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Digital three-dimensional (3D) models are useful for biomechanical analysis 

because they can be interactively visualized and manipulated. Synthesizing and 

analyzing animal locomotion with these models, however, is difficult due to the large 

number of joints in a fully articulated skeleton, the complexity of the individual joints, and 

the huge space of possible configurations, or poses, of the skeleton taken as a whole. A 

joint may be capable of several biological movements, each represented by a degree of 

freedom (DOF). A quadrupedal model may require up to 100 DOFs to represent the 

limbs and tnmk segments only, resulting in extremely large spaces of possible body 

configurations. New methods are presented here that allow limbs with any number of 

biomechanical DOFs to be kinematically exercised and mapped into a visualization 

space. The spaces corresponding to the ranges of motion of the left and right limbs are 

automatically intersected and pruned using biological and locomotion constraints. Hind 
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and fore spaces are similarly constrained so that Genetic Algorithms (GAs) can be used 

to quickly find smooth, and therefore plausible, kinematic quadrupedal locomotion paths 

through the spaces. Gaits generated for generic dog and reptile models are compared to 

published gait data to determine the viability of kinematics-only gait generation and 

analysis; gaits generated for Apatosaurus, Triceratops, and Tyrannosaurus dinosaur 

models are then compared to those generated for the extant animals. These methods are 

used for several case studies across the models including: isolating scapulothorax and 

shoulder joint functionality during locomotion, determining optimal ankle heights for 

locomotion, and evaluating the effect of limb phase parameters on quadrupedal 

locomotion. 



..... .._------

VI 

_._
 

CURRICULUM VITAE 

NAME OF AUTHOR: Eric David Wills 

PLACE OF BIRTH: Santa Monica, CA, USA 

DATE OF BIRTH: November 19, 1977 

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED: 

University of Oregon, Eugene, OR USA 

DEGREES AWARDED: 

Doctor of Philosophy in Computer and Information Science, 2008, 
University of Oregon 

Master of Science in Computer and Information Science, 2002, 
University of Oregon 

Bachelor of Science in Computer and Information SciencelMathematics, 2000, 
University of Oregon 

AREAS OF SPECIAL INTEREST: 

Evolutionary Locomotion Synthesis
 
Computational Biomechanics
 
Computer Graphics and Animation
 
Parallel and Distributed Computing
 

PROFESSIONAL EXPERIENCE: 

Principal Engineer, Kaibridge, Inc., 5 years
 
Software Engineer, Integrated Measurement Systems, 3 years
 



Vll 

GRANTS, AWARDS AND HONORS: 

Graduate Teaching Fellow of the Year, Department of Computer and Information 
Science, University of Oregon, 2005 

Inducted into Upsilon Pi Epsilon, International Honor Society for the Computer 
and Information Disciplines, 2003 

Departmental Honors for completion of an honors thesis, Department of 
Computer and Information Science, University of Oregon, 2000 

PUBLICATIONS: 

Stevens, K. A., Larson, P., Wills, E. D., & Andersen, A. (2008). Rex, sit: Digital 
modeling of Tyrannosaurus rex at rest. In P. Larson & K. Carpenter (Eds.), 
Tyrannosaurus rex: The tyrant king. Bloomington, IN: Indiana University Press. 

Stevens, K. A., & Wills, E. D. (2007). Kinematic constraints on the reconstruction of 
Dinosaur gaits. Proceedings of the Symposium on Vertebrate Paleontology and 
Comparative Anatomy, 55,54. 

Wills, E. D., & Stevens, K. A. (2007). Computational explorations of quadrupedal 
locomotion in Dinosaurs based on modem analogs. Proceedings of the American 
Society ofBiomechanics Northwest Symposium, 3, 18. 

Wills, E. D., & Stevens, K. A. (2007). Isolating functional degrees of freedom in limbs 
during locomotion. Proceedings of the Symposium on Vertebrate Paleontology 
and Comparative Anatomy, 55,46. 

Stevens, K. A., Wills, E. D., & Ernst, S. W. (2006). 3D Visualization of allometric 
changes in whole skeletons: Posture, proportion, and range of motion. Journal of 
Vertebrate Paleontology, 26(Suppl. 3A), 128. 

Stevens, K. A., Parrish, J. M., & Wills, E. D. (2005). Ontogenetic changes within the 
tyrannosaurid skeleton. In R. Scherer (Chair), Tyrannosaur Symposium 2005. 
Symposium conducted at the Burpee Museum of Natural History, Rockford, IL. 

Stevens, K. A., & Wills, E. D. (2001). Gracile versus robust cervical vertebral designs in 
sauropods. Journal of Vertebrate Paleontology, 21(Suppl. 3A), 104. 



Vlll 

ACKNOWLEDGEMENTS 

I would like to express my sincere appreciation to my family and friends for their 

support and advice throughout this process. Specifically, I would like to thank my caring 

parents Dr. David and Laurie Wills, my dedicated and entertaining sister Dr. Megan 

Wills Kullnat, and especially my loving, understanding, and beautiful wife Shelby Stair 

Wills. I would like to thank my committee for their guidance and expertise, especially 

Professor Kent A. Stevens, whose focused attention and patience over the last decade 

have shaped me into the professional that I am today. This work was supported in part by 

National Science Foundation grant 0093929. 



IX 

To my family and friends. 



------ ._---------

x 

TABLE OF CONTENTS 

Chapter Page 

I. INTRODUCTION 1
 

II. BACKGROUND AND RELATED WORK 9
 

Automatic Character Animation 11
 
Global Optimization 11
 
Local Controllers 21
 
Fragment Composition 31
 

Evolutionary Algorithms 41
 
Evolutionary Locomotion 45
 

Controller Evolution 46
 
Artificial Life 59
 
Robotics 69
 

Computational Gait Analysis 76
 
Summary 92
 

III. METHODS AND MATERIALS 95
 

Functional Degrees ofFreedom 95
 
Limb Ranges ofMotion 97
 
Bipedal Gait Reconstruction 101
 

Constraints 101
 
Reconstruction 107
 
Pipeline 115
 

Quadrupedal Gait Reconstruction 117
 
Constraints 117
 
Reconstruction 120
 
Pipeline 124
 

Gait Refinement. 126
 
Trackway Visualization 128
 
Scaling Model Elements 129
 
Models 129
 

Dog 130
 



Xl 

Chapter Page 

Reptile 135
 
Apatosaurus 140
 
Triceratops 145
 
Tyrannosaurus 150
 

Summary 153
 

IV. RESULTS AND ANALySIS 156
 

Genetic Parameters 156
 
Parent Selection 157
 
Crossover Coefficient 159
 
Mutation Coefficient 162
 
Candidate Population Size 165
 
Convergence Comparison 167
 

Sensitivity Analysis 169
 
Space Exploration 170
 
Space Organization 175
 
Space Refinement 178
 
Fitness Function 181
 

Qualitative Gait Analysis 190
 
Dog 190
 
Reptile 196
 
Apatosaurus 202
 
Triceratops 205
 
Tyrannosaurus 208
 
Joint Functionality 210
 

Quantitative Gait Analysis 212
 
Scapulothorax/Shoulder Contributions 213
 
Optimal Ankle Height 218
 
Ipsilateral Phase 227
 

Summary 235
 

V. DISCUSSION 238
 

VI. CONCLUSIONS 245
 



xu 

Chapter Page 

APPENDICES 248
 

A. DOG MODEL DATA 248
 
B. REPTILE MODEL DATA 252
 
C. APATOSAURUS MODEL DATA 257
 
D. TRICERATOPS MODEL DATA 261
 

E. TYRANNOSAURUS MODEL DATA 265
 
F. FIXING ORIENTATION AND POSITION 268
 
G. GENETIC ALGORITHM STRUCTURE 270
 
H. EXAMPLE BIPEDAL CANDIDATE 272
 
1. GLOSSARY 278
 

BIBLIOGRAPHY 281
 



X111 

LIST OF FIGURES 

Figure Page 

1. The Luxo Jr. lamp jumping 13
 

2. SR-based walking 16
 

3. Key mass points 17
 

4. Walking on uneven terrain 20
 

5. Gait timeline 22
 

6. Gait state machine 24
 

7. Limit Cycle Control. 27
 

8. Controller graph 30
 

9. Minimum energy expenditure animation 32
 

10. PAR template 35
 

11. Sagittal elevation angles 38
 

12. Navigating a generated trackway 40
 

13. A typical neural network 44
 

14. Example SAN specification 47
 

15. Shark model using low-level controllers 49
 

16. The Luxo Jr. lamp limboing 51
 

17. Running gait evolved using GAs 54
 

18. Salamander trotting animation 56
 

19. Effect oflimiting knee extension on cost of travel. 58
 

20. Creatures evolved for walking 61
 

21. Virtual competition arena 63
 



XIV 

Figure Page 

22. Exmnple evolved virtual pet. _ 64
 

23. L-system generated creatures 66
 

24. Ten creatures evaluated for locomotory efficiency 67
 

25. AlBO forelimb 70
 

26. Hip and pes trajectories during obstacle avoidance 74
 

27. Key pes locations 75
 

28. SlMM model ofthe pectoralis major muscle 79
 

29. Biomechanical model used for the stepup exercise 80
 

30. Knee represented using a sliding-axis joint. 82
 

31. Tyrannosaurus rex hindlimb musculoskeletal model. 83
 

32. Possible mid-stance configurations 86
 

33. Brachiosaurus trackway, COM, and Stability Triangle 88
 

34. Evolved gaits of various models 90
 

35. Flexion/extension movement of an Apatosaurus elbow 97
 

36. Apatosaurus elbow flexion/extension with fixed manus 99
 

37. Visualization of the Apatosaurus right forelimb LROM space 100
 

38. Exmnple bipedal duty vector 102
 

39. Events related to bipedal walking gaits 104
 

40. Relationships between discrete key events during forward locomotion 106
 

41. Pruned Apatosaurus forelimb LROM space 108
 

42. Apatosaurus forelimb LROM space before and after pruning 109
 

43. Back data and slice data organization 112
 

44. Apatosaurus forelimb walking animation 114
 



xv 

Figure Page 

45. Bipedal gait pipeline 116
 

46. Quadrupedal Trunk Constraint from dorsal view 118
 

47. Example quadrupedal duty vector. 119
 

48. Forelimb RD selection based on a hindlimb RD-RLU pair 122
 

49. Apatosaurus quadrupedal walking animation 123
 

50. Quadrupedal gait pipeline 125
 

51. Dog hindlimb gait animation before and after refining 127
 

52. Example generated Apatosaurus trackway 128
 

53. Dog hindlimb joints 130
 

54. Dog forelimb joints 131
 

55. Dog hindlimb LROM space 132
 

56. Constrained dog hindlimb LROM space 132
 

57. Dog forelimb LROM space 133
 

58. Constrained dog forelimb LROM space 134
 

59. Dog trunk ROM space 134
 

60. Reptile hindlimb joints 135
 

61. Reptile forelimb joints 136
 

62. Reptile hindlimb LROM space 137
 

63. Constrained reptile hindlimb LROM space 137
 

64. Reptile forelimb LROM space 138
 

65. Constrained reptile forelimb LROM space 139
 

66. Reptile trunk ROM space 139
 

67. Apatosaurus hindlimb joints 140
 



XVI 

Figure Page 

68. Apatosaurus forelimb joints 141
 

69. Apatosaurus hindlimb LROM space 142
 

70. Constrained Apatosaurus hindlimb LROM space 142
 

71. Apatosaurus forelimb LROM space 143
 

72. Constrained Apatosaurus forelimb LROM space 144
 

73. Apatosaurus trunk ROM space 144
 

74. Triceratops hindlimb joints 145
 

75. Triceratops forelimb joints 146
 

76. Triceratops hindlimb LROM space 147
 

77. Constrained Triceratops hindlimb LROM space 148
 

78. Triceratops forelimb LROM space 149
 

79. Constrained Triceratops forelimb LROM space 149
 

80. Triceratops trunk ROM space 150
 

81. Tyrannosaurus hindlimb joints 151
 

82. Tyrannosaurus hindlimb LROM space 152
 

83. Constrained Tyrannosaurus hindlimb LROM space 153
 

84. Effect of varying Tournament Selection coefficient.. 159
 

85. Effect of varying crossover coefficient with no mutation 160
 

86. Effect of varying crossover coefficient with fixed mutation 162
 

87. Effect of varying relative mutation coefficient with no crossover. 163
 

88. Effect of varying relative mutation coefficient with fixed crossover. 165
 

89. Effect of varying candidate population size 166
 

90. Comparison of GA/Hill Climbing convergence performance 169
 



XVll 

Figure Page 

91. Apatosaurus forelimb sample counts 171
 

92. Effect ofvarying sampling resolution on walk fitness 173
 

93. Comparison oflow (top) and high (bottom) resolution sampling 174
 

94. Effect ofvarying box count on walk fitness 176
 

95. Comparison of low (top) and high (bottom) box counts 177
 

96. Effect of iterative refinement on candidate fitness 179
 

97. Walking gait before (top) and after (bottom) refinement. 180
 

98. Comparison oflow (top) and high (bottom) pitch error coefficient 183
 

99. Comparison oflow (top) and high (bottom) FDOF error coefficient.. 188
 

100. Comparison of GAGA (top) and Goslow (bottom) hind dog walk. 191
 

101. Comparison of GAGA (top) and Goslow (bottom) fore dog walk. 193
 

102. Comparison of Muybridge (left) and GAGA (right) dog walk. 195
 

103. Comparison of Komodo dragon (left) and GAGA reptile (right) walk. 197
 

104. Comparison of GAGA (top) and Reilly (bottom) reptile gait images 199
 

105. Reptile hindlimb stance phase 200
 

106. Reptile forelimb stance phase 201
 

107. Apatosaurus hindlimb stance phase 203
 

108. Apatosaurus forelimb stance phase 204
 

109. Triceratops hindlimb stance phase 206
 

110. Triceratops forelimb stance phase 207
 

111. Tyrannosaurus hindlimb stance phase 209
 

112. Comparison ofhigh (top) and low (bottom) Apatosaurus ankle heights 219
 

113. Comparison of high (top) and low (bottom) Tyrannosaurus ankle heights 224
 



XV111 

Figure Page 

114. Effect of varying ipsilateral phase on dog body yawing 229
 

115. Effect of varying ipsilateral phase on Apatosaurus body yawing 230
 

116. Effect of varying ipsilateral phase on Triceratops body yawing 232
 

117. Effect of varying ipsilateral phase on reptile body yawing 233
 

118. Comparison of 0.5 (top) and 0.0 (bottom) reptile ipsilateral phases 234
 

119. Planar but non-parasagittal Apatosaurus hindlimb LROM space 240
 



XIX 

LIST OF TABLES 

~k p~ 

1. Effect of varying Tournament Selection coefficient.. 158
 

2. Effect of varying crossover coefficient with no mutation 160
 

3. Effect of varying crossover coefficient with fixed mutation 161
 

4. Effect of varying relative mutation coefficient with no crossover 163
 

5. Effect ofvarying relative mutation coefficient with fixed crossover 164
 

6. Effect of varying candidate population size 166
 

7. Comparison of GAlHill Climbing convergence performance 168
 

8. Effect of varying sampling resolution on walk fitness 172
 

9. Effect of varying LROM space box count on walk fitness 175
 

10. Comparison of original and refined walk fitness 178
 

11. Effect ofvarying pitch fitness coefficient on fitness error terms 182
 

12. Effect ofvarying yaw fitness coefficient on fitness error terms 184
 

13. Effect ofvarying roll fitness coefficient on fitness error terms 185
 

14. Effect of varying lateral fitness coefficient on fitness error terms 186
 

15. Effect ofvarying vertical fitness coefficient on fitness error terms 187
 

16. Effect ofvarying FDOF fitness coefficient on fitness error terms 189
 

17. Effect ofremoving forelimb FDOFs on dog gait observables 214
 

18. Effect of removing forelimb FDOFs on Apatosaurus gait observables 215
 

19. Effect of removing forelimb FDOFs on Triceratops gait observables 216
 

20. Effect of varying ankle height on Apatosaurus gait observables 220
 

21. Effect ofvarying ankle height on Triceratops gait observables 221
 



xx 

Table Page 

22. Effect of varying ankle height on dog gait observables 222
 

23. Effect of varying ankle height on Tyrannosaurus gait observables 223
 

24. Effect of removing pes FDOF on dog gait observables 225
 

25. Effect of removing pes FDOFs on Tyrannosaurus gait observables 226
 

26. Effect of varying ipsilateral phase on dog gait observables 228
 

27. Effect of varying ipsilateral phase on Apatosaurus gait observables 230
 

28. Effect of varying ipsilateral phase on Triceratops gait observables 231
 

29. Effect of varying ipsilateral phase on reptile gait observables 233
 

30. Dog FDOFs 248
 

31. Reptile FDOFs 252
 

32. Apatosaurus FDOFs 257
 

33. Triceratops FDOFs 261
 

34. Tyrannosaurus FDOFs 265
 



1 

CHAPTER I 

INTRODUCTION 

Animation is the process of creating an illusion of movement through the 

presentation of a discrete sequence of images. The perceived movement of an animation is 

outlined by key images, or frames, that represent important events along the animation 

time1ine. In creating an animation of a moving animal, events such as feet touching or 

lifting off the ground are identified as keyframes. From the context of reconstructing 

locomotion for extinct animals, these hand and foot ground contact events can be correlated 

with fossilized trackway data to provide a basis for possible walk cycles. Hand/foot ground 

contact events, however, only constrain the animal's external interactions with the 

environment; it is the kinematics of the bones and joints that constrain, at least in part, the 

movements of the animal's body during locomotion. It is the goal of this dissertation to 

provide new methods for synthesizing and analyzing gait animations by exploring the 

kinematics of an animal's limbs while they are in contact with the ground. 

Animations that accurately depict animal locomotion are useful for gait analysis. 

Such animations provide a description of the movement of an animal's limb, trunk, neck, 
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head, and tail with respect to the gait cycle timeline. Muybridge (1887) was the first to 

investigate animal locomotion using photographic sequences of animals engaged in various 

gaits. Image sequences were created using a linear array of cameras to record the 

movements of a passing animal. These image sequences provide a visual description of 

limb movements and timings from the fixed viewpoint ofthe cameras. 

Photographic animations are ultimately limited for locomotion analysis purposes by 

the inability to directly manipulate the models, except by navigating along the gait cycle 

timeline. Two-dimensional (2D) animation sequences are further limited by their inherent 

fixed viewpoint; an investigator cannot view the model from an arbitrary perspective to 

best observe points of interest. One goal of the research presented in this paper is the 

exploration ofdinosaur locomotion, for which photographic sequences are of course not 

available. 

Digital three-dimensional (3D) skeletal models can be interactively manipulated 

and visualized, making them useful for locomotion analysis. Such models can be based on 

fossilized bones, allowing investigations regarding the movements of extinct animals. To 

provide confidence in the results of simulated movements, the models must be accurate and 

capture sufficient complexity of the joints and articular surfaces. The necessary complexity 

of these models dictates an enormous amount ofeffort in building and posing the models. 

Digital models can be animated by using motion capture data (Delaney, 1998) to pose the 

skeleton. While this is an important technique for creating animations ofextant animals for 

research and other purposes, motion capture is not an option for extinct animals. 
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Many joints are capable of more than one kind ofmovement. These movements 

are often given physiological terms such as flexion/extension and adduction/abduction. 

Each of these physiological movements will be regarded as a degree of freedom (DOF). 

The shoulder joint, for instance, has three such DOF, namely flexion/extension, 

adduction/abduction, and internal/external rotation (i.e., rotation about the long axis of the 

upper arm). An entire limb, therefore, may have ten or more DOFs, so a quadruped model 

may easily contain 100 or more DOFs distributed throughout the limbs, the girdles that 

attach the limbs to the trunk, and the trunk. 

While biological joints are capable ofeffectively continuous movements, it is a 

practical necessity to discretize the movements ofa digital model for computational 

analysis (e.g., into 100 steps for each DOF, or some other manageable sampling method). 

The space of discrete skeletal poses grows exponentially with the number ofDOFs and the 

number of samples per DOF; the sheer magnitude of these spaces makes posing a challenge 

and searching these spaces intractable. 

