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Abstract 

A large body of evidence suggests that the motor system maintains a forward model that 

predicts the sensory outcome of movements. When sensory feedback does not match the 

predicted consequences, a compensatory response corrects for the motor error and the forward 

model is updated to prevent future errors. Like other motor behaviours, vocalization relies on 

sensory feedback for the maintenance of forward models and to stabilize vocalizations. 

Experiment 1 used event-related potentials (ERPs) to examine sensory processing of 

short feedback perturbations during an ongoing utterance. In one session, participants produced a 

vowel at an FO of their own choosing. In another session, participants matched the FO of a cue 

voice. An FO perturbation of 0,25, 50,100, or 200 cents was introduced for 100 ms. A mismatch 

negativity (MMN) was observed. Differences between sessions were only found for 200 cents 

perturbations. Reduced compensation when speakers experienced the 200 cents perturbations 

suggests that this larger perturbation was perceived as externally generated. The presence of an 

MMN, and no earlier (N100) response suggests that the underlying sensory process used to 

identify and compensate for errors in mid-utterance may differ from feedback monitoring at 

utterance onset. 

In Experiment 2, we used a frequency altered feedback (FAF) paradigm to study the role 

of auditory feedback in the control of vocal pitch (F0). We adapted participants to a one 

semitone shift and induced a perturbation by briefly removing the altered feedback. This was 

compared to a control block in which a 1 semitone perturbation was introduced into an unshifted 

trial, or trials were randomly shifted up 1 semitone, and a perturbation was introduced by 

removing the feedback alteration. The compensation response to mid-utterance perturbations was 

identical in all conditions, and was always smaller than the compensation to a shift at utterance 

onset. These results are explained by a change in the control strategy at utterance onset and mid-

iv 



utterance. At utterance onset, auditory feedback is compared to feedback predicted by a forward 

model to ensure the pitch goal is achieved. However, after utterance onset, the control strategy 

switches and stabilization is maintained by comparing feedback to previous FO production. 

Experiment 1 showed a MMN in response to a mid-utterance perturbation, which is 

distinct from the N100 found in previous studies that examined perturbations at utterance onset. 

This result suggests that there may be different underlying neurological mechanisms for the 

detection of perturbations at utterance onset and mid-utterance. Experiment 2 adds support for 

this idea by showing a difference in the compensation responses to mid-utterance and onset 

perturbations. We conclude that different mechanisms may be used to detect errors and 

compensate for these errors at utterance onset versus mid-utterance. 

Keywords: Speech Production, Auditory Feedback, Vocalization, Event-Related Potentials, 

Sensory-motor Adaptation, Mismatch Negativity, Perturbation, Pitch-shift Reflex 
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Chapter 1 

General Introduction 

During motor control, sensory feedback is used as the basis to correct online for errors of 

motor production and to adapt to novel environments and conditions, which might affect our 

motor output. In the case of reaching for an object, this feedback takes the form of kinesthetic 

feedback (an awareness of the location of the limb in space relative to the rest of the body, and 

the posture and muscle tension of that limb) and visual feedback, which allows a comparison of 

the current position of the limb to the desired final limb position. The use of feedback allows us 

to correct online for errors during movements, as we can observe errors during movement, and 

also to adjust future movements to prevent such errors from occurring again. 

During speech, auditory feedback plays an important role in vocal control. Vocalization 

relies on auditory feedback for learning to correct for errors (Guenther, 2006) and maintaining 

verbal fluency. In post-lingual deafness, a situation in which auditory feedback is no longer 

available, a progressive decrease in vocal quality is observed, though these individuals still 

remain intelligible (Cowie & Douglas-Cowie, 1983). Auditory feedback is important for online 

correction of vocal productions (Larson, 1998; Burnett, Freedland, Larson, & Hain, 1998) and 

maintenance of stored motor commands for vocal production (Guenther, 2006; Jones & Munhall, 

2000,2005; Purcell & Munhall, 2006; Villacorta, Perkell, & Guenther, 2007). 

While feedback plays an important role in monitoring motor production and the online 

detection of errors, feedforward control is used to initiate and plan actions. Feedforward control 

involves accessing and initiating stored motor plans relevant to the desired goal. Without a 

feedforward control system, every motor command would have to initiate with an arbitrary start 

point and adjust online for position and velocity effects to produce the desired motor act. Given 
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that feedback information is not available until some time after motor initiation (due to an 

inherent delay in information transfer), a reliance on online compensations would not result in 

the smooth and well controlled movements observed in all animals. 

At present, studies of speech motor control have largely focused on behavioral studies, 

emphasizing changes to motor output following feedback manipulations, and a small number of 

imaging studies, which focus on the areas of the brain involved in motor control and feedback 

monitoring. While these studies have proven to be very informative, we still have a poor 

understanding of how the brain detects and responds to manipulations in auditory feedback. 

Also, many studies of speech and theories of speech motor control have the implicit assumption 

that all feedback errors are treated equally. However, this may not be the case. During motor 

production, feedback errors can be brief or prolonged, and can occur at utterance onset and 

during an ongoing utterance. The purpose of this thesis is to use event-related potential (ERP) 

and behavioral methods to study speech motor control, examining how the auditory system 

detects different feedback errors, and how the motor system responds to those errors. These 

results will be considered within a context of the theory of internal models, and feedback and 

feedforward control mechanisms. 

Internal Models and Efference Copy 

The reliable and accurate performance of motor commands is a complex process which 

must not only select an appropriate set of muscle movements and contractions to reach the 

desired goal, but also account for context and environmental factors. For example, when we are 

lifting a heavy or light object, we might use the same motor configuration, but use significantly 
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more force for the heavy object than the light object. Alternately, we might adjust motor 

commands for different environmental contexts, such as walking through water, where we must 

account for the resistance of the water (which is modulated by the depth at our current location) 

to maintain a steady gait and balance. 

Internal models are one system which has been proposed to explain how feedforward 

controllers might account for the wide array of motor commands and motor contexts encountered 

in our every day lives (Wolpert and Kawato, 1998). The theory of internal models proposed two 

types of controllers, inverse models and forward models, which are paired to produce motor 

commands. Forward models predict the upcoming state of the system based on current state and 

active motor command. Forward models have been proposed to be used in motor learning 

(Sutton and Barto, 1981; Jordan and Rumelhart, 1992). Inverse models, in contrast, select the 

appropriate motor command to achieve the desired motor output. Generally, feedback 

manipulations are presumed to act on the forward model, rather than the inverse model, and thus 

we will not further consider the inverse model within the current discussion. 

The forward model includes an "efference" comparator, a copy of the motor command 

sent to the sensory cortex to allow a prediction of the sensory consequences (Nowak et al. 2007). 

When feedback does not match the efference copy during a motor command, it is registered as 

an error, and provokes some sort of compensation response. The efference serves the critical 

function of allowing us to differentiate between self-generated and externally-generated stimuli 

(Blakemore, Wolpert, & Frith, 2000). Several studies have shown evidence of suppression of 

early sensory responses during vocalizations. Suppression of activity in the middle and superior 

temporal gyri during vocalization has been found in electrode implantation studies in humans 

(Creutzfelt, Ojemann, & Lettich, 1989), demonstrating a dampening of the auditory cortical 
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activity during vocal production. This dampening of activity in the auditory cortex is believed to 

be caused by the efference copy suppressing the sensory response to our own voice. A similar 

dampening occurs within the somatosensory system (Blakemore, Wolpert, & Frith, 2000). 

Vocal Adaptation 

When a feedback alteration is introduced and left in place for a prolonged period, 

sensory-motor adaptation occurs as the system adjusts to compensate for this novel feedback 

context. Feedback alterations can take the form of mechanical loads on the system or a change in 

auditory feedback associated with vocalization (Jones & Munhall, 2000, 2005; Purcell & 

Munhall, 2006; Villacorta, Perkell, & Guenther, 2007). This adaptation represents a change in 

the forward model to maintain appropriate motor control and intelligibility when an error is 

detected between predicted and actual feedback. 

Some studies have altered vowel formants during vowel production. This causes the 

produced vowel sound to be perceived as a different vowel. For example, Houde and Jordan 

(1998, 2002) examined sensorimotor representations for formants by shifting Fl and F2 for the 

vowel Id along the HI - Ivl axis. Participants compensated for the feedback alterations by 

modifying their formant production. These modifications persisted when auditory feedback was 

removed, demonstrating adaptation occurred within the motor system. Similarly, Purcell and 

Munhall (2006) gradually shifted Fl during vowel production, and found a gradual return to 

baseline (de-adaptation) when feedback was abruptly returned to normal. The time of this de-

adaptation response was not related to amount of time that the maximal feedback alteration was 
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maintained. Villacorta et al. (2007) modified Fl in consonant-vowel-consonant words, and 

likewise found a compensation response that persisted when feedback was removed. They also 

tested auditory discrimination, and found that participants with better Fl discrimination had a 

larger compensation response to the feedback alteration in Fl, demonstrating a link between 

perceptual abilities and the motor response to a perceived error. 

Manipulations of auditory feedback for fundamental frequency (F0), or vocal pitch, have 

also been used to study sensorimotor control during vocalizations. F0 is distinct from formant 

frequencies in that formants must be controlled within each vowel while F0 appears to be 

controlled suprasegmentally, at least for non-tone languages (Natke and Kalveram, 2001). Jones 

and Munhall (2000,2002) slowly shifted F0 over many trials and observed a compensation 

response in the direction opposite the shift. When the feedback alteration was removed, they 

found prominent after-effects that suggested a re-mapping in the motor system for F0 control. 

Examining differences in singers and non-singers, Jones and Keough (2008) introduced an 

abrupt (as opposed to gradual) feedback change. They found non-singers adjusted to the 

feedback alteration almost immediately, while singers, who possess superior F0 control, were 

slower to modify their productions. Singers were slower to adapt and slower to de-adapt than 

non-singers, suggesting that their internal models were more entrenched than those of non-

singers. 

The response observed in adaptation studies has two potential components: a predictive 

adaptation response and an online compensation response. The predictive adaptation response 

changes the feed-forward motor plan prior to motor onset (and thus is present at the beginning of 

the motor action) and an online compensation response, in which the feedback alteration during 

the current motor command (e.g., the current utterance) is detected after motor onset, when the 
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sensory system has had time to detect the feedback alteration and send an error signal to the 

motor system, which engages in a compensatory response. For vocalization, this compensatory 

response takes approximately 100 to 200 ms (Burnett et al., 1998; Hain, et al., 2000). When 

examining F0 for a prolonged utterance (such as holding a vowel for 1 or 2 seconds), these 

responses can be separated by examining the FO immediately after utterance onset (such as the 

first 50 ms of production, which is too early for feedback-based compensation to occur) and 

compare this to the final F0 attained later within the utterance (which is susceptible to an online 

feedback-driven compensation response). 

Compensation to Unanticipated Perturbations 

During a sustained vocalization, F0 can be altered after utterance onset (Larson et al, 

1998, Burnett et al., 1998). When speakers hear auditory feedback of their F0 suddenly shift in 

mid-utterance, a compensation response occurs in which the speaker shifts their voice in a 

direction opposite to that of the perturbation. This response has been termed the 'pitch shift 

reflex', or PSR, and begins approximately 100 to 150 ms after perturbation onset (Burnett et al., 

1998; Hain, et al., 2000; Larson, Burnett, Bauer, Kiran, & Hain, 2001). The observed 

compensation is generally smaller than the feedback perturbation, except when very small 

perturbations are used (Larson et al. 2001; Lui & Larson, 2007). This compensation response is 

a closed-loop system, which relies on ongoing feedback. 

