
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=sact20

Scandinavian Actuarial Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/sact20

Stochastic modelling and projection of mortality
improvements using a hybrid parametric/semi-
parametric age–period–cohort model

Erengul Dodd , Jonathan J. Forster , Jakub Bijak & Peter W. F. Smith

To cite this article: Erengul Dodd , Jonathan J. Forster , Jakub Bijak & Peter W. F. Smith
(2020): Stochastic modelling and projection of mortality improvements using a hybrid
parametric/semi-parametric age–period–cohort model, Scandinavian Actuarial Journal, DOI:
10.1080/03461238.2020.1815238

To link to this article:  https://doi.org/10.1080/03461238.2020.1815238

© 2020 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 16 Sep 2020.

Submit your article to this journal 

Article views: 186

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=sact20
https://www.tandfonline.com/loi/sact20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03461238.2020.1815238
https://doi.org/10.1080/03461238.2020.1815238
https://www.tandfonline.com/action/authorSubmission?journalCode=sact20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=sact20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/03461238.2020.1815238
https://www.tandfonline.com/doi/mlt/10.1080/03461238.2020.1815238
http://crossmark.crossref.org/dialog/?doi=10.1080/03461238.2020.1815238&domain=pdf&date_stamp=2020-09-16
http://crossmark.crossref.org/dialog/?doi=10.1080/03461238.2020.1815238&domain=pdf&date_stamp=2020-09-16


SCANDINAVIAN ACTUARIAL JOURNAL
https://doi.org/10.1080/03461238.2020.1815238

Stochastic modelling and projection of mortality improvements
using a hybrid parametric/semi-parametric age–period–cohort
model

Erengul Dodda,b,c, Jonathan J. Forstera,c,d, Jakub Bijaka,c,e and Peter W. F. Smitha,c,e

aSouthampton Statistical Sciences Research Institute, University of Southampton, Southampton, UK; bMathematical
Sciences, University of Southampton, Southampton, UK; cESRC Centre for Population Change, University of
Southampton, Southampton, UK; dDepartment of Statistics, University of Warwick, Coventry, UK; eDepartment of
Social Statistics and Demography, University of Southampton, Southampton, UK

ABSTRACT
We propose a comprehensive and coherent approach for mortality projec-
tion using a maximum-likelihood method which benefits from full use of
the substantial data available on mortality rates, their improvement rates,
and the associated variability. Under this approach, we fit a negative bino-
mial distribution to overcome one of the several limitations of existing
approaches such as insufficiently robust mortality projections as a result of
employing a model (e.g. Poisson) which provides a poor fit to the data. We
also impose smoothness in parameter series which vary over age, cohort,
and time in an integrated way. Generalised Additive Models (GAMs), being
a flexible class of semi-parametric statistical models, allow us to differen-
tially smooth components, such as cohorts, more heavily in areas of sparse
data for the component concerned. While GAMs can provide a reasonable
fit for the ages where there is adequate data, estimation and extrapolation
of mortality rates using a GAM at higher ages is problematic due to high
variation in crude rates. At these ages, parametric models can give a more
robust fit, enabling a borrowing of strength across age groups. Our projec-
tion methodology assumes a smooth transition between a GAM at lower
ages and a fully parametric model at higher ages.
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1. Introduction

Recent mortality improvements in most countries have led to higher life expectancies. Since this has
significant social policy implications, for example, in areas such as pensions and health care, mod-
elling and projecting mortality rates becomes imperative. For example, in the insurance industry, the
risk of higher than expected annuity payments, or the so-called longevity risk needs to be quantified
for solvency requirements. The mortality projections are not only important for pensions or health
care but also in allocating resources and government planning, for example, for housing, education
and labourmarket. This requires probabilisticmodels formortality rates. In the past decade, a vast lit-
erature on probabilistic mortality models has been developed. However, very few of them are suitable
for the entire age range. In this paper, instead of focusing only on older ages, we present a mortality
projection methodology for the entire population.
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Probabilistic mortality projection models can be broadly summarised under four categories: gen-
eralised bilinear, generalised linear, semi-parametric and generalised additive models. The original
Lee–Cartermodel (Lee&Carter 1992) is the pioneeringmethod in this area. Thismodel is an example
of a bilinear model and has two factors, i.e. age and period, to model and forecast mortality rates. The
other bilinear models include extensions of the Lee–Carter model, for example, three-factor models
that encompass the cohort effect or Poisson error structure instead of an implied normality assump-
tion (see, e.g. Brouhns et al. 2002, Renshaw & Haberman 2006). Whilst these models can provide a
satisfactory fit, they also have some undesirable features. In particular, their parameter estimates can
be sensitive to the range of years used for fitting, and they are challenging to estimate efficiently.

