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Abstract

In this thesis we study relative equilibria of di-atomic and isosceles tri-atomic molecules

in classical approximations with repulsive-attractive interaction. For di-atomic sys-

tems we retrieve well-known results. The main contribution consists of the study of

the existence and stability of relative equilibria in a three-atom system formed by

two identical atoms of mass m and a third of mass m3, constrained in an isosceles

configuration at all times.

Given the shape of the binary potential only, we discuss the existence of equilibria

and relative equilibria. We represent the results in the form of energy-momentum

diagrams. We find that fixing the masses and varying the potential defining parame-

ters could lead to no spatial, one family of spatial, or two families of spatial relative

equilibria. We also observe that varying the value of m leads to a shift in the relative

equilibria, and that varying m3 has no effect on the existence of relative equilibria,

but may change their stability. We specialize the existence results to Lennard-Jones

models and further study stability by performing numerical experiments.
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1

Chapter 1

Introduction

1.1 General Theory

In Molecular Dynamics, classical approximations are often employed in order to re-

duce the computational effort that is required when using the corresponding quantum-

based models. These approximations consist in modelling the atoms in the realm of

classical mechanics as mass points which interact via a potential determined experi-

mentally.

Within the classical mechanics framework, the simplest atomic models assume that

the atoms are in binary interactions only, and that the mutual potential is defined by

a repulsive-attractive reciprocal action as follows (Figure 1.1):

• atoms in close proximity repel each other;

• at medium range, the atoms attract, and there exists a unique distance at which

the atoms are in a stable equilibrium;

• at large distances, the atoms do not interact.
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Figure 1.1: A typical shape of a repulsive-attractive inter-atomic potential. The
parameters re and De are the distance at which the potential reaches its minimum
and the depth of the potential well, respectively, and are determined experimentally.

The most common functional relation expressing the atomic repulsive-attractive

interaction is the 12−6 Lennard-Jones potential. Denoting r as the distance between

atoms, the Lennard-Jones potential is given by

V (r) = −A
r6

+
B

r12

where A = 4Der
6
e and B = 4Der

12
e . The Lennard-Jones potential is known for

providing a particularly accurate model for neutral atoms and molecules, as well as

noble gas atoms. The parameters in the equation are derived from either “second-

virial” or “viscosity coefficients” [Bird & al. (1967)]. However, the use of the powers

6 and 12 of the inverse of the distance in the potential is due to a computational

convenience; a discussion on the validity of classical approximations for interatomic
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and intermolecular interactions may be found in [Brush (1970)]. In fact, chemists

determined that the power of the repulsive inverse of the distance term is slightly

different from one gas to another, taking values in between (12) and (13). Thus, a

qualitative analysis of an atomic model within the framework of classical mechanics

need not be restricted to the 12 − 6 potential. Consequently, it is important to

study properties of the inter-atomic dynamics which are not necessarily based on the

potential’s mathematical (analytical) formula, but rather on its shape, as given by a

generic graphical representation.

The approximations of the atomic systems considered here belong to the class of

mechanical systems which are of the form “kinetic plus potential,” conserve energy

and are invariant under rotations. In the present study, the systems are invariant

with respect to planar rotations. The classical program of investigation which applies

to this subclass entails:

1. Applying a reduction procedure which, by exploiting the rotational invariance,

leads to a reduced system with a lower number of degrees of freedom. The po-

tential is augmented by the centrifugal term and the reduced dynamics takes

the form “kinetic plus reduced potential”. The reduced system has two (inter-

nal) parameters: the total angular momentum c, and the total energy h. The

case c = 0 describes motions for which the system does not rotate.

2. The description of the Hill (or permissible) regions of motion, that is, the

domains of the configurations space occupied by possible motions as the level

of the total energy varies. The latter are obtained as a consequence of the

energy conservation and the form “kinetic plus reduced potential” of the system.

Essentially, the Hill regions are subsets of the configuration space where the
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potential energy is under a (fixed) level of the energy.

3. Finding the equilibria and determine their stability. Also, for rotating systems

(c 6= 0), finding the relative equilibria, that is, the equilibria of the reduced

system, and determine their stability modulo rotations.

4. Representing the set of equilibria and relative equilibria in the Energy-Momentum

diagram, where each plotted point represents a relative equilibrium with energy

h and momentum c.

For molecules, relative equilibria take the form of steady rotations about station-

ary axes during which the “shape” of the system does not change. As described

in the physical-chemistry literature [Pavlichenkov & al. (1988), Kozin & al. (1996),

Kozin & al. (2000)], they can be used to explain and predict features of quantum

spectra.

In this thesis, we study equilibria and relative equilibria of diatomic and isosceles

triatomic molecules in the framework of classical mechanics. The atoms are modelled

as mass points which interact via molecular-type potentials, that is, smooth functions

of shapes as in Figure 1.1, or Lennard-Jones functions.

For diatomic systems we retrieve some well-known results (see [Kozin & al. (1999)]),

including the description of the Hill regions of motion and the Energy-Momentum di-

agram.

We further study of the existence and stability of relative equilibria in a three-

point mass system formed by two particles m1 and m2 with identical parameters of

the potential and equal masses (m1 = m2 = m), and a third, m3. The configurations
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and the velocities are constrained such that the atoms form an isosceles configuration

at all times such that the identical atoms m may rotate about an axis on which m3

is located. Depending on the mass ordering, we call this three point-mass system to

be of type H3 (three identical atoms), H2D (m < m3), and D2H (m > m3).

The relative equilibria study of isosceles triatomic systems develops on three levels:

first, we deduce results using qualitative analysis in which case the inter-particle

interaction is modelled by a general repulsive-attractive “well”-shaped potential with

parameters given by the coordinates of their critical points. Second, we perform an

analytical investigation, in which case the inter-particle interaction is given by the

generalized Lennard-Jones potential; third, we perform numerical experiments using

a code which we designed and implemented.

In describing the dynamics, we use the Lagrangian-Hamiltonian formalism. Specif-

ically, the atomic system is initially modelled in Lagrangian formulation, which we

convert to polar coordinates, and observe that the Lagrangian displays a cyclic coor-

dinate. This is due to the dynamics invariance with respect to rotations and leads to

the conservation of angular momentum. Applying the Legendre transform, we formu-

late the problem as a Hamiltonian system. The conservation of angular momentum

becomes immediate and it allows the reduction of the dynamics by one degree of

freedom. The reduced Hamiltonian is then defined as the original Hamiltonian in

which the momentum corresponding to the angular momentum becomes a param-

eter. In addition, the reduced Hamiltonian takes the form “kinetic plus reduced

potential”, where the reduced potential is the potential augmented by an (inertia)

angular-momentum dependent term. The relative equilibria are defined as equilibria

of the reduced Hamiltonian system. Thus for each fixed angular momentum (now
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a parameter) we determine the relative equilibria. In the original system, these are

uniform rotations about a stationary axis.

Each relative equilibrium is then tested to determine its stability modulo rotations.

The Lyapunov test classifies (relative) equilibria as stable if a certain real-valued

Lyapunov function fulfills certain conditions. For systems with Hamiltonian structure

it can be shown that the Lyapunov function can be taken the Hamiltonian itself.

Moreover, for systems of the form “kinetic plus reduced potential”, the Lyapunov

stability test is reduced to testing the definiteness of the Hessian at the relative

equilibrium of the reduced potential. If the Hessian is positive definite, then the

relative equilibrium is stable. If the the Hessian is undefined, the stability can be

classified using the linearization method. From the linearization matrix, we find the

eigenvalues of each solution. If all of the eigenvalues are purely complex, the relative

equilibria is spectrally stable, otherwise it is unstable.

1.2 Outline of Thesis and Results

In Chapter 2 we study diatomic systems. We present the general dynamical theory

of a two point-mass system with a potential which depends on the inter-particle

distance only. We give the criteria for the existence and stability of relative equilibria

and include the definitions of the Hill (permissible) regions of motion and the Energy-

Momentum diagram. We specify the theory to the case of the 12-6 Lennard-Jones

potential. As previously mentioned, most of the results in this chapter are well-known

(see [Kozin & al. (1999)]).

In Chapter 3 we model a three point-mass system with a general inter-particle



1.2. OUTLINE OF THESIS AND RESULTS 7

distance dependent potential. We define isosceles configurations and write the La-

grangian of the system in cartesian and polar coordinates. We determine Hamilton’s

equations of motion by performing the Legendre Transform on the Lagrangian in po-

lar coordinates and deduce the reduced Hamiltonian and the reduced potential. We

write the equations of motion of the reduced systems and the equilibria and relative

equilibria existence conditions.

In Chapter 4, we analyze the existence and stability of relative equilibria (RE).

We discuss qualitatively the existence of the RE, by considering only the shape of the

inter-particle potential. The number of planar and spatial families of RE is found as a

function of the total angular momentum and the ordering of the critical points of the

potential. We observe that the number of families of RE is independent of the mass

m3 on the isosceles’ triangle vertical. We find that there can be at least two and at

most four families of planar RE. In Proposition (4.2.1) we establish conditions which

provide the number of families of spatial RE. To our knowledge, this is the first time

that such conditions are deduced. We further specialize the inter-particle interaction

to a generalized Lennard-Jones potential of the form

V (r) = −A
ra

+
B

rb
, 2 < a < b , A > 0, B > 0 , (1.1)

and we prove that there are always two planar RE. In Corollary (4.2.3) we establish

the analytic conditions equivalent to those in Proposition (4.2.1). We also show that

H3-type molecules always display one family of spatial RE at low angular momenta,

which, as the momentum increases, bifurcates into two families. At high momenta

all RE cease to exist. The chapter ends by establishing the RE stability criteria.

In Chapter 5, we perform numerical experiments using a Matlab® code which



1.2. OUTLINE OF THESIS AND RESULTS 8

we designed and implemented. We calculate diagrams for an H3-type molecule and

compare H2D- and D2H-type molecules by varying the mass of the two identical

atoms. We present the results in “distance versus angular momentum” and Energy-

Momentum diagrams. The numerical experiments are all in agreement with the

theoretical predictions of the preceding chapter.

The last Chapter concludes over our work and presents some possible future re-

search.

The Appendices provide the theoretical prerequisites required in this thesis. Ap-

pendix A briefly reviews notions of dynamical systems theory applicable to nonlinear

ODEs in general. Appendix B presents notions of classical mechanics in general, and

in the Lagrangian-Hamiltonian formalism.



Chapter 2

Diatomic molecules

2.1 Two point-mass systems

We study a planar two point-mass system with a potential which depends on the

inter-particle distance within the framework of the general classical mechanics and

dynamical systems theory.

Consider a system in R2, formed by two mass points m1 and m2 with mutual

interaction given by a smooth potential

V : D → R , D ⊂ R open .

The evolution in time of the relative vector between the mass points is given by the

trajectories of the Lagrangian

L(x, y, vx, vy) =
1

2
M
(
v2
x + v2

y

)
− V

(√
x2 + y2

)
, (2.1)
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where M :=
m1m2

m1 +m2

denotes the relative mass of the two mass points. Passing to

polar coordinates, we have

L(r, θ, vr, vθ) =
1

2
M
(
v2
r + (r vθ)

2
)
− V (r) . (2.2)

Applying the Legendre transform we obtain the Hamiltonian

H(r, θ, pr, pθ) =
1

2M

(
p2
r +

p2
θ

r2

)
+ V (r) (2.3)

with the equations of motion given by

ṙ =
pr
M

(2.4)

ṗr =
p2
θ

Mr3
− V ′(r) (2.5)

θ̇ =
pθ
Mr2

(2.6)

ṗθ = 0 . (2.7)

From above it is immediate that, given initial conditions (r(t0), θ(t0)pr(t0), pθ(t0)), we

obtain

pθ(t) = const. = pθ(t0) =: c , (2.8)

a relation which expresses the conservation of angular momentum. In addition, the

Hamiltonian system defined by (2.3) benefits from the energy integral; that is, for

any solution (r(t), θ(t), pr(t), pθ(t)), we have

H (r(t), θ(t), pr(t), pθ(t)) = const. = H (r(t0), θ(t0), pr(t0), pθ(t0)) =: h . (2.9)
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Substituting (2.8) into (2.3), we reduce the Hamiltonian by one degree of freedom

and obtain the reduced Hamiltonian

Hred(r, pr; c) =
1

2M
p2
r +

c2

2Mr2
+ V (r) , (2.10)

for which the equations of motion are given by

ṙ =
pr
M

(2.11)

ṗr =
c2

Mr3
− V ′(r) . (2.12)

Note that Hred depends parametrically on the angular momentum c. By conservation

of energy, we have

Hred (r(t), pr(t); c) = const. = H (r(t0), pr(t0); c(t0)) =: h , (2.13)

so the phase-space (r, pr) of the system (2.10) is fully described by the level sets

1

2M
p2
r +

c2

2Mr2
+ V (r) = h . (2.14)

2.2 Analytical solution

To obtain the analytical solution of (2.4) - (2.7) we use the reduced dynamics of

(2.10). Consider an initial condition (r(t0), θ(t0), pr(t0), pθ(t0)). From (2.8) we have

pθ(t) = pθ(t0) = c. (2.15)
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Further, from (2.14) we have

1

2M
p2
r(t) +

c2

2Mr2(t)
+ V (r(t)) =

1

2M
p2
r(t0) +

c2

2Mr2(t0)
+ V (r(t0)) = h , (2.16)

and so

pr = ±

√
2M

(
h− c2

2Mr2
− V (r)

)
(2.17)

(where, for simplifying the notation, we dropped the explicit dependency of time).

Let us assume that pr(t0) > 0 and so we retain the plus sign in the expression above

(if pr(t0) < 0, then we choose the minus sign). Then, using (2.11) we have

dr

dt
=

1

M

√
2M

(
h− c2

2Mr2
− V (r)

)
(2.18)

and thus

dr

1
M

√
2M

(
h− c2

2Mr2
− V (r)

) = dt . (2.19)

It follows that
r(t)∫

r(t0)

ds

1
M

√
2M

(
h− c2

2Ms2
− V (s)

) = t− t0 , (2.20)

from where, provided the integral above is computed, we obtain r(t). Further, pr(t)

is immediately given by a direct substitution of r(t) into (2.17). It remains to solve

θ(t). Using (2.6) we have

dθ

dt
=

c

Mr2(t)
(2.21)

or

dθ =
c

Mr2(t)
dt . (2.22)
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Thus

θ(t) = θ(t0) +

t∫
t0

c

Mr2(τ)
dτ . (2.23)

where r(t) is the solution of (2.20).

Remark 2.2.1. For most potentials, the integral (2.20) cannot be expressed by quadra-

tures. However, using the energy integral (2.14) the understanding of the global dy-

namics can be obtained from the phase-space diagrams.

