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Abstract
Materials at the nanoscale have different chemical, structural, and optoelec-

trical properties compared to their bulk counterparts. As a result, such materials,

called nanomaterials, exhibit observable differences in certain physical phenom-

ena. One such resulting phenomenon called the piezoelectric effect has played

a crucial role in miniature self-powering electronic devices called nanogenerators

which are fabricated by using nanostructures, such as nanowires, nanorods, and

nanofilms. These devices are capable of harvesting electrical energy by induc-

ing mechanical strain on the individual nanostructures. Electrical energy created

in this manner does not have environmental limitations. In this thesis, impor-

tant coupled effects, such as the nonlinear piezoelectric effect of a semiconducting

wurtzite ZnO nanowire are studied by solving a time-dependent thermo-electro-

mechanical model. For the examples considered here, the mathematical model

consists of a system of fully-coupled nonlinear partial differential equations, and

it is solved by using a variational formulation based on finite element representa-

tion. The numerical solution to this model is compared with the results obtained

for the linear model of piezoelectric effect. The main focus has been given to the

results from finite element analysis as a generalized model of the ZnO nanowire in

order to understand its characteristics at an unperturbed state.
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Chapter 1

Introduction

1.1 Nanomaterials and Why They Are Useful

Nanomaterials are the group of materials where at least one of the dimen-

sions is measured in the 1 nm - 100 nm range. They have been studied extensively

because of their unique properties owing to their substantially large surface area

to volume ratio. Nanomaterials display different chemical, mechanical, electri-

cal, and optical properties based on their chemical and structural compositions.

Because of these range of different properties, nanomaterials have been used in

scientific and engineering research and development, from drug delivery in the

human body to fabricating novel electronic devices [1], [2].

Some nanomaterials have the ability to convert between mechanical and

electrical energy due to the presence of electromechanical coupling in the material

[3]. This phenomenon known as the piezoelectric effect (see section 1.2) has been

used in the form of nanogenerators to harvest clean and renewable energy from

abundant mechanical energy sources in the environment [4], [5]. Energy harvest-

ing using nanogenerators involves inducing mechanical strain in nanomaterials to

discharge electric current or voltage. Electrical energy created in this manner does

not have environmental limitations [5].
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1.2 The Origin of Piezoelectric Effect

Piezoelectricity means electricity generated from pressure. The word piezo

means “pressure”, which is derived from the Greek word piezein “to press tight,

squeeze” [6]. Piezoelectric effect is classified into two categories - direct and con-

verse (also known as indirect). The direct piezoelectric effect is the phenomenon

by which electric charge is induced in a material subjected to mechanical stress

because of its surface charge separation. It was discovered by Pierre and Jacques

Curie in 1880 [7]. The converse piezoelectric effect is the reverse procedure where

mechanical strain is induced in the presence of applied electric field. It was first

predicted mathematically by Gabriel Lippmann in 1881 from fundamental ther-

modynamic principles [8] and later proved by the Curie brothers [9]. Piezoelectric

materials are thus a type of transducer. The first practical application of piezo-

electric devices was SONAR, which was developed by Paul Langevin during the

World War I to detect submarines under water [10]. Since then, piezoelectric ma-

terials have been used to develop different types of devices, such as transformers

[11], sensors [12], actuators [13], motors [14], MEMS (Microelectromechanical sys-

tems) devices for electrical [15] and biomedical [16] applications, acoustic devices

[17], and energy harvesters [18].

1.3 Characteristics of Piezoelectric Materials

Whether a material is piezoelectric depends on its microscopic charge dis-

tribution. Piezoelectric materials are known to exhibit spontaneous polarization
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as a result of formation of spontaneous dipole moments. Therefore, piezoelec-

tric materials must be polar and non-centrosymmetric, i.e., there must not be an

inversion centre [16], [19]. Dipole moments exist in polar materials because the

centres of positive and negative charges are not the same. That is why, due to this

charge coupling, piezoelectric materials are classified under the group of materials

called smart materials [16], [20]. Smart materials themselves have been utilized in

numerous energy harvesting applications. Some of the most recent advancements

include using electromechanical behaviour of cellulose with ZnO nanocoating to

harvest vibrational energy [21] and using a plasticizer-modified electrostrictive

polymer for mechanical energy harvesting [22]. When piezoelectric materials are

subjected to mechanical stress (in case of the direct piezoelectric effect), the shape

of the material changes, disrupting their inherent charge distribution. This gener-

ates dipole moments in addition to those generated as a result of spontaneous po-

larization. Similarly, with converse piezoelectric effect, applying an external elec-

tric field to the piezoelectric material alters the natural charge distribution which

results in mechanical stress and strain [16], [19].

Piezoelectric materials can be both synthetic and natural, the latter of which

include quartz crystals, Rochelle salt, sucrose, and topaz [19]. Synthetic piezoelec-

tric materials are created by heating materials above their Curie temperature and

applying electric field to align the dipoles [19], [23].
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1.4 Significance of Piezoelectric Nanomaterials and

Nanogenerators

Traditionally, piezoelectric ceramic quartz have been used to fabricate de-

vices which are used as power sources, motors, in control applications, and many

more [24], [25], [26]. Ever since the piezoelectric effect has been observed in nano-

materials, extensive research has been conducted to investigate novel possibilities

owing to their unique properties [4], [15], [27], [28], [29]. Piezoelectric nanoma-

terials are known to be more flexible and endure higher stress compared to their

bulk counterparts [1], [30], [31]. These differences along with the inherent prop-

erties of nanomaterials have led to fabrication of novel 1-D nanostructures (such

as nanotubes, nanowires, and nanorods) that have overcome limitations of bulk

materials [4], [29], [32], [33].

Over the last decade, interest in piezoelectric nanomaterials have increased

because of the need to fabricate miniature piezoelectric generators [16], [18], [34].

The term piezoelectric “nanogenerator” was first coined by Wang and Song in

2006 [18], where several millivolts of output voltage was generated by bending

a zinc oxide nanowire (ZnO NW) by using an Atomic Force Microscope’s (AFM)

tip. Piezoelectric nanogenerators, as the name suggests, are miniature devices that

are fabricated using 1-D piezoelectric nanostructures. The flexibility of the nano-

material depends on the choice of substrate used for material growth [4]. There are

different types of nanogenerator structures which are chosen based on efficiency

and ease of fabrication. The two most common arrangements are Vertical NW In-

tegrated Nanogenerator (VING) arrays and Lateral NW Integrated Nanogenerator



Chapter 1. Introduction 5

(LING) networks, out of which the VING arrays are the more popular choice as it

is easier to synthesize vertical ZnO NW arrays [4].

Nanogenerators can be used to drive low-power micro-/nanodevices or

recharge batteries. The motivation behind perfecting nanodevices is to fabricate

self-powering devices that can harvest small-scale mechanical energy or wasted

energy from the environment [18], [29]. In the long run, these devices will be more

cost-effective and efficient compared to the traditional rechargeable batteries. For

example, a self-powered pacemaker that operate by utilizing mechanical energy

from movements of the body can save patients inconvenient and sometimes life-

threatening surgeries that are required to replace the batteries every seven years

[35].

1.5 In This Thesis

Until recently, mathematical models describing the piezoelectric effect were

constructed by considering only the linear piezoelectric behaviour of the material,

where the quadratic terms associated with electrical polarization were ignored

[31], [36]. However, recent experimental results showed that accounting for the

nonlinear piezoelectric behaviour of the material generated results with opposite

signs for polarization on the NW under compressive/tensile strain, compared to

the linear model of piezoelectric effect [37], [38]. The nonlinear model of the piezo-

electric effect will be the main focus in this thesis. The mathematical model stud-

ied here will extend upon the state of the art research by Araneo et al [30] that was
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published in May 2016. In their research, a physically-based model of the nonlin-

ear direct piezoelectric effect was incorporated into a thermo-electro-mechanical

(TEM) system in order to study the steady-state current-voltage characteristics of

ZnO NWs under a vertical strain (both compressive and tensile) in one dimen-

sion. The mathematical model considered comprised five fully-coupled nonlinear

partial differential equations (PDEs). In this thesis, a novel time-dependent TEM

model of the NW will be considered in two dimensions. The TEM model will be

constructed using a system of fully-coupled partial differential equations (PDEs),

and the solution will be numerically approximated using a variational formulation

based on finite element representation.
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Chapter 2

Mathematical Model

2.1 Background

In this research, the time-dependent TEM model of nanomaterials is used to

study the coupled effects focusing on the nonlinear piezoelectric effect. This model

is constructed by using the classical continuum approach as it has been known to

give a successful description of many nanodevices [31], [39], [40]. The mathemat-

ical model used to account for the thermal, electrical, and mechanical couplings is

based on the Fourier, Poisson, current continuity, and elasticity equations. These

equations are fully coupled through the constitutive equations relating thermal,

electrical, and mechanical quantities of the piezoelectric media [31], [36], [39], [41],

[42], [43].

The time-dependence in the coupled system is examined with respect to

the mechanical and thermal behaviour and the charge distribution in the NW. In

piezoelectric materials, the velocity of the elastic waves is much smaller than the

velocity of the electromagnetic waves [19]. That is why the electric field gener-

ated in piezoelectric materials is assumed to be quasi-static [19]. Therefore, the

magnetic field observed as a result of the elastic waves is negligible [19], [41]. A

2-D model in the xz-plane of the Cartesian coordinate system is considered in this

thesis, which is a good approximation for the analysis of NWs.
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2.2 Physical Setup of a Piezoelectric Nanogenerator

The typical model of the piezoelectric nanogenerator is given by the follow-

ing metal-semiconductor-metal (M-S-M) structure. This M-S-M structure is a type

of heterojunction system, where one material is a piezoelectric semiconductor and

the other one is a metal [44].