Alternatively, linear (rather than bilinear) models with age and period as factors were investi-
gated by Renshaw & Haberman (2003). Different linear structures were developed and compared
by Cairns et al. (2009, 2011a). Many studies show that coherent mortality forecasts can be obtained
for different populations using thesemodels (e.g. Cairns et al. 2011b, Li &Hardy 2011, Börger &Alek-
sic 2014). Currie et al. (2004) proposed modelling mortality as a smooth function in two dimensions
(age and time) using P-splinemethodology, although such an approach can be difficult to incorporate
into a projection since then the projection ignores the majority of the observed historical mortality
experience and is too sensitive to mortality in the base year, even after smoothing (Li et al. 2010).
Besides, this approach does not allow for coherent projections for different populations (Börger &
Aleksic 2014). Most of the mortality studies in the actuarial literature concentrate on the retirement
ages (between early 60s and late 90s) due to the direct financial impact on pensions. Recently, Li
& Liu (2019) and Richards (2020) considered mortality models for older ages. Approaches which
fully account for uncertainty include Cairns et al. (2006, 2011b), Bennett et al. (2015) and Hilton
et al. (2019).

In particular, Hilton et al. (2019) provide a Bayesian approach to producing mortality projections
based on the use of generalised additive models (GAMs) for the majority of the age range, but with
an inclusion of a parametric model at older ages where the data are sparse. Their approach allows
for smooth functions of age and cohort effects, and provides estimates of mortality at young ages as
well as extreme ages. Bayesianmodels incorporatemultiple sources of uncertainty and expert opinion
in a natural way. However, implementing a full Bayesian approach might be expensive, especially if
computing marginal likelihoods requires high-dimensional integrals and posterior distributions are
analytically intractable.

In this paper, we present the maximum likelihood approach to the methodology presented
in Hilton et al. (2019). Additionally, we incorporate expert opinion in our projections. Moderat-
ing future mortality assumptions is especially important when the projection period is long. We
model the mortality improvements instead of mortality rates allowing for overdispersion. This is
because we believe mortality improvements can be modelled by a stable process which is required
to be projected forward based on past experience. Projection of mortality improvement rates is
advocated by Plat (2011), Haberman & Renshaw (2012, 2013) and more recently by Börger & Alek-
sic (2014). In the United Kingdom (UK), the Continuous Mortality Investigation (CMI) introduced
age–period–cohort improvement (APCI) model as a new mortality projection method (CMI 2016).
However, the CMI does not use the APCI model as a stochastic model to project future mortality
rates. The CMI uses the APCI model to simply obtain the initial mortality improvements (separated
by age-, period- and cohort-related improvements) for projections. Richards et al. (2019) imple-
mented the APCI model as a fully stochastic model. They compared this model to the age–period,
age–period–cohort and Lee–Carter models and found that the APCI model fits the data better than
these other models considered in their paper.

In CMI (2016), the CMI recognises that the Office for National Statistics (ONS) dataset shows
considerable overdispersion, relative to a Poisson error distribution. In the presence of overdispersion,
modelling the observed number of deaths under a single parameter distribution such as a Poisson
distribution (where the variance is restricted to be equal to the mean) will lead to underestimation
of uncertainty. To allow for overdispersion, we use a more flexible negative binomial distribution in



SCANDINAVIAN ACTUARIAL JOURNAL 3

modelling. We also impose smoothness in parameter series which vary over age, cohort, and time
in an integrated way. GAMs, being a flexible class of semi-parametric statistical models, allow us
to differentially smooth components, such as cohorts, more heavily in areas of sparse data for the
component concerned.

While GAMs can provide a reasonable fit for the ages where there is adequate data, estimation
and extrapolation of mortality rates using a GAM at higher ages is problematic due to high variation
in crude rates. At these ages, parametric models can give a more robust fit, enabling a borrowing of
strength across age groups. Our projection methodology is based on a smooth transition between a
GAM at lower ages and a fully parametric model at higher ages. Wemodel infant rates separately and
propose a new method to model and predict them. Since spline-based methods are used widely in
the literature (especially for the entire age range), as discussed above, we compare our results to the
two-dimensional P-splines approach proposed by Currie et al. (2004) where relevant.

