
Wilfrid Laurier University Wilfrid Laurier University

Scholars Commons @ Laurier Scholars Commons @ Laurier

Theses and Dissertations (Comprehensive)

2019

Towards Secure and Fair IIoT-Enabled Supply Chain Management Towards Secure and Fair IIoT-Enabled Supply Chain Management

via Blockchain-based Smart Contracts via Blockchain-based Smart Contracts

Amal Eid Alahmadi
Wilfrid Laurier University, alah6650@mylaurier.ca

Follow this and additional works at: https://scholars.wlu.ca/etd

 Part of the Information Security Commons, Other Computer Sciences Commons, and the

Programming Languages and Compilers Commons

Recommended Citation Recommended Citation
Alahmadi, Amal Eid, "Towards Secure and Fair IIoT-Enabled Supply Chain Management via Blockchain-
based Smart Contracts" (2019). Theses and Dissertations (Comprehensive). 2147.
https://scholars.wlu.ca/etd/2147

This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for
inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @
Laurier. For more information, please contact scholarscommons@wlu.ca.

https://scholars.wlu.ca/
https://scholars.wlu.ca/etd
https://scholars.wlu.ca/etd?utm_source=scholars.wlu.ca%2Fetd%2F2147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholars.wlu.ca%2Fetd%2F2147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholars.wlu.ca%2Fetd%2F2147&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=scholars.wlu.ca%2Fetd%2F2147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.wlu.ca/etd/2147?utm_source=scholars.wlu.ca%2Fetd%2F2147&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarscommons@wlu.ca

Towards Secure and Fair IIoT-Enabled
Supply Chain Management

via Blockchain-based Smart Contracts

by

Amal Alahmadi

THESIS
Submitted to the Department of Physics and Computer Science

Faculty of Science
in partial fulfilment of the requirements for

Degree of Master of Applied Computing

Wilfrid Laurier University

April 2019

Copyright c©Amal Alahamdi, 2019

Abstract

Integrating the Industrial Internet of Things (IIoT) into supply chain manage-

ment enables flexible and efficient on-demand exchange of goods between

merchants and suppliers. However, realizing a fair and transparent supply

chain system remains a very challenging issue due to the lack of mutual trust

among the suppliers and merchants. Furthermore, the current system often

lacks the ability to transmit trade information to all participants in a timely

manner, which is the most important element in supply chain management for

the effective supply of goods between suppliers and the merchants. This the-

sis presents a blockchain-based supply chain management system in the IIoT.

The proposed system takes advantage of blockchain technology in terms of its

transparency and tamper-proof nature to support fair goods exchange between

merchants and suppliers. Additionally, the decentralization and pseudonymity

property will play a significant role in preserving the privacy of participants in

the blockchain. In particular, fairness in the IIoT is first defined. Then, a design

for a smart contract for fair goods exchange is presented to prevent malicious

behavior through imposing penalties. The proposed system was prototyped on

Ethereum and experiments were conducted to demonstrate its feasibility.

This is for you, Dad.

Even from across the sea, I can feel your love

Acknowledgements

Arriving at this stage and writing this acknowledgement was always a dream

I hoped to achieve one day. In my journey towards this degree, I met many

people who I have to credit for helping me to arrive at this stage, otherwise this

dream would not have been achieved.

I will start with an inspiration, a teacher and brother, Dr. Xiaodong Lin, who

was a pillar of support and a role model for me throughout my journey. He al-

ways believed in me and gave me this opportunity. Furthermore, he has always

been there at all times providing his heartfelt help and support in addition to

giving me invaluable suggestions and guidance in my quest for knowledge. I

shall be eternally grateful to Dr. Xiaodong Lin for his assistance.

I take great pleasure extending my appreciation to my colleagues in the BBCR

Group at the University of Waterloo, for all their help and support. Special

thanks to Li Ming , Dongxiao Liu , Yuan Zhang and Anjia Yang whose pre-

cious friendship I will always cherish.

Special thanks also go to Dr. Ilias Kotsireas and my examining committee

members for the time and effort they have given, and to all my friends at

Durham College, especially prof. Karl Alexander for his support.

Last but not least, I would like to thank all my family who provided me with

unconditional love during my academic journey here in Canada.

Amal

Contents

List of Tables iii

List of Figures iv

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 2
1.3 Objectives . 3
1.4 Thesis Outline . 3

2 Background and Literature Review 5
2.1 Blockchain Technology . 5

2.1.1 Concept of Blockchain . 5
2.1.2 Decentralized Networks and Ledgers 7
2.1.3 Blockchain Architecture . 7
2.1.4 Consensus Function . 9
2.1.5 Smart Contract: Ethereum . 10
2.1.6 Security and privacy . 12

2.1.6.1 Cryptographic techniques 13
2.1.6.2 Privacy enhancing techniques 15

2.2 Supply chain system . 17
2.2.1 Digital supply chain (DSC) . 18

3 Secure and Fair IIoT-Enabled Supply Chain Management via Blockchain-
based Smart Contracts 21
3.1 Problem formulation . 21

3.1.1 System model . 21
3.1.2 Threat model . 23
3.1.3 Design goals . 23

3.2 Proposed Scheme . 24

i

3.2.1 The System architecture . 24
3.2.2 The Scheme . 25

3.2.2.1 Initialize Phase . 26
3.2.2.2 Order Phase . 27
3.2.2.3 Confirmation Phase . 29
3.2.2.4 Delivery Phase . 30
3.2.2.5 Judgement Phase . 30

3.3 Security analysis . 32

4 Experiment Results 33
4.1 Experiment setup framework . 33

4.1.1 Building a Parity Ethereum Client 34
4.1.1.1 Technical Tests . 35

4.1.2 Building Proof-of-Authority Chains 37
4.1.2.1 Technical Tests . 43

4.1.3 Smart contract . 44
4.2 Performance evaluation . 45

4.2.1 Private network . 45
4.2.2 Public network . 45

5 Conclusions and Future Works 48
5.1 Summary of research . 48
5.2 Future research directions . 48

A Codes 50

Bibliography 56

ii

List of Tables

2.1 Consensus protocols comparison . 10

3.1 Notation explanation . 27

iii

List of Figures

2.1 A sequence of blocks . 5
2.2 Blockchain Architecture . 8
2.3 Smart Contract . 11
2.4 How transactions are verified and chained together 14

3.1 System Model . 22
3.2 System Architecture . 25
3.3 Outline of fair goods exchange . 26

4.1 Structure of the Parity Ethereum Client . 33
4.2 Connecting with the official public blockchain 35
4.3 Connected with web3 . 36
4.4 Chain configuration . 38
4.5 Resolving the chain . 38
4.6 configure Node 0 . 39
4.7 configure Node 1 . 39
4.8 Authority address 1 . 39
4.9 User address . 40
4.10 Authority address 2 . 40
4.11 Filed chain . 41
4.12 Completed file Node 0 . 41
4.13 Completed file Node 1 . 42
4.14 Run node0 . 42
4.15 Run node1 . 42
4.16 Nodes are connected . 44
4.17 Estimates the Gas versus the USD of each phase 46
4.18 Transaction confirmation time in Rinkeby 46

iv

Chapter 1

Introduction

1.1 Overview

Supply chain management systems can coordinate cross-organization processes to move

products from suppliers to merchants. Empowered by the emerging Industrial Internet of

Things (IIoT) technology, modern supply chain management promises to provide industri-

al sectors with more efficient on-demand resource management services [35]. In a supply

chain system, merchants and suppliers can dynamically exchange goods, which makes it

increasingly important to enforce a reliable and affordable supply chain management sys-

tem [40]. In particular, the demand for fairness requires merchants and suppliers to correct-

ly follow their contracts and behave honestly [12]. This issue becomes more challenging

when there is a lack of transparency and mutual trust in the current supply chain systems.

According to the statistics [1], concern for ensuring an ethical supply chain has continued

to proliferate since 2018. The emerging blockchain technology is regarded as a promising

solution to the above issue [25] [16] [29]. Blockchain technology currently plays a sig-

nificant role as a foundation for distributed ledgers that can offer an innovative platform

for decentralized and transparent transaction mechanisms in industries [2]. When applied

to a supply chain system, blockchian technology can significantly enhance transparency

and credibility for fair goods exchange. As a result, large corporations and organizations

are moving aggressively towards building a blockchain-based infrastructure while boosting

1

mutual trust among industrial entities [16].

However, realizing the promises of such a blockchain based system still faces non-

trivial challenges. Firstly, there is no straightforward solution to designing a smart contract

that preserves fairness. Secondly, the feasibility and implementation of such a system

remains unsolved. This thesis presents a proposal for a fair and efficient supply chain

management system based on blockchain. It allows suppliers and merchants to exchange

goods and prevent malicious behaviors. The contributions of this study can be summarized

as follows:

• To first provide a definition of the fairness requirements for supply chain manage-

ment, followed by extending an existing smart contract for fair digital goods ex-

change [15]. The smart contract is also designed in order to achieve fair goods ex-

change for IIoT-enabled supply chain management.

• By enforcing penalties, our designed smart contract can compel the involved parties

to honestly fulfill their obligations. Moreover, this present work implements the

smart contract on the Ethereum network and experimental results demonstrate the

feasibility of the proposed scheme.

1.2 Motivation

Supply chain management (SCM) is considered as a sequence of main processes that

span many industries on a global level, whereby it is the network that stands between an

organization and its suppliers. These processes involve several phases where data flows

are distributed in different directions, starting from manufacturers through suppliers and

distributors, to customers. This illustrates the major importance of data flow, which can

either support or impact critical business decisions. Although there is high demand for

such a system, traditional centralized supply chain information systems lack many of the

characteristics, such as security, transparency and fairness, that are considered as necessary

2

in real-time for many businesses. This thesis provides a conceptual theoretical framework

based on a distributed solution of a private ledger to share data among trading partners

in real-time and with full transparency and fairness. The proposal presented in this work

uses a distributed ledger system that is based on blockchain technology that documents all

exchange custody events related to commerce between parties. This system is considered

under the private and open type of blockchain [5] [18] where these exchanges are distribut-

ed between trading partners by contract only, thereby providing security and privacy for

participants.

