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ABSTRACT
Data collected in various scientific fields are count data. One way to
analyze such data is to compare the individual levels of the factor
treatment usingmultiple comparisons. However, themeasured indi-
viduals are often clustered – e.g. according to litter or rearing. This
must be considered when estimating the parameters by a repeated
measurement model. In addition, ignoring the overdispersion to
which count data is prone leads to an increase of the type one error
rate. We carry out simulation studies using several different data set-
tings and compare different multiple contrast tests with parameter
estimates from generalized estimation equations and generalized
linearmixedmodels in order toobserve coverage and rejectionprob-
abilities. We generate overdispersed, clustered count data in small
samples as can be observed in many biological settings. We have
found that the generalized estimation equations outperform gen-
eralized linear mixed models if the variance-sandwich estimator is
correctly specified. Furthermore, generalized linear mixed models
show problems with the convergence rate under certain data set-
tings, but there are model implementations with lower implications
exists. Finally, we use an example of genetic data to demonstrate the
applicationof themultiple contrast test and theproblemsof ignoring
strong overdispersion.
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1. Introduction

The appearance of count data is very common in many different fields of science: applied
ecology [31], pharmacology [29], toxicology [10], and genetic biology [25]. Frequently,
the count data do not originate from independent samples, but from samples clustered
according to biological habitats, litters, leaves from the sameplant or the cells from the same
petri dish. A model must consequently take both treatment effects and cluster effects into
account. Furthermore, multiple comparisons within treatment types or genetic variants as
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well as the comparison of different habitats to a control group are often of scientific interest.
Since Hothorn et al. [11] multiple contrast test are available for simultaneous confidence
intervals. The user can define the contrasts for the scientific problem and use the parameter
estimates from regression models to construct the confidence intervals.

Count data by nature does not follow a Gaussian, but a Possion distribution. Nonethe-
less, a simple, ordinary quadratic model, which requires a normal distribution, is often
applied to analyze the count data. If the Poisson distribution is chosen appropriately, the
limitation of its parameterization is very often neglected because the Possion distribution
has only one shape parameter for the location of the mean. Therefore, the variance of the
data is modeled as a linear function of the mean. Hence, if the variance increase exceeds
the increase of the mean overdispersion θ occurs. In the case of a Poisson distribution
we expect the variance to increase at a ratio of 1:1 to the mean. Therefore, we define the
occurrence of overdispersion θ , if the mean/variance ratio exceeded two, i.e. θ > 2. From
the practical point of view, a fittedmodel can be checked for overdispersion by dividing the
residual deviance by the residual degrees of freedom. Beside these two problems of clus-
tered data and overdispersion, the limitation effect of a small sample size can be observed
while fitting the model parameters.

Sources for over-dispersion are many: variability of experimental material, correlation
or dependence between individual sample responses, a clustered structure of the popu-
lation, small sample size and even more [14,36]. As a special case overdispersion can be
caused by high proportion of zeros as well as by zero truncation. Both these scenarios are
very special cases and hence not considered in this paper.

The neglection of overdispersion is an underestimated standard error in the parameter
estimates [22]. Therefore, the comparison of treatment effects will cause more significant
results and therefore an increase of false positive findings. In contrast to non-significant
results, significant results tend not to be questioned. As a result, the applied user will gain
some sort of false benefit from neglection of overdispersion.

There are two solutions to deal with overdispersed count data. One, considering a
distribution that is capable of estimating themean and variance independently, e.g. the neg-
ative binomial distribution. Two, considering a quasi-distribution that allows to adjust the
mean/variance ratio. In the case of the Poisson distribution, we can use the quasi-Poisson
distribution. Ver Hoef and Boveng [33] stated, that the quasi-Poisson regression might be
a better solution. This is driven by the fact that the negative binomial gives smaller sites
more weight than the quasi-Poisson distribution. In our work the simulated settings we
will run do not cover overdispersion caused by a high proportion of zeros and therefore
expect estimates, which are not dominated by smaller counts.

There are two ways of modeling cluster effects: conditional or marginal models. Con-
ditional models are more known by their common name linear mixed models (LMM),
while marginal models are better known as generalized estimating equation (GEE). A well
written review about the theoretical background can be found in Muff et al. [24]. In the
case of the conditional model the correlation between the subjects in cluster is modeled.
In contrast, the marginal model tries to consider the variance caused by each individ-
ual. Therefore the marginal models can interpreted as population average models. Lee
and Nelder [17] stated, that the there are meaningless differences between conditional and
marginal models due to the false interpretation of the effects. However, conditional models
should have more advantages than marginal models. The statements of Lee are discussed
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controversially in the comments and rejoinder of Lee’s article [17]. For a more compre-
hensive theoretical comparison of (G)LMM, as conditional models, and GEE, as marginal
models, we want to refer to Zhang et al. [37]. In our work, we concentrate on the estimates
of the mean differences and the goodness of variance estimators in the context of multiple
contrast tests.