The rest of the paper is organised as follows: in Section 2, we introduce the data and our method-
ology for modelling the mortality improvements, and how a smooth transition from the smoothing
spline to an old-age model is attained. In Section 3, we present our estimates for mortality rates and
investigate the robustness of the proposed methodology. In Section 4, we explain how the mortality
projections and the uncertainty around these projections are obtained. In Section 5, we incorpo-
rate the expert opinion and provide comparisons with the UK national population projections. Our
conclusions are in Section 6.

2. The data and themodel

We use UK population data between 1961 and 2013 obtained from the Human Mortality
Database (2019). The data include the mid-year exposures and number of deaths for each year of
age for males and females.

Herewepropose amodel that contains termswhich specifically account for the variation ofmortal-
ity differences over time and between different ages and cohorts. Letmxt denote the central mortality
rate at age x in year t, then we consider as the initial model specification

log
mxt

mx t−1
= αx + κ∗

t + γ ∗
t−x, (1)

where αx can be interpreted as a baseline annual mortality improvement at age x, κ∗
t as the level of

mortality improvement in year t and γ ∗
t−x represents cohort differences in mortality improvement

since cohorts are indexed by year of birth (t−x).
Model (1) is an age–period–cohort model for log-mortality differences (mortality logratios). Here

we representmortality improvements as logratios, rather than as relative differences, wheremodel (1)
would be expressed as

mxt − mx t−1

mx t−1
= αx + κ∗

t + γ ∗
t−x.

For all but large mortality rates, differences between log(mxt/mx t−1) and (mxt − mx t−1)/mx t−1 are
negligible. This model is similar in structure to models proposed by Renshaw & Haberman (2003),
the non-spatial component of Bennett et al. (2015) and the APCI model of CMI (2016).

Note that in terms of mortality rates, model (1) can be expressed as

logmxt = μx + αxt + κt + γt−x, (2)

where there is a straightforward correspondence between the κt and γt−x parameters of models (1)
and (2). More specifically, the cohort and period terms in (2) are the accumulated versions of their
equivalents in (1) andμx is the log-mortality rate at age x in year t = 0. Due to the linear relationship
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between age, period and cohort components of themodel, constraints are required in order to identify
these effects. The identifiability constraints we use for model (1) are∑

κ∗
t = 0, (3)∑

γ ∗
t−x = 0, (4)∑

(t − x)γ ∗
t−x = 0. (5)

That is, the period effect is constrained to sum to zero. Similarly, the cohort effect is constrained so
that the sum of effects is zero and displays zero growth over the whole range of cohorts.

In Section 3, we present parameter estimates for model (1), together with μx. Note that this is
equivalent to presenting the parameter estimates for model (2) on a mortality improvement scale
(that is, with differenced cohort and period effects, κ∗

t and γ ∗
t−x, from model (1) rather than their

summed equivalents). This model, being simply a generalised linear model, is easy to fit. Further-
more, its parameter estimates seem to be robust to the time window used to fit the models. Börger &
Aleksic (2014) advocate the use of this model for projecting mortality, and we also find that it has the
required properties of adequately and robustly fitting the observed data.

In the literature, it is very common to estimate the model parameters based on the Poisson log-
likelihood. However, under the Poisson model, the variance is restricted to be equal to the mean, an
assumptionwhich is implausible for a large inhomogeneous population. Amore flexiblemodel would
be a negative binomial model; in this paper, we assume

dxt ∼ NegBinomial(Extmxt , a),

and therefore, the log-likelihood is

l(θ , a) =
∑
x,t

a log
(

a
Extmxt(θ) + a

)
+

∑
x,t

dxt log
(

Extmxt(θ)

Extmxt(θ) + a

)

+
∑
x,t

log�(a + dxt) − n log�(a).

Here dxt is the observed death count, Ext is the central exposure to risk at age x in year t, a is the
dispersion parameter such that the variance is Extmxt(θ) + (Extmxt(θ))2/a, θ represents the model
parameters (αx, κt , γt−x) and n is the number of positive values of Ext .