Burnett et al. (1998) shifted F0 for periods varying from 100 to 500 ms, and found 

evidence that the compensation response is made up of two components, an early and a late 
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response. In a follow up study, Hain et al. (2000) used a 500 ms perturbation, and asked 

participants to compensate, not to compensate, or actively follow the pitch-shifted feedback 

when their voice was perturbed. They found that the early component of the pitch-shift reflex 

was automatic and not affected by task instructions while the late component was under 

volitional control. 

Larson et al. (2001) introduced a feedback perturbation mid-utterance (onset trials), or 

introduced the perturbation prior to utterance onset, and then removed the perturbation mid-

utterance (offset trials). They found that the compensation response was identical in either case. 

That is to say, introducing a feedback alteration produced the same compensation response as 

removing a feedback alteration. It is important to consider that participants produced at their 

habitual pitch (which may have varied substantially across trials), so the baseline F0 was not 

compared between control trials (where F0 was not shifted at onset) and experimental trials in 

which the perturbation was present at utterance onset. The results of this study suggest that the 

PSR is a voice stabilization response, and that the PSR is not using an absolute F0 reference. An 

absolute F0 reference, such as an efference copy sent from the motor system, should result in 

differences in compensation to a perturbation onset and a perturbation offset. However, as the 

baseline F0 is not known, it is possible that, in the case of the offset trials participants 

compensated at utterance onset, and the offset response observed was not a compensation, but 

the removal of a previous compensation response. If this was the case, it is possible an absolute 

F0 referent was being used. 

Natke and Kalveram (2001) had participants vocalize a nonsense word (tatatas) with 

varying patterns of stress and/or long vowels. F0 of auditory feedback was shifted down on 20% 

of trials, for the whole utterance. They found compensation in response to the F0 shift, but that 
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this compensation was not observed in the first syllable. This suggests that FO is controlled 

suprasegmentally, meaning the FO compensation response is not meant to control FO at the 

syllable level but to maintain overall FO coherence and stability. The compensation response 

persists over time, and has an effect on unshifted utterances following a shifted utterance 

(Donath, Natke, & Kalveram, 2002). 

Natke, Donath, and Kalveram (2003) compared singing to speaking a nonsense word. 

They found greater compensation in singing, suggesting FO was more tightly controlled during 

singing than speech. This is in contrast to the results of Chen, Liu, Xu, and Larson (2007), who 

found a larger compensation response in speech than in vowel production. However, Chen et al. 

(2007) did not have participants match a target note, which may be distinct from singing (where 

the goal is to match a specific pitch), and used a question ("you know Nina?") rather than a 

nonsense word as their speech stimuli. In the case of a question, with a rising F0, it is possible 

that F0 control is more tightly controlled than in declarative speech. Natke, Donath, and 

Kalveram (2003) noted that singing prolonged the period at which an F0 shift could affect a 

subsequent utterance (relative to speaking). They also found that a participant's ability to match 

a target note was correlated with the amount of compensation, with participants who were better 

at hitting the target note having a larger compensation response. It is unclear if this is because of 

improved auditory perception, improved motor control, or both. 

Compensation responses have also been observed when feedback amplitude (volume) is 

altered (Bauer, Mittal, Larson, & Hain, 2006). Bauer et al. (2006) shifted voice amplitude during 

vowel production during soft (low amplitude) or normal production. They found a compensation 

response similar to the PSR observed after F0 shifts, and that the amplitude compensation 

response was larger for soft productions. Larson, Sun, and Hain (2007) simultaneously shifted F0 



and voice amplitude, and found that FO and amplitude were controlled by separate but sometimes 

interacting mechanisms. Studies showing compensation responses following amplitude changes 

demonstrate that online closed-loop compensation responses are not unique to FO control, but 

may generalize to all suprasegmental motor behaviors. 

Purpose of Thesis and Hypothesis 

The purpose of this thesis was to examine differences in both the auditory response and 

motor output to perturbations of FO at utterance onset or mid-utterance during sustained vowel 

productions. At present, it is largely assumed that feedback at utterance onset is treated the same 

" as feedback during utterance maintenance (i.e., holding a steady FO during a sustained vowel 

production). We also have a poor understanding in how errors in feedback at utterance onset and 

mid-utterance are detected by the brain. To examine these issues, we conducted 2 studies; one 

using ERPs to examine the sensory response to feedback manipulations, and a behavioral study 

to test for differences at how feedback is used at utterance onset and mid-utterance. 

In Experiment 1, we introduced a random mid-utterance perturbation. We observed a 

compensation response, and a mismatch-negativity (MMN) in response to the perturbations. This 

is the first study to use ERPs to examine perturbations during an ongoing utterance. In addition, 

participants were instructed to either vocalize at a normal/habitual pitch, or to match a target note 

(which was close to the conversation pitch of most individuals of the participant's gender). This 

allowed us to compare both the compensation responses to absolute or relative pitch targets, as 

well as test for differences in the neural response. 
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Experiment 2 was a behavioral study incorporating aspects of both an adaptation and a 

random perturbation design. Participants completed 2 blocks. In one block, we adapted 

participants to a 100 cent upward shift. While the adaptation shift was still in place, we perturbed 

their voice by randomly removing the shift for a brief period within the middle of the utterance. 

In the other block, a 100 cent upwards perturbation was randomly introduced at utterance onset 

for some trials. A mid-utterance perturbation could then be introduced by briefly removing the 

onset perturbation. This was compared to perturbations introduced into an utterance that had not 

been shifted at onset. We found an identical compensation response to all mid-utterance 

perturbations (when the feedback shift was removed during either adaptation or the random onset 

trials, or when no onset-perturbations was present). In addition, the mid-utterance compensation 

was much smaller than the compensation at utterance onset. 

Given the sensory responses observed in Experiments 1 (and their differences to ERP 

results reported for shifts at utterance onset) and the differences in the motor output to mid-

utterance and onset perturbations in Experiment 2, we believe that different mechanisms are used 

to monitor feedback at utterance onset and mid-utterance. The difference in these mechanisms is 

likely related to changes in the goal at onset and during maintenance. When initiating an 

utterance, the goal is to match a desired F0 value as quickly and accurately as possible. Once this 

F0 goal is attained, the system shifts into a maintenance mode, which seeks to stabilize the 

current F0 rather than match a specific F0 target. 
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Experiment 1: Neural correlates of the detection of errors during online auditory feedback 

monitoring. 

Accepted for Publication in Psychophysiology as: 

Hawco, C , Jones, J.A., Ferretti, T.R. and Keough, D. (In Press). Neural correlates of the 

detection of errors during online auditory feedback monitoring. Psychophysiology 

Author Contributions: 

The study was primarily designed by Colin S. Hawco, who also collected and analyzed all data. 

Jeffery A. Jones and Todd R. Ferretti supervised the study, and were involved in discussions on 

the design and analysis, and interpretation of the data. 

Dwayne Keough helped with discussions of the design and interpretation of the experiment. 



Experiment 1 Background: 

The purpose of Experiment 1 is to examine the underlying sensory-neural mechanisms 

used in monitoring auditory feedback and detecting and correcting for alterations within that 

feedback. Control of FO, the fundamental frequency, or pitch, of the voice, is often studied using 

a frequency altered feedback (FAF) paradigm (e.g., Elman, 1981; Kawahara, 1995; Larson, 

1998; Burnett et al., 1998; Natke, Donath, & Kalveram, 2003; Jones & Munhall, 2000, 2002, 

2005). When speakers hear auditory feedback regarding their F0 suddenly shift in mid-utterance, 

a compensation response occurs in which the speaker shifts their voice in a direction opposite to 

that of the perturbation. This response has been termed the 'pitch-shift reflex', and begins 

approximately 100 to 150 ms after perturbation onset (Burnett et al., 1998; Hain, et al., 2000; 

Larson, Burnett, Bauer, Kiran, & Hain, 2001). 

The pitch-shift reflex occurs as a result of changes in auditory feedback, demonstrating a 

closed-loop negative feedback system used in online correction of F0 while vocalizing. When 

unexpected deviations of F0 are heard, a compensatory response is initiated within the motor 

system to offset the error. The mechanism involved in the compensation process is hypothesized 

to compare auditory feedback to an 'efference copy' of the motor command that is sent to the 

auditory system. When the feedback does not match this efference copy, an error is determined 

to have occurred, and the motor system initiates a correction for the error (Guenther, 2006). 

An alternative to the efference copy hypothesis is that speakers might use a variable 

referent rather than a fixed, internal referent (the efference copy). Larson et al. (2001) conducted 

an FAF study in which auditory feedback was altered shortly after the onset of an utterance (the 

onset condition), or the F0 shift was applied prior to utterance onset and removed soon after (the 
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offset condition). They found similar FO trajectories for both conditions, suggesting that speakers 

were using their initial auditory feedback as a variable referent rather than comparing to an 

absolute fixed FO goal. The authors suggest that both strategies, a variable referent or a fixed 

referent, may be used when appropriate. 

Another way to examine this issue is to have speakers match a target pitch during vowel 

production. In that case, the target pitch, rather than the efference copy, could be used as the 

referent. When feedback matches the target, no adjustment is made, but when it does not match, 

adjustments are required to compensate for the error. Only a few FAF studies using short 

perturbations have used a target pitch. Liu and Larson (2007), for example, had speakers match 

an easy or difficult (high) target pitch. They found more compensation to the high target than to 

the easy target. Burnett and Larson (2002) had speakers match a target note which was either 

held steady or rose in pitch (glissandos) and found a compensation response during glissandos, 

but that the compensation response was smaller in glissandos than in steady-state production. 

The results of Liu and Larson as well as Burnett and Larson suggest task-dependent modulation 

of the compensation response, though no studies have compared target matching to vocalizing 

without a target. 

Most FAF studies on the pitch shift response have focused on examining vocal changes 

in FO in response to perturbations. These FAF studies have proven to be very informative, but 

they only allow us to observe the behavioral response to perturbations in auditory feedback. We 

can use this to infer the underlying mechanisms in feedback and feedforward control, but it is 

difficult to directly test these hypotheses. fMRI has been used to observe the brain regions 

involved in vocal control. Studies on perception of voices have consistently found activity in the 

superior temporal gyrus, and evidence of voice specific areas within this region, with activation 



typically greater in the right hemisphere (Belin, Zatorre, Lafaille, Ahad, & Pike, 2000; Belin, 

Zatorre, & Ahad, 2002; Fecteau, Armony, Joanette, & Belin, 2005). 

