weights. The first term represents
the cost of not placing children in any kindergarten.
The next three terms represent the cost of children
not getting a kindergarten that is their first, second,
or third priority, respectively. The fifth term penal-
izes siblings not being placed in the same kindergar-
ten. Finally, the last two terms penalize children
who do not get any of their priorities and are placed
in kindergartens outside of walking distance and
short driving distance, respectively.

min z ¼
X
c2C

ðW1 � xcKD þW2 � xcK2
c
þW3 � xcK3

c

þW4 �
X

k2KnfK1
c ,K2

c ,K3
c ,KDg

xck

þW5 � qc þW6 �
X

k2KnfK1
c ,K2

c ,K3
c ,KDg

TD
ck � xck

þW7 �
X

k2KnfK1
c ,K2

c ,K3
c ,KDg

TF
ck � xckÞ

(1)

The objective function (1) is to be minimized
subject to the following sets of constraints.

3.2.2. Allocation and capacity
Constraints (2) ensure that every child is placed in
exactly one kindergarten or not placed at all. As
mentioned earlier, the children that are not placed
are assigned to a dummy kindergarten with unlim-
ited capacity. Constraints (3) make sure that the
capacity for each kindergarten for each day is not
exceeded. X

k2K
xck ¼ 1 c 2 C (2)

X
c2C

Ocd � xck��Qkd � 0 k 2 K n fKDg, d 2 D (3)

3.2.3. Prioritizing siblings and children with special
requirements
Constraints (4) force qc to take the value of 1 if
child c is placed in a different kindergarten than its
sibling. Constraints (5)–(9) enforce the placement of
children with special requirements before placing
other children. The first type of constraint (5)
enforce that d1k can only be 1 if all children with
special requirements that have put kindergarten k as

their first priority are placed in kindergarten k.
Likewise, constraints (6) make sure that d2k can only
be 1 if all children with special requirements that
have put kindergarten k as their second priority are
placed in kindergarten k or their first priority.
Constraints (7) do exactly the same for third prior-
ities. These d-variables (d1k, d

2
k, d

3
k) are then combined

into dk in constraints (8) so that dk can only be 1 if
all three aforementioned variables are 1. Constraints
(9) then enforce that the children without special
requirements can only be placed in kindergarten k if
all children with special requirements that have kin-
dergarten k as a priority are placed first.X

k2KnfKDg
ðSck � ð1� xckÞÞ�qc � 0 c 2 C (4)

X
c2CS

ðP1
ck � d1k � xckÞ � 0 k 2 K n fKDg (5)

X
c2CS

ðP2
ck � ðd2k�

X
k�2KnfKDg

ðP1
ck� �xck� Þ�xckÞÞ�0

k2KnfKDg
(6)

X
c2CS

ðP3
ck � ðd3k�

X
k�2KnfKDg

ððP1
ck� þP2

ck� Þ �xck� Þ�xckÞÞ�0

k2KnfKDg
(7)

3 �dk�d1k�d2k�d3k �0 k2K (8)

xck�dk�0 c2CH ,k2K (9)

3.2.4. Variable definitions
The binary definitions of the variables are given by
constraints (10) – (12). To reduce the number of
variables, we do not define xck for the infeasible
combinations due to children’s age and the kinder-
garten’s age profile.

xck 2 f0, 1g c 2 C, k 2 K (10)

qc 2 f0, 1g c 2 C (11)

dk, d
1
k, d

2
k, d

3
k 2 f0, 1g k 2 K (12)

3.3. Extended model

This section presents the extended model that also
takes into account gender and age balance, as well
as a more detailed way to reduce traveling time for
the parents.

3.3.1. Gender balance
Even though it is usually not used as a criterion in
the kindergarten allocation, an even gender balance
in the kindergartens is desired. Gender balance
could be added to the model by adding (soft) gen-
der limits for each kindergarten. This extension
would add constraints by penalizing allocations that
have kindergartens with a gender imbalance in the
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objective function. To do this, we introduce the
parameters Gc, which is 1 if child c is male, and 0 if
female, while Gk and �Gk are the lower and upper
target limits, respectively, on the number of children
of the same gender in kindergarten k. E.g. a kinder-
garten with a capacity of ten children could have an
upper target limit of seven and a lower target limit
of three for both genders. Furthermore, we impose
a cost to the number of kindergartens that violates
these target limits. The new binary variable gk,
penalized in the objective function, is added to allow
the gender limits to be violated if gk is set to 1.