The space of all kinematic poses for a biologically-accurate skeletal model is very 

large and may contain poses that are not possible with respect to an animal's myology. For 

this reason, investigators often build musculoskeletal models that are limited in terms of 

posing by the muscles, ligaments, and tendons of the model (Hutchinson, Anderson, 

Blemker, and Delp, 2005; Sellers, Dennis, Wang, and Crompton, 2004; Sellers and 

Manning, 2007). Such musculoskeletal models are driven by specifying muscle activation 

values. These activation values are interpreted by physics simulations, in which muscle, 

gravitational, and contact moments are used to update joint angles. Searching the space of 
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possible muscle activation values is computationally intensive due to the necessary use of 

physics simulations for each evaluation. Construction of these musculoskeletal models is 

laborious, even more so than construction of the original model because several muscles, 

ligaments, and tendons affect each joint. Furthermore, musculoskeletal models are difficult 

to accurately reconstruct for extinct animals because muscle dimensions and other 

characteristics are largely unknown and must be based on modem analogues, if available 

(Hutchinson et al., 2005). 

Sequences ofposes representing plausible gaits can be presumed to exist 

somewhere within the posing spaces ofthe 3D skeletal models, assuming that joint Ranges 

of Motion (ROMs) are accurately represented. In this way, limb and trunk osteologies 

provide a template for movement upon which the musculature acts. Locomotion can 

therefore be studied using only the kinematics of the bones andjoints ofa skeleton, but 

methods are needed for navigating the massive kinematic search spaces. It is the purpose 

of this thesis to explore this hypothesis by presenting new methods that search kinematic 

posing spaces for plausible locomotion and presenting the results oflocomotion studies 

conducted using these methods. 

New techniques will be presented here that allow automatic gait generation and 

analysis ofbiomechanically-articulated skeletons using Genetic Algorithm Gait Analysis 

(GAGA) methods. GAGA methods allow each limb to be exercised to determine its 

potential contribution to locomotion. There is no theoretical limit to the number ofDOFs 

allowed per limb, or in the skeleton as a whole (although computer memory and processing 

power ultimately limit the fidelity of the limb explorations). All DOFs can be modeled to 
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represent any biologically possible movement at each joint (i.e., they are not limited to 

idealized primitives). 

In animals, limbs do not act in isolation; they function as part of a whole organism. 

As such, there are times during locomotion when a limb's pose is constrained by what is 

happening elsewhere in the body. During walking gaits, there is a time when both limbs of 

a bipedal system are in contact with the ground. With both limbs planted on the ground, 

there is a limited number of poses for each limb that do not cause the limbs to separate at 

their shared root. GAGA methods utilize this constraint, along with a bilateral symmetry 

constraint, to dramatically prune the size of the limb's posing space, leaving a space 

relevant to locomotion. Quadrupedal gaits are handled similarly, with an additional trunk 

constraint that further prunes hindlimb and forelimb spaces so that they are relevant to 

quadrupedal locomotion. 

Genetic Algorithms (GAs) are then used to find smooth and therefore plausible 

gaits through the constrained spaces. The GAs use a higWy-optimized candidate 

representation and fitness function that guarantees every generated gait will at least move 

the animal forward by a specified stride length. The GAs then search for gaits that are 

smooth in terms of body pitching, yawing, rolling, and lateral/vertical displacement. The 

GA also attempts to minimize unnecessary angular excursions at the joints. These fitness 

terms allow gaits to be analyzed in terms of the locomotion goals of real animals. 

Forward walking gaits were generated for two extant models (i.e., a generic dog 

and reptile) and for models of three dinosaurs (i.e., Apatosaurus, Triceratops, and 

Tyrannosaurus). The walking gaits generated for the extant models were compared 
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qualitatively with published data and serve as controls for verifYing that the gaits generated 

using GAGA methods match real-world animal gaits in terms ofjoint and limb 

functionality. The comparison of gaits generated using GAGA methods to real-world 

analogues provides confidence in the gaits generated for the extinct dinosaur models and 

the gait analysis ofthese models. 

The gait observables used by the fitness function to define an optimal gait can be 

used to quantitatively analyze gaits. The dog, Apatosaurus, and Triceratops models were 

analyzed to determine the contributions ofthe scapulothorax and shoulder joints to 

locomotion. Also, the dog, Apatosaurus, Triceratops, and Tyrannosaurus were analyzed to 

determine optimal ankle height based on pes flexibility. Finally, the dog, reptile, 

, Apatosaurus, and Triceratops, were analyzed to determine the effect ofgait phase 

parameters on quadrupedal locomotion. 

Due to the use ofkinematics only (i.e., no dynamic simulations are used) and the 

highly-optimized GAs, GAGA methods are able to automatically generate forward walking 

gaits for quadrupedal models in under five minutes on a consumer laptop (as of the time of 

this printing). Comparable methods use musculoskeletal models and dynamics simulation 

to automatically generate bipedal gaits, but the process can take weeks on supercomputer 

clusters (Sellers and Manning, 2007). Other methods are able to simulate quadrupedal 

locomotion, but only on simple spring-based models consisting of a rigid trunk, a 

hip/shoulder joint per limb, and the remainder of each limb modeled by a spring (Herr, 

Huang, and McMahon, 2002). In fairness, these methods are able to generate gaits with 
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aerial phases, while the GAGA methods are limited to walking gaits due to the lack of 

dynamics. The remainder of this dissertation is organized as follows: 

Chapter II contains a review ofmethods related to the automated generation and 

analysis oflocomotion. Automatic character animation techniques fIrst provided simple 

methods to automatically generate animation keyframes. Next, a review ofEvolutionary 

Algorithms (EAs) will be presented before a review of methods that utilize EAs to 

automatically generate locomotion. Next, a survey will enumerate current state-of-the-art 

methods for evaluating gaits, especially with respect to extinct animals. 

Chapter III will present the GAGA methods and techniques. Methods for defIning 

joints and DOFs will fIrst be presented. Next, limbs will be exercised to determine 

confIguration spaces and those spaces will be pruned based on biological and locomotion 

constraints so that they can be efficiently searched using GAs. Also, trunk-based 

constraints will be utilized to further prune the spaces for quadrupedal locomotion. The use 

of pipelines will be demonstrated to maximize the reuse ofdata between discrete operation 

for both bipedal and quadrupedal gait generation. Finally, specifIc data will be presented 

on the extant and extinct models used in later studies. 

Chapter IV will present data from sensitivity analyses and studies conducted using 

GAGA methods. First, an exploration ofthe GA genetic parameters will demonstrate the 

process of tuning the GAs and evaluate their performance. Sensitivity analyses will then 

show the robustness ofthe GAGA methods under changes to the parameters used to build 

confIguration spaces and generate gaits. Next, qualitative gait analysis will show that the 

gaits generated for extant animals closely match published gaits. Finally, quantitative gait 
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analysis will demonstrate that GAGA methods can be used for careful gait analysis and 

present the results ofthree specific case studies. 

Chapter V contains a discussion ofthe benefits and limitations ofthe GAGA 

methods. The significance ofthe case study results from Chapter IV will also be discussed. 

The paper will conclude with an ending summary in Chapter VI. The Appendices contain 

geometric data for the five models described in this paper, pseudocode for some of the 

presented algorithms, and a glossary of terms and acronyms used in this paper. Finally, the 

Bibliography lists all references cited in the body of this paper. 
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CHAPTER II 

BACKGROUND AND RELATED WORK 

In this chapter, background and related work will be presented that provide a 

foundation for the new methods and analysis presented in later chapters. These related 

works come from a variety of areas, including early methods for automatically generating 

character animation, the use of computational search techniques to evolve locomotion, and 

computational methods for analyzing gaits using digital 3D models. Ideas from each of 

these areas provided insight and inspiration for the new methods presented later in this 

paper. 

First, global optimization techniques allow automatic generation ofanimation by 

specifying high-level goals, but these techniques do not scale well to complex models. 

Techniques using localized controllers scale well to more complex models, but require a 

great amount of manual effort to coordinate joint activity. Finally, fragment composition 

techniques allow varied locomotion by blending simple locomotion sequences, but often 

compromise physical and biomechanical realism. 
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Next, a background of evolutionary search techniques (i.e., EA) and basic 

applications will be presented. EAs are particularly useful in determining good solutions 

for complex optimization and synchronization problems. EAs will not always find the 

optimal solution to a problem, but will almost always find a solution that is nearly optimal, 

as will be discussed. For locomotion synthesis, quicldy fmding near-optimal solutions 

allows a character to interactively respond to stimuli while maintaining biomechanical 

accuracy. 

Next, evolutionary locomotion synthesis techniques will be presented. These 

techniques combine automatic character animation and EA methods to produce 

locomotion. Successful applications from several areas will be presented. Methods for 

computationally evolving controllers have been used to coordinate joint behavior for 

locomotion of several human and animal models. Artificial Life (ALife) methods have 

been used to simultaneously evolve creature minds and bodies, creating strange new 

creatures capable ofunique methods oflocomotion. Also, robotics techniques have been 

utilized for robot locomotive learning. 

Next, modern digital 3D gait analysis methods and tools will be presented. 

Complex musculoskeletal models allow accurate biomechanical evaluation, but require 

laborious definition of the model and assumptions when modeling extinct animals. Static 

and dynamic constraints can be useful in pruning the space of limb configurations for 

locomotion. Finally, EA techniques can be used to find optimal gaits, providing insight 

into the limb movements and maximum speeds of extinct animals. 
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Automatic Character Animation 

Modem locomotion synthesis techniques are based on earlier ideas for 

automatically generating physically-accurate animation sequences. Early methods relied 

upon global optimization of an animation sequence to produce physically-accurate 

animation. These methods were the fIrst used to generate such animations, but did not 

scale well to complex models. Another approach involved defIning localized physical 

controllers to enforce the physically-accurate behavior of individual joints. These methods 

localized the force and torque optimization problems, increasing both scalability and the 

complexity needed to coordinate controllers. Finally, previously-generated animation 

sequences were blended and concatenated at animation time. The resulting motion 

sequences were generated inexpensively with no user interaction, but sometimes at the 

expense ofphysical and/or biomechanical accuracy. 

Global Optimization 

An animation sequence can be specifIed by defIning a set of objects and the forces 

and torques applied to those objects over time. By applying these forces and torques, a 

physical simulation can produce an animation sequence. Manually specifYing forces and 

torques to satisfY an animation goal is intractable for all but the simplest goals. The 

necessary forces and torques can, however, be automatically generated by optimizing the 

forces and torques required to satisfY high-level animation goals. As the number of 

animation nOFs grows, optimization soon becomes computationally prohibitive. 
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Optimization tractability can be maintained for complex models by varying time step 

resolution or reducing the number of animation DOFs, but physical and biomechanical 

accuracy may suffer as a result. 

Witkin and Kass (1988) introduced Spacetime Constraints as a new method for 

automatically generating high-level animation. Using this method, the animator specified 

high-level goals for what a character would do and how they would do it. Specifically, the 

animator would constrain what the character has to do, how the action should be 

performed, the physical structure of the character, and the resources available to the 

character. Optimization techniques and physical simulation were used to generate the low

level animation details. 

The Spacetime Constraints for each physical object were specified by typing LISP 

expressions into a Graphical User Interface (GUI) function box. Expressions were required 

for the mass and inertial parameters, the optimization criteria, and kinetic energy with 

respect to linear and angular velocity. The kinetic energy expression was used during 

optimization to evaluate the effect of forces and torques on the object. Lines could be 

drawn between boxes to indicate hierarchical relationships between objects. The 

optimization process would then solve for the time-dependent force and torque functions 

that best satisfied the minimization and maximization criteria for each object. 

Spacetime Constraints were shown to effectively produce jumping animations for 

Pixar's Luxo, Jr. lamp. Three 1-DOF joints were used to control the posture and motion of 

the lamp. The authors were able to produce a variety of animations by adjusting the 

physical parameters and optimization criteria. For example, increasing the weight of the 



13 

lamp's base resulted in more vertical squash prior to and following ajump. Figure 1 shows 

frames of a jumping animation for the lamp, including the realistic squash and stretch that 

is automatically generated using these methods. 

Figure 1. The Luxo Jr. lamp jumping. 

Note. From "Spacetime constraints" by A. Witkin and M. Kass, 1988, Proceedings ofthe 15th annual 

conference on Computer graphics and interactive techniques, p. 167. 

Specifying the necessary constraint and kinetic expressions became prohibitively 

expensive as model complexity grew. The expressions required to describe the lamp's link 

segments were quite complex even though the lamp utilized only three I-DOF joints. The 

search space for optimal force and torque functions increases exponentially with the 

number of interacting objects, so optimization becomes prohibitively expensive as object 

hierarchies become more complex. 
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Another problem with the Spacetime Constraints method was that the animator had 

to specify the number of discrete time steps used to represent force and torque functions. 

This restriction could have led to functions that were undersampled and/or oversampled at 

places along the animation timeline. Undersampling of the function could have resulted in 

animations that did not satisfy constraints. Oversampling of the function would 

unnecessarily increase the complexity of the search space. 

Liu, Gortler, and Cohen (1994) suggested the use of variable-rate sampling for 

force and torque functions. A hierarchical wavelet was used to represent the torque 

function for each joint DOF. Hierarchical wavelets are similar to hierarchical B-splines in 

that segments of the spline can be adaptively refined to add or remove resolution. 

Hierarchical layers ofB-splines represent more detailed but redundant information. 

Hierarchical layers of wavelets represent differences between layers, adding more detail to 

each layer without reproducing data. 

By using a wavelet to represent torque functions, few samples were needed during 

periods ofjoint inactivity. Conversely, more samples were allocated during high activity 

periods. The use of wavelets dramatically reduced optimization time when compared to 

analogue runs using fixed sampling. The speedup suggests that, at least in their animations, 

there are significant periods of time when joint inactivity can be exploited to reduce the 

optimization search space. Variable-rate sampling increased the applicability of Spacetime 

Constraints only slightly; optimization ofmodels with a large number ofjoint DOFs 

remained intractable. 
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Ngo and Marks (1993) attempted to reduce user interaction with Spacetime 

Constraints by employing Genetic Programming (GP) to generate animation. GP will be 

discussed in more detail later in this paper. The primary benefit of the GP approach is that 

it eliminated the need for the animator to specify complex kinetic expressions for each 

body. Instead, trajectories were encoded as behaviors that were automatically evolved to 

satisfy animation constraints. 

Behaviors were represented as Stimulus Response (SR) pairs. Stimuli were 

triggered using input from a set of sensors. Four sensor types were utilized: angle sensors, 

tactile sensors that measured ground contact forces, kinesthetic sensors that measured 

vertical velocity of the Center of Mass (COM), and position sensors which monitored the 

vertical position of the COM. Each sensor was defined by its type, a stimulus center, and a 

stimulus extent. Responses consisted of a set of target joint angles and a duration 

parameter. A critically damped equation of motion was used to ensure smooth motion 

during response and when switching between SR pairs. 

Only one SR pair was active at a time. A new pair was selected during each 

simulation step. Pair selection was performed by first normalizing each stimulus input to 

within its stimulus extent range. The pair with the smallest sum difference between 

normalized sensor inputs and stimulus centers was selected for activation. The pair would 

remain active until another SR pair was identified with a smaller sum difference between 

normalized sensor inputs and stimulus centers. 

Sets of 10 SR pairs were evolved to produce 2D articulated figure motion. Motions 

were evolved for basic stick figure walking, skipping, shuffling, and jumping. Figure 2 
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shows an evolved walking motion. Criteria such as maximum horizontal distance and 

maximum vertical height were used to drive the evolution process. The global SR pairs 

worked well on a low-DOF stick figure, but would not easily scale to more complicated 

articulated figures. Similar to the Spacetime Constraints method, it would become 

increasingly difficult for the optimization scheme to satisfy animation goals by globally 

controlling all animation DOFs. 

Time 
J*HtI---------------~230 

A B 

tlKigilt" 

Figure 2. SR-based walking. 

Note. From "Spacetime constraints revisited" by J. T. Ngo and J. Marks, 1993, Proceedings ofthe 20th 

annual conference on Computer graphics and interactive techniques, p. 348. 

Torkos and van de Panne (1998) used global trajectory optimization and trackway 

data to synthesize quadruped locomotion. To combat previous optimization complexity 
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problems, trajectory optimization was restricted to just two key mass points, one at the 

pelvic girdle and one between the shoulder girdles. Figure 3 shows these two key mass 

points. The trackway print locations and timings, along with a nominal limb length for the 

fore and hind limbs, provided enough data to optimize the motion of the animal's body. 

Motion of the cervical, dorsal, caudal, and limb joints were calculated based on the 

animal's trajectory. 

spIne 

virtual hip
h2 

~~-----:;;;i" virtual legs 

Figure 3. Key mass points. 

Note. From "Footprint--based Quadruped Motion Synthesis" by N. Torkos and M. van de Panne, 1998, 

Graphics Interface, p. 156. 
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The animal's dorsal vertebral column was treated as a pair of springs, one spring 

between each key mass point and the animal's COM. The dorsal joints were configured 

using Inverse Kinematics (IK) such that they satisfied the spring constraints. The support 

phase of each limb was also configured using IK such that the manus (i.e., hand) and pes 

(i.e., foot) were located at the manus and pes print locations. For a review ofIK, 

specifically for anthropomorphic limbs, see Tolani, Goswami, and Badler (2000). The 

suspended phase of each limb was determined by optimizing the path of the end effecter 

(i.e., manus or pes) to seek the next print while avoiding collisions with the ground and 

other limbs. The cervical and caudal joints were handled independently for non

locomotion purposes. 

The use of simple IK to determine limb joint configurations requires several 

assumptions. The primary assumption is that the joints must be simple hinge or ball and 

socket joints. These simple joints lend themselves well to IK due to their fixed centers of 

rotation, but are not biologically accurate. IK for biologically-accurate joints is an 

intractable problem that can only be handled by case-specific approximation. Also, IK is 

not intrinsically physically accurate, although pinning the end effectors with physically

accurate constraints typically produces visually-acceptable results. 

These methods were used to successfully generate quadruped locomotion that 

followed a trackway. The body trajectories were preplanned and IK was used to keep the 

manus and pes coincident with trackway prints, so the limbs were not directly used to 

produce locomotion. This may have resulted in a "marionette" effect, in which the body is 

moving and the limbs appear to be along for the ride instead. The optimization process 
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may have also caused to body and limbs to enter configurations in which the animal would 

appear visually uncomfortable. The idea ofpath planning for trackway following is good, 

but the limbs should be controlled such that they at least appear to drive the animal along 

the path. 

Chung and Hahn (1999) used a similar IK approach to simulate human walking. 

Instead of utilizing trackway data, pes print locations were generated from a general path 

description. The print-planning algorithm compensated for turning, obstacles, and changes 

in grade by altering step length. Print locations were always planned two steps ahead so 

that the character would show anticipation. The print locations, along with a path for the 

pelvis to follow, pinned the origin and end effecter of the limb, leaving knee and hip 

configurations to be solved by IK. 

The path of the pelvis was described using a parametric spline. Two control points 

were used to describe pelvis motion during each step. The first control point represented 

the pelvis position when the supporting pes was directly under the pelvis. The height of the . 

pelvis at the time was determined by the amount of knee flexion in the supporting leg. The 

second control point represented the pelvis position when both limbs were supporting 

(called dual support). The pelvis position during dual support was determined by 

minimizing the angular accelerations caused by IK to achieve dual support. The clearance 

height of the swinging leg was also governed by a spline. Control points were initially 

placed at the pes print locations and at a height such that the pes would clear the ground. 

Additional control points were added so that the pes would clear obstacles or uneven 

terrain. Figure 4 shows a generated walk on uneven terrain. 
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Figure 4. Walking on uneven terrain. 

Note. From "Animation ofHuman Walking in Virtual Environments" by S. Chung and 1. K. Hahn, 1999, 

Proceedings o/Computer Animation, 99, p. 13. 

These methods produced forward locomotion on uneven terrain, but the limbs may 

again have had a "marionette" look due to the use ofIK. A hybrid of global and local 

optimization techniques were used for obstacle avoidance. The trackway print locations 

were precomputed to compensate for terrain and obstacles. The pelvis and pes 

optimizations, however, were run at animation time to determine walking behavior for the 

current step. The animation-time optimization ofthe pelvis location and pes clearance 

height is important for walking on uneven terrain. 

Global optimization is effective when planning paths for a small number ofobjects. 