Moreover, the right superior temporal gyrus has been found to be more specialized for 

pitch discrimination than the left (Zatorre, Belin, & Penhune, 2002). During vocalization, similar 

superior temporal activity has been observed. For example, Fu et al. (2006) conducted a study on 

verbal self-monitoring, in which speakers heard their own voice, their voice pitch-shifted by 2 

semitones, or an alien voice. They found greater activation to alien voices than pitch-shifted 

voices, and greater activation to pitch-shifted than unshifted voices in the bilateral superior 

temporal cortices. Toyomura et al. (2007) compared trials in which speaker's voices were not 

modified to trials in which voices were briefly pitch-shifted up or down three times during a 3 

second utterance and found increased activity in the right superior temporal gyrus when feedback 

was altered. 

fMRI studies have provided many insights into the neural networks and mechanisms 

involved in vocal control, but the slow speed of acquisition makes it difficult to make temporal 

differentiations between activated areas to determine the timing of these responses. Event-related 

potentials (ERPs) and magnetoencephalography (MEG) provide us with a high temporal 

resolution of neural activity, at the cost of spatial resolution. ERPs and MEG can be used to 

examine sensory processes as they occur, and may be useful in studies of vocal control and 

perception. Several ERP and MEG studies have shown evidence of suppression of early sensory 

responses during vocalizations (Ford, Mathalon, Heinks, Kalba, & Roth, 2001; Heinks-

Maldonado, Mathalon, Gray, & Ford, 2005; Kudo et al., 2004), consistent with both the 

efference copy hypothesis of auditory cortex suppression during vocalization and with the results 

of Fu et al. (2006), who found reduced superior temporal activation during vocalizations. 
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Ford et al. (2001) found a reduction in the N100 (a sensory component related to 

perception of an auditory stimulus) during vocalization, with a smaller N100 during speech than 

when listening to speech playback. Kudo et al., (2004) found a reduced N100 to tones when 

participants were vocalizing (vocal feedback was not played back to them), but no reduction in 

other sensory components (the mismatch negativity, negative difference, or P300). The N100 

and its magnetic equivalent, the Ml00, have been localized to the primary auditory cortex and 

surrounding areas (Hari et al., 1987; Pantev, Eulitz, Hampson, Ross, & Roberts, 1996; 

Krumbholz, Patterson, Seither-Preisler, Lammertmann, & Lutkenhoner, 2003; Ozaki et al., 

2003). 

Heinks-Maldonado et al. (2005) had participants vocalize an /a/ sound for 3 seconds, and 

altered their auditory feedback. They used the N100 to examine the sensory consequences of 

violations of the efference copy during vocalization and demonstrated that efference copy 

suppression was sensitive to changes in auditory feedback. During some trials, participants heard 

their unmodified feedback, while in other trials they heard their feedback perturbed downward 

by 2 semitones (200 cents), an alien voice (a male not familiar to the participant), or the alien 

voice shifted down by 2 semitones. They examined the N100 in response to the auditory 

feedback. They found a suppressed N100 in the unaltered feedback condition. During passive 

listening to the four feedback conditions without vocalizing, Heinks-Maldonado et al. (2005) 

found that the N100 response did not differ among conditions but was significantly larger than 

when participants were actively vocalizing. Heinks-Maldonado, Nagarajan, and Houde (2006) 

performed a replication of this study using MEG, and localized the response to the superior 

temporal cortex, showing larger areas of activation to the pitch-shifted and alien conditions than 

the unaltered voice when participants vocalized. 



The ERP and MEG studies described above used perturbations that lasted for entire 

utterances (and were present at utterance onset). Grimm and Schroger (2005) conducted a study 

to examine the effects of modulating the frequency of an ongoing tone; similar to the way 

auditory feedback is altered in a transient perturbation FAF experiment. This experiment is the 

pure perceptual equivalent to a perturbation experiment using ERPs. Grimm and Schroger (2005) 

presented a 440 Hz tone for 1000 ms. During 12% of trials, there was a 50 ms period where the 

tone briefly rose to 480 Hz (approximately 150 cents) at various time intervals within the tone. 

They found a clear mismatch negativity (MMN) in response to the frequency modulation, with 

the MMN being smaller when the frequency modulation occurred later within the tone. The 

MMN is usually observed when a deviation is detected in an auditory stimulus, even when the 

stimuli are not attended to. Typical MMN studies utilize a stream of standard tones, with 10-20% 

of tones deviating from the standard in some way (by frequency, duration, or volume; Naatanen, 

Gaillard & Mantysalo, 1978; Grimm & Schroger, 2005; and Naatanen, Paavilainen, Alho, 

Reinikainen & Sams, 1989, respectively). 

The presence of an MMN is highly correlated with detection thresholds for deviations 

(Lang et al., 1995). MMN responses have also been found in response to deviant phonemic 

contrasts (Aaltonen, Tuomainen, Laine, & Niemi, 1993) and to arbitrary sound patterns, 

occurring when a change is detected in a predictable sound sequence (Tervaniemi, Maury, & 

Naatanen, 1994). The N100 and MMN overlap (with the MMN typically peaking 150-250 ms 

post-stimuli) but the MMN is believed to be distinct from the N100 (see Naatanen, Paavilainen, 

Rinne, & Alho, 2007, for review) that is related to detection of deviations rather than detection of 

the stimuli itself. The MMN is often seen in the absence of attention, and is produced by 

mechanisms that involuntarily direct attention to the deviant sound stimuli. This involuntary shift 
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in attention accompanied by the presence of an auditory MMN in an unattended auditory channel 

typically has an adverse effect on reaction time in the attended auditory channel (Schroger, 

1996). 

For the present study, we conducted an ERP experiment using an FAF paradigm to 

observe the sensory-neural components involved in the pitch-shift reflex, and to determine if we 

could observe ERP components in response to an FO perturbation and how these components 

relate to the compensation observed in response to perturbations. This study bears certain 

similarities to that of Grimm and Schroger (2005), who altered ongoing tones. Instead of tones, 

we altered the participant's ongoing vocal auditory feedback. Participants vocalized for three 

seconds, hearing their auditory feedback perturbed by 0 (no perturbation), 25, 50,100, or 200 

cents for 100 ms during each utterance. The shift values were expected to lead to progressively 

larger compensation responses, up to some plateau. Participants produced vocalizations during 

two sessions: in one session, participants produced an F0 of their own choosing, while in the 

other they were instructed to match a specific target pitch. While vocalizing, a masking noise 

(multispeaker babble) was played to partially mask bone-conduction feedback through the chest 

and oral cavities. 

When matching a target, a speaker is able to use the target note as a comparator, rather 

than the efference copy that is believed to be the standard comparator when vocalizing. Based on 

previous research (Grimm and Schroger, 2005; Lavikainen, Huotilainen, Ilmoniemi, Simola, & 

Naatanen, 1995), we hypothesized that an MMN might be observed in response to perturbations, 

and that the magnitude of this negative component would be related to the size of the pitch shift. 

Alternatively, we might observe an N100 response that is modulated by the size of the 

perturbation. It is unclear if an N100 can be observed to a change in an ongoing stimuli so soon 



after stimulus onset. If there were differences between matching an external target or using an 

internal referent, we might see differences in the magnitudes of the ERP components in either the 

MMN or N100 time window. We also hope to lay groundwork for future studies examining the 

sensory aspects of auditory feedback. 

Experiment 1 Methods 

Participants: Data were recorded from 21 participants. All participants reported no formal vocal 

training, did not speak a tonal language such as Mandarin or Cantonese, did not take any 

psychiatric medications, and were right-handed. Each participant took part in two separate EEG 

sessions on non-consecutive days, with each session lasting approximately 90 to 120 minutes. 

Seven participants were excluded from the final analysis (three because of excessive EEG 

artifacts, such as alpha activity and ocular artifacts, and four because they opted not to participate 

in a second session), leaving data from 14 participants (mean age 21.8, sd 2.4,4 males). All 

participants read and signed an informed consent form, in accordance with the ethical policies of 

Wilfrid Laurier University. 

Behavioral Task: Participants were seated in an electrically shielded room for the experiment 

and wore headphones with an attached boom microphone (Sennheiser HMD 280-13, Holte, 

Denmark). Participants were instructed to produce the vowel /a/ in a clear voice for 3 seconds 

following an auditory cue. They were instructed to vocalize in a loud voice (i.e., not shouting, 

but a loud clear voice such as might be used in a crowded room). Prior to the experiment, 



participants practiced vocalizing such that they could hear their voice over the multi-speaker 

babble. Most participants heard their voice at approximately 85 to 95 dB SPL, depending on the 

volume at which they vocalized (with their voices being amplified by approximately 10 dB). 

Their vocalization was played back to them in real time via the headphones. Participants were 

informed that they would hear their voice shifted in pitch during the experiment. 

The experiment was conducted in two sessions (a relative and absolute session) on non-

consecutive days, with the order of sessions counterbalanced. Participants were instructed to 

begin vocalizing following a cue. In the relative session, the cue was a 1000 Hz tone, played for 

one second. Participants were instructed to begin vocalizing immediately after the end of the 

tone, at their normal pitch. Participants were instructed to maintain a consistent pitch and volume 

throughout the production. In the absolute session, the cue was another person's voice producing 

/a/ for 1 s. Male participants heard a male voice produce the note A3 (110 Hz) and female 

participants heard a female voice produce the note A4 (220 Hz). The cue was played at 

approximately 85 dB SPL. They were instructed to match the pitch of the cue voice to the best of 

their ability. The cues used in the absolute sessions were constructed by taking a male and 

female voice producing an /a/ sound at the desired target and digitally modifying them such that 

the pitch was exactly 110 Hz or 220 Hz, respectively. The F0 values of the cues are close to the 

natural pitch of most male and female speakers. 

The cue was followed by multi-speaker babble, used as a masking noise to reduce the 

effects of bone-conducted feedback. The babble was played at 85 dB SPL and lasted 3 s. 

Participants were instructed to vocalize until the babble stopped, and thus vocalized for 

approximately 3 s. Between 1000 and 1200 ms following the end of the cue and onset of the 

babble sound, the participants' voice was perturbed upwards by either 0, 25, 50, 100, or 200 
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cents (the shift 0, shift 25, shift 50, shift 100, or shift 200 conditions, respectively), where 100 

cents is equal to one semitone. The perturbations lasted 100 ms. The order of perturbations was 

randomized across trials. The babble was followed by a 3 s period of silence prior to the onset of 

the next cue (lasting 1 s). Thus, each trial lasted 7 s, with 3 s of vocalization and 4 s of rest. 

Details of a trial are shown in Figure 2.1. The experiment was divided into 5 blocks of 60 trials, 

with 12 of each size of perturbation in each block (for a total of 60 instances of each perturbation 

during the study). Each block lasted 7 minutes, and was followed by a brief break. 

Figure 2.1: Timeline for a single trial. The cue 
was a 1000 Hz tone in the relative session, and a 
voice producing /a/ at A3 for males or A4 for 
females. 

Vocalization onset 

Behavioral Recording and Analysis: The auditory cue, multi-speaker babble, and shift onset 

were controlled by Max/MSP 4 (Cycling '74, San Francisco, CA), running on a Dell laptop. The 

sounds from the laptop were sent to a mixer (Mackie Oynx 1220, Loud Technologies, 

Woodinville, USA). As well, the participants' vocalizations were sent to the mixer and then sent 

to a digital signal processor (DSP; VoiceOne, T.C. Hellicon, Westlake Village, USA), which 

pitch-shifted the voice. The altered voice signal was returned to the mixer, mixed with the 

auditory signals from the laptop (cue and babble), and played back to the participant. The 

unaltered voice signal, as well as a tone that was triggered by the command to the DSP to pitch-

shift, were digitally recorded (TASCAM HD-P2, Montebello, USA) at a sampling rate of 44.1 

kHz. 

Rest Period (3 s) Cue (Is) Babble (3 s) 

1000 to 
1200 ms 

Perturbation (100 ms) 



Voice recordings were imported into a custom program written in Matlab (The 

Mathworks Inc, Natick, USA) that segmented recordings into separate trials. The trial data were 

then imported into Praat (www.praat.com). The autocorrelation algorithm in Praat was used to 

calculate the FO with a resolution of 5 ms. The FO data were then imported into another Matlab 

program that time aligned each utterance with the perturbation onset. 