2.3 Relative equilibria, the Energy-Momentum di-

agram and Hill regions

As defined in Appendix B.5, the equilibria of the reduced Hamiltonian (2.10) are

relative equilibria of the full (un-reduced) system. For the two point-mass system

(2.11)-(2.12) relative equilibria are solutions of the form (re(c), 0), where re(c) is a

critical point of the reduced potential :

Vred(r; c) =
c2

2Mr2
+ V (r) (2.24)

and so the reduced Hamiltonian reads

Hred(r, pr; c) =
1

2M
p2
r + Vred(r; c) . (2.25)

Given the conservation of energy, the phase-space is determined by the level curves

1

2M
p2
r + Vred(r; c) = h . (2.26)
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Physically, relative equilibria for two point-mass systems are motions in which the

two masses are following circular and uniform motions around their common centre

of mass. Given an equilibrium (re(c), 0) of (2.11)-(2.12), then (2.23) becomes

θ(t) =
c

Mr2
e(c)

(t− t0) + θ(t0), (2.27)

and thus the polar angle θ evolves linearly in time with constant angular velocity

θ̇ = c
Mr2e(c)

. Note that the usual equilibria of the un-reduced system are obtained by

taking c = 0; in this case, the mass points are in a fixed position, with θ(t) = θ0.

A relative equilibrium (re(c), 0) is stable if the second derivative

V ′′red (re(c); c) > 0. (2.28)

If this fails to be true, then one tests for linear or spectral stability by finding the

eigenvalues of the linearization matrix of (2.11)-(2.12):

 0 1
M

−V ′′red(re(c); c) 0

 . (2.29)

A direct calculation shows that (re(c), 0) is spectrally stable if V ′′red(re(c); c) > 0 which

ensures that all of the eigenvalues have zero real part. We note that for this class of

systems, testing for spectral stability coincides to testing for Lyapunov stability.

The Energy-Momentum diagram (that is, the set of points in the (c, h) plane where

each plotted point represents a relative equilibrium with momentum c and energy h;
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see Appendix B.5) is obtained by substituting (r, pr) by (re(c), 0) in (2.14):

h− Vred(re(c); c) = 0 . (2.30)

Thus the Energy-Momentum graph is given by:

EM := {(c, h) |h = Vred(re(c); c)} . (2.31)

As pointed out in Appendix B.6, for each fixed energy level h, the configurations

q of a Newtonian N -body potential system with potential V , are restricted to be in

the domain {q |V (q(t)) ≤ h} and so one may partition the configuration space in

the Hill regions of motion

H(h) := {q |V (q) ≤ h} . (2.32)

For a two point-mass system, the Hill regions of motion corresponding to the

reduced Hamiltonian Hred(r, pr; c) are parametrized by c. Specifically, for each fixed

c, we determine the Hill regions

Hc(h) := {r |Vred (r; c) ≤ h} . (2.33)

For each fixed set of parameters (c, h), the Hill region designates the allowed range

for the inter-particle distance. The phase-space of the reduced system (2.11)-(2.12)

is fully depicted by the curves in Equation (2.26).
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2.4 Diatomic Lennard-Jones molecules

We now specialize the potential V (r) to the 12 − 6 Lennard-Jones case. Recall the

molecular 12− 6 Lennard-Jones potential is given by

V (r) = −A
r6

+
B

r12
. (2.34)

In this case, the reduced Hamiltonian (2.10) becomes

Hred(r, pr; c) =
1

2M
p2
r +

c2

2Mr2
− A

r6
+

B

r12
(2.35)

or, equivalently,

Hred(r, pr; c) =
p2
r

2M
+ Vred(r; c) , (2.36)

where

Vred(r; c) =
c2

2Mr2
− A

r6
+

B

r12
. (2.37)

The relative equilibria configurations (re(c)) are found as the critical points of

Vred(r; c). It can be observed that since

V ′red(r; c) = − c2

Mr3
+

6A

r7
− 12B

r13
, (2.38)

we cannot find explicit expressions for (re(c)). Graphing the reduced potential (see

Figure 2.1), we observe that as the value of the angular momentum increases from

zero, the number of relative equilibria in the system varies. Following an elementary

calculus analysis of the function y = Vred(r; c), we have the following cases:

1. c = 0;
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Figure 2.1: The reduced potential Vred(r; c) =
c2

2Mr2
− A

r6
+

B

r12
for various values of

the angular momentum c. The lowest curve corresponds to c = 0. The constants are
taken as A = 1, B = 32 and M = 1.

2. 0 < c < ccr;

3. c = ccr;

4. c > ccr.

where

ccr =
3
√

2M B

5
5
6B

1
3

.

Case 1:

When c = 0, the motion is linear and the potential energy takes the form

Vred(r; 0) = −A
r6

+
B

r12
= V (r).
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The diagram in Figure 2.2 shows that there exists a single equilibrium point which

is found at a critical value h = hcr. The Hill Regions are given by (see Figure 2.3):

1.5 2 2.5 3 3.5
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Distance

P
ot

en
tia

l

Figure 2.2: The reduced Lennard-Jones potential diagram when c = 0, i.e. when
Vred(r; 0) = V (r).

• h < hcr =⇒ Hc(h) = ∅ (the void set);

• h = hcr =⇒ Hc(h) = re, where the distance between the atoms is constant (the

system is in an equilibrium);

• hcr < h < 0 =⇒ Hc(h) = (rmin, rmax);

• h ≥ 0 =⇒ Hc(h) = (rmin,∞) .

Case 2:

When 0 < c < ccr, there exists two equilibrium points (see Figure 2.4). The Hill

Regions are as follows:
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Figure 2.3: The phase plane diagram when c = 0.

• h < hcr1 =⇒ Hc(h) = ∅;

• h = hcr1 =⇒ Hc(h) = re1 (equilibrium);

• hcr1 < h < 0 =⇒ Hc(h) = (rmin, rmax);

• h = 0 =⇒ Hc(h) = (rmin, rmax);

• 0 < h < hcr2 =⇒ Hc(h) = (r1, r2) ∪ (r3,∞);

• h = hcr2 =⇒ Hc(h) = (r1,∞), including the equilibrium re2 ;

• h > hcr2 =⇒ Hc(h) = (rmin,∞).

The phase plane is graphed in Figure 2.5.
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Figure 2.4: The reduced Lennard-Jones potential diagram when 0 < c < ccr.
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Figure 2.5: The phase plane diagram when 0 < c < ccr.
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Case 3:

When c = ccr, there is a unique relative equilibrium (see Figure 2.6). The Hill Regions

are:

• h ≤ 0 =⇒ Hc(h) = ∅;

• 0 < h < hcr =⇒ Hc(h) = (rmin,∞);

• h = hcr =⇒ Hc(h) = (re1 ,∞), (for re1 equilibrium);

• h > hcr =⇒ Hc(h) = (rmin,∞).

The phase plane is graphed in Figure 2.7.
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Figure 2.6: The reduced Lennard-Jones potential diagram with c = ccr.

Case 4: When c > ccr, there are no equilibrium points as seen in Figure 2.8. The

Hill Regions are:
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Figure 2.7: The phase plane diagram when c = ccr.

1.5 2 2.5 3 3.5 4 4.5
0

0.05

0.1

0.15

0.2

0.25

Distance

P
ot

en
tia

l

Figure 2.8: The reduced Lennard-Jones potential diagram when c > ccr.
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Figure 2.9: The phase plane diagram when c > ccr.

• h ≤ 0 =⇒ Hc(h) = ∅;

• h > 0 =⇒ Hc(h) = (rmin,∞);

The phase plane is graphed in Figure 2.9.

Recall that relative equilibria are stable for values of c such that V ′′red(re(c); c) > 0

(see relation (2.28)). For the Lennard-Jones potential this condition becomes

V ′′red(re(c); c) =
3c2

Mr4
e(c)
− 42A

r8
e(c)

+
156B

r14
e (c)

> 0 . (2.39)

Next we determine numerically the Energy-Momentum diagram - see Figure 2.10,

where we have marked the stable and unstable relative equilibria, as denoted in the

legend. We distinguish the following cases:
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• there exists one unique equilibria when c = 0 and it is stable;

• there exists two equilibria when c ∈ (0, ccr). The stability can be observed from

the diagram;

• at c = ccr, the two equilibria merge into one unique (stable) equilibrium.

• for c > ccr, no equilibrium exists.
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Figure 2.10: The Energy-Momentum diagram for a diatomic molecule.



25

Chapter 3

Isosceles three point-mass systems

3.1 Three point-mass systems in Jacobi coordi-

nates

The three point-mass problem (or the three-body problem) consists of finding the

positions and velocities in time, for a system formed by three mass points with binary

distance-dependent interactions. The dynamics is given by a first order differential

system formed with 18 equations. The number of equations is reduced to 12, using

the linear momentum integral and choosing the centre of mass at the origin of the

coordinate system.

The Lagrangian of a three point-mass system formed by the masses is given by

L(R, Ṙ) =
m1

2
Ṙ2

1+
m2

2
Ṙ2

2+
m3

2
Ṙ2

3−V12 (|R1 −R2|)−V23 (|R2 −R3|)−V13 (|R3 −R1|) .



3.1. THREE POINT-MASS SYSTEMS IN JACOBI COORDINATES26

where R = (R1,R2,R3) and Ṙ = (Ṙ1, Ṙ2, Ṙ3) are the m1, m2 and m3 coordinates

and velocities, respectively, and Vij : Dij → R, Dij ∈ R open, 1 ≤ i < j ≤ 3 are

smooth binary potentials. We follow a similar procedure as in [Meyer & al. (1992)]

and perform a change of coordinates in accordance with Figure (3.1), by defining

r = R2 −R1 (3.1)

s = − m1

m1 +m2

R1 −
m2

m1 +m2

R2 +R3 (3.2)

T =
m1R1 +m2R2 +m3R3

m1 +m2 +m3

. (3.3)

Figure 3.1: The three point mass system with a change of coordinates, r and s.

Notice that the vector r is the relative vector between R1 and R2, s is the relative

vector between the centre of mass of m1 and m2, and R3. By definition, the new

coordinates are called Jacobi coordinates. Performing this change of coordinates in

the Lagrangian, we obtain

L(r, s, ṙ, ṡ) =
1

2
M1ṙ

2 +
1

2
M2ṡ

2 +
1

2M3

Ṫ 2−V12(|r|)−V23 (|s+ α1r|)−V13 (|s− α2r|) ,

(3.4)
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where

α1 :=
m1

m1 +m2

and α2 :=
m2

m1 +m2

, (3.5)

and M1, M2 and M3 are given by

M1 =
m1m2

m1 +m2

, M2 =
m3(m1 +m2)

m1 +m2 +m3

and M3 = m1 +m2 +m3. (3.6)

Using the Lagrange equations of motion (see Appendix B), the equation for T

integrates trivially and leads to

T (t) = c1t+ c2 (3.7)

where c1 and c2 are constants of motion fixed by the initial conditions:

c2 = T (t0) = m1R1(t0) +m2R2(t0) +m3R3(t0) , (3.8)

c1 = Ṫ (t0) = m1Ṙ1(t0) +m2Ṙ2(t0) +m3Ṙ3(t0) . (3.9)

In fact, the evolution of T , which is that of the centre of mass of the system

(normalized by the total mass), is due to the conservation of linear momentum. The

motion of T is known since r and s don’t not depend on it (see formula (3.4)), so

without loss of generality we can consider

L(r, s, ṙ, ṡ) =
1

2
M1ṙ

2 +
1

2
M2ṡ

2−V12(|r|)−V23 (|s+ α1r|)−V13 (|s− α2r|) . (3.10)
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Applying the Legendre transform (r, s, ṙ, ṡ)→ (r, s,pr,ps) we obtain the Hamil-

tonian

H(r, s,pr,ps) =
1

2M1

p2
r+

1

2M2

p2
s+V12(|r|)+V23 (|s+ α1r|)+V13 (|s− α2r|) . (3.11)

3.2 Isosceles configurations

Consider now that two of the masses are equal, say m1 = m2 = m, and that V23(x) =

V13(x) for any x ∈ D . In this case one can prove directly that isosceles configurations,

i.e., the set of solutions with

rz = sx = sy = prz = psx = psy = 0, for all t

form an invariant submanifold under the flow of the system. For such motions, r

is confined to the horizontal plane, whereas s moves on the vertical axis only. This

invariant submanifold is evident from a physical standpoint (i.e. since the forces bal-

ance). Thus isosceles motions are described by a three degree of freedom mechanical

system with the configuration space given by (rx, ry, sz) and momenta (prx, pry, psz) .

The Lagrangian is given by

L(r, s, ṙ, ṡ) =
1

2
M1ṙ

2 +
1

2
M2ṡ

2 − F (|r|)−G
(∣∣∣s+

r

2

∣∣∣)−G(∣∣∣s− r
2

∣∣∣) (3.12)

where, to ease notation, we denoted F := V12 and G := V23 = V13 .

We convert to cylindrical coordinates and change the notation for sz (as shown in
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Figure 3.2: The three point mass system with change of coordinates.

Figure (3.2))

rx = r cos θ , ry = r sin θ , sz = z

and calculate further 
ṙx = ṙ cos θ − r sin θθ̇

ṙy = ṙ sin θ + r cos θθ̇

to obtain the Lagrangian

L(r, θ, z, ṙ, θ̇, ż) =
1

2
M1

(
ṙ2 + r2θ̇2

)
+

1

2
M2ż

2 − F (r)− 2G

(√
r2

4
+ z2

)

By applying the Legendre Transform to our Lagrangian, we produce the Hamiltonian

H(r, θ, z, pr, pθ, pz) :=
1

2M1

(
p2
r +

p2
θ

r2

)
+

p2
z

2M2

+ F (r) + 2G

(√
r2

4
+ z2

)
(3.13)
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with equations of motion

ṙ =
pr
M1

ṗr =
p2
θ

M1r3
− F ′(r)− r

2
√

r2

4
+ z2

G′

(√
r2

4
+ z2

)
(3.14)

θ̇ =
pθ

M1r2
ṗθ = 0 (3.15)

ż =
pz
M2

ṗz = −2G′

(√
r2

4
+ z2

)
z√

r2

4
+ z2

(3.16)

From the general theory in Appendix B or by direct verification, we have that the

energy of the system is conserved along any solution

d

dt
H(r(t), θ(t), z(t), pr(t), pθ(t), pz(t)) = 0 (3.17)

and so

H (r(t), θ(t), z(t), pr(t), pθ(t), pz(t)) = H (r(t0), θ(t0), z(t0), pr(t0), pθ(t0), pz(t0)) =: h .