As the number of objects, physical relationships between objects, and animation time 

increases, the optimization search space becomes prohibitively large. The size of the 
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search space can be reduced by using IK to remove optimization DOFs, but the animated 

figure may take on a "marionette" look. The techniques presented in this section did not 

generate higWy-realistic locomotion, but did provide valuable ideas and motivation for later 

locomotion systems. 

Local Controllers 

An alternative to global optimization involves the use oflocalized controllers to 

produce physically-accurate animation. These controllers drive joints towards goal 

configurations by applying forces and torques. The joint motion created by these 

controllers is not necessarily biomechanically accurate with respect to muscles, tendons, 

and ligaments, but it is physically accurate. The controllers require only a target 

configuration, so complex optimization schemes are not necessary to determine forces and 

torques. Generating locomotion using local controllers is then a problem of specifying 

target joint angles with respect to limb goals and synchronizing those limb goals. 

The KLAW (Keyframe-less Animation of Walking) system (Bruderlin and Calvert, 

1989) represents one of the first uses oflocal physical controllers for animation. To 

produce walking animations, local controllers were used to drive limb joints toward key 

configurations. Joint torques were approximated using a model for the difference between 

current and target angle and the time remaining to reach the target angle. This type of 

controller is known as a Proportional Derivative (PD) controller. The key configurations 

were specified by a finite state machine that coordinated higher-level limb goals. Figure 5 
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illustrates the relationship between limb goals and the gait timeline. At the top level, a set 

of walking parameters were used to control the finite state machine. 

H5l HSR TOl HSl 

doLb19 single double single 
support support (Ief') support ,upport (right)... .... 

Ish stance left swing 
-. -..... cooo- ... 

right swing fight stance 
~ 

0% 1 IIsp 50% 100% .......----------......
 
HSL = heel sulke lett HSR = heel slrike rjght 
ltR. 10e ofl right 1'Ol • toe ofl 1eJ\ 

Figure 5. Gait timeline. 

Note. From "Goal-directed, dynamic animation ofhuman walking" by A. Bruderlin and T. W. Calvert, 

1989, Proceedings ofthe 16th annual conference on Computer graphics and interactive techniques, p. 235. 

Three locomotion parameters were used to describe basic walking animations: 

forward velocity, step length, and step frequency. Forward velocity equals the product of 

step length and step frequency, so only two of the three parameters needed to be specified. 

In addition, up to 28 locomotion attributes could be varied to customize the walk. These 

parameters included: lateral distance between the feet, toe clearance during swing phase, 
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and the maximum rotation and list of the pelvis. These parameters were used to determine 

key joint configurations during limb stance and swing phases and the timing for transitions 

between states. 

KLAW successfully generated lower-body walking animations using a simple (10 

DOF) human model. The model could only walk forward, varying speed but not direction. 

Control of this simple walking scheme was intuitive. The animator could easily adjust 

walking speed and alter gait appearance by modifying the three primary locomotion 

parameters. For example, short stride length and high stride frequency resulted in short, 

quick steps. Long stride length and low stride frequency resulted in long, deliberate (but 

not leaping) strides. 

Raibert and Hodgins (1991) presented a more general framework for animating 

locomotion. Here again, local controllers were used to drive joints and [mite state 

machines were used to coordinate the controllers. Instead ofdriving joints toward key 

configurations, controllers acted as actuators to simulate the effect of muscles, ligaments, 

and tendons on joints. The finite state machine realized high-level limb goals by providing 

actuator subgoals to each joint controller. 

Limb activity was divided into five states: The thrust and unloading states handled 

the application of forward and upward forces by the limb, followed by relaxation of the 

limb after lift off. The flight state was responsible for the mid-air behavior of the limb, 

preparing it for landing. The loading and compression states dealt with manus or pes 

contact with the ground and subsequent compression of the limb. Figure 6 illustrates the 

gait state machine. Limb activities were coordinated to produce specific gaits. For 
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example, quadruped trotting was generated by synchronizing diagonal limbs; quadruped 

bounding was generated by synchronizing fore and hind limbs. 

Figure 6. Gait state machine. 

Note. From "Animation of dynamic legged locomotion" by M. H. Raibert and J. K. Hodgins, 1991, 

Proceedings ofthe 18th annual conference on Computer graphics and interactive techniques, p. 353. 

Additional control methods were used to maintain character balance during 

locomotion. In general, a character is considered to be balanced ifthe character's COM is 

above the manus or pes ofa supporting limb. Ifmultiple limbs are supporting the 

character, the character is considered balanced if the COM is over the convex region 

defined by the manus/pes ofall supporting limbs. This region is known as the support 

region or support polygon. Balance was maintained by applying forces and torques to the 
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character's COM to ensure the character remained upright and the COM stayed within the 

support region. 

This framework was used to successfully generate several forward gaits including: 

biped running and galloping, quadruped trotting, bounding, and galloping, and kangaroo 

hopping. The framework extended previous work by actively maintaining character 

balance and simulating biomechanically-accurate motions. Adding gaits to the framework 

was particularly difficult because new actuator goals had to be specified along with limb

synchrony relationships. 

Hodgins, Wooten, Brogan, and O'Brien (1995) extended the work presented by 

Raibert and Hodgins (1991) to generate realistic animations of human running, cycling, and 

vaulting. Like previous work, actuators were used for low-level joint control and finite 

state machines were used to coordinate actuators. Localized actuator goals were hand 

tuned, so defining new behaviors was a difficult task. After tuning, behaviors could be 

easily controlled by modifYing high-level parameters. 

In addition to forward running, the state-specific control functions also handled 

arbitrary turning. Previous methods used target velocity and step length parameters to 

predict the forward position of the next pes print. Turning was achieved by incorporating a 

facing direction to predict the lateral displacement of the next pes print location (shortening 

the forward displacement). The lateral displacement of the next pes print location was a 

function of the facing direction, so this technique could be used to facilitate an arbitrary 

amount oflateral reaching during turning. Arm animations were coordinated with the leg 
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animations to produce full body animations. Balance was preserved during turning, 

allowing realistic-looking running animations that followed user-defined paths. 

Laszlo, van de Panne, and Fiume (1997) proposed a method for controlling human 

and robot walking by adding closed-loop control to periodic notions. Using a technique 

called Limit Cycle Control, periodic walking motions were automatically perturbed to 

maintain balance. Open-loop walking animation was generated using finite state machines 

and PD controllers. The open-loop walking of an upright character was considered the 

limit cycle. As a character began to lose balance, control methods would force the 

character back into the limit cycle. Figure 7 illustrates the Limit Cycle Control technique. 
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Figure 7. Limit Cycle Control. 

Note. From "Control of Physically-based Simulated Walking" by 1. F. Laszlo, M. van de Panne, and E. 

Fiume, 1997, Proceedings ofIMAGINA, p. 234. 

The Limit Cycle Control method allowed an interesting and intuitive control 

method for simulated humans and robots. The forward speed ofthe character could be 

controlled by leaning the character forward or backward. As the character leaned forward, 

walking speed would increase to keep the character from falling over forward. Likewise, 

turning could be controlled by leaning the character to the side or turning the hips. 

Unfortunately, only one gait was supported. Ideally, a similar technique could be used to 

allow backward steps, sideways steps, and gait changes. 
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To increase behavior repertoire ofanimated characters, Badler et al. (1995) used 

Sense Control Action (SCA) loops to control virtual character animation. During the sense 

phase of the loop, information was collected from the environment using sensors. The 

sensors provided information such as the distance and orientation of important objects. 

The control phase used input from the sensors to determine whether the character should be 

attracted or repelled from the objects. Finally, the action phase used control methods to 

accomplish the goals set forth by the control phase. 

Locomotion was generated using a SCA loop and a Parallel Transition Network 

(paT-Net). The SCA loop defined the "body" ofthe character: sensing possible locations 

for the next pes print, determining ifthose locations were safe, and then acting to take the 

step. The PaT-Net represented the "mind" of the character, determining high-level path 

planning goals. PaT-Nets consisted ofhierarchical state machines that determined the 

behavior of the SCA loop. The PaT-Net architecture was designed to facilitate arbitrarily

complex behaviors. To this end, PaT-Net nodes could spawn new networks, allowing 

parallel execution and communication between networks. In theory, a complex PaT-Net 

could produce and transition between many different gaits. 

The PaT-Net/SCA architecture was used to simulate a game ofhide and seek 

between virtual characters. The PaT-Nets were used to determine high-level goals such as 

where to hide and where to look. The SCA loop was used to generate low-level 

locomotion. In related work, characters could follow a user-defined path. Addition of the 

PaT-Net allowed automatic path planning at animation time. This decomposition into 
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character minds and bodies is a powerful paradigm, allowing arbitrarily-complex behaviors 

to be built on existing mind and body functionality. 

Faloutsos, van de Panne, and Terzopoulos (2001) proposed a standardized 

framework for physical controllers to drive character animation. By creating a controller 

module that met the specifications of a standard interface, animators could add their control 

modules to the behavior repertoire of an animated character. An initial network provided 

controllers that allowed a character to regain balance, take protective steps, and stand up in 

multiple ways after falling down. 

Each controller contained a set of preconditions, a set of postconditions, and an 

expected performance. The preconditions were ranges of values for each joint DOF. A 

controller could become active only if all character DOFs were within the ranges specified 

by the preconditions. The postconditions specified the target values ofeach joint DOF. 

Due to ground contact and obstacles, a controller may have been unable to reach a 

postcondition state. The expected performance defined the error tolerance for the 

controller. The controller would report a failure and become inactive if any of the character 

DOFs exceeded the ranges specified by the expected performance. Only one controller 

was active at a time. Active controllers were picked based on which controller's 

preconditions best matched the current state of the character. Figure 8 shows a sample set 

of controllers and their relationships. 
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success 
1ailure 
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Figure 8. Controller graph. 

Note. From "Composable controllers for physics-based character animation" by P. Faloutsos, M. van de 

Panne, and D. Terzopoulos, 2001, New York: ACM Press, p. 27. 

The standardized framework allowed behaviors to be specified without the 

necessary creation of complex state machines and/or control functions. However, 

determining appropriate preconditions for each behavior would be difficult, especially as 

the behaviors count grew. A character may begin to fall backward, only to match the 

preconditions of an undesired behavior. Perhaps a distinction between standard and 

recovery behaviors would alleviate this problem. A recovery behavior could be activated 

upon failure of a standard or recovery behavior. 

Using local controllers, the animation system can specify the target configuration 

for ajoint and rely on a controller to produce physically-accurate motion. Controllers can 

be tailored for a specific joint to produce biomechanically-accurate motion. To produce 

locomotion, proper joint configurations must be determined based on limb goals and limb 
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goals must be coordinated. These goals and relationships are typically specified using a 

large number of parameters. Later, work will be presented that utilized EAs to evolve such 

parameter sets. For more information on physical controllers, see van de Panne's (2000) 

review of control methods for animating articulated characters. 

Fragment Composition 

Global optimization and Local Controller techniques can produce physically

accurate motion sequences but require a great amount of effort to specify complex 

character behavior. An alternative is to create complex animations by compositing existing 

simple motion sequences. For the purpose of generating locomotion, interactive 

acceleration and deceleration could be achieved by blending between a fast walking 

animation and a slow walking animation. The downside to this approach lies in the 

difficulty of creating motion transitions that are both physically and biomechanically 

accurate. 

Rose, Guenter, Bodenheimer, and Cohen (1996) used Spacetime Constraints and IK 

to generate smooth motion transitions. Spacetime Constraints techniques were used to 

minimize the metabolic energy used by the character during the transition. In general, 

natural movements conserve energy as much as possible, so animations that conserve 

energy tend to look natural. Minimal metabolic expenditure was achieved by minimizing 

the joint torques necessary to transition between motion sequences. Figure 9 shows an 

example of simple linear interpolation versus animation using minimal metabolic 

expenditure. 
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Figure 9. Minimum energy expenditure animation. 

Note. From "Efficient generation of motion transitions using spacetime constraints" by C. Rose, B. 

Guenter, B. Bodenheime, and M. F. Cohen, 1996, Proceedings of the 23rd annual conference on Computer 

graphics and interactive techniques, p. 152. 

IK was used to keep supporting manus/pes stationary on the ground during 

transition. IK was propagated upward from the end effecters as necessary while forces and 

torques transformed joint configurations between motion sequences. Enforcing stationary 

end effecter constraints could have led to loss of character balance, which was not 

explicitly preserved. Natural-looking transition required the appropriate selection of 

motion sequences so that the transitions were short and did not require high-magnitude 

changes to joint configurations. 

The Spacetime Constraints and IK techniques were used to generate motion 

transitions for a 44 DOF human model. Transitions were generated using a basis library of 

soccer motions. Physical and biomechanical accuracy of the transition motions was not 

explicitly enforced, yet the motions appeared plausible due to relatively-short transition 
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times and the minimization of metabolic energy during transition. The visual plausibility 

oftransitions would likely falter in an interactive environment that required many 

unpredictable transitions. 

Improv (Perlin and Goldberg, 1996) was designed to be a flexible animation system 

capable ofautomatic transitions. The animation system consisted of two subsystems: an 

animation engine and a behavioral engine. The animation engine allowed basic motions to 

be stored as actions. Actions could be layered and transitioned between. Noise functions 

were applied to actions to ensure that actions looked slightly different each time they were 

run. The noise functions provided visual nondeterminism in the produced animations. The 

behavioral engine allowed linking of actions to greetings, responses, and gestures. 

Actions defined their constituent joint DOF values at the beginning and end of the 

action. Mutually-exclusive actions could be clustered into groups. If several such groups 

were defined, an action from each group could be performed simultaneously without 

oscillating a joint DOF. Two or more actions from a group could be animated 

simultaneously by applying a weighted average of the actions to the joint DOFs. 

Transitioning between mutually-exclusive actions was performed by varying the weighting 

values used in calculating the weighted sum of actions. 

Improv has been used to create virtual actors that respond to spoken commands by 

performing actions. The use ofa noise function during interpolation ofDOF allowed 

natural-looking motions similar those created by physical controllers. The interpolated 

motions were not physically correct, so care was needed to ensure that the motions looked 

physically correct. Intermediate joint configurations would likely be necessary to specify 
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actions that look physically correct. Locomotion would be difficult to generate with such a 

system because gaits would have to be manually specified. 

Badler et al. (1998) presented a Parameterized Action Representation (PAR) 

designed to link natural language with high-level animation goals. All actions available to 

a character were represented as PARs and stored in an Actionary. Agents were given 

natural language instructions, which were executed by initializing the appropriate PAR 

with context-specific information. For example, the command "Walk to your bicycle" 

might have initialized a walking PAR with information about the agent, the agent's current 

location, and the location of the bicycle. Low-level animation was driven by Motion 

Capture data or by SCA loops and PaT-Nets (Badler et aI., 1995). Figure 10 shows the 

PAR template. 
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PAR 

applicabiIi1)" conditions: CONDITION boolean-expression 

start:	 TIME/STATE 

result:	 TIME/STATE 

~gent: AGENT I 
participanh: ~bject1i: OBJECT liS..:J 

reCOndi~i?U!i: CONDITION boOlean_expreSSiOiI1 

core semautws:	 POlileODdltJonS: CONDITION boolean-expression 
motion: MOTION 
force: FORCEU	 J 

irection: 
DIRECTIOJ 

start: WCATIONpath: 
end: WCATION
 
distance: LENGTH
 ~ 

Chieve: CONDITION boOlean-expreSSioJn 
pUJ'Pose: generate: PAR 

enable: PARG 
termination: CONDITION boolean -expression
 

duration: LENGTH
 

manner: MANNER
 

subllctions: PAR conotraint-graph
 

puent action: PAR
 

previous aetion: PAR
 

concurrent action: PAR
 

next action: PAR
 

Figure 10. PAR template. 

Note. From "A Parameterized Action Representation for Virtual Human Agents" by N. Badler, R. 

Bindiganavale, J.Bourne, M. Palmer,J. Shi, and W. Schuler, 1998, Workshop on Embodied 

Conversational Characters, p. 3. 
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Each active agent maintained a queue of initialized PARs. When no PAR was 

currently active, the applicability conditions of the PAR at the front ofthe queue were 

checked. The first applicable PAR then ran its preparatory actions. The preparatory actions 

transitioned the agent into a starting configuration for the execution steps. The execution 

steps were then run. Upon termination, the PAR ran its post actions, which depended on 

the success or failure ofthe execution steps. PARs could be nested in the preparatory, 

execution, and post action phases to specify complex actions. 

The PAR representation was used to control five agents in a simulated lodge. Four 

of the agents could be controlled from different geographical locations using natural 

language commands. Possible actions included: walking, sitting in a chair or on a bed, 

talking to others, climbing a ladder, opening doors, shaking hands, bowing, and drinking. 

The fifth agent was an autonomous waiter that would fill empty glasses with water from a 

pitcher. When the pitcher became empty, the waiter would return to the kitchen to fill the 

pitcher. 

The PAR representation was similar to the standardized controller framework 

presented by Faloutsos et al. (2001). Both methodologies utilized pre and post conditions 

and failure handling. The PAR framework was less reactive and more goal oriented, using 

existing motion sequences to accomplish high-level goals. Motion transitions were 

specified by the PARs, so physical accuracy was not guaranteed. PARs are well suited for 

controlling interactive characters in an environment where interaction has greater 

importance than the physical accuracy ofmotion. 
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Allbeck and Badler (2002) extended the PAR representation to incorporate 

personality and emotion into motions. Effort and shape parameters were used to 

automatically adjust motion captured or procedurally generated animation sequences. 

Effort parameters adjusted agent velocity, acceleration, and inertial parameters. Shape 

parameters changed the physical form of the agent's body as it moved through space. 

Using these methods, animation sequences were successfully modified to convey character 

personality and emotional traits. 

Sun and Metaxas (2001) introduced a method for blending motion-captured 

locomotion sequences. Motion sequences were generated and stored using sagittal 

elevation angles. The sagittal plane is defined as the plane that bisects the left and right 

side ofa character's body. To determine a sagittal elevation angle, a body segment was 

first projected onto the sagittal plane. The elevation angle for a segment was defined as the 

angle between the projected segment and the gravity vector. Figure 11 demonstrates the 

acquisition of sagittal elevation angles. A limb was represented using the elevation angles 

of four limb segments: the pes, the lower limb, the upper limb, and the pelvis. Sets oflimb 

elevation angles were stored as 4-Dimensional points. 
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Pelvis segment and y-axis Pelvis elevation angle 

Figure 11. Sagittal elevation angles. 

Note. From "Automating gait generation" by H. C. Sun and D. N. Metaxas, 2001, Proceedings ofthe 28th 

annual conference on Computer graphics and interactive techniques, p. 263. 

Locomotion datasets were lists of 4-Dimensionallimb configurations. For each 

dataset, a step length and height was computed and stored. While walking on even or 

uneven terrain, a pes print planner determined the reasonable pes print locations. For each 

step, the location of the next pes print determined an optimal step length and height for the 

current step. A new motion sequence was then selected such that the desired step length 

and height could be achieved by blending the current and next motion sequences. A user 

could also manually adjust the optimal step length and height. Additional parameters such 

as stance width and toe out angle were used to fine-tune gait appearance. 

Using these methods, characters successfully walked up and down hills and 

followed curved paths. Curved paths were followed by simply changing the orientation of 

the character's sagittal plane, so balance was not preserved during turning. Nor was 

balance preserved during acceleration and deceleration. The selection and interpolation 
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algorithms were computationally efficient enough to be run at animation time. Similar 

techniques are common in more recent video games, in which characters can tum, walk on 

uneven terrain, and change gaits using only a few motion sequences. 

Choi, Lee, and Shin (2003) introduced a method for automatically navigating a 

character through a virtual environment by blending motion captured sequences. Given a 

starting and ending location, a virtual trackway was generated and used to guide the 

character through the environment. Motion sequences were blended and concatenated to 

create an animation sequence that followed the trackway. 

A set ofpossible pes prints was created by randomly sampling pes location and 

orientations in the environment. Each possible pes print was tested to ensure the location 

was safe (i.e., not water, fIre), and that the orientation was reasonable considering to the 

local terrain. Safe pes prints were added to a directed graph, connected by edges that 

represented possible motion transitions. Edge weights were proportional to the step length 

between pes prints with a penalty based on the amount of motion clip degradation 

necessary to achieve the step. Path planning then consisted of fInding the lowest-cost path 

from starting node to ending node. The resulting sequence of motion clips was 

concatenated and smoothed to produce the fInal animation. Figure 12 shows a character 

navigating a generated trackway. 
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Figure 12. Navigating a generated trackway. 

