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ABSTRACT
This paper discusses methods of estimating the reproductive power
and the accompanying survival function of communicable events,
e.g. infectious disease transmission. The early stage of an outbreak
can be described by the infectiousness of the outbreak process, but
in later stages of the outbreak, this is complicated by factors such as
changing contact patterns and the impact of control measures. It is
important to take these factors into account in order to get a good, if
approximate, model for an outbreak process. This paper proposes a
non-homogeneousbirthprocess and regressionmodel for the repro-
ductivepower function, similar tomodels indiscrete survival analysis.
A baseline reproductive power function gives a description of the
outbreak when covariates are at their baseline values. As an illustra-
tion thesemethodsare applied toanavian influenza (H5N1)outbreak
among poultry in Thailand.
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1. Introduction

On 23 January 2004, theMinistry of Public Health in Thailand informed theWorld Health
Organization of an avian influenza outbreak. This is how theworld learned about theH5N1
outbreak in Thailand, an outbreak that lasted more than 3 years. Poultry and wild bird
populations in 1417 villages from 60 of the 76 provinces were affected and over 62 million
birds died or were culled to prevent further transmission.

An outbreak of an infectious disease like this one does not just involve the dynamics of
infectious processes. In the early stages the outbreak process might be dominated by the
infectiousness of the disease and might thus be well described by a stochastic differential
equation (birth process), but, after a while, this outbreak process includes more than just
this infectiousness. At least four other factors are playing a role during the outbreak.

First, the contact processmay change during the outbreak, due to changing behaviour of
the individuals in the population, or to measures taken. Control measures such as improv-
ing hygiene, isolation of infected cases, transport bans and pre-emptive culling, could be
taken to reduce the number of contacts but also to limit the reproductive ability of infected
individuals, illustrating that a model describing the infectiousness of the pathogen might
only be appropriate for the early stages of the break.
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Second, it can be very difficult to determine the population at risk at the start of the out-
break. Moreover, during the outbreak the population at risk may change due to measures
taken or some other censoring mechanisms. It is therefore very difficult to determine the
size of the population at risk. Only when this size is well defined can one calculate certain
important characteristics, such as the hazard rate for a disease, i.e. the instantaneous risk
of contracting the disease at a certain time point, given the absence of disease before that
point in time. This is different with infectious disease outbreaks or other communicable
events such as the spread of a rumour or the spread of some kind of behaviour through a
population. With events such as these, the number of individuals at risk is not necessary.
Of course, in order for the infectious disease to spread, there must be enough individuals
without the disease in the population and there must be some kind of contact pattern, but
knowing the size of population at risk at each point in time is not necessary. This is due to
the communicability of the event. In that case the risk of being infected at a certain point
in time is characterized by the ability of current infectious individuals to infect others, the
so called reproductive power [10].

A third point is that measurements during an outbreak are often limited to whether
an individual was infected in the past, irrespective the precise time point at which this
individual was infected. This is similar to current status data.

A fourth point to be observed is that the data are dependent: what happens at a point in
time depends on what happened before, due to the contagiousness of the disease.

Usually with outbreak data, the number of infected individuals are measured in discrete
time. That is, the number of detected cases per week or per month are registered, not the
exact time at which the detected infected case occurred. Kypraios and O’Neill [11] note
that in the context of infectious disease data analysis, discrete-time models are often very
natural since real-life data are invariably discrete in time.

To deal with the incompleteness of epidemic data, O’Neill and Roberts [15] propose a
Bayesian approach to inference for both the Reed-Frost model and the general stochastic
epidemic model. They assume that the observed data consist of a set of removal times so
the unobserved infection times are treated as parameters in the model.This model can be
used for prediction and needs the number of susceptibles at time zero or the assumption of
a prior distribution on the initial number of susceptibles as well as assumptions about the
other prior distributions. They also assume that the unobserved time of the first infection
has an exponential distribution but other distributions might also be taken. They discuss
estimating this model with Markov chain Monte-Carlo methods. Kypraios and O’Neill
[11] extend this model to a non-parametric Bayesian model using an augmented likeli-
hood (with a thinned homogeneous Poisson process) and a zero mean Gaussian process
prior.

For a non-Bayesian approach of the general stochastic epidemic model see [6].
Spatio-temporal models are discussed in [7]. There a point process for the location and

time of an event of interest is used. The model is formulated in terms of the conditional
intensity λ(x, t |Ht) for an event at location x and time t. The times at which an event
occurs are assumed to be known accurately. Also the number at risk needs to be known.
Right censoring is allowed. See also the discussion in [8].