FIGURE 2.1: Schematic of n-doped ZnO NW transistor

The NW in between the two metal contacts acts as the semiconductor, which

is chosen to be n-doped with shallow impurities that readily ionize. This means

that the free carrier density is equal to the impurity concentration. ZnO is a pop-

ular choice for n-doped semiconducting NWs because of its wide band gap (∼

3.4eV ), large bond strength, excellent chemical and thermal stability, ability to

withstand large elastic deformation, and low cost [45], [46], [47]. ZnO has also

been used to create memristive devices using NWs [48], and in bandstructure cal-

culations of ZnO quasiparticles and pseudopotential description [49], [50].

In the M-S-M structure, the ZnO NW forms Schottky contacts with metals,

such as gold, as a result the high work function of metallic gold. Schottky contacts

are rectifying contacts which allow electrons to flow from ZnO to gold and not

the other way, and thus this M-S-M setup is basically two back-to-back Schottky
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diodes [44]. ZnO and gold forms Schottky contacts with high work function. The

Schottky barrier height is proportional to the piezoelectric charge density at the M-

S junctions and is in turn proportional to the induced strain. As a result, this type

of structure has a significant influence on current flow inside the nanogenerator

[36], [44]. The c-axis (or, vertical crystallographic axis) of the NW is assumed to be

oriented along the z-axis as per convention.

A piezoelectric potential (piezopotential) can be created in such devices

when mechanical stress is applied to non-centrosymmetric materials like ZnO (i.e.,

materials lacking an inversion centre). The most commonly used physical setup of

such devices consists in fixing (for example, by means of a silver paste) the two

ends of a set of parallel NWs or a single NW on a flexible substrate [36], [51].

When the substrate is bent, assuming that the substrate’s radius of curvature is

much larger than the NW length, an almost purely tensile/compressive strain is

generated on the NW [30].

2.3 System of Strongly Coupled Nonlinear PDEs

The time-dependent TEM system is defined using five fully coupled non-

linear PDEs of parabolic, hyperbolic, and elliptic types. Even though the model

studied in this thesis is in 2-D, the equations are represented in 3-D for notational

simplicity. The governing equations are as follows:

∂2~u

∂t2
=

1

ρ
~∇ · σ , (2.3.1)

~∇ · ~D = q(p− n+N) , (2.3.2)
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∂n

∂t
=

1

q
~∇ · ~Jn + Un , (2.3.3)

∂p

∂t
= −1

q
~∇ · ~Jp + Up , (2.3.4)

∂T

∂t
=

1

Cρ
(k∇2T ) +

1

Cρ
Q . (2.3.5)

In the elasticity equation (2.3.1), which is of hyperbolic type, ~u represents the

elastic displacement dependent on the spatial coordinates, σ is the Cauchy stress

tensor, and ρ is the material density.

The Poisson (2.3.2) and the current continuity equations (2.3.3 and 2.3.4)

play a fundamental role in semiconductor device modelling. The Poisson equa-

tion formulates a relationship between the electrostatic potential φ and the charge

distribution. Here, ~D is dielectric displacement vector, q is the electric charge, p

and n are the hole and electron carrier concentrations, and N is the net doping

concentrations of ionized donors and acceptors.

The current continuity equations are derived using Ampere’s law [52], [53]:

~∇× ~H =
∂ ~D

∂t
+ ~J . (2.3.6)

By applying the divergence operator on this equation and splitting the conduc-

tion current density ~J into ~Jn and ~Jp, for electrons and holes respectively, and by

assuming that all charges in the semiconductors, except the mobile carriers (elec-

trons and holes), are time invariant, the following current continuity equation is

obtained [52]:
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~∇ · ( ~Jn + ~Jp) + q
∂

∂t
(p− n) = 0 . (2.3.7)

In order to interpret this equation easily, it is split into the forms given by

equations (2.3.3) and (2.3.4) by introducing the quantities Un and Up, which de-

scribes the net generation (G) - recombination (R) rates of electrons and holes, re-

spectively (Un = Up = G−R). The generation rates in this model are assumed to be

zero as there are no external light sources present in the main examples considered

here. However, the model can be extended to this case too. The recombination

rates of electrons and holes are defined through a trap-assisted mechanism, which

is given by the Schokley-Read-Hall formula [53], [54]:

R =
pn− n2

i

τp(n+ nt) + τn(p+ pt)
. (2.3.8)

Therefore,

Un = Up =
n2
i − pn

τp(n+ nt) + τn(p+ pt)
. (2.3.9)

where τn and τp are electron and hole carrier lifetimes, and nt and pt are electron

and hole trap densities. The quantities nt and pt can be assumed to be equal to the

intrinsic carrier concentration ni [30].

In semiconductors, current flow occurs because of two major effects - the

drift of charge carriers due to the influence of an electric current and the diffusion

current due to the concentration gradient of the charge carriers. These drift and

diffusion components can be combined into the following equations for electron

and hole current densities:
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~Jn = qnµn ~E + qDn
~∇n , (2.3.10)

~Jp = qpµp ~E − qDp
~∇p , (2.3.11)

where µn and µp denote the electron and hole mobilities, and Dn = µn
kBT
q

and

Dp = µp
kBT
q

denote the Einstein relationships for diffusion of the charged particles

in semiconductors.

Finally, in order to account for the thermal effects in semiconductor devices,

the Fourier equation (2.3.5) is chosen. The material density ρ and specific heat ca-

pacity Cρ of the material are assumed to be independent of temperature based on

practical device applications [52], [55]. The tensor k denotes the thermal conduc-

tivity tensor, and Q is the volumetric heat source. In order to avoid complicating

the model, an approximation is used by not considering the current induced by

gradients of the temperature [52]. The coupling between the thermal and electri-

cal components is defined as the pyroelectric effect. It is defined as the ability of

certain materials to generate electric charge as a result of change in temperature in-

duced in the material. This phenomenon is considered here since wurtzite lattices

like ZnO exhibit both piezo- and pyroelectric effects.

The governing equations are coupled by using the following constitutive

relations which are used to describe the direct and converse piezoelectric effects in

semiconductors:

σ = CEε+ e~∇φ− βθ , (converse) (2.3.12)

~D = ~Ppiezo − k0κ~∇φ+ ~γθ . (direct) (2.3.13)
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In the equation for the converse piezoelectric effect, σ is the Cauchy stress

tensor, CE is the elastic stiffness tensor for the electrostatic field, φ is the electro-

static potential, ε is the Euler-Almansi strain tensor, e is the piezoelectric strain

coefficient tensor, β is the thermal stress tensor, and θ = T − T0 is the temperature

deviation from the reference temperature of 300K.

In the direct piezoelectric effect equation (2.3.13), ~D is dielectric displace-

ment vector, k0 is the permittivity of vacuum, κ is the relative dielectric tensor of

rank 2, ~γ is the primary pyroelectric coefficient, and ~Ppiezo is the polarization vector

which accounts for both linear and nonlinear piezoelectric effects. The relation-

ship depicted by the direct piezoelectric effect equation is valid for materials with

time-independent permittivity [52]. Since the behaviour of ZnO wurtzite crystal is

isotropic on the basal plane [30], κ is considered to be a scalar quantity [52].

Traditionally, the linear piezoelectric effect has been studied extensively in

literature ([18], [31], [36], and references therein), where the polarization vector

~Ppiezo is given by the product of the first order piezoelectric strain coefficients times

the Euler-Almansi strain tensor components. For example, for the linear effect

along the c-axis of the NW,

~Ppiezo,lin =


e15εzx

e15εyz

e31(εx + εy) + e33εz

 , (2.3.14)

where e15, e31, and e33 are the only three independent piezoelectric strain coeffi-

cients as a result of the crystal symmetry in the wurtzite phase of hexagonal ZnO
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[30]. However, recently it has been observed that contribution of the second or-

der piezoelectric terms in the polarization vector along the c-axis of the ZnO NW

(the nonlinear piezoelectric effect) can predict results with opposite signs for po-

larization on the NW under compressive/tensile strain, compared to the linear

piezoelectric model [37], [38]. For quantum dots such nonlinear effects have been

studied in [56].

The nonlinear model of the piezoelectric polarization vector is given by the

following equation:

~Ppiezo = ~Ppiezo,lin +


0

0

P sp
piezo + e311

( εx+εy
2

)2
+ e333ε

2
z + e313

εx+εy
2
εz

 , (2.3.15)

where the second order piezoelectric strain coefficients are given by e311 for dou-

ble strains on the growth plane, e333 for strains perpendicular to the plane, and

e313 for the combination of parallel and perpendicular strains. In addition, P sp
piezo is

the spontaneous polarization. The strongest nonlinearities in the NW are observed

along the direction of the growth, i.e., the c-axis, and therefore nonlinearities aris-

ing from shear strains are ignored [30].

Even though both the stationary and the time-dependent forms of the electro-

mechanical model has been studied extensively in the multi-dimensional case for

both ceramics and nanomaterials, a proper time-dependent mathematical model

of the TEM system has not been examined yet. It has been known that time-

dependent temperature variation in some nanomaterials coupled with their semi-

conducting properties, successfully generate electric polarization and charge
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separation in low dimensional nanostructures (0-D, 1-D, and 2-D nanostructures,

such as quantum dots, nanowires, and nanosheets, respectively) [57] fabricated us-

ing these materials. Therefore, it is anticipated that introducing time dependence

in the TEM coupled system will further enhance the charge separation inside the

nanomaterial, thereby increasing current flow in the nanogenerator. In addition,

accounting for the decay of excess charge carriers over time in the current continu-

ity equations is expected to give a more realistic model of current generation inside

the nanogenerator.