Note. From "Planning biped locomotion using motion capture data and probabilistic roadmaps" by M. G. 

Choi, J. Lee, and S. Y. Shin, 2003, ACM Transactions on Graphics (TOG), 22(2), p. 196. 

Trackways were successfully created to guide characters through an uneven 

environment with obstacles. Input motion sequences included: starting walk, stopping 

walk, walking straight, turning left, turning right, running, and broad jumping. Even in a 

small environment, several thousand pes print nodes and tens of thousands of transition 

edges were required to generate natural-looking animation. Not surprisingly, construction 

of the trackway was computationally intensive and had to be performed offline. Breaking 

the planning task into smaller subgoals might allow this technique to be used interactively. 

Physically-accurate motion sequences are difficult to specify and generate. The 

flexibility and utility ofthese sequences can be increased by combining them with other 

physically-accurate sequences. It is difficult, however, to determine the appropriate 
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sequences to blend and the order in which to blend them. Fragment composition 

techniques are appropriate for applications that require blending between only a few 

motion sequences at the cost ofphysical and biomechanical accuracy, such as video games. 

Some of the ideas presented in the section, however, may be useful for generating 

locomotion, specifically in transitioning between gaits. 

Automatic character animation techniques have been presented that successfully 

produced character animation with varying degrees ofphysical and biological realism. 

Many of these techniques were used directly to generate locomotion. Ofthe presented 

techniques, the methods involving local controllers produced the best locomotion results. 

The architectures based on local controllers were highly extensible, but required the manual 

tuning oflarge parameter sets. In the next section, EAs will be presented that can be used 

to automatically tune large parameter sets. For a general review ofhigh-level animation 

methods, see the review presented by Giang, Mooney, Peters, and O'Sullivan (2000). 

Evolutionary Algorithms 

EAs encompass a class of search algorithms. These algorithms are typically used 

to find good solutions to problems that have large solution spaces (called fitness 

landscapes). An initial population of candidate solutions is created randomly or seeded 

using some heuristic. A fitness function is used to score the candidates based on how well 

they satisfy the optimization criteria. Each algorithm iteration involves mating and 

mutating the population, scoring the population using the fitness function, and selecting fit 
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candidates for the next generation. The highest-fitness candidate is returned after a set 

number of generations. 

GAs were introduced by Holland (1992). GAs provide a simple mechanism for 

searching large fitness landscapes. Candidates, called genotypes, are usually stored as 

fixed-length binary strings. Candidates typically specify boolean or integer values. Wright 

(1991) discussed the encoding of real value parameters as binary strings. Mating can be 

achieved by swapping data between two candidate strings. One or more crossover points 

determine where data swapping starts or stops. Mutation can be performed by flipping 

random bits. The evaluated genotypes represent possible problem solution and are called 

phenotypes. 

GP (Koza, 1990) allows the evolution of instruction sets to satisfy criteria. 

Programs can be evolved to efficiently solve problems, or to accomplish a task using 

sense/response pairs as demonstrated by Ngo and Marks (1993). Programs can be 

represented as fixed-length strings of operations or as variable-length parse trees. The 

mating of trees can be accomplished by swapping subtrees between two candidates. 

Mutation within a tree can be performed by randomly changing a node type or value to 

another valid type or value. 

Sims (1991) described how GP can be used to evolve images and textures. Images 

were evolved from scratch to meet aesthetic criteria or modified to add a stochastic element 

to textures. Both fixed-length strings and variable-length trees were used to specify image 

operators. Fixed-length strings were used to represent pairs consisting of an image 

parameter and a modification to that parameter. Variable-length trees were used to specify 
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image operations and parameters. Tree nodes consisted of functions such as vector 

transformations, procedural noise generators, and image processing functions. Tree leaves 

were used to specifY parameters for the operators. Similar techniques can be used to evolve 

3D character morphologies. 

Artificial Neural Networks (ANNs) were introduced by Rosenblatt (1958). ANNs 

provide a mechanism for simulating a learning mind. Neural networks are typically 

directed graphs consisting of activation nodes and weighted links. Node activation is based 

on an activation function which uses the weights and activation status of incoming links as 

input. A simple activation function uses the sum of the activated link weights to determine 

activation; the node is activated if the sum exceeds a threshold. Animated characters can 

utilize ANNs as virtual brains to establish links between stimuli to responses. Figure 13 

illustrates a typical neural network. 
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Figure 13. A typical neural network. 

Note. From "Neuroanimator: Fast neural network emulation and control of physics-based models" by R. 

Grzeszczuk, D. Terzopoulos, and G. Hinton, 1998, SIGGRAPH 98 Conference Proceedings. Annual 

Conference Series, p. 10. 

Neural networks are usually organized into three layers: an input layer, a hidden 

layer, and an output later. The input layer consists of nodes that are activated based on 

some stimulus. Upon activation of a node, all links outgoing from the node are activated. 

The hidden layer consists of a number of interconnected nodes. Inputs to hidden layer 

nodes are links from the input layer or other hidden nodes. Output links from hidden layer 

nodes lead to output nodes or other hidden layer nodes. The output layer contains nodes 
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that contribute to a decision made by the network. The number of input and output nodes 

depends on the desired network stimuli and responses. The hidden node count is often 

increased until satisfactory results are reached. 

ANNs are trained by adjusting link weights. Networks are typically trained by 

propagating changes throughout the system. For example, if the network responds 

correctly, activated link weights are increased. Conversely, activated links weights are 

reduced when the network responds incorrectly. Alternatively, EAs can be used to train 

networks by evolving a set of link weights. The fitness of a set of links weights is 

determined by network performance when using those weights. 

EAs provide an effective way to search large problem spaces. The primary 

difficulties in using these algorithms lie in determining the candidate representation and the 

definition of an appropriate fitness function. In the next section, techniques will be 

presented that evolve the minds and/or bodies of animated characters for locomotion. 

Evolutionary Locomotion 

Automatically generating locomotory ability is difficult due to the size and 

interconnectedness of gait parameter sets. EAs have been employed to evolve the 

parameter sets that govern Local Controller architectures. The parameter sets were 

typically evaluated based on their ability to generate forward locomotion. ALife methods 

have been used to create interesting new creatures capable of locomotion. ALife methods 

typically use EAs to evolve both creature morphologies and control architectures. Finally, 

EA and robotics techniques have been used to train and improve robot locomotion. The 
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robots typically used simple yet effective evolution methods that could be useful for 

simplifying animation architectures. 

Controller Evolution 

Physical controllers can be optimized for locomotion by evolving gait parameters 

sets or by evolving ANN weights. Controllers were evolved for creatures with fixed 

biological structures. Modifying the morphology of a creature would necessitate re

evolution of the gait parameters or network weights. Controller fitness was typically 

determined by the creature's ability to achieve the desired gait. Such evolution schemes 

promoted the emergence of a single gait. 

van de Panne (1993) introduced Sensor Actuator Networks (SANs). SANs provide 

a framework for correlating sensors with character behaviors, similar to the SR pairs 

presented by Ngo and Marks (1993). Characters were defined by connecting rigid links 

and 1-DOF joints. Sensors and PD actuators were utilized to control joint motion. Sensor 

types included: angle sensors, touch sensors for determining ground contact, eye sensors 

for visual tracking, and length sensors to monitor the linear distance between points of 

interest. Angular actuators were used to drive joints and linear actuators were used to exert 

forces between body links. Figure 14 shows an example SAN specification. 
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sensor type link min max 
51 touch 

L1 52 touch 
53 angle 2 -180 -10A3,S6,S7 
S4 angle 2 25 180L4

L2 S5 angle 3 -180 -80 
,A4,S8 S6 angle 4 -180 42 
~, 

87 angle 4 55 180L5 " 
S8 angle 5 -180 -105S2 

L..--...J actuators:81 
link mass (kg) 10cm act. min max ks kd 

Ai -20 30 0.4 0.01L1 1.0 
A2 -85 -55 0.4 0.01L2 0.15 
A3 40 55 0.4 0.01L3 0.10 
A4 -110 -105 0.4 0.01L4 0.15
 

L5 0.10
 

Figure 14. Example SAN specification. 

Note. From "Sensor-actuator networks" by M. van de Panne and E. Fiume, 1993, Proceedings of 

SIGGRAPH, 93, p. 336. 

Relationships between sensors and actuators were defined using an ANN. The 

input layer of the network consisted of one node per sensor, the hidden layer contained one 

hidden node per sensor node, and the output layer contained one node per actuator. The 

input layer nodes were fully connected to the hidden and output layers. The hidden layer 

nodes were fully connected to the output layer. Incoming weight values were summed by 

the actuator nodes to determine both whether the actuator would activate/deactivate and the 

amount of force or torque to be applied by the actuator. A hysteresis function was used to 

avoid chattering effects that can be caused by rapidly switching an actuator on and off. 
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The neural networks weights were evolved to optimize the forward locomotion 

speed ofanimated characters. Optimization was performed without the use ofEA. Sets of 

neural network weights were fIrst randomly generated until a confIguration was found with 

satisfactory locomotion results. Stochastic Gradient Ascent and Simulated Annealing (two 

extensions of the Hill Climbing search technique) were then used to fIne tune the network 

weights. Both of these Hill Climbing techniques performed roughly equally well, one 

sometimes outperforming the other and vice versa. A single GA could have been used to 

accomplish the goals ofboth optimization phases. 

SANs were used to generate locomotion in 10 distinct creatures, including the 

Luxo, Jr. lamp. Each creature used only a few I-DOF joints. Creature simplicity allowed 

the optimization algorithms to quickly converge on effIcient gaits. The ANl'J paradigm 

allowed deterministic relationships to be established between sensors and actuators. Each 

evolved network was only capable ofone type of locomotion, so other techniques are 

needed to be incorporated to allow multiple gaits and gait transitions. 

Grzeszczuk and Terzopoulos (1995) presented a two-pass algorithm for evolving 

locomotion. Low-level controllers were fIrst evolved to maximize objective functions. 

Each low-level controller consisted of a set of time-dependent control functions, one per 

actuator. The control functions were represented in a discrete form using B-splines. 

Objective functions were based on locomotive goals, such as moving forward at a desired 

speed or turning towards a specifIc direction. Simulated Annealing was used to maximize 

the objective functions by varying spline parameters. 
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Controllers were optimized to perform basic low-level action such as walking 

forward, walking backward, and turning with different radii. The low-level controllers 

were then combined to create high-level controllers capable ofperforming more complex 

tasks. A greedy algorithm was shown to quickly select an appropriate sequence of low-

level controllers to accomplish an animation goal. Low-level controllers were also 

sequenced using Simulated Annealing, which better achieved animation goals at the cost of 

animation-time performance. Figure 15 shows a shark model comprised oflow-Ievel 

controllers. 

lett back left center left front 

IIIL1scle pair muscle pair nmscle pair 

point masses 21 

OOFs : 69 

size of the 
state space: 138 

actuators : 6 

springs' 
stiffhess : 35.0 

right back right center right front 

1111L..<;c1e pair muscle pair 111 uscl e pair 

Figure 15. Shark model using low-level controllers. 

Note. From "Automated learning ofmuscle-actuated locomotion through control abstraction" by R. 

Grzeszczuk and D. Terzopoulos, 1995, Proceedings ofthe 22nd annual conference on Computer graphics 

and interactive techniques, p. 70. 
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The benefits and drawbacks of this method are similar to those related to the 

fragment composition techniques presented earlier. The sequencing of low-level 

controllers is particularly attractive because simple controllers can be easily evolved to 

meet animation criteria. Controller sequences must be generated at animation time for the 

creatures to behave in an interactive environment. Greedy algorithms present an interesting 

method to quickly sequence controllers. After sequence selection, motions must be 

carefully blended to prevent discontinuities. 

An approach to evolving controllers using GP was presented by Gritz and Hahn 

(1997). As input, the user specified a detailed character model and a fitness metric. 

Character details included bone dimensions, masses, moments of inertia, and joint limits. 

The fitness metric incorporated animation goals for the character. Using the fitness metric, 

a controller program was evolved that specified target joint angles as a function of 

animation time. PD methods were used to drive joints toward target angles. 

Controller programs were represented as LISP S-expressions. Candidate programs 

consisted of one expression per joint DOF. The expressions defined target joint angles as 

time-dependent functions. Programs were scored by the fitness metric based on how well a 

character completed the animation goals. Fitness metrics were usually in the form of a 

primary goal (e.g., "Move to location X.") and secondary goals (e.g., "Don't fall down."). 

Goal importance could be weighted to encourage the optimization ofprimary goals over 

others. Goals could also be phased in later during the evolution process to ensure that 

primary goals were satisfied first. 



51 

Evolved S-expression controllers were used to generate physically-accurate 

animations of the Lu:xo Jr. lamp. The lamp was "taught" to hop forward to a goal location 

and to limbo under a pole. To limbo, the lamp was given the primary goal of forward 

locomotion with a secondary goal of not hitting the pole. The use of multiple evolution 

objectives allows more complex animation goals. Complex goals would likely require 

more evolutionary iterations and/or a larger genetic population to satisfactorily evolve. 

Goals such as the limbo, however, would be difficult to achieve by blending and 

concatenating existing motion sequences. Figure 16 shows the Lu:xo Jr. lamp's limbo 

animation. 

Figure 16. The Luxo Jr. lamp limboing. 

Note. From "Genetic programming evolution of controllers for 3-D character animation" by L. Gritz and J. 

K. Hahn, 1997, Genetic Programming, 97, p. 143. 
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Grzeszczuk et al. (1998) introduced the NeuroAnimator framework. 

NeuroAnimators used ANNs to produce physically-accurate behavior instead ofthe 

standard numerical integration techniques. The neural networks were trained prior to 

animation using physical simulation time steps as inputs and outputs. The neural networks 

predicted the next state ofa physical system given the current state and a time step, so real

time dynamics simulation could be performed with arbitrary time steps. Use of the neural 

networks greatly increased runtime efficiency because prediction was computationally 

inexpensive and there is no need for multiple integration steps between frame renderings. 

NeuroAnimators could be used to train physical controllers for optimized behavior. 

Neural network weights were not evolved because modifying the weights could invalidate 

their physically-accurate predictions. Instead, a controller was evolved for each animated 

DOF. Controllers were represented by time-dependent functions that modified the neural 

network inputs. Partial derivatives ofthe NeuroAnimator output states could be computed 

with respect to control inputs, so a gradient-based optimization was used to efficiently 

evolve the controllers. 

NeuroAnimators were used to evolve controllers for animation sequences such as: a 

pendulum trying to reach a goal state, a truck attempting to park at a specified location and 

orientation, a lunar lander attempting to land with a low descent velocity at a specified 

location and orientation, and a dolphin swimming with an optimized forward velocity. 

Using a neural network to replace numerical integration reduced the computational 

complexity ofdynamic simulation but required network training. Current computer 

hardware and numerical integration techniques are fast enough that training drawbacks 
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probably outweigh performance gains. However, the NeuroAnimator approach does 

provides an efficient means for optimizing controllers. 

Kang, Cho, and Lee (1999) extended the legged hopping model presented by 

Raibert and Hogins (1991) to evolve human running models. Two distinct hopping legs 

were effectively coordinated to produce running motions. A standing phase and a jumping 

phase were used to control the legs. During the standing phase, the leg first acted as a 

spring absorbing downward velocity. The leg then propelled the character forward and up. 

During the jumping phase, the limb was driven towards its landing configuration. The 

jumping phase was activated when the limb length exceeded a threshold. Upon activation 

of the jumping phase, a landing time was computed and used to activate the standing phase. 

To maintain character balance, the COM was driven towards a point over the 

character's stance-leg pes, similar to the balancing technique used by Raibert and Hogins 

(1991) .When no feet were in contact with the ground, the COM was driven towards a 

point over the mean location of the feet. Unlike previous work, the upper body was 

actively controlled to change the character's COM. A combination of arm and lower back 

movements were used to displace the character's COM towards its target location. 

The angular accelerations, maximum angles, spring constants, and nominal leg 

length were all editable parameters. GAs were used to evolve parameter sets. Running 

models were scored based on animation smoothness and energy consumption. Smoothness 

was evaluated by minimizing the difference in angular velocities between jumping and 

standing phases. This criterion promotes soft footfalls during running. Energy 

consumption was minimized by reducing the angular accelerations necessary to produce 
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the animation. By adjusting the target energy consumption, the run could be made to 

appear brisk or tired. In general, varying the amount ofenergy consumed by a character 

could result in animation that is not biologically accurate, especially ifjoint limits are not 

enforced. 

These methods were used to successfully generate human running animations at 

various speeds. Figure 17 shows a running gait evolved using the GA. The evolved 

parameter sets generated only forward locomotion. GA techniques alone are likely 

insufficient to prodllce locomotion along an arbitrary path. To follow an arbitrary path, the 

character must be able to modify their gait for turning, which requires a mapping between 

path stimulus and gait response. A method for varying gait parameters based on 

environmental and user stimulus is necessary for interactive characters. 

Figure 17. Running gait evolved using GAs. 

Note. From "An efficient control over human running animation with extension of planar hopper model" by 

Y. M. Kang, H. G. Cho, and E. T. Lee, 1999, Journal a/Visualization and Computer Animation, 10(4), p. 

224. 
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Ijspeert and Arbib (2000) introduced a model to generate locomotion for simulated 

3D salamanders. The model consisted of three control abstractions: a vision-based control 

circuit, an ANN, and a set of muscle actuators. The vision-based control circuit provided 

inputs to drive the speed and direction of the reptile. The vision circuit provided non

oscillating input to each side of the body, alternating and symmetrical for forward 

locomotion or asymmetrical for turning. The vision circuit provided input for the ANN 

which generated motoneural outputs to drive simulated muscles. The body trunk and limbs 

were actuated using spring-based muscles. 

A leaky integrator neural network was used to simulate the salamander's central 

pattern generators. Leaky integrator neurons differed from traditional artificial neurons in 

that they used additional timing and bias parameters to determine activation. The timing 

and bias parameters helped reduced actuator oscillations by adding complexity to the 

activation model. A GA was used to train the neural network for optimal locomotive 

efficiency in three stages. First, the limb central pattern generator was trained to generate 

reaching and supporting movements which were shared by the limbs. The body central 

pattern generator was next trained to produce coupled contractions for body bending. 

Finally, the neural network was trained to coordinate limb and body movements. 

These methods were used to generate both swimming and trotting gaits. Figure 18 

shows the generated salamander trotting animation. The ANN allowed brainstem-like 

control over locomotion, taking non-oscillating input from only four input nodes. The 

virtual salamanders could tum by bending their bodies and using asymmetric step lengths. 

The three-step evolution process provided a mechanism for training subnetworks of the 
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neural network with different goals. Subdivision of the evolutionary process affords 

quicker and more reliable convergence by the GA. 

Figure 18. Salamander trotting animation. 

Note. From "Visual tracking in simulated salamander locomotion" by A. J. Ijspeert, and M. Arbib, 2000, 

in J. A. Meyer and A. Berthoz (Eds.), Proceedings ofSAB'OO, From Animals to Animats 6, Paris, France, 

p.92. 
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Sellers et al. (2004) used GAs to explore possible gait strategies for 

Australopithecus afarensis. A 2D model consisting of only the hind limbs and pelvic girdle 

was used to evaluate the metabolic costs incurred by different gaits. By varying the 

maximum knee extension angle, the simulated hominid could be made to adopt a human

like or chimpanzee-like walking gait. Considering the metabolic costs of these gait 

variations, inferences were made about the walking behavior ofAustralopithecus afarensis. 

A finite state machine was used to produce locomotion. The state machine utilized 

three states, each representing a key pose for a leg. Each state was mirrored across the 

sagittal plane to animate the contralateral limb. Muscle activation levels were used to 

simulate a muscle pair for each joint by applying torques about the joint. Each state 

contained seven parameters: duration, right hip activation level, right knee activation level, 

right ankle activation level, left hip activation level, left knee activation level, and left ankle 

activation level. The set of21 parameters was used as a linear genome for the GA. The 

GA optimized the parameters such that maximal forward distance was covered for a fixed 

metabolic cost. 