Usually an average quantity, e.g. R0 (the expected number of secondary cases if an infec-
tious individual is introduced in a population of susceptibles), is used to describe aspects
of an epidemic outbreak (in the case of R0: whether or not an outbreak will occur). An
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estimate of such a quantity can obscure considerable individual variation in infectiousness
[13]. These authors showed that the distribution of individual infectiousness around R0 is
often highly skewed.

To deal with non-homogeneousness over time, Chowell et al. [4] formulates a SEIR
(Susceptible-Exposed-Infectious-Removal) model by their analogous stochastic version.
The event times are modelled as a renewal process with exponential distributions for the
increments. So the rates at which events occur are fixed over time. The transmission rate
however is allowed to change gradually from one value to another, between the time of
onset of the intervention to the time of full compliance. The time of onset of the inter-
ventions is a parameter in the model. Appropriate initial conditions for the parameters are
chosen and the model is fitted using least squares on the cumulative number of cases. This
process is repeated 10 times and the best fit is chosen.

Because it is not observedwhen an individual enters a compartment but onlywhether or
not an individual is a case, the authors of this article use the assumptions of the exponential
distributions for increments of the event times and appropriate initial conditions for the
event times. They also need an estimate of the population size. Estimates are used that
are an upper bound of the effective population size (those at risk of becoming infected).
Besides the model assumes mass action or pseudo mass action.

Problems with the basic reproduction number of the SEIR model and (non-
homogeneous) generalizations thereof are discussed in [3] and they propose the empirical
adjusted reproduction number by considering the expected number of secondary infec-
tions produced by a single infected in that population based on the parameters of a spatial
SEIRmodel for the number of new infections or the number of removed individuals. They
demonstrate improved ability to detect changes in transmission behaviour not explicitly
accounted for by the model. They assign a chain binomial structure to the transmission
matrices. The transmission parameters can depend on covariates and they use appropriate
prior distributions on the parameters of the intensity process. They further assume a Pois-
son distribution for the number of contacts within a spatial unit on a certain time point
and that individuals travelling to another spatial unit behave according to that unit. They
further assume that the contact between spatial locations is proportional to some function.

As said the use of a SEIR model in the situation where it is not determined in what
compartment the individuals are but only whether or an individual is infected or removed,
needs extra assumptions. In [3] prior distributions are assumed for the chain binomial
structure of the transition matrices and further assumptions are used for the contact pat-
tern. The empirically adjusted reproduction number based on the proportion of persons
who are infectious at time ti and spatial unit sj is estimated additional to the model, so it
can detect changes in transmission not detected by the model.

The model proposed in the sequel of this article, models the data as it is observed and
uses the expected number of newly infected per existing infected on a certain time point
directly with the ability of using covariates for this expected number and thus uses less
assumptions.

There are a large number of other approaches. For a discussion of these see [6].
In this paper, it is proposed to address the above five points using a non-homogeneous

birthmodel in discrete time as an approximation for this complicated data-generating pro-
cess, yielding an approach similar to discrete time survival analysis. The present study is
the first – to the best of our knowledge – to formulate this model with important features
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such as simplicity, ability to deal with current status and dependent data, ability to deal
with covariates and similarity with discrete time survival models.

In Section 2 a description of the non-homogeneous birth model Computational
Bayesian Statistics is given in continuous and discrete time. In the discrete time case
the expected value and variance is given in terms of the reproductive power. The log-
likelihood is formulated giving novel expressions for themaximum likelihood estimator of
the reproductive power and its standard error and, for the survival function based on this
reproductive power and its standard error. In Section 3 a regression model for the repro-
ductive power, similar to discrete time survival models, is formulated with two possible
interpretations: a log-odds interpretation and an interpretation of the expected reproduc-
tion per existing case. In Section 4 the model is applied to the H5N1 avian influenza
outbreak in Thailand and Section 5 contains a discussion.