The applied statistician has the choice of different R packages for the multiple group
comparisons of overdispersed count data with clustered samples: (generalized) linear
mixed models, glmer(), using the R package lme4 [2], generalized estimating equations,
geeglm(), using geepack [9] and in addition to the geeglm() the package geesmv [34].
The functionality of geesmv is needed for the selection of modified variance estima-
tors adjusting for small sample size. The glmer() function in lme4 is not able to use the
negative binomial distribution family. Therefore, the package introduce a additional func-
tion glmer.nb(). However, this function is called experimental and suboptimal, because of
development processes. If the practical statistician would use the generalizedmixedmodel
functionality, he has to apply the Poisson distribution to the data. On the other hand, the
standard lmer() functionality can be used on log transformed data, assuming normal dis-
tributed data after transformation. Newer implementations of the generalized linearmixed
model exists: glmmADBM [32] and glmmTMB [20]. Both packages depend on the Tem-
plate Model Builder (TMB) [16] and allow to use the negative binomial family for the
analysis, while the glmmTMB offers more functionality [4]. In our work we concentrate
on the implementations in R. However, there are different other statistical softwares and
implementations of especially linear mixed models. Huang et al. [12] gives a comprehen-
sive comparison of parameter estimations of linear mixed models in SAS and R. In case
of SAS, the estimated coefficients of the linear mixed models can be extracted and added
manually to the multcomp procedure in R.

Finally, the R package geepack allows users to use the generalized estimating equations
for the estimation of themean differences of the treatment groups. The usage of the Poisson
family and the variance estimation on the individual level by the GEE model allow for the
adjustment of possible overdispersed data. Nevertheless, generalized estimating equations
present a broad variability of variance sandwich estimators. The choice of the right variance
estimator has big influence of the final outcome of the estimation.

In our work we extend the work of Orelien et al. [27], which demonstrated the usage
of generalized estimating equation model estimates for many-to-one comparisons. Since
multiple contrast test are available [11] and different approaches for the analysis of clus-
tered data have been introduced. Concretely, we extend the work of Orelien et al. [27]
by using different contrast tests: Dunnett, Tukey, Williams, and Changepoint. In addition,
we use generalized linear models for the multiple comparisons. Finally, we compare in
a simulation study the different models estimate from linear mixed models and GEE for
overdispersed clustered count data. We discuss different analysis settings and give advice
for the practical use of the models under small sample size.

2. Methods

2.1. Data generation

We generated for the simulations study a data set consisting of one treatment effect β

and a additive cluster effect γ . The treatment vector β consist always of four treatments
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(nt = 4). In the simulation different numbers of clusters per treatment ct = {2, 3, 4, 5, 10}
and samples per cluster cs = {2, 3, 4, 5, 10} have been generated. Moreover, the count data
set is build using different predefined overdispersions of θ = {1, 3, 5, 7, 10}, and differ-
ent effects of the cluster λ́γ = {0.1, 0.25, 0.5, 1, 1.5} × λβ in comparison to the treatment
counts of λβ = {10, 10, 10, 10}. If one variable is not varied in the simulation, we set the
number of clusters per treatment to three (ct = 3), the number of samples per cluster to
four (cs = 4), the overdispersion to three (θ = 3), and the cluster effect to λ́γ = 0.5 × λβ .

The response variableY is drawn from a negative binomial distribution.Wewere able to
generate count data with overdispersion θ as the desired mean/variance ratio by using the
ecological parameterization of the negative binomial distribution using the functionality
of rnbinom() in R [3]. We set the scale parameter size to the desired mean/variance
λ/(θ − 1) and mu to the desired mean count λ. If the dispersion should be 1, we draw the
counts from a Poisson distribution with the mean λ. We draw from a negative binomial
distribution with a λβ = 10 for the fix treatment effect and with a λγ = Pois(λ = λ́γ ) for
the random cluster effect. The resulting counts for the treatment effect β and the cluster
effect γ are then added to the response variableY. Supplementary Figure 1 shows a example
data set with λβ = 10 and λγ = Pois(λ = 5). We checked if the predefined overdispersion
θ matched the estimated overdispersion θ̂ using a generalized linear model fit with two fix
effects including the treatment β and a additive cluster effect γ (Supplementary Figure 2).
We determined θ̂ by dividing the residual deviance of the model fit by the residual degrees
of freedom.We achieve a overall matching of the predefined and estimated overdispersion.
We show in Supplementarymaterial section 2 the R implementation of the data generation,
if the reader might be more familiar with R code and find code in general easier to read.