Simulation results showed that bent-knee gaits consumed significantly more 

metabolic energy than a human-like gait. Figure 19 shows the effect of limiting knee 

extension on the cost of travel between the two models. A Basic Metabolic Rate (BlIIR) 

was used to estimate metabolic costs not related to locomotion. The metabolic costs could 

have been overestimated due to the lack ofnatural energy-saving mechanisms such as 

spring elements and complex joint morphologies. 
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Figure 19. Effect oflimiting knee extension on cost of travel. 

Note. From "Evaluating alternative gait strategies using evolutionary robotics" by W. 1. Sellers, L. A. 

Dennis, W.-J. Wang, and R. H. Crompton, 2004, Journal ofAnatomy, 204(5), p. 349. 

Controllers have been devised to produce efficient locomotion in humans, fish, 

snakes, salamanders, and extinct hominids. Locomotion was generated by evolving 

controller parameters sets or by evolving neural weights for ANl\J"s. Parameter-based 

controllers are well suited for generating and studying a given type of gait, although 

parameter values could be varied to produce different gaits and gait transitions. Neural 

network controllers show promise in supporting gait variations by varying network inputs, 

but network training can be difficult and computationally expensive. 
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Artificial Life 

ALife techniques have been used to simultaneously evolve the bodies and control 

architectures of virtual creatures. Unlike other work that has attempted to recreate realistic 

locomotion for known creatures, work based in ALife has attempted to create interesting 

new creatures and new forms of locomotion. ALife provides an application for locomotion 

synthesis, but also introduces fresh perspectives on the evolution oflocomotion. Strange 

yet efficient gaits can be embraced when there are few preconceived notions about how a 

creature should move about. 

Sims (1994a) introduced a method for simultaneously evolving the bodies and 

control architectures of virtual creatures. Creature morphology was determined by a 

directed graph in which nodes represented bones and links represented joints. Each node 

contained bone dimension data and its parent link specified a joint type. Joint types 

included: rigid, revolute, twist, universal, bend-twist, twist-bend, and spherical. 

Substructures could be linked recursively to reproduce limb-like structures. A recursive 

limit prevented infinite recursion. 

Each joint owned an ANN which utilized sensors and effectors to determine the 

behavior of the joint. Sensors types included: joint angle, ground contact, and 

photosensors. Effectors operated as angular actuators to produce joint torques. Joint 

torque magnitude was based on neural input and a maximum strength value proportional to 

the cross-sectional areas of the adjacent bones. Neuron activation was based on evolvable 

expressions that derived output from input signals. Neural networks could be linked to 

adjacent joints (separated by one bone) to allow synchronization between joints. 
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GP was used to simultaneously evolve creature minds and bodies. An initial 

population of creatures was randomly generated. Each creature was then evaluated based 

on forward distance traveled in a set amount of time. Highly fit creatures were mated and 

mutated for the next generation. Mating and mutating modified both the morphologies of 

the creatures and their neural network structures and weights. Creatures were successfully 

evolved to walk, swim, jump, or follow a light source. For these experiments, energy 

consumption did not factor into creature fitness. 

Interesting forms of locomotion emerged during the later stages of evolution. 

Swimming creatures used many synchronized paddles or winding snake-like motions to 

propel themselves. Swimming creatures that followed a light source developed fins for 

steering. Walking creatures used lizard-like walks, rocking motions, and inchworm-like 

pushing and pulling motions for forward locomotion. The jumping creatures all used 

similar strategies involving the compression and expansion oflimb-like structures. Gait 

possibilities are interesting to explore, and perhaps give some insight into the origin of 

locomotion for certain animals. Figure 20 shows examples ofcreatures evolved for 

walking. 
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Figure 20. Creatures evolved for walking. 

Note. From "Evolving virtual creatures" by K. Sims, 1994, Proceedings ofthe 21st annual conference on 

Computer graphics and interactive techniques, p. 21. 

Sims (l994b) extended his earlier work by using competition to co-evolve 

populations of virtual creatures. Instead ofdetermining the fitness of a creature by its 

ability to achieve forward locomotion, fitness was based on a creature's ability to 

outperform its competitors. The co-evolution techniques closely resembled natural 

selection, in which there is no specific optimization criterion. Using a survival of the fittest 
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mentality, competition losers had a chance of being eliminated from the population. Co

evolution produced competitive behaviors that would likely not have emerged using 

standard EA techniques. 

A competition was devised to encourage protective behaviors for creatures. 

Competitions took place in a virtual arena containing two virtual creatures and a cube. 

Before competition, the cube was place in the center of the arena with the creatures on 

opposite side of it. The starting distance between a creature and the cube was proportional 

to the creature's height, discouraging the evolution of creatures that simply fall onto the 

cube. Competition ended after one creature had been in contact with the cube for a set 

amount of time, or a maximum amount of time has elapsed. After competition ended, the 

distance was calculated between each creature and the cube. Creature fitness was based on 

a ratio of these distances, so creatures were encouraged to both reach the cube and keep it 

away from their opponent. Figure 21 shows the virtual competition arena. 
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Figure 21. Virtual competition arena. 

Note. From "Evolving 3D Morphology and Behavior by Competition" by K. Sims, 1994, Artificial Life, 

1(4), p. 354. 

Co-evolution produced some interesting strategies for winning the competition. 

Some creatures used arm-like structure to block access to the cube, some curled up around 

the cube, and some moved the cube away from the center of the arena. These behaviors 

would not have emerged through individual evolution. If the competition had been a race, 

then results would likely have been similar to those produced using individual evolution. 

Co-evolution methods are well suited for evolving creatures to outperform competitors, 

especially when offensive and defensive mechanisms are necessary components of a 

successful strategy. 

Ray (2001) built upon Sims' framework by allowing the user to interact with the 

evolutionary process. An initial random population was first generated and displayed for 

the user. Still images and motion sequences could be viewed for each creature. 

Aesthetically pleasing creatures could then be selected for combination and/or further 
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evolution. Selected creatures could be evolved to perfonn behaviors such as: walking, 

jumping, swimming, and following. In this way, a user could evolve a virtual creature to 

his/her liking. 

Directed graphs were used to represent virtual creature minds and bodies using an 

approach similar to that of Sims (1994). Evolvable color attributes were included with the 

morphology parameters for added customizability. New sensor types were added to the 

joint control networks including: position, velocity, angular velocity, force, and color 

perception. A new type of effecter modified color attributes. The additional parameters, 

sensors, and effectors supported a larger range of behaviors and appearances for the virtual 

creatures. Figure 22 shows an example evolved virtual pet. 

Figure 22. Example evolved virtual pet. 

Note. From "Aesthetically Evolved Virtual Pets" by T. S. Ray, 2001, Leonardo, 34(4), p. 314. 
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This framework provided a means for users to interactively evolve virtual pets. A 

natural extension would be a system for nurturing the virtual pets. The implementation did 

not use collision avoidance to prevent interpenetration ofbody segments. As a corollary, 

multiple interpenetrating (and therefore redundant) body segments may have been 

considered in contact with the ground or water. The additional ground contact may have 

caused unpredictable and possibly umealistic results during physical simulation of the 

creatures. 

Hornby and Pollack (200 1) used parametric Lindenmayer Systems (L-Systems) to 

generate creatures that exhibited morphological symmetries like those seen in natural 

creatures. L-systems consist ofgrammatical rewriting rules that are applied in parallel to 

an input string, resulting in an output string that is a variation ofthe input string. 

Lindenmayer (1968) first used such systems to model the development of cellular 

organisms. Later, Parametric L-system (Lindenmayer, 1974) extended "traditional" L-

systems by using parameters and algebraic expressions when determining which 

production rule to use. The use ofparametric L-systems allows the evolution of creatures 

with hierarchies of similarities, such as limbs and vertebral structures. 

Creature behavior was controlled using an ANN. The networks were created by 

evaluating a string of commands outputted by the L-systems. The commands created, 

duplicated, and merged neurons and adjusted link weights. The neural network used a 

single input node, driven by either a sigmoid, linear, or oscillating function. Morphologies 

were constructed similarly by interpreting LOGO-style build commands. These commands 

allowed the creation and backtracking of rigid links and the creation of several joint types. 
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When a joint was created, an output neuron was also created in the neural network to drive 

the joint. 

The L-systems responsible for generating creature morphologies and neural 

controllers were evolved using GP. The production rules of the L-systems were evolved to 

maximize the distance traveled by a creature during a set period of time. Creatures were 

penalized for dragging contact, which encouraged the creatures to take steps. Experimental 

data showed that the creatures evolved using L-systems exhibited more regularity and 

greater fitness than creatures evolved using earlier approaches. These results were likely 

due to the emergence oflimb-like structures. Figure 23 shows two example L-system 

generated creatures. 

Figure 23. L-system generated creatures. 

Note. From "Body-brain co-evolution using L-systems as a generative encoding" by G. S. Hornby and 1. 

B. Pollack, 2001, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-200l), 

p.874. 
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The ALife work presented thus far has explored the simultaneous evolution of 

character minds and bodies. Bongard and Pfeifer (2002) presented a method for comparing 

the locomotive efficiency of creatures with different bodies but similar minds. Ten 

different legged creatures were created, each with unique size, masses, and body plans. 

Each creature was equipped with eight actuated I-DOF joints, four angle sensors at key 

joints, and four touch sensors at key body locations. The creatures were evaluated based on 

the forward distance they were able to travel during a fixed time interval. Figure 24 shows 

the ten creatures that were created and evaluated for locomotory efficiency. 

Figure 24. Ten creatures evaluated for locomotory efficiency. 

Note. From "A Method for Isolating Morphological Effects on Evolved Behaviour" by 1. C. Bongard and 

R. Pfeifer, 2002, Proceedings ofthe Seventh International Conference on the Simulation ofAdaptive 

Behavior, p. 306. 
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Creature behavior was generated using an ANN. Each creature's neural network 

consisted of an input node for each of the eight sensors, three hidden nodes, and an output 

node for each of the eight actuators. A simple threshold model was used to determine 

neuron activation based on input link weights. A GA was used to evolve the neural 

network weights. In this way, the creatures were able to learn how to use their neural 

networks, but not evolve the neural networks themselves. 

All 10 creatures were evolved to generate some form of forward locomotion. 

Quadrupedal and hexapedal creatures generated the fastest forward locomotion. Tripedal 

creatures also produced fast locomotion. Creatures with a greater number of limbs and 

long, snake-like creatures generated the slowest locomotion. This result was likely due to 

additional friction caused by having more body points in contact with the ground. Another 

possible explanation is that it was more difficult for the neural network to coordinate larger 

numbers of limbs. This theory was supported by showing that increasing the number of 

hidden layer neurons increased the forward locomotion speed achievable by the highly

limbed and snake-like creatures. 

ALife techniques have been used to generate interesting new creatures with equally 

interesting new methods ofproducing locomotion. In all of the presented work, ANNs 

were utilized to control joints. Creatures have been evolved based on individual 

performance, by survival ofthe fittest, or by user interaction. Observing the successes and 

failures of a creature trying to walk or swim gives some insight into the advantages and 

disadvantages of certain gaits. For more information on ALife techniques for character 

animation, see Taylor's (2000) review ofthe area. 
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Robotics 

Robotics is a large research area unto itself. Over the past decade, researchers in 

the field of Evolutionary Robotics have developed techniques for self-learning and self

designing robots. For the purpose of this review, current state-of-the-art work will be 

presented on methods for evolving locomotion in robots. Azevedo (2001) discussed 

correlations between the studies of human and robot locomotion. Azevedo argued that 

biomechanical observations can improve robot stability and reduce energy consumption. 

Similarly, robotics can be used to evaluate prosthetic limbs and test alternate joint 

configurations and gait strategies to aid in the study ofhuman locomotion. 

Golubovic and Hu (2002) used GAs to optimize locomotion for the Sony AlBO 

robot. The AlBO was a quadrupedal robotic pet intended to behave like a cat or dog. The 

robot had the ability to emulate instinct, emotion, and learning capabilities. Each AlBO 

learned from experience during a training phase, settling on a [mal set of behaviors when it 

reached virtual maturity. The locomotion engine for the AlBO was robust, allowing the 

robot to walk forward, tum, follow targets, and get back up after falling over. 

GAs were used to tune the AlBO locomotion engine for maximum speed and 

stability. The gait generator utilized a set of six parameters for the front limbs and six 

parameters for the hind limbs. These parameters were used to generate cyclic motions for 

each end effecter that roughly followed an elliptical path. The governing parameters were 

the width and height ofthe path, the x, Y, and z coordinates of the center of rotation for the 

path, and the angle of the paw relative to the ground. A thirteenth parameter was used to 

specify the forward velocity of the robot. The parameter set was evolved to maximize 
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forward velocity and stability. To measure stability, readings were taking from three gyro 

sensors during trial runs. Lower variance between readings indicated higher stability. 

Figure 25 shows the configuration of the AlBO forelimb. 

Figure 25. AlBO forelimb. 

Note. From "A hybrid evolutionary algorithm for gait generation of Sony legged robots" by D. Golubovic 

and H. Hu, 2002, Proceedings ofthe 28th Annual Conference ofthe IEEE Industrial Electronics Society, 4, 

p.2595. 

Locomotion evolution experiments were conducted in hardware on the AlBO itself. 

This approach diverged from the typical simulation approach. Golubovic and Hu admit 
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that running simulations would have been easier, but contend that simulation may miss 

important interactions between the robot and its environment. A good physics simulation 

should produce negligible errors ifmass, inertial, and environmental conditions are 

properly modeled. Simulation saves both time and hardware costs, but may neglect subtle 

physical effects. 

Wolff and Nordin (2003) utilized GP to evolve locomotion on a humanoid robot 

named Elvina. Elvina had 12 joint DOFs, three per limb. Locomotion was generated by 

interpolating a set of whole-body pose configurations. Locomotion was evaluated in both 

simulations and hardware. Balance was maintained during locomotion by keeping the 

projection of the COM onto the ground within the robot's support polygon. The robot's 

upper limbs were utilized to offset its COM while the lower limbs were used for 

locomotion. 

Genetic programs resembling assembly language were used to produce locomotion. 

The programs took the robot's current pose configuration as input and computed the 

robot's next pose configuration. Each genetic program consisted ofa maximum of 256 

instructions. Instructions contained an operator (add, subtract, multiply, divide, and sin), 

source registers, and a destination register. The evolved sequence ofposes was cycled to 

produce continuous locomotion. Gaits were evaluated based on the robot's ability to 

remain upright and travel forward quickly. The fitness function was thus based on 

maximum distance covered in a set amount of time and minimal change in robot head 

height. 
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The approach successfully generated forward locomotion on both the physical and 

simulated robot. These experiments show the utility of the GP paradigm by evolving a 

complete locomotion program from scratch. The GP approach is well suited for evolving 

programs that can be run in hardware. Wolff and Nordin point out that while evolving on 

actual hardware is more accurate, it is time consuming and the hardware upkeep price can 

be high. Simulating early evolution followed by subsequent evolution of good programs 

on real hardware may be an economical compromise. 

Zhang and Vadakkepat (2003) used GAs to evolve locomotion for RoboSapien, a 

12-DOF humanoid robot. RoboSapien could walk continuously on flat ground and climb 

stairs while avoiding obstacles. The robot used the Zero Moment Point (ZMP) method 

(Vukobratovic and Juricic, 1969) for maintaining balance. The ZMP is the point on the 

ground where the sum of all active force moments is zero. To maintain balance, the robot's 

ZMP must stay within the support region. This method is effectively equivalent to keeping 

a character's COM above the support region. 

Locomotion was generated by calculating hip and pes trajectories. The horizontal 

component of the hip was calculated using the support phase period, the swing phase 

period, and the total step period (implicitly giving the dual support period). The horizontal 

component of the swing leg trajectory was calculated by taking into account the swing 

phase period and the total step period. The height component ofthe hip and swing leg 

trajectories was determined by checking for obstacles in the leg's path. Trajectories were 

stored as cubic polynomials. The set ofparameters governing the hip and pes trajectory 
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calculation were evolved to maximize robot balance by minimizing the distance between 

the actual and optimal ZMP. 

The gait generation strategy was used to generate locomotion in hardware. The 

robot was able to maintain balance while walking forward and avoiding obstacles. The 

robot was also able to maintain balance while climbing stairs. The robot's motion was 

limited to forward movement, simplifying the motion equations but limiting the robot's 

usability. The approach to calculating hip trajectory was similar to that used by Chung and 

Hahn (1999). Figure 26 shows the hip and pes trajectories while avoiding an obstacle. Hip 

motion was decomposed into horizontal and vertical trajectories, so adding a lateral 

trajectory should be tractable. 
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Figure 26. Hip and pes trajectories during obstacle avoidance. 

Note. From "An evolutionary algorithm for trajectory based gait generation ofbiped robot" by R. Zhang 

and P. Vadakkepat, 2003, Proceedings of the International Conference on Computational Intelligence, 

Robotics and Autonomous Systems, p. 3. 

Wyeth and Yik (2003) used the ZMP method, GAs, and multiple-DOF joints to 

produce locomotion for the GuRoo robot. GuRoo operated using 23 DOFs, 15 of which 

were used in producing locomotion. The hip joints used 3 DOFs, the knee joints used 1 

DOF and the ankle joints used 2 DOFs. The remaining DOFs were used to drive the head, 

neck assembly, and the arms. The robot was capable of shifting its weight, walking, 

turning, shaking hands, and waving. 
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Locomotion was generated by evolving a set of key pes locations. Eight key 

locations were used to fully specify the walking motion of one leg (two swing phase 

locations, four support phase locations, and two transitional locations). The key locations 

were then mirrored and applied out ofphase to drive the contralateral leg. Figure 27 

illustrates the key pes locations. A GA was then used to evolve a locomotion sequence that 

minimized the difference between actual and optimal ZMP trajectory. The key locations 

were normalized so that they could be scaled to adjust stride length and pes clearance 

height during locomotion. 
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Figure 27. Key pes locations. 

Note. From "Evolving a locus based gait for a humanoid robot" by G. K. Wyeth and D. T. F. Yik, 2003, 

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), p. 1640. 
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Experimental results showed that it is possible to evolve a stable forward walk by 

specifying only pes locations. By specifying pes locations and balancing the robot's body, 

the robot could have followed a trackway. Similar method could be used to evolve 

trackway-following motion sequences for virtual characters. IK was used to solve for knee 

and hip configurations, which was possible due to the use of simple hinge and ball and 

socket joints. The hip height was fixed; adding a hip height parameter would allow more 

variation in the evolved gaits. 

Recent methods for evolving robot locomotion have focused on the use of GA and 

GP. The robotics techniques presented use sensor input in determining phenotype fitness, 

but do not use sensor input to vary responses at execution time. To provide more complex 

behaviors, such as following, a sense and response system could be evolved using GP or 

ANNs. In this way, character animation techniques can be valuable to robotics. Similarly, 

stable walking techniques based on new genotype representations could be useful for 

character animation. 

Computational Gait Analysis 

Computational methods have aided the study of biomechanics by providing virtual 

3D environments for conducting biomechanics experiments and visualizing results. 3D 

visualizations allow an investigator to arbitrarily rotate a model and zoom in on points of 

interest without comprising image quality, a vast improvement over previous 2D methods. 

Models are typically built from geometric primitives or bone shape data obtained from 3D 

scanners. Locations of articulation (i.e., joints) within the model are animated using simple 
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forward kinematics, Motion Capture data, or complex dynamic and/or musculoskeletal 

models. Biomechanical models and methods are particularly valuable for locomotion 

models in that they add biological and mechanical credibility. 

The Software for Interactive Musculoskeletal Modeling (SIMM) project was 

introduced by Delp and Loan (1995) and later revisited with an improved feature set (Delp 

and Loan, 2000). SIMM allowed user to visualize, edit, and experiment on 3D 

biomechanical skeletons. Models consisted of a bone file containing 3D bone shape 

information, a joint file specifying the kinematics of the model's joints, and a muscle file 

specifying muscle-tendon parameters. SIMM represented joint kinematics using three 

orthogonal translations and three rotations about arbitrary axes, providing six total DOFs. 

The order in which the rotations and translations were applied affected joint behavior and 

needed to be specified by the user. Specifying the order of 3D transformations can be 

unintuitive and should be consistent between models, and it is still an important issue in 3D 

modeling today. 

A generalized coordinate is a variable with some range of values. SIMMjoints 

were assigned a number of generalized coordinates based on their behavior. A hinge joint 

used one generalized coordinate while a ball-and-socket joint utilized three generalized 

coordinates. A joint's six DOFs were controlled by manipulation of its generalized 

coordinates through the use of kinematic functions, one function per DOF. These functions 

were defined by spline curves which could be edited using a graphical interface. An elbow, 

for example, had one generalized coordinate representing its flexion/extension movement. 