We can then add the following new constraints
(13) and (14), while the objective function will get
an additional term (shown later in this section). The
M in constraints (13) is calculated as ð�Qkd��GkdÞ:X

c2C
Gc � xck � �Gk þM � gk k 2 K, d 2 D (13)

X
c2C

Gc � xck � Gk � ð1�gkÞ k 2 K, d 2 D (14)

3.3.2. Age balance
An even age distribution is also desired by many
kindergartens. As for the gender balance, we model
this with soft constraints and penalize the number
of kindergartens breaking the constraints in the
objective function. A new variable ak, which is
penalized with an additional term in the objective
function, is added to allow the age limits to be vio-
lated if it is set to 1. We also define the binary par-
ameter Yca to be 1 if child c is of age a, and 0
otherwise, while Lka and �Lka are respectively the
lower and upper limits of children of age a that can
be placed in kindergarten k. Furthermore, we add
the following new constraints (15) and (16). The
big-M is chosen as small as possible to obtain a
tight formulation, and calculated as ð�Qk��LkaÞ:X
c2C

Ocd � Yca � xck � �Lka þM � ak k 2 K,d 2 D,a 2 A

(15)X
c2C

Ocd � Yca � xck � Lka � ð1�akÞ k 2 K,d 2 D,a 2 A

(16)

3.3.3. Traveling time
Even though traveling time is to some extent
included in the basic model, we also add in the
extended model a new penalty term in the objective
function for the longest traveling time any child
experiences. This is to ensure that nobody gets a
kindergarten very far away, which can be considered
as both inconvenient and unfair. To achieve this, we
introduce a traveling time parameter Tck that repre-
sents the traveling time from child c to kindergarten

k and a new variable tmax, as well as the following
additional constraints (17).X

k2KnfK1
c ,K2

c ,K3
c ,KDg

Tck � xck � tmax c 2 C (17)

3.3.4. New objective function
The extended model consists of the constraints
(2)–(15) from the basic model, plus the new con-
straints (13)–(17), while the extended objective func-
tion (18) now includes three additional terms with
the weighting factors W8, W9 and W10 for the gen-
der and age imbalance and the traveling time,
respectively:

min z ¼
X
c2C

�
W1 � xcKD þW2 � xcK2

c
þW3 � xcK3

c

þW4 �
X

k2KnfK1
c ,K2

c ,K3
c ,KDg

xck

þW5 � qc þW6 �
X

k2KnfK1
c ,K2

c ,K3
c ,KDg

TD
ck � xck

þW7 �
X

k2KnfK1
c ,K2

c ,K3
c ,KDg

TF
ck � xck

�

þW8 �
X

k2KnfKDg
gk þW9 �

X
k2KnfKDg

ak

þW10 � tmax

(18)

3.4. Variable reduction

In both models presented above, a binary variable
xck is created for each possible matching between a
child and a kindergarten. This causes the number of
variables to grow quadratically with the instance
size. However, each child only prioritizes three kin-
dergartens and those who do not get any of their
priorities should be placed in nearby kindergartens.
Hence, all variables representing the placement of a
child in a kindergarten far away will usually become
0. This is exploited by not generating the xck-varia-
bles where the traveling time between child c and
kindergarten k is more than a predefined cut-off
distance D, which will reduce the size of the model.
This is a heuristic, but with a reasonable choice of
D, the solutions may still be (near-)optimal.

4. Computational study

This section presents the results from testing the IP
models on test instances for three Norwegian cities/
municipalities. All testing is done using the IP solver
Xpress on a desktop computer with 3.4GHz Intel i7
processor and 32GB of RAM. We set a limit on the
maximum running time to three hours.
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4.1. Test instances and setting of
penalty weights

This section describes the test instances, summarized
in Table 1. These instances represent three different
Norwegian municipalities: Tønsberg, Trondheim, and
Oslo. The smallest instance size, Tønsberg, includes
2170 children and 43 kindergartens. Travel times and
the weekdays a child requires kindergarten placement
are obtained from Visma. The rest of the necessary
data is generated according to the test instance frame-
work described below. The two last instance sizes,
named Trondheim and Oslo, consist of 10343 chil-
dren and 182 kindergartens, and 36230 children and
605 kindergartens, respectively (UDIR, 2017b). The
only real data for these instances are the number of
children and kindergartens, and the capacities of the
kindergartens. The rest is generated as described
below. For each instance size, ten different instances
are created, resulting in a total of 30 test instances.
For the Trondheim and Oslo instances, the traveling
times are generated based on the traveling time distri-
bution from Tønsberg.