Also, since ṗθ = 0 it follows that the angular momentum of the system is constant

in time:

pθ(t) = pθ(t0) =: c . (3.18)

Using the above we can substitute c for pθ in expression (3.13), and obtain the

reduced Hamiltonian

Hred(r, z, pr, pz; c) =
1

2M1

(
p2
r +

c2

r2

)
+

1

2M2

p2
z + F (r) + 2G

(√
r2

4
+ z2

)
(3.19)
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or

Hred(r, z, pr, pz; c) =
1

2M1

p2
r +

1

2M2

p2
z (3.20)

where Vred is

Vred(r, z; c) =
c2

2M1r2
+ F (r) + 2G

(√
r2

4
+ z2

)
. (3.21)

The equations of motion are

ṙ =
pr
M1

(3.22)

ż =
pz
M2

(3.23)

ṗr =
c2

M1r3
− F ′(r)−G′

(√
r2

4
+ z2

)
r

2
√

r2

4
+ z2

(3.24)

ṗz = −2G′

(√
r2

4
+ z2

)
z√

r2

4
+ z2

(3.25)

Solving system (3.22)-(3.25) yields the value of r(t). Then since

θ̇(t) =
dθ

dt
=

c

M1r2(t)

we have that

θ(t) =
c

M1

t∫
t0

dτ

r2(τ)
+ θ(t0) .

which is also a known value.

The relative equilibria associated with Hred are found by letting the right hand
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side of the system (3.22) - (3.25), equal zero. This yields

c2

M1r3
− F ′(r)−G′

(√
r2

4
+ z2

)
r

2
√

r2

4
+ z2

= 0 (3.26)

2G′

(√
r2

4
+ z2

)
z√

r2

4
+ z2

= 0 (3.27)

pr = pz = 0, and we define Veff as

Veff(r, z; c) :=
c2

2M1r2
+ F (r) + 2G

(√
r2

4
+ z2

)
. (3.28)

From the system above, we observe that there are two distinct cases:

1. z = 0, consisting of planar relative equilibria

2. z 6= 0, so G′
(√

r2

4
+ z2

)
= 0, then we have spatial relative equilibria.

Remark 3.2.1. The third mass is irrelevant to the existence of equilibria. However,

it impacts the stability of the existing equilibria.

Recall that the Hill regions of motion are determined by

H(h) := {r |Vred(r; c) ≤ h} ,

where

Vred(r; c) :=
c2

2M1r2
+ F (r) + 2G

(r
2

)
≤ h

for each energy level h.
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We end this section by observing that the set

N := {(r, z, pr, pz) | z = pz = 0} (3.29)

is an invariant manifold for the flow of Hred , that is, motions which start at z(t0) =

pz(t0) = 0 will have z(t) = pz(t) = 0 for all t. Indeed, this follows directly from the

uniqueness of the ODE solutions. Physically, this is when the system displays planar

motions, where the mass-point m3 is fixed at the midpoint of the segment defined by

the equal masses. The dynamics of the system on N is given by the one degree of

freedom system

ṙ =
pr
M1

(3.30)

ṗr =
c2

M1r3
− F ′(r)−G′

(r
2

)
(3.31)



Chapter 4

Relative equilibria for

molecular-type interactions

In this chapter we study the existence and stability of equilibria and relative equilibria

of a triatomic isosceles molecule in classical approximation.

We assume that the inter-atomic potentials m1 −m2 and mi −m3, i = 1, 2 , are

given by two smooth molecular-type potentials F : (0,∞)→ R and G : (0,∞)→ R,

respectively. The shapes of F and G are sketched in Figure 1.1. In addition, we

assume that if two atoms have the same mass, then they are of the same kind; that

is, if m1 = m2 = m3, then the inter-atomic interaction is described by one potential

function. We denote the critical points of F and G by rFcr and rGcr, respectively. To
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simplify notation, we introduce

M :=
m1m2

m1 +m2

=
m2

2m
=
m

2
.

The equilibria and relative equilibria are found qualitatively by solving system

(3.26)− (3.27) with parameters rFcr, r
G
cr and c. We continue by considering the case of

the generalized Lennard-Jones potential. For atoms of the same kind (interaction of

atoms of type “ i− i ”) we define the generalized Lennard-Jones potential to be

F (r) = −Aii
ra

+
Bii

rb
, 2 < a < b . (4.1)

In our case this applies to the m1 − m2 interaction. For atoms of two different

species “i − i′′ and “j − j′′, the coefficients of the potential are determined by the

Lorentz-Berthelot rule (see [Lorentz (1881), Berthelot (1889), Kirchner & al. (2012)])

as follows:

Aij =
Aii + Ajj

2
Bij =

Bii +Bjj

2
. (4.2)

Thus for two atoms of species “i− i′′ and “j − j′′ the potential is

G(r) = −Aii + Ajj
2ra

+
Bii +Bjj

2rb
, 2 < a < b . (4.3)

In our model this applies to the m1 −m3 and m2 −m3 interactions.

In the last Section we establish the stability criteria.
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4.1 Planar equilibria and relative equilibria (z = 0)

From system (3.26)-(3.27) we have that planar equilibria and relative equilibria (z =

0) are solutions of

c2

Mr3
− F ′(r)−G′

(r
2

)
= 0, (4.4)

or, equivalently,

c2

Mr3
= F ′(r) +G′

(r
2

)
. (4.5)

4.1.1 The qualitative approach

We determine equilibria and relative equilibria by a graphical method. Specifically,

we determine the number of intersections of the curves
c2

Mr3
and F ′(r) +G′

(r
2

)
as

they occur in the left and right-hand side of equation (4.5). Each intersection of the

curves correspond to a root of (4.5). It is immediate that the number of solutions

depends on the value of c.

Equilibria

The equilibria of the system occur when c = 0. To find these unique points, we solve

F ′(r) +G′
(r

2

)
= 0 (4.6)

or equivalently,

F ′(r) = −G′
(r

2

)
.
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Given the shape of F (r) and G(r) (see Figure 1.1), it follows immediately that Equa-

tion (4.6) has one root, resulting in one planar equilibrium.

Relative Equilibria

The relative equilibria (RE) of the system occur when c 6= 0 and

c2

Mr3
= F ′(r) +G′

(r
2

)
. (4.7)

Since F ′(r) and G′
(
r
2

)
each have one maximum, their sum has at least one (see
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Figure 4.1: The sum F ′(r) +G′
(r

2

)
, pictured in dark blue, displaying one maximum.

The curves
c2

Mr3
can intersect it in two points (the purple and light blue curves), which

corresponds to angular momenta 0 < c < c0,p or in one point (the black curve), which
corresponds to an angular momentum c = c0,p. For momenta c > c0,p there are no
intersections.

Figure 4.1), and at most two maxima (see Figure 4.2). In the former case (Figure 4.1),
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there is some value c0,p such that solving Equation (4.7) yields two planar RE when

0 < c < c0,p, one unique planar RE when c = c0,p, and no planar RE when c > c0,p.

The value c0,p is determined by the requiring that the curves
c2

Mr3
and F ′(r) +G′

(r
2

)
be tangent. Equivalently, c0,p and the coordinate r(c0,p) at the tangency points must

solve

c2

Mr3
= F ′(r) +G′

(r
2

)
(4.8)

− 3c2

Mr4
= F ′′(r) +

1

2
G′′
(r

2

)
. (4.9)

In the latter case (Figure 4.2), we find that there can be a up to a maximum of
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Figure 4.2: The sum F ′(r) +G′
(r

2

)
, pictured in dark blue, displaying two maxima.

The curves
c2

Mr3
can intersect it in four points, three points (the brown curve), two

points (the light blue curve), or in one point (the black curve).

four planar RE; the number of solutions is determined by the value of the angular
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momentum c.

4.1.2 The analytical approach

Now we further our analysis by applying the generalized Lennard-Jones potential

with F (r) and G(r) defined by (4.1) and (4.3), respectively.

Equilibria

When c = 0, condition (4.6) becomes

a((1 + 2a−1)Aii + 2a−1Ajj)

ra+1
− b((1 + 2b−1)Bii + 2b−1Bjj)

rb+1
= 0 . (4.10)

Solving Equation (4.10), we verify that the system yields one planar equilibrium, with

coordinate r given by

r0 =

(
b
(
(1 + 2b−1)Bii + 2b−1Bjj

)
a ((1 + 2a−1)Aii + 2a−1Ajj)

) 1
b−a

. (4.11)

Relative Equilibria

When c 6= 0, Equation (4.7) becomes

c2 = M

(
a ((1 + 2a−1)Aii + 2a−1Ajj)

ra−2
−
b
(
(1 + 2b−1)Bii + 2b−1Bjj

)
rb−2

)
(4.12)

Since 2 < a < b, the function given by the right hand side of the equation above has

one maximum as in Figure 4.1. The value c0,p, and the corresponding r(c0,p), which

must solve (4.8) - (4.9), cannot be determined analytically.
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4.2 Spatial equilibria and relative equilibria (z 6= 0)

In the previous section, we discussed the case when a molecule is in linear formation.

Now we consider the case of a molecule in bent formation, i.e., when z 6= 0. The

system (3.26) - (3.27) becomes

c2

Mr3
− F ′(r) = 0 (4.13)

G′

(√
r2

4
+ z2

)
= 0 (4.14)

To find the equilibria and relative equilibria of system we first solve (4.13)-(4.14) for

r, then find the corresponding value for z.

4.2.1 The qualitative approach

Equilibria

When c = 0, Equation (4.13) reduces to F ′(r) = 0, which is solved by r = rFcr. Then

by using Equation (4.14), and the fact that G′(rGcr) = 0, we have

√
(rFcr)

2

4
+ z2 = rGcr

which yields,

z2 =
(
rGcr
)2 −

(
rFcr
)2

4
. (4.15)
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Since z2 > 0, then there are two spatial equilibria located at

(r, z) =

rFcr, ±
√

(rGcr)
2 − (rFcr)

2

4

 . (4.16)

provided rFcr < 2rGcr.

Relative Equilibria

We find the relative equilbria (c 6= 0) of system (4.13) - (4.14), through analyzing

the curves in Figure 4.3, followed by a discussion on equation (4.14), which determines

the corresponding z value.
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Figure 4.3: Diagram of F ′(r) depicting c2

Mr3
for c = c0,s and c = c1,s.

Figure 4.3 portrays the components of Equation (4.13), where the solid line rep-

resents the curve y = F ′(r) and the dashed lines represent the curve y =
c2

Mr3
for
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different values of c. We observe that there is some value c = c0,s > 0 and r(c0,s) = l,

such that

1. For 0 < c < c0,s, there exists two spatial RE denoted by r0,i(c), i = 1, 2 where

rFcr < r0,1(c) < l < r0,2(c) . (4.17)

Also, lim
c→c0,s

r0,1(c) = l = lim
c→c0,s

r0,2(c) , lim
c→0

r0,1(c) = rFcr and

lim
c→0

r0,2(c) =∞;

2. For c = c0,s, there exists one spatial RE at r(c0,s) = l;

3. For c > c0,s, no spatial RE exist.

The values c = c0,s and r(c0,s) = l is determined as the point of tangency of y =
c2

Mr3

and y = F ′(r), that is, it is the solution (l, c0,s) of the the system

c2

Mr3
= F ′(r) (4.18)

− 3c2

Mr4
= F ′′(r). (4.19)

Now we discuss Equation (4.14), which when reduced to (4.15), gives us the “height”

z of the bent molecule. For this equation to admit real solutions we must have

rGcr ≥
r0,1(c)

2
or rGcr ≥

r0,2(c)

2
,
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which is equivalent to

r0,1(c) ≤ 2rGcr or r0,2(c) ≤ 2rGcr. (4.20)

Using Figure (4.3), we observe the following

1. If 2rGcr ≤ rFcr , given the ordering in expression (4.17), there is no value of c which

satisfies equation (4.20).

2. For rFcr < 2rGcr ≤ l, there exists some threshold value c1,s, given by

c2
1,s

M (2rGcr)
3 = F ′(2rGcr), where 0 < c1,s ≤ c0,s. (4.21)

For all 0 < c ≤ c1,s where r0,1(c) ≤ 2rGcr < r0,2(c), we have a single family of

spatial RE with

z1,2 = ±

√
(rGcr)

2 − (r0,1(c))2

4
, (4.22)

which ceases to exist when c > c1,s.

Thus there is a family of isosceles spatial RE, which begins from a non-collinear

equilibrium. As the angular momentum increases from zero, these RE persist

up to the critical value c1,s, then disappear for all c > c1,s. At c = c1,s the

“height” of the isosceles RE triangle is zero, and the isosceles RE degenerates

to a planar collinear RE. Equivalently, when c = 0 there is a spatial equilibrium

(r, z), which is given by (4.16); as c increases from 0 to c1,s, the height of the

triangle decreases continuously. This occurs until c = c1,s where the collinear
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(flat) REs are reached (when z = 0).

3. If l < 2rGcr and c1,s is found using (4.21), then from Figure (4.3) we observe that

• If c ∈ (0, c1,s) we have r0,1(c) < 2rGcr < r0,2(c), which leads to one family of

spatial RE where

z1,2 = ±

√
(rGcr)

2 − (r0,1)2

4
. (4.23)

• If c ∈ [c1,s, c0,s) we have r0,1(c) < r0,2(c) ≤ 2rGcr, which leads to two families

of spatial RE,

z1,2 = ±

√
(rGcr)

2 − (r0,1)2

4
z3,4 = ±

√
(rGcr)

2 − (r0,2)2

4
(4.24)

When c = c1,s, the second family “z3,4” of spatial RE branches from the

planar collinear RE. At c = c0,s, the isosceles families join and there exists

one unique spatial RE, r(c0,s) = l. We observe from Figure 4.3, that no

spatial RE exist for c > c0,s.

To summarize our findings, we have proven:

Proposition 4.2.1. Let (l, c0,s) be the solution of the system (4.18) - (4.19) and c1,s

the solution of (4.21). Then

1. If rFcr > 2rGcr then there are no RE.

2. If rFcr < 2rGcr ≤ l, then, for c ∈ (0, c1,s), there is one spatial family of RE. At

c = c1,s this family joins a planar family of RE.
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3. If l < 2rGcr then

a) for c ∈ (0, c1,s) there is one spatial family of RE;

b) for c ∈ [c1,s, c0,s) there are two spatial families of RE. At c = c0,s these

families coincide;

c) for c > c0,s, no spatial RE exist.

Identical Atoms

Remark 4.2.2 (H3 molecules). If the three atoms are identical, then F (r) = G(r),

and so rFcr = rGcr. In particular, rFcr ≤ 2rGcr and so the cases 2 and 3 of the preceding

Proposition apply.

4.2.2 The analytical approach

Now we further analyze our system by applying the generalized Lennard-Jones po-

tentials defined in (4.1) and (4.3) to system (4.13) - (4.14), yielding

c2

Mr3
− aAii
ra+1

+
bBii

rb+1
= 0 (4.25)

a(Aii + Ajj)

2

(√
r2

4
+ z2

)a+1 −
b(Bii +Bjj)

2

(√
r2

4
+ z2

)b+1
= 0 (4.26)

Recall that for F (r) and G(r), we denote the critical points as rFcr and rGcr

rFcr =

(
b

a

) 1
b−a
(
Bii

Aii

) 1
b−a

, rGcr =

(
b

a

) 1
b−a
(
Bii +Bjj

Aii + Ajj

) 1
b−a

. (4.27)
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Equilibria

To find the equilibria of system (4.25)-(4.26), we let c = 0. Then (4.25) is solved by

r = rFcr, and from (4.26) we get (4.15) or

z2 =

(
b

a

) 2
b−a

[(
Bii +Bjj

Aii + Ajj

) 2
b−a

− 1

4

(
Bii

Aii

) 2
b−a

]
.