1.3 Objectives

The aim of this research is to investigate a new approach to developing and examining a

distributed system that can share trading transactions or information related to supply chain

management in the case of buying and selling between parties while ensuring a commer-

cial fairness protocol. This model depends on blockchain technology that is executed on the

Ethereum framework without any third-party interference, censorship or chance of fraud.

Furthermore, this present work performs a security analysis and conducts experiments to il-

lustrate the feasibility and efficiency of the proposed scheme. Particular emphasis is placed

on the realization of a fairness protocol in the smart contract. The concept of fairness prop-

erty for each side is defined, together with a description of the process needed to achieve

fairness in this scheme.

1.4 Thesis Outline

The comprehensive structure of this thesis takes the form of five chapters, including

this introductory chapter. Chapter 2 begins by laying out the background to blockchain

technology and the supply chain, with a summary of related work in the field. Chapter 3

is concerned with the main proposal of the thesis, which is secure and fair IIoT-enabled

3

supply chain management via blockchain-based smart contracts, including the problem

formulation used for this study, and presents the proposed research scheme, focusing on

the system architecture and scheme model. Chapter 4 presents the implementation and

analyzes the results of the data model using the Ethereum of the proposed framework. The

final chapter, which is the conclusion, gives a brief summary with a critique of the findings

and areas for further research in this field are identified.

4

Chapter 2

Background and Literature Review

2.1 Blockchain Technology

2.1.1 Concept of Blockchain

A blockchain is an immutable record or ledger which, as a growing chain, contains

many blocks that link together using a cryptographic hash. By way of explanation, simi-

lar to a conventional public ledger, blockchain refers to the arrangement of a sequence of

blocks in which a comprehensive record of a complete list of transactions records is con-

tained [13]. Each block in a chain includes a cryptographic hash that is typically like a point

of the immediately previous block. Transaction data and a timestamp are also included.

Genesis block Block i Block i+1 Block i+2

Hash block i-1

Tx1 Tx2 Txn

Hash block i

Tx1 Tx2 Txn

Hash block i+1

Tx1 Tx2 Txn

Hash block 0

Tx1 Tx2 Txn

Figure 2.1: A sequence of blocks

Connection is made through a hash value that serves as a reference, known as the parent

block [8]. The genesis block has no parent block since it is the first block of a blockchain, as

5

shown in Fig. 2.1. Blockchain started from a White Paper published in 2008 by an anony-

mous author using the name Satoshi Nakamoto [36]. The concept consists of a peer-to-peer

version of digital currency that allows cash to be sent directly from one party to another

online party without going through a third party, as is the norm in financial institutions.

The critical concepts of blockchain include group consensus, trustless-ness, immutability,

decentralization, distributed ledgers and security. At the core of blockchain is a ledger,

which can be defined as a record-keeping device that allows keepers of that record to tell a

story in addition to knowing and tracking asset ownership or any type of imaginable data.

Although blockchain is considered as a new and cutting-edge technology, it is in fact a

creative amalgamation of many old concepts of methodologies and technologies. The main

attributes of blockchain include:

• Decentralisation: The validation of each transaction is a crucial element in conven-

tional centralized systems. Unlike the validation performed by central trusted agen-

cies, which often results in bottlenecks of performance and cost, blockchain network

transactions can be achieved between any two peers (P2P), without authentication

from a central agency. The concept results in a significant reduction in equipmen-

t costs in addition to overheads related to the development and operation of those

systems, as well as a decrease in pressure and suffocating performance of the main

server. Furthermore, this mechanized system prevents having a single point of fail-

ure or dependency in the case where, when any node comes back online after being

offline for any reason, it can sync back to the current ledger with other online nodes.

• Persistency: It is almost impossible to tamper with transactions spread across a

network since they must first be verified then recorded in blocks before they are dis-

tributed in the main ledger in the blockchain. Additionally, each transactions spread

is checked while the broadcasted block is validated by other nodes. Thus, it is easy

to detect any falsification.

6

• Anonymity: Each user can generate an address useful in interacting with the blockchain

network. Different addresses can also be generated by users in instances where they

want to avoid exposing their identity. In this way, no private user information is kept

with any central entity. Additionally, a certain amount of privacy is preserved on the

blockchain transactions. However, the intrinsic constraint nature of the blockchain

cannot guarantee perfection in privacy preservation.

• Auditability: Validating and recording each blockchain transaction with a time-

stamp makes it easy for users to verify and trace preceding records in the distributed

network by accessing any node. The Bitcoin blockchain provides an iterative mech-

anism through which a transaction can be traced to the previous transaction, thus

enhancing the transparency and traceability of the stored data.

2.1.2 Decentralized Networks and Ledgers

The blockchain ledger uses a peer network for updating and storage. The job of each

node is to maintain its own ledger copy in the network, hence all the nodes come to a

consensus regarding the contents of their updated ledger. This gives a guarantee that each

individual copy of a ledger with nodes in the network is identical, which means that no

centralized ledger is required. Moreover, if one of the nodes goes offline, the network

continues to function seamlessly where the node can synchronize with the most recent

ledger to be updated with the current state in the network. This allows for this technology

to have no single point of failure and is the cause of the considerable interest in blockchain

in parts of the world with developing infrastructures.

2.1.3 Blockchain Architecture

The main components of a block are the header and the body, as shown in Fig. 2.2. The

specific components of a header are [48]:

7

• Version: This highlights the specific set of block validation rules to be followed.

• PrevHash: The hash value made up of 256 bits that link the current block to the

previous block.

• Timestamp: The current timestamp as seconds since 1st January 1970 at Time 00:00

UTC.

• nBits: These present the hashing target in a compressed layout.

• Nonce: A field with only 4-byte size that often begins with 0. However, it goes up.

• Merkle tree root: This contains the hash value of all block transactions.

Figure 2.2: Blockchain Architecture

The other main component of the block is the body that is made up of a transaction

counter, which tracks completed transactions. The maximum size limit of block transac-

tions depends on the size of each transaction along with the size of the block. Authen-

tication of transactions in the blockchain is processed using an asymmetric cryptography

mechanism [48] . In the event of an untrustworthy environment, digital signatures based

on asymmetric cryptographies are used.

The current blockchain can be categorized into three types, namely public, private and

consortium, the selection of which often depends on a company’s business [7]. With public

8

blockchain, everyone is able to verify and check a transaction as well as participate in the

process of reaching consensus. As an example, Ethereum as a platform [9] and Bitcoin as

an application are both public blockchain. However, in a private blockchain such as Hyper-

ledger [9], the node will be more restricted and has authority management in terms of data

access. For either consortium type, the platform can be open or closed, which means that

the node with authority can be chosen in advance. This kind of blockchain is usually cho-

sen in the case of partnerships, that is between two or more closed companies when they

are considered as partly decentralized, such as the R3CEV Corda Platform [6]. Numer-

ous public blockchains, which emerge on an almost daily basis, attract a multitude of users

since they are open to the world. Many companies implement this blockchain for auditabil-

ity and efficiency. Additionally, there is a consortium blockchain that supports a number

of business applications. Currently, two of the best known platforms are Hyperledger and

Ethereum. Hyperledger creates business consortium blockchain frameworks. The tools

for building this consortium blockchain are provided by Ethereum. A comparison of the

different types of blockchain is provided in Table 2.1.

2.1.4 Consensus Function

The case of the Byzantine Generals problem is helpful in reaching a consensus among

the untrustworthy nodes [28]. In this case, a group of generals, who were tasked with com-

manding some of the Byzantine armies surrounding a city, were told that they must agree

on whether or not to attack the city. Thus, if some of the generals were to attack the city,

the attack would fail. However, among them there could be traitors who might create an

untrustworthy environment by communicating different information to different general-

s, thus making it difficult to reach a consensus. The distributed nature of the blockchain

network poses a similar challenge in terms of distributed nodes. Ledgers in all nodes in

a blockchain must have the the same copy which, since the nodes are not centralized, is

not achievable. Nodes must trust other nodes and this is facilitated by protocols that ensure

9

consistency among ledgers in different nodes. To highlights common approaches for reach-

ing a consensus in the blockchain, there are many consensus algorithms mechanisms in a

blockchain, which vary according to their purpose as well as their respective advantages

and disadvantages. However, they all have to agree to the same block that ensures that the

verified block has been correctly added to the chain in the blockchain. Table 2.1 provides

a comparison between different consensus algorithms [42]. The comparison was made ac-

cording to properties provided by [31] in terms of node identity management, which means

that a node could be identified or could anonymously join a network. Energy saving is

also included as some protocols require electricity to process, as is the tolerated power of

the adversary, which refers to the hash power which is considered as the starting point for

taking control of the network. Finally, the table includes some examples of applications or

platforms that use these protocols. Of the many types of blockchain protocols, this present

work focuses on the three that are best known.

Protocols
Node identity
management Energy saving

Tolerated power
of adversary Example

PoW Open No <25% computing power Bitcoin
PoS Open Partial <51% stake Peercoin
PBFT Permissioned Yes <33.3% faulty replicas Hyperledger Fabric
PoA Permissioned Yes authority node only Kovan and Parity

Table 2.1: Consensus protocols comparison

As shown in the above table, both PBFT and PoA are permissioned protocols, which

means that the identity of a node wishing to join consensus must be known to the entire net-

work. As a consequence, this applies more to commercial than public modes. In contrast,

PoS and PoW are more appropriate for public blockchain.

2.1.5 Smart Contract: Ethereum

The smart contract, as one of the Turing-complete programming languages, was first

proposed by Szabo [26]. In 2015, Ethereum introduced a new concept of blockchain 2.0

10

platforms by adding the idea of smart contracts that enable developers to add custom rules

and logic to their transactions. This consequently changed the concept of blockchain, rec-

ognizing that it can do more than merely store data. Blockchain has now become a fully-

fledged platform for application development, such that business processes can be automat-

ed and modelled on the one platform, which is the same as that used for their transaction

data Fig 2.3. Enabling smart contracts means that blockchain can be applied to many s-

cenarios [46]. Known as a chain code in some platforms, it can also be described as an

Mining

Ethereum
Blockchain

Creator

Customer
Customer

Figure 2.3: Smart Contract

electronic contract of a self-executed program with valid inputs of rules, conditions, prece-

dents and decision points into transactions in the blockchain. The smart contract supports

users in making a deposit on the blockchain that they cannot redeem before the unlock

time [8]. This is vital for the proposed payment scheme that is introduced in Chapter 3.