2.2. Models for the simulation

The Table 1 shows the different models used in the simulation and example data analysis.
Overall fourmodels have been used in the simulation study: loglmm, a linearmixedmodel
on log transformed count data assuming a normal distribution, glmm.pois, a generalized
linear mixed model with a fixed effect and a random effect assuming a Possion distribu-
tion, glmm.tmb, a newer implementations of the generalized linear mixed models with a

Table 1. Applied models in the simulation study and for the analysis of the example data set.

Model R function (Package) Fix effect Cluster Distribution

loglmm lmer (lme4∗) β γ log(Y + 1) ∼ Normal
glmm.pois glmer (lme4∗) β γ + δ Y ∼ Poisson
glmmtmb.nb glmmTMB (glmmTMB†) β γ Y ∼ NegBinom1
GEE geeglm (geepack§) β γ Y ∼ Poisson

glm.pois glm (stats) β + γ Y ∼ Poisson
glmm.nb glmer.nb (lme4∗) β γ Y ∼ NegBinom

Notes: The upper four models have been used for the simulation. The lower two models were additionally added
models for the analysis of the example data set: β the fix effect of the treatments, γ the random effect of the
cluster, and δ the individual random effect in the glmm.pois model. The model glmm.nb has problems with the
convergence rate and was therefore not used in the simulation study (Supplementary Figure 4). NegBinom1 has
a variance function that increases linearly with the mean [7].

∗Bates et al. [2].
†Magnusson et al. [20].
§Hojsgaard et al. [9].
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fixed and random effect modeling a negative binomial distribution, and GEE, generalized
estimating equations with a fix effect and a random effect under a Possion distribution.
All models are fitted using the mean parameterization and therefore removed the intercept
from themodel fit. In the following, we describe the usedmodels for the simulation inmore
detail. The corresponding R implementations and code can be found in the Supplementary
material section 2.

The model loglmm solves the problem of overdispersed data by transforming the count
data by a log-transformation. After the log-transformation the data can be seen as normal
distributed. Therefore, a normal linear mixed model can be used to fit the model. Due to
the log-transformation zero counts can not be modeled. Hence, all counts are increased
by one, to remove zeros from the data set. The increasing is especially problematic in the
case of a high proportion of zeros or small count numbers. In our simulation study, we
consider mean counts of 15 and therefore we can apply the log-transformation. The final
model includes a fix effect term β for the treatment effects and a random effect term γ for
the cluster effects. We use the R package lme4 [2] and the function lmer() for fitting the
model.

The second model glmm.pois models the data on the Poisson distribution. A negative
binomial or quasi-Poisson family is not available for the glmer implementation in lme4.
Hence, the modeling of the overdispersion is not possible by selecting the correct distri-
bution. To solve this problem, we run the glmm.pois model with an additional random
effect δ to model the individual effect. The additional parameter δ allows now tomodel the
overdispersion by modeling the individual variance. The full glmm.pois model has a fix
effect term β for the treatment effects, a random effect for the cluster effects γ , and a addi-
tional random effect δ to model the individual effect of each sample. We use the R package
lme4 [2] and the function glmer() to achieve the model estimates.

The third model glmm.tmb is a newer implementation of the generalized linear mixed
models in R. The glmm.tmb allows to select a negative binomial distribution to model
the overdispersion. Moreover, two negative binomial distributions are implemented: Neg-
Binom1 has a variance function that increases linearly with the mean and NegBinom2
assumes a quadratic increase [7]. Therefore, we are able to use the glmm.tmbmodel with a
fix effect term β for the treatment effects and a random effect for the cluster effects γ . We
use the R package glmmTMB [20] and the function glmerTMB() to fit the model.