Since z2 > 0, then there are two spatial equilibria when rFcr < 2rGcr, located at

(r, z) =

rFcr,±( ba
) 1

b−a

√(
Bii +Bjj

Aii + Ajj

) 2
b−a

− 1

4

(
Bii

Aii

) 2
b−a

 . (4.28)

Relative Equilibria

For c 6= 0, we find the spatial RE of system (4.25)-(4.26). Recall that the cornerstone

value for angular momentum c = c0,s, and corresponding distance r(c0,s) = l is

determined by the solution (l, c0,s) of system (4.18)-(4.19). After some elementary

calculations, we find

l =

(
b(b− 2)Bii

a(a− 2)Aii

) 1
b−a

, c0,s =

√
M

(
aAii
la−2

− bBii

lb−2

)
, (4.29)

In the previous section, we found that a change in the number of existing spatial

RE can occur with different positions (or values) of 2rGcr, and angular momentum c.

Threshold values for c include c0,s, defined in (4.29), and c1,s where 0 < c1,s ≤ c0,s,

defined as

c1,s := 2

√√√√2M

(
aAii

(2rGcr)
a−2 −

bBii

(2rGcr)
b−2

)
. (4.30)

Corollary 4.2.3. Let l, c0,s and c1,s be as defined by (4.29) and (4.30), respectively.
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Applying the generalized Lennard-Jones potential to Proposition (4.2.1), we obtain

the following three cases:

1. If 2rGcr ≤ rFcr, or equivalently, when

2b−a ≤
1 +

Ajj

Aii

1 +
Bjj

Bii

, (4.31)

there are no spatial RE.

2. If rFcr < 2rGcr ≤ l, or equivalently, when

1 +
Ajj

Aii

1 +
Bjj

Bii

< 2b−a ≤
(
b− 2

a− 2

)(
1 +

Ajj

Aii

1 +
Bjj

Bii

)
, (4.32)

for c ∈ (0, c1,s), there exists one family of spatial RE.

3. If l < 2rGcr, or equivalently, when

(
b− 2

a− 2

)(
1 +

Ajj

Aii

1 +
Bjj

Bii

)
< 2b−a , (4.33)

then

a) for c ∈ (0, c1,s) there is one spatial family of RE;

b) for c ∈ [c1,s, c0,s) there are two spatial families of RE. At c = c0,s these

families coincide;

c) for c > c0,s, no spatial RE exist.
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Identical Atoms

When all three atoms are identical and we have a H3-type molecule, the three masses

m1,m2,m3 are equal, and the coefficients of the potential are Aij =
Aii+Ajj

2
=

Aii+Aii

2
= Aii and Bij =

Bii+Bjj

2
= Bii+Bii

2
= Bii. After substitution in conditions

(4.32) - (4.32) and taking into account that 2 < a < b, we obtain

1. If

2b−a ≤
(
b− 2

a− 2

)
(4.34)

then for c ∈ (0, c1,s) there is one family of spatial RE.

2. If (
b− 2

a− 2

)
< 2b−a (4.35)

then for

a) for c ∈ (0, c1,s) there is one spatial family of RE;

b) for c ∈ [c1,s, c0,s) there are two spatial families of RE. At c = c0,s these

families coincide;

c) for c > c0,s, no spatial RE exist.

Remark 4.2.4. For the 12−6 Lennard-Jones potential the condition (4.35) is verified.

4.3 Stability

In this section we state the stability conditions of the equilibria and relative equilibria

following the definitions and criteria presented in Appendix B. In the next chapter we
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apply them in the context of the Lennard-Jones potential and continue our analysis

through numerical simulations.

4.3.1 Lyapunov stability

We determine if the equilibria and RE are stable by using a Lyapunov test. Let

(re, ze; c) be a relative equilibrium. Given the structure of the reduced Hamiltonian

“kinetic plus reduced (effective) potential” (see relation (3.20)), we need to determine

whether or not the Hessian D2Vred(re, ze; c) of the reduced potential Vred given by

(3.21), is positive definite. In the affirmative case, the RE is stable. Otherwise, the

stability cannot be determined in this way and we proceed to spectral analysis.

In our case, D2Vred(re, ze; c) is positive definite if the values of the first position in

the upper left corner and the determinant of the matrix D2Vred(re, ze; c) are positive.

We calculate the components of

D2Vred(r, z; c) =

 ∂2Vred
∂r2

∂2Vred
∂r∂z

∂2Vred
∂z∂r

∂2Vred
∂z2

 (4.36)
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and find

∂2Vred

∂r2
(r, z; c) =

3c2

Mr4
+ F ′′(r) + r2

G′′
(√

r2

4
+ z2

)
2 (r2 + 4z2)

+G′

(√
r2

4
+ z2

)(
4z2

(r2 + 4z2)
3
2

)

∂2Vred

∂z∂r
(r, z; c) =

2rz

r2 + 4z2

G′′
(√

r2

4
+ z2

)
−

2G′
(√

r2

4
+ z2

)
√
r2 + 4z2

 =
∂2Vred

∂r∂z
(r, z; c)

∂2Vred

∂z2
(r, z; c) =

4

r2 + 4z2

[
2z2G′′

(√
r2

4
+ z2

)
+G′

(√
r2

4
+ z2

)(
r2

√
r2 + 4z2

)]
.

Planar equilibria and relative equilibria (z = 0)

When ze = 0, we find D2Vred(re, 0; c)

D2Vred(re, 0; c) =

 3c2

Mr4e
+ F ′′(re) + 1

2
G′′
(
re
2

) (
2−re
r2e

)
0

0 4
re
G′
(
re
2

)
 . (4.37)

Spatial equilibria and relative equilibria (z 6= 0)

For relative equilibria with ze 6= 0 we have

D2Vred(re, ze; c) =


3c2

Mr4e
+ F ′′(re) + r2

e

G′′
(√

r2e
4

+z2e

)
2(r2e+4z2e)

2reze
r2e+4z2e

G′′
(√

r2e
4

+ z2
e

)
2reze
r2e+4z2e

G′′
(√

r2e
4

+ z2
e

)
8z2e

r2e+4z2e
G′′
(√

r2e
4

+ z2
e

)


(4.38)

Remark 4.3.1. From the expression (4.37) and (4.38), the RE Lyapunov stability

does not depend on the third mass m3, but only on the two equal masses m1 = m2 = m
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(via the reduced mass M = m1m2

m1+m2
= m

2
).

4.3.2 Spectral Stability

If the Lyapunov test fails, then the stability of the RE can not be determined by

this method. Instead, we test for spectral stability. This is done by calculating the

eigenvalues of the linearization matrix JD2Hred(re, ze, 0, 0; c), where

J =



0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0


. (4.39)

D2Hred(re, ze, 0, 0; c) =



∂2Hred

∂r2
∂2Hred

∂r∂z
∂2Hred

∂r∂pr

∂2Hred

∂r∂pz

∂2Hred

∂z∂r
∂2Hred

∂z2
∂2Hred

∂z∂pr

∂2Hred

∂z∂pz

∂2Hred

∂pr∂r
∂2Hred

∂pr∂z
∂2Hred

∂p2r

∂2Hred

∂pr∂pz

∂2Hred

∂pz∂r
∂2Hred

∂pz∂z
∂2Hred

∂pz∂pr

∂2Hred

∂p2z

∣∣∣
(r,z,pr,pz ;c)=(re,ze,0,0;c)

.

(4.40)

The matrix JD2Hred(re, ze, 0, 0; c) yields four eigenvalues. If all these eigenvalues are

purely complex then the RE (re, ze; c) is spectrally stable. If there is at least one

eigenvalue with non-zero real part, then the RE is unstable.
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Chapter 5

Numerical Simulations for

Lennard-Jones Type Interactions

5.1 General set-up

In what follows we investigate numerically the equilibria and relative equilibria of

isosceles triatomic molecules of type D2H, H3 and H2D. As noted previously, we

assume that if two atoms have the same mass, then they are of the same kind. We

consider the Lennard-Jones interactions as defined in Chapter 4 by formula (4.1) and

(4.3) with a = 6 and b = 12.

The numerical explorations are performed in Matlab® code. The entries needed to

run the code are a, b, Aii, Bii, Ajj, Bjj and the masses m1,m2,m3.

The RE are solutions to system (3.26) - (3.27). We determine these as a function of
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the angular momentum c, which to varies from zero to its maximal (critical) value

where the RE cease to exist. To test the stability of a RE (re, ze, 0, 0; c), we first

test for Lyapunov stability by evaluating the Hessian of the reduced potential as

given by (4.36). If this is found to be positive definite, then the solution is Lya-

punov stable. If the Lyapunov criteria fails, then we determine spectral stability by

calculating the entries of the linearization matrix JD2Hred(re, ze, 0, 0; c), where J and

D2Hred(re, ze, 0, 0; c) are given by (4.39) and (4.40), respectively, and by finding the

real part of each eigenvalue. If there exists at least one eigenvalue with non-zero real

part, then the corresponding relative equilibrium is unstable; otherwise it is spectrally

stable.

As a side note, we observe that the existence of RE, given by the solutions of

(3.26) - (3.27), is independent of the third mass m3. Moreover, from Remark 4.3.1,

the RE Lyapunov stability test is also independent of m3.

The output of the code consists of diagrams of the following two types:

1. Diagrams which depict the dependency of the distances between the atoms to

the total angular momentum. For the planar case, we have only the diagram

which shows of the dependency of the distance between m1 and m2 to the total

angular momentum. For the spatial case an additional diagram displays the

dependency of the distance between m3 and the origin to the total angular

momentum.

2. Energy-Momentum diagrams, that is, the RE in the total angular momentum

- total energy (c, h) plane.
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The diagrams are augmented by a legend with assigned symbols for the planar/spatial

and stable/unstable cases.

5.2 Numerical Simulations

In this section we present:

1. Diagrams for a H3-type molecule, and

2. Diagrams for the three types of molecules. As mentioned, for atoms not of

the same type, we use the Lorentz-Berthelot rule (4.2) for determining the potential

parameters. The code was run with the fixed parameters

a = 6 , b = 12 , Aii = Bii = Bjj = 1 . (5.1)

1. Diagrams for a H3-type molecule.

To run the code for a H3-type molecule with parameters (5.1) as above, we further

fix m = m3 = 1, and Ajj = Aii = 1 and Bjj = Bii = 1. Then by Remark 4.2.4, for

low angular momenta we expect one family of spatial RE. As the angular momentum

increases, this family should bifurcate to two families of spatial RE. For high angular

momenta only planar RE survive up to the dissociation of the molecule. The numer-

ical experiments are in agreement with the theoretical predictions. Figures (5.1) -

(5.3) portray the evolution of the inter-particle distance as the total angular momen-

tum increases. Figure (5.4) displays the Energy-Momentum diagram, with a close-up
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Figure 5.1: Dependency of the distance m1 − m2 on the angular momentum, for
planar RE of an H3−type molecule.

of the bifurcation in Figure (5.5).

2. Diagrams for H2D- and D2H-type molecules obtained by varying m

We fix Ajj = 5 and m3 = 1 and discuss molecules of the type H2D and D2H, by taking

m = 0.5, and m = 1.5, respectively. For all these cases, we observe the presence of

spatial RE. This is in agreement with the theoretical condition (4.33) of Corollary

4.2.3. Since the critical values c0 and c1 are directly proportional to
√

m
2

=
√
M

(see formula (4.29) and (4.30)), we expect that they increase with m. The numerical

experiments confirm this as well. Figures (5.6) - (5.11) show the evolution of the

inter-particle distance as the total angular momentum increases. Figures (5.12) and

(5.14) display the Energy-Momentum diagrams, with their respective bifurcations in

Figures (5.13) and (5.15).
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Figure 5.2: Dependency of the distance m1−m2 on the angular momentum for spatial
RE of an H3−type molecule.
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Figure 5.3: Dependency of the “height” distance m3 to the origin on the angular
momentum for spatial RE of an H3−type molecule.



5.2. NUMERICAL SIMULATIONS 57

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

−4

−3

−2

−1

0

1

2

3

4

Angular momentum

To
ta

l e
ne

rg
y

 

 

unstable planar RE
stable planar RE
unstable spatial RE
stable spatial RE

Figure 5.4: The Energy-Momentum diagram for H3-type molecules. At low mo-
menta there are three families of RE: two planar and one spatial. As the momentum
increases, the spatial family meets the planar family and it bifurcates
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Figure 5.5: Close-up of the spatial RE bifurcation
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Figure 5.6: Dependency of the distance m1 − m2 on the angular momentum c, for
planar RE molecules for an H2D-type molecule (m = 0.5 ). As m increases, planar
RE are present for higher momenta.
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Figure 5.7: Dependency of the distance m1 − m2 on the angular momentum c, for
planar RE molecules for an D2H-type molecule (m = 1.5 ). As m increases, planar
RE are present for higher momenta.
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Figure 5.8: Dependency distance m1 − m2 on the angular momentum c for spatial
RE of an H2D-type molecule (m = 0.5 )
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Figure 5.9: Dependency distance m1 − m2 on the angular momentum c for spatial
RE of an D2H-type molecule (m = 1.5 )
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Figure 5.10: The dependency of the “height” distance m3 to the origin on the angular
momentum c for spatial RE of an H2D-type molecule (m = 0.5 )
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Figure 5.11: The dependency of the “height” distance m3 to the origin on the angular
momentum c for spatial RE of a D2H-type molecule (m = 1.5 )
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Figure 5.12: The Energy-Momentum diagram for H2D-type molecule (m = 0.5 )
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Figure 5.13: H2D-type molecule (m = 0.5 )
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Figure 5.14: The Energy-Momentum diagram for D2H-type molecule (m = 1.5 )
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Figure 5.15: A close-up of the bifurcation for a D2H-type molecule (m = 1.5 )
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Chapter 6

Conclusion

In this thesis, we study equilibria and relative equilibria of diatomic and isosceles

triatomic molecule of the types D2H, H3 and H2D in the framework of classical

mechanics. Our research develops on three levels: first, we deduce results using

qualitative analysis in which case the inter-particle interaction is modelled by a general

repulsive-attractive “well”-shaped potential with parameters given by the coordinates

of their critical points. Second, we perform an analytical investigation, in which case

the inter-particle interaction is given by the generalized Lennard-Jones potential;

third, we perform numerical experiments using the 12− 6 Lennard-Jones potential.