The traveling times are divided into three zones,
indicated by the binary parameters TW

ck ,T
D
ck and TF

ck
for each child c and kindergarten k. If the driving
time is below 300 s, it is classified as “walking zone”,
i.e. TW

ck ¼ 1: If the driving time is between 300 and
600 s, it is classified as “driving zone”, i.e. TD

ck ¼ 1:
In cases where the driving time is greater than
600 s, the given kindergarten are classified as being
“outside of driving zone”, i.e. TF

ck ¼ 1:
Among the children attending kindergartens in

Norway, 3.1% have special requirements (Bufdir,
2018). It is assumed that this number is representa-
tive for the three municipalities. Hence, 3.1% of the
children (randomly chosen) are included in the set
CS defined in Section 3. We assume an 80% prob-
ability that children will choose the three closest
kindergartens, with the closest as a first priority,
and so on. For the remaining 20%, we assume they
choose three random kindergartens. In both cases,
the age profile requirement of each kindergarten has
to be satisfied.

Among the children attending kindergartens in
Tønsberg, 20% have siblings in kindergartens. It is
assumed that this number is representative also for
Trondheim and Oslo municipality. It is also
assumed that if a child has a sibling in a kindergar-
ten, it will put this kindergarten as its first priority.
Hence, children are generated with a 20% chance of
having a sibling in their highest prioritized
kindergarten.

It is obvious that different penalty weights, W1 –
W10, may give alternative solutions. The weights are
therefore carefully chosen after preliminary testing
and close discussions with Tønsberg municipality to

represent the how they prioritize. W1 is the largest
weight for both models since placing as many chil-
dren as possible in kindergartens is most important.
The second most important aspect is to place chil-
dren in the same kindergarten as their siblings.
Hence, W5 is the second largest weight. The kinder-
garten priority weights, W2 – W4, are ordered by
the priority, such that W4>W3>W2: The traveling
time weights, W6 and W8, are also ordered, where
increasing traveling time is penalized with a higher
weight, i.e. W7>W6: For the extended model, the
last three weights, W8 – W10, represent the costs of
a kindergarten breaking the gender limits, age limits,
and the longest traveling time for the children
placed in non-prioritized kindergartens. These
weights are also set after preliminary testing. For
practical reasons, all weight parameters are stipu-
lated so that the sum of all equals one. We have
based on this reached the following setting of the
weights:

Basic model ðW1–W7Þ : 0:31, 0:05, 0:10, 0:15,

0:29, 0:03, 0:07

Extended model ðW1–W10Þ : 0:27, 0:03, 0:06,

0:09, 0:26, 0:02, 0:04, 0:11, 0:10, 0:01

4.2. Computational results

In this section, the performance of the basic and
extended models is studied. The models are run on
all test instance sizes introduced in Table 1, with ten
instances of each test size. Average results for each
instance size are summarized in Table 2 and include
computation time until optimality (if reached before
the maximum running time), optimality gap after
one hour, and optimality gap after finished execu-
tion. The optimality gap is defined as the percentage
difference between the current objective value and
the best bound found by Xpress. The Oslo instances
were run with the heuristic variable reduction
scheme presented in Section 3.4.

For the basic model, the solver finds the optimal
solution to all Tønsberg and Trondheim instances
in approximately 12 s and 13min, respectively. An
interesting observation is that there are only small
differences between the LP and IP objective values.
The basic model gives, to a large extent, naturally
binary solution variables, which can explain the
short running times. Despite this, the solver runs

Table 1. Overview of test instance sizes.
Instance sizes # Children # Kindergartens

Tønsberg 2170 43
Trondheim 10343 182
Oslo 36230 605
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out of memory before it can solve the Oslo instan-
ces, so the results for these instances in Table 2 are
with variable reduction (explained in more detail
further below).