However, it is essentially a type of transaction in a blockchain by which each full node can

verify execution of the process. Smart contracts have many advantages :

11

• Autonomy: Anyone can develop contracts, which means that there is no need for

intermediaries such as auditors or lawyers.

• Cost: Dispensing with intermediaries often lowers costs.

• Accuracy: Since human intermediaries are being replaced with executable codes, the

process will ensure the same performance without manipulation.

• Backup: There is a permanent record on the blockchain that allows for traceability

or auditing, even if the author is no longer in business.

In Ethereum Blockchain, there is a concept called Gas, which is simply the amount paid

by users as the cost for a transaction to be validated or processed on the blockchain. It is a

reward separate from the consensus mining reward that is given to all miners independently,

which means that it is a reward for all nodes on the network. Each transaction on the

Ethereum blockchain must be submitted with Gas. However, it is important to understand

that Gas is only consumed when data is written to the network whereas reading consumes

no Gas. The cost of Gas varies from one contract to another as it directly depends on

the type and complexity of the operation; more complex operations will cost more Gas

than those that are simple. Consequently, architects and developers are keen to check their

Gas costs on online Ethereum Gas Stations for an estimate based on the operations under

development.

2.1.6 Security and privacy

From the perspective of security enhancement, the rapid increase in varieties of new

mobile devices and service providers in recent years has highlighted vulnerability issues

regarding malicious nodes. Various anti-malware filters have been offered to isolate ma-

licious files that use the same matching pattern schemes. The detected virus patterns are

stored and updated in a central server. Even so, malicious attackers still take advantage

12

of vulnerable centralized countermeasures. BitAV, a novel anti-malware environment, was

proposed by Noyes [37] to help users spread malicious code on blockchain in a bid to en-

hance the security of distributed networks. According to Noyes [37], BitAV can enhance

fault accuracy and scanning speed, which makes the network less vulnerable to directed

denial-of-service attacks. The reliability of security infrastructure can also be improved

using blockchain technologies. As an example, malicious attacks or flaws in hardware and

software components contribute to a single point of failure exhibited in conventional pub-

lic key infrastructures (PKIs). According to [3], a privacy-aware PKI can be constructed

using blockchain while concurrently enhancing the reliability of conventional PKIs. Fur-

thermore, privacy protection where mobile service and social network providers collect

sensitive data about individuals adds to the increased risk with which users’ private data is

exposed to malware. Additionally, storing the information on central servers increases the

susceptibility to malicious attacks. As an illustration, more than 300 petabytes of users’

personal data have been collected by Facebook since it began [41]. Blockchain can en-

hance the privacy of sensitive information through a management system that decentralizes

personal data, thus ensuring user ownership of private data is maintained [49].Some of the

privacy issues that the system protects include data ownership, audibility, transparency and

gained access control.

2.1.6.1 Cryptographic techniques

Each entity in blockchain has a private key used for signing transactions and a public

key that is used for the purpose of accessing the signed digital transactions that are pub-

lished throughout the entire network. The characteristics of a digital signature encompass

two phases, starting with the signing phase then the verification phase. As an example, a

user known as Alice wants to send a transaction to Bob, another user. Alice first needs

to sign on a transaction by generating a hash value that will be from the same transaction

she will send. Next, she will encrypt that hash using her private key. The original data

13

contained in the encrypted hash is then sent to Bob. On the other side, Bob will verify the

transaction by comparing the decrypted hash value using the public key owned by Alice

with the hash value obtained from the data received by the hash function similar to Alice’s.

Blockchain will use a digital signature algorithm, which is an elliptic curve algorithm, to

sign their transaction in the P2P network [49]. The elliptic curve digital signature algorithm

(ECDSA) is considered as one type of digital signature algorithms. There is an approach

by public-key cryptography that depends on the algebraic structure of elliptic curves that

are applied to some limited fields. As a consequence, it requires smaller keys to provide

equivalent security to that of non-EC cryptography.

C’s Private Key

Txn contents

B’s public Key

B’s Signature

C’s Address

Hash

Sign

Verify

B’s Private Key

Txn contents

A’s public Key

A’s Signature

B’s Address

Hash

Verify

Match

D’s Private Key

Txn contents

C’s public Key

C’s Signature

D’s Address

Hash

Verify

Sign

Match

From A to B From B to C From C to D

Figure 2.4: How transactions are verified and chained together

In a technically simplified example, Figure 2.4 gives a view of how the transaction on

blockchain is signed, then linked together. Assuming that B wants to send bitcoins to C, the

transaction will be hashed and signed with B’s private key and the transaction will contain

the hash of the previous transaction and B’s public key. Anyone in the network can verify

it as authorized by B. In the first place, B’s public key has to match B’s address according

to the previous transaction, which will prove that the public key is valid. Subsequently, B’s

signature on the transaction will be verified by using B’s public key. This phase ensures

that the transaction is authorized and valid by sender B. However, B’s public key is not

14

public until the key is used on a previous verification process. From that point, it can be

understood that cryptocurrencies are passed from one address to another via a chain of

transactions. Thus, each phase in the transaction chain can be checked to ensure that the

bitcoins are spent validly.

2.1.6.2 Privacy enhancing techniques

The traditional blockchain technology does not consider privacy. However, it has been

applied to different application scenario, where privacy could be a critical issue. Thus,

privacy has become a critical issue for its widely successful adoption. Next, we introduce

some privacy enhancing techniques to preserve the user anonymity in the blockchain net-

work. Informally, anonymity indicates that the true identity of a user should be concealed

from the public while enjoying the blockchain services. In specific , anonymity can be

defined in two different levels: pseudonym and unlinkability.

Pseudonym and unlinkability

Pseudonym means that users can choose different pseudonyms for different services. A

general method to achieve pseudonym and authenticity at the same time is to use pseudonym-

based certificate. This requires a public key infrastructure (PKI) to manage the certificates

for users. Instead of pseudonym-based certificates, PKI can also adopt pseudonym-based

identity signature for preserving the anonymity of a user. In an identity-based signature,

users can derive public keys from the public identities and thus avoid the communication

and storage overhead of the certificate.

In pseudonym based methods, user activities can be linked together when they use the

same pseudonym across the different services. This is an issue if an attacker has some back-

ground knowledge and could launch de-anonymization attacks. Motivated by this issue,

another concept is one-time unlinkability which means that users can be anonymously au-

thenticated each time and cannot be linked across different sessions. Existing cryptographic

techniques such as group signature and ring signature can achieve this property. In a group

15

signature scheme, an issuer can assign group credentials to each group member. A group

member with valid group certificate can prove the membership in a zero-knowledge man-

ner. Due to the randomness introduced in the proof process, the unlinkability is achieved

for different sessions.

Ring Signature

Ring signature is a particular type of digital signature which can provide privacy for

signers who want to prove the authenticity of a message to a verifier without revealing his

identity. It has been widely utilized in cryptocurrency systems such as Monero to ensure

that there is no way for anyone to trace a user only according to his transactions on the

blockchain. Specifically, using ring signature technique, Monero can protect the privacy of

the sender through obscuring the transaction inputs such that no one can identify the actual

signer of the transaction.

Generally, a ring signature is generated by someone in a group and it guarantees that

no matter which group member signs on a message, nobody can determine who the group

member is. Suppose a group of users each of which has a pair of public/private keys, then

any user in the group can generate a ring signature on a message with his private key and

all the public keys in the group. The produced ring signature can be publicly verified by

anyone with the group of public keys. Taking Monero as an example, suppose that a user

A wants to send some Monero coins to user B in order to finish an exchange, the workflow

of a ring signature to ensure the privacy of user A who signs the transaction is briefly

introduced in the following: First, user A chooses some arbitrary non-signers of the ring

signature from past transaction outputs which include their public keys; then user A signs

the transaction with his privacy key and public key together with the non-signers’ public

keys so that it is computationally infeasible for anyone else to identify the actual signer.

Note that although user A’s public is also used in the signature, it could also be used in

other transactions by some others.

16

2.2 Supply chain system

Digitizing information and its exchange experienced significant improvement in the last

few decades by undergoing different stages or phases due primarily to technological inno-

vation and demands. Such changes went from theory-based to the secluded application

of several aspects of organizations or their exchange. During this phase, the process was

complex with multiple applications and databases, where each one was served by different

departments or services such as finance, maintenance, human resources or purchasing. Af-

ter this phase, the trend was for organizations to go to a new concept, that is integrating the

various spectrums of the entity under one system, known as enterprise resource planning

(ERP). The ERP system brought a remarkable revolution that merged the digital thread of

numerous services within each institution, taking into account the different emphases of

each business, depending on the organization’s core business. This revolution led to facili-

tation between all business functions within the entity in addition to managing transactions

with their partners. Nevertheless, persistent demand led to globalization of these types of

systems, especially for corporate groups, in an attempt to be more broadly linked with their

corporate partners. Since then, the digital thread has further extended to include organiza-

tions’ external relations which, in turn, facilitates and accelerates the wheel of productivity

for customer relations management systems ”CRMs”. Such advances in facilitation in

communication processes has led to the emergence of the cloud computing model which

allows several entities to exchange data using one common or shared platform. Currently,

these frameworks, which are seamlessly incorporated within the internal processes of an

organization, play a significant role in improvements related to transparency and effciency.

However, with the evolution of technology, demands become increasingly more accurate.