2.4 Boundary Conditions

The M-S interfaces are assumed to be quasi neutral with Schottky barriers.

The Schottky barrier heights are regulated by the polarization charges generated

at the ends of the NW. The interfaces are also assumed to be in thermal equilib-

rium, thus satisfying the mass action formula given by np = n2
i , where ni is the

intrinsic carrier concentration. Charge neutrality conditions are also applied at the

boundaries, which means that the sum of the charges associated with the carriers

must equal zero: p − n + N = 0. Here, N is the doping concentration function for

the n-doped NW. It can be described approximately using the following Gaussian

function [36]:

N = NDn +NDn−max e
( z−l×0.5

ch )
2

, (2.4.1)

where NDn is the n-type background doping concentration, NDn−max is the maxi-

mum donor doping concentration, ch controls the spreading width of the doping
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concentration, l is the length of the ZnO NW, and z represents the positive z-axis

of the Cartesian plane. See Figure C.1 in Appendix C for the plot.

Using the mass action formula and the charge neutrality condition, the fol-

lowing carrier concentrations are applied at the M-S interfaces:

p =
−N +

√
N2 + 4n2

i

2
; n =

N +
√
N2 + 4n2

i

2
. (2.4.2)

Boundary condition for the electrostatic potential is given by [36], [52]:

φ = V +
kBT0

q
ln

(
N +

√
N2 + 4n2

i

2ni

)
. (2.4.3)

For the elastic displacement, homogeneous Dirichlet boundary conditions are used.

For the Fourier equation, a steady Dirichlet boundary condition of 320K is chosen.

On the surface of the nanowire, a zero-flux boundary condition of the following

form is applied:

− ~n · ~Γ = ~0 , (2.4.4)

where ~n is the outward unit normal vector and ~Γ is the conservative flux vector.
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2.5 Initial Conditions

Initial values for the system variables are determined by first solving the

stationary problem and using the solution as an estimate for the initial values of

the time-dependent system. The stationary equations are constructed by setting

the time derivatives in equations (2.3.1) - (2.3.5) to zero, as illustrated below:

1

ρ
~∇ · σ = 0 , (2.5.1)

~∇ · ~D = q(p− n+N) , (2.5.2)

1

q
~∇ · ~Jn + Un = 0 , (2.5.3)

− 1

q
~∇ · ~Jp + Up = 0 , (2.5.4)

1

Cρ
(k∇2T ) +

1

Cρ
Q = 0 . (2.5.5)

For details on computing the stationary solution, see section 4.1. The initial val-

ues thus chosen were also ensured to be consistent with the boundary conditions

applied at z = 0.
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Chapter 3

Drift-Diffusion-Poisson System as a

Building Block for Semiconductors

The drift-diffusion-Poisson system of equations has been classically used to

define the fundamental properties of semiconductor devices. It consists of two

parabolic drift-diffusion equations for electron and hole concentrations for the

bipolar semiconductor model, and the elliptic Poisson equation accounting for the

electrostatic potential. This chapter includes an outline of the well-posedness of the

drift-diffusion-Poisson model for the unipolar semiconductor and the discretized

model for the bipolar case. Some of the most recent studies conducted using this

model include [58], [59], [60], [61].

3.1 Well-Posedness of the Problem

Mathematical models cannot always fully predict the behaviour of physi-

cal phenomena due to various limitations on even the best models, and often it is

difficult to prove well-posedness of an elaborate model. A mathematical model is

considered well-posed if there exists a unique solution whose behaviour changes

continuously with the initial conditions [62]. Determining well-posedness of a

material is of mathematical importance only since physically a unique solution
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always exists. The extent to which a model is well-posed determines how effec-

tive it is to depict the physical phenomenon. In the case of semiconductor devices,

the drift-diffusion-Poisson type models are usually analysed in order to determine

well-posedness [52], [62], [63].

In this section, the well-posedness of a drift-diffusion-Poisson system of a

unipolar semiconductor model is outlined as an example. Details of the exactness

and uniqueness proofs can be found in [63]. This particular model consists of

the electron continuity equation n(x, t), Poisson equation V (x, t), and the equation

for electron temperature θ(x, t). This unipolar drift-diffusion-Poisson model is a

special case of the model considered in Chapter 2:

∂n

∂t
− ~∇ · (~∇(nθ) + n~∇V ) = 0 , (3.1.1)

~∇ · (k(n)~∇θ) =
n

τ
(θ − θL(x)) , (3.1.2)

− λ2∇2V = n− C(x) in Ω, t > 0 . (3.1.3)

These equations hold in the bounded domain Ω ⊂ Rd(d > 1) where k(n) is the ther-

mal conductivity, θL(x) is the lattice temperature, C(x) is the doping profile, τ is

the relaxation time, and λ is the Debye length. The initial and boundary conditions

are as follows:

n(0) = nl in Ω , (3.1.4)

n = nD, θ = θD, V = VD on ΓD , (3.1.5)

~∇n · ν = ~∇θ · ν = ~∇V · ν = 0 on ΓN , (3.1.6)
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where it is assumed that the boundary ∂Ω ε C0,1 is divided into ΓD and ΓN and

∂Ω = ΓD∪ΓN , ΓD∩ΓN = , ΓN is closed, the (d−1)-dimensional Lebesgue measure

of ΓD is positive, and ν is the exterior unit normal vector on ∂Ω.

The existence theorem is given by [63]: Let Ω ⊂ Rd(d > 1) be a bounded

domain with ∂Ω ε C0,1, T, τ, λ > 0, and let k ε C1([0,∞]) such that there exist k0, k1,

n∗, n∗ > 0 with:

(i) k(z) > 0 for all z > 0

(iI) either k(x) > k0 for all z > 0, or k(z) = z for all 0 6 z 6 n∗ (3.1.7)

(iii) k(z) > k1z for all z > n∗

Furthermore, it is also assumed that the boundary data satisfy the following:

nD, VDεL
2(0, T ;H1(Ω)), θDεL

q(0, T ;W 1,q(Ω)),

nD, θDεL
∞(0, T ;L∞(Ω)), infΩT

nD > 0, infΩT
θD > 0, (3.1.8)

and the initial data is assumed to satisfy the following conditions:

nl, θLCεL
∞(Ω), infΩnl > 0, infΩθL > 0, infΩC(x) > 0 . (3.1.9)

Then, there exists a weak solution (n, θ, V ) ε L2(0, T ;H1(Ω))3 to (3.1.1) - (3.1.6) sat-

isfying ∂n
∂t
ε L2(0, T ;H−1(Ω ∪ ΓN)) and:

0 6 n(t) 6 K0e
βt, 0 < m 6 θ(t) 6M in Ω, t ε (0, T ) . (3.1.10)
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The proof of this existence theorem is based on the Leray-Schauder fixed-

point theorem [64] and the Stampacchia truncation method [64]. The Leray-Schauder

fixed-point theorem states that if D is a non-empty, convex, bounded and closed

subset of Banach space B and T : D → D is a compact and continuous map, then

T has a fixed point in D. The Stampacchia truncation step is needed in the diffu-

sion coefficients of ~∇· (θ~∇n) and ~∇· (k(n)~∇θ) to make these expressions uniformly

elliptic.

The uniqueness theorem is given by [63]: Let the assumptions of the ex-

istence theorem hold, and let k be locally Lipschitz continuous on [0,∞). Then,

there exists a unique solution (n, θ, V ) to (3.1.1) - (3.1.6) in the class of bounded

weak solutions satisfying n ε L∞(0, T ;W 1,∞(Ω)), where p > 2 if d = 2 and p > d if

d > 3.

The proof is started by assuming (n1, θ1, V1) and (n2, θ2, V2) as solutions to

the system using the conditions stated in the theorem. At first an estimate of the

quantity ∇(θ1 − θ2) is derived by assuming the test function θ1 − θ2 using weak

formulations of the two solutions of θ. Next an estimate of n1 − n2 is determined

satisfying the two assumed solutions of n. These estimates are combined and the

uniqueness of the solution is proved by applying Hölder’s inequality with p > 2,

Sobolev embedding H1(Ω) → Lq(Ω), the Poincaré inequality [65], and the Gron-

wall Lemma [66].
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3.2 Discretized Model

The equations describing the basic charge transport model in bipolar semi-

conductors are given by the following drift-diffusion-Poisson system:

− κ∇2φ− q(p− n+N) = 0 , (3.2.1)

∂n

∂t
=

1

q
~∇ · ~Jn + Un , (3.2.2)

∂p

∂t
= −1

q
~∇ · ~Jp + Up , (3.2.3)

~Jn = qnµn ~E + qDn
~∇n , (3.2.4)

~Jp = qpµp ~E − qDp
~∇p . (3.2.5)

Different models governing these equations have been analyzed for p-n junctions

[67] and cylindrical coordinate systems [68] using the finite difference method.