Kinematic functions mapped the elbow flexion/extension coordinate to rotation about an 



78 

oriented axis, translation in the x direction, and translation in the y direction (relative to the 

proximal bone). 

The basic idea of a generalized coordinate is widely used in animation to define 

hierarchies of movement. At the highest level, a generalized coordinate representing the 

animation timeline is used to drive all child animations. A drawback to the approach used 

by SIMM is that the user had to decide which DOFs should be controlled by each 

generalized coordinate. The number of generalized coordinates that could be associated 

with a joint was limited by the joint's six DOF; each joint DOF was controlled by at most 

one generalized coordinate. Due to this restriction, multiple generalized coordinates could 

not cause rotation about the same axis, potentially forcing non-biological orthogonality into 

the joint model. To avoid this limitation, users could have built compound joints by 

utilizing multiple individual joints with additive effects between bones. 

SIMM provided two important high-level functions. By specifying joint kinematics 

and a musculoskeletal model (including muscles, ligaments, and tendons), a user could 

build an animation timeline by providing muscle activation values as a function of 

animation time. SIMM would then simulate and animate the resulting joint kinematics. 

Inversely, given a skeletal animation (inputted directly using keyframes or from Motion 

Capture data), SIMM could compute the muscle forces and moments necessary to achieve 

the animation. Figure 28 illustrates a simulation of the human pectoralis major muscle, 

including the muscle lines ofaction. SIMM is now widely used in biomechanics 

laboratories around the world. 
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Figure 28. SIMM model ofthe pectoralis major muscle. 

Note. From "A computational framework for simulating and analyzing human and animal movement" by 

S. L. Delp and 1. P. Loan, 2000, Computing in Science & Engineering [see also IEEE Computational 

Science and Engineering}, 2(5), p. 48. 

SIMM has been applied to simulate the behavior of knee implants during a stepup 

exercise (Piazza and De1p, 2001). Simulated motions of the implants were observed while 

manipulating of the tibiofemoral and patellofemoral knee joints. The simulation used 

recorded muscle activations as input and predicted joint kinematics using the forces and 

moments generated by the muscles, ligaments, tendons, and contact between implant 

surfaces. Implant surfaces were represented by polyhedral meshes obtained by exporting 

triangulated geometries from CAD representations. During the simulation, the number of 

contact points between articulating surfaces was allowed to vary, providing an accurate 
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estimation of the contact forces between surfaces. Figure 29 illustrates the biomechanical 

model used for evaluating the implants during the stepup exercise. 

y 

Figure 29. Biomechanical model used for the stepup exercise. 

Note. From "Three-Dimensional Dynamic Simulation of Total Knee Replacement Motion During a Step-

Up Task" by S. J. Piazza and S. L. Delp, 2001, Journal ofBiomechanical Engineering, 123, p. 600. 

Complex musculoskeletal models are necessary for precision studies such as 

evaluating the effects ofprosthetic implants. Such models are useful for studying and 

generating locomotion, but construction of the model is often prohibitively laborious with 

respect to the application. Sufficient data for reconstruction ofa complete musculoskeletal 
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model of sometimes not even available, as can be the case with extinct species. Simple 

kinematic joints can, in principal, emulate the functionality of a complex musculoskeletal 

joint provided that the joint's ROM was constructed using appropriate biological and 

physiological constraints. 

Another system for modeling biological joints was introduced by Maciel, Nedel, 

and Dal Sasso Freitas (2002). In addition to standard planar, uniaxial, biaxial, and 

polyaxial, the system provided a sliding-axis joint. The sliding-axis joint allowed the 

instantaneous axis or a hinge joint to be moved along a parametric curve when rotating the 

joint. Joint motion was represented by specifying a minimum, neutral, and "comfortable" 

configuration for the joint. Final joint axes and angles were therefore interpolates of these 

input configurations. Figure 30 shows a knee modeled using a sliding-axis joint. 
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Figure 30. Knee represented using a sliding-axis joint. 

Note. From "Anatomy-based joint models for virtual human skeletons" by A. Maciel, L. P. Nedel, and C. 

M. Dal Sasso Freitas, 2002, Proceedings of Computer Animation, 2002, p. 224. 

Hutchinson et al. (2005) used SIMM to create a musculoskeletal model of the 

Tyrannosaurus rex hindlimbs. The model consisted often joint DOFs (i.e., 

flexion/extension, abduction/adduction, medial/lateral rotation) and 33 muscle groups 

crossing the hip, knee, ankle, and toe joints of each limb. Muscle groups were modeled 

using bone geometry data by specifying joint rotation axes, muscle attachment locations, 

and muscle-tendon geometry and paths. Figure 31 shows the Tyrannosaurus rex 

hindlimb musculoskeletal model. 
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Figure 31. Tyrannosaurus rex hindlimb musculoskeletal model. 

Note. From "Analysis of hindlimb muscle moment anns in Tyrannosaurus rex using a three-dimensional 

musculoskeletal computer model: implications for stance, gait, and speed" by J. R. Hutchinson, F. C. 

Anderson, S. S. Blemker, and S. L. Delp, 2005, Paleobiology, 31(4), p. 682. 

The hindlimb musculoskeletal model was used to determine and analyze the 

flexor and extensor muscle moments about the limb joints. Muscle moment arms were 

evaluated based on several static limb poses with varying sagittal elevation angles (i.e., 

flexion/extension of the hip). Results showed that more upright poses have significant 
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mechanical advantage of the joints when compared to less upright poses. This result 

seems intuitive because non-columnar limbs cause potentially unnecessary torques about 

the limb's joints. These torques are caused by ajoint's position being noncollinear with 

the Ground Reaction Force (GRF), which is related to the muscle moment arms necessary 

to stabilize an animal. 

Results also showed that the static moment arms are not ofthe magnitude expected 

from a proficient runner, providing further evidence that Tyrannosaurus rex was not a fast 

runner. These results provide insight into the necessary muscle mass to support 

Tyrannosaurus rex while standing, which is relatively small compared to the estimated 

muscle mass necessary for Tyrannosaurus rex to run quickly. The muscle-moment-arm 

and mass estimates are based on static poses, so are not based on a fully-dynamic 

musculoskeletal model. These methods do not recreate gaits, but allow an analysis of the 

muscle masses necessary for gaits. 

Hutchinson and Gatesy (2006) explored possible hindlimb configurations of 

Tyrannosaurus rex during locomotion and while standing. They identified a mid-stance 

configuration for the each limb based on the limb's GRF. Specifically, a limb's GRF 

points up and back as the limb makes contact with the ground and points up and forward as 

the limb accelerates the body; mid-stance is a limb joint configuration when the GRF is 

vertical. At mid-stance, there is a family of solution configurations based on the hip height 

of the animal. They observed that optimal hip height cannot be determined from bone 

osteology alone, because the animal has limbs flexible enough to allow the animal to lie 

down. 
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Once hip height has been determined, there is still a family of limb configuration 

solutions possible based on a fixed hip and toe positions. Given hip, knee, ankle, and main 

toe joints with 90° offlexionlextension (i.e., four DOFs) sampled at a 1° resolution, there 

are more than 65 million possible joint configurations. Figure 32 illustrates the families of 

possible hindlimb configurations. Hutchinson and Gatesy suggested the use ofGRF-based 

pruning criteria to remove unlikely joint configurations from the solution space. For 

example, configurations with the GRF in front of the knee were excluded. Configurations 

were also removed that contained any joint such that the GRF's moment arm about the 

joint exceeded a maximum value. The maximum moment arm value was based on the 

moment arm that could be generated if5% of the animal's body mass was dedicated to 

muscles crossing the joint. 
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Figure 32. Possible mid-stance configurations. 

Note. From "Beyond the bones" by J. R. Hutchinson and S. M. Gatesy, 2006, Nature(London), 440(7082), 

p.292. 

When exploring the space of all possible limb configurations, it is necessary to 

prune the space to make searching it tractable. Some animals have limbs that utilize up 

to eight discrete DOFs. In the above example, sampling four 90° DOFs (at a 1° 

resolution) creates more than 65 million limb configurations. Adding another 90° DOF 

increases the size of the space exponentially, expanding it to almost six billion 

configurations. Increasing the space to six 90° DOFs expands the space to over 530 

billion configurations. Pruning the space using GRF-based constraints is intuitive, but 

requires dynamic simulation to accurately determine COM and GRF values. Dynamic 
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simulation is relatively-expensive computationally, so simulation oflarge numbers of 

configurations can be intractable. 

Henderson (2006) used trackway data to recreate quadrupedal gaits. Gait key 

poses were created by manually positioning joints. A system of partial differential 

equations was then used to derive the joint angles necessary to achieve joint positions 

(i.e., IK). Joints were positioned such that the manus and pes positions and orientations 

approximated the trackway data. The limbs were additionally constrained such that there 

was no vertical displacement of the body during locomotion. 

Due to the large masses of the dinosaur and elephant models, gaits were 

constrained based on the stability of the static poses. Specifically, only a single limb was 

allowed to be in the swing phase at a time. In addition, the COM was constrained to lie 

within a triangular region defined by the manus and pes positions of the three supporting 

limbs, called the Stability Triangle. Intuitively, wider-stance trackways provided a larger 

Stability Triangle than more narrow trackways. Results showed that the models with a 

centrally-located COM were most stable in wide trackways while models with a more 

posterior COM were most stable in narrow trackways. Figure 33 shows a Brachiosaurus 

model with its associated trackway, COM, and Stability Triangle. 
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Figure 33. Brachiosaurus trackway, COM, and Stability Triangle. 

Note. From "Burly gaits: centers ofmass, stability, and the trackways of sauropod dinosaurs" by D. M. 

Henderson, 2006, Journal o/Vertebrate Paleontology, 26(4), p. 917. 

In a static pose, a quadruped will tip over if its COM is not within its Stability 

Triangle. As a corollary, maintaining balance with four supporting limbs is relatively 

easy. Maintaining balance with three supporting limbs is more difficult but still very 

plausible. Maintaining balance with two supporting limbs is only possible if the COM 

lies in the plane connecting the two supporting limbs (and perpendicular to the ground), 

implying that an animal is only statically stable on two supporting limbs if those limbs 

are diagonal (e.g., right hindlimb and left forelimb) and the animal exerts enormous effort 

to balance itself. 
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During locomotion, however, the animal is always moving and never statically 

posed. The positiQILQfthe COM and supporting manus/pes is therefore not enough 

information to determine stability; the dynamics of the COM (i.e., velocity and 

acceleration) must also be considered to prevent overly conservative stability estimates. 

For example, an animal's COM may be outside the animal's Stability Triangle but the 

COM's velocity might be such that the COM will be back within the Stability Triangle 

very quickly. Such a situation could be considered statically instable but dynamically 

stable. 

Sellers and Manning (2007) extended earlier work (Sellers et aI., 2004) by adding 

elastic elements (Hill, 1938) to their muscle model. In addition, several changes were 

made to their GA implementation (i.e., using the Opel?- Dynamics Engine in favor of 

Dynamechs) for improved computational performance and stability. These new methods 

were used to determine the maximum running speeds of five extinct bipeds (i.e., 

Compsognathus, Velociraptor, Dilophosaurus, Allosaurus, and Tyrannosaurus) and three 

extant bipeds (i.e., Dromaius, Struthio, and Homo). Figure 34 shows evolved gaits of the 

various models. 
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Figure 34. Evolved gaits of various models.
 

Note. From "Estimating dinosaur maximmn running speeds using evolutionary robotics" by W. I. Sellers
 

and P. L. Manning, Proceedings o/the Royal Society B: Biological Sciences, 274(1626), p. 2713.
 

Fixed-length candidates were used to represent 61 parameters: five activation levels 

for 12 muscles (i.e., six per limb) and a parameter representing the cycle time. The 

candidates represented ten key-frames during the stride; the left-right muscle activation 

values swapped for the second half (i.e., keyframes 6-10) of the stride. The GA fitness 
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function was based on maximum running speed achieved during a fixed simulation time 

interval. Therefore, candidates that produced fast running speeds were rewarded while 

candidates that caused the model to fall over were heavily penalized. 

GA populations consisting of 1000 candidates were evaluated for up to 1000 

iterations. The GA loop was interrupted early if a steady maximum forward velocity was 

maintained between iterations. The GA process was repeated at least five times to ensure 

that a near-optimal candidate was found. Furthermore, the entire process was repeated at 

least 20 times with the fittest candidates from the previous run seeding the population for 

the next run. This process took between several days to several weeks to run on a modem 

parallel supercomputer (as of this printing). 

Results showed that top speeds achieved by the simulated extant models closely 

corresponded to published top speeds. This result indicates that the top speeds achieved by 

the extinct models are likely also accurate, depending on the accuracy of the 

musculoskeletal model. The uncertainty ofmuscle parameters was explored using a 

sensitivity analysis; muscle masses were varied over the range [2.5%, 7.5%], showing that 

total muscle mass has a linear effect ofmaximum velocity. The sensitivity ofmuscle 

contraction velocity parameters was also tested. 

This work demonstrates the possibility ofevolving gaits for a variety ofmodels 

using a fairly simple hindlimb muscle model; two summary muscle groups (i.e., flexor and 

extensor) were simulated for each limb's primary joints. The algorithm takes a 

considerable amount of CPU time to complete. This cost is due to the number of iterations 

and reseedings necessitated by the massive size of the search space (i.e., 488-bit candidates 
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assuming eight-bit floating point resolution for the 61 parameters). In addition, the 

algorithm is expensive because it requires a dynamic simulation for each candidate 

evaluation. 

Gait analysis techniques are valuable to both biomechanics and animation. 

Musculoskeletal models are laborious to construct but allow accurate reproduction of 

muscle forces and torques, provided the muscle parameters (i.e., muscle mass, contraction 

velocity, and elasticity) are represented realistically. Also, GRF-based and stability-based 

constraints can be used to prune the space ofpossible limb configurations for locomotion. 

In principal, these constraints could be used in conjunction with GA methods to reduce the 

computational cost associated with evolving optimal gaits. 

Summary 

Current state-of-the-art techniques for evolving locomotion are based GAs, GP, or 

ANNs. GAs are useful for evolving a fixed set of gait cycle parameters. Gait cycle 

parameters are typically used as input to pattern generators that produce periodic 

locomotion. The pattern generators produce forward walking animations, although the 

Limit Cycle Control method (Laszlo et al., 1997) allowed turning by perturbing open-cycle 

motions. GAs are well suited for cases where little user and environmental interaction is 

required, such as exploring alternative gait strategies. 

GP and A},lNs are useful for systems that require a character to respond based on 

input stimuli. AJ'lNs have been used predominately to link stimuli to responses. Genetic 

programs can also be used to directly modify character configurations based on input 
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criteria. It is important to note that neural networks and genetic programs can only be 

effectively evolved to perform one primary task. For example, a virtual creature can be 

trained to achieve a complex goal such following a light source with a specific gait, but it is 

unlikely that the creature would be able to change gaits or perform other tasks using the 

same neural network or genetic program. 

Musculoskeletal models can provide biologically-accurate representations ofjoint 

motion, depending on the complexity and accuracy of the models. Musculoskeletal models 

can be utilized by GAs to automatically create gait animations, but the creation ofmodels is 

difficult due to model complexity and availability of data. Evaluation of the models is 

computationally expensive due to the use ofphysics simulation to determine the fitness of 

each candidate gait and the extremely-large solution spaces needed to represent all possible 

combinations of muscle actions. 

GRF and trackway constraints can be used to prune the space of possible solutions, 

but evaluation of a limb's GRF also requires physical simulation. Constraining the space 

with respect to mid-stance limb configurations may seem intuitive, but mid stance may be 

the time during the stance phase that the limb is most osteologically underconstrained. At 

mid stance, limbs are capable of a number of leaning, bending, and squatting motions. 

Conversely, limbs are much more osteologically constrained as they reach forward and 

backward at the beginning and end of stance. 

In the next chapter, methods will be presented that utilize constraints derived from 

the biomechanics of tetrapod limb joints and gaits that involve more than one limb in 

contact with the ground to constrain the space ofpossible limb configurations at the 
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beginning and end of stance. A GA will then be utilized to quickly find smooth, and 

therefore plausible, paths through the constrained spaces to automatically generate gait 

animation sequences. The GA evaluates candidate fitness based on the overall smoothness 

oflimb movements, so no physical simulation is necessary. The result is a set of 

algorithms that generate plausible walking gait animations with very little computational 

cost. 
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CHAPTER III 

METHODS AND MATERIALS 

The GAGA techniques and methodologies are presented is this chapter. GAGA 

automatically generates forward bipedal and quadrupedal walking gaits using 

biomechanically-accurate skeletons. A representation for discrete joint movement is first 

presented. Next, joint movements are combined to explore the kinematic capabilities of a 

limb. The kinematic capabilities are then analyzed and constraints are applied to allow 

the use of GAs to find paths through the spaces of limb configurations. GA-based 

methods are then presented that quickly create efficient bipedal and quadrupedal forward 

walking gaits. The chapter concludes with descriptions of the models used for the 

investigations presented in the next chapter. 

Functional Degrees of Freedom 

In the absence of dynamics, the kinematics-only models are completely rigid until 

flexibility is added to the joints. Flexibility is added at joints by specifying ROMs. A 

ROM is categorized by the number of functional movements that its corresponding joint 
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is capable of performing. Each of these functional movements is represented by a 

Functional Degree ofFreedom (FDOF). A shoulder ROM, for example, has three 

FDOFs representing: flexion/extension, abduction/adduction, and medial/lateral rotation; 

a knee has one FDOF representing its flexion/extension movement. The FDOF 

framework is similar to the generalized coordinate framework used by SIMM (Delp and 

Loan, 1995). 

Each ROM manipulates all six of the joint's geometric DOFs (i.e., three 

orthogonal translations and three Euler angle rotations about fixed orthogonal axes). The 

geometric DOFs manipulated by the ROM are applied relative to the joint's parent joint 

in the model skeleton. Three 6-DOF keyframes are used to specify each FDOF. The 

three keyframes represent the extremes of movement and a neutral position for the 

movement, similar to Maciel (2002). All neutral FDOF configurations within a ROM 

must be coincident. Based on input FDOF values, a ROM uses cubic spline interpolation 

to determine intermediate configurations for each movement. The configurations are 

then combined to determine the final output ROM configuration. Figure 35 shows the 

flexion/extension movement of an Apatosaurus elbow from right-lateral view. 



97 

Figure 35. Flexion/extension movement of an Apatosaurus elbow. 

FDOFs are a powerful representation, allowing a continuum of movement 

granularity from simple, idealized hinge or universal joints to a movement path 

constrained by musculoskeletal lines of action. In the next section, techniques will be 

presented that combine all of a limb's FDOFs to determine a total ROM for that limb. 

Limb Ranges of Motion 

To determine the effect of FDOFs on locomotion, the manus and pes are first 

positioned and oriented on the ground based on trackways. All combinations of FDOFs 

are then evaluated at a resolution between 4° and 6°, depending on the number and 

complexity of the FDOFs. Translation-only FDOFs (e.g., scapulothorax elevation) are 

evaluated at an appropriate resolution based on each model's dimensions (e.g., 5cm for 

Apatosaurus). The position and orientation of the manus and pes are maintained fixed on 

the ground throughout the evaluation process (see Appendix F). 
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Thompson and Holmes (2007) used a similar approach to recreate a possible 

walking gait cycle for a Chasmosaurus forelimb. Polyester resin casts were made from 

fossilized bones, and those casts were articulated using thin, flexible wires. The manus 

was then held fixed on the ground while the limb was manually exercised to determine 

plausible limb configurations during the cycle. The body was not allowed to be displaced 

laterally or vertically and the scapula was not allowed to move on the rib cage during the 

cycle, which would have unnecessarily overconstrained the gait. 

Repositioning and reorienting a manus or pes on the ground to match its original 

position and orientation, similar to Sticky IK methods (McKenna and Zeltzer, 1990), 

causes all proximal elements to be repositioned and reoriented. Figure 36 demonstrates 

this effect by showing flexion/extension of the Apatosaurus forelimb while maintaining a 

fixed manus position and orientation. For each combination ofFDOF values, an element 

proximal to the forelimb or hindlimb system (e.g., the 3rd dorsal for the Apatosaurus 

forelimbs and the 1st sacral for the Apatosaurus hindlimbs) is monitored for position and 

orientation. This proximal element is referred to as the root element of the system. The 

set of all possible root element positions and orientations reachable by exercising the 

limb's FDOFs is called the Limb Range of Motion (LROM). 
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Figure 36. Apatosaurus elbow flexion/extension with fIxed manus. 