One disadvantage of model (1) is that the maximum-likelihood estimates of some of the model
parameters do not vary smoothly (Figure 1). However, this can be easily overcome by adopting an
estimation method which penalises roughness in the series of estimates for model (1) (e.g. penalised
likelihood or Bayesian). One possible way of obtaining smoother estimates is to modify (2) to yield a
generalised additive model of the form:

mxt = exp
(
sμ(x) + sα(x)t + κt + sγ (t − x)

)
. (6)

In (6), sμ, sα and sγ denote arbitrary smooth functions, which can be estimated by balancing
goodness-of-fit to the observed data with smoothness of the corresponding function (Wood 2006).
This can be fitted by using standard gam packages in R (e.g. using the gam function in mgcv pack-
age). The mgcv package allows us the choice of splines and the family of distributions. Here we use
univariate penalised cubic regression splines and the negative binomial family. In (6), we use a non-
smooth function of the time effect since we do not necessarily expect the mortality improvements
to vary smoothly over time. Indeed, the data suggest that the year-specific contributions to mortality
improvement are not correlated year by year and in the model fit without smoothness the time effect
appears to be a white noise process (see Figure 1). However, at the mortality rate level, the period
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Figure 1. Maximum-likelihood estimates of the parameters of model (1) together with μx under the Poisson model and the
negative binomial model, data for males, 1961–2013.

effect would be a random walk. Thus, although we are not using smooth time effect on the mortality
improvement level, there will be some (weak) smoothness on the mortality rate scale.

For the highest ages x, for which observed mortality experience is sparse, we recommend that the
baseline mortality μx and the age-specific mortality differences αx are estimated by using parametric
models, for example, log-linear model or logistic model, with parameters estimated from the mortal-
ity data for the older ages. The resulting log-linear model, with μx = μ + μXx and αx = α + αXx,
has the form

mxt = exp (μ + μXx + (α + αXx)t) exp
(
κt + sγ (t − x)

)
, for x ≥ x0, (7)

and the logistic model has the form

mxt = β exp (μ + μXx + (α + αXx)t) exp
(
κt + sγ (t − x)

)
1 + exp (μ + μXx + (α + αXx)t)

, for x ≥ x0, (8)

where x0 is an optimal age to make the transition from smooth to linear model, and κt and sγ (t − x)
are the estimates obtained from fitting (6) to the main body of data (0 < x < x0). In (7) and (8),
the sum of κt and sγ (t − x) can be considered as a non-standard ‘offset’. Note that in (8) these terms
only appear in the numerator. This is to ensure the same interpretation of these parameters in both (6)
and (8) and since theywere log-linear parameters in (6), they should be log-linear parameters (andnot
logistic parameters) in both parts of the model. We can fit (8) using a general optimisation function
(e.g. optim or nlm) in R. Here, we use the nlm function and assume the number of deaths follows
a negative binomial distribution as before.
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The log-linear model has, therefore, the following estimates of the baseline mortality

μx =
{
sμ(x) x < x0
μ + μXx x ≥ x0

and mortality improvement

αx =
{
sα(x) x < x0
α + αXx x ≥ x0

for both males and females. For the logistic model these estimates are, respectively,

μx =
⎧⎨
⎩
sμ(x) x < x0

log
(

β exp (μ + μXx)
1 + exp (μ + μXx)

)
x ≥ x0

and

αx =
⎧⎨
⎩
sα(x) x < x0

log
(

β exp (μ + μXx + α + αxx)
1 + exp (μ + μXx + α + αxx)

)
− log

(
β exp (μ + μXx)
1 + exp (μ + μXx)

)
x ≥ x0

also for both males and females.
We treat infant (age 0) mortality separately. Here, we exclude the period effect κt and fit the model

m0t = exp (μ0 + α0t) exp
(
sγ (t)

)
, (9)

where sγ (t) is the estimate of the cohort effect for x = 0 obtained from fitting (6) to the main body of
data (0 < x < x0). In fitting this negative binomial generalised linear model, we use glm.nb func-
tion in the MASS package in R.We have investigated the dependence of infant mortality rates on both
the time and the cohort effects, estimated from the rest of the data. It transpired that infant mortality
has a unique pattern of period variation, and therefore, the time effect was a very weak predictor for
the infant rates. On the other hand, the infant mortality exhibits a strong dependence on the cohort
effect estimated from the rest of the data (see Figure 9).