2. Themodel

The early stage of the outbreak can be well approximated by a birth process, because then
the infectious process dominates the outbreak and there are not many removals or recov-
eries in that early stage. This model depends on a rate called the reproductive power (the
birth rate) [18]. In this paper, this rate is taken to be non-homogeneous in order to deal
with developments later on in the outbreak. This is important, because it enables the repro-
ductive power to adapt to other dynamics of the outbreak besides the infectiousness of the
disease, such as changing contact patterns, changing population of susceptible individuals
and measures taken, as mentioned in the introduction. Furthermore, in the case of a non-
homogeneous reproductive power, there is noneed for a homogeneousmixing assumption.
This is because non-homogeneous mixing – for example if there are periods in which the
infected individuals mix well with other individuals and there are periods in which this
is less so – can influence the number of infected individuals at specific points in time to
which the non-homogeneous reproductive power can adapt.

So instead of describing an outbreak with a single quantity, it might be useful to describe
it with a function that takes into account the changing ability of an infected individual to
reproduce over time: the reproductive power function. Another argument for making the
reproductive power time dependent comes from [2]. They have shown that variation in the
susceptibility of individuals can result in an infection rate that declines over time as highly
susceptible individuals tend to be infected earlier. A final reason to take reproductive power
as a function of time is given below.

The stochastic version of the non-homogeneous birth process has a distribution func-
tion as a solution with an expected value equal to the solution of the deterministic version
of this process. Moreover it is a Markov model, thus dealing with the dependence of the
data mentioned in the fourth point in the introduction.

Suppose Y(t) is the total number of infected individuals at time t, then the solution of
the stochastic non-homogeneous birth process is the shifted negative binomial distribution
[18]:

P(Y(t) = yt) =
(
yt − 1
y0 − 1

)
[S(t)]y0 [1 − S(t)]yt−y0

yt = y0, y0 + 1, y0 + 2 . . . , (1)
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where S(t) = exp{− ∫ t
0 λR(τ ) dτ }, λR(t) is the reproductive power function [10] and y0

is the number of infected at time zero. The reproductive power function is the rate at
which all the previous infected individuals generate new ones. It is the rate by which infec-
tion occurs due to reproduction. This is another important reason why the reproductive
power should be taken as non-homogeneous. Not all infected individuals from the past
are still infectious at a specific point in time. As time goes on, the proportion of the total
number of infected individuals that spreads the disease decreases. In order to distinguish
this reproduction from the reproduction of infectious individuals one might define this as
‘quasi-reproduction’.

The term quasi-reproductive power function is used for this rate (reproductive power
as in [10]) to avoid confusion with other quantities that use the word reproduction. The
birth process refers to the infected individuals not to the susceptible individuals. The quasi-
reproductive power is the rate at which an infected individual is able to produce new
infections. The expected value of the total number of infections is

E(Y(t)) = y0
S(t)

.

Model (1) gives the probability (likelihood) for the total number of infected individuals
at time point t. One can rewrite this in terms of individual probabilities. Looking at the
contribution of an individual using the birth process, observation starts with a change of
state from susceptible to infected in the past. This change happens with a probability F(t),
with F(t) = 1 − S(t) the distribution function. So observation starts after an individual
has entered the infected compartment. After that the individual remains in that state and
contributes a survival probability S(t) at every observation point for as long as the outbreak
lasts. See Section 3 for more detail on individual probabilities.

Note that a death process [18] gives similar results, although that relates to susceptible
individuals. The force of infection is the rate at which susceptible individuals are infected.
With the death process, an individual starts in a susceptible state, i.e. an at-risk state, which
is observed from the start of the epidemic. It contributes a survival probability S(t) at every
observation point for as long as it remains in a susceptible state. At the moment that infec-
tion is observed, it contributes a probability F(t) and the observation ends. So observation
starts when an individual is in an at risk,i.e. susceptible, state and ends if there is a change
to this state. The non-homogeneous birth model does not need the size of the population
at risk, i.e. the size the susceptible population. This constitutes an advantage over the death
process, as explained in the second point in the introduction.

Model (1) provides a likelihood that is proportional to the conditional likelihood used
for grouped current status data [16]. These data only provide information on whether or
not the event occurred before the observation time. As stated above, this is what usually
happens during an infectious disease outbreak, because infected individuals are, for various
reasons, not observed at the time of infection but are registered by the symptoms of the
disease, usually with some delay (the third point in the introduction). This type of outbreak
data is similar to current status data in the sense that the likelihood function depends on
the survival and distribution function, so the data are interpreted as either left censored or
right censored but not both at the same time. Thismeans that if an individual is observed to
be infected, the infection happened in the past but it is not clear how far away in the past.
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Some observations might have a long detection time and some a short one. If an at-risk
individual is not observed to be infected, infection may still happen in the future.