As the first steps in this section, the general approach to solving these equations

using finite difference method is outlined. The generalized boundary conditions

are written in the following manner:

φ = φapplied + φbuilt−in , (3.2.6)

n =

√
N2 + 4n2

i +N

2
, (3.2.7)

p =

√
N2 + 4n2

i −N
2

, (3.2.8)

where φ is the electrostatic potential, and n and p are the electron and hole carrier

concentrations, respectively. For the derivation of the boundary conditions for n
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and p, see section 2.4. At the surface of the nanowire, Neumann boundary con-

ditions are applied. These conditions, as per the following equations, imply no

surface charges (i.e., the normal component of the electrostatic field is zero) and no

current flow through the surface:

~∇ · ~φ = 0 , (3.2.9)

~∇ · ~n = 0 , (3.2.10)

~∇ · ~p = 0 . (3.2.11)

The following scheme is used to discretize the spatial dimensions:

FIGURE 3.1: 1-D illustration of the adopted nomenclature for finite
differences (e.g. [68])

The drift-diffusion-Poisson system is discretized on a 2-D domain using the x and z

Cartesian coordinates. The approximate algebraic equations are constructed using

the Taylor series expansion. For the Poisson equation (3.2.1), the finite difference

approximation at all the inner grid points is given by [52]:

∂φ
∂x

∣∣∣
i+1/2,j

− ∂φ
∂x

∣∣∣
i−1/2,j

∆xavgi

+

∂φ
∂z

∣∣∣
i,j+1/2

− ∂φ
∂z

∣∣∣
i,j−1/2

∆zavgj

= − q
κ

(pi,j − ni,j +Ni,j) ,

which is followed by:
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φi+1,j−φi,j
∆xi

− φi,j−φi−1,j

∆xi−1

∆xavgi

+

φi,j+1−φi,j
∆zj

− φi,j−φi,j−1

∆zj−1

∆zavgj

= − q
κ

(pi,j − ni,j +Ni,j) , (3.2.12)

where ∆x = xi+1 − xi, ∆xavgi = ∆xi−∆xi−1

2
, ∆z = zj+1 − zj , and ∆zavgj =

∆zj−∆zj−1

2
.

Time-dependence in the Poisson equation is accounted for by differentiating (3.2.1)

with respect to time and by substituting the algebraic difference equations for ∂n
∂t

and ∂p
∂t

into the right hand side of equation (3.2.12) [52].

In order to solve the continuity equations numerically, conservative schemes

[69] are applied by subdividing the computational domain in between the grid

points. The continuity equations are discretized on the grid nodes of a uniform

mesh, which requires the current densities to be determined on the mid-points

of neighbouring grid nodes. The equations are evaluated at these mid-points by

using interpolation schemes. That is why in order to calculate the current densi-

ties, the carrier concentrations also have to be evaluated at the mid-points. The

finite difference discretization requires that the mobility µ, electrostatic field ~E,

Einstein relationships for semiconductors Dn/p (see section 2.3 for details), and the

current densities ~Jn/p are constant within the interval between each grid points,

eg., [xi, xi+1] ⊂ [0, Lx]. In order to be consistent with Poisson equation, it is com-

monly assumed that the electrostatic potential φ varies linearly between adjacent

grid points [69]. The current densities are evaluated by using the Scharfetter-

Gummel approximation for constant mobility and diffusion [52]. This method is

numerically effective when the changes in carrier concentrations are assumed to be

large on the computational domain. The Scharfetter-Gummel approximation uses

a weighted difference approach instead of central or upwind differences because
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the latter approaches can generate nonphysical solutions for carrier concentrations

and electrostatic potential unless extremely fine mesh is used [68], [69]. The sta-

tionary part of the continuity equations for electrons is given by [52]:

(Jnx)
∣∣∣
i+1/2,j

− (Jnx)
∣∣∣
i−1/2,j

q∆xavgi

+
(Jnz)

∣∣∣
i,j+1/2

− (Jnz)
∣∣∣
i,j−1/2

q∆zavgj

+ Un

∣∣∣
i,j

= 0 . (3.2.13)

Similarly, for holes [52]:

(−Jpx)
∣∣∣
i+1/2,j

− (−Jpx)
∣∣∣
i−1/2,j

q∆xavgi

+
(−Jpz)

∣∣∣
i,j+1/2

− (−Jpz)
∣∣∣
i,j−1/2

q∆zavgj

+ Up

∣∣∣
i,j

= 0 ,

(3.2.14)

where the algebraic equations for the current density components are given using

the Scharfetter-Gummel approximation [70]:

Jnx

∣∣∣
i+1/2,j

=Dn

∣∣∣
i+1/2,j

B
(
φi,j−φi+1,j

kBT/q

)
ni,j −B

(
φi+1,j−φi,j
kBT/q

)
ni+1,j

∆xi

+ ∆xi

(
1

2
coth

(
φi+1,j − φi,j

2kBT/q

)
− kBT/q

φi+1,j − φi,j

)
∂

∂x
Jnx

∣∣∣
i+1/2,j

, (3.2.15)

Jnz

∣∣∣
i,j+1/2

=Dn

∣∣∣
i,j+1/2

B
(
φi,j−φi,j+1

kBT/q

)
ni,j −B

(
φi,j+1−φi,j
kBT/q

)
ni,j+1

∆zj

+ ∆zj

(
1

2
coth

(
φi,j+1 − φi,j

2kBT/q

)
− kBT/q

φi,j+1 − φi,j

)
∂

∂z
Jnz

∣∣∣
i,j+1/2

, (3.2.16)
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Jpx

∣∣∣
i+1/2,j

=Dp

∣∣∣
i+1/2,j

B
(
φi,j−φi+1,j

kBT/q

)
pi+1,j −B

(
φi+1,j−φi,j
kBT/q

)
pi,j

∆xi

+ ∆xi

(
1

2
coth

(
φi,j − φi+1,j

2kBT/q

)
− kBT/q

φi,j − φi+1,j

)
∂

∂x
Jpx

∣∣∣
i+1/2,j

(3.2.17)

,

Jpz

∣∣∣
i,j+1/2

=Dp

∣∣∣
i,j+1/2

B
(
φi,j−φi,j+1

kBT/q

)
pi,j+1 −B

(
φi,j+1−φi,j
kBT/q

)
pi,j

∆zj

+ ∆zj

(
1

2
coth

(
φi,j − φi,j+1

2kBT/q

)
− kBT/q

φi,j − φi,j+1

)
∂

∂z
Jpz

∣∣∣
i,j+1/2

, (3.2.18)

where B(χ) is the Bernoulli function given by:

B(χ) =
χ

eχ − 1
. (3.2.19)

Detailed analysis of the exponential difference schemes for nonlocal pro-

cesses in semiconductors can be found in [52], [69], and [70]. When discretizing

the time-dependent system several methods can be applied, such as the fully ex-

plicit forward Euler method, semi-implicit time discretization, using an uncoupled

scheme with a stabilizing term in the Poisson equation, and the implicit backward

Euler method. Most of these methods either have a severe restriction on the time

step or display an unphysical oscillatory behaviour making them unsuitable for

practical device simulation. In this regard, the implicit backward Euler method

gives the most reliable numerical approximation. Even though the method is com-

putationally expensive, it is well known to be unconditionally stable (in the context

of linear stability analysis) for arbitrarily large time steps. The main drawback with
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this method is having to solve nonlinear algebraic equations at each time step [52],

[69].

The general form of equations (3.2.1)-(3.2.3) can be written in the following

manner, where functions F , G, and H represent the spatial discretizations formu-

lated using equations (3.2.12)-(3.2.19):

0 = F (φ, n, p) , (3.2.20)

∂n

∂t
= G(φ, n, p) , (3.2.21)

∂p

∂t
= H(φ, n, p) . (3.2.22)

The complete discretized equations are as follows:

0 = F ′(φm+1, nm+1, pm+1) , (3.2.23)

nm+1 − nm

∆tm
= G′(φm+1, nm+1, pm+1) , (3.2.24)

pm+1 − pm

∆tm
= H ′(φm+1, nm+1, pm+1) , (3.2.25)

where ∆tm = tm+1 − tm. In the functions G′ and H ′, the generation-recombination

Un/p for electrons and holes are evaluated at the m-th time step [52].

In general, the finite difference method approximates solutions to mathe-

matical models at the nodes of the discretized domain of the model. However,

the unknown variables have to be twice continuously differentiable, i.e., the PDEs

used to model the physical system are in strong form. An alternative to this ap-

proach is the finite element method, which obtains the numerical approximation

of the solution by converting the PDEs to the weak form, thereby removing the
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restriction of twice differentiable on the variables. In finite element method the

solutions are computed on each individual element on the domain. This method

requires more computational time, but it permits higher order of accuracy on the

solution. It is also relatively easier to implement finite element method on an un-

structured grid, making this method more flexible than finite difference method

[52], [62]. Details on the finite element method are provided in the next chapter. In

addition to the finite difference and finite element methods to modelling semicon-

ducting devices, methods such as the Scharfetter-Gummel box-method [71], [72]

and the finite volume discretization [73], [74] have been used for semiconductor

device modelling.
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Chapter 4

Numerical Analysis and Finite

Element Discretization

The highly nonlinear nature of the TEM system considered in this thesis,

along with coupling between the governing equations (2.3.1) - (2.3.5) makes it dif-

ficult to obtain the solution of the equations analytically. Therefore, an iterative

method is used to obtain a numerical approximation for the entire coupled system

of equations. In order to perform the numerical analysis in this thesis, the soft-

ware COMSOL Multiphysics is used [75]. COMSOL is a cross-platform software

that performs computer-aided simulation using finite element analysis involving

complicated geometry, and physical and mathematical nonlinearities in a model.

In COMSOL, the strong form of a PDE is first converted into the weak form

internally and then solved by finite element discretization of the model geometry

by using the Galerkin method (weighted functions). The resulting system of non-

linear algebraic equations is then solved in COMSOL by using a Newton-Raphson

type method. This method of obtaining the solution is sensitive to the initial con-

ditions. If the initial conditions are too far from the computed solution, the nonlin-

ear solver does not converge. The Newton-Raphson method is an iterative method

with quadratic convergence, meaning that the square of the error at current iter-

ation is proportional to the error at the next iteration. Below is an outline of the
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multivariate Newton-Raphson method.