For diatomic systems we retrieve known results (see [Kozin & al. (1999)]), includ-

ing the description of the Hill regions of motion and the Energy-Momentum diagram.

For triatomic isosceles systems, we discuss qualitatively the number of planar and

spatial families of RE as function of the total angular momentum. We observe that
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the number of families RE is independent of the mass m3 on the isosceles’ triangle

vertical. We find that there can be at least two and at most four families of planar

RE. In Proposition (4.2.1) we establish the qualitative conditions which provide the

number of families of spatial relative equilibria. To our knowledge, this is the first time

such conditions are deduced. Further, we specialize the potential to the generalized

Lennard-Jones potential (analytic form) and we prove that there are always two planar

RE. In Corollary (4.2.3) we establish the analytic conditions equivalent to those in

Proposition (4.2.1). In the stability analysis we observe that the Lyapunov stability

criterion is independent of the mass m3.

We perform numerical experiments using a Matlab® code which we designed and

implemented. We calculate diagrams for an H3-type molecule and compare H2D- and

D2H-type molecules by varying the mass of the two identical atoms. We present the

results in “distance versus angular momentum” and “Energy-Momentum diagrams.”

The numerical experiments are all in agreement with the theoretical predictions.

The present investigation may be continued in a variety of directions. For in-

stance, a further study is to find analytic conditions for RE stability, similar to those

found here for RE existence. Another research direction could be the studying of

the dependency of the RE stability with respect to the Lennard-Jones potential pa-

rameters. In a more involved investigation one may compare our Energy-Momentum

diagrams to those in [Kozin & al. (1999)] and [Kozin & al. (2000)]. In these papers,

the authors use an empirical (numerically deduced) molecular potential and perform

the RE analysis in the full phase-space of the molecules (that is, the phase-space is not

restricted to isosceles configurations). Consequently, the classical Hamiltonian model



65

of the molecule has additional degrees of freedom which could lead to different results

on the RE stability (the additional degrees of freedom could correspond to unstable

directions which in the isosceles restricted problem cannot be “seen”). It would be

interesting to develop a comparison study, and detect the unstable directions in both

isosceles restricted and non-restricted molecular configurations.
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Appendix A

Equilibria and stability for

autonomous ODEs

In this section we briefly review the standard theory on the existence and stability

of equilibria of ODEs. The main references are [Glendinning (1994), Gross (2011),

Dahleh & al. (2011), Meiss (2007), Nagle & al. (2008), Perko (2001)].

Definition A.0.1. Consider the non-linear autonomous system

ẋ(t) = f(x(t)), x ∈ D ⊂ Rn , D open (A.1)

with f : D → Rn is Lipschitz-continuous on its domain . A point xe ∈ D is called an

equilibrium point for (A.1) if it is a solution of

f(x(t)) = 0 . (A.2)
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It can be checked that a solution x(t) = xe for all t is valid, by verifying if (A.1)

holds.

An equilibrium point xe is said to be Lyapunov stable if solutions that start within a

small neighbourhood stay within that neighbourhood. Additionally, if the solutions

which start within a small neighbourhood tend to the equilibrium point, then they

are called asymptotically stable. Formally,

Definition A.0.2. An equilibrium point xe is Lyapunov stable if and only if for

all ε > 0 there exists δ > 0 such that if |x(to)− xe| < δ, then

|x(t)− xe| < ε, ∀t ≥ to. (A.3)

Definition A.0.3. An equilibrium point xe is asymptotically stable if and only if

it satisfies the following two conditions

1. the stability condition (A.3), as defined above, and

2. there exists δ > 0 such that if |x(to)− xe| < δ, then

lim
t→∞
|x(t)− xe| = 0 . (A.4)

From now on, without loss of generality, we will assume the equilibrium point xe = 0,

since this can be achieved by a linear change of coordinates.

Definition A.0.4. Let F (x) be a continuous function on some domain D containing

the origin and assume that F (0) = 0. Then
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1. F (x) is positive definite on D if F (x) > 0, ∀x ∈ D \ {0}

2. F (x) is positive semidefinite on D if F (x) ≥ 0, ∀x ∈ D \ {0}

3. F (x) is negative definite on D if F (x) < 0, ∀x ∈ D \ {0}

4. F (x) is negative semidefinite on D if F (x) ≤ 0, ∀x ∈ D \ {0}

Definition A.0.5. Let xe = 0 be the equilibrium point for the differential equa-

tion (A.1). Let D be an open neighbourhood surrounding the origin and F (x) be a

continuously differentiable function. Then F (x) is a Lyapunov Function if it is

continuously differentiable on D and

1. F (0) = 0

2. F (x) ≥ 0 for all x ∈ D \ {0}

3. Ḟ (x(t)) ≤ 0 along any solution x(t) with x(t0) ∈ D.

Theorem A.0.6 (Lyapunov’s First Stability Theorem). Suppose that a Lyapunov

function F (x) can be defined on a neighbourhood of the origin and xe = 0. Then the

origin is (Lyapunov) stable.

Theorem A.0.7 (Lyapunov’s second stability theorem). Suppose that xe = 0 is

an equilibrium point for equation (A.1) and F (x) is a Lyapunov function that is

continuous on D, which contains the equilibrium point. If Ḟ (x) < 0 for all x ∈ D\{0},

then xe = 0 is asymptotically stable.

If the Lyapunov test fails, then the stability of the equilibria cannot be determined

by this method. Instead one resorts to studying the behaviour of the linear system

at x = xe .
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Definition A.0.8. We call the linearization of (A.1) at the equilibrium xe the

linear system given by

ẋ = Ax, (A.5)

where

A = Df(xe) (A.6)

The eigenvalues of matrix A determine the stability of the equilibrium point (see

[Nagle & al. (2008)]).

Definition A.0.9. An equilibrium xe of (A.1) is called hyperbolic if none of the

eigenvalues of A have zero real part.

Proposition A.0.10. A hyperbolic equilibrium xe of (A.1) is unstable if at least

one of the eigenvalues of A has strictly positive real part.

Proposition A.0.11. A hyperbolic equilibrium xe of (A.1) is asymptotically sta-

ble if all of the eigenvalues of A have strictly negative real part.

Definition A.0.12. A hyperbolic equilibrium xe of (A.1) is spectrally stable if all

of the eigenvalues of A have negative real part.

Note that a non-hyperbolic equilibrium may be spectrally stable. This is the case of

conservative Hamiltonian systems which is discussed in Section B.5).

Definition A.0.13. For eigenvalues λ1, ..., λn of A, if

1. all have negative real part, then xe is called a sink;

2. all have positive real part, then xe is called a source;
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3. if at least one has positive real part and at least one has negative real part, then

xe is a saddle.



Appendix B

Mathematical formulation of

conservative mechanical N-point

mass systems

The following sections describe the classical dynamics prerequisites required for our

study. The main sources of reference are [Holm & al. (2009), Meyer & al. (1992)].

B.1 Newtonian N-Body Systems

In this section we review some of the properties associated with N -bodies (each with

mass mi) with mutual (binary) interaction. We denote a fixed frame of reference by

Rd, where d is the spatial dimension (d = 1, 2 or 3), and each of the N -bodies is
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represented by a single point mass.

Definition B.1.1. A point mass is an idealised zero-dimensional object that is

completely described by its mass and spatial position. Its mass is assumed to be

constant and its position varies as a function of time.

The configuration of a system containing N point masses that interact with one

another is given by the multi-vector q = (q1,q2, . . . ,qN) ∈ RdN , where qi denotes the

position vector of each of the point masses. The set of all possible configurations of

this system is called the configuration space, where (in the absence of constraints),

it is either RdN (if no collisions are possible) or an open subset of RdN . We denote

the velocity and acceleration as function of time of each point mass by
dqi
dt

= q̇i(t)

and
d2qi
dt2

= q̈i(t), respectively.

Definition B.1.2. Newton’s second law for the system is

miq̈i = Fi for i = 1, 2, . . . , N , (B.1)

where Fi is the total force on the ith point mass.

Definition B.1.3. A frame of reference in which Newton’s second law applies is called

an inertial frame.

Throughout, we assume an inertial frame of reference. We also assume that each Fi

is a smooth function of configurations only, i.e., Fi = Fi(q1,q2, . . . ,qN). Thus the

system (B.1) is a second order autonomous ODE system with RdN equations and RdN

unknowns.
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The following dynamical quantities play central roles in the dynamics of the sys-

tem preceding. In many situations, these quantities are conserved, that is, they are

constant along any trajectory

q(t) = (q1(t),q2(t), . . .qN(t))

of the system (B.1), as long as it satisfies equation (B.1).

Definition B.1.4 (Dynamical quantities).

The linear momentum (or impulse) of a single point mass with position qi is

pi := miq̇i

Then the (total) linear momentum of the system is the sum of the linear momenta

of all of the point masses, that is

p :=
∑

pi :=
∑

miq̇i

The centre of mass is a unique location in space such that

c(t) =

∑N
i miqi∑N
i mi

. (B.2)

The angular momentum, about the origin of coordinates q = 0, of a single point

mass with position qi ∈ R3 is

πi := qi ×miq̇i = qi × pi , (B.3)
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where × denotes the three-dimensional vector cross-product. Then the (total) an-

gular momentum of a spatial system (d = 3) of N point masses, taken about the

origin of coordinates where q = 0, is the sum of the angular momenta of all of the

point masses, that is,

π =
∑

πi :=
∑

qi ×miq̇i =
∑

qi × pi . (B.4)

Geometrically, this is the sum of the N oriented areas given by the cross-products

of pairs of vectors qi and pi. For a planar system (with d = 2), the total angular

momentum is the scalar defined by

π :=
∑

mi

(
q1
i q̇

2
i − q2

i q̇
1
i

)
=
∑

q1
i p

2
i − q2

i p
1
i , (B.5)

where qi = (q1
i , q

2
i ) and pi = (p1

i , p
2
i ). Note that if the vectors qi are embedded in R3

as (q1
i , q

2
i , 0), then π as defined above is the third component of the vector π as defined

in (B.4). Also note that angular momentum is undefined for systems defined on a

line (d = 1).

The (total) kinetic energy of the system of N point masses is

K :=
1

2

∑
mi ‖q̇i‖2 ,

Where ‖q̇i‖2 = q̇i · q̇i =
∑
j

(
q̇ji
)2

is the squared Euclidean norm of q̇i.

Remark B.1.5. One can convert the total angular momentum and kinetic energy
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into polar coordinates by performing a change in coordinates

qi = (ri cos θi, ri sin θi) for i = 1, 2, . . . , N .

yielding

π =
∑

mi (ri cos θi, ri sin θi)×
(
ṙi cos θi − riθ̇i sin θi, ṙi sin θi + riθ̇i cos θi

)
=
∑

mir
2
i θ̇i ,

K =
1

2

∑
mi

∥∥∥(ṙi cos θi − riθ̇i sin θi, ṙi sin θi + riθ̇i cos θi

)∥∥∥2

=
1

2

∑
mi

(
ṙ2
i + r2

i θ̇
2
i

)
.

Under specific conditions, we have conservation of linear momentum, angular mo-

mentum, as well as energy.

Theorem B.1.6 (Conservation of linear momentum). If
∑

Fi = 0, then the total

linear momentum is conserved.

Before we state the second conservation law, we require the following definition.

Definition B.1.7. The torque on a point mass with position q ∈ R3 and force F is

q× F. The total torque of a system of N point mass is
∑

qi × Fi.

Theorem B.1.8 (Conservation of angular momentum). If
∑

qi × Fi = 0, for a

system, then its total angular momentum is conserved.

Now we will consider the force being exerted on a single mass point by another mass

point within the system.
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Definition B.1.9 (Binary particle interaction).

In many systems, the only forces on the point masses are forces of binary inter-

action Fij, each parallel to the inter-particle position vector dij = qi− qj, such that

we always have Fij = −Fji, and the total force on each point mass i is Fi =
∑

j Fij.

This system is called a closed system. Moreover, such forces are called internal,

and any other forces are external.

Proposition B.1.10. In any closed system, the total force and the total torque are

both zero.

Corollary B.1.11. The total angular momentum of a closed system is conserved.

Example B.1.12. (Newtonian 2-body systems) Consider a system formed by two

mass points m1 and m2, with mutual interaction, so that the motion is described by:

m1q̈1 = −F(q2 − q1) (B.6)

m2q̈2 = F(q2 − q1) (B.7)

where F : D ⊂ Rd → Rd is a force which depends on the relative vector (q2 − q1)

only. Then, since the sum of forces is zero, the linear momentum is conserved and

we have

m1q̇1(t) +m2q̇2(t) = const. =: c1 (B.8)

where the constant c1 is determined by the initial conditions. (The relation above can

be also immediately observed from the equations of motion).
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Equation (B.8) leads to

c(t) =
m1q1(t) +m2q2(t)

m1 +m2

=
c1

m1 +m2

t+ c2 (B.9)

where c2 is a constant determined by the initial conditions. Let

r := q2 − q1 (B.10)

be the relative vector of m1 and m2 and consider the change of coordinates (q1,q2)→

(r, c)

r = q2 − q1 (B.11)

c =
m1q1 +m2q2

m1 +m2

. (B.12)

Then r is given by the equation

r(t) = q2(t)− q1(t) =
m1 +m2

m2

c(t)− m1

m2

q1(t)− q1(t)

=
m1 +m2

m2

c(t)− m1 +m2

m2

q1(t) . (B.13)

From the above we deduce that

r̈(t) =
m1 +m2

m1m2

F(r) (B.14)

where we used (B.6) to substitute q̈1 . Let r̃(t) be a solution of the equation (B.14)
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above. Then the motion r(t) is given by

r(t) = r̃(t) +
m1 +m2

m2

c(t) (B.15)

that is, r(t) is the sum of the relative vector dynamics r̃(t) and dynamics of centre of

mass vector c(t). Since the dynamics of the centre of mass (B.2) is known from the

initial conditions (see equation (B.9)), it is sufficient to solve only (B.14).

Thus, without loss of generality, in the case of Newtonian 2-body systems, one

takes the constants c1 = 0 and c2 = 0 and studies only the dynamics of the relative

vector given by (B.14). It is customary to write this equation under the form

M r̈ = F(r) (B.16)

and call M :=
m1m2

m1 +m2

the relative mass.

Unlike linear and angular momenta, the kinetic energy of closed systems is not

necessarily conserved. However, the total energy is conserved if no forces are present.

Definition B.1.13. A Newtonian N-body potential system is a mechanical

system formed by N point masses where the force on each mass point is the gradient

of a function. Specifically,

miq̈i = − ∂V

∂qi
, for i = 1, ..., N

where V : D ⊂ Rdn → R is a smooth function called the potential energy.
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Definition B.1.14. A central force problem is a mechanical system where

F (q) = F (|q|) q

|q|
. (B.17)

This system is a Newtonian potential system with potential given by

V (q) := −U(|q|) (B.18)

where U(|q|) is an anti-derivative of F.