Finallywe used theGEEmodel. Themodel fit has beendone twofold: first to estimate the
fix effects for the the treatments using geepack and in a second step to estimate the variance
covariance matrix of the fix effects using geesmv. For the usage of geesmv nine different
sandwich variance estimators can be chosen and are available in R: [5,6,13,19,21,23,28,35].
We run a simulation study (Supplementary Figure 3) to determine the best sandwich
variance estimator for our later simulation setting. The sandwich estimator proposed by
Wang and Long [35] delivers far the best results. Nevertheless, Wang and Long (2011)
pointing out, that their sandwich estimator works only on balanced data. Further, we
use the function geeglm() from the R package using geepack [9] to fit the model for the
treatment effects. In addition we choose a different sandwich estimator from the pack-
age geesmv [34] using the function GEE.var.wl() for the sandwich estimator by Wang and
Long [35].

Two further models were used for the analysis of the example data set: glm.pois, a gen-
eralized linear model with two fix effects and ignoring the overdispersion, and glmm.nb,
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a generalized linear mixed model with a fix and random effect modeling a negative bino-
mial distribution. The glm.pois model is used to demonstrate the misleading behavior of
ignoring overdispersion in the analysis of the example data set. The glmm.nbmodel shows
problems with the convergence rates of the fitting process. Therefore, the glmm.nb model
does not converge and a warning is given. This was especially problematic with the var-
ied overdispersion parameter (Supplementary Figure 4). Therefore we removed the model
from the simulation.

After fitting the different model, we used for the multiple comparisons the estimated
treatment effects β̂ from themean parameterization and the extracted variance/covariance
matrixwith the standard errors from themodel fits. Both can be included into the function-
ality of multcomp [11] and used for the multiple contrast test. While the generalized linear
models of the lme4 package run without intervention in multcomp, the estimated param-
eters of the other models must be first extracted from the model fits and implemented by
the user.

We run two simulation studies on different data settings. First, a simulation study to esti-
mate the type I error or the coverage probability (1 − α) with α = 5% for all four contrast
test. Second, a simulation study to achieve the power or rejection probability (1 − β) with
an twofold effect of treatment four. Hence the treatment effects for the power simulation
study are λβ = {10, 10, 10, 20}. In our work, we define the power determined in a multiple
comparison setting as global power [8]. Hence the probability of rejecting at least one null
hypothesis independently if the corresponding comparison is truly under the alternative.
By using this type of global power definition, we will have an enrichment of the power by
comparisons, which are truly under the null, i.e. a power inflation by type I errors. We run
for the type I error and power simulation 2500 replications.

3. Results

3.1. Simulation study on type I error

The simulation study of the coverage probability (1 − α) reveals the GEEmodel as the best
model in holding the family wise error rate among all settings (Figure 1). The GEE model
has a coverage probability of nearly 95% independent of the cluster size, the cluster number
per treatment, the cluster effect, or the dispersion parameter. Notable, the GEE models
shows a small tendency to be more conservative. Overall, the GEE model can handle the
clustered overdispersed data for all four contrast tests. Nevertheless, the performance is
driven by the right choice of the variance sandwich estimator. If the variance estimator is
false specified, because of unbalanced data or missing data points, the performance will
be different. Hence, the usage of the right sandwich estimator is crucial (Supplementary
Figure 3).

The second best model is the log-transformed linear mixed model. The loglmmmodel
becomes to liberal in the case of a higher cluster size of 10 or with an increase of the clus-
ter effect. In the case of low dispersion (1 < θ < 3) the log transformation lmm is also
to liberal. There is no setting where the loglmm model becomes to conservative. In our
simulation setting with moderate count numbers with a median of 15, the loglmm model
can be used. As an advantage, the model runs very stable and converged in all settings. It
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Figure 1. Coverage probability of the multiple comparisons using different contrast tests with four dif-
ferent models to fit the mean differences of the treatments and the standard errors of the means. If one
variable is not varied in the simulation, the number of clusters per treatment is set to three (ct = 3),
the number of samples per cluster to four (cs = 4), the overdispersion to three (θ = 3), and the cluster
effect to λ́γ = 0.5 × λβ = 5. There was no effect between the treatments. 2500 simulations have been
run.

is questionable, if the performance will be as good, if the number of counts decreases to a
median near zero or the data has a high proportion of zeros.