First, recall the single variable Newton-Raphson method, which is given by:

F (v) = 0 ,

vk+1 = vk − F (vk)

F ′(vk)
, k = 0, 1, · · ·

Now for the multivariate case in context of the model given by equations (2.3.1) -

(2.3.5):

~F (~v) = 0 ,

~v = [ux uz φ n p T ]T , (4.0.1)

~F (~v) = [F1(~v) F2(~v) · · · F6(~v)]T .

Using Taylor series expansion (ignoring higher order terms), Fi(~v) is obtained as

follows:

Fi(~v) = Fi(~v
k) + (v1 − vk1)

∂Fi(~v
k)

∂v1

+ (v2 − vk2)
∂Fi(~v

k)

∂v2

+ · · ·+ (v6 − vk6)
∂Fi(~v

k)

∂v6

,

where the vector components v1 . . . v6 are given by equation (4.0.1) represent the

dependent variables of the TEM system considered in this thesis:

Fi(~v) = Fi(~v
k) + (ux − ukx)

∂Fi(~v
k)

∂ux
+ (uz − ukz)

∂Fi(~v
k)

∂uz
+ · · ·+ (T − T k)∂Fi(~v

k)

∂T
.
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For subsequent iterations, the preceding equation can be written in the following

general form:

Fi(~v) = Fi(~v
k) +

n∑
j=1

[
(vk+1
j − vkj )

∂Fi(~v
k)

∂vj

]
, (4.0.2)

i = 1, · · · , 6; k = 0, 1, · · ·

Using Fi(~v) = 0 in equation (4.0.2),

J(~vk)(vk+1
j − vkj ) + ~F (~vk) = 0 ,

vk+1
j = vkj − [J(~vk)]−1 ~F (~vk) , (4.0.3)

where J(~vk) is the Jacobian matrix of the system.

J(~vk) =



∂F1(~vk)
∂ux

∂F1(~vk)
∂ux

. . . ∂F1(~vk)
∂ux

∂F2(~vk)
∂uz

∂F2(~vk)
∂uz

. . . ∂F2(~vk)
∂uz

... . . . ...
∂F6(~vk)
∂T

∂F6(~vk)
∂T

. . . ∂F6(~vk)
∂T


. (4.0.4)

Computing inverse of a matrix is computationally demanding, that is why the

following approach is used instead. At each step, instead of using equation (4.0.3),

the following linearized system of equations is solved, where ∆vj = vk+1
j − vkj [62]

J(~vk)∆~v = ~F (~v) . (4.0.5)
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COMSOL uses a direct or an iterative linear solver to obtain the incremen-

tal change in the solution to equation (4.0.5). In this thesis, a direct solver is used

because of the fully coupled nature of the governing equations. Direct solvers

are suitable for most nonsingular systems. They are robust and are very fast for

models like the simple 2-D geometry used in this thesis (see Figure C.2 for de-

tails). There are three types of direct solvers in COMSOL - MUMPS, PARDISO,

and SPOOLES [75]. These linear system solvers work on general sparse linear sys-

tems of the form A~x = ~b and perform LU factorization on the matrix A. Direct

solvers can apply the following optional convergence criterion after the solution

step:

ρ|M−1(~b− A~x)| < tol · |M−1~b| . (4.0.6)

If the convergence error is greater than the preset value, the solution process is

terminated and an error message is generated. For the direct solvers, M = LU ,

where L and U are the LU factors computed by the solver, ρ is the stability constant

(default value is 400), and tol is the relative tolerance (default value is 0.01). In

terms of the accuracy of the solution, the choice of direct solver is not important,

and they differ primarily in their relative speed. The default direct solver MUMPS

is chosen as the linear system solver. It works on general systems like A~x = ~b by

using several preordering algorithms to permute the columns in order to minimize

the fill-in of the Jacobian matrix.
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4.1 Equation-Based Modelling in COMSOL Multiphysics

The governing equations are rearranged according to the General From PDE

interface in COMSOL Multiphysics, which is closely related to the conservation

laws that define many areas of physics [75]. For a vector of dependent variables ~v,

the General Form PDE reads as:

ea
∂2~v

∂t2
+ da

∂~v

∂t
+ ~∇ · ~Γ = ~f , (4.1.1)

where ~v = {ux, uz, φ, n, p, T}T , ~Γ is the conservative flux vector, ea is the mass coef-

ficient matrix, da is the damping/mass coefficient matrix, and ~f is the source term.

See Appendix A for details on how the governing equations were incorporated

into this form (note that in order to solve the stationary problem, ∂2~v
∂t2

and ∂~v
∂t

are

assumed to be zero). Internally, equations written in this form are converted to the

weak from before processing. This is illustrated in the following example.

Consider the following generalized boundary value problem:

− (au′)′ + bu′ + cu = f ,

u(0) = 0 ,

u(Lx) = 0 ,

(4.1.2)

where the coefficients a, b, c can be known constants or simple functions of space

or time, f is the source term, and Lx represents the length of the domain in which

the boundary value problem is valid. The goal here is to choose an approximate

solution u so that the residual r = −(au′)′ + bu′ + cu − f is as small as possible.
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Let there be a test function such that w(x) ε C1(0, Lx) with homogeneous Dirich-

let boundary conditions. Multiplying both sides of equation (4.1.2) by w(x) and

integrating the result gives:

∫ Lx

0

w(−(au′)′ + bu′ + cu)dx =

∫ Lx

0

wfdx . (4.1.3)

Note that by using integration by parts, the first term on the left-hand side of the

equation can be written as:

∫ Lx

0

−w(au′)′dx =

∫ Lx

0

−wd(au′)

= −
(
wau′

∣∣Lx

0
−
∫ Lx

0

au′w′dx

)
=

∫ Lx

0

au′w′dx .

(4.1.4)

This removes the second derivative on u and so equation (4.1.3) can be written as:

∫ Lx

0

au′w′dx+

∫ Lx

0

bwu′dx+

∫ Lx

0

cwudx =

∫ Lx

0

wfdx , (4.1.5)

which is the weak form of the differential equation. Similar calculations can be

shown for the multivariate case pertaining to the system of governing equations

for the TEM model, which is how equation (4.1.1) is converted to the weak form in

COMSOL.
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4.2 Verification Using Method of Manufactured Solu-

tions

Before computing the numerical solution to the mathematical model, it is

necessary to verify if the simulation tool works correctly. In this case, the drift-

diffusion-Poisson component of the semiconducting NW is analyzed by using the

method of manufactured solutions (MMS). This method is used to check whether

the simulation tool accurately reproduces the assumed analytical solution [76],

[77]. The MMS involves using predefined analytical functions as true solutions

to the dependent variables in order to obtain new source terms for the governing

equations, and new boundary and initial conditions. These modified governing

equations are solved using COMSOL Multiphysics and the numerical solutions

are compared to the predefined analytical solutions. The verification was carried

out in 1-D (along the c-axis) by using the following equations:

− k0κ33
d2φ

dz2
= q(N + p− n) , (4.2.1)

∂n

∂t
=

∂

∂z
·
(
−nµn

∂φ

∂z
+
µnkBT0

q

∂n

∂z

)
+ Un , (4.2.2)

∂p

∂t
= − ∂

∂z
·
(
−pµp

∂φ

∂z
− µpkBT0

q

∂p

∂z

)
+ Up . (4.2.3)

Note that for the stationary case, ∂n
∂t

and ∂p
∂t

= 0.
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The following functions are used as the predefined solutions:

φ̂(z) = sin
( z

15.9155

)
, (4.2.4)

n̂(z, t) = 1010

(
cos
( z

15.9155

)
+ cos

(
t

15.9155

))
, (4.2.5)

p̂(z, t) = 1010

(
cos
( z

12.72

)
+ cos

(
t

12.72

))
. (4.2.6)

Note that for the stationary case, t = 0.

Below is an illustration of the procedure using the Poisson equation (4.2.1):

Step 1: Add an auxiliary function F to the source term

∂n

∂t
− ∂

∂z
·
(
−nµn

∂φ

∂z
+
µnkBT0

q

∂n

∂z

)
= Un + F

Step 2: Derive the auxiliary function by substituting the assumed solution into the

equation

∂n̂

∂t
− ∂

∂z
·
(
−n̂µn

∂φ

∂z
+
µnkBT0

q

∂n̂

∂z

)
=

n̂p̂− n2
i

τn(p̂+ ni) + τn(p̂+ ni)
+ F

⇒ F =
∂n̂

∂t
− ∂

∂z
·
(
−n̂µn

∂φ

∂z
+
µnkBT0

q

∂n̂

∂z

)
− n̂p̂− n2

i

τn(p̂+ ni) + τn(p̂+ ni)

Step 3: Substitute the result from Step 2 into Step 1

∂n

∂t
− ∂

∂z
·
(
−nµn

∂φ

∂z
+
µnkBT0

q

∂n

∂z

)
=Un +

∂n̂

∂t
− ∂

∂z
·
(
−n̂µn

∂φ

∂z
+
µnkBT0

q

∂n̂

∂z

)
− n̂p̂− n2

i

τn(p̂+ ni) + τn(p̂+ ni)
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Step 4: Repeat the above steps for the rest of the dependent variables

Step 5: Derive the initial and boundary conditions using the assumed solutions

(4.2.4), (4.2.5), (4.2.6)

Step 6: Compute the numerical solution

See Appendix B for the results from verification.
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Chapter 5

Results and Discussion

The 2-D time-dependent nonlinear piezoelectric model for of the wurtzite

ZnO NW is solved using COMSOL Multiphysics. Alongside, the linear piezoelec-

tric model is solved as well in order to compare the results for these two cases.