17

2.2.1 Digital supply chain (DSC)

The digital supply chain (DSC) has numerous benefits. These include services that are

cost effective and activities that create value with numerous benefits to the many players

in the ecosystem, including suppliers, firms, customers, and employees. A supply chain

is made up of three or more parties: the organization; the flow of products or services,

both downstream and upstream, from sources; and consumers [34]. The concept of sup-

ply chain reinforces the role played by the flow of information between firms, mainly at

activity and business process levels. For efficient integration between players to be real-

izedIn order to realize efficient integration between actors, the supply chain must have its

processes and information integrated. The main characteristic of the DSC is the strategic

and operative information exchange between suppliers which encompasses finance, de-

sign, production, research, and/or competition [11]. The information exchange enhances

communication between the main players in the chain. Generally, inter-organizational co-

ordination is realized through electronic links that connect information systems, making it

possible to automate and digitize the processing of source-to-pay processes in the supply

chain that bring together customers and suppliers. The sharing of information and process-

ing functions in the supply chain is not only limited to the business process level. Rather,

it also encompasses a considerable volume of data from social media applications, devices

and sensors (IoT) [24]. An important component of modern DSCs is the integrated sup-

ply chain information models. These are reinforced by the role of service automation and

information integration, which act as crucial business drivers. According to Santos and

Eisenhardt [23], the main motivation behind the integration of the supply chain is the ef-

ficiency that comes with minimal governance , including the cost of exchange with other

participants in the ecosystem and individuals within the organization in question. Cost sav-

ings realized through information technology make it possible for more information to be

frequently and accurately processed from numerous sources around the globe. When in-

formation flows are properly automated, the need for manual data entry is eliminated , thus

18

reducing human error. Even though B2B (Business to Business) [38] integration is widely

known to build supply chain efficiency, the low levels of system interoperability that are

currently experienced result in high costs of investment despite the fact that the probable

benefits have not been achieved. Other advantages DSC include: reduction in the cost of a

product or service: enhanced flexibility in the supply chain design: reduced lead times in

the supply chain: and the creation of a competitive advantage. For information to be con-

sidered as effectively shared, it must bring new value to customers and actors in the supply

chain in terms of services, visibility, prediction, and decision making. The driving factor

is the need to communicate the right information to the right audience at the right time for

the purpose of making decisions. The important role of service integration coupled with

information integration act as crucial drivers of the value of a business in supply chains.

The bundling of information coupled with systemic integration are additional value drivers

that create extra value for customers. Currently, attention is being paid to examining value

creation from big data in supply network environments that embrace industrial B2B. The

focus is also on the inter-organizational integration founded on blockchain technology in

the present day economy. The running of supply chains and similar business models may

be broadened significantly through innovative information exchange services. For instance,

according to Kagermann et al [22], an industry environment is made up of manufacturing

systems that are vertically connected to business networks within businesses and factories.

Additionally, the processes are connected horizontally to value networks that are disperse

in nature manageable in real time. New systemic value elements are introduced through

the solid integration of information for public and industrial service users as well as service

providers. The focus of transactional supply chain business processes is the development

of digital ecosystems which results in numerous business opportunities for the players in

the ecosystem. Previous research on the integration of the systemic global supply chain

highlighted four requirements for digital business ecosystems. These are the basis for de-

veloping business as well as innovation and the present research.

19

The purpose of the present research is to solve the problem of having a fair goods

exchange under a trusted party between merchant and supplier that may suffer from the

weakness of single point failure. There exist repudiation attacks that lead to unfair solution

evaluation. With the advancement of blockchain technology, research has been conducted

to ensure fair data exchange without any third party. Buyers can share their data only

after they receive rewards while sellers pay only after they obtain the data. Researchers

have commonly adopted the Hashed Timelock contract to make users less likely to behave

maliciously. Further research studies have been conducted on fair computation among

multiple users [4]. For many years, fair exchange has been extensively studied in order

to find a solution to this problem. At the same time, it has been proved or otherwise

assumed that fairness in exchange can be achieved without having a Trusted Third Party

(TTP) [17, 30, 45]. Others tried to circumvent this impossibility by studying weaknesses

on the security models, where the use of a trusted third party can be eliminated only in

the case of the failure of either party to abide by the prior commitment agreed upon or

if departing from the expected behaviour [10]. Some researchers have studied how the

blockchain, or specifically the smart contract, will be a solution where it can take the role

of the TTP [25, 33]. The cut-and-choose protocol [10], which is based on investigating

the garbled circuits that are exchanged between two parties, is able to expose cheater or

misbehaving party. However, it will incur much communication overhead for a blockchain

network, which is a p2p network. Setting a smart contract based on that protocol will

be high in terms of Gas cost [27]. From another perspective, protocol in [15] has been

proposed to achieve fair exchange of digital goods. It has achieved a paradigm shift in a

negligible error rate and small costs.

20

Chapter 3

Secure and Fair IIoT-Enabled Supply

Chain Management via

Blockchain-based Smart Contracts

3.1 Problem formulation

The focus of this study is a system that enables flexible and efficient on-demand ex-

change of goods between merchants and suppliers and that specifically addresses the lack

of mutual trust between entities, which is one of the major challenges in blockchain tech-

nology. In order to respond to this challenge, this present work proposes a fair and transpar-

ent supply chain system. This chapter presents the system model, followed by a discussion

of the Threat model and design goals.

3.1.1 System model

In the proposed system model, three main entities are involved, as shown in Fig. 3.1.

Each entity complements the other and has a specific, clear role. These entities and their

roles are described as follows:

21

• The Merchant: Uniquely identified by M, the merchant requires specific goods, and

sends an order to the supplier through the blockchain.

• The Supplier: Uniquely identified by S, the supplier posts the goods on the blockchain,

receives the order from M, and then delivers the goods to M.

• Blockchain: The blockchain is the underlying decentralized P2P network. It runs

smart contracts and acts as an external judge between the two parties to effectively

complete the exchange of goods.

Block N

Header

Transaction

Link

Digital Signature

Block N+1

Header

Transaction

Link

Digital Signature

Block N+2

Header

Transaction

Link

Digital Signature
... ...

SupplierMerchant

Blockchain

Figure 3.1: System Model

In supply chain management, the most important concept is that of fairness. If someone

provides a service, the other party must accommodate by responding, and vice versa. At

a high level, the process of fair goods exchange in this proposed system works as follows:

Supplier S first sets an item list that designates the goods that Merchant M can order. M

then places the order. Subsequently, S processes the order and asks for confirmation from

M, who will check the goods information and send an acceptance notification to the smart

contract. In the next step, the smart contract will create a tag used for labelling the goods,

and publish it so that S can attach it to the goods. S then delivers the goods to M, who

22

scans the tag after checking the goods, and then submits it to the smart contract. The

smart contract in blockchain takes the role of an external judge based on the information

collected to determine whether if the contract is correctly fulfilled or to enforce penalties

to the misbehaving parties.

3.1.2 Threat model

The goal of the proposed system is to realize a fair goods exchange between the two

entities, Supplier and Merchant, who could be malicious or untrusted. In particular, the

threat model can be summarized as follows:

• Security against selfish/malicious suppliers: The suppliers could be selfish or ma-

licious users who may not send the goods on time. Moreover, a malicious supplier

can also send different goods other than those agreed in the contract.

• Security against selfish/malicious merchants: The merchants could also be selfish

or malicious. They may not submit the scan or send the signature to the smart contract

after receiving the goods. It is also possible for merchants to reject the goods and

argue that they are not what was requested, which will cost the supplier to lose the

deposit on the smart contract.

3.1.3 Design goals

The design goals mainly contain three aspects:

• Fairness: Our protocol guarantees fairness by relying on smart contracts between

suppliers and merchants over decentralized cryptocurrency. An honest supplier must

ensure that the merchant will pay after receiving the goods and an honest merchant is

assured that he only pays if the supplier delivers the goods ordered by the merchant.

In cases of disagreement, in the proposed system, the contract takes the role of a

23

judge. In other words, the smart contract goes beyond a traditional contract that

represents an agreement between the supplier and merchant, and also acts as a judge

to resolve disputes between the supplier and merchant.

• Transparency: One of the benefits provided by the proposed protocol is that it en-

hances the demand for transparency, ensuring that the transaction process is trans-

parent and immutable to both parties.

• Proof-of-concept implementation: Implementation of a fair goods exchange smart

contract between two nodes is presented and explained in detail in Chapter 4, which

also demonstrates the functionality of the proposed scheme. In addition, results in

terms of the cost of gas that will be paid to process each phase in our smart contract in

the blockchain, as well as transaction confirmation time, are analyzed and simulated.

3.2 Proposed Scheme

3.2.1 The System architecture

This subsection provides an overview of the system architecture considered in this

work. In completing an exchange, or in cases of disagreement, the smart contract take

the role of an external judge between two entities. It is assumed that Supplier publishes a

stock information of the goods into the blockchain. Thus, both parties start by registering

themselves as smart nodes. As shown in Fig. 3.2 , Merchant M will place the order that

contains all the information about the goods he wants, in addition to certain conditions such

as the delivery deadline, which will be addressed in detail in Section 3.2.2.4. S will then re-

spond with approval after confirming the availability of the goods through the blockchain;

this is considered as the third stage in the process.

The smart contract will generate the tags which contain the goods information and

the deadline for the delivery, as previously agreed upon by the parties. The tags will be

24

Merchant
stock

Merchant
Supplier

Supplier of
stock

(3) Confirmed Order

 (4)Publishes Tags

(4)Generates tags
(5) Adds the
tags to items

(6) Drives the goods

(7) Scans Tags

(7)Submits and verifies Tags

 Both side can monitor
and tracing the goods (RFID)

(8) Delivery of goods

(10) Receives Payment

(9)Judges

(1)Registration

(1)Registration

(2)Places Order

OffLine

OnLine

Smart
contract

Figure 3.2: System Architecture

available for both entities on the smart contract. Thereafter, Suppliers will print the tags

and add them to the goods. The goods are sent in the sixth stage with the use of RFID

[19, 47], which will enable both parties to track shipments of the goods from the smart

contract. When the goods arrive at Merchant’s place, M will scan the tags on the goods after

inspecting them. This indicates that M confirms acceptance on the goods after confirmation

of the smart contract of the validity of the tags and the delivery time. Finally, M is given

the goods and signs for them. The smart contract will then be notified that the goods have

been successfully delivered, and Suppliers will retrieve the deposit in the smart contract.

3.2.2 The Scheme

This section provides the details of the smart contract construction, which assumes that

secure channels [43, 44] have been established between all entities. For example, SSL

(Secure Sockets Layer) can be used to establish a secure channel between two entities [32].