LROMs can be organized for convenient access by first determining the Axis

Aligned Bounding Box (AABB) that contains all of the LROM samples (by position). 

The 3D space within the AABB is then subdivided into a number of boxes with constant 

dimensions. Each box is populated with all LROM samples such that the sample's 

position is inside the box. The 3D grid of boxes, in summary containing all LROM 

samples, is called the LROM space. An LROM space can be visually represented by 

finding the LROM sample in each LROM space box that requires the least Root Mean 

Square (RMS) orientation change to lie within the box's bounds. Figure 37 shows a 

visualization of the Apatosaurus right forelimb LROM space, with minimum RMS 

orientation change represented by color (i.e., 0° < green < 15° < purple < 30° < yellow < 

45° < red). 
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Figure 37. Visualization of the Apatosaurus right forelimb LROM space. 

LROM spaces allow the representation and visualization of the total ROM that a 

limb is capable of operating within. Limbs do not act in isolation during locomotion; the 

LROM space that represents all possible root positions and orientations when both left 

and right limbs are in contact with the ground can be summarized as the intersection of 

the left and right LROM spaces. Methods for applying bipedal constraints with respect to 

locomotion will be presented in the next section. 
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Bipedal Gait Reconstruction 

The following three sections describe the algorithms used to automatically 

generate bipedal walking gaits: Constraints must first be applied to the LROM spaces to 

ensure that locomotion does not effectively pull the body apart. A GA then finds smooth, 

plausible paths through the constrained space. Finally, a pipeline architecture will be 

presented that maximizes reuse of precomputed data, minimizing unnecessary repeat 

computational operations. 

Constraints 

The responsibilities of each limb during locomotion can roughly be divided into 

two phases: the limb supports the animal's mass and propels the animal forward during 

the stance phase (also referred to as the support phase); the limb is off the ground 

preparing for the next stance phase during the swing phase (also referred to as the 

suspended phase or step phase). The relative amount of time that a limb spends in the 

stance phase is the limb's duty factor. The duty factor is a normalized term (on the range 

[0.0, 1.0)); a duty factor of 0.0 would indicate that the limb is never in contact with the 

ground while a duty factor of 1.0 would indicate that the limb never leaves the ground. 

Bipeds utilize two limbs for locomotion so therefore have two relevant duty 

factors. The two duty factors are related by a phase term, which represents, for each 

stride, the relative elapsed time between the right limb beginning its stance phase and the 

left limb beginning its stance phase. This phase term is called the contralateral phase 
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and can apply to either hindlimbs or forelimbs. Like the duty factor, the contralateral 

phase is a normalized term (on the range [0.0, 1.0]). Figure 38 illustrates a bipedal duty 

vector with a 0.6 duty factor for each limb and a 0.5 (i.e., 180°) contralateral phase. 
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Figure 38. Example bipedal duty vector. 

During walking gaits, limbs have a duty factor greater than 0.5 (i.e., limbs are in 

the stance phase for at least half of each stride). Each limb is in contact with the ground 

for more than half of the stride, so there must be periods of time during which both limbs 

are in contact with the ground. These periods of time are called dual support. In the 

absence of turning, the movements of each limb are assumed to be bilaterally 

symmetrical and out of phase. With a contralateral phase of 0.5, a walk cycle has two 
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dual support phases (i.e., one just after each limb begins its stance phase). These 

constraints provide a powerful mechanism for pruning the LROM spaces with respect to 

forward locomotion. 

To take advantage of the above constraints, discrete key events must be identified 

during the walk cycle. These events correspond to limbs beginning their stance or swing 

phases: "Right Down" (RD) represents the beginning of the right limb's stance phase. 

"Right Up" (RU) is the beginning of the right limb's swing phase. "Right when Left 

Down" (RLD) is the right limb's configuration when the left limb begins its stance phase. 

Similarly, "Right when Left Up" (RLU) is the right limb's configuration when the left 

limb begins its swing phase. Equivalent events are also identified for the left limb. 

Figure 39 illustrates the relationship between these events, with noted similarity to Figure 

5 (Bruderlin and Calvert, 1989). 



104 

Limb Locomotion Events 

Jl 

LRU RU 

Jl 
LD RLD 

Duty Factor 

LU RLU 

h 

LRD RD 

Figure 39. Events related to bipedal walking gaits. 

During locomotion, but not dual support, the root element position and orientation 

is determined by the stance limb's LROM space. During'dual support, both limbs are in 

.the stance phase, so the root element positions and orientations predicted by the LROM 

spaces must be coincident. Otherwise, the body would be effectively pulled apart! The 

root element positions and orientations predicted by the LROM spaces must be 

coincident at RD and LRD. Likewise, the predictions for RLU and LU, RLD and LD, 

and RU and LRU must be coincident. 
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The left-and-right-side ROMs are bilaterally symmetrical, so the root element 

position and orientation caused by a right-limb FDOF configuration will be mirrored 

across the sagittal plane when the same FDOF configuration applied to the left limb. The 

limb movements are assumed to be bilaterally symmetrical during forward locomotion, 

so left-and-ride-side locomotion events that share an FDOF configuration (e.g., RD and 

LD) cause root element positions and orientations that are mirrored across the sagittal 

plane. 

The dual support constraint forces left-and-right-side events that occur at the same 

time to have coincident root element positions and orientations. The bilateral symmetry 

constraint forces left-and-right-side events that share an FDOF configuration to have root 

element positions and orientation that are mirrored across the sagittal plane. Combining 

these constraints, LD must have a root element position and orientation that is mirrored 

across the sagittal plane from RD's root element position and orientation. Furthermore, 

RLD must have a root element position and orientation that is coincident with LD's. The 

same relationships exist between LRU, RLU, and RU. Figure 40 illustrates these 

relationships. 
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Figure 40. Relationships between discrete key events during forward locomotion. 

Amazingly, the dual support and bilateral symmetry constraints force the eight 

original key locomotion events to be described by only two unique FDOF configurations 

(e.g., the configurations responsible for RD and RLU). The two discrete FDOF 

configurations apply to only one of the two limbs, so one LROM space is sufficient to 

represent a walk cycle. Specification of a walk cycle therefore consists of selecting two 

samples from the LROM space. The distance along the direction of travel between 

events is known (e.g., the dual support distance in the case of RD and RLU), further 
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constraining the selection process. The next section will cover the selection of LROM 

space samples in more detail. 

Reconstruction 

Bipedal gaits are reconstructed from pairs of LROM space samples, specifically 

samples representing RD and RLU. Due to the dual support and bilateral symmetry 

constraints, an LROM space sample is eligible to be selected for RD if and only if there 

exists an LROM space sample for RLD that is mirrored across the sagittal plane and 

further along the direction of travel (see Figure 40). The distance along the direction of 

travel between RD and RLD is the forward distance traveled while the limb is in its 

swing phase (equal to step length - dual support length). Similarly, an LROM space 

sample is eligible to be selected for RLU if and only if there exists a suitable LROM 

space sample for RU. 

The set of all candidates for RD and RLU can be visualized by pruning the 

LROM space. All samples that do not have a suitable sibling sample (i.e., mirrored 

across the sagittal plane and properly forward along the direction of travel) are removed. 

The LROM space is populated with discrete samples, so the chance of exact matches 

(within floating point precision) is extremely low. For this reason, a minimum error term 

is used that aggregates position and orientation error between samples. Figure 41 shows 

a pruned Apatosaurus forelimb LROM space with blue representing samples that are 

siblings but not candidates. 
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Figure 41. Pruned Apatosaurus forelimb LROM space. 

For clarity, Figure 42 shows a comparison of the Apatosaurus forelimb LROM 

space before (left) and after (right) pruning. Recall that after pruning, the positions 

colored blue are not candidates eligible for selection as RD or RLU. In this example, the 

pruning process reduced the space from 5,221,125 samples to 406,377 candidate samples. 
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Figure 42. Apatosaurus forelimb LROM space before and after pruning. 

A GA is used to evaluate candidate solutions that represent bipedal walking gaits 

(see Appendix G). Each candidate consists of an LROM space sample and associated 

FDOF configuration for RD and an LROM space sample and associated FDOF 

configuration for RLU. The GA selects optimal candidates using an aggregate fitness 

function that penalizes pitching, rolling, and yawing of the body and large changes in 

FDOF values between the RD and RLU configurations. The fitness function also 

rewards the lateral and vertical smoothness of the gait. The lateral smoothness is relative 

to the initial sagittal plane; the vertical smoothness is relative to an adjustable target 

height parameter. 

The FDOF-value term discourages limbs from undergoing unnatural movements 

to achieve the kinematic-smoothness goals of the body. If a limb contains several 

redundant FDOFs (i.e., with near-coincident instantaneous axes of rotation), many 

solutions may result in a single root node position and orientation. In this case, RD and 
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RLU candidates may be selected that cause unwanted and unrealistic rotations between 

key configurations. For example, knee, ankle, and manus joints can counterrotate relative 

to each other through quite a large total angular excursion without causing much forward 

movement at the hip. 

Changes in FDOF values represent angular excursions (unless the FDOF is 

translation only), so discouraging large changes in FDOF values in effect discourages 

large angular excursions summated across all FDOFs. FDOF values are normalized on 

the range [-1.0, 1.0], so this representation prevents FDOFs with larger total angular 

excursions from being penalized proportionally more than FDOFs with less angular 

excursion. Unnatural limb movements could likely also be avoided by penalizing similar 

criteria such as sum angular acceleration (Raibert and Hogins, 1991; Chung and Hahn, 

1999). 

The target height term encourages vertical smoothness and walking at an 

appropriate height. Imagine an animal walking with very bent limbs; without specific 

osteological support, excessive bending at a joint causes a torque about the joint 

(Hutchinson, 2005). This torque is caused by the position of the joint not being collinear 

with the GRF vector. Counteracting the torque is mechanically and energetically 

expensive and nominally avoided by animals. Rewarding candidate solutions 

proportionally based on the vertical height of the body encourages walking with straight 

limbs, which better approximates energetic constraints. Conversely, specifying lower 

target height values allows the evaluation of more-squat gaits. In this way, mammalian 
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models can walk with generally straight limbs without encouraging reptilian models to 

use an inappropriately-high walk. 

To reduce the total number of candidate solutions, the candidate LROM space 

samples are organized into two data structures. RD represents the start of the right limb's 

stance phase, so it must be at least a step length back from the front of the space so that 

the body can be moved forward by the step length during stance. All candidate samples 

that are at least a step length back from the front of the space are stored in a linear array 

called the back data. 

RLU is further along the direction of travel from RD by the dual support length, 

so there are a limited number of candidates that can be selected for RLU based on the 

selection of RD. The candidate LROM space samples are therefore also divided into 

coronal slices and stored in a two-dimensional array called the slice data. When the GA 

selects a sample for RD from the back data, RD's coronal slice is determined using a 

constant-time operation. RLU's slice is then computed using the dual support length and 

a sample is chosen for RLU within that slice. Figure 43 illustrates the back data and slice 

data and how they relate to the LROM space. 
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LROM Space Organiza~ion for GA
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Figure 43. Back data and slice data organization. 

The back data and slice data organization provides two important advantages to 

the GA. First, any candidate solution will at least accomplish a stance phase that moves 

the body forward by the step length. Candidates then need only be evaluated on how 

well they move the body forward (i.e., minimum body roll, pitch, and yaw, and changes 

in FDOF values; maximum lateral and vertical smoothness), allowing the GA to 

converge much more quickly than it would if the solution space included candidate 

solutions incapable of accomplishing a successful stance phase. 
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The second important advantage of the back data and slice data organization 

(which is really a corollary ofthe first advantage) is that a candidate solution can be 

represented and encoded as two integer values: one value for the index of RD in the back 

data and one value for the index within RLU's slice in the slice data (the slice is 

determined by RD). Candidate solutions can therefore be represented by fixed-length 

linear binary strings. The number of bits used to represent candidate solutions is 

determined dynamically by finding the next power of two bigger than the number ofback 

data samples and adding it to the next power of two bigger than the largest (in terms of 

sample count) coronal slice in the slice data. 

During GA iterations, each candidate in the population has a chance to be mutated 

and/or combined with another candidate. The probably of being mutated is based on a 

mutation coefficient; a coefficient of 1.0 indicates that on average every candidate will 

have one random bit flipped. The probability of a candidate being combined with 

another candidate is based on a crossover coefficient. A candidate is combined with 

another randomly-selected candidate using single-point crossover; an index is randomly 

selected before which the first candidate receives the second candidate's binary data and 

after which the second candidate receives the first candidate's binary data. 

The solution selected by the GA is used to reconstruct all eight of the key 

locomotion events. An additional FDOF configuration is selected to represent the 

midpoint of the swing phase. The mid-swing configuration is selected using an IK 

method that iteratively adjusts each FDOF to find a configuration that positions the 

manus or pes above its initial position by a specified step height. The right-side FDOF 
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configurations are used to specify the associated left-side events (e.g., RD to LD). The 

left-side events are then offset in animation time based on the contralateral phase. 

The dual support and bilateral symmetry constraints allow the LROM space to be 

significantly pruned, and ensure that the remaining samples do not pull the body and 

limbs apart during dual support. The back data and slice data organization allow the GA 

to search a space of candidate solutions which will at least move the body forward by the 

appropriate amount during the stance phase. The resulting implementation can 

automatically generate bipedal walk animations in less than one minute (7 FDOFs, 1000 

candidate population, 10~000 GA iterations) on a consumer laptop (as of this printing). 

Figure 44 shows an example Apatosaurus forelimb walk animation created using these 

methods. 

Figure 44. Apatosaurus forelimb walking animation. 

The GA quickly finds smooth paths through the constrained LROM spaces. The 

LROM space exploration and organization operations, along with the GA operations, are 
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discrete operations that can be organized in terms of data flow such that input parameters 

can be modified at each of these stages without repeating earlier stages. The next section 

will cover the organization of this pipeline. 

Pipeline 

The process of automatically generating bipedal walking animations is divided 

into discrete operations. Between each operation, data is saved so that an operation need 

only be repeated if its input variables are modified. The Explore Space operation takes 

the model's FDOFs as input, along with angular and translational resolution parameters. 

The operation outputs the LROM space samples in unorganized form. The Organize 

Space operation takes the unorganized space data, organizes it into 3D boxes, and applies 

the bipedal constraints. The operation takes as input the unorganized space data, the 

duty factor, the constraint error tolerance, the step height, and the number of sample 

boxes along the primary locomotion axis. 

After the LROM space has been explored, organized, and pruned, the Find Path 

operation plots a path through the constrained space using standard GA parameters as 

input. The GA parameters include: crossover coefficient, mutation coefficient, candidate 

population size, and number of GA iterations. The Find Path operation also generates 

and outputs a complete bipedal animation file, which is visualized and interpolated using 

the Animate Path operation. The Animate Path operation utilizes an adjustable animation 

time parameter to vary the animation playback speed. Figure 45 illustrates the operations 

of the bipedal gait pipeline. 
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Bipedal Gait Pipeline 
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Figure 45. Bipedal gait pipeline. 

The bipedal gait pipeline allows the computationally-efficient generation of 

bipedal walking gaits, even when changes to input parameters is necessary. Quadrupedal 

locomotion is significantly more complicated, requiring parallel bipedal pipelines and 

additional constraints for summarizing the ROM of the animal's trunk. The next section 

will present methods related to the generation of quadrupedal gaits. 
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Quadrupedal Gait Reconstruction 

The following three sections describe the algorithms used to automatically 

generate quadrupedal walking gaits. Constrained hindlimb and forelimb LROM spaces 

must first be generated. Those spaces must then be further constrained to simulate the 

ROM of the animal's trunk. A GA then finds smooth, plausible paths through the 

constrained hindlimb and forelimb space. Finally, an extension of the bipedal gait 

pipeline architecture maximizes reuse of the additional quadrupedal data. 

Constraints 

A quadrupedal gait can be represented as two independent bipedal gaits (i.e., fore 

and hind, each with duty factors and a contralateral phase), provided that additional 

constraints are satisfied. An animal's fore and hind limbs are connected by a trunk 

consisting of some number of vertebrae. Each vertebral joint has a ROM, so the trunk 

itself can be represented by a higher-level ROM that summarizes the movements of the 

individual vertebrae. The fore and hind gaits must be coordinated in such a way that they 

act as if they are connected by the trunk. The convention of representing quadrupedal 

locomotion with two bipedal gait systems is supported by Griffin, Main, and Farley 

(2004), who state that dog fore and hind quarters generally act like two independent 

bipeds. 

The trunk ROM can be exercised like any other ROM, allowing possible forelimb 

root element positions and orientations to be determined for each hindlimb LROM space 
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sample. For each hindlimb space sample, there are some number forelimb space samples 

that are reachable by the trunk. The forelimb and hindlimb LROM spaces can therefore 

be further pruned based on the trunk constraint; all hindlimb samples that cannot reach a 

single forelimb sample are removed, along with all forelimb samples that cannot be 

reached by any hindlimb samples. Figure 46 illustrates how the trunk constraint is 

applied to the fore and hind LROM spaces. 

Quadrupedal Trunk Constraint 

Forelimb Space 

Hindlimb Space 

z
 

x
 

Figure 46. Quadrupedal Trunk Constraint from dorsal view. 
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The forelimb and hindlimb gait components are related by a phase term called the 

ipsilateral phase. Like contralateral phase, the ipsilateral phase is a normalized term (on 

the range [0.0, 1.0]). The ipsilateral phase describes the relative elapsed stride time 

between the right hindlimb beginning its stance phase and the right forelimb beginning its 

stance phase. The two contralateral phases (fore and hind), the ipsilateral phase, and each 

limb's duty factor fully describe the quadrupedal duty vector. Figure 47 shows an 

example duty vector based on a 0.5 contralateral phase for both fore and hind limbs, a 

0.55 ipsilateral phase, and 0.6 duty factors for all limbs. 

• Stance 

USwing 

• Stance 

U Swing 

o	 0.2 0.4 0.6 0.8 1 

Phase 

-----------~------------

Figure 47. Example quadrupedal duty vector. 
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The ipsilateral phase does not affect the trunk-constraint-based pruning process 

because discrete samples in the hindlimb space are compared to discrete samples in the 

forelimb space. When constructing a walking gait based on key locomotion events, 

however, the ipsilateral phase determines the relative delay between associated events 

with respect to the hindlimbs and forelimbs (e.g., hindlimb RD and forelimb RD). The 

algorithm for constructing quadrupedal gaits based on key locomotion events will be 

discussed in the next section. 

Reconstruction 

Forelimb and hindlimb animations can be generated in such a way that they obey 

the trunk constraint while achieving the same GA goals used for bipedal gaits (i.e., 

minimum body roll, pitch, and yaw, and changes in FDOF values; maximum lateral and 

vertical smoothness). The algorithm is straightforward with a constant ipsilateral phase 

of 0.0; associated fore and hind events occur at the same time, so the list ofpossible 

samples for the forelimb RD can be determined based only on the hindlimb RD sample 

(and likewise for the forelimb RLU with respect to the hindlimb RLU). Supporting an 

arbitrary ipsilateral phase complicates the algorithm. 

Given an ipsilateral phase ofp, the forelimb RD occurs at time p (the hindlimb 

RD always occurs at time 0.0). The complete hindlimb path can be determined by an RD 

and an RLU sample, so the hindlimb root element position and orientation at time p can 

be computed from the path. Therefore, the possible forelimb RD samples can be 

determined for a given ipsilateral phase, RD sample, and RLU sample (and likewise for 
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the forelimb RLU sample). The possible forelimb RD and RLU positions must be 

computed for each RD-RLU pair so that the GA will only consider forelimb samples that 

satisfy the trunk constraint. The process of finding satisfactory forelimb samples (within 

an error tolerance) is performed prior to the GA iterations to ensure that each RD-RLU 

pair is evaluated only once. 

There is one important corollary to the trunk-constraint satisfaction algorithm. 