Note that in this paperwe only present the results using the logisticmodel for older ages. Therefore,
our proposed model combines three components, (9), (6) and (8), corresponding to infants (x = 0),
a majority of ages (0 < x < x0) and the oldest ages (x ≥ x0), respectively.

3. Estimation of mortality rates

Dodd et al. (2018) suggest that for England and Wales mortality data, an optimal age (x0) at which
to make the transition from smooth to logistic model is 93 for males and 91 for females, based on
2010–2012 mortality data. We assume that these thresholds are fixed over time. This is a strong
assumption and the transition age x0 at each year might be included in the model as an unknown
parameter. However, the added complexity required for different threshold ages may not be justified
since our preliminary investigation shows a negligible effect on mortality projections.

Figure 1 presents the maximum-likelihood estimates of the parameters of model (1) under the
Poisson distribution and negative binomial distribution for males aged between 1 and 92 years, using
data for the period 1961–2013.

We compare the fit of model (1) to the observed data with the fit of the two-dimensional P-spline
methodology proposed by Currie et al. (2004), which we will simply call the P-spline method from
now on. With regard to an assessment of model fit, Figure 2 presents the square of Pearson residuals
from the P-spline method, and from model (1) assuming the Poisson distribution.
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Figure 2. Comparison of residuals, data for males, 1961–2013: the P-spline approach (left panel) and model (1) assuming the
Poisson distribution (right panel).

Figure 3. Comparison of residuals, data for males, 1961–2013: the P-spline approach allowing for overdispersion (left panel) and
model (1) assuming the negative binomial distribution (right panel).
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It can be observed from Figure 2 that model (1) fits the data at least as well as the P-spline method.
Indeed, by conventional goodness-of-fitmeasures (residual deviance), model (1) fits significantly bet-
ter than the P-spline model, even allowing for its increased complexity in terms of the number of
degrees of freedom required for parameter estimation. Model (1) seems to do a better job of estimat-
ing mortality in the age range 15–20 (at the start of the ‘accident hump’ related to external causes
of death during early adulthood, especially for men). Both models have difficulty fitting the 1919
cohort (see Cairns et al. 2016), but arguably this cohort is of limited significance for population pro-
jection. Both models, however, fail to fit when assessed by conventional goodness-of-fit measures
such as Pearson’s chi-squared statistic. Evidence for this is the large number of Pearson residuals with
a squared value greater than 9. On the other hand, estimates which allow for overdispersion, either
model (1), fitted bymaximising a negative binomial likelihood, or a P-spline fitted by quasi-likelihood
produce residuals within amuchmore acceptable range (see Figure 3). Therefore, we use the negative
binomial model to estimate the model parameters in our analyses.

One advantage of the P-spline approach is that it provides estimates of mortality rates that vary
smoothly over age and time, as illustrated in Figure 4, which accounts for overdispersion through
maximum Poisson quasi-likelihood estimation. Significant cohort effects, and cohorts with large
annual mortality improvements can also be seen in this figure. Under this P-spline method, the pro-
jections will only depend on the most recent years, and they would be largely insensitive to historical
data.

For model (1), the maximum-likelihood estimates of some of the model parameters, illustrated
in Figure 1, do not vary smoothly, and as a consequence, the estimated mortality rates, presented in
Figure 5, are also more irregular than would be desirable.

Figure 4. Heat map of the fitted mortality improvements for the P-spline model allowing for overdispersion through a penalised
quasi-likelihood method, data for males, 1961–2013.
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Figure 5. Heat map of the fitted mortality improvements for model (1), data for males, 1961–2013.

To obtain smoother estimates, we use model (6). Figure 6 displays the estimates for the result-
ing smooth model (6), superimposed over the corresponding estimates for model (2) on a mortality
improvement scale. Note that it is the differenced cohort and period effects (κ∗

t and γ ∗
t−x from

model (1)) that are plotted rather than their summed equivalents. Not surprisingly, the estimates
for model (6) are much more regular and have the desired smoothness, and the fitted mortality rates,
displayed in Figure 7, are also smoother. There is an increase in residual deviance, but this is compen-
sated by a corresponding decrease in the effective complexity of the model. Note also that the vertical
strips correspond to the year effect, which we do not smooth.