In the proposed scheme, as shown in Fig. 3.3, there are five phases, each of which is based

on the previous phase, with the exception of the first phase. All notations are explained in

25

Merchant SuppliersSmart Contract

(1)Initialize

Phase

(2) Order

 Phase

(3)Confirmation

 Phase

(4)Delivery

Phase

(5) Judgement

 Phase

pk , addr__ pk , addr__

Mm={Sign (Ť ||α||P||bD||oD||η||dL)}

Ms={sign (cD||sD||Ť||Time)}

4.1 Generate the tag
 Ž=(Ť,dD)

4.2 publish Ž

 4.4 drives the good to M

4.3 Add Ž to items

 Verify(𝜎 __ , Mm, pk)

 Verify(𝜎 __, Ms, pkS)

4.2 publish Ž

TimeLine

T

T

T
 5.1 OK =Mg={ sign(Ž,time)}

5.2 Payment={sD +bD}

 verify(𝜎__ , Mg, pk)

 5.1 Complain =MCm={ sign(Evidence,Time)} verify(𝜎__ , MCm, pk)

 5.1 complain =MCs={ sign(evidence,time)}
 verify(𝜎__ , MCs, pk)

m
M s

S

Mm m

Ms s

sk1sk1

sk1sk1 Mg m

sk1sk1 mMCm

sk 2sk 2

sk 2sk 2MCs s

1

2

Figure 3.3: Outline of fair goods exchange

Table 3.1.

3.2.2.1 Initialize Phase

Both M and S will register their addresses and public keys to the smart contract as

shown in the algorithm 1. More information can be added, including pkm, addrM , where

pkm is the public key and addrM is M’s address on the smart contract. For his part, S will

register pks, addrS where pks is the public key and addrS is S’s address. In the blockchain,

every account is described by a pair of keys, namely a public/private ECDSA keypair. User

address is obtained from the last 20 bytes of their public key, so it become a 160-bit of

hash. Using private-key cryptography is to ”sign” data then the other side will verify that

the signature is valid by using the public key of the sender to achieve integrity of the data.

26

Notation Explanation
addrM The Merchant’s address
addrS The Supplier’s address
Signmk Signature of Message m signed by k. Messages include Mm=Order Phase,

Ms=Confirmation Phase,Mg=Judgement OK ,MCm=Judgement complain M,
MCs=Judgement complain S)

pkm Merchant’s public key
pks Supplier’s public key
sk1 Merchant’s private key
sk2 Supplier’s private key
T̂ Item
α A variable between 0 ≤ α ≤ 1, that determines the ratio of P that each of M

and S will deposit
P The price
bD Merchant’s deposit
oD The order date
η The number of T̂
σm Signed message
dL Delivery deadline
v, r, s r and s are outputs of an ECDSA signature, and v is the recovery id
cD Confirmed date
sD Supplier’s deposit
Ẑ Tags
dD Delivery Date
T1 Time refers to interval between confirmation and delivery
T2 Time refers to the time limit for participators including, M and S to upload

evidence (proof of misbehavior)

Table 3.1: Notation explanation

3.2.2.2 Order Phase

M will place the order Mm and send it to S after signing the message with his secret

key sk1 for authentication where it will be verified by miners on the blockchain by his pkm.

The format of the order Mm is shown below:

Mm = (T̂‖α‖P‖bD‖oD‖η‖dL)

where T̂ represents the low stock threshold for an item, which is used to determine

whether an order should be placed according to the current stock of the item, i.e., lower

27

Algorithm 1: Initialize Phase
1 function Initialization pkm, addrMpks, addrS;
2 M public key = M public key;
3 S public key = S public key;
4 M Address = M Address;
5 S Address = S Address;

than T̂ , α represents a variable ranging from 0 to 1 (0 ≤ α ≤ 1) and determines the ratio

of price P that M and S will deposit, oD refers to the order date, η includes the amount

of goods required by M, and dL represents the delivery deadline. M deposits bD after

calculating the αp with η. It should be noted that α is used to ensure that M will honor the

order and prevent M from dishonestly cancelling the order.

Algorithm 2: Order Phase

1 function OrderPhase (T̂ , η, σMm , dL, addrM , α, P, v, r, s, depositAccount);
2 . check the identification of Merchant;
3 require(msg.sender == addrM)

. check the signature of Merchant;
4 require(verifySignature(addrM ,σMm , v, r, s))

. add new order;
5 newOrder← {T̂ , now, η, dL}

memory orderList[i++]← newOrder
. calculate the price ;

6 Total P←η ∗ T̂ .P
. check the balance of the account;

7 require(msg.value >= totalPrice * (p + α/100))
. Merchant Deposit ;

8 depositAccount += amt
. Phase status ;

9 newOrder.status←Initialized

Then, M will send the signed order to S after checking his T̂ threshold. The smart

contract checks the identification of Merchant addrM and then adds a new order in the

order list which contains T̂ , oD, η, P and dL as input. As shown in the algorithm 2, the

smart contract will calculate the total price of the goods by P * η. M will send the bD to

the smart contract address. The entire message Mm will be signed by sk1 using (v, r, s),

28

where r and s are outputs of an ECDSA signature, and v is the recovery id [21], and the

resulting signature is SignMm
sk1

.

3.2.2.3 Confirmation Phase

In this phase, S will confirm the order based on the availability of the product that

he has already been presented on the public blockchain, including the cD which is the

confirmation day, the T̂ which is the item that he will finally deliver. For authentication

purposes, S will sign the message with his secret key sk2, where it will be verified by

miners on the blockchain by his pks.

Algorithm 3: Confirmation Phase

1 function ConfirmationPhase (T̂ , i, σMs , addrS , cD, v, r, s, η, α, depositAccount);
2 . check the identification of Supplier ;
3 require(msg.sender == addrS)

. check the signature of Supplier;
4 require(verifySignature(addrS,σMs , v, r, s))

. Read the latest item from the order list ;
5 memory latestOrder← orderList[i]

latestOrder.cD← now
. check the deposit;

6 totalDeposit← η * p *(α/100)
require(msg.value > totalDeposit)

. Supplier Deposit ;
7 depositAccount += amt

. Phase status ;
8 newOrder.status←Confirmed

The second phase is called the confirmation phase, where S will confirm the order, then

M can start delivering the goods. This phase begins with checking the identification of S

addrS and then checking if M has given the deposit based on P * η and α of the deposit to

prevent unexpected and dishonest cancellation of the order. Ms will then be signed for the

signature Signms
sk2

by sk2. At that point, the status of the contract will be confirmed, as is

shown in Algorithm 3.

29

3.2.2.4 Delivery Phase

This phase contains offline and online processes that start with generating the Z̆ on

the smart contract for goods that S will deliver. The Z̆ will contain T̂ and dD, which

is the delivery date. The smart contact will generate Z̆ after S confirmed the order in

the confirmation phase as is shown in Algorithm 4. In the final stage, tags will then be

published to both parties and will be available through the smart contract. Afterwards,

S processes the goods for delivery after labelling them. In the delivery phase, the smart

contract will generate Z̆ based on the information that is given in the order and confirmation

phases Z̆=(T̂ ,dD). Having been generated, the tags will be available for both sides. At this

point, S will use these tags, add them to the goods and deliver the goods to M.

Algorithm 4: Delivery
1 function GenerateTags;

Input : T̂ ,dD
Output: Ẑ

2 Order memory← orderList[index];
3 . Generate tag

tagsA← keccak256 (abi.encodePacked(T̂ ,dD));
4 return tagsA ;

3.2.2.5 Judgement Phase

This phase has two paths to either satisfy both parties, which means (ok) as shown

in Algorithm 5, or not satisfy, which means (complaint), as shown in Algorithm 6. In a

satisfying path as presented in Algorithm 5, M will scan the tags Z̆, and miners will verify

the SignMg

sk1
by using pkm. After the scan, the smart contract will check the time of the

delivery by checking the deadline that should be agreed by both sides in the previous phase

according to (dD, T1,T2). If condition now > (dD+T1 +T2) is met. S will then withdraw

η ∗ P ∗ (1 + 2 · α/100), which means that S will receive the two deposits and the status

phase becomes Complete.

30

Algorithm 5: Judgement (OK)
1 function AcceptOrder(T1, addrM , cD, σMg , v, r, s, depositAccount);
2 . check the idetification of Merchant

require(msg.sender == addrM);
3 . check the signature of Merchant

require(verifySignature(addrM ,σMg , v, r, s));
4 . check the balance of the account

require((now - cD) < T1));
5 function OrderPayment (dD, T1, T2, addrM , addrS , η, P, α);
6 require(now > dD + T1 + T2);
7 require(msg.sender == addrM);
8 . withdraw(unit256 amount, unit256 depositAccount, address receiver):

withdraw the deposit amount from the contract
account depositAccount to the address receiver;

9 withdraw(η * P * (α /100)), depositAccount, addrM);
10 require(msg.sender == addrS);
11 withdraw(η * P * (1 + α /100)), depositAccount, addrS);
12 . Phase status

newOrder.status←Completed;

Algorithm 6: Judgement (Complaint)
1 function proofOfComplaint(addrM , addrS , evidence, dD, T1, T2, MCs , α, P, MCm ,

v, r, s);
2 require(now > dD+T1 AND now < dD+T1+T2);
3 require(verifySignature(msg.sender σMCs

, v, r, s));
4 require(verifySignature(msg.sender σMCm

, v, r, s));
5 require(msg.sender == addrM);
6 . If the evidence comes from merchant, he can take both the deposit

withdraw(η * P * (1 + 2 ∗ α /100)), depositAccount, addrM);
7 require(msg.sender == addrS);
8 . If the evidence comes from supplier, he can tak both the deposit

withdraw(η * P * (2 ∗ α /100)), depositAccount, addrS);
9 return;

31

As previously mentioned, T2 is the period specified prior to the expiration of the a-

greement which allows either party to provide proof of complaint as shown in Algorith-

m 6. The function proofOfComplaint will first check the timeline which requires that

now > (dD + T1) and now < (dD + T1 + T2). Both sides can provide evidence, e.g.,

pictures or tracing records of the goods. In the case that one side provides clear evidence be-

fore the time limit is expired, judiciary is made in the smart contract based on the provided

evidence. Particularly, if M provides the evidence to complain that S has the inappropriate

behaviors, then M can take both deposits and the money of goods back. Otherwise, S can

take both deposits by providing valid evidence. In addition, the case of neither party ob-

jecting to any initiative or confirmation of the receipt within the timeline, the amount will

be transferred from the smart contract account and returned separately to both parties.