Example B.1.15. (Newtonian 2-body systems cont.) In Example B.1.12, if we con-

sider that F depends only on the distance between m1 and m2 only, i.e.

F = F (|q2 − q1|)
q2 − q1

|q2 − q1|
= F (r)

r

r
(B.19)

then we find

V (r) = −U(r) =

∫
(−F (ρ)) dρ = −

∫
F (ρ)dρ (B.20)

where
∫
F (ρ)dρ is an antiderivative of F. Thus equation (B.16) can be equivalently

written as

M r̈ = − ∂V
∂r

(B.21)

Example B.1.16 (The classical N -body problem). Consider the motion of N point

masses under their mutual Newtonian gravitational forces (i.e., inverse-square law).

This system is a Newtonian potential system, with

V (q) =
∑

1≤i<j≤N

−Gmimj

‖qi − qj‖
. (B.22)
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The general problem of solving this system or determining its characteristics is called

the Newtonian N-body problem.

Definition B.1.17. The total energy of a Newtonian N-body potential system with

potential energy V is

E := K + V (B.23)

where K is kinetic energy.

Now we arrive at the third conservation law.

Theorem B.1.18 (Conservation of energy). In any Newtonian N-body potential sys-

tem, the total energy is conserved.

Proof.

dE

dt
=

d

dt
(K + V ) =

d

dt

(
1

2

N∑
i=1

mi||qi||2 +
N∑
i=1

V (qi)

)

=
1

2

(
N∑
i=1

miq̇iq̈i +
N∑
i=1

miq̈iq̇i

)
+

N∑
i=1

∂V

∂qi

dqi
dt

=
N∑
i=1

miq̇iq̈i +
N∑
i=1

∂V

∂qi

dqi
dt

=
N∑
i=1

q̇i

(
miq̈i +

∂V

∂qi

)
= 0

Remark B.1.19. For this reason, Newtonian N-body potential systems are also re-

ferred to as conservative.
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The following two sections introduce two coordinate-independent formulations of

conservative mechanics: the Lagrangian and the Hamiltonian.

B.2 Lagrangian Formulation

Definition B.2.1. The Lagrangian of a Newtonian N-body potential system in R3

with cartesian coordinates is a smooth function L : D×R3N → R, D ⊂ R3N open, of

the form

L(q, q̇) =
1

2
q̇TM q̇− V (q), (B.24)

where M is the mass matrix defined by

M :=



m1

m1 0
m1

. . .

mN

0 mN

mN



. (B.25)

where mi > 0 , for all i = 1, 2 . . . , N.

Remark B.2.2. The Lagrangian consists of L = K − V , where K = Kinetic Energy

and V = Potential Energy.
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Theorem B.2.3. The equations of motion of a Newtonian N-body potential system

miq̈i = − ∂V

∂qi
, i = 1, . . . , N

are equivalent to the Euler-Lagrange equations,

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0 , i = 1, . . . , N (B.26)

for the Lagrangian L defined by formula (B.24).

Note that here, q̇ is considered as an independent variable, so that L : R2dN → R,

and equation (B.24) has partial derivatives with respect to both q and q̇. Yet, when

evaluating (B.24) and its derivatives, we substitute q̇(t) = d
dt

q(t).

Proof.

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
=

d

dt
(M q̇) +

∂V

∂q
= M q̈ +

∂V

∂q
= 0

Definition B.2.4. A time-independent Lagrangian system on a configuration

space RdN is the system of ODEs in equation (B.26), i.e. the Euler-Lagrange equa-

tions, for some function L : D × RdN → R, D ⊂ RdN open, L = L(q, q̇), called the

Lagrangian.

Theorem B.2.5. The Euler-Lagrange equations are coordinate-independent.

Proof. Consider a change of coordinates q = q(r), where q(r) is a smooth map with
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a smooth inverse. Then

q̇ =
dq

dt
=
∂q

∂r
· dr
dt

=
∂q

∂r
· ṙ , so

∂q̇

∂r
=
∂2q

∂r2
· ṙ and

∂q̇

∂ṙ
=
∂q

∂r
.

If we also assume q(t) is smooth, then the equality of mixed partials gives

d

dt

(
∂q

∂r

)
=
∂q̇

∂r
, so

d

dt

(
∂q̇

∂ṙ

)
=

d

dt

(
∂q

∂r

)
=
∂q̇

∂r
.

If the Euler-Lagrange equations hold for (q, q̇) then

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
=

d

dt

(
∂L

∂q̇
· ∂q̇

∂ṙ

)
−
(
∂L

∂q
· ∂q

∂r
+
∂L

∂q̇
· ∂q̇

∂r

)
=

d

dt

(
∂L

∂q̇

)
· ∂q̇

∂ṙ
+
∂L

∂q̇
· d
dt

(
∂q̇

∂ṙ

)
− ∂L

∂q
· ∂q

∂r
− ∂L

∂q̇
· ∂q̇

∂r

=
d

dt

(
∂L

∂q̇

)
· ∂q

∂r
+
∂L

∂q̇
· ∂q̇

∂r
− ∂L

∂q
· ∂q

∂r
− ∂L

∂q̇
· ∂q̇

∂r

=

(
d

dt

(
∂L

∂q̇

)
− ∂L

∂q

)
· ∂q

∂r
+
∂L

∂q̇
· ∂q̇

∂r
− ∂L

∂q̇
· ∂q̇

∂r

=

(
d

dt

(
∂L

∂q̇

)
− ∂L

∂q

)
= 0 .

By Theorem B.2.5, we can perform a change of coordinates by expressing L =

K − V in the new coordinates in which we can compute the (new) Euler-Lagrange

equations.

Example B.2.6. (Newtonian 2-body potential systems) Recall from Example B.1.15

the equation of motion (B.21) of the relative vector between two mass points with
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binary interaction. The Lagrangian for this problem is:

L(r, ṙ) =
1

2
M ṙ2 − V (r) . (B.27)

or, in components

L(rx, ry, ṙx, ṙy) =
1

2
M
(
ṙ2
x + ṙ2

y

)
− V

(√
r2
x + r2

y

)
. (B.28)

The Euler-Lagrange equations are given by

Mr̈x = −∂V
∂rx

, Mr̈y = −∂V
∂ry

. (B.29)

Passing L to polar coordinates we have

L(r, θ, ṙ, θ̇) =
1

2
M
(
ṙ2 + (rθ̇)2

)
− V (r, θ) (B.30)

with the Euler-Lagrange equations given by

d

dt

∂

∂ṙ

(
1

2
M
(
ṙ2 + (rθ̇)2

)
− V (r)

)
=

∂

∂r

(
1

2
M
(
ṙ2 + (rθ̇)2

)
− V (r)

)
d

dt

∂

∂θ̇

(
1

2
M
(
ṙ2 + (rθ̇)2 − V (r)

))
=

∂

∂θ

(
1

2
M
(
ṙ2 + (rθ̇)2

)
− V (r)

)
.

Calculating the above, the Euler-Lagrange equations become

Mr̈ = Mrθ̇2 − V ′(r)
d

dt
Mr2θ̇ = 0 .
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Remark that in this problem it is more convenient to use the equations in polar coor-

dinates. Indeed, the second equation above gives the integral of motion:

Mr2(t)θ̇(t) = const .

which can be used to reduce the system.

Definition B.2.7. The energy function for a Lagrangian L(q, q̇) is

E :=
∂L

∂q̇
q̇− L ,

In particular, for Lagrangians of the form (B.24) we have the energy given by

E =
∑

mi‖q̇i‖2 − L =
1

2

∑
mi‖q̇i‖2 + V = K + V.

Theorem B.2.8. In any time-independent Lagrangian system, the energy function

is conserved.

Proof.

dE

dt
=

d

dt

(
∂L

∂q̇
q̇− L(q, q̇)

)
=

d

dt

(
∂L

∂q̇
q̇

)
− dL(q, q̇)

dt

=
d

dt

(
∂L

∂q̇

)
q̇ +

(
∂L

∂q̇

)
q̈− ∂L

∂q
q̇− ∂L

∂q̇
q̈

=
∂L

∂q
q̇ +

∂L

∂q̇
q̈− ∂L

∂q
q̇− ∂L

∂q̇
q̈ = 0
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An alternative dynamical description for mechanical systems is provided by its Hamil-

tonian formulation. This will be discussed in the following section.

B.3 The Legendre transform and Hamiltonian me-

chanics

Definition B.3.1. The Legendre transform for a Lagrangian L(q, q̇) is the change

of variables (q, q̇) 7→ (q,p) given by

p :=
∂L

∂q̇
.

The new variables p are called the momenta.

Remark B.3.2. If L(q, q̇) = 1
2
qTMq− V (q) =

∑
1
2
mi‖q̇i‖2 − V (q), then

pi =
∂L

∂q̇i
= miq̇i.

Definition B.3.3. A Lagrangian L is hyperregular if the Legendre transform for

L is a diffeomorphism, that is, a differentiable map with a differentiable inverse.

Remark B.3.4. If L(q, q̇) =
∑

1
2
mi‖q̇i‖2 − V (q), then the Legendre transform,

defined by pi := ∂L
∂q̇i

= miq̇i, is hyperregular, since it is differentiable and has a

differentiable inverse given by q̇i = 1
mi

pi.
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Theorem B.3.5. If L : R2dN → R is any hyperregular Lagrangian, then the Euler-

Lagrange equations,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 , i = 1, . . . , N ,

are equivalent to Hamilton’s equations of motion,

q̇ =
∂H

∂p
, ṗ = − ∂H

∂q
, (B.31)

for the Hamiltonian

H(q,p) := p · q̇(q,p)− L(q, q̇(q,p)) ,

where q̇(q,p) is the second component of the inverse Legendre transform.

Proof. The Euler-Lagrange equations are second order ODEs in the variables q =

(q1, . . . ,qN), but they can also be interpreted as part of an equivalent first order

system of ODEs in the variables (q, q̇), with the extra equations d
dt

q = q̇. Applying

the Legendre transform gives the equivalent system

d

dt
qi = q̇i(q,p) ,

d

dt
pi −

∂L

∂qi
= 0
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We now calculate the partial derivatives of H:

∂H

∂qi
= pi ·

∂q̇i(qi,pi)

∂qi
− ∂L

∂qi
− ∂L

∂q̇i
· ∂q̇i(qi,pi)

∂qi
= − ∂L

∂qi
∂H

∂pi
= q̇i(qi,pi) + pi ·

∂q̇i(qi,pi)

∂qi
− ∂L

∂q̇i
· ∂q̇i(qi,pi)

∂pi
= q̇i(qi,pi) .

Consequently, the Euler-Lagrange equations are equivalent to

d

dt
qi =

∂H

∂pi
,

d

dt
pi = − ∂H

∂qi
.

Remark B.3.6. Since the Euler-Lagrange equations are coordinate independent, then

for any Hamiltonian deduced via hyperregular Legendre transform, Hamilton’s equa-

tions are coordinate independent as well.

Theorem B.3.7. In any Hamiltonian system with a Hamiltonian H(q,p), the Hamil-

tonian is conserved.

Proof.

Ḣ :=
N∑
i=1

(
∂H

∂qi
· q̇i +

∂H

∂pi
· ṗi
)

=
N∑
i=1

(
∂H

∂qi
· ∂H
∂pi
− ∂H

∂pi
· ∂H
∂qi

)
= 0 .

The Legendre transform applied to the Lagrangian of the Newtonian N -body

potential system (B.24) leads to

pi = miq̇i (B.32)
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and hence

H(q,p) = p · q̇(q,p)− L(q, q̇(q,p)) =
∑ mi

2
‖q̇i‖2 + V (q) =

∑ 1

2mi

‖pi‖2 + V .

Thus the Hamiltonian of a Newtonian N-body potential system takes the

form

H(q,p) =
1

2
pTM−1p + V (q) (B.33)

where M−1 is the inverse of the mass matrix (B.25).

Remark B.3.8. The Hamiltonian in the above theorem is the energy function E

expressed as a function of q and p.

Example B.3.9. (Newtonian 2-body potential systems in polar coordinates) Recall

from Example B.2.6 the Lagrangian (B.30) giving the relative motion for a Newtonian

2-body potential system on polar coordinates. By applying the Legendre transform we

obtain the corresponding Hamiltonian

H(r, θ, pr, pθ) =
1

2M

(
p2
r +

p2
θ

r2

)
+ V (r) . (B.34)

for which the associated equations of motion are

ṙ =
pr
M

ṗr =
p2
θ

Mr3
− V ′(r)

θ̇ =
pθ
mr2

ṗθ = 0 .

For a Newtonian N -body potential system it can also be shown directly that Newton’s

equation of motion accept a Hamiltonian formulation:
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Theorem B.3.10. Every Newtonian N-body potential system

miq̈i = − ∂V

∂qi
, i = 1, . . . , N (B.35)

is equivalent to Hamilton’s canonical equations, for the Hamiltonian (B.33). More

precisely, (q(t),p(t)) is a solution to Equation (B.3) if and only if q(t) is a solution

of equation (B.35) and p(t) = (p1(t), . . . ,pN(t)) = (m1q̇1(t), . . . ,mN q̇N(t)), where

p(t) is linear momentum.

Proof. Recall that Hamilton’s equations for (B.33) are

q̇i =
∂H

∂pi
=

1

mi

pi , ṗi = − ∂H
∂qi

= −∂V
∂qi

, i = 1, . . . , N . (B.36)

The second order system in Equation (B.35) is equivalent to the following first order

system in variables (q, q̇),

d

dt
qi = q̇i , mi

d

dt
q̇i = −∂V

∂qi
, i = 1, . . . , N . (B.37)

Changing variables from (q, q̇) to (q,p), with pi = miq̇i gives the system

q̇i =
1

mi

pi =
∂H

∂pi
, ṗi = miq̈i = −∂V

∂qi
, i = 1, . . . , N .

In many applications of classical mechanics, such as our problem, one usually begins

with a Lagrangian model and then converts this to a Hamiltonian system, provided
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the Lagrangian is hyperregular. The benefit for using the Hamiltonian approach is

that it is particularly suitable for studying conserved quantities.

B.4 Cyclic Coordinates

Definition B.4.1. Consider a smooth Lagrangian L : D ×RN → R , D ⊂ RN open:

L = L(q1, q2, ..., qN , q̇1, q̇2, ..., qN) (B.38)

A coordinate qi for some i = 1, ..., N is called cyclic if it does not appear explicitly

in the Lagrangian expression.