Figure 8 presents the combined estimates of the parameters of models (9), (6) and (8). Under the
logistic model (8) mortality rates flatten off, converging to a limiting rate β as x tends to infinity. We
estimate β as 1.48 for males and 0.99 for females – the values which we set as constant over time.

The observed and fitted infant mortality using model (9) are displayed in Figure 9. If the cohort
effect is not considered in the model, the estimates of infant mortality rates would be a straight line
(on the log scale). By borrowing information on cohort effect from the rest of the data by age, we can
identify the cohort improvements in infant mortality rates, e.g. around 1990.

Finally, we investigate the robustness of the proposed methodology by exploring the sensitivity
of the estimated mortality rates in a later year (2011) to changes in the data used to estimate the
model. Two different approaches are taken. In the first, we compare the estimates of 2011 mortality
rates and 2011–2012 mortality improvements for model (6) fitted for ages 1 ≤ x < x0 by using data
from 1961 to 2013, with the equivalent estimates fitted for 1971–2013 and 1981–2013 (see Figure 10).
Then, we compare the estimates of 2011 mortality rates and 2011–2012 mortality improvements
obtained by using data from 1961 to 2011 with the equivalent estimates fitted to the 1961–2012 and
1961–2013 series (see Figure 11). In Figures 10 –12, we also provide a comparison with the P-spline
approach.
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Figure 6. Estimates of the parameters ofmodel (6) (solid lines), superimposed over the corresponding estimates formodel (2) (grey
dashed lines) on a mortality improvement scale, data for males, 1961–2013.

Both in Figures 10 and 11, there is a big difference between our proposed model and the P-spline
method in terms of the fit for 2011. Under the P-spline method, there is a quite dramatic mortality
improvement at around age 20, which we are not picking up in our model. This is because under the
P-spline model the big mortality improvement at late teens in current years are projected forward as
an age-specific improvement, without taking the historical data into account (see Figure 4). Since our
model takes the whole period into account instead of only the current years, we do not see such a
dramatic improvement in mortality around age 20. This is the largest difference between the future
mortality projections produced by the two models.

In the proposed projection methodology, existing cohort components are included in projec-
tions, but the period effects (and any as yet unobserved cohorts) are projected as zero, which
is consistent with the model. We present the mortality improvements for 2011–2012 in Fig-
ures 10 and 11, excluding the estimated period effect for 2012 for comparison with the P-spline
approach. Our actual proposal would be to project forward from the final year of observed
data (2013) in which case the base mortality rates and mortality improvements are presented in
Figure 12.

Note that the scale of Figure 12 is different than the scale of Figure 10, and therefore, the dif-
ference between different historical fitting periods is more obvious. The 1961–2013 or 1971–2013
datasets broadly show similar patterns. However, if we ignore the data from 1961 to 1980, we
move to a regime where there are much bigger mortality improvements at age around 20. As a
result, not surprisingly, when we lose almost 40% of the data we see some sensitivity in mortality
improvements.
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Figure 7. Heat map of the fitted mortality improvements for model (6), data for males, 1961–2013.

4. Projection of mortality rates

Based on the parameter estimates of a model such as (6), providing point projections over any future
time horizon is straightforward. Such a projection only requires extrapolation of the time effects κt
for future years t, and the cohort effects γt−x for future birth cohorts. The identifiability constraint we
imposed on the period effect in (1) implies that the accumulated period effect in (2) is constrained
to zero in the final observed year, and therefore, the estimated κt series approximates a random walk
with zero-mean increments (see Figure 6), then it is reasonable to forecast the period effect to be
zero for future t. Uncertainty about these forecasts is incorporated by assuming normally distributed
increments with variance, σ 2

κ , estimated from the κt series. A similar argument suggests that it is
reasonable to also set cohort effects for future cohorts to zero. We do not include uncertainty about
future cohorts, as these cohorts are likely to have a negligible effect on population mortality over the
forecast horizon.