The steady state solution of the two piezoelectric models is computed in order to

determine how long it would take for the time-dependent variables to reach the

steady state. The solutions to the stationary problem are used to get better initial

values for the time-dependent problem. The initial values used for both models

and the mesh statistics from finite element discretization of the 2-D NW are pro-

vided in Appendix C. Details on how the complete coupled TEM model was built

in COMSOL is provided in Appendix D along with the customized computational

settings.

The fundamental equations for modelling charge transport within semicon-

ductors is given by the drift-diffusion-Poisson model. This model has been ana-

lyzed using a verification method called MMS (as outlined in section 4.2). In this

procedure, a set of pre-defined (assumed) analytical solutions of the dependent

variables (φ, n, and p) are incorporated into the PDEs and the modified equations

are solved numerically with the help of appropriate boundary and initial condi-

tions. A successful implementation of this method showed a near perfect match

between the approximate and pre-defined solutions of the dependent variables.
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This verified the usage of COMSOL Multiphysics as a simulation tool for mod-

elling the classical drift-diffusion-Poisson system for semiconductor devices (see

Appendix B for details).

The mathematical model of the TEM system considered in this thesis has

been constructed using the governing equations (2.3.1) - (2.3.5), the constitutive re-

lations for the converse and direct piezoelectric effects given by equations (2.3.12)

and (2.3.13), respectively, and by applying boundary and initial conditions accord-

ing to sections 2.4 and 2.5, respectively. The linear model of the piezoelectric effect

has been integrated into the TEM system by means of the polarization vector given

by equation (2.3.14) and the nonlinear model by using equation (2.3.15). Results

from the nonlinear model are summarized on the next page. The time-dependent

simulation of the nonlinear piezoelectric effect has been run for 40s in steps of

0.005s. Initial results from simulation were presented in [78].
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Electrostatic potential, φ:

(A) 2-D surface plot of electrostatic potential
φ

(B) Plot of electrostatic potential φ vs. z at
x = 10[nm](see Figure C.3)

FIGURE 5.1: Electrostatic potential, φ [V ]

In Figure 5.1, the 2-D surface plot in (A) depicts the change in electrostatic poten-

tial φ along the x-z Cartesian plane of the ZnO NW, where the value of φ ranges

between 1.33478[V ]−1.36637[V ]. The line graph in (B) shows the change in electro-

static potential along the z-axis (which represents the c-axis of the NW). It reflects

the shape of the Gaussian doping profile N (given by equation (2.4.1) and Fig-

ure C.1). The boundary conditions for φ have been applied using equation (2.4.3),

where the applied potential V = 0.8[V ] based on examples in [18], [36]. The value

of φ at the boundaries is given by 1.3357[V ], and this can be seen in the subfig-

ure (B) above. Both of these figures have been generated using data from the the

time-dependent simulation at the end of 40s.
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Electron concentration, n:

(A) 2-D surface plot of electron concentration
n

(B) Plot of electron concentration n vs. z at
x = 10[nm] (see Figure C.3)

FIGURE 5.2: Electron concentration, n [1/nm3]

Figure 5.2 shows results for the electron concentration n from the time-dependent

simulation of the nonlinear model of piezoelectric effect. Both the 2-D surface plot

(A) and the line graph (B) have been generated using data from the last time step at

40s. The surface plot shows variation of the electron concentration throughout the

2-D ZnO NW. The value of n is shown to have a maximum value in the middle of

the NW, which is confirmed by the line graph in plot (B). This shape is in agreement

with the doping profile N (given by equation (2.4.1) and Figure C.1) that has been

formulated for an n-doped semiconductor. The minimum and maximum values

of n are given by 9.657 × 10−7[1/nm3] and 3.036 × 10−6[1/nm3]. The line graph is
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also shown to satisfy the Dirichlet boundary condition given by equation (2.4.2),

which has numerical value of 1× 10−6[1/nm3] at both boundaries.

Hole concentration, p:

(A) 2-D surface plot of hole concentration p

(B) Plot of hole concentration p vs. z at
x = 10[nm] (see Figure C.3)

FIGURE 5.3: Hole concentration, p [1/nm3]

In Figure 5.3, the result for hole concentration p at the final step of the time-dependent

simulation is shown by means of the 2-D surface plot in (A) and the line graph in

(B). The surface plot shows the change in hole concentration on the x-z Cartesian

plane of the 2-D ZnO NW, where a minimum value in the hole concentration p is

observed. This can be seen clearly in the subfigure (B). The numerical value of p is

considerably smaller compared to n (see Figure 5.2) since the model of ZnO NW

considered here is doped only with donors impurities. In this regard, the plots

for n and p indicate numerical values that are almost opposite of each other which

is expected due to the absence of acceptor impurities in the NW and the mass
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action formula given by np = n2
i . The minimum and maximum values of p are

given by 0[1/nm3] and 6.607 × 10−6[1/nm3], and the line graph is shown to satisfy

the Dirichlet boundary condition given by equation (2.4.2), which has numerical

value of 0[1/nm3] at both boundaries.

Hole current density, Jp:

(A) 2-D surface plot of hole current density
Jp

(B) Plot of hole current density Jp vs. z at
x = 10[nm](see Figure C.3)

FIGURE 5.4: Hole current density, Jp [A/nm2]

In Figure 5.4, the 2-D surface plot in (A) depicts the change in the hole current

density Jp along the x-z Cartesian plane of the ZnO NW. The plot in (B) shows

the change in hole current density along the z-axis (which represents the c-axis

of the NW). Both of these figures have been generated using results from the the

time-dependent simulation at the end of 40s. The hole current density is shown

to decrease along the length of the NW due to absence of donor dopants in the
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doping profile. Numerical values of Jp range between −4.647× 10−33 [A/nm2] and

5.320× 10−33 [A/nm2].

Elastic displacement, uz:

(A) 2-D surface plot of z-component of the
elastic displacement uz

(B) Plot of z-component of the elastic dis-
placement uz vs. z at x = 10[nm](see Figure

C.3)

FIGURE 5.5: Elastic displacement, uz [nm]

Figure 5.5 shows results for z-component of the mechanical elastic displacement,

uz, on the NW during the charge transport process. It represents the deformation of

the ZnO NW under zero external stress. The 2-D surface plot shown in (A) depicts

the elastic displacement uz along the x-z Cartesian plane of the ZnO NW. The plot

in (B) shows how uz varies along the vertical cross-section of the NW, i.e., along

the c-axis at x = 10[nm]. Both of these figures have been generated using data from

the the time-dependent simulation at the end of 40s. Numerical values of uz range



Chapter 5. Results and Discussion 45

between −2.817 × 10−4 [nm] and 1.105 × 10−4 [nm]. For results of x-component of

the displacement, ux, see Figure C.8 in Appendix C.

Stress, σz:

(A) 2-D surface plot of σz

(B) Plot of σz vs. z at x = 10[nm](see Figure
C.3)

FIGURE 5.6: Stress tensor, σz[N/nm2]

In Figure 5.6, the 2-D surface plot in (A) depicts the change in the z-component

of the stress tensor, σz, respectively, along the x-z Cartesian plane of the ZnO NW.

The plot in (B) shows the change in σz along the z-axis (which represents the c-

axis of the NW). The two plots have been generated using data from the the time-

dependent simulation at the end of 40s. The component σz has been calculated

using equation (A.2.4), which is dependent on the partial derivatives of the elastic

displacement components ux and uz, and the electrostatic potential φ. As a re-

sult, computing stress accurately is more difficult. Numerical values of σz range

between −1.298× 10−11 [N/nm2] and 3.441× 10−12 [N/nm2].
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Stress, σx:

(A) 2-D surface plot of σx

(B) Plot of σx vs. z at x = 10[nm] (see Figure
C.3)

FIGURE 5.7: Stress tensor, σx [N/nm2]

In Figure 5.7, the 2-D surface plot in (A) depicts the change in σx, respectively,

along the x-z Cartesian plane of the ZnO NW. The plot in (B) shows the change

in z component of the stress tensor along the z-axis (which represents the c-axis of

the NW). Both of these figures have been generated using data from the the time-

dependent simulation at the end of 40s. The x-component of the stress tensor,

σx has been calculated using equation (A.2.3), which is dependent on the partial

derivatives of the elastic displacement components ux and uz, and the electrostatic

potential φ. Numerical values of σx range between −1.828 × 10−11 [N/nm2] and

4.225× 10−12 [N/nm2].
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The physical quantities considered in this TEM model account for the pri-

mary characteristics of interest in energy harvesting nanodevices (i.e., nanogener-

ators), such as the drift-diffusion-Poisson and mechanical elastic components. For

piezoelectric energy harvesters, it is important to analyse the effect of stress on the

output current and voltage in order to determine the efficiency of such devices.
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Chapter 6

Conclusion and Future Work

In this thesis, a mathematical model has been applied to study the nonlinear

piezoelectric effect in wurtzite ZnO NW doped with donor impurities. The mathe-

matical model implemented is an extension based upon the state of the art research

published by Araneo et al in 2016, where the stationary TEM system was modelled

in 1-D. The novel model used in this thesis has been constructed using a system of

fully-coupled nonlinear PDEs representing the time-dependent TEM model of the

NW in 2-D. Models of this type, where thermal, electrical, and mechanical com-

ponents of semiconductor devices are considered, are essential for understanding

energy harvesting capabilities of semiconducting NWs. For boundary conditions

on the NW, the quasi-neutral condition has been applied at the ends of the NW

and a zero flux condition has been applied on the surface of the 2-D model. The

governing equations of the model consist of the equation for elastic displacement,

Poisson equation, current continuity equations, and the Fourier equation. These

equations have been combined with the constitutive relations for direct and con-

verse piezoelectric effects. The nonlinear piezoelectric effect has been taken into

account in the Poisson equation by means of the direct piezoelectric effect. In the

developed model, the constitutive equations have also accounted for the primary

pyroelectric effect along the c-axis of the NW.