The performance of the extended model is very
different compared to the basic model. First, it takes
significantly longer time to solve. The Tønsberg
instances were solved to optimality in 12.4 s on
average for the basic model, compared to 8916.7 s
with an average gap of 0.72% for the extended
model. None of the Trondheim instances were
solved to optimality within three hours. Second, the
variance of the computational times between instan-
ces of the same size is much higher for the extended
model. One instance was solved to optimality in
about five minutes, while others still were not solved
after three hours. Third, the extended model does
not provide naturally binary solution variables in
the same manner as the basic model and have much
larger differences between the LP and IP objective

values, which can explain why the extended model
takes significantly longer time solve.

After not being able to run the Oslo instances due
to insufficient memory, variable reduction was applied
as a heuristic to make the instances solvable. As
described in Section 3.4, one would most likely not
need all the xck-variables as the kindergartens far away
from a child will rarely be used by that child in an opti-
mal solution. To find an appropriate cut-off distance D
(seconds), the model was run iteratively with increas-
ing values for D to see when the objective value con-
verged towards the optimal objective value. This was
first done for the basic model on one chosen instance
from both Tønsberg and Trondheim, and then for the
extended model on the same instances. The models
were only run for a maximum of 1800 s, as this pro-
vides solutions that are good enough to verify that the
cut-off distance is appropriate for variable reduction.
The results from this are shown in Figures 1–4.

The tests show that, for all practical purposes, the
results with variable reduction are as good as without.

Table 2. Computational time, optimality gap after one hour, optimality gap after three hours, LP objective value and IP
objective value for the basic and extended model. The Oslo instances were run with variable reduction.
Model Instance size Comp. time (s) Gap 1 h % Gap % LP IP

Min 10.7 0.0 0.0 59.78 60.18
Tønsberg Max 13.6 0.0 0.0 65.02 65.79

Avg 12.4 0.0 0.0 61.97 62.46

Min 778.4 0.0 0.0 143.14 143.42
Basic Trondheim Max 802.0 0.0 0.0 154.96 155.94

Avg 786.6 0.0 0.0 148.27 148.60

Min 1060.6 0.0 0.0 745.85 754.57
Oslo Max 1358.4 0.0 0.0 757.46 767.20

Avg 1146.2 0.0 0.0 750.36 759.55

Min 363.4 0.0 0.0 38.97 42.82
Tønsberg Max >10800 3.40 1.75 42.96 47.85

Avg 8916.7 1.89 0.72 40.73 44.69

Min >10800 1.43 1.03 89.08 95.37
Extended Trondheim Max >10800 1.98 1.97 96.86 102.87

Avg >10800 1.63 1.47 92.36 98.14

Min >10800 0.24 0.13 458.32 480.36
Oslo Max >10800 0.35 0.22 466.71 490.15

Avg >10800 0.28 0.17 461.46 483.80

Figure 1. The objective value vs. the run time of the basic
model on one instance, with increasing cut-off distance
for Tønsberg.

Figure 2. The objective value vs. the run time of the basic
model on one instance, with increasing cut-off distance
for Trondheim.
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The solutions are even better for the extended model
because it was not solved to optimality and had sig-
nificant optimality gaps without variable reduction.
From the plots, it is not obvious what cut-off distance
to choose. The extended model can have a lower cut-
off than the basic model, probably because the
extended model penalizes solutions that give a large
value for the maximum distance of a child not being
placed in one of its prioritized kindergartens. Thus,
the optimal solutions for the extended model have
shorter distances for each child/kindergarten-pair in
general. Another interesting fact is that it seems like
one can accept shorter cut-off distances for
Trondheim than for Tønsberg, even though the dis-
tances in Trondheim are 1.4 times longer on average
than for Tønsberg. This can be explained by a higher
kindergarten density in a larger city like Trondheim,
making it easier to find one that is close.

The cut-off distances for Oslo were set to 700
and 400 s for the basic and extended model, respect-
ively. These values correspond to the mean of the
cut-off distances that gave optimal solutions. This is
a conservative choice as it can be expected that one
can have an even shorter cut-off distance for Oslo
than on the Trondheim instances, following the
argument in the previous paragraph.

With variable reduction, we were able to solve
the Oslo instances to optimality within 20min for
the basic model, while the extended model reached
an average optimality gap of 0.17% after 3 h, see
Table 2. This is the same trend as for the two
smaller instances. The models seem to scale well
with variable reduction. Oslo is the biggest city in
Norway, and the model reassigned all the children
within a reasonable amount of time. In reality, the
set of children would be smaller as only new appli-
cants have to be assigned a kindergarten. The mod-
els therefore seem well suited for solving the KAP
in all municipalities in Norway.