The confidence intervals can be calculated using the standard deviation obtained from the covari-
ance matrix of the estimated model parameters and the variance of the observed period effect. More
precisely for main model (6), we have

Var(log m̂xt) = Var
(
sμ(x) + sα(x)t + sγ (t − x)

) + σ 2
κ , (10)

where the first term on the right-hand side is the variance of a linear function of GAM parameters
which can be computed using standard output fromGAMfitting inR. For the old-agemodel, applying
the delta method (see, e.g. Schervish 1995), we have

Var(log m̂xt) = �T
xtV�xt + σ 2

κ , (11)
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Figure 8. Estimates of the parameters of models (9), (6) and (8) (dotted, solid and dashed lines, respectively), data for 1961–2013,
for males (upper panels; x0 = 93) and females (lower panels; x0 = 91).

where V is the covariance matrix of the model parameters (β ,μ,μX ,α,αX),

�xt =

⎛
⎜⎜⎜⎜⎝

1
δxt
xδxt
tδxt
xtδxt

⎞
⎟⎟⎟⎟⎠

and

δxt = 1 − exp (μ + μXx + (α + αXx)t)
1 + exp (μ + μXx + (α + αXx)t)

.

We present our 2025 and 2055 projections for males and females in Figure 13.
In Figures 14 and 15, we compare the projections for 2025 and 2055 to the respective values

from the 2014-based national population projections of the ONS, which use the past and pro-
jected data from the period and cohort life tables, in a range of variants: principal, high, and low
(ONS 2015a, 2015b). The projection methodology of the ONS is based on a P-spline model, and the
technical details can be found in ONS (2016).

We understand that the discontinuity of the ONS rates after age around 110 is due to merging
the estimated qx for different constituent countries of the UK, where qx denotes the probability of
dying by age x+ 1 given that an individual attains age x. When calculating qxt we use the following
approximation:

qxt ≈ 1 − exp(−mxt).
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Figure 9. Estimates of infant mortality rates using model (9) (solid lines), compared with observed rates (+), data for 1961–2013.
(Left panel) males, (right panel) females.

Figure 10. Estimated 2011 mortality rates (left panel), and 2011–2012 mortality improvements (right panel) for males, using
model (6) and different historical fitting periods.

There is some discrepancy between ONS projections and our projections, especially around the acci-
dent hump. As mentioned before this is because of the current high improvement rates that are
projected forward under the P-spline method. For both males and females, from age around 60
onwards the projections are consistent with each other.
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Figure 11. Estimated 2011 mortality rates (left panel), and 2011–2012 mortality improvements (right panel) for males, using
model (6) and different recent fitting periods.

Figure 12. Estimated 2013 mortality rates (left panel), and 2013–2014 mortality improvements (right panel) for males, using
model (6) and different historical fitting periods.

Figure 13. Mortality projections for 2025 (left panel) and 2055 (right panel) for males and females.
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Figure 14. Comparison of 2025 mortality projections for males (left panel) and females (right panel) with ONS projections.

Figure 15. Comparison of 2055 mortality projections for males with ONS projections.

5. Incorporating expert opinion

The ONS projections are moderated by experts, whereas our proposed model so far is completely
data driven. We believe that the use of expert knowledge is a useful tool for moderating predictions
provided by the model. A slightly modified version of the proposed approach can allow us to make
full use of all available sources of information, including expert opinion.

The ONS projections assume a convergence in annual mortality improvement to a constant value
over a fixed time horizon (currently 25 years) across all ages, for every cohort born after 1960. For
older cohorts, the convergence is imposed on the series of cohort mortality improvements. Our
modification remains in the spirit of the approach proposed earlier, with the age-specific mortality
improvements (αx) converging to a common, expert-specified value and the cohort effects converging
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to zero over a 25-year time horizon.We incorporate the convergence using the same weight function:

wh =

⎧⎪⎨
⎪⎩
1 − 3

(
h
25

)2
+ 2

(
h
25

)3
for 0 ≤ h ≤ 25,

0 for h ≥ 25,
(12)

where h represents the projection period (i.e. h = 0 corresponds to the last year of observed data).
Therefore, for example, the age-specific mortality improvements incorporating the experts in period
h, α̂e

x,h, becomes

α̂e
x,h =

{
αe(1 − wh) + α̂xwh for 0 ≤ h ≤ 25,
αe for h ≥ 25.

(13)

Here α̂x is the estimated year-on-year improvement by age effect using (6), (8) and (9). In line with the
ONS mortality assumptions, we assume the value of the target expert-based mortality improvement
is 1.2%, independent of age and sex, i.e. αe = −1.2%.

Where expert opinion is incorporated in the forecasts, it is also incorporated in the uncertainty
with the expert uncertainty and parameter uncertainty being weighted correspondingly. The addi-
tional variance for the expert opinion, i.e. (σe

∑H
h=1(1 − wh))

2 where H is the number of projection
years and σe is the standard deviation of the expert-based mortality improvement, can simply be
added to the right-hand side of Equation (10). In this paper, we assume σe = 0.6%.