3.3 Security analysis

This subsection provides an analysis of the security of the proposed scheme by provid-

ing an intuition on why neither party can break the fairness property. As mentioned in the

previous section, the Judgement phase is the payout phase which is the last round where

both entities can be satisfied. The contract is terminated to enable the supplier to receive

a full deposit or punish the misbehaving parties. If no one can provide a valid evidence

before T2, then the deposit will be sent back to each party. This is the point at which the

smart contract acts as the role of judgement in the case of disagreement to complete the

contract in a fair way. The transaction processes and status in all phases are transparent and

immutable for both parties. As a result, traceability in the proposed exchange protocol is

also achieved through the provision of the smart contract that allows both entities to trace

the transactions and contract states that are reached.

32

Chapter 4

Experiment Results

4.1 Experiment setup framework

Figure 4.1: Structure of the Parity Ethereum Client

As proof of concept, it is important to implement a working prototype of the proposed

system. Considering that it is the lightest and fastest Ethereum client, using Parity as the

test platform is a good choice [14]. This platform, written in a programming language

called Rust, provides improved performance, code clarity and reliability. Parity Ethereum

Client v2.0 comes with options of building on different operating systems. The JSON-

33

RPC HTTP and Web-Sockets server on this platform run by default on port 8545 and

8546. Parity, which is an alternative to Gath, the official Ethereum Client, has many more

features and is more quickly able to build the decentralized application that is needed to

connect to the Ethereum blockchain. In addition to supporting several APIs,* it is fully

configurable [14]. As shown in Fig. 4.1, the client connects to the blockchain by using the

web3 interface. The simulate of the proposed system was implemented on a laptop with

2.40 GHz Intel Core i5 processors and 8 GB memory on Ubuntu Linux Operating System.

The next section is the steps of building Parity Ethereum Client.

4.1.1 Building a Parity Ethereum Client

1. After login as root, use the following command to download the Parity binary from

the server.

bash <(curl https://get.parity.io -L)

2. Build the essential tools for Ubuntu. These are mainly compilers and libraries that

will help to build the Web3 client and node.js. Update the package manager.

apt-get update

3. Build essentials by following commands that will ask a question about the perfor-

mance. Give permission to continue.

apt-get install build-essential

4. Install Node.js from the official web site:

https : //github.com/nodesource/distributions/blob/master/README.md

Now download the package from Alternatively, forNode.js10

$curl -sL https://deb.nodesource.com/setup_10.x

34

$sudo -E bash -$

5. Update everything once again, then access all the library needed for Node.js. Install

Node.js.

$sudo apt-get

$sudo install -y nodejs$

6. Install the Web3 JavaScript library by first installing npm, then web3, in order to

connect to the Parity client.

npm install web3

When all the installation processes are positively finished, the technical tests can start by

following the next section.

4.1.1.1 Technical Tests

1. In order to check the connection of the Parity client with the official public parity

network, parity runs in the terminal. As shown in Fig. 4.2, this starts by syncing

with the main Ethereum official public blockchain.

Figure 4.2: Connecting with the official public blockchain

2. Connect the local Partiy with web3, as shown in Fig. 4.3, which opens a new terminal

35

while keeping the Parity public blockchain terminal running. This is followed by

login as root and runningNode.js by the node, then issuing the following command:

> var Web3 = require(’web3’); // load up web3

undefined

> var web3 = new Web3(); // To create new client instance

undefined

> web3.setProvider(new

Web3.providers.HttpProvider(’http://localhost:8545’)); //

To connect to the localhost parity client

true

> web3.eth.isSyncing(function(err,sync) {

... console.log(sync);

... }); //Syncing will provide data that shows that:

Figure 4.3: Connected with web3

It can be observed that, on the main Ethereum blockchain, if they are not connected,

the blocks highlighted in Fig 4.3 will show up as undefined.

36

4.1.2 Building Proof-of-Authority Chains

Proof of Authority (PoA) is supported by Parity with consensus power to be used with

Ethereum Virtual Machine based chains. PoA is a new type of consensus function on

blockchain that can be useful for a private chain. PoA does not solve an arbitrarily diffi-

cult algorithm that depends on random nodes, but instead uses a group of authority nodes

that are apparently able to solve the algorithm, then creates a new secure block in the

blockchain. The chain in PoA must be signed off and approved by most of the authorities

to become a part of the permanent record. This makes it easy to check and maintain the pri-

vate chain that keeps the block issuers accountable. In this experiment, multiple accounts

are created; one is a user account, and two are authorities. Each authority account will

usually only run in a single mode. However, all accounts here are run in the same node.

1. Starting with configuration, create the config file (config.toml) with the following

fields and post it in path /.local/share/io.parity.ethereum/config.toml

[parity]

chain = "/root/demo-spec.json " //the path of json file in

the computer

[account]

pwds = ["/root/node.pwds "] ////the path of the node

passwords file in your computer

[mining]

engine_signer = "0x37f93cfe411fa244b87ff257085ee360fca245e8"

reseal_on_txs = "none" // automatic authorities reseal

2. Create a demo− spec.json, which contains the basic chain required fields as shown

in Fig. 4.4, and save it under demo−spec.json in /root/ or the same path that added

it to the config file.

3. Start to set up the two nodes. Before setup, it must be understood that Parity uses

37

Figure 4.4: Chain configuration

a separate folder to store accounts, thus each chain has a different genesis hash. In

order to create the accounts in each chain, the − − chain option must first be run.

Since the two nodes are built and run on separate machines, in order to avoid any

possible collisions, some additional parameters are added before starting Parity, as

can be seen in Fig. 4.5.

Figure 4.5: Resolving the chain

4. Create a configuration file for each node and post it in the same json file demo −

spec.json path which is in the root:

• Config Node 0 as follows and store under node0.toml:

• Config Node 1 as follows and store under node1.toml:

5. Create one user account and two authorities by using curl.

38

Figure 4.6: configure Node 0

Figure 4.7: configure Node 1

• Run the node 0 by parity –config node0.toml and it will return an address.

Authority address 1

curl data ’{

"jsonrpc":"2.0",

"method":"parity_newAccountFromPhrase",

"params":["node0", "node0"],

"id":0

}’ -H "Content-Type: application/json" -X

POST localhost:8540

Figure 4.8: Authority address 1

39

User address

curl --data’{

"jsonrpc":"2.0",

"method":"parity_newAccountFromPhrase",

"params":["user", "user"],

"id":0

}’ -H "Content-Type: application/json" -X

POST localhost:8540

Figure 4.9: User address

• Run the node 1 by parity –config node1.toml and it will return an address.

Authority address 2

curl --data ’{

"jsonrpc":"2.0",

"method":"parity_newAccountFromPhrase",

"params":["node1", "node1"],

"id":0

}’ -H "Content-Type: application/json" -X POST

localhost:8541

Figure 4.10: Authority address 2

40

6. Return to point 2 , which is the json file, and file the chain specification.

Figure 4.11: Filed chain

7. Create a file which has the node passwords node.pwds in the same path. This is a

simple file where each line contains an authority account password.

8. Return to point 4 to complete the config node file for each node.

• engine-signer to node0.toml, as seen in Fig. 4.12.

Figure 4.12: Completed file Node 0

• engine-signer to node1.toml , as seen in Fig. 4.13.

9. Run local nodes:

• Node0 by : parity –config node0.toml

• Node1 by: parity –config node1.toml

41

Figure 4.13: Completed file Node 1

Figure 4.14: Run node0

Figure 4.15: Run node1

42

4.1.2.1 Technical Tests

1. Connect the nodes by using curl, then keep the two terminal nodes open and use a

new terminal with this command:

curl --data ’{

"jsonrpc":"2.0",

"method":"parity_enode",

"params":[],"id":0

}’ -H "Content-Type: application/json" -X POST

localhost:8540

The result is enode://24829e7ac2505b63256dbbfcc a5e041d84834e9d30c083869fb20da389b

1e3d36d5096a503b9296b785eba5c2a57dc 6af81b8bbb3d601cb72dbe7624e8ea7347

@192.168.56.103:30300 . Now add the result from node 0 to node 1 in the following

command:

curl --data’{

"jsonrpc":"2.0",

"method":"parity_addReservedPeer",

"params":["Add here the result"]

,"id":0

}’ -H "Content-Type: application/json" -X POST

localhost:8541

so it will be :

curl --data ’{

"jsonrpc":"2.0",

"method":"parity_addReservedPeer",

"params":["enode://24829e7ac2505b63256dbbfcc

43

a5e041d84834e9d30c083869fb20da389

b1e3d36d5096a503b9296b785eba5c2a57

dc6af81b8bbb3d601cb72dbe7624e8ea7347

@192.168.56.103:30300"],

"id":0

}’-H "Content-Type: application/json"

-X POST

localhost:8541

As shown in Fig. 4.16, the nodes should indicate from 0/25 to 1/25 peers in the

terminal in which both of the nodes are connected.

Figure 4.16: Nodes are connected

4.1.3 Smart contract

After building the environment, the smart contract is written with 167 lines of Solidity

code, which is available in Appendix A in Remix Solidity IDE. Solidity language is consid-

ered as an object-oriented programming language, which it can be used on any blockchain

platform. Furthermore, Remix Solidity IDE is a web browser based IDE that is known

as Browser Solidity which allows developers to write and check the functionality of their

44

smart contracts before deploying and running the code.

4.2 Performance evaluation

This section provides the results of testing the proposed system in two environments,

namely the private PoA built for this present work and a public PoA. The proposed smart

contract is tested on a public PoA in order to measure the performance of phases on a public

network with more than two nodes.