The glmm and glmm.tmb models show nearly the same behavior, while the glmm.tmb
model outperforms the glmm model slightly in the cases of cluster effect and dispersion.
Nevertheless, the glmm.tmbmodel does not converge for no dispersion (θ = 1) and is too
liberal with a small cluster size of two. A cluster size of two is very small, but could be
produced due to missing with larger initial cluster sizes. The glmm model runs with con-
vergence warnings, but is able to estimate the model parameters. Overall the glmmmodel
delivers the worst coverage probabilities. In combination with the convergence warnings
of the glmmmodel the glmm.tmb models should finally be preferred over the glmm.
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The convergence rate of the glmer() and the glmer.nb() function of the package lme4
was an overall observed problem. Especially, the application of the glmer.nb model using
the negative binomial distribution is complicate (Supplementary Figure 4). If the overdis-
persion is high enough θ > 10, themodel will converge in nearly 100% of the cases. On the
other hand, if a low overdispersion can be observed, themodel fit will not work properly in
our simulation example. Therefore, we can not recommend the usage of the glmer.nb func-
tion, especially the experimental state is explicitly stated in the function description. In the
case of the glmm model, the treatment effects and the standard errors of the parameters
seemed not be biased. However, the glmmTMB package provides the functionality of gen-
eralized linear mixed models with a negative binomial distribution without convergence
warnings.

3.2. Simulation study on power

The simulation study of the rejection probability (1 − β) shows that a reasonable num-
ber of clusters per treatment, larger than four, should be given to achieve a power of 80%
(Figure 2). In addition, a larger cluster size also helps to reach the threshold of the rejection
probability. Nevertheless, the number of clusters per treatment has a larger effect. Further,
as expected with a increase of the cluster effects, the power decreases. The larger effects
of the clusters cover the twofold effect of the treatment four. The same direction can be
observed with an increase of the dispersion. While the glmm.pois and the glmmtmb.nb
outperforms the GEEmodel, it must be remembered, that the power is inflated by the type
I error rate, which is lower in the linear mixed models. Hence, the linear mixed models
will find more significant results, but not necessarily under the true contrast. As a overall
result, a small sample size will strongly decrease the rejection probability. Hence, it is better
to use more clusters per sample, larger than four, with a moderate sample size per cluster,
four to six.

3.3. Example data set on genetic counts

The following genetic data set was kindly provided by Prof. Dr Debener from the Insti-
tute for Plant Genetics at Leibniz Universität Hannover. We analyzed a count data set
with 13 different tomato plant genotypes which can be considered as treatments as well
as a negative control called ‘Samsun_cv’ and positive control called ‘Tomato’. Hence, we
achieved a total number of 15 treatment groups (nt = 13+ 1+ 1 = 15). On each of the
tomato plants three leafs were examined and the counts of pests on each leaf were reported.
Hence, we had one treatment cluster with three observations (ct = 1, cs = 3). Therefore,
the plant genotypes can be seen as the fix effects and the leafs as a random cluster effect
(Supplementary Figure 5). We conduct a many-to-one comparison to compare each plant
genotype and the positive control, Tomato, to the negative control, Samsun_cv. First we
determined the overdispersion by running a standard generalized linear model with two
fix effects assuming a Poisson distribution to estimate the residual deviance of 7273 and
the connected residual degree of freedom of 253. Hence, we can assume a high overdisper-
sion of roughly θ̂ = 7273/253 = 28.75. Therefore a analysis regarding the overdispersion
is demanded. Nevertheless, a practical user might forget the existence of overdispersion
and use a standard generalized linear model assuming a Poisson distribution of the pest
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Figure 2. Rejection probability of the multiple comparisons using different contrast tests with four
differentmodels to fit themeandifferences of the treatments and the standard errors of themeans. Treat-
ment four has an twofold effect in comparison to the other treatments. If one variable is not varied in the
simulation, the number of clusters per treatment is set to three (ct = 3), the number of samples per clus-
ter to four (cs = 4), the overdispersion to three (θ = 3), and the cluster effect to λ́γ = 0.5 × λβ = 5.
There was no effect between the treatments. 2500 simulations have been run.

counts. Therefore, for demonstration purpose, we also show the obvious poor results of
such a glm.pois model.

Figure 3 shows the simultaneous confidence intervals of the two sided many-to-one
comparisons to the Samsun_cv negative control. First, the glmm.nb and the glmm.pois
model did not converge, indicated by the dashed line. Nevertheless, both model fits were
provided and could be used for the inference. In this example the model estimates seem
somehow be reliable in comparison to the other fitted models. The GEE model and the
loglmmmodel show the same point estimator and spread of the confidence intervals. The
generalized linear model using glmmtmb.nb shows a smaller effect and smaller confidence
intervals. Due to the high overdispersion, the effect of ignoring the overdispersion can
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Figure 3. Many-to-one comparison of the example data set. Six different methods have been used
to fit the data model: glm.pois, fix effect model with Poisson family, glmm.pois, generalized linear
mixed model with Possion family, glmm.nb, generalized linear mixed model with negative bino-
mial family, glmmtmb.nb, generalized linear mixed model with negative bionomial family, loglmm,
a log-transformed linear mixed model with a additional random effect for each individual, and GEE,
generalized estimating equations. The dashed lines indicating models with a non-converge warning.