The FO data were converted into cents using the formula: 

cents = 100*( 39.86*logl0( FO/baseline)) 

The baseline was defined as the mean FO of the 50 data points (250 ms) preceding the 

onset of the perturbation. Any trial that did not have 500 ms of voice data prior to perturbation 

onset (because the participant was slow to begin production on that particular trial) was 

excluded, to ensure that the baseline represented steady-state F0 data, and was not affected by 

fluctuations present early in an utterance. Cents were calculated for 100 data points (500 ms) 

before and 200 data points (1000 ms) following the perturbation. Any trial that did not have 1000 

ms of voice data following the perturbation was also excluded. On average, only 4.5% of trials 

were rejected for each participant. Data were smoothed with a 7-point moving window, and a 

linear detrend was performed on each trial to remove any drift in the vocalization (fitting a linear 

trend line to each trial, including the baseline segment, and removing that trend from the data). 

An average F0 trace was then constructed for each shift value for each participant. 

For each of the averages of each shift value for each participant, the minimum value 

within the time window from 50 ms to 300 ms post-perturbation was calculated as a measure of 

the amplitude of the compensation response. Peak latency was calculated for the shift 25, shift 

50, shift 100, and shift 200 conditions. No peak latency was calculated for the shift 0 condition, 

as there was no response in this condition due to the absence of a perturbation. Amplitudes were 

each analyzed with 2X5 (session by shift value) repeated measures ANOVA. Latency was 

http://www.praat.com
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analyzed with a 2 X 4 (session by shift) ANOVA. All probability values were corrected for 

multiple degrees of freedom using Huynh-Feldt. 

EEG recording and Analysis: Data from each session (relative and absolute) were recorded and 

analyzed separately. An electrode cap with 62 Ag/AgCl electrodes distributed across the scalp 

(60 channels plus reference at the vertex and a ground between Fz and Fpz) was fitted on to each 

participant. Data were recorded using a Neuroscan Synamps2 amplifier set at a bandpass of 

0.01-250 Hz and digitized at 1000 Hz. Electrodes were also placed at the outer canthus of both 

eyes, and above and below the left eye to measure EOG artifacts. Electrode impedances below 5 

KO were obtained for the majority of electrodes, with some impedances as high as 10 ¥Sl. After 

data acquisition, the EEG was rereferenced to the average of electrodes on each earlobe. Data 

were then epoched into segments from 100 ms before the onset of perturbation to 1000 ms after 

perturbation onset. The epoched data were baseline corrected, filtered with a band pass of 1 Hz 

(6 dB/octave) to 30 Hz (48 dB/octave) and any trials that exceeded 50 microvolts on any 

electrode were excluded from further analysis. On average, 22% of trials were rejected. Three 

participants were excluded due to high rejection rates (over 60% of trials), as described above. 

For each participant, averaged waveforms were created for each shift type (i.e., shift 0, 

shift 25, shift 50, shift 100, and shift 200) for each electrode. Grand average waveforms were 

created for each of the 5 shift conditions in each of the two sessions by averaging the data from 

all participants for each electrode, resulting in 10 grand average files of 60 electrodes each. A 

subtraction waveform was created to visualize the MMN by subtracting the data from the shift 0 

condition from all other conditions for both the relative and absolute session. For all average files 

for each participant, mean amplitudes were calculated for time windows from 50-150 ms (area 
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1), 151-250 ms (area 2), 251-350 ms (area 3), 351-450 ms (area 4), and 451-550 ms (area 5). 

These windows were chosen based on a visual inspection of the data and on prior research 

(Grimm & Schroger, 2005). For each time window, a separate 2 X 5 X 60 repeated measures 

ANOVA (session by shift by electrode) was conducted, corrected for multiple degrees of 

freedom using Huynh-Feldt. 

Experiment 1 Results 

Behavioral Results: Figure 2.2 shows plots of the F0 of the vocalizations (in cents). For peak 

latency of the compensation response, the 2 X 4 (session X shift) repeated measures ANOVA 

showed a significant main effect of shift, F(4,52) = 5.22, p = 0.0048, but no main effect of 

session, and no shift by session interaction. Pairwise comparisons for the 4 shift values indicated 

no latency differences between shift 100 and shift 200. However, the shift 100 and shift 200 

conditions had significantly shorter latencies than shift 25 and shift 50 conditions, which did not 

differ from each other. The 2X5 ANOVA for the amplitude of the compensation response 

showed a significant main effect of shift, F(4,52) = 16.37, p < 0.0001, a marginal main effect of 

session, F(l,13) = 3.74, p = 0.075, and no shift by session interaction. Pairwise comparisons for 

the 5 shift values revealed that all shift values significantly differed from all other shift values, 

except the shift 50 and shift 200 conditions, which were not significantly different. Of particular 

interest, the compensation response to the shift 200 condition was significantly smaller than that 

observed for the shift 100 condition (p < 0.0001). 



Absolute Relative 

Time (ma) Tlnwfnw) 

Figure 2.2: Averaged behavioral results from all participants for the absolute and relative sessions. 
Compensation shows how much the average of all participants altered their FO (in cents) in response to 
the different perturbations. Time 0 represents the onset of the perturbation. 

EEG results: ERP results for selected electrodes are detailed in Figure 2.3. Figure 2.4 shows the 

ERP results at Cz, as well as a comparison of the relative and absolute sessions for shift 100 and 

shift 200. The 2 X 5 X 60 (session by shift by electrode) ANOVA revealed no significant ERP 

changes in area 1 (50-150 ms). A prominent negative component was observed in area 2 (151-

250 ms), with a main effect of shift, F (4,52) = 12.33, p < 0.0001, and a shift by electrode 

interaction, F(236, 3068) = 3.8, p = 0.0001. A linear trend analysis performed on the factor of 

shift revealed a significant linear trend (p = 0.0041) indicating that the MMN response is larger 

with larger shift values. Planned comparisons were performed on the shift factor, revealing no 

difference between the shift 0 and shift 25 condition, but a significant difference between the 

shift 50 condition and shift 0 (p = 0.018). The mean of the shift 100 and shift 200 conditions was 

also found to differ from the shift 0 condition (p = 0.0012). Thus, although a negativity was 

present for perturbations that were 50 cents and larger, there was no negativity in area 2 when 

perturbations were 25 cents. The negativity response to the shift 200 condition was also found to 

be significantly larger than the negativity to the shift 100 condition (p = 0.017). 
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Figure 2.3: ERP results for absolute and relative sessions for all 5 shift conditions. Midline and lateral 
electrodes from the topographical analyses are shown. The MMN, N2, and late positivity responses are all 
indicated. Time 0 represents the onset of the perturbation. 
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Figure 2.4: Grand Average ERP results at Cz, for a) the absolute session, b) the relative session, and c) 

comparing the grand averages for the absolute and relative sessions for the shift 200 and shift 100 

conditions. No differences were observed between the relative and absolute sessions. The MMN, N2b, 

and late positivity are indicated by arrows. Time 0 represents the onset of the perturbation. Grand average 

waveforms represent an average across all participants. 

Given the electrode by shift interaction, we performed a topographical analysis to 

determine the nature of this interaction, and to test for possible laterality effects (Figure 2.3). 

Frontal (F7, F3, Fz, F4, and F8), central (C7, C3, Cz, C4, and C8), and parietal (P7, P3, Pz, P4, 

and P8) electrodes were chosen for an anteriority factor, whereas left lateral (F7, T7, and P7), left 

medial (F3, C3, and P3), midline (Fz, Cz, and Pz), right medial (F4, C4, P4) and right lateral (F8, 

T8, and P8) electrodes were used as a laterality factor. A session by shift by anteriority by 

laterality (2 X 5 X 3X5) ANOVA was performed. A significant interaction in shift by 

anteriority, F(8,104) = 4.37, p = 0.0096, indicated an anterior distribution to the response. Shift 

and laterality also produced a significant interaction, F(16,208) = 4.33, p = 0.0002, which was 



largely driven by a midline predominance in the response. Post-hoc tests revealed no 

hemispheric laterality. Changes in the topography with different perturbations were seen in a 

shift by anteriority by laterality interaction, F(32,416) = 1.72, p = 0.036. 

Examinations of area 3 (251-350 ms) found a significant response, with a significant 

main effect of shift, F(4,52) = 3.13, p = 0.022. A significant linear trend was observed such that 

this response was increased with larger shift values (p = 0.027). 

No significant effects were found in area 4 (351-450 ms). A late positivity was observed 

in area 5 (451-550 ms) as a main effect of shift, F(4,52) = 4.47, p = 0.0049, as well as a shift by 

electrode interaction, F(236,2832) = 1.85, p = 0.034. Planned contrasts revealed that this 

positivity was larger in the shift 200 condition than the shift 0 (p = 0.0037) and the shift 100 

condition (p = 0.009), but that the shift 100 condition did not differ from the shift 0 condition (p 

= 0.46), suggesting that this positivity only differed from the shift 0 condition in shift 200. The 

grand averages suggest that this positivity for shift 200 may be more prominent in the relative 

than the absolute condition (Figure 2.4), but once again a difference in relative and absolute 

sessions was not found in planned contrasts (p = 0.58). A topographical analysis was performed, 

as described for area 2. The topographical analysis revealed a main effect of anteriority, F(2,26) 

= 4.30, p = 0.034, though pairwise post-hoc comparisons did not reveal any specific differences. 

This positivity appears to be broadly distributed, as no other effects were observed in the 

regional analysis, with a somewhat frontal predominance. 

Experiment 1 Discussion 



In this study, we demonstrated that ERPs represent an important tool in the search for the 

mechanisms underlying the pitch-shift reflex and monitoring of auditory feedback. We found a 

negativity in area 2 (from 151-250 ms post-perturbation), which we believe is an MMN, or an 

MMN-like component. The magnitude of this negative response increased with larger shifts 

(consistent with previous findings that the MMN increases with larger deviations in stimuli). We 

also observed an N2 response that was also modulated by shifts, and a late positivity that seems 

present mainly in the shift 200 condition. No systematic differences were found between the 

relative and absolute sessions. The observed MMN response may prove useful in future studies 

of preattentive sensory processing of auditory feedback. The MMN is generated by sources in 

the bilateral superior temporal lobes, believed to represent auditory processing, and a second 

frontal lobe generator associated with the attentional switch caused by an MMN (Naatanen et al., 

1978; Giard, Perrin, Pernier & Bouchet, 1990; Rinne, Degerman & Alho, 2005). These sources 

for the MMN may overlap somewhat with the temporal and frontal activations observed in fMRI 

research on feedback alteration (Toyomura et al., 2007; Zarate & Zatorre, 2005,2008). 

Another potential interpretation of the present data is that the observed negativity may be 

a delayed N100 response to the perturbations. Our paradigm does not conform to a typical MMN 

study, in which the MMN is observed to rare stimuli within a train of standards. However, we 

do not believe that a delayed N100 response best describes our data for two reasons. First, the 

peak time of the MMN is over 200 ms post stimulus. It seems unlikely an N100 would be 

delayed by such a large amount. And second, the response follows patterns observed in the 

MMN literature, in that it is larger and earlier when the magnitude of the stimulus is greater. The 

presence of an N2b, in close proximity to the MMN response, may also argue against an N100 

interpretation, as the MMN is often found in conjunction with the N2b. While our perturbations 



were not rare stimuli, occurring in the majority of trials, they occurred randomly within an 

otherwise unaltered utterance. We therefore suggest that the pre-perturbation baseline represents 

the 'standard' used to evaluate the auditory stimuli (the participant's own auditory feedback) and 

form the appropriate memory representation. When the perturbation occurs, it represents a 

violation of the ongoing stimuli, producing an MMN. In the case of this study, the shift 0 

condition represents a zero condition, in which no stimulus has been presented, and therefore the 

ERP findings for the shift 0 condition are equivalent to the baseline (pre-perturbation) period. 