4.2.1 Private network

Section 4.1 described the setup of the testing environment, namely the Ethereum Parity

Proof of Authority blockchain network, which consists of the two Parity nodes that are the

focus of this test of the exchange between nodes. These are in addition to four accounts,

of which two are authority accounts selected as slot leaders to validate transactions and

issue blocks and two are user accounts, which serve as Merchant and Supplier, to make fair

exchange transactions to the blockchain. Hence, the presented experiments contain some

authority nodes and user nodes to deploy the proposed smart contract.

Cost estimates of the block gas limit are simulated or tested in each phase of the pro-

posed smart contract on the testing network, allowing the cost of a transaction that will be

validated or processed on the real system to be known. More complex operating of the

proposed code will cost more gas. The currency used is Gwei, which is =118.49 Ether. At

the time of writing, 1 Ether =118.49 USD.

4.2.2 Public network

The primary objective of the proposed scheme is to devise a fair supply chain sys-

tem. Implementation of a software prototype was conducted on Ethereum test network.

The supply process was depicted by the smart contract. In the experiments, Solidity was

45

Initializati
on

Order
Placemen

t

Order
Confirma

tion

Delivery
(TAG)

Judgeme
nt (ok)

Gas (Gwei) 958149 203575 118903 26112 92059

Cost(USD) 0.115 0.024 0.014 0.003 0.011

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

200000

400000

600000

800000

1000000

1200000

C
o

st
(U

SD
)

G
as

 (
ET

H
)

Figure 4.17: Estimates the Gas versus the USD of each phase

1 2 3 4 5 6 7 8 9 10

phase 2 33 26 16 20 12 16 25 22 15 12

phase 3 17 15 24 27 24 6 28 25 16 25

phase 5 12 9 10 25 26 24 30 15 23 23

0

5

10

15

20

25

30

35

40

45

50

T
im

e
b

y
 s

ec
o
n

d
s

Round

phase 2

phase 3

phase 5

1 2 3 4 5 6 7 8 9 10

phase 2 33 26 16 20 12 16 25 22 15 12

phase 3 17 15 24 27 24 6 28 25 16 25

phase 5 12 9 10 25 26 24 30 15 23 23

0

5

10

15

20

25

30

35

40

45

50

Ti
m

e
b

y
se

co
n

d
s

Round

phase 2

phase 3

phase 5

1 2 3 4 5 6 7 8 9 10

phase 2 33 26 16 20 12 16 25 22 15 12

phase 3 17 15 24 27 24 6 28 25 16 25

phase 5 12 9 10 25 26 24 30 15 23 23

0

5

10

15

20

25

30

35

40

45

50

Ti
m

e
b

y
se

co
n

d
s

Round

The performance of all phases

phase 2

phase 3

phase 5

Figure 4.18: Transaction confirmation time in Rinkeby

46

used to develop smart contracts. The smart contract is saved as Ethereum Vtirual Machine

(EVM) Bytecode in the blockchain. Once a contract gets stored in the blockchain, it has

a unique address so all the participating parties can interact with it using this contract ad-

dress. JavaScript and JAVA programming language were used in developing the primary

logic function in the middle layer. The implementation was performed on the Rinkeby [20],

which is part of the official Ethereum public test network. The daily number of transac-

tions is approximately 60,000 more than 10,000 smart contracts are currently deployed to

Rinkeby. It is a “Proof-of-Authority” network, meaning that signing of the blocks is done

by well-known and trusted members of the community [39]. This process prevents any

attacker from hijacking the mining power within the network. In order to compare the

performances given different numbers of mining nodes and transactions, this current study

repeated experiments in Rinkeby for 10 times, which focuses mainly on two issues: aspects

of network latency as well as synchronous messages in the blockchain. The first issue refers

to the time of transaction confirmation, including sending and conformation of the order as

well as the judge phase. The purpose is to verify whether the transactions on the supply

chain are in synchrony within the entire network and also within a time that is acceptable.

The mean block time taken during the mining in Rinkeby is around 15 seconds. These

experiments comprised 10 transactions that each of them was mined into a single block.

The assigned block numbers range from a value of 2,267,171 to 2,271,710. The mean gas

usage for each of the transactions is around 300,000. As displayed in Fig, the mean time

taken for transaction confirmation on sending and conforming an order is between 6 to 33

seconds. Each of the transactions is confirmed within around 2 block time. With regard to

the low or high points in Fig 4.18, location of the special block is determined and positive

correlation between the time of transaction confirmation and the number of transactions

within a single block is identified. As an example, there is an apparent high point in the

first experiments for phase 2 and the presence of 11 transactions is discovered in the same

block. This number is far higher compared with the mean transactions in the same block.

47

Chapter 5

Conclusions and Future Works

5.1 Summary of research

In presenting a fully complete system that utilizes blockchain for the supply chain, the

presented work begins with a discussion of issues and methods in general supply chain

management that have been in existence over the last decade, while focusing on the lack

of fairness that can occur between all involved parties. This overview is followed by an

introduction to a blockchain-based supply chain management system for IIoT that consid-

ers how the features of this technology can fill the gaps in the existing system. Specific

emphasis is placed on the realization of a fairness protocol in the smart contract. As a

consequence, fairness property for each side is defined and a process for how to achieve

fairness in the proposed scheme is described. Furthermore, security analysis and experi-

ments are conducted as part of this work in order to illustrate the feasibility and efficiency

of the proposed cheme.

5.2 Future research directions

Addressing the issues that concern all involved parties in the field of supply chain man-

agement offers further potential for future research. In particular, investigating the tracking

48

of goods by satellite, especially for global trade, would be valuable in cases of dispute, and

would help to more widely achieve the concept of transparency.

49

Appendix A

Codes

Listing A.1: Solidity language

pragma solidity ˆ0.4.0;

// This contract is to realize the fairness goods exchange

between seller and buyer.

contract IIoTChain {

address public buyer;

address public seller;

// alpha

uint public radio;

// this time refers to interval between confirmation and

delivery

uint public T1;

// this time refers to the entity to upload evidence (proof of

misbehavior)

uint public T2;

mapping(address => uint) accountBalance;

mapping(address => uint) accountDeposit;

mapping(string => Item) itemsList;

Order[] orderList;

uint256 index = 0;

// this struct is used to describe the product

struct Item {

string name;

uint price;

50

bool isAvailable;

}

struct Order {

Item item;

uint orderDate;

uint number;

uint deliveryDate;

uint confirmedDate;

uint deadline;

Status status;

}

enum Status {

initialized, // 0

Confirmed, // 1

Accepted, // 2

Completed //

}

function addItem(string _name, uint _price) public {

//only seller can add item list

require(msg.sender == seller);

itemsList[_name].name = _name;

itemsList[_name].price = _price;

itemsList[_name].isAvailable = true;

}

function setItemOrderStatus(string _name,bool _isAvailable)

public {

//only seller can add item list

require(msg.sender == seller);

itemsList[_name].isAvailable = _isAvailable;

}

// this function is used for initialization

function IIoTChain(uint _T1, uint _T2, uint _radio, address

_buyer, address _seller) public {

T1 = _T1;

T2 = _T2;

radio = _radio;

51

buyer = _buyer;

seller = _seller;

}

//this function is for buyer to make the order

function orderPhase(string _itemName, uint number, bytes32

orderSignature, uint _deadline, uint8 v, bytes32 r,

bytes32 s)

public payable {

//check the idetification of buyer

require(msg.sender == buyer);

if(itemsList[_itemName].isAvailable == false) return;

//check the signature of buyer

require(isSigned(buyer,orderSignature,v,r,s));

Order memory newOrder = orderList[index++];

newOrder.item = itemsList[_itemName];

newOrder.orderDate = now;

newOrder.number = number;

newOrder.deadline = _deadline;

newOrder.status = Status.initialized;

uint totalPrice = number * itemsList[_itemName].price;

//check the balance of the account

require(msg.value >= totalPrice * (1 + radio/100));

// buyerDeposit

setDeposit(totalPrice * (1 + radio/100));

}

function orderConfirmPhase(string _prodectName, uint256

_index, bytes32 confirmSignature,uint8 v, bytes32 r,

bytes32 s) public

payable {

//check the idetification of seller

require(msg.sender == seller);

//check the signature of buyer

require(isSigned(seller,confirmSignature,v,r,s));

//Items storage itemsTmp;

Order memory order = orderList[_index];

order.confirmedDate = now;

//check the deposit

52

uint totalDeposit = order.number *

itemsList[_prodectName].price * (radio/100);

require(msg.value > totalDeposit);

// sellerDeposit

setDeposit(totalDeposit);

order.status = Status.Confirmed;

}

function generateTags(uint256 _index) public returns (string

tags) {

Order memory order = orderList[_index];

string memory tagsA = strConcat(order.item.name, new

string(order.deliveryDate));

return tagsA;

}

function acceptOrderPhase(string _prodectName, uint256 _index,

bytes32 acceptSignature,uint8 v, bytes32 r, bytes32 s)

public

payable {

//check the idetification of seller

require(msg.sender == buyer);

//check the signature of buyer

require(isSigned(buyer,acceptSignature,v,r,s));

//check the balance of the account

require((now - orderList[_index].confirmedDate) < T1);

orderList[_index].status = Status.Accepted;

}

function evidenceGenerate(uint256 _index, string evidence,

bytes32 evidenceSignature,uint8 v, bytes32 r, bytes32 s)

public {

Order memory order = orderList[_index];

require(now > (order.deliveryDate + T1) && now <

(order.deliveryDate + T1 + T2));

require(isSigned(msg.sender,evidenceSignature,v,r,s));

if(msg.sender == buyer){

withdraw(order.number * order.item.price * (1 +

radio/100));

seller.transfer(order.item.price * (radio/100));

} else if (msg.sender == seller) {

53

withdraw(order.number * order.item.price * (1+

radio/100));

buyer.transfer(order.item.price * (radio/100));

} else {

return;

}

}

// this function is to do the payment

function orderPaymentPhase(uint256 _index) public

payable {

Order memory order = orderList[_index];

require(now > (order.deliveryDate + T1 + T2));

//proof of misbehavior function by a seller;

if(msg.sender == buyer){

withdraw(order.number * order.item.price * (radio/100));

} else if (msg.sender == seller) {

withdraw(order.number * order.item.price * (1+

radio/100));

} else {

return;

}

order.status = Status.Completed;

}

//this function is for each entity to make a deposit

function setDeposit(uint amt)

{

accountDeposit[msg.sender] += amt;

}

function withdraw(uint amt)

{

uint withdrawAmount = amt;

uint newBalance = accountDeposit[msg.sender] -

withdrawAmount;

accountBalance[msg.sender] = newBalance;

}

function recoverAddr(bytes32 msgHash, uint8 v, bytes32 r,

bytes32 s) returns (address) {

return ecrecover(msgHash, v, r, s);

54

}

function isSigned(address _addr, bytes32 msgHash, uint8 v,

bytes32 r, bytes32 s) returns (bool) {

return ecrecover(msgHash, v, r, s) == _addr;

}

function strConcat(string a, string b) internal returns

(string){

bytes memory ba = bytes(a);

bytes memory bb = bytes(b);

string memory ret = new string(ba.length + bb.length);

bytes memory bret = bytes(ret);

uint k = 0;

for (uint i = 0; i < ba.length; i++)bret[k++] = ba[i];

for (uint j = 0; j < bb.length; j++) bret[k++] = bb[j];

return string(bret);

}

}

55

Bibliography

[1] Supply chain industry: biggest challenges 2018.

https://www.statista.com/statistics/829634/biggest-challenges-supply-chain/.