4.3. Comparison of solutions from the basic and
extended models

Figure 5 presents the aggregated results for the basic
and extended model runs on the ten Tønsberg
instances. There are a few important distinctions
between the two. They place almost the same
amount of children in a prioritized kindergarten,
but the basic model places them in higher priorities.
Distance is the aspect where there is the largest dif-
ference between the solutions from the two models.
The average traveling time for a child is about 30%
lower for the extended model and the difference is
even larger for the maximum distance. This will
also contribute to reduce driving, and hence reduced
congestion and environmental emissions, which are
very important aspects in the development of cities.
Evidently, there is a trade-off between placing more
children in higher priorities and traveling time for
children getting a non-prioritized kindergarten.

We cannot claim that one model works better
than the other, as this depends on how the different
municipalities value the different objectives. Note
also, as discussed in Section 4.1, that the solutions
will depend on the weights of the penalty parame-
ters in the objective function, and different solutions
could be obtained by changing the weights.

4.4. Comparison with real planning solutions

The allocation of children to kindergartens in the
municipalities is today done according to statutes
that are decided by local politicians. In Tønsberg,
the allocation is done greedily by giving each child a
ranking and placing the highest ranked children first
in their highest prioritized kindergarten that has
available capacity. If all three prioritized kindergart-
ens are full, the child is placed in the closest non-
prioritized kindergarten with available capacity.
There are four levels of rankings in Tønsberg

Figure 3. The objective value vs. the run time of the
extended model on one instance, with increasing cut-off dis-
tance for Tønsberg.

Figure 4. The objective value vs. the run time of the
extended model on one instance, with increasing cut-off dis-
tance for Trondheim.
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(where the first two correspond to “special
requirements” in our model):

1. Children with impaired functioning and chil-
dren who are the objects of an administrative
decision of the Child Welfare Service Act

2. Children from families who suffer from severe
stress such as illness or disability

3. Children who have siblings already placed in a
kindergarten

4. Remaining children sorted by age

By comparing the solutions from the basic model
with the solutions from the Tønsberg allocation
scheme on the ten different Tønsberg instances, as
illustrated in Figure 6, it is clear that the model

outperforms today’s allocation scheme. More chil-
dren get a prioritized kindergarten and they also get
higher priorities, more children are placed in the
same kindergarten as their siblings, and the children
who are placed in non-prioritized kindergartens are
placed in closer ones.

5. Conclusions

This paper presented two new integer programming
(IP) models to the Kindergarten Allocation Problem
(KAP) and applied these to a real case for a
Norwegian municipality. The objective of the IP
models is to minimize the sum of penalties for not
giving children their prioritized kindergartens, plac-
ing children in a different kindergarten than their

Figure 5. The average solution of the basic model compared to the average solution of the extended model run on the ten
Tønsberg instances.

Figure 6. The average solution of the basic model compared to Tønsberg municipality’s greedy allocation scheme run on the
ten Tønsberg instances.
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sibling, and the distance a child has to travel if it
does not get one of its prioritized kindergartens.
The second extended model also includes terms to
ensure a good gender and age balance in the kinder-
gartens and to reduce the maximum driving dis-
tance for any child. To solve the largest instances
found in Norway, we have also proposed a heuristic
variable reduction scheme.

The IP models outperform the allocation scheme
used by Tønsberg municipality on all objectives.
Today, municipalities have to follow their statutes for
allocating children to kindergartens, but this study
shows why and how these statutes should be changed
to obtain better solutions. The model is also tested on
larger instances, and by performing variable reduc-
tion, the model can produce good solutions for any
municipality in Norway in a reasonable time.

For the society, the results from the models could
provide a better national standard for how to assign
children to kindergartens. More children would get
their preferred choices and driving distances can be
reduced for the parents, with reduced congestion and
emissions in cities as a positive side-effect. The promis-
ing results motivated Visma to implement the model
into their existing software solution, Visma Flyt
Barnehage (VFB), so as to utilize the data from this soft-
ware to accommodate for a holistic kindergarten appli-
cation and admission process. This will be tested further
by a few selected municipalities on the 2020 kindergar-
ten admissions, and if successful, it will be rolled out to
the more than 50 municipalities currently using VFB.

Finally, even though this is a Norwegian case study,
we believe the models and results presented in this
paper can be adapted to KAPs also in other countries.
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