Up to this point, males and females were modelled separately. However, when projecting the mor-
tality rates, one final adjustment is made to fix any divergence between male and female rates at very
old ages (see Figure 13). This is because we do not believe that the male and female mortality rates
will start to diverge at very high ages following steady convergence up to this point. This also applies
where the divergence occurs after the rate functions cross. Therefore, starting from the age where
the difference between male and female mortality rates starts to increase (if that occurs), we keep
the difference between the male and female mortality rates at a constant value and obtain weighted
mortality rates using

mm∗
xt = mm

xtw
l
xh +

(
mf

xt + dt
)

(1 − wl
xh)

and

mf ∗
xt = (

mm
xt − dt

)
wl
xh + mf

xt(1 − wl
xh)

Figure 16. Mortality projections for 2025 (left panel) and 2055 (right panel) for males and females.
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where

wl
xh = lmxh

lmxh + lfxh
.

Heremm
xt andm

f
xt denote the male and female mortality rates before the weighting is applied, respec-

tively, and the ‘∗’ in the superscript refers to the adjusted mortality rates. We define dt as the smallest
positive difference betweenmale and femalemortality rates in year t over the age range x (considering
only the ages above 50 in our application). Finally, lxh represents the expected number of survivors to
exact age x in year h from a birth population of size l0 = 100, 000 and the weights are used as a proxy
for survivorship probabilities at age x and any future year for males and females.

The comparison of 2025 and 2055 projections after these adjustments can be seen in Figure 16.

Figure 17. Comparison of 2025 mortality projections for males (left panel) and females (right panel) with ONS projections.

Figure 18. Comparison of 2055 mortality projections for males with ONS projections.
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Figure 19. Comparison of out-of-sample mortality rates (+) for males with the mortality projections under the proposed model
and ONS projections.
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0

Figure 20. Comparison of out of sample mortality rates (+) for females with the mortality projections under the proposed model
and ONS projections.
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In Figures 17 and 18, we compare our 2025 and 2055mortality projections, this time incorporating
the expert opinion and other adjustmentswementioned,with the 2014-basedONSprojections. These
adjustments, especially incorporating the expert opinion, visibly decreases the difference between two
sets of projections. Also, restricting continuous year-on-year improvements by age enables us to avoid
implausible long-term projections at ages where we estimate high mortality improvements from the
model.

Finally, in order to investigate the forecast performance of the proposed model, we present the
2014–2017 forecasts against the out of sample outcomes obtained from ONS (2018). Note that we
used mortality data between 1961 and 2013 to estimate the model parameters. In Figures 19 and 20,
we present the mortality projections for males and females under the proposed model, the realised
mortality rates for a 4-year forecast horizon and the 2014-based mortality projections of the ONS
for the same horizon. From these figures, it can be seen that for the majority of the ages, mortality
projections under the proposed model adhere acceptably well to the realised mortality rates both for
males and females.

6. Conclusion

In this paper, we have developed a method for estimating and projecting mortality rates, which
takes advantage of the ease with which a wide range of smooth and parametric models can rou-
tinely be fitted. We model mortality improvement using generalised additive models for ages where
we have reliable data and a parametric model at older ages where the data are sparse. Our method-
ology is based on a smooth transition between a GAM at lower ages and a fully parametric model
at higher ages. To obtain the estimates, we use the maximum-likelihood method. The approach
described in this paper provides a computationally straightforward way of estimating and pro-
jecting mortality rates across the whole age range, including older ages where data are sparse or
non-existent. Furthermore, our approach allows uncertainty and expert opinion to be coherently
incorporated.

Under a fully Bayesian estimation method, all different sources of uncertainty – in data series,
model parameters, including the choice of the model cut-off x0, as well as expert judgement – would
be treated jointly in a coherent, fully probabilisticmanner.However, this would come at a considerable
expense in terms of computing effort. In contrast, our method is very simple and is therefore compu-
tationally very cheap and easy to implement, as it requires no Markov chain Monte Carlo sampling
and is based on pre-existing R functions. For that reason, the approach proposed in this paper offers
an appealing alternative for implementing a sophisticated and robust analytical method in actuarial
practice.
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