To estimate the survival function non-parametrically with current status data, one needs
a special algorithm such as pool-adjacent-violators (PAV) to take into account the fact that
the survival function is a non-increasing function [5]. Here things are simpler because
the model is a Markov model for cumulative data. The maximum likelihood estimate for
the survival function in the birth process is Ŝ(t) = y0/yt (see below for a discussion), the
estimated fraction not changing state. It is perhaps more natural to look at the distribu-
tion function, since the starting point is on entering the infected state and the number
of individuals in that state is measured over time. The maximum likelihood estimate is
F̂(t) = (yt − y0)/yt , the fraction of cases that are new since time zero.

This is a model for the cumulative number Y(t). It can be rewritten as a model for new
cases Z(t) = Y(t) − y0:

P(Z(t) = zt) =
(
zt + y0 − 1
y0 − 1

)
[S(t)]y0 [1 − S(t)]zt .

As observed earlier, the time at which the outbreak is observed is usually discrete [1, p. 108]
although the underlying time scale is continuous. This is why the data should be treated
as grouped data with discrete observation times tj, j = 1, . . . ,m. The conditional survival
probability is then

P(T > tj |T > tj−1) = S(tj)
S(tj−1)

= 1 − S(tj−1) − S(tj)
S(tj−1)

= 1 − Rp(tj) (2)

where Rp(tj) is the discrete quasi-reproductive power probability function hereafter
referred to as the reproductive power probability function or shortly as the reproductive
power probability. This is the probability that an infection will occur at tj given that it
did not occur before that point in time. The conditional probability of observing ztj new
infected individuals at time tj given ytj−1 infected individuals at the previous time point
tj−1 is:

P(Z(tj) = ztj |Y(tj−1) = ytj−1) =
(
ztj + ytj−1 − 1

ytj−1 − 1

) [
1 − Rp(tj)

]ytj−1
[
Rp(tj)

]ztj
ztj = 0, 1, . . . (3)

The expected value is:

E[Z(tj)] = μtj = ytj−1

Rp(tj)
1 − Rp(tj)

, (4)

the total number of cases in the previous time interval times the odds of the reproductive
power probability. The variance of this negative binomial distributed variable is:

var[Z(tj)] = ytj−1

Rp(tj)
[1 − Rp(tj)]2

= μtj

(
1 + 1

ytj−1

μtj

)
,

which shows that 1/ytj−1 is the over-dispersion parameter relative to the Poisson distri-
bution and that, as time goes on, the process behaves approximately as a Poisson process.
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Note that this model is a generalized linear model, since one does not have to estimate a
dispersion parameter.

Note that, in order to interpret the reproductive power Rp(tj) in (3), there are only two
kinds of individuals: those who are infected at time point tj and those who are not, which
are those ytj−1 individuals that are already infected in the past. The reproductive power
probability shows howmany infected are created by the infected already present at time tj.

Suppose there are T possible time points, then, using (3), the log-likelihood (l) can be
written as:

l =
T∑
j=1

log
(
ztj + ytj−1 − 1

ytj−1 − 1

)
+ ytj−1 log

[
1 − Rp(tj)

]+ ztj log
[
Rp(tj)

]
, (5)

where ztj is the number of new cases at a specific point in time tj and Rp(tj) is the reproduc-
tive power probability function at time point j. Maximizing this log-likelihoodwith respect
to Rp(tj) gives the maximum likelihood estimator for the reproductive power probability
at time point j:

R̂p(tj) = 1 − ytj−1

ytj
= ztj

ztj + ytj−1

, j = 1, . . . , n,

the number of new cases at a time period per total number of infected individuals or the
proportion of cases that are new at time interval tj. As times goes on the reproductive
power probability usually becomes smaller since not all the previously infected individuals
continue to reproduce.

The standard error of Rp(tj) is denoted by SE(R̂p(tj)) and can be determined from the
Hessian. It looks very similar to the standard error of a proportion:

SE(R̂p(tj)) =
√√√√ R̂p(tj)[1 − R̂p(tj)]

ytj
, j = 1, . . . , n.

Note that, if the reproductive power probability is approximately constant, this standard
error decreases over time as the number of previously infected individuals is increasing.
This is in contrast to the standard error of the hazard rate or probability in survival analysis,
because in that case the population at risk, which is decreasing in number, must be taken
into account.