The pitch manipulation performed in our study is very similar to those from Grimm and 

Schroger (2005), who also found a clear MMN to frequency changes in an ongoing sound. While 

we are characterizing the response as an MMN for purposes of discussion, we acknowledge that 

our MMN response may not be identical to the prototypical MMN observed in perceptual 

experiments using the standard MMN paradigm. 

Interestingly, Lavikainen, et al. (1995) examined frequency modulation of a constant 

background tone, altering the tone for 100 ms approximately every 6 seconds. They found both 

an N100 and an MMN (at a similar latency to the negativity observed in the present study). We 

believe that, because the 'standard' tone in that study was played continuously, it took on the 

characteristic of background noise, and a change in that background was processed as a new 

stimulus. Similar to our study, there was no discrete 'standard' tone in Lavikainen et al. (1995) 

aside from the background tone. In the case of our study, the time difference between the onset 

of the auditory stimuli (the participant's auditory feedback) may have been too short to allow an 

additional N100 response. Instead, the perturbation was processed as a change in an ongoing 

and relatively novel stimuli, rather than as the onset of a discrete stimuli, resulting in a lack of an 

N100. 



Interestingly, the shift 200 vocal compensation response was found to be smaller than the 

compensation in the shift 100 condition, while the MMN response was larger in shift 200 than 

shift 100. This smaller compensation has not been previously reported. Only two FAF studies 

with brief perturbations used stimulus magnitudes of 200 cents during vowel production. In 

Burnett et al. (1998), the duration of the perturbations was 500 ms. With a 500 ms perturbation, 

volitional responses are known to occur along with the automatic compensation responses (Hain 

et al., 2000). These volitional responses may have masked any differences in compensation 

responses between different shift magnitudes. Chen, Lui, Xu, and Larson (2007) found no 

differences between 50,100, and 200 cents when participants vocalized IvJ. We suggest the 

smaller compensation response we observed in shift 200 may be because the perturbation is large 

enough that the feedback alteration is recognized as externally generated by the auditory system. 

Presumably, such a large feedback error should be accompanied by a detectable kinesthetic error. 

The MMN amplitude may serve as a 'threshold', in which an MMN response exceeding a certain 

threshold must be accompanied by kinesthetic feedback to produce a normal compensation 

response. When such a large feedback alteration occurs without a detectable kinesthetic 

response, it is not likely that the error was internally generated, and thus a compensation 

response is not appropriate. If this is true, very large feedback alterations (such as 500 or 800 

cents) should produce a small or no compensation response. This threshold may vary with a 

number of other experimental factors (volume of vocalizations, task instructions, etc). 

The presence of a late positivity, which seems to only be distinct during a 200 cents 

perturbation, may also be consistent with the idea that the shift 200 condition is not seen as an 

internally generated error. This late positivity demonstrates enhanced and continued processing 

of the shift 200 condition, possibly because this large perturbation is attributed to an external, 



rather than internal, source. Such continued processing shows that the shift 200 condition is 

viewed as distinct in some way from the other conditions. 

The distinctiveness of the shift 200 conditions may have an important impact on future 

studies. Previous researchers have used a 200 cent shift as opposed to smaller shifts in ERP 

(Heinks-Maldonado et al., 2005), MEG (Heinks-Maldonado et al., 2006) and fMRI (Toyomura 

et al., 2007, Zarate & Zatorre, 2005,2008) studies on auditory feedback. However, given the 

results of the present study, future imaging studies might wish to utilize a 100 cent shift, which 

maximizes the response without introducing complexities of continued processing not related to 

the use of feedback in vocalizations. Such extra processing might represent a significant 

confound in imaging studies trying to localize the regions involved in feedback monitoring, as 

the feedback change might no longer be recognized as a feedback error in the same way that a 

smaller error that was perceived as self-generated. 

MEG and ERP studies examining N100 suppression related feedback perturbations have 

typically used 200 cent shifts (Heinks-Maldonado et al., 2005,2006; Toyomura et al., 2007). 

These studies suggest a modulation of the auditory cortex by an efference copy comparator, both 

in that there is a reduction in activity in the auditory cortex when vocalizing compared to 

listening to recorded speech, and greater reduction to one's own unaltered voice than a pitch 

shifted voice. It might be interesting to see if such effects are present with a smaller perturbation 

(such as 50 cents), which is clearly detected as an error, but as a self-generated one. If the 

hypothesis that the suppression of the auditory cortex is related to the recognition of our own 

unaltered feedback as being internally generated (Heinks-Maldonado et al., 2005,2006) is 

correct, we might expect to see an enhanced N100 (due to reduced suppression) in the presence 



of large shifts (e.g. 200 cents), and no change in N100 suppression in the presence of small shifts 

(e.g. 50 cents). 

The shift 25 condition is also interesting that no MMN was observed, while a 

compensation response was observed. The MMN is known to be highly correlated with detection 

thresholds of auditory stimuli (Lang et al., 1995, Naatanen & Alho, 1995), including in vowel 

discrimination (Aaltonen, et al., 1993). It is also known that compensation can occur without the 

need for perceptual awareness of a feedback alteration, though this threshold for awareness is 

generally less than 25 cents (Hafke, 2008). In the case of the present study, the multispeaker 

babble used as the masking may have caused participants to be perceptually unaware of the small 

25 cent perturbations. White or pink masking noise may not have masked these small 

perturbations in the same way as multispeaker babble, which is constantly varying in frequency. 

Given the presence of an MMN response to perturbations, the MMN's known sensitivity to 

detection thresholds, and the fact that compensation can be observed when the perturbation is 

below the detection threshold, it is not surprising we would not see an MMN response to very 

small perturbations. 

Though no site by electrode interaction in area 3 was observed, visual inspection of the 

ERP data suggests a posterior distribution to our N2 response, similar to the N2b response 

observed by Grimm and SchrSger (2005) when participants attended to the frequency of stimuli 

with frequency modulations. We therefore believe that our N2 response is actually an N2b. 

Grimm and SchrOger (2005) did not observe their N2b response when participants were 

instructed to attend to another dimension of the stimuli (duration), or when they ignored the 

stimuli. The presence of such a response in this study indicates that participants did in fact attend 

to and monitor their auditory feedback, given that the N2b is well known to be absent when 
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stimuli are not attended to (NaStanen, 1992). Visual inspection of the ERPs in the present study 

does not show a clear N2/N2b response in the relative condition, but there is a fairly clear 

N2/N2b in the absolute condition. If such a difference were to be observed, it would suggest 

greater feedback monitoring when matching a target. However, the high p-value (p = 0.48) 

observed in this study suggests no systematic differences existed between the relative and 

absolute sessions, indicating that feedback monitoring was not driven by the task. A study with a 

larger number of trials at a large perturbation (100 cents) might allow an examination of 

differences among individuals in the amount of feedback monitoring as indexed by the N2b, and 

its possible effects on the compensation response. 

The results of Heinks-Maldonado et al. (2005,2006) show a clear early increase in N100 

responses, starting at approximately 100 ms post-vocalization, whereas an N100 was not 

observed in the present study. The increase in the N100 responses, along with MEG studies 

showing a clear reduction in the Ml00 (the magnetic equivalent of the N100) activity when 

vocalizing as opposed to listening to speech (Pantev Eulitz, Hampson, Ross, & Roberts, 1996; 

Numminen & Curio 1999; Curio et al., 2000; Houde et al., 2002) give strong evidence of a 

feedforward efference copy which suppresses the auditory cortex during speech. Importantly, the 

observed effects in these studies occurred at utterance (and therefore motor command) onset. 

Although no N100 was observed in our data, possibly because the perturbations occurred 

mid-utterance, we did expect to see an early negativity similar to that seen in Heinks-Maldonado 

et al. (2005, 2006) if an efference copy violation caused an increase in early auditory processing. 

The lack of a response raises several possibilities. Firstly, it may be that early auditory 

processing is not enhanced in the same fashion in mid-utterance as it is to a feedback alteration 

heard at the beginning of a vocalization. This would suggest that different mechanisms are 



involved in vocalization onset and vocalization maintenance. Most discussions of feedback 

control do not differentiate between using feedback in vocalization onset and maintenance, so 

this issue should be examined in future studies. 

The results of Kudo et al. (2004) illustrated that the MMN to tones was not reduced while 

an N100 response to tones was significantly reduced in the presence of an efference copy from 

vocalization. These results may suggest that the MMN response observed in the present research 

is not related to an efference copy comparison when evaluating auditory feedback. It is also 

possible that the early response occurs, but the low amplitude and poor signal to noise ratio of 

that response prevented us from detecting it. This possibility could be examined by a study using 

100 cent shifts in mid-utterance with a large number of trials. However, given the current 

findings, we see no evidence that an efference copy comparator is being used in feedback 

monitoring during pitch maintenance. 

Given the lack of an early response, and the characteristics of the MMN, we hypothesize 

that an efference copy comparator is not used in pitch maintenance during an ongoing utterance. 

It is not clear if normal speech would follow the same pattern of results when pitch was 

maintained, as the characteristics of the utterance are much more variable in speech, and each 

syllable might be treated as the initiation of a new motor plan (MacNeilage, 1998). The MMN is 

generally observed when an auditory stimulus is changed relative to a previous auditory 

stimulus, and relies on a memory trace for the preceding stimuli to form an expectation of 

incoming sensory stimuli. This contrasts strongly with the paradigm used in Heinks-Maldonado 

et al., (2005, 2006) where the feedback alterations are presented randomly, and so no stimuli 

trace can be formed to base a prediction of incoming stimuli. In our case, the pre-stimulus 

aspects of the vocalization allowed time for a memory trace to be formed. 
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In the present study, the beginning of the utterance could be used for trace formation. 

Given that the MMN requires the formation of a sensory trace of stimuli characteristics, and 

Heinks-Maldonado et al. (2005,2006) observed an earlier N100 response rattier than an MMN, 

we take this as evidence that pitch maintenance relies on an analysis of the signal characteristics 

of the ongoing utterance. When a non-volitional deviation in these characteristics occurs, it is 

classified as an error, and a compensatory response occurs. Because the efference copy 

comparator seems to interact with the auditory cortex at an earlier level (as it affects the N100, 

which occurs prior to the presently measured MMN), the activation of a new motor plan (i.e., a 

volitional change in pitch) may disrupt the sensory trace for the ongoing utterance, and thus 

stopping an MMN response and preventing us from compensating to an error-free volitional 

change in F0. 

The hypothesis that we use our existing feedback as the referent in feedback monitoring 

of an unchanging utterance will require further testing. However, this hypothesis corresponds 

with the results of Larson et al. (2001), who found no differences in compensation when a 

perturbation was applied before an utterance and then removed during the utterance, or when the 

perturbation was turned on after utterance onset. In addition, sensorimotor adaptation studies 

using FAF often find complete compensation for the feedback alteration (Houde & Jordan, 1998) 

even for 100 cents shifts (Jones & Keough, in press). Mid-utterance perturbation studies, on the 

other hand, typically have found complete compensation for only very small shifts. 