Without loss of generality, let q1 be a cyclic coordinate. Then the Lagrangian takes

the form

L = L(q2, q3..., qN , q̇1, q̇2, q̇3..., q̇N) (B.39)

Using the Legendre Transform, the corresponding Hamiltonian is

H = H(q2, q3..., qN , p1, p2, ..., pN). (B.40)
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We have

q̇1 =
∂H

∂p1

(B.41)

ṗ1 = −∂H
∂p1

(B.42)

q̇i =
∂H

∂pi
(B.43)

ṗi = −∂H
∂qi

for i = 2, ..., N . (B.44)

Given some initial conditions (q1(t0), q2(t0), q3(t0), ..., qN(t0), p1(t0), p2(t0), ..., pN(t0)),

equation (B.42) leads to the momentum conservation

p1(t) = const. = p1(t0) =: c . (B.45)

Further, provided the system given by H(q2, q3..., qN , p1, p2, ..., pN)
∣∣
p1=c

is solved, and

so explicit expressions for qi(t; c) and pi(t; c), i = 2, 3, ..., N are found, then one can

determine

q1(t) = q1(t0) +

∫ t

t0

∂H

∂p1

(q2(τ), ..., qN(τ), p2(τ), ..., pN(τ); c)dτ. (B.46)

So the presence of a cyclic coordinate implies that the corresponding momentum is

constant along the motion (the constant being fixed by the initial conditions) and the

number of degrees of freedom drops by one.

Definition B.4.2. The Reduced Hamiltonian is

Hred(q2, q3..., qN , p2, ..., pN ; c) := H(q2, q3..., qN , p1, p2, ..., pN)
∣∣
p1=c

. (B.47)
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In Hred, the constant c may be treated as a parameter, which is allowed to take

all the values permitted by the initial conditions.

In the particular case of Newtonian N -body potential systems with a Hamiltonian

of the form

H = H(q2, q3..., qN , p1, p2, ..., pN) =
N∑
i=1

1

2mi

p2
i + V (q2, q3..., qN) . (B.48)

we have

Hred(q2, q3..., qN , p2, ..., pN ; c) :=
1

2m1

c2 +
N∑
i=2

1

2mi

p2
i + V (q2, q3..., qN) (B.49)

where c = p1(t) = const. = p1(t0) .

Example B.4.3. (Newtonian 2-body potential systems cont.) Recall from the Exam-

ples (B.2.6) and (B.3.9) that the Lagrangian is (B.30), with corresponding Hamilto-

nian (B.34). For reader’s convenience we re-write these below

L(r, θ, ṙ, θ̇) =
1

2
M
(
ṙ2 + (r2θ̇)2

)
− V (r) ,

and

H(r, θ, pr, pθ) =
1

2M

(
p2
r +

p2
θ

r2

)
+ V (r) ,

We observe that θ is cyclic in L, as this coordinate is missing from the expression.
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Consequently, the corresponding momentum pθ is a conserved quantity. This is im-

mediate from the Hamiltonian equations of motion:

ṙ =
pr
M

ṗr =
p2
θ

Mr3
− V ′(r)

θ̇ =
pθ
mr2

ṗθ = 0 .

Indeed, from the last equation above we have pθ(t) = const. = p(t0) =: c. The reduced

Hamiltonian is

Hred(r, pr; c) =
1

2M
p2
r +

c2

2Mr2
+ V (r) .

B.5 Equilibria and relative equilibria

Definition B.5.1. Given a Hamiltonian

H = H(q,p) = H(q1, q2, q3..., qN , p1, p2, ..., pN), (B.50)

a Hamiltonian equilibrium is an equilibrium (qe,pe) point of the Hamiltonian system

of equations associated to H.

The method for studying the stability of each equilibrium point, as outlined in Ap-

pendix A, are used for studying the stability of a Hamiltonian equilibrium. However,

some specific features of the analysis occur due to the structure of the Hamiltonian

equations. Let (qe,pe) be an equilibrium for (B.50).
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To apply the Lyapunov Method, we define the Lyapunov function

F (q,p) := H(q,p)−H(qe,pe)

where we use identical notation to Definition A.0.5. Then

1. F (qe,pe) = H(qe,pe)−H(qe,pe) = 0

2. For any solution (q(t),p(t)) ,

d

dt
F (q(t),p(t)) =

d

dt
H (q(t),p(t)) = 0,

since the Hamiltonian is conserved along solutions.

So the first and the third conditions of Lyapunov’s First Stability Theorem A.0.6 are

satisfied for any Hamiltonian system. The second condition is satisfied if (qe,pe) is a

local minimum point of the Hamiltonian. So we have

Theorem B.5.2 (Lyapunov’s Stability Theorem for Hamiltonian systems). An equi-

librium of a Hamiltonian system is stable if it is a local minimum point of the Hamil-

tonian.

Recall that a Newtonian N -body potential system, with Hamiltonian H(q,p) defined

by (B.33) has the equations of motion

q̇ = M−1p , ṗ = −∂V
∂q

. (B.51)
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It follows that equilibria are always of the form (qe,pe) = (qcr,0), where qcr is a

critical point of the potential V (q). Further,

H(qe,pe) = H(qcr,0) =
1

2
0TM−10 + V (qcr) = V (qcr) . (B.52)

Since the diagonal of the matrix M has strictly positive entries, the matrix M−1 has

strictly positive entries as well, and so for any vector p, we have pM−1p ≥ 0. Hence,

H(q,p) =
1

2
pM−1p + V (q) ≥ V (q) for all (q,p). (B.53)

If qcr is a local minimum for V (q), then using (B.52) and (B.53) we obtain

H(q,p)−H(qe,pe) ≥ V (q)− V (qcr) ≥ 0 for all (q,p). (B.54)

and so (qe,pe) = (qcr,0) is a local minimum for the Hamiltonian. So we have

Proposition B.5.3 (Lyapunov’s Stability Theorem for Newtonian N -body potential

systems). If qcr is a local minimum point of the potential then the equilibrium (qcr,0)

of a Newtonian N-body potential system is stable.

Corollary B.5.4. If the Hessian D2V (qe) is positive definite, then the equilibrium

(qcr,0) is stable.

If the Lyapunov criterion fails, then we resort to spectral analysis. It can be shown

[Meyer & al. (1992)] that the eigenvalues of the linearization matrix of a Hamiltonian

system always form conjugate quadruplets, i.e. they take on the form

λ1,2,3,4 = ±α± iβ .
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This implies that asymptotic stability (where Re (λ) < 0 for all λ) is not possible in

any Hamiltonian system, but only spectral stability. The latter is insured by

Reλ = 0 for all λ.

In the presence of a cyclic coordinates, the dynamics is reduced by one degree of

freedom and the reduced Hamiltonian depends on a parameter.

Definition B.5.5. An equilibrium point of the reduced Hamiltonian Hred is a relative

equilibrium of the un-reduced Hamiltonian H.

Note that equilibria of Hred depend parametrically on c. The methods for studying

Hamiltonian equilibria may now be applied to the case of relative equilibria, with the

distinction that the existence and stability of relative equilibria depend on c.

Remark B.5.6. An equilibrium of Hred with c = 0 is an equilibrium of H .

For mechanical systems, in the presence of a cyclic coordinate with physical mean-

ing (e.g. angular momentum), the dynamics is dependent on two internal parameters:

the total energy, h, and the momentum level, c. The energy-momentum diagrams

display the relative equilibria and their stability in the (c, h) plane, such that every

plotted point represents a relative equilibrium with momentum c and energy h. In

this way, one observes for what levels of energy and momentum the number of relative

equilibria in the system changes.
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B.6 Hill regions of motion

Consider a Hamiltonian of a Newtonian N -body potential system as given by equation

(B.33). Since the total energy is conserved, along any solution (q(t),p(t))

H(q,p) =
1

2
pTM−1p + V (q) = h (B.55)

where we suppressed the dependency of t. The constant h is fixed by the initial

conditions. Since the inverse of the mass matrix M−1 has only diagonal entries which

are strictly positive, we have pT (t)M−1p ≥ 0 for any values p, the equality being

attained for p = 0. Then we must have

0 ≤ 1

2
pT (t)M−1p(t) = h− V (q(t)) (B.56)

Thus, for any solution (q(t),p(t)) with initial conditions (q(t0),p(t0)) we obtain the

following inequality:

V (q(t)) ≤ h (B.57)

where h = H (q(t0),p(t0)). Hence, in a Newtonian N -body potential system, for each

fixed energy level, the configurations q(t) are constrained by the inequality (B.57).

Definition B.6.1. Given a Hamiltonian of the form (B.55), the configuration space

accepts a partition of the form

H(h) := {q |V (q) ≤ h} , h ∈ R (B.58)

The domains H(h) are called the Hill regions of motion.
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Appendix C

Matlab code used for Numerical

Simulations

Full Matlab® code for the Diatomic system can be found at

github.com/DamarisMcKinley/Diatomic Code, and for the Triatomic system at

github.com/DamarisMcKinley/Triatomic Code. Here we present the code used for

the Triatomic system.

The main process is as follows,

1 %Clear all previous information

2 clc;

3 clear;

4
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5 %Begin timing the process

6 tic;

7

8 %Define variables

9 syms C x R z pr pz real

10

11 %GatherUserInput

12

13 %Define value of parameters

14 a=1; %A ii from the thesis

15 b=5; %A jj from the thesis

16 d=1; %B ii from the thesis

17 e=1; %B jj from the thesis

18 alpha=6; %a from the thesis

19 beta=12; %b from the thesis

20 m=3/4; %M from the thesis

21 n=3/4; %M 2 from the thesis

22

23 %Define arrays

24 howmanycs=[];

25 Cvalue=[];

26 Rvalue=[];

27 zvalue=[];

28 allpossolR=[];

29 allpossolz=[];

30 allpossolx=[];

31 H=[]; X=[]; Y=[]; Z=[];

32 T=[]; U=[]; V=[]; W=[];

33 S=[]; P=[]; Q=[]; O=[];
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34 ZS=[]; ZSP=[]; ZU=[];

35 HP=[]; XP=[]; YP=[]; ZP=[];

36 TP=[]; UP=[]; VP=[]; WP=[];

37 SP=[]; PP=[]; QP=[]; OP=[];

38 Hredarray=[];

39

40

41 JJ=[zeros(2) eye(2); -1*eye(2) zeros(2)];

42

43 %Define lower and upper bounds for angular momentum in planar case,

44 %as well as step size

45 lb=0;

46 ub=60;

47 stpp=0.1;%0.1

48

49 %Derivatives of our potentials, w.r.t. z and R

50 diffF=diff(f fcn(R,a,d,alpha,beta),R,1);

51 diffG=diff(subs(g fcn(R,z,a,b,d,e,alpha,beta),z,0),R,1);

52 diffFt=diff(diffF,R,1);

53 diffGt=diff(diffG,R,1);

54 diffGz=diff(g fcn(R,z,a,b,d,e,alpha,beta),z,1);

55 diffGzz=diff(g fcn(R,z,a,b,d,e,alpha,beta),z,2);

56

57

58 %%%%%%%%%%%%%%%%%%%%%%%%% PLANAR CASE %%%%%%%%%%%%%%%%%%%%%%%%

59

60 %Find all planar relative equilibria

61 for c=lb:stpp:ub;

62
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63 howmanycs=[howmanycs c];

64

65 %Find all possible values for R, given the value for c

66 allsolnsforRplanar

67

68 %Determine current amount of RE found

69 sizeRvalue=max(size(Rvalue));

70

71 %Separate all values of R,and pick only the real positive ones

72 allpossolforRplanar

73

74 %If no more values for R are found, stop looking

75 if sizeRvalue==max(size(Rvalue)) && max(size(howmanycs))>4

76 break;

77 end

78

79 end

80

81

82 %Find the stability of the RE

83 if isequal(max(size(Rvalue)),max(size(Cvalue))) && max(size(Rvalue))>0

84

85 %Define the Hessian of the potential and reduced Hamiltonian

86 HessVeff=[subs((3*Cˆ2)/(m*Rˆ4)+diff(f fcn(R,a,d,alpha,beta),...

87 R,2)+2*(subs(diff(g fcnxs(x,a,b,d,e,alpha,beta),x,2),x,...

88 (Rˆ2/4+zˆ2))*(diff((Rˆ2/4+zˆ2),R,1))ˆ2+(diff((Rˆ2/4+zˆ2)...

89 ,R,2))*subs(diff(g fcnxs(x,a,b,d,e,alpha,beta),x,1),x,...

90 (Rˆ2/4+zˆ2))),z,0) 0;0 subs(2*(subs(diff(g fcnxs(x,a,b,...

91 d,e,alpha,beta),x,2),x,(Rˆ2/4+zˆ2)))*(diff((Rˆ2/4+zˆ2),...
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92 z,1)ˆ2)+diff((Rˆ2/4+zˆ2),z,2)*subs(diff(g fcnxs(x,a,b,...

93 d,e,alpha,beta),x,1),x,(Rˆ2/4+zˆ2)),z,0)];

94 HessHred=[

95 subs((3*Cˆ2)/(m*Rˆ4)+diff(f fcn(R,a,d,alpha,beta),R,2)+2*...

96 (subs(diff(g fcnxs(x,a,b,d,e,alpha,beta),x,2),x,(Rˆ2/4+zˆ2...

97 ))*(diff((Rˆ2/4+zˆ2),R,1))ˆ2+(diff((Rˆ2/4+zˆ2),R,2))*subs...

98 (diff(g fcnxs(x,a,b,d,e,alpha,beta),x,1),x,(Rˆ2/4+zˆ2))),...

99 z,0) 0 0 0;0 subs(2*(subs(diff(g fcnxs(x,a,b,d,e,alpha,...

100 beta),x,2),x,(Rˆ2/4+zˆ2)))*(diff((Rˆ2/4+zˆ2),z,1)ˆ2)+diff...

101 ((Rˆ2/4+zˆ2),z,2)*subs(diff(g fcnxs(x,a,b,d,e,alpha,beta),...