This highly nonlinear model has been solved numerically by means of a
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variational formulation based on finite element representation. In particular, it has

been implemented into the COMSOL Multiphysics solver. The equations were

solved on a finely discretized 2-D rectangular domain representing the ZnO NW.

The simulation tool was verified by using the main drift-diffusion component of

the mathematical model for the 1-D steady state case. In order to compare the

results, the linear model for the piezoelectric effect has been solved as well. The

model considered in this thesis can be generalized to a 2-D ZnO NW doped with

donor impurities. The numerical solution has been computed under the assump-

tions of an unperturbed state of the NW, i.e., no applied stress, light source to

account for carrier generation, and body force. For the model specifications used

in this thesis, the results from finite element analysis generated comparable results

for the linear and nonlinear piezoelectric models.

This research provides several opportunities for expansion. The mathemati-

cal model used in this thesis to describe the piezoelectric effect in the semiconduct-

ing wurtzite ZnO NW can be used as a generalized model of the charge transport

process inside an unperturbed n-doped ZnO NW. To emphasize this conclusion,

the current physical setup can be extended to solve for the M-S-M structure for the

complete nanogenerator model, which will account for the bandgap between the

gold contacts and ZnO NW. Subsequently, the model can be extended to study the

effect of compressive/tensile strain on the M-S-M structure. In addition, instead of

using the Fourier equation to depict the thermal component of the mathematical

model, the energy balance equation for semiconductors can be used.

The mathematical model presented in this thesis has been constructed by

accounting for both the direct and converse piezoelectric effects in a TEM model.
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It has been used to study the piezoelectric effect and obtain all principal character-

istics of the physical system by using a set of time-dependent nonlinear PDEs with

strong coupling on a 2-D ZnO NW doped with donor impurities. The developed

variational implementation of this model, based on finite element representation,

is amenable to further analysis in the context of energy harvesting and other im-

portant applications.
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Appendix A

Equations used with General Form

PDE

A.1 Tensors and Vectors

The tensors and vectors used to construct the constitutive equations (2.3.12)

and (2.3.13) are given below:

σ =


σx σxy σxz

σxy σy σyz

σxz σyz σz

 , CE =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


,

eT =


0 0 0 0 e15 0

0 0 0 e24 0 0

e31 e32 e33 0 0 0

 , κ =


κ11 0 0

0 κ22 0

0 0 κ33

 , ~γ =

[
0 0 γz 0 0 0

]T
,



Appendix A. Equations used with General Form PDE 52

εT =

[
εx εy εz 2εyz 2εzx 2εxy

]
, β =

[
b11 b22 b33 0 0 0

]
.

The Cauchy stress tensor σ is a second order stress tensor which accounts for the

different stress components inside a material when it is in the deformed state [79].

The tensor CE is the elastic stiffness tensor, where the superscript E represents the

electrostatic field. For a hexagonal wurtzite structure like ZnO, which is isotropic

on the basal plane, the stiffness tensor has only five independent elastic constants:

C11 = C22, C12, C13 = C23, C33 , C44 = C55, C66 = (C11 −C22)/2 [45], [79]. The tensor

eT is the second order piezoelectric strain coefficient tensor with three independent

values: e31 = e32, e33, e15 = e24 [30]. The tensor κ contains the dielectric constants

(or, relative permittivities) for ZnO. Dielectric constants measure the ability of a

substance to store electrical energy in an electric field [45], [79]. These constants

are material specific and represent the ratio of material permittivity to the permit-

tivity of free space. The primary pyroelectric coefficient vector ~γ can be used to

describe the changes produced under a change in temperature, and it is significant

only along the c-axis of the NW [30], [80]. In the Euler-Almansi strain tensor εT ,

each term represents the rate of change of different components of the elastic dis-

placement with respect to the spatial axes and planes. For example: εx = ∂ux/∂x,

εz = ∂uz/∂z, εxz = (∂ux/∂z + ∂uz/∂x)/2, etc. [81]. The thermal stress tensor β is

given by β = CEα [30].
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A.2 Elasticity Equation

Recall equation (2.3.1):

∂2~u

∂t2
=

1

ρ
~∇ · σ ,

∂2

∂t2


ux

uy

uz

 =
1

ρ


∂σx
∂x

+ ∂σxy
∂y

+ ∂σxz
∂z

∂σxy
∂x

+ ∂σy
∂y

+ ∂σyz
∂z

∂σxz
∂x

+ ∂σyz
∂y

+ ∂σz
∂z

 ,

where ~u is the elastic displacement vector, ρ is the material density, and the com-

ponents of the stress tensor are derived in the following manner using equation

(2.3.12):

σx = C11εx + C12εy + C13εz + e31
∂φ

∂z
− b11θ

= C11
∂ux
∂x

+ C12
∂uy
∂y

+ C13
∂uz
∂z

+ e31
∂φ

∂z
− b11θ ,

σy = C12εx + C22εy + C23εz + e32
∂φ

∂z
− b22θ

= C12
∂ux
∂x

+ C22
∂uy
∂y

+ C23
∂uz
∂z

+ e32
∂φ

∂z
− b22θ ,

σz = C13εx + C23εy + C33εz + e33
∂φ

∂z
− b33θ

= C13
∂ux
∂x

+ C23
∂uy
∂y

+ C33
∂uz
∂z

+ e33
∂φ

∂z
− b33θ ,

σyz = 2C44εyz + e24
∂φ

∂y

= C24

(
∂uy
∂z

+
∂uz
∂y

)
+ e24

∂φ

∂y
,
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σxz = 2C55εxz + e15
∂φ

∂x

= C55

(
∂ux
∂z

+
∂uz
∂x

)
+ e15

∂φ

∂x
,

σxy = 2C66εxy

= C66

(
∂uy
∂x

+
∂ux
∂y

)
.

Therefore, for the 2-D case, the stress tensor components are given by:

∂2

∂t2

ux
uz

 =
1

ρ

∂σx∂x + ∂σxz
∂z

∂σxz
∂x

+ ∂σz
∂z

 ,

which can be split into the following two equations with respect to the derivatives

of ux and uz, where the respective right-hand side components are expressed as

scalar products:

∂2ux
∂t2

=
1

ρ

(
∂σx
∂x

+
∂σxz
∂z

)
,

=
1

ρ

 ∂
∂x

∂
∂z

 ·
 σx
σxz

 (A.2.1)

∂2uz
∂t2

=
1

ρ

(
∂σxz
∂x

+
∂σz
∂z

)
,

=
1

ρ

 ∂
∂x

∂
∂z

 ·
σxz
σz

 , (A.2.2)
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where

σx = C11
∂ux
∂x

+ C13
∂uz
∂z

+ e31
∂φ

∂z
− b11θ , (A.2.3)

σz = C13
∂ux
∂x

+ C33
∂uz
∂z

+ e33
∂φ

∂z
− b33θ , (A.2.4)

σxz = C55

(
∂ux
∂z

+
∂uz
∂x

)
+ e15

∂φ

∂x
. (A.2.5)

A.3 Poisson Equation

Recall equation (2.3.2):

~∇ · ~D = q(p− n+N) (A.3.1)

∂Dx

∂x
+
∂Dy

∂y
+
∂Dz

∂z
= q(p− n+N) ,

where the components Dx, Dy, and Dz of the dielectric displacement vector are

calculated in the following using equation (2.3.13):


Dx

Dy

Dz

 =


e15

(
∂ux
∂z

+ ∂uz
∂x

)
e24

(
∂uy
∂z

+ ∂uz
∂y

)
e31

∂ux
∂x

+ e32
∂uy
∂y

+ e33
∂uz
∂z

− k0


k11

∂φ
∂x

k22
∂φ
∂y

k33
∂φ
∂z

+


0

0

γzθ

 .

Therefore, in 2-D:

Dx

Dz

 =

e15

(
∂ux
∂z

+ ∂uz
∂x

)
e31

∂ux
∂x

+ e33 ∂uz
∂z

− k0

k11
∂φ
∂x

k33
∂φ
∂z

+

 0

γzθ

 .
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A.4 Equation for Electron Continuity

Using equations (2.3.3) and (2.3.10),

∂n

∂t
=

1

q
~∇ · (qnµn ~E + qDn

~∇n) + Un ,

= ~∇ · (−nµn~∇φ+
µnkBT

q
~∇n) + Un , (A.4.1)

where n is the electron concentration, q is the electric charge, µn is the electron

mobility, kB is the Boltzmann constant, T is the absolute temperature, φ is the elec-

trostatic potential, and Un is the net generation-recombination for electrons given

by equation (2.3.9).

A.5 Equation for Hole Continuity

Using equations (2.3.4) and (2.3.11),

∂p

∂t
= −1

q
~∇ · ~Jp + Up ,

= −~∇ · (−pµp~∇φ−
µpkBT

q
~∇p) + Up , (A.5.1)

where p is the hole concentration, q is the electric charge, µp is the hole mobility,

kB is the Boltzmann constant, T is the absolute temperature, φ is the electrostatic

potential, and Up is the net generation-recombination for holes given by equation

(2.3.9).
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A.6 Fourier Equation Accounting for Thermal Effects

Recall equation (2.3.5).