The results of the present study demonstrate the usefulness of ERPs to study processes of 

auditory feedback monitoring and their relationship to compensation responses and 

understanding the underlying sensory mechanisms of auditory feedback monitoring. The MMN 

gives an index of awareness of a feedback alteration, and as a window into the mechanism in 



feedback monitoring and error detection. The N2b might be useful as an index into the amount of 

attentional resources being devoted to auditory feedback, and may be useful in differentiating 

people who attend to their feedback and those who do not, or in measuring the effects of shifting 

attention away from feedback by varying amounts. A wide array of studies present themselves, 

as much of the underlying mechanisms of feedback monitoring and compensation remain poorly 

understood at a neurological level. 
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Experiment 2 Background 

Studies of vocal control often use one of two FAF paradigms, studies of sensory-motor 

adaptation, or random perturbation studies. In studies of sensory-motor adaptation, a feedback 

alteration is introduced and left in place for over many trials. Over time, a remaping of the motor 

command for vocalization occurs, as participants adapt to the altered auditory feedback. When a 

brief perturbation is randomly introduced to an ongoing utterance, a transient compensation 

response is observed, where speakers adjust their FO in the direction opposite the shift. This 

response has been termed the pitch-shift reflex (Burnett et al, 1998). 

The pitch-shift reflex is distinct from the adaptation response, as the pitch-shift reflex 

reflects an online compensation process using ongoing auditory feedback when an unexpected 

feedback error is encountered, while adaptation represents an updating of the forward model in 

response to a predicable and constant feedback alteration. The results of Burnett et al. (1998) 

suggested that the pitch-shift reflex is made up of two components, an early and a late response. 

Hain et al. (2000) used a 500 ms perturbation, and asked participants to compensate, not to 

compensate, or actively follow the pitch-shifted feedback when their voice was perturbed. They 

found that the early component of the pitch-shift reflex was automatic and not affected by task 

instructions while the late component was under volitional control. 

One important aspect of the pitch-shift reflex is that it is generally smaller than the 

perturbation, except for very small feedback alterations (Burnett et al., 1998; Larson et al. 2001; 

Liu and Larson, 2007). In contrast, responses to whole-utterance shifts are often close or equal in 

magnitude to the feedback alteration. Jones and Keough (2008) had a series of baseline trials, 

after which they exposed participants to a 100 cent (one semitone) feedback alteration. On the 



first trial after feedback alteration, both singers and non-singers adjusted their FO by more than 

50 cents; in fact non-singers adjusted their FO by approximately 70 cents. Moreover, non-singers 

achieved full compensation to the feedback alteration within 5 or 6 trials. This approximately 70 

cent response is much larger than that typically observed in the pitch-shift reflex, where a 100 

cent perturbation generally results in compensation responses of less than 50 cents, and 

sometimes as little as 9 cents (Liu and Larson, 2007). 

It has been theorized that an efference copy comparator is used to monitor auditory 

feedback, and that this comparator plays an important role in motor learning (Nowak et al. 2007). 

The efference copy is sent from the motor system, by the forward model, to the auditory system 

so that sensory feedback can be predicted. That prediction is compared to real auditory feedback 

regarding the vocalization; when feedback does not match the prediction, an error is registered. 

This error is corrected online, and the forward model is subsequently modified. Some evidence 

for the use of an efference copy in monitoring auditory feedback has come from studies using 

event-related potentials (ERPs). Hienks-Maldonado et al. (2005) found the N100, an ERP 

component associated with sensory processing of a stimulus, was attenuated during vocalization. 

When feedback was altered, the N100 attenuation was reduced. This attenuation is believed to be 

driven by the efference copy. The auditory cortex is maximally attenuated when feedback 

matches the efference copy, allowing speakers to determine that what they are hearing is their 

own voice, and that no errors occurred during vocal production. Importantly, the N100 is only 

observed at utterance onset. 

Larson et al. (2001) conducted a study in which they either altered feedback in mid-

utterance, or altered feedback at utterance onset, and then removed the feedback alteration in 

mid-utterance. They found an identical mid-utterance compensation response in both conditions. 



That is, the compensation response always stabilized production so that the current FO value 

matched the FO prior to the alteration, independent of whether the change detected was initiation 

of a feedback alteration or its removal. The authors suggest that this finding rules out the use of a 

fixed efference copy as the reference used in voice stabilization, as such a system should not 

stabilize the system to artificially altered feedback. However, participants were instructed to 

produce at a habitual FO, and the baseline FO was not known. Thus, it is possible that participants 

responded to the initial feedback alteration with a compensation that was equal in magnitude to 

the compensation to the mid-utterance feedback alteration. When the feedback alteration was 

removed, they then simply stopped compensating and their FOs returned to their baseline value, 

resulting in a response equal to that observed when a perturbation was initiated mid-utterance. 

We have some evidence that responses to initial FO shifts may be larger than those typically 

observed for mid-utterance FO shifts (Jones and Keough, 2008), but that study used a fixed 

external reference in the form of a target note. Speakers attempting to match an external 

reference might produce larger compensation responses than speakers who are not required to 

achieve a specific pitch target. 

Experiment 1 examined the response to a mid-utterance perturbation using ERPs. Rather 

than observing an early effect that replicated the N100 results of Hienks-Maldonado et al. 

(2005), Experiment 1 found a mismatch negativity (MMN), a later ERP component associated 

with a violation of a sensory memory trace. The MMN is generally observed when a memory 

trace is formed for a stimulus, or a stream of stimuli, and a stimulus is encountered which 

violates that memory trace (see Naatanen, et al., 2007, for review). Kudo et al. (2004) found that 

the N100 response to a tone was reduced during vocalization, while the MMN was unaffected, 

suggesting that the efference copy is related to the N100 but not to the MMN. The MMN 



observed by Experiment 1 suggests that the error detected in a mid-utterance perturbation was 

compared to some echoic memory representation, such as the unshifted baseline within the 

utterance, rather than an efference copy. 

In the present study, we compared the compensation response at utterance onset to that at 

mid-utterance, to determine if these responses were equivalent. Fifteen women heard a target 

female voice vocalizing the vowel /a/ at a specific frequency (D4,296.33 Hz) and were asked to 

produce the vowel at the same pitch. In two blocks, speakers' auditory feedback was either 

shifted up by 1 semitone (100 cents) mid-utterance, or shifted up 1 semitone at utterance onset, 

and then perturbed by removing this feedback alteration. Specifically, in the control block, 

feedback was either shifted upward 100 cents in pitch mid-utterance (Control Perturb trials), or 

randomly shifted upward 100 cents at utterance onset with the feedback alteration either 

maintained throughout the entire utterance (Onset No-perturb trials) or perturbed by removing 

the feedback alteration for 500 ms (Onset Perturb trials). In a separate block of trials, we adapted 

participants to a feedback alteration by introducing a constant and predictable feedback alteration 

prior to utterance onset (100 cent shift up), and perturbed their voice by removing the feedback 

alteration during some trials (Adapt Perturb trials). The Onset Perturb and Adapt Perturb trials 

had identical feedback alterations (see Figure 3.1), although the Adapt trials were predictably 

shifted at utterance onset, while the Onset trials were randomly shifted within the control block. 

If the pitch-shift reflex is a pure maintenance response, and uses the current F0 as its reference 

(even when an absolute referent is available in the form of a target F0), we should observe a 

response of similar magnitude regardless whether the perturbation is the sudden onset of a 

feedback alteration in mid-utterance, or the removal of a feedback alteration that was introduced 

at utterance onset. If, on the other hand, an efference comparator is used, the size of the pitch-



shift response to a feedback alteration removal should match the size of a compensation response 

to the perturbation at utterance onset. 

Experiment 2 Methods 

Participants: Fifteen female participants (aged 19 to 24) were recruited for this study. All 

reported that they had never received formal singing training, and were not practicing singers 

(e.g., in a choir). No participant spoke any tonal languages. All participants read and signed an 

informed consent form, in accordance with the ethical policies of Wilfrid Laurier University. 

Procedure: Participants heard a target female voice vocalizing the vowel /a/ at a specific 

frequency (D4,296.33 Hz) for 1 s. They were instructed to begin vocalizing for 3 s when the 

target voice finished, matching the pitch of the target. A 1000 Hz tone indicated when they 

should cease vocalizing. A loudness monitor in front of the participants allowed them to 

maintain a specific volume. Participants were instructed to vocalize at a volume of 

approximately 75 dB SPL. Auditory feedback was amplified and heard over the headphones at 

approximately 85 dB SPL. 

The experiment was divided into two blocks, with a filler task between them. Each block 

had 140 trials and lasted approximately 18 min. In the adaptation block, participants heard their 

feedback unaltered for 20 trials. From trials 21 to 40, the F0 of their feedback was gradually 

increased by 5 cents/trial, until it had reached 100 cents at trial 40. This 100 cents upward 

feedback shift was maintained for the rest of the block (Adapt trials). On half of trials 61 to 140, 

participants' feedback was perturbed by removing the feedback alteration (i.e., returning their 
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feedback to its unaltered state of 0 cents, Adapt-Perturb trials). This effectively lowered the 

participant's feedback by 100 cents. The perturbation began between 1000 ms and 1800 ms after 

utterance onset and lasted for 500 ms. 

During the control block, participants heard their unaltered feedback for the first 60 trials. 

In half of the trials from trial 61 to trial 140, a shift 100 cent upwards was pseudorandomly 

introduced prior to utterance onset (Onset trials), with no more than three successive Control or 

Onset trials. The Onset shift was equivalent to the shift used at onset in the adaptation block, 

though it was a randomly presented (i.e., unpredictable) as opposed to the predictable shift in the 

adaptation block. In half of the Control and Onset trials, a perturbation was induced between 

1000 ms and 1800 ms after utterance onset for 500 ms. In the Onset condition, this perturbation 

was induced by removing the feedback alteration, while in the Control trials the perturbation 

consisted of a 100 cent downward shift. Therefore four conditions occurred during the control 

block: a Control No-perturb condition where participants heard unaltered feedback, a Control 

Perturb condition where participants heard their feedback suddenly shifted down mid-utterance, 

an Onset No-perturb condition where participants heard their voice shifted 100 cents up during 

their entire utterance, and an Onset Perturb condition where participants heard their voice shifted 

up 100 cents from the beginning of their utterance, but this alteration was turned off briefly mid-

utterance. A schematic diagram of the F0 shifts in each condition in the control and adaptation 

block is shown in Figure 3.1. 
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Figure 3.1. Schematic representation of the four shifts presented in the different conditions. No mid-
utterance perturbations were presented in trials 1-60 in the control and adaptation blocks. The onset trials 
were similar to the adaptation trials except that the onset trials were presented randomly in the same block 
as the control trials. 

A filler task was performed between blocks. Participants were asked to read 100 

sentences (taken from Kalikow et al. 1977) silently, speak the sentence in a monotone voice, and 

then repeat the last word. This took approximately 15-20 minutes. This filler task served to 

remove any carry-over effects from the adaptation block, if the adaptation block occurred before 

the control block. During the filler task, participants heard their unaltered feedback. Participants 

performed the filler task even when the control block was presented first. 