Since the conditional negative binomial log-likelihood with known dispersion param-
eter (5) is a log-likelihood of a generalized linear model, the parameter estimators are
approximately normally distributed for large sample sizes.

An estimate of the survival probability at time tj can be obtained using R̂p(tj) = 1 −
ytj−1/ytj with ytj as the observed value of the stochastic variable Y(tj):

Ŝ(tj) =
j∏

k=1

[
1 − R̂p(tk)

] = yt0
ytj

.

The variance of the reproductive power probability shows that

v̂ar(
1

Y(tj)
) = 1

ytjy2tj−1

R̂p(tj)[1 − R̂p(tj)]
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and thus

ˆvar(̂S(tj)) = y2t0 v̂ar
(

1
Y(tj)

)
= y2t0

y2tj−1

R̂p(tj)[1 − R̂p(tj)]
ytj

and so

SE
(̂
S(tj)

) = yt0
ytj−1

√
R̂p(tj)[1 − R̂p(tj)]

ytj
.

3. Regressionmodel for the reproductive power probability

Taking a log link for the expected value of the number of new cases (Z(tj)), at time interval
tj, given the total number of cases in the previous interval as formulated in (4), gives:

log
{
μtj

}
= log

{
ytj−1

}
+ log

{
Rp(tj)

1 − Rp(tj)

}
One can assume a parametricmodel for the survival function and use this in (2) to calculate
the reproductive power probability function, as was done in [18] with members from the
Burr-family. To avoid this parametric assumption, one can model the time effects with a
piece wise constant function in discrete time.

The log-odds of the reproductive probability can be modelled linearly in the covariates.
If the covariates all have baseline values (usually zero), the model for the log-odds of the
base line reproductive probability, Rp0(tj), is

log
{

Rp0(tj)
1 − Rp0(tj)

}
= αtj ,

so αtj is the log-odds of the reproductive power probability at time tj, and

Rp0(tj) = eαtj

1 − eαtj
.

The model with covariates is

log
{

Rp(tj)
1 − Rp(tj)

}
= αtj + Xβ (6)

or

Rp(tj) = eαtj+Xβ

1 − eαtj+Xβ
.

This model for Rp(tj) can be plugged into the log-likelihood (5) and then maximized over
the parameters αtj and β to obtain maximum likelihood estimates and further likelihood
results. This model is a generalized linear model with a negative binomial distribution, a
dispersion parameter 1/ytj−1 and a log link. If the covariate effect and the parameters do
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not depend on time, then this model is a proportional odds model. This model can also be
written as:

log

{
μtj

ytj−1

}
= log

{
Rp(tj)

1 − Rp(tj)

}
= αtj + Xβ .

The log-odds of the reproductive power probability at a certain point in time is the same as
the log of the expected number of new cases per existing case, at a certain point in time. This
model therefore has two interpretations. A piecewise constant linearmodel with covariates
for the log-odds of the reproduction probability at a point in time is the same as a piecewise
linear model with covariates for the log of the expected reproduction per existing case at
a specific point in time. However, as already noted, not all existing cases reproduce, so the
reproduction can be seen as a ‘quasi-reproduction’.

As was mentioned briefly in Section 2, one may reformulate this model in terms of
individual contributions. As can be seen from (3), all those individuals that were seen
as infected in a time interval contribute Rp(ti) and those who were detected as infected
before this time point contribute 1 − Rp(tj). If one concentrates on individual i then this
individual contributes Rp(ti)when detected as an infected. After time point ti this individ-
ual contributes 1 − Rp(tj) from j = i+ 1 until the last time point T. Thus the likelihood
(L) for n individuals can be written as

L =
n∏

i=1

⎧⎨⎩Rp(ti)
T∏

j=i+1
[1 − Rp(tj)]

⎫⎬⎭
with Rp(tj)modelled as (6). This formulationmakes it easy to incorporate individual (time
varying) covariates. This is similar to discrete survival analysis [12].

4. The H5N1 avian influenza outbreak in Thailand (2004–2007)

One can use the model described in Section 3 to learn about the outbreak using covariates
and the baseline reproductive power function. This is illustrated herewith the transmission
data of avian influenza (H5N1) among poultry flocks in Thailand. To study the epidemi-
ology of this viral infection among poultry in Thailand from 2004 through 2007, it was
investigated how wild birds play a role in transmission. See [9] for a full description of the
research and of the data. The question was: does the joint presence of infected wild birds
and poultry increase spread among poultry flocks?