102 x,1),x,(Rˆ2/4+zˆ2)),z,0) 0 0;0 0 1/m 0;0 0 0 1/n];

103

104 for p=1:max(size(Cvalue));

105 %Find the Hessian of Veff, at R, C and z=0

106 A=subs(HessVeff,{R,z,C},{Rvalue(p),0,Cvalue(p)});

107

108 %Find the total energy of the system for each RE

109 plugRredHplanar

110

111 %Classify each RE as stable, unstable or spectrally stable

112 Stabilityplanar

113

114 end

115

116 else

117 warning('Rvalue array is empty');

118 end

119

120 %Keep track of all planar solutions
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121 UP=U; VP=V; WP=W; XP=X; YP=Y; ZP=Z; SP=S; PP=P; QP=Q;

122

123

124 %%%%%%%%%%%%%%%%%%%%%%%%% SPATIAL CASE %%%%%%%%%%%%%%%%%%%%%%%%

125

126 %Reset all arrays for the spatial case

127 howmanycs=[];

128 Cvalue=[];

129 Rvalue=[];

130 zvalue=[];

131 allpossolR=[];

132 allpossolz=[];

133 allpossolx=[];

134 H=[]; X=[]; Y=[]; Z=[];

135 T=[]; U=[]; V=[]; W=[];

136 S=[]; P=[]; Q=[]; O=[];

137 Hredarray=[];

138

139 %Derivatives of our potentials, w.r.t. z and R

140 diffF=diff(f fcn(R,a,d,alpha,beta),R,1);

141 diffG=diff(g fcn(R,z,a,b,d,e,alpha,beta),R,1);

142 diffx=diff(g fcnx(x,a,b,d,e,alpha,beta),x,1);

143 diffGz=diff(g fcn(R,z,a,b,d,e,alpha,beta),z,1);

144 diffGzz=diff(g fcn(R,z,a,b,d,e,alpha,beta),z,2);

145 diffGzR=diff(diffG,z,1);

146 diffGRR=diff(diffG,R,1);

147 diffFRR=diff(diffF,R,1);

148

149 %Define lower and upper bounds for angular momentum, as well as step
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150 %size

151 lbs=0.0001;

152 ubs=2;

153 ints=0.01; %0.01

154

155

156 for c=lbs:ints:ubs;

157

158 howmanycs=[howmanycs c];

159

160 %Find all possible values for R, given the value for c

161 allsolnsforR

162

163 %Determine current amount of RE found

164 sizeRvalue=max(size(Rvalue));

165

166 %Separate all values of R,and pick only the real positive ones

167 allpossolforR

168

169 %If no more values for R are found, stop looking

170

171 % while c~=0

172 % if sizeRvalue==max(size(Rvalue))

173 % break;

174 % end

175 % end

176 end

177

178
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179 %Define the Hessian of the potential and reduced Hamiltonian

180 HessVeff=[(3*Cˆ2)/(m*Rˆ4)+diff(f fcn(R,a,d,alpha,beta),R,2)+2*(subs...

181 (diff (g fcnxs(x,a,b,d,e,alpha,beta),x,2),x,(Rˆ2/4+zˆ2))*...

182 (diff((Rˆ2/4+zˆ2),R,1))ˆ2) 2*(subs(diff(g fcnxs(x,a,b,d,e,alpha...

183 ,beta),x,2),x,(Rˆ2/4+zˆ2))*(diff((Rˆ2/4+zˆ2),z,1))*(diff((Rˆ2/4...

184 +zˆ2),R,1)));2*(subs(diff(gfcnxs(x,a,b,d,e,alpha,beta),x,2),x,(...

185 Rˆ2/4+zˆ2))*(diff((Rˆ2/4+zˆ2),z,1))*(diff((Rˆ2/4+zˆ2),R,1))) 2*...

186 (subs(diff(g fcnxs(x,a,b,d,e,alpha,beta),x,2),x,(Rˆ2/4+zˆ2)))*...

187 (diff((Rˆ2/4+zˆ2),z,1)ˆ2)];

188 HessHred=[

189 (3*Cˆ2)/(m*Rˆ4)+diff(f fcn(R,a,d,alpha,beta),R,2)+2*(subs(diff...

190 (g fcnxs(x,a,b,d,e,alpha,beta),x,2),x,(Rˆ2/4+zˆ2))*(diff((Rˆ2/4...

191 +zˆ2),R,1))ˆ2) 2*(subs(diff(g fcnxs(x,a,b,d,e,alpha,beta),x,2),...

192 x,(Rˆ2/4+zˆ2))*(diff((Rˆ2/4+zˆ2),z,1))*(diff((Rˆ2/4+zˆ2),R,1)))...

193 0 0;2*(subs(diff(g fcnxs(x,a,b,d,e,alpha,beta),x,2),x,(Rˆ2/4+...

194 zˆ2))*(diff((Rˆ2/4+zˆ2),z,1))*(diff((Rˆ2/4+zˆ2),R,1))) 2*(subs...

195 (diff(g fcnxs(x,a,b,d,e,alpha,beta),x,2),x,(Rˆ2/4+zˆ2)))*(diff(...

196 (Rˆ2/4+zˆ2),z,1)ˆ2) 0 0;0 0 1/m 0;0 0 0 1/n];

197

198 %Find the stability of the RE

199 if isequal(max(size(Rvalue)),max(size(Cvalue)),max(size(zvalue)))&&...

200 max(size(Rvalue))>0

201

202 for p=1:max(size(Cvalue));

203

204 %Find the Hessian of Veff, at R and z=0

205 A=subs(HessVeff, {R,z,C},{Rvalue(p),zvalue(p),Cvalue(p)});

206

207 %Find the total energy of the system for each RE
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208 plugRredH

209

210 %Classify each RE as stable, unstable or spectrally stable

211 Stability

212

213 end

214

215 else

216 warning('Rvalue array for spatial solutions is empty');

217 end

218

219

220 %Output 1: Energy-Momentum Diagram

221 figure(1)

222 %planar unstable

223 if max(size(UP))>1

224 h 1=plot(UP,WP,'bs','MarkerSize',5);

225 hold on;

226 end;

227 %planar stable

228 if max(size(XP))>1

229 h 2=plot(XP,ZP,'rv','MarkerSize',5);

230 hold on;

231 end;

232 %planar spectrally stable

233 if max(size(SP))>=1

234 hold on;

235 h 3=plot(SP,QP,'yd','MarkerSize',5);

236 end;
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237 %spatial unstable

238 if max(size(U))>=1 && max(size(W))>0

239 hold on;

240 h 4=plot(U,W,'bo','MarkerSize',5);

241 end;

242 %spatial stable

243 if max(size(X))>=1 && max(size(Z))>0

244 hold on;

245 h 5=plot(X,Z,'r*','MarkerSize',5);

246 end;

247 %spatial spectrally stable

248 if max(size(S))>=1

249 hold on;

250 h 6=plot(S,Q,'y-','MarkerSize',5);

251 end;

252 if max(size(UP))>=1 && max(size(XP))>=1 && max(size(SP))>=1 && ...

253 max(size(U))>=1 && max(size(X))>=1 && max(size(S))>=1

254 legend([h 1,h 2,h 3,h 4,h 5,h 6],'unstable planar RE',...

255 'stable planar RE','spectrally stable planar RE',...

256 'unstable spatial RE','stable spatial RE',...

257 'spectrally stable spatial RE');

258 elseif max(size(U))>=1 && max(size(X))>=1 && max(size(S))>=1

259 legend([h 1,h 2,h 4,h 5,h 6],'unstable planar RE',...

260 'stable planar RE','unstable spatial RE',...

261 'stable spatial RE','spectrally stable spatial RE');

262 elseif max(size(U))>=1 && max(size(X))>=1

263 legend([h 1,h 2,h 4,h 5],'unstable planar RE',...

264 'stable planar RE','unstable spatial RE','stable spatial RE');

265 elseif max(size(U))>=1



109

266 legend([h 1,h 2,h 4],'unstable planar RE','stable planar RE',...

267 'unstable spatial RE');

268 elseif max(size(X))>=1

269 legend([h 1,h 2,h 5],'unstable planar RE','stable planar RE',...

270 'stable spatial RE');

271 else max(size(UP))>=1 && max(size(XP))>=1

272 legend([h 1,h 2],'unstable planar RE','stable planar RE');

273 end %Otherwise add more options for legend before end.

274 xlabel('Angular momentum')

275 ylabel('Total energy')

276 hold off;

277

278 %Output 2: C-R diagram for planar

279 figure(2)

280 %planar unstable

281 if max(size(UP))>=1 && max(size(WP))>0

282 hold on;

283 h 7=plot(UP,VP,'bs','MarkerSize',5);

284 end;

285 %planar stable

286 if max(size(XP))>=1 && max(size(ZP))>0

287 hold on;

288 h 8=plot(XP,YP,'rv','MarkerSize',5);

289 end;

290 %planar spectrally stable

291 if max(size(SP))>=1

292 hold on;

293 h 9=plot(SP,PP,'yd','MarkerSize',5);

294 end;
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295 if max(size(UP))>=1 && max(size(XP))>=1 && max(size(SP))>=1

296 legend([h 7,h 8,h 9],'unstable planar RE','stable planar RE',...

297 'spectrally stable planar RE');

298 elseif max(size(UP))>=1 && max(size(XP))>=1

299 legend([h 7,h 8],'unstable planar RE','stable planar RE');

300 elseif max(size(UP))>=1

301 legend([h 7],'unstable spatial RE');

302 elseif max(size(XP))>=1

303 legend([h 8],'unstable spatial RE');

304 end

305 xlabel('Angular momentum')

306 ylabel('Distance between m 1 and m 2')

307 hold off;

308

309

310 %Output 3: If spatial solutions exist, this is the diagram for CR

311 if max(size(U))>=1 | | max(size(X))>=1 | | max(size(S))>=1

312 % % C-R diagram for spatial

313 figure(3)

314 %spatial unstable

315 if max(size(U))>=1 && max(size(W))>=1

316 hold on;

317 h 14=plot(U,V,'bs','MarkerSize',5);

318 end;

319 %spatial stable

320 if max(size(X))>=1 && max(size(Z))>=1

321 hold on;

322 h 15=plot(X,Y,'rv','MarkerSize',5);

323 end;
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324 %spatial spectrally stable

325 if max(size(S))>=1

326 hold on;

327 h 16=plot(S,P,'yd','MarkerSize',5);

328 end;

329 if max(size(U))>=1 && max(size(X))>=1 && max(size(S))>=1

330 legend([h 14,h 15,h 16],'unstable spatial RE',...

331 'stable spatial RE','spectrally stable spatial RE');

332 elseif max(size(U))>=1 && max(size(X))>=1

333 legend([h 14,h 15],'unstable spatial RE','stable spatial RE');

334 elseif (size(U))>=1

335 legend([h 14],'unstable spatial RE');

336 elseif max(size(X))>=1

337 legend([h 15],'stable spatial RE');

338 end

339 xlabel('Angular momentum')

340 ylabel('Distance between m 1 and m 2')

341 hold off;%%%add spect to legend

342 end

343

344 %Output 4: If spatial solutions exist, this is the diagram for CZ

345 if max(size(ZU))>=1 | | max(size(ZS))>=1 | | max(size(ZSP))>=1

346 figure(4)

347 %spatial unstable

348 if max(size(U))>=1 && max(size(W))>0

349 hold on;

350 h 10=plot(U,ZU,'bs','MarkerSize',5);

351 end;

352 %spatial stable
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353 if max(size(X))>=1 && max(size(Z))>0

354 hold on;

355 h 11=plot(X,ZS,'rv','MarkerSize',5);

356 end;

357 %spatial spectrally stable

358 if max(size(S))>=1

359 hold on;

360 h 12=plot(S,ZSP,'yd','MarkerSize',5);

361 end;

362 if max(size(ZU))>=1 && max(size(ZS))>=1 && max(size(ZSP))>=1

363 legend([h 10,h 11,h 12],'unstable spatial RE',...

364 'stable spatial RE','spectrally stable spatial RE');

365 elseif max(size(ZU))>=1 && max(size(ZS))>=1

366 legend([h 10,h 11],'unstable spatial RE','stable spatial RE');

367 elseif max(size(ZU))>=1

368 legend([h 10],'unstable spatial RE');

369 elseif max(size(ZS))>=1

370 legend([h 11],'stable spatial RE');

371 end

372 xlabel('Angular momentum')

373 ylabel('Distance from m 3 to the origin')

374 hold off;

375 end

376

377 TimeSpent=toc;

Using the functions
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1

2 function f = f fcn(R,a,d,alpha,beta)

3

4 f=-a./R.ˆalpha + d./R.ˆbeta;

5

6 end

1 function g = g fcn(R,z,a,b,d,e,alpha,beta)

2

3 g=-(a+b)./(2.*(R.ˆ2./4.+z.ˆ2).ˆ(alpha/2)) + ...

4 (d+e)./(2.*(R.ˆ2./4.+z.ˆ2).ˆ(beta/2));

5

6 end

We find all values for re

1 eqn=(cˆ2/(m.*R.ˆ3)-diffF);

2

3 %Find all solutions for R numerically

4 allsolutionsR=(feval(symengine, 'numeric::solve', eqn,R));

We ensure the distance between the atoms (re) is positive

1 %Find all of the real and positive values

2

3 for q=1:max(size(allsolutionsR));
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4 p(q)=imag(allsolutionsR(q));

5 if p(q)==0; %If the value is real

6 if allsolutionsR(q)>0; %distance must be positive

7

8 allsolnsforx

9

10 %determine how many z values are real and positive and

11 %satisfy the equation, then store the individual values

12 allpossolforx

13 end;

14 end;

15 end;

We find all values for ze

1 eqn=diffx;

2

3 allsolutionsx=(feval(symengine, 'numeric::solve', eqn,x));

We ensure these values are valid

1 for j=1:max(size(allsolutionsx));

2 k(j)=imag(allsolutionsx(j));

3 if k(j)==0; %If the value is real

4 if allsolutionsx(j)>0; %must be positive

5 if (allsolutionsx(j)ˆ2-allsolutionsR(q)ˆ2/4)>=0

6 next=(allsolutionsx(j)ˆ2-allsolutionsR(q)ˆ2/4)ˆ(1/2);
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7

8 Rvalue=[Rvalue allsolutionsR(q)];

9 Cvalue=[Cvalue c];

10 zvalue=[zvalue next];

11 end

12 end;

13 end;

14 end;

We find the total energy of the system at each solution (re, ze, 0, 0; c)

1 %Find the energy corresponding to each RE and angular momentum

2 HredR=Hred(Rvalue(p),zvalue(p),0,0,Cvalue(p),m,n,a,b,d,e,alpha,beta);

3 Hredarray=[Hredarray HredR];

The stability of each solution is determined

1 %Value is stable if V is pos def, i.e. |A|>0 and if A(1,1)>0 If

2 %neither of the above properties are met, then look at the

3 %eigenvalues of the linearization matrix. If each eigenvalue has

4 %real part equal to zero, then spectrally stable. Otherwise

5 %the solution is unstable

6

7 if det(A)>0 && A(1,1)>0

8 %the point is Lyapunov stable

9 X=[X Cvalue(p)];

10 Y=[Y Rvalue(p)];
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11 Z=[Z Hredarray(p)];

12 ZS=[ZS zvalue(p)];

13

14

15 elseif det(A)<=0 | | A(1,1)<=0

16 %Linearization Matrix and corresponding eigenvalues

17 HessHredproc

18

19 %If all eigenvalues are purely complex, then spect stable.

20 if real(lambda(1,1))==0 && real(lambda(2,1))==0 && ...

21 real(lambda(3,1))==0 && real(lambda(4,1))==0

22 S=[S Cvalue(p)];

23 P=[P Rvalue(p)];

24 Q=[Q Hredarray(p)];

25 ZSP=[ZSP zvalue(p)];

26 warning('This is a good sign.');

27 %If at least one of them are not purely complex, then unstable

28 else

29 U=[U Cvalue(p)];

30 V=[V Rvalue(p)];

31 W=[W Hredarray(p)];

32 ZU=[ZU zvalue(p)];

33 end

34 end
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