Apparatus: Participants sat in a double-walled sound attenuated booth (Industrial Acoustic 

Company, Model 1601-01), and wore headphones (Sennheiser HD 280 Pro) and a headset 

microphone (Countryman E6 Omni). Vocalizations were sent from the microphone to a mixer 

(Mackie Oynx 1220, Loud Technologies), which passed the voice signal to a digital signal 

processor (DSP) (VoiceOne, T.C. Hellicon). The DSP shifted the participant's voice and 

returned it to the mixer, where it was mixed with pink masking noise (70 dB SPL) and returned 

to the participant as auditory feedback. The unaltered voice signal was digitally recorded 

(TASCAM HD-P2) at a sampling rate of 44.1 kHz. 



53 

Analysis: Each trial onset was manually segmented and saved into a separate WAV file. FO for 

each utterance was calculated using an autocorrelation algorithm included in the Praat program 

(Boersma, 2001), with a sampling rate of 5 ms. 

To measure adaptation effects, the FO for the entire utterance was converted into cents 

using the formula: 

cents = 100*( 39.86*logl0( FO/baseline)) 

where the baseline was 296.33 Hz (the target pitch participants were instructed to match). 

Adaptation was indexed by examining the FO during the first 50 ms in each trial. The initial 50 

ms of vocalization is driven by purely feed-forward controllers, as feedback is not available for 

at least 100 ms (Burnett et al., 1998). F0 data during later parts of the utterance can be influenced 

by both feed-forward controllers (because they control the initial F0 of the utterance) and 

feedback controllers, as F0 can be modified using auditory feedback during the later portions of 

vocalization (after 100 to 150 ms after utterance onset). If adaptation occurred, we expected to 

see a systematic shift in F0 at utterance initiation (the first 50 ms) across trials. If adaptation did 

not occur the initial F0 of each utterance would be equivalent. 

The compensation response for the mid-utterance feedback alterations was also 

calculated. The F0 trajectories for each perturbation trial type were time aligned at the point of 

the perturbation and average waveforms were generated. The period between 500 ms before to 

1000 ms after the perturbation was used to evaluate the compensation response. In order to 

compare the compensation responses across participants, each subject's averaged waveform was 

converted to cents and normalized such that the baseline period (the 250 ms preceding the 

perturbation) had a mean of 0. The magnitude of the compensation response was determined by 

calculating the area under the curve using the trapezoidal rule, for 2 time periods. The first 



period, 100 to 250 ms post-perturbation was used to evaluate the automatic pitch-shift reflex, 

while the second time window, from 250-600 ms post perturbation, was used to evaluate later 

compensation responses that are subject to volitional control (Hain et al., 2000). An alpha of 0.05 

was used for all statistical analysis in this study. 

Experiment 2 Results 

Mean F0 across the entire vocalization, and median F0 for the initial 50 ms of adaptation 

trials and control trials are shown in Figure 3.2. Three participants were excluded from the 

analysis: two because they showed no evidence of adaptation effects and one participant was 

removed because they showed a following response, increasing their F0 throughout much of the 

adaptation block. To test for adaptation, we compared median 50 ms data from trials 11 to 20 

(the last 10 trials prior to feedback alteration in the adaptation block) to trials 51 to 60 (the 10 

utterances prior the onset of perturbations). These trials were compared between the adaptation 

and control blocks. A block (adaptation or control) by time (trials 11 to 20 or trials 51 to 60) 

ANOVA showed a main effect of block, F(l,l 1) = 9.7, p = 0.0097, and a block by time 

interaction, F(l,l 1) = 4.8, p = 0.049. Tukey's HSD post-hoc analysis of the 2-way interaction 

showed that trials 51 to 60 of the adaptation block differed from the other tested conditions, and 

no other conditions differed among themselves, suggesting a change in F0 onset brought on by 

adaptation. 

Mean compensation responses are shown in Figure 3.3. To measure the size of the 

compensation responses, area under the curve of the normalized compensation response (where 

the baseline was normalized to zero, as described above) was calculated. Because we are 
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interested in comparing compensation responses in the presence of adaptation to compensation 

responses in the control and onset conditions, the three participants excluded form the adaptation 

analysis were also excluded from the compensation analysis. For the first time window (100 ms 

to 250 ms post-perturbation, evaluating the pitch-shift reflex) a perturbation (Perturb or No-

perturb) by condition (Adapt, Control, or Onset) ANOVA was conducted. An effect of 
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Figure 3.2. A) Mean of the median F0 of each utterance across trials for the control and adapt blocks. By 
trial 40, when auditory feedback F0 in the adaptation block has been increased by 100 cents, participants 
have reduced their F0 by approximately 70 to 80 cents to offset the feedback alteration. B) Mean of the 
median F0 for the first 50 ms of vocalization, averaged over blocks of 5 trials. The F0 for utterance 
initiation is lower in the adaptation block, indicating that participants adjusted their initial F0 in response 
to the change in feedback F0, suggesting adaptation occurred. Note that the data for trials 60 to 140 in the 
control block is affected by the presence of the onset trials, which have effects on both the mean F0 for 
the whole utterance, and the initial F0 of utterances following onset trials. Error bars represent 1 standard 
deviation. 

perturbation was found, F(l,l 1) = 18.2, p = 0.0013, indicating that participants responded to the 

feedback alteration, but no main effect of condition was observed, F(2,28) = 1.2, p = 0.30, and 

there was no interaction, suggesting a similar magnitude to all compensation responses. The 

second time window was from 250 to 600 ms. Again, a main effect of perturbation was 

observed, F(l,l 1) = 27.1, p = 0.00028. In addition, a main effect of condition, F(2,22) = 4.8, p = 

0.018, and an interaction existed, F(2,22) = 3.4, p = 0.048, indicating that the late compensation 

response differed across conditions. Tukey's HSD post-hoc analysis of the interaction indicated 
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that when perturbations were present the adaptation and control conditions differed (p = 0.021), 

but that the onset condition differed from neither the control (p = 0.89) nor the adaptation 

condition (p= 0.18). 
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Figure 3.3. Compensation responses for the 3 perturbation conditions. Note that FO in the onset condition 
was 50 cents below the F0 of the control condition before the onset of the mid-utterance perturbation, but 
the compensation to the mid-utterance perturbation in the onset condition is only approximately 17 cents. 
This shows that participants had a larger response to the perturbation at trial onset than the perturbation in 
mid-utterance. Error bars represent 1 standard deviation. Time 0 indicated the time of perturbation onset, 
which was 1000 to 1800 ms after utterance onset. Error bars indicate 1 standard deviation from the mean. 

Visual inspection of the data (Figure 3.3) suggests that the FO change in response to the 

feedback alteration at utterance onset is much larger than the compensation response to the mid-

utterance perturbation. If the mid-utterance compensation responses were equal to the response 

to the onset, it would suggest that participants were returning their voice to pre-feedback shift 

baseline, and that the compensation response to the onset was the same as the response to the 

perturbation. If participants were returning to their baseline F0 when we removed the feedback 



alteration in the onset trials (the perturbation), then the compensation response should reach a 

value equal to the control trials with no perturbations. Figure 3.3 shows that the compensation 

responses in the onset and adaptation trials were much smaller than the difference between the 

baseline, pre-perturbation values for Control and Onset or Adapt trials, suggesting that 

participants shifted their voices more for the initial feedback alteration (present before they 

began their utterance) than when the feedback alteration was removed. Note that the pre-

perturbation baseline shown within Figure 3.3 represents FO values within the middle of the 

utterance, not at utterance onset. We are therefore examining FO when both predictive initial FO 

changes due to adaptation effects and compensatory changes to FO using auditory feedback after 

utterance onset have occurred. To test this, we compared the mean FO values from 100 ms to 600 

ms post-perturbation for the Onset Perturb and Adapt Perturb trials to the Control No-Perturb 

trials, which represents the baseline FO value from which the other two conditions should differ. 

We found a significant difference, F(2,22) = 15.1, p = 0.000072. Tukey's HSD post-hoc showed 

that the control data was significantly different than the adaptation (p = 0.00022) and onset (p = 

0.00096) compensation responses. The adaptation and onset compensation responses were not 

found to be different. This demonstrates that the compensation to a feedback shift at utterance 

onset is larger than the compensation response to a mid-utterance perturbation. 

It is possible that Onset trials may have an effect on subsequent trials. In order to assess 

single trial adaptation effects, we examined the first 50 ms of utterances of Control trials that 

followed either Onset trials or Control trials in the control block. Because it was possible to have 

2 or 3 consecutive onset trials, we only examined Control trials that followed a single onset trial 

(i.e., onset trials that were preceded by a control trial) to prevent any confounds from adaptation 

occurring as the result of consecutive presentation of Onset trials. Likewise, we only examined 



trials following control trials that were preceded by an Onset trial. Significant differences were 

observed between trials following onset trials and trials following control trials, F(l,l 1) = 7.7, p 

= 0.017, with the F0 of the initial 50 ms being lower in trials following onset trials. This shows 

that the onset trials had an effect on the following trial, suggesting some rapid, single-trial 

adaptation occurred. 

Experiment 2 Discussion 

The results of this study demonstrate that a mid-utterance perturbation results in an 

identical compensation response when the perturbation is the introduction of a feedback 

alteration, the removal of a randomly occurring feedback alteration, or the removal of a feedback 

alteration after adaptation has occurred. This is similar to the results of Larson et al. (2001), who 

found identical magnitudes of compensation when a feedback alteration was induced, or when an 

existing feedback alteration was removed. More importantly, it was found that the compensation 

response to a perturbation at utterance onset is much larger than the compensation response to a 

feedback alteration within an ongoing utterance. Overall, this pattern of results suggests 

differences in the mechanism used to evaluate F0 feedback at utterance onset and mid-utterance. 

Mid-utterance Compensation Responses: We found similar compensation responses in all 

conditions for the early, automatic part of the mid-utterance compensation. While differences 

were found in the later phase of the mid-utterance compensation, these are less interesting as this 

part of the compensation response is subject to volitional control, and it is difficult to determine 



what factors might contribute to the observed differences. Of particular interest is the Onset 

Perturb condition. In this condition, we initiated a feedback alteration at utterance onset, and 

removed it in mid-utterance for a 500 ms period. In this case, as in the adaptation trials, 

participants treated their unaltered feedback as an error and responded to it by compensating in 

the opposite direction. It is clear that this mid-utterance compensation response is not a 

'switching-off of the compensation to the perturbation at utterance onset, because if that were 

the case, we would have observed a much larger compensation in the Onset than Control 

conditions as F0 returned to the control-baseline values. 

The mid-utterance compensation response may be driven by one of two possible 

mechanisms: comparison to a relative reference where the current F0 at the time of feedback 

alteration represents the goal, or to an absolute reference in which there is a specific, fixed F0 

that represents the pitch goal. An efferent comparator is a form of internal absolute reference, in 

which feedback is compared to an efference copy of the motor command for a specific F0. In the 

current study, we introduced an absolute external reference by asking participants to match a 

specific pitch value. If participants were using an absolute referent, one of two possible things 

could occur; participants could maintain their F0 despite the perturbation, because the feedback 

alteration was induced by giving them their unaltered feedback (which by definition is not 

erroneous and thus might not cause a compensation response), or, more likely, they could show a 

larger response in the Onset condition (relative to the control) as they re-adjust their F0 back to 

the control baseline, removing their large compensation response to the perturbation at utterance 

onset. Larson et al. (2001) found that when speakers began an utterance under altered feedback 

and heard the alteration removed, they produced the same compensation response as when they 

heard their feedback altered part way through their utterance. The authors suggest that 



participants used an internal, variable reference when no absolute reference was available. We 

found no differences in compensation responses even when we added an absolute external 

reference. This suggests that, when maintaining a steady FO, the reference is always internally 

based on the current, pre-shift FO. According to this hypothesis, the purpose of the compensation 

response is not to attain a specific pitch goal, but to adjust for unintentional fluctuations within 

FO during an utterance. 