Geographic location and season were recorded for each bird species identified. To
study the regional effect on outbreaks of the subtype H5N1 in wild birds, Thailand was
divided into four major geographic regions (northern, north-eastern, central, and south-
ern) on the basis of the former administrative regional grouping system used by the Thai
Ministry of Interior. Because of the high number of outbreaks in the Central region, this
was further divided into six sub-regions: north-west central, north-central, central-central,
east-central, south-east central, and south-west central.

The definition of poultry encompasses all farmed avian species in Thailand, including
backyard chickens and ducks. Time was measured in months from the first month that
infection was detected. There were at most 38 months in the study period.
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Figure 1. Thenumbers of infectedwildbirds (bar) and infectedflocks (points) in nine regions in Thailand
from 2004 through 2007.

In most regions, sampling among wild birds was only carried out systematically after a
poultry outbreak in that region, except in the central-northwest, central-north, and central-
central sub-regions, the second, third and fourth regions in Figure 1. This figure shows the
numbers of infected (and detected) wild birds (bar) and infected flocks (points).

We could therefore only use these 3 sub-regions to investigate whether the presence of
infected wild birds was related to the poultry outbreak. Within these 3 areas, a wild bird
infectedmonthwas defined as amonth inwhich infectedwild birds were detected orwhich
showed wild bird infection in the preceding month [9]. The idea is that the reproductive
power (probability) between poultry flocks might be higher in these months compared to
other months because there was ‘help’ from wild birds.

The observations from the regions are assumed to be conditionally independent, given
the number of infected birds at time zero in a region, given the total number of infected
at the previous time point and given the covariates. This means that it is assumed that the
number of contacts between poultry farms in different areas are negligible which seems not
unreasonable in this case. This assumption can be relaxed as is mentioned in Section 5.
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Since time is measured in months, it is viewed as a discrete variable and is therefore
modelled with a peacewise constant function. The model used is:

log

{
μtj

ytj−1

}
= log

{
Rp(tj)

1 − Rp(tj)

}
= αtj + β0 · wb +

9∑
i=1

βi · regioni, (7)

were wb is the indicator of a month with infected wild birds and regioni is the indicator of
region i, i = 1, . . . , 9.

Figure 2 plots the baseline reproductive probabilities. The blue line shows the baseline
reproductive power probabilities of the 38 months. Since after month 13 there are a lot
of months with a zero count, time could be grouped more tightly in order to get more
stable estimates. A smoothing spline is fitted to the data (the red line) to get an idea of
this grouping. With the help of these two lines, a piecewise constant function with more
structure is chosen. This is the black line. This piecewise function has five time inter-
vals: month 1 was the first group, months 2, 3, 4 and 5 the second, months 6, 7, 8 and
9 the third, and months 10 and above is the fifth group. The five reproductive probabili-
ties are 0.118, 0.015, 0.483, 0.085 and 0.003. A reproductive power probability of 0.483, for
instance, means that there is a probability of 0.483 in the third interval that existing cases
will produce a new case.

The rapid increase of a reproductive power probability to 0.483 in the first 10 months
might be seen primarily as a reflection of the infectiousness of the disease. The decrease of
the reproductive power function after 10 months can be interpreted as primarily a reflec-
tion of the measures taken and, of course, of the fact that not all infected individuals were
reproducing during that period of the outbreak.

Figure 2. The baseline reproductive power probabilities with 38months (step line), a smoothing spline
(red line) and a piecewise constant function with five time intervals (step line with 5 steps).
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Figure 3 shows this piecewise constant function for the baseline reproductive probabil-
ity function (black). To get an impression of the uncertainty of the baseline reproductive
power probabilities, 1000 bootstrap samples were obtained, each bootstrap sampling from
all nine regions. Model (7) was fitted for each bootstrap sample and the baseline reproduc-
tive power probabilities were obtained (gray lines in Figure 3)from the estimates of this
fitted model. The blue lines represent the 2.5th and the 97.5th percentiles.

The log-odds ratio for the reproductive power probability (or the log reproductive
power ratio) for a month with infected wild birds is estimated as 0.83 with a standard
error of 0.0923. The odds ratio is 2.29 and 95% profile log-likelihood confidence interval
is (1.92, 2.75). There are two possible interpretations:

First interpretation The odds of the reproductive power probability are about 2.3
times higher formonths with infectedwild birds than formonths
in which no infected wild birds are detected. The reproductive
power probability is the proportion of all new infections at a
certain point in time.