[2] Saveen A Abeyratne and Radmehr P Monfared. Blockchain ready manufacturing

supply chain using distributed ledger. 2016.

[3] Louise Axon. Privacy-awareness in blockchain-based pki. 2015.

[4] Mohamed Baza, Mahmoud Nabil, Muhammad Ismail, Mohamed Mahmoud, Erchin

Serpedin, and Mohammad Rahman. Blockchain-based privacy-preserving charging

coordination mechanism for energy storage units. arXiv preprint arXiv:1811.02001,

2018.

[5] Nikola Bozic, Guy Pujolle, and Stefano Secci. A tutorial on blockchain and applica-

tions to secure network control-planes. In 2016 3rd Smart Cloud Networks & Systems

(SCNS), pages 1–8. IEEE, 2016.

[6] Richard G Brown. Introducing r3 cordatm: A distributed ledger designed for financial

services. R3CEV blog, 2016.

[7] Vitalik Buterin. On public and private blockchains. Ethereum blog, 7, 2015.

[8] Vitalik Buterin et al. A next-generation smart contract and decentralized application

platform. white paper, 2014.

[9] Christian Cachin. Architecture of the hyperledger blockchain fabric. In Workshop on

Distributed Cryptocurrencies and Consensus Ledgers, volume 310, 2016.

[10] Christian Cachin and Jan Camenisch. optimistic fair secure computation. In Advances

in Cryptology (CRYPTO 2000). Springer Science & Business Media, 2000.

56

[11] Injazz J Chen and Anthony Paulraj. Understanding supply chain management: critical

research and a theoretical framework. International Journal of production research,

42(1):131–163, 2004.

[12] Sungchul Choi and Paul R Messinger. The role of fairness in competitive supply chain

relationships: An experimental study. European Journal of Operational Research,

251(3):798–813, 2016.

[13] David Lee Kuo Chuen. Handbook of digital currency: Bitcoin, innovation, financial

instruments, and big data. Academic Press, 2015.

[14] Chris Dannen. Introducing Ethereum and Solidity. Springer, 2017.

[15] Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. Fairswap: How to fairly ex-

change digital goods. In Proceedings of the 2018 ACM SIGSAC Conference on Com-

puter and Communications Security, pages 967–984. ACM, 2018.

[16] Ittay Eyal. Blockchain technology: Transforming libertarian cryptocurrency dreams

to finance and banking realities. Computer, 50(9):38–49, 2017.

[17] Shafi Goldwasser. How to play any mental game, or a completeness theorem for

protocols with an honest majority. Proc. the Nineteenth Annual ACM STOC’87, pages

218–229, 1987.

[18] Dominique Guegan. Public blockchain versus private blockhain. 2017.

[19] Dirk Hahnel, Wolfram Burgard, Dieter Fox, Ken Fishkin, and Matthai Philipose.

Mapping and localization with rfid technology. In Robotics and Automation, 2004.

Proceedings. ICRA’04. 2004 IEEE International Conference on, volume 1, pages

1015–1020. IEEE, 2004.

[20] Kedar Iyer and Chris Dannen. The ethereum development environment. In Building

Games with Ethereum Smart Contracts, pages 19–36. Springer, 2018.

[21] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital sig-

nature algorithm (ecdsa). International journal of information security, 1(1):36–63,

2001.

[22] Henning Kagermann, Johannes Helbig, Ariane Hellinger, and Wolfgang Wahlster.

Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing

the future of German manufacturing industry; final report of the Industrie 4.0 Working

Group. Forschungsunion, 2013.

57

[23] Kari Korpela, Jukka Hallikas, and Tomi Dahlberg. Digital supply chain transforma-

tion toward blockchain integration. In proceedings of the 50th Hawaii international

conference on system sciences, 2017.

[24] Kari Korpela, Karri Mikkonen, Jukka Hallikas, and Mikko Pynnönen. Digital busi-

ness ecosystem transformation–towards cloud integration. In 2016 49th Hawaii In-

ternational Conference on System Sciences (HICSS), pages 3959–3968. IEEE, 2016.

[25] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papaman-

thou. Hawk: The blockchain model of cryptography and privacy-preserving smart

contracts. In 2016 IEEE symposium on security and privacy (SP), pages 839–858.

IEEE, 2016.

[26] Yong Ming Kow and Xianghua Ding. Hey, i know what this is!: Cultural affinities

and early stage appropriation of the emerging bitcoin technology. In Proceedings of

the 19th International Conference on Supporting Group Work, pages 213–221. ACM,

2016.

[27] Alptekin Küpçü and Anna Lysyanskaya. Usable optimistic fair exchange. In Cryp-

tographers Track at the RSA Conference, pages 252–267. Springer, 2010.

[28] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals

problem. ACM Transactions on Programming Languages and Systems (TOPLAS),

4(3):382–401, 1982.

[29] Meng Li, Liehuang Zhu, and Xiaodong Lin. Efficient and privacy-preserving car-

pooling using blockchain-assisted vehicular fog computing. IEEE Internet of Things

Journal, 2018.

[30] Ming Li, Jian Weng, Anjia Yang, Wei Lu, Yue Zhang, Lin Hou, Jia-Nan Liu, Yang

Xiang, and Robert Deng. Crowdbc: A blockchain-based decentralized framework for

crowdsourcing. IEEE Transactions on Parallel and Distributed Systems, 2018.

[31] Xiaoqi Li, Peng Jiang, Ting Chen, Xiapu Luo, and Qiaoyan Wen. A survey on the

security of blockchain systems. Future Generation Computer Systems, 2017.

[32] Xiaodong Lin, Johnny W Wong, and Weidong Kou. Performance analysis of secure

web server based on ssl. In International Workshop on Information Security, pages

249–261. Springer, 2000.

58

[33] Dongxiao Liu, Amal Alahmadi, Jianbing Ni, Xiaodong Lin, et al. Anonymous reputa-

tion system for iiot-enabled retail marketing atop pos blockchain. IEEE Transactions

on Industrial Informatics, 2019.

[34] Ronald Maier, Giuseppina Passiante, and Shujun Zhang. Creating value in networks.

International Journal of Innovation and Technology Management, 8(03):357–371,

2011.

[35] Robert M Monczka, Robert B Handfield, Larry C Giunipero, and James L Patterson.

Purchasing and supply chain management. Cengage Learning, 2015.

[36] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[37] Charles Noyes. Bitav: Fast anti-malware by distributed blockchain consensus and

feedforward scanning. arXiv preprint arXiv:1601.01405, 2016.

[38] Andrea Ordanini and Gaia Rubera. Strategic capabilities and internet resources in

procurement: A resource-based view of b-to-b buying process. International Journal

of Operations & Production Management, 28(1):27–52, 2008.

[39] Abdallah Zoubir Ourad, Boutheyna Belgacem, and Khaled Salah. Using blockchain

for iot access control and authentication management. In International Conference

on Internet of Things, pages 150–164. Springer, 2018.

[40] Fei Qin, Feng Mai, Michael J Fry, and Amitabh S Raturi. Supply-chain performance

anomalies: Fairness concerns under private cost information. European Journal of

Operational Research, 252(1):170–182, 2016.

[41] Pamela Vagata and Kevin Wilfong. Scaling the facebook data warehouse to 300 pb.

Facebook Code, Facebook, 10, 2014.

[42] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs. bft repli-

cation. In International Workshop on Open Problems in Network Security, pages

112–125. Springer, 2015.

[43] Wei Wang, Kah Chan Teh, and Kwok Hung Li. Artificial noise aided physical layer

security in multi-antenna small-cell networks. IEEE Transactions on Information

Forensics and Security, 12(6):1470–1482, 2017.

[44] Wei Wang, Kah Chan Teh, Kwok Hung Li, and Sheng Luo. On the impact of adaptive

eavesdroppers in multi-antenna cellular networks. IEEE Transactions on Information

Forensics and Security, 13(2):269–279, 2018.

59

[45] J Weng, Jian Weng, J Zhang, M Li, Y Zhang, and W Luo. Deepchain: Auditable and

privacy-preserving deep learning with blockchain-based incentive. Cryptology ePrint

Archive, Report 2018/679, 2018.

[46] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.

Ethereum project yellow paper, 151:1–32, 2014.

[47] A. Yang, E. Pagnin, A. Mitrokotsa, G. P. Hancke, and D. S. Wong. Two-hop distance-

bounding protocols: Keep your friends close. IEEE Transactions on Mobile Comput-

ing, 17(7):1723–1736, July 2018.

[48] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and Huaimin Wang.

Blockchain challenges and opportunities: A survey. International Journal of Web

and Grid Services, 14(4):352–375, 2018.

[49] Guy Zyskind, Oz Nathan, et al. Decentralizing privacy: Using blockchain to protect

personal data. In Security and Privacy Workshops (SPW), 2015 IEEE, pages 180–184.

IEEE, 2015.

60