be seen drastically by the glm.pois model. While the other models detect the difference
between the controls as significant, the glm.poismodel finds sevenmore significant results.
The significance is caused due a too low estimated standard error of the parameter esti-
mates. A special case is the usage of the glmm.pois model. The glmm model is not able to
use the quasi-Poisson or negative binomial family. However, the dispersion could be esti-
mated on the individual level, by adding a factor representing each sample. In this case,
the confidence intervals are broader and nearer to the other models. As a drawback, the
glmm model will not converge. Therefore, the model estimates might not be reliable and
can only be judged in comparisons to the other model fits.

4. Discussion

In this work we are able to show the extension of Orelien et al. [27] to a broad range of
contrast tests: Dunnett, Tukey, Williams, and Changepoint. Moreover, we have shown that
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the analysis of clustered overdispersed count data with different model approaches is easy
to apply (Supplementarymaterial section 2). The application ofmultiple contrast test using
the model estimates of GEE models and generalized linear mixed models holds the family
wise error rate sufficient in a broad range of settings. While the GEE model needs more
effort to choose the right variance sandwich estimator for the given data problem, the gen-
eralized linear models show a lack of convergence rates in some very small sample size
settings.

The low convergence rates of the generalized linear mixed models could be neglected
in the case of the multiple group comparisons. Here we are interested in the mean differ-
ences of the treatment effects and the connected standard errors of the mean difference.
From our simulation study, we can conclude, that the parameter estimates beside the con-
vergence warnings might not be biased. Nevertheless, the convergence warnings should
not be underestimated for the analysis. Hence we would recommend to use the glmmTMB
package or a GEE model fit with an appropriate variance sandwich estimator.

The choice of the variance sandwich estimator has a big influence on the type I error.
We have changed the sandwich estimator in our simulation from the original one by Liang
and Zeger [18] to the sandwich estimator proposed by Wang and Long [35] and achieved
far better results. Using the default sandwich estimator in the GEE implementation in R
we would get far less good results. The R package geesmv supports a high variability of
sandwich estimator for different experimental settings. The GEE models should not be
used without a tuning on the sandwich estimators.

The loglmm model shows good results beside the problematic of the transformed
counts. If the number of counts ismoderate the approachwill work. If the number of counts
is small or includes many zeros, the adding of one to the counts will bias the analysis. It
is recommended to avoid the log-transformation and use instead the negative binomial
or quasi-Poisson family [26]. However, the usage of the loglmm model is user friendly,
because the model fit can be used directly in the multcomp functionality for the mul-
tiple contrast test. The estimates for the other models, like geeglm or glmmTMB, must
be extracted by the user. This might be a hurdle to use these models for the parameter
estimation. In Supplementary section 2 we offer help for the application in R.

The simulation and data example concentrates on a low dimensional setting with one
specific endpoint, which is coversmany application areas in biology,medicine, and ecology.
In the case of bioinfomatics thousands of genes and their expression are analyzed sepa-
rately. Therefore, some genes might show overdispersion others not. Hence, a two stage
process of filtering might be necessary before the hypothesis testing can be conduct [1].
Pounds et al. [30] gives a overview of such two stage processes of filtering and demon-
strates the application on gene expression data. The focus is set to the evaluation of the
false discovery rate (FDR).

Our work concentrates on parametric methods. Nevertheless, this is only one pos-
sibility of looking at the problem. Zhang et al. (2017) [38] demonstrates the usage of
non-parametric parameter estimation in a longitudinal data setting with missing values.
Konietschke et al. (2015) [15] shows the application of non parametric multiple contrast
tests in R. Both works can be connected, if non parametric methods should be used. The
reader should consider, that the effect estimates from non parametric methods can not
be interpreted in the same way as from the effect estimates from parametric approaches.
Sometimes this is a hurdle for the usage of non parametric methods.
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In this work we have concentrated on overdispersed count data in a low dimensional
setting. The next step would be looking at other sources of overdispersion like a high pro-
portion of zeros or zero truncation. Moreover, the right choice of the variance sandwich
estimator for the gee models under missing data can be investigated. Beside the count data
overdispersion can be also observed in proportions.
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