Second interpretation The reproductive power of a month with infected wild birds is
about 2.3 times higher than months in which no infected wild
birds are detected. The reproductive power is the number of new
infections at a certain time point per existing infection.

Figure 3. A piecewise constant function for the baseline probability function (black), 1000 bootstrap
versions of this function line (gray) and the 0.25th and 0.975th percentile points (dashed) based on the
bootstrap samples.
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Due to the time scale chosen (months), there are time points with a very large number
of cases followed by time points with very few or even zero cases. This results in an over-
dispersion which is reflected in large deviance residuals. If one concentrates the analysis
on the months with the most data, the log-odds ratio for the wild bird infected-month is
approximately the same.

5. Discussion

The early stage of an infectious disease outbreakmay be approximated by the birth process
as then the infectious process dominates the outbreak and there are not many removals
or recoveries. The non-homogeneous birth model (negative binomial) for outbreak data
proposed here depends on the reproductive power (probability) [18] that can be used in
a regression model. This paper takes this reproductive power to be non-homogeneous in
order to deal with developments later on in the outbreak. This non-homogeneous is impor-
tant because, as stated in the introduction, it allows the reproductive power to adapt to
other dynamics besides the infectious disease outbreak; dynamics such as changing contact
patterns, the changing population of susceptible individuals, and control measures taken.
Furthermore, in the case of a non-homogeneous reproductive power, there is no need to
include a homogeneous mixing assumption. This is because such non-homogeneous mix-
ing – for example if there are periods in which the infected individuals mix well with other
individuals and periods in which this is less the case – can influence the number of infected
individuals at certain time points and the non-homogeneous reproductive power can adapt
to it. The model has the following features:

(1) The model is a non-homogeneous birth model so it can describe the early phase
of the outbreak well and, due to its non-homogeneous nature, can deal with other
aspects of the outbreak such as changing behaviour or control measures taken
besides.

(2) It does not need the size of an at-risk population; such a population is often hard to
determine and can change during the outbreak.

(3) An infection is usually observed as having taken place in the past. This model deals
with this in a way similar to current status data.

(4) Because the model is a Markov model, it deals with dependence in the data.
(5) Modelling the log-odds of the reproductive power probabilities (proportion new

cases of all the infections at any one time) is the same as modelling the log of the
reproductive power (proportion of new cases per existing case).

Themodel used in the example has (conditionally) independent groups. Given the number
of previously infected individuals and given the covariate value, the groups are indepen-
dent in the sense that the different geographic areas had their own outbreak. The covariate
in the example is environmental. Some of the existing cases reproduce and an environ-
mental characteristic (presence of infected wild birds) has a positive influence on such
reproduction.

It might also be that the covariates are individual values measured at the time the
infected individual was detected. Suppose, for the sake of argument, that the covariate
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measures the presence or absence of a characteristic. If the covariate is thought to influ-
ence the susceptibility for the disease, then one can condition for the total number of
previous infections and see whether the reproductive power increases if the characteris-
tic is present by inserting this covariate into the linear part of the model. If the covariate is
believed to influence the infectiousness of the disease, then the previous number of infec-
tions can be divided in two groups: one with and one without that characteristic. Then,
using conditional independence, one can estimate the likelihood, as in the avian influenza
example.

One of the possible extensions or modifications of the model is to drop the conditional
independence between the areas. If the reproductive power function is thought to be influ-
enced by the number of infected individuals from other areas, one can use the power-law
method developed by Meyer and Held [14].

One might also extend the model to one that is dealing with overdispersion. If for
instance a lot of zeros are observed a zero inflated distribution could be used. Another
possibility is to use the distribution (3) in a hidden Markov model to obtain a Markov-
switching model (see [20] Section 10.4.).

The model in this paper uses a non-homogeneous reproductive power function. One
reason for this is that after the start of the outbreak not all individuals who are infected
still reproduce. This is especially the case when infected individuals are removed quickly
for instance in the case of high fatality. The time varying aspect of the reproductive power
adapts to this since it might decrease as the number of total infected(which are not all
infectious) increase. Another way to deal with this is to include removals by using a non-
homogeneous birth-death process [19] or even to use amodelwith an equal birth anddeath
rate for endemic diseases [17]. In these last cases the distributions are more complicated.
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