Burnett and Larson (2002) found compensation to a perturbation during a changing 

utterance (glissandos). They suggest that the observed compensation discounts the possibility of 

the baseline, pre-shift FO being used as the comparator. However, they also found smaller 

compensation for glissandos than for utterances with flat FOs. This might be consistent with the 

preceding FO serving as the FO reference considering the fact that they shifted the participants' 

voices down. If the pre-shift FO is used to calculate the size of compensation, and the 

participants' voice increased in pitch over time, the compensation responses may have appeared 

smaller because the pre-shift FO was lower than the FO at the time the compensation was 

measured, about 150 ms after the shift. Another possibility is that, in the case of a changing 

baseline FO, the system is able to incorporate the velocity of the FO change into compensation 

response, and thus compensate adequately during a changing utterance. Generally, the system 

responds to any change that is unintended, regardless of the context in which the motor 

command is being executed. 

Differences in comparators at onset or mid-utterance: Figure 3.3 clearly shows that the 

compensation response to the feedback alteration at the beginning of the Onset and Adapt trials 

was larger than the compensation to the mid-utterance perturbation. It should be noted that the 
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pre-perturbation baseline for the Adapt trials may include changes in FO from both feedforward 

adaptation and feedback based compensation, while the pre-perturbation baseline to the Onset 

trials represents a purely compensation based response, as the Onset trials are randomized and 

adaptation should not occur. The compensation response at utterance onset is much larger than 

the mid-utterance compensation. As discussed above, we have no evidence that an efference 

comparator is being used in the mid-utterance perturbations. However, several studies have 

suggested that efference copy plays a role at utterance onset (Curio et al., 2000, Houde et al., 

2002, Hienks-Maldonado et al., 2005). For example, Hienks-Maldonado et al. (2005) found that 

N100 attenuation related to the efference copy was reduced when auditory feedback was altered, 

suggesting that the efference copy may be used as a means to detect errors within one's voice. 

This is in contrast to the results of Experiment 1, where we found an MMN, rather than an N100, 

to mid-utterance perturbations. The fact that Experiment 1 observed an MMN, and no early 

activity similar to the N100 effects from Hienks-Maldonado et al. (2005) suggests that feedback 

at utterance onset and during mid-utterance may be monitored using different mechanisms. 

However, it should be noted that Hienks-Maldonado et al. (2005) were interested in observing 

only the perception of the speaker's own voice, and not in linking that perception to vocal 

control. 

At utterance onset, the goal is to match a specific and pre-planned F0, adjusting onset F0 

to match a specific goal (e.g., a target note). Feedforward mechanisms must be used at utterance 

onset to hit an F0 target, or we would not observe a change in initial F0 following trials with 

altered feedback. In the present study, participants' initial utterance FOs were modified by 

repeated exposure to the feedback alteration indicating that the participants' feedforward plans 

were modified. However, this feedforward system was not highly accurate at attaining the 



specific target immediately at utterance onset. Thus, feedback was also used to adjust for errors 

after utterance onset (initial FO was lower than final FO, indicating a searching strategy). When 

feedback is used during utterance onset to reach a desired FO, an absolute reference must be 

used, as a variable reference would result in large and unpredictable errors. Indeed, it is difficult 

to imagine from where a variable reference would be derived at utterance onset, when no 

auditory feedback is available. Two possible absolute references exist at utterance onset during 

the task in the present experiments. The first is the efference copy, which is known to respond to 

changes in auditory feedback (Hienks-Maldonado et al., 2005). The second is a memory trace of 

the target note. It is difficult in the context of the current study to rule out the second possibility, 

though we believe that an efference comparator is more likely as it should exist during all 

vocalizations, including during normal speech, where an external target FO does not generally 

exist. One way to test this may be to compare the compensation response for a feedback 

alteration at utterance onset with and without a target note. If a memory trace of the target note 

were used as the comparator, we would expect to see a larger compensation at utterance onset 

when a target is present than when one is not. It is also possible that both an efference 

comparator and a memory trace of the target note are being used in concert. 

When the target FO has been matched after utterance initiation, a goal switching takes 

place, in which the goal shifts from target matching (be it matching to an efference copy or to a 

memory trace of the target) to pitch maintenance. This maintenance mechanism drives the pitch-

shift reflex, as described above. In other words, there is a switch from an efference or memory 

trace comparator to a current FO comparator/voice stabilizer. When an alteration is encountered, 

the pitch-shift reflex serves to stabilize the voice to the current FO. We therefore arrive at a 
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separation of the mechanisms used at utterance onset to correct for feedback errors and those 

used after onset to stabilize FO during an utterance. 

Arm reaching studies have also suggested possible differences for specific aspects of a 

motor command. Dizio and Lackner (1995) exposed participants to Coriolis forces by placing 

them in a slowly rotating room. They had participants perform a reaching task in the dark (i.e., 

without visual feedback) using their dominant arm while the other arm remained stationary. 

When the Coriolis force was removed, the right arm, exposed to the Coriolis force, showed a 

curved trajectory that mirrored that of the Coriolis force. The non-exposed arm, in contrast, 

showed a linear trajectory, but had errors in their final position. This demonstrated a difference 

in end-point and trajectory adaptation and how it generalized between the limbs. Scheidt and 

Ghez (2007) conducted a study on differences in end-point and trajectory, and then made a 

simulation of their results. The simulation best matched their results when they added two 

sequential forward controllers; the first to initiate trajectory, and the second for control of final 

position. This difference in initial trajectory and final position may be somewhat analogous to 

the differences observed in the present study between utterance onset and FO maintenance. In the 

contexts of tihie present study, we suggest that FO maintenance uses distinct feedforward 

controllers from those used at utterance onset and during volitional changes in FO. Another 

possible analogue of the present study may be force exertion (such as pushing something), in 

which a fairly constant force or velocity is the goal. In such a case, differences might exist at the 

onset of the motor command (when the pushing movement is initiated and a desired velocity is 

reached), and during maintenance of the motor command. 



Single trial Adaptation effects: We found that the onset trials caused a shift in the initial FO of the 

following trials, even when an onset trial was preceded by a control trial, indicating some level 

of single-trial adaptation. This finding is consistent with the results of Donath et al. (2002) who 

found that compensation responses carried over within and between trials when speaking a 

nonsense word. Such single trial adaptation has also been found in arm reaching, with 

perturbations within a trial affecting subsequent trials (Thoroughman et al., 2007). The benefit of 

the current method is that we were able to use our analysis of the first 50 ms of the utterance to 

demonstrate that the single trial adaptation effects modified the forward motor plan used in the 

next utterance. Without an examination of the very beginning of a motor command, it is possible 

that any after-effects are caused by an early within-movement compensation for feedback 

alterations. In other words, we have demonstrated that any differences in trials following onset 

trials represents alterations of the feedforward motor plans. 

A particularly important question to investigate is how much adaptation occurs between 

trials. While the forward model is modified by a single trial event, we do not yet know whether 

the magnitude of this modification is comparable to changes that occur during an adaptation trial. 

That is, the cumulative effect of repeated exposure has not been quantified. Even within the 

adaptation block, the change in initial F0 was much smaller than the feedback alteration and the 

final change in F0 (as measured by median F0 during the entire utterance). It is not clear if this is 

because our observed adaptation effects represent only a partial re-mapping of the forward model 

along with some additional compensation within each utterance, or because of physiological 

limitations within the system preventing a radical change in initial F0. 



Experiment 2 Conclusions 

In this study, we have shown that the compensation response at utterance onset is larger 

than the compensation response to a perturbation mid-utterance. We suggest that our results are 

best explained by a change in the comparator used at utterance onset and mid-utterance. At 

utterance onset, an absolute comparator is used to match auditory feedback to the intended FO. 

After utterance onset, a goal change occurs to a stabilization mechanism, which uses the current 

FO as the pitch goal (variable referent). This suggests that FO is not universally controlled by an 

efference mechanism, but that different mechanisms for FO control and stabilization can be used 

to suit different goals within different contexts. This may have implications for theories of motor 

control and the universality of motor control mechanisms under different goals and contexts. 



Chapter 4: 

Conclusions 

In Experiment 1, we examined the ERP response to an unpredictable mid-utterance 

perturbation. We found an MMN or MMN-like response, which appeared to be distinct from the 

N100 observed in Heinks-Maldonado et al. (2005,2006). This raises the possibility that the 

neural response to perturbations at utterance onset may be different to the neural response to 

unanticipated mid-utterance shifts. We also compared utterances using a relative (or habitual) 

pitch to utterances matching a target pitch, and found no differences in either the behavioral or 

ERP results. 

Experiment 1 is important because it is the first study to use ERPs to examine the neural 

response to changes in a participant's ongoing vocalization. While there has been a flood of 

research using ERPs to examine neural responses to auditory stimuli, there has been relatively 

little study of the response to vocal production or to changes in ongoing auditory stimuli (self 

generated or external). Using the methods pioneered in Experiment 1, we will be able to use 

ERPs to examine auditory feedback in a variety of tasks. For example, the relationship between 

the MMN and a conscious perception of auditory deviations might allow us to determine a 

perceptual threshold for the detection of a perturbation, and how perception of the shift relates to 

the compensation response. 

Based on the results of Experiment 1, we hypothesized that the response to a shift at 

utterance onset might be different to a mid-utterance perturbation. Experiment 2 was conducted 

to examine this issue. Participants F0 was shifted either at utterance onset (predictably in an 

adaptation block or unpredictably in a control block), and a perturbation was introduced by 

removing the shift, or an equivalent perturbation was introduced to an otherwise unshifted trial. 



The compensation response to the mid-utterance perturbations was identical in all conditions, 

suggesting the pitch-shift reflex is a voice stabilization mechanism that attempts to maintain a 

constant FO rather than match an FO goal or target. Importantly, the compensation response to the 

onset perturbation was larger than the response to the mid-utterance perturbation, suggesting that 

there may be differences in the mechanism used in vocal control at utterance onset and after a 

stable FO is achieved. 

The differences in auditory and motor response to mid-utterance and onset perturbations 

needs to be considered in future studies of auditory feedback. This is true of both imaging studies 

of vocalization, which often use mid-utterance perturbations (Zarate and Zatorre, 2005; 2008; 

Toyomura et al., 2008), and models of vocal control. In addition, this difference in the use of 

feedback control at initiation of a movement and when that movement is maintained can be 

extended into other types of studies of motor control. Many studies of motor control use brief 

reaching movements with a very discrete start and end point, and a specific goal (e.g., 

Thoroughman et al., 2007; Scheidt & Ghez, 2007). The motor commands for such actions might 

differ significantly from actions with a prolonged goal, such as maintaining a constant force 

while pushing an object. When force is initially exerted, feedback may be used to establish the 

appropriate level of force to achieve the desired goal, and the system can then switch to a 

maintenance strategy similar to that used in maintaining a steady vocalization. If this is true, it 

has many implications for studies of motor control. 

Our understanding of how the motor system works (both during vocalization and other 

motor tasks), and how the brain uses feedback to control and update actions, is still poorly 

understood. Both ERP and behavioral methods can be useful to help us understand perception of 
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feedback and its relationship to motor control, and may also be useful to understand how these 

systems are damaged in a wide variety of motor and perceptual disorders. 
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