∂T

∂t
=

1

Cρ
(k∇2T ) +

1

Cρ
Q

=
1

Cρ
~∇ ·



k11 0 0

0 k22 0

0 0 k33

 ~∇T
+

1

Cρ
Q

=
1

Cρ
~∇ ·


−k11

∂T
∂x
î

−k22
∂T
∂y
ĵ

−k33
∂T
∂z
k̂

+
1

Cρ
Q (A.6.1)

where T is the absolute temperature, Cρ is the specific heat capacity of the material,

k is the thermal conductivity tensor, and Q is the source term.

Rearranging equations (A.2.1), (A.2.2), (A.3.1) - (A.6.1) according to the Gen-

eral Form PDE given by equation (4.1.1) gives:

∂2ux
∂t2
− 1

ρ

 ∂
∂x

∂
∂z

 ·
 σx
σxz

 = 0 ,

∂2uz
∂t2
− 1

ρ

 ∂
∂x

∂
∂z

 ·
σxz
σz

 = 0 ,

~∇ · ~D = q(p− n+N) ,
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∂n

∂t
− ~∇ · (−nµn~∇φ+

µnkBT

q
~∇n) = Un ,

∂p

∂t
+ ~∇ · (−pµp~∇φ−

µpkBT

q
~∇p) = Up ,

∂T

∂t
+

1

Cρ
~∇ ·


−k11

∂T
∂x
î

−k22
∂T
∂y
ĵ

−k33
∂T
∂z
k̂

 =
1

Cρ
Q ,

where ~v = {ux, uz, φ, n, p, T}T . The governing equations are presented in COM-

SOL in the aforementioned manner and are converted to the weak from before

processing. This has been illustrated with a simplified example in section 4.1.
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Appendix B

Results from Verification

In section 4.2 of this thesis, the procedure of verification of the simulation

tool using MMS has been outlined with respect to the primary component of the

coupled system presented in this thesis, i.e., the drift-diffusion-Poisson model of

semiconductors. The numerical solution was computed in COMSOL Multiphysics

by using a variational formulation based on finite element representation. The

approximate solutions were compared with the test functions given by equations

(4.2.4) - (4.2.6). Accuracy of the numerical solution was achieved by refining the

grid gradually. The results from verification using MMS showed the assumed solu-

tions of the dependent variables in the model to align with the numerical solution.

This demonstrated the accuracy of COMSOL Multiphysics in computing numer-

ical solution to the drift-diffusion-Poisson system used in semiconductor device

modelling, thus proving a guidance for systematic analysis with the coupled sys-

tem.
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The following figures show comparisons, based on the MMS approach, be-

tween the assumed solutions and numerical approximations of the electron and

hole concentrations, n and p.

FIGURE B.1: Plot of computed and assumed solutions of electron con-
centration n vs. z

FIGURE B.2: Plot of computed and assumed solutions of electron con-
centration p vs. z
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Below is a plot of the assumed solution chosen for the electrostatic potential

φ. The order of magnitude of the value of φ is negligible compared to that of the

carrier concentrations.

FIGURE B.3: Plot of assumed solution of electrostatic potential φ̂ vs. z
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Appendix C

Additional Characteristics and Plots

This appendix contains additional information and results (such as plot of

the doping profile, mesh statistics, initial conditions, and additional results) re-

garding the numerical solution to the TEM mathematical model used in this thesis.

Doping profile as per equation (2.4.1):

FIGURE C.1: Plot of doping profile N as a function of z
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The following figure shows an example of the discretized domain of the 2-D

NW using triangular elements. The grid presented is a representation of a trivial

triangulation with low aspect ratio of the elements.

FIGURE C.2: Triangular mesh on ZnO NW for finite element analysis
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The figure below is included to depict the line from where the data was

used to plot the 2-D line graphs for the dependent variables.

FIGURE C.3: The red line represents the points along the z-axis of the
NW at x = 10[nm]

The plots in Figures 5.1b, 5.2b, 5.3b, 5.4b, 5.5b, 5.6b, and 5.7b were generated using

data from this position.
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The following figures show some of the stages of mesh refinement using

the mesh statistics and a diagram of the discretized domain as generated by the

complete post-computation report in COMSOL Multiphysics.

Description Value

Minimum element quality 0.7339

Average element quality 0.7488

Number of triangular elements 8

Number of edge elements 10

Number of vertex elements 4

TABLE C.1: Table of mesh statistics of discretized domain for “ex-
tremely coarse” mesh in COMSOL

FIGURE C.4: Diagram of discretized domain for "extremely coarse"
mesh in COMSOL
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Description Value

Minimum element quality 0.8634

Average element quality 0.9642

Number of triangular elements 42

Number of edge elements 22

Number of vertex elements 4

TABLE C.2: Table of mesh statistics of discretized domain for
“coarser” mesh in COMSOL

FIGURE C.5: Diagram of discretized domain for "coarser" mesh in
COMSOL
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Description Value

Minimum element quality 0.9102

Average element quality 0.9748

Number of triangular elements 122

Number of edge elements 36

Number of vertex elements 4

TABLE C.3: Table of mesh statistics of discretized domain for “nor-
mal” mesh in COMSOL

FIGURE C.6: Diagram of discretized domain for "normal" mesh in
COMSOL
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Description Value

Minimum element quality 0.8826

Average element quality 0.97

Number of triangular elements 196

Number of edge elements 46

Number of vertex elements 4

TABLE C.4: Table of mesh statistics of discretized domain for “fine”
mesh in COMSOL

FIGURE C.7: Diagram of discretized domain for "fine" mesh in COM-
SOL

In Tables C.1 - C.4, the mesh element quality is represented by a dimensionless

quantity between 0 and 1, where 0 represents a degenerated element and 1 repre-

sents a perfectly regular element. A low mesh element quality can lead to inverted
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mesh elements and high condition number for the Jacobian matrix, which in turn

can cause convergence issues [75].

The following table contains initial values that have been used for comput-

ing solutions to the linear and nonlinear piezoelectric models at time t = 0:

Quantity Linear model Nonlinear model

ux [nm] 0 0.1

uz [nm] 0 0.1

φ [V ] 2 2

n [1/nm3] 1× 10−7 1× 10−6

p [1/nm3] 0 1× 10−29

T [K] 300 300

∂ux
∂t

[nm/s] 2 0

∂uz
∂t

[nm/s] 2 0

TABLE C.5: Initial conditions applied during simulation

See section 2.5 for details on how these initial conditions were obtained.
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Plot for x-component of the elastic displacement, ux:

(A) 2-D surface plot of x-component of the
elastic displacement ux

(B) Plot of x-component of the elastic dis-
placement ux vs. z at z = 50[nm] (see Figure

C.9)

FIGURE C.8: Elastic displacement, ux [nm]

Figure C.8 shows results for x-component of the mechanical elastic displacement,

ux, on the NW during the charge transport process. It represents the deformation

of the ZnO NW under zero external stress. The 2-D surface plot shown in (A) de-

picts the elastic displacement ux along the x-z Cartesian plane of the ZnO NW. The

plot in (B) shows how ux varies along the horizontal cross-section of the NW, i.e.,

perpendicular to the c-axis at z = 50[nm] (as shown in Figure C.9). Both of these

figures have been generated using data from the the time-dependent simulation at

the end of 40s. Numerical values of ux range between −0.00101 [nm] and 0.00101

[nm].
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The following figure is included to depict the line from where the data was

used to plot the 2-D line graph for x-component of the elastic displacement in

Figure C.8b.

FIGURE C.9: The red line represents the points along the x-axis of the
NW at z = 50[nm]
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Appendix D

Model Building in COMSOL

Multiphysics

The solution to the TEM model implemented in this thesis has been com-

puted by obtaining convergence as outlined in Chapter 4. However, it is numer-

ically challenging to solve for the full model in a single step due to the nonlinear

and heavily coupled nature of the governing equations. That is why, the TEM

model has been built gradually by introducing one equation at a time to the Gen-

eral Form PDE and solving all of the intermediate models by refining the mesh (see

Tables C.1 - C.4 and Figures C.4 - C.7 for reference). The combination of equations

that were used to build the intermediate model was also important in obtaining

convergence. The following flowchart shows the combination of equations that

was used to successfully solve the TEM model numerically.

FIGURE D.1: Flowchart showing intermediate steps in building the
TEM model in COMSOL using General Form PDE

In the figure above, the dependent variables φ, p, n, ~u, T represent the governing

equations that are primarily associated with (see equations (2.3.1) - (2.3.5)).



Appendix D. Model Building in COMSOL Multiphysics 73

The following table contains a list of the customized computational settings

for the time-dependent and stationary solvers with respect to the General Form

PDE (equation 4.1). These same changes applied while solving for both the linear

and nonlinear piezoelectric models. The maximum number of iterations listed

below are specific to the “fine” mesh discretization (see Table C.4 and Figure C.7).

Computational settings Time-dependent solver Stationary solver

Range 0 : 0.005 : 40 [s] - -

Relative tolerance 0.0001

Direct solver MUMPS

Memory allocation factor 1.2

Preordering algorithm Automatic

Linear solver Direct

Method of termination Constant (Newton)

Damping factor 0.6 0.4

Limit on nonlinear convergence rate 0.9 - -

Jacobian update On every iteration

Termination technique tolerance solution on residual

Tolerance factor 1

Residual factor - - 1000

Maximum number of iterations 500 600

TABLE D.1: Computational settings for the time-dependent and sta-
tionary solvers
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