The ipsilateral phase determines, in part, the z component (i.e., translation along the 

locomotion axis) of the hindlimb root element position at time p (along with the z 

component of the hindlimb RD sample position). The additional forward translation 

forces the selection of forelimb samples that are unnecessarily pushed towards the front 

of the fore LROM space. To compensate for this effect, the z component of the hindlimb 

root position at time p is set to the z component of the hindlimb RD sample position. 

Figure 48 illustrates the selection of possible forelimb RD samples based on the 

ipsilateral phase and an RD-RLU pair. 
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Figure 48. Forelimb RD selection based on a hindlimb RD-RLU pair. 

The computational speed of the possible-forelimb-sample selection algorithm 

benefits from the back data and slice data organization; the algorithm needs only to 

evaluate hindlimb RD-RLU pairs that are eligible for selection as pairs for a hindlimb 

gait. The back data and slice data organization therefore dramatically decreases the 

computational complexity of the selection algorithm (i.e., from O(n2
) to O(n*m), where m 

is roughly the square root of n) and allows the GA candidate evaluation function to 

remain a constant-time operation. The resulting implementation is able to automatically 
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generate quadrupedal walking gaits in under three minutes (five hindlimb FDOFs, seven 

forelimb FDOFs, 1000 candidate population size, 10,000 GA iterations) on a consumer 

laptop (as of this printing). Figure 49 shows an Apatosaurus quadrupedal walking gait 

generated using these methods. 

Figure 49. Apatosaurus quadrupedal walking animation. 

The quadrupedal gait generation process involves a number of discrete operations, 

much like the bipedal gait generation process. Like the bipedal pipeline, the quadrupedal 

pipeline should also maximize reuse of computed data so that input variables can be 

changed for a pipeline stage without necessitating the reevaluation of earlier stages. The 

next section will cover the quadrupedal gait pipeline. 
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Pipeline 

The quadrupedal gait pipeline is similar to the bipedal gait pipeline, and utilizes 

the first two bipedal gait pipeline operations. The Quadrupedal Pipeline begins with 

three parallel sets of operations. Bipedal Explore Space and Organize Space operations 

are used to prepare the forelimb and hindlimb LROM spaces. In addition, an Explore 

Trunk Space operation is used to exercise the trunk ROMs and prepare the higher-level 

trunk ROM for the possible-forelimb-sample selection process. The Explore Trunk 

Space operation takes the trunk FDOFs as its only input. 

The Find Quad Path operation takes the forelimb and hindlimb LROM spaces and 

the trunk ROM as inputs. In addition, the Find Quad Path takes as input the standard GA 

parameters (i.e., crossover coefficient, mutation coefficient, candidate population size, 

number of GA iterations), the ipsilateral phase, and a constraint error tolerance for 

selecting possible forelimb samples. The Find Quad Path operation plots paths through 

the forelimb and hindlimb spaces while satisfying the trunk constraint. The Find Quad 

Path outputs two complete gait animations: one for the forelimbs and one for the 

hindlimbs. 

Finally, the Animate Path operation interpolates and visualizes the two input 

animations. The arbitrary ipsilateral phase causes the hindlimb and forelimb animations 

to loop at different times (i.e., with an ipsilateral phase ofp, the forelimb animation loops 

at time p while the hindlimb animation loops at time 1.0). The difference in looping 

times causes the forelimbs to return to their original position before the hindlimbs, so the 
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z component (i.e., translation along the locomotion axis) of the forelimb root element's 

position is adjusted to compensate. 

The fore and hind LROM spaces are based on discrete samples, so it is not 

possible to simultaneously animate the fore and hind limbs while maintaining contact 

with the ground and keeping the trunk perfectly intact. For this reason, the animal's 

trunk is representing by a self-adjusting, semi-translucent ribbon (see Figure 49). Figure 

50 illustrates the quadrupedal gait pipeline. 

.Quadrupedal Gait Pipeline 

FDOFs 

;i~;~:,I'!\C Angular Resolution 
Translational Resolution 

Duty Factor 
Constraint Error Tolerance 

Step Height altof Y;"Ci. 
Locomotion Axil; Boxes:' 

,.-----....... 7'
 
Find Quad Path 

Animation Time 

Figure 50. Quadrupedal gait pipeline. 
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The bipedal gait pipeline allows the computationally-efficient generation of 

quadrupedal walking gaits, even when changes to input parameters are necessary. 

Additional discrete operations refine walking gaits, visualize trackways, and allow the 

scaling ofmodel elements. The next few sections will present these operations. 

Gait Refinement 

LROMs are explored at a resolution of between 4° and 6°. Gait animations 

resulting from the methods described in this chapter are not particularly sensitive to the 

LROM sampling resolution (see the sensitivity analysis in the next chapter), but the 

effective sampling resolution can be increased by refining gait animations. The sampling 

resolution is multiplicative across all FDOFs (i.e., doubling the sampling resolution of an 

LROM with 8 FDOFs causes the number ofLROM samples to increase by a factor of 

21\8 = 256). However, the sampling resolution is additive if each FDOF is iteratively 

resampled without modifying the other FDOFs. 

Each FDOF is iteratively resampled at a higher resolution (i.e., typically 1°). 

Resampling the FDOF changes both the LROM and LROM space. A new gait animation 

is then created using the same GA fitness function that was used to create the original gait 

animation, but using the modified LROM space that represents each original animation 

keyframe with one highly-sampled FDOF. The refined gait animations vary little from 

their original counterparts in terms in terms of functional joint movements. They do, 

however, exhibit significantly-higher fitness values and are therefore generally smoother 
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in terms of body roll, pitch, yaw, and lateral/vertical error. Figure 51 shows a dog 

hindlimb gait before and after refinement. 

Figure 51. Dog hindlimb gait animation before and after refining. 

Gaits can be refined by iteratively resampling FDOFs the increase the resolution 

of the LROM spaces in certain locations found relevant to locomotion. It is often useful 

to visualize the positional relationships between generated trackway print locations, 

which are based on locomotion parameters such as the step length and step width. The 

next section will cover the visualization of generated trackways. 
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Trackway Visualization 

Trackways are generated by calculating the position of the manus/pes on the 

ground plane when the associated limb begins its stance phase. In this way, trackways 

are generated as a result of gaits; gaits are not generated based on trackway data as with 

Torkos and van de Panne (1998) and Henderson (2006). Manus prints are visualized as 

flattened spheres; pes prints are visualized as flattened cubes. Figure 52 shows an 

example generated Apatosaurus trackway. 

Figure 52. Example generated Apatosaurus trackway. 

Parameters such as step length and step width modify the constrained LROM 

space and therefore the generated walking gaits and trackways. Scaling elements of a 

model (i.e., the femur or crus) will also modify the LROM space, changing generated 
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walking gaits and trackways. The next section will cover the scaling of specific model 

elements. 

Scaling Model Elements 

Model elements can be arbitrarily scaled (i.e., either isotropically or 

anisotropically) by scaling the element's distal joint ROM. A ROM is scaled by 

multiplying its base translational components by the scale factor(s). The translational 

components of the ROM's constituent FDOFs are also multiplied by the scale factor(s). 

The ROM's rotational components are not affected by the scaling process. To visualize 

the change in element scale, the element's shape scale is multiplied by the scale factor(s). 

Models 

Five skeletal models are currently available for analysis: a generic dog, a generic 

reptile, and three dinosaurs. The available dinosaurs are an Apatosaurus, a Triceratops, 

and a Tyrannosaurus. Each model consists ofjoint ROMs and bone shapes for the 

animal's hindlimbs, forelimbs, and trunk. In this section, the joints, LROM spaces, and 

trunk ROMs (for quadrupeds only) will be presented for each model. 
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Dog 

The generic dog model proportions are based primarily on the standard German 

Shepherd (Shaw, 2007a, 2007b). Table 30 (see Appendix A) lists the six geometric 

OOFs for each of the dog model's FOOFs. The dog hindlimb utilizes six FOOFs at four 

joints: hip flexion/extension, abduction/adduction, and medial/lateral rotation; knee 

flexion/extension; ankle flexion/extension; pes flexion/extension. Figure 53 shows the 

dog hindlimb joints. 

Figure 53. Dog hindlimb joints. 

The dog forelimb has seven FOOFs at five joints: scapulothorax rotation; 

shoulder flexion/extension, abduction/adduction, and medial/lateral rotation; elbow 
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flexion/extension, wrist flexion/extension; manus flexion/extension. Figure 54 shows the 

dog forelimb joints. 
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Figure 54. Dog forelimb joints. 

The dog hindlimb LROM was sampled at 5° resolution creating 308,000 samples 

(4.41 MB, 24 bytes per sample). Figure 55 shows the dog hindlimb LROM space. The 

hindlimb LROM space is highly parasagittal (i.e., all LROM space root locations lie 

within, or close to, the animal's sagittal plane). The parasagitta1 LROM space is a result 

of the pes, ankle, knee, and hip flexion/extension FDOFs having instantaneous axes of 

rotation that are nearly coincident. Exercising any of these FDOFs causes the root to 

move and rotate along an arc (i.e., the pes FDOF having the largest radius because of the 

distance between the pes joint and the root, similarly the hip FDOF having the smallest 

radius). These flexion/extension FDOFs are therefore considered redundant. 
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Figure 55. Dog hindlimb LROM space. 

The constrained dog hindlimb LROM space is based on a step length of 0.48 

times the hip height. The space contains 10,795 samples. Figure 56 shows the 

constrained dog hindlimb LROM space. 
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Figure 56. Constrained dog hindlimb LROM space. 
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The dog forelimb LROM was sampled at 5° resolution creating 3,326,400 

samples (76.1 MB, 24 bytes per sample). Figure 57 shows the dog forelimb LROM 

space. Like the hindlimb LROM space, the forelimb LROM space is highly parasagittal. 

Figure 57. Dog forelimb LROM space. 

The constrained dog forelimb LROM space is based on a step length 0.48 times 

the hip height. The space contains 4,122 samples. Figure 58 shows the constrained dog 

forelimb LROM space. 
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Figure 58. Constrained dog forelimb LROM space. 

The dog trunk ROM consists of 19 vertebral joints. The trunk ROM represents 21 

mediolateral samples and 21 dorsoventral for a total of 44 1 samples. Figure 59 shows the 

dog trunl< ROM space. 
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Figure 59. Dog trunk ROM space. 
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Reptile 

The generic reptile model is based primarily on the Komodo dragon (Fotosearch, 

2005). Table 31 (see Appendix B) lists the six geometric DOFs for each of the reptile 

model's FDOFs. The reptile hindlimb has eight FDOFs at five joints: hip 

flexion/extension, abduction/adduction, and inner/outer rotation; knee flexion/extension; 

crus pronation/supination; ankle flexion/extension; pes flexion/extension and 

medial/lateral rotation. Figure 60 shows the reptile hindlimb joints. 

Figure 60. Reptile hindlimb joints. 

The reptile forelimb uses eight FDOFs at five joints: shoulder flexion/extension, 

abduction/adduction, and inner/outer rotation; elbow flexion/extension, antibrachium 
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pronation/supination; wrist flexion/extension; manus flexion/extension and medial/lateral 

rotation. Figure 61 shows the reptile forelimb joints. 

Figure 61. Reptile forelimb joints. 

The reptile hindlimb LROM was sampled at 5.5 0 resolution creating 7,076,160 

samples (161 MB, 24 bytes per sample). Figure 62 shows the dog hindlimb LROM 

space. The space is quite robust in pali because of the knee axis, which is almost parallel 

with the sagittal plane due to the reptile's sprawling stance (i.e., contrary to mammals, 

which have knee flexion/extension axes that are nearly perpendicular to the sagittal 

plane). The reptile also utilizes medial/lateral rotation at the foot and 

pronation/supination at the crus to move the root along arcs that are not parasagittal. 
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Figure 62. Reptile hindlimb LROM space. 

The constrained reptile hindlimb LROM space is based on a step length 2.2 times 

the hip height. The space contains 136,108 samples. Figure 63 shows the constrained 

reptile hindlimb LROM space. 

Figure 63. Constrained reptile hindlimb LROM space. 
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The reptile forelimb LROM was sampled at 5.5 0 resolution creating 2,857,680 

samples (65.4 MB, 24 bytes per sample). Figure 64 shows the reptile forelimb LROM 

space. Like the hindlimb LROM space, the forelimb space is quite robust. Similar to the 

hindlimb, the robust nature of the space is largely due to the medial/lateral rotation at the 

manus, pronation/supination at the antibrachium, and flexion/extension at the knee that 

move the root along non-parasagittal arcs. 

Figure 64. Reptile forelimb LROM space. 

The constrained reptile forelimb LROM space is based on a step length 2.2 times 

the hip height. The space contains 19,431 samples. Figure 65 shows the constrained 

reptile forelimb LROM space. 
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Figure 65. Constrained reptile forelimb LROM space. 

The reptile tnmk ROM consists of six vertebral joints. The trunl< ROM represents 

41 mediolateral samples and 41 dorsoventral for a total of 1681 samples. Figure 66 

shows the reptile trunk ROM space. 

Figure 66. Reptile trunk ROM space. 
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Apatosaurus 

Apatosaurus was a sauropod dinosaur that lived approximately 140 million years 

ago during the Jurassic period. Apatosaurus was up to 23 meters long. The specific bone 

dimensions and morphologies are based on the Carnegie Mellon specimen CM 3018 

(Stevens,2007a). Table 32 (see Appendix C) lists the six geometric OOFs for each of the 

Apatosaurus model's FOOFs. 

The Apatosaurus hindlimb utilizes five FOOFs at three joints: hip 

flexion/extension, abduction/adduction, and medial/lateral rotation; knee 

flexion/extension; ankle flexion/extension. Figure 67 shows the Apatosaurus hindlimb 

joints. 

Figure 67. Apatosaurus hindlimb joints. 
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The Apatosaurus forelimb utilizes seven FDOFs at fOUf joints: scapulothorax 

rotation and elevation; shoulder flexion/extension, abduction/adduction, and 

medial/lateral rotation; elbow flexion/extension, wrist flexion/extension. Figure 68 

shows the Apatosaurus forelimb joints. 

Figure 68. Apatosaurus forelimb joints. 

The Apatosaurus hindlimb LROM was sampled at 4° resolution creating 87,975 

samples (2.0 1MB, 24 bytes per sample). Figure 69 shows the Apatosaurus hindlimb 

LROM space. The hindlimb LROM space is highly parasagittal due to the nearly

coincident ankle, knee, and hip flexion/extension FDOFs, similar to the dog hindlimb 

space. 
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Figure 69. Apatosaunls hindlimb LROM space. 

The constrained Apatosaurus hindlimb LROM space is based on a step length 

0.34 times the hip height. The space contains 3,628 samples. Figure 70 shows the 

constrained Apatosaurus hindlimb LROM space. 

Figure 70. Constrained Apatosaurus hindlimb LROM space. 
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The Apatosaurus forelimb LROM was sampled at 4° resolution (5 cm resolution 

for scapulothorax elevation) creating 5,221,125 samples (119 MB, 24 bytes per sample). 

Figure 71 shows the Apatosaurus forelimb LROM space. The forelimb LROM space is 

considerably more robust than the hindlimb space, due to non-coincident wrist, elbow, 

and shoulder flexion/extension, and scapulothorax rotation FDOFaxes. Combinations of 

these FDOF values allow the root to both move along non-parasagittal arcs and change 

elevation. 

Figure 7/. Apatosaurus forelimb LROM space. 

The constrained Apatosaurus forelimb LROM space is based on a step length 

0.34 times the hip height. The space contains 406,377 samples. Figure 72 shows the 

constrained Apatosaurus forelimb LROM space. 
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Figure 72. Constrained Apatosaurus forelimb LROM space. 

The Apatosaurus trunk ROM consists of nine vertebral joints. The trunk ROM 

represents 21 mediolateral samples and 21 dorsoventral for a total of 441 samples. 

Figure 73 shows the Apatosaurus tnmk ROM space. 

Figure 73. Apatosaurus trunk ROM space. 
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Triceratops 

Triceratops was a ceratopsid dinosaur that lived during the Late Cretaceous 

Period, approximately 68 to 65 million years ago. Triceratops was up to 9 meters in 

length. Bone dimensions and morphologies are based on the Black Hills Institute of 

Geological Research Triceratops horridus specimen TCM 2001.93.1, "Kelsey" (Stevens, 

2007b). Table 33 (see Appendix 0) lists the six geometric OOFs for each of the 

Triceratops model's FOOFs. 

The Triceratops hindlimb utilizes five FOOFs at three joints: hip 

flexion/extension, abduction/adduction, and medial/lateral rotation; knee 

flexion/extension; ankle flexion/extension. Figure 74 shows the Triceratops hindlimb 

joints. 

Figure 74. Triceratops hindlimb joints. 
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The Triceratops forelimb utilizes seven FDOFs at four joints: scapulothorax 

rotation and elevation; shoulder flexion/extension, abduction/adduction, and 

medial/lateral rotation; elbow flexion/extension, wrist flexion/extension. Figure 75 

shows the Triceratops forelimb joints. 

Figure 75. Triceratops forelimb joints. 

The Triceratops hindlimb LROM was sampled at 4° resolution creating 350,784 

samples (8.02 MB, 24 bytes per sample). Figure 76 shows the Triceratops hindlimb 

LROM space. The hindlimb LROM space is nearly parasagittal, which is surprising 

considering that the knee and hip flexion/extension FDOFs are not coincident. The ankle 

and knee FDOFaxes are nearly coincident, however, allowing combinations of those 

FDOF values to move the root along a parasagittal arc. The distance between the hip 
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joint and root is small, so the hip FDOFs are capable of a large amount of root orientation 

change but little root position change. 

Figure 76. Triceratops hindlimb LROM space. 

The constrained Triceratops hindlimb LROM space is based on a step length 0.34 

times the hip height. The space contains 6,086 samples. Figure 77 shows the constrained 

Triceratops hindlimb LROM space. 
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Figure 77. Constrained Triceratops hindlimb LROM space. 

The Triceratops forelimb LROM was sampled at 4° resolution (5 cm resolution 

for scapulothorax elevation) creating 1,272,960 samples (29.1 MB, 24 bytes per sample). 

Figure 78 shows the Triceratops forelimb LROM space. The non-coincident wrist, 

elbow, and shoulder flexion/extension, and scapulothorax rotation FDOFaxes produce a 

robust forelimb LROM space, similar to that of the Apatosaurus forelimb space. 
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Figure 78. Triceratops forelimb LROM space. 

The constrained Triceratops forelimb LROM space is based on a step length 0.34 

times the hip height. The space contains 43,580 samples. Figure 79 shows the 

constrained Triceratops forelimb LROM space. 

Figure 79. Constrained Triceratops forelimb LROM space. 
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The Triceratops trunk ROM consists of 15 vertebral joints. The trunk ROM 

represents 21 mediolateral samples and 21 dorsoventral for a total of 441 samples. 

Figure 80 shows the Triceratops trunk ROM space. 

Figure 80. Triceratops trunk ROM space. 

Tyrannosaurus 

Tyrannosaurus was a theropod dinosaur that lived during the Late Cretaceous 

Period, approximately 68 to 65.5 million years ago. Tyrannosaurus was up to 13 meters 

in length. Bone dimensions and morphologies are based on the Black Hills Institute of 

Geological Research Tyrannosaurus specimen BHI-3033, "Stan" (Stevens, 2007c). 



151 

Table 34 (see Appendix E) lists the six geometric DOFs for each of the Tyrannosaurus 

model's FDOFs. 

The Tyrannosaurus hindlimb utilizes six FDOFs at four joints: hip 

flexion/extension, abduction/adduction, and medial/lateral rotation; knee 

flexion/extension; ankle flexion/extension; phalangeal flexion/extension. Figure 81 

shows the Tyrannosaurus hindlimb joints. 

Figure 8/. Tyrannosaurus hindlimb joints. 

The Tyrannosaurus hindlimb LROM was sampled at 4° resolution creating 

2,882,880 samples (65.9 MB, 24 bytes per sample). Figure 82 shows the Tyrannosaurus 

hindlimb LROM space. The space is highly parasagittal, which is not surprising 

considering the large number of redundant FDOFs; the phalangeal, ankle, knee, and hip 

flexion/extension FDOFs all have near-coincident axes. The large number of redundant 
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FDOFs creates an extremely large number ofLROM space samples (i.e., 2,882,880 

samples, compared to 80,640 samples in the comparable dog hindlimb LROM space). A 

GA may have trouble selecting appropriate limb configurations with so many 

combinations of phalangeal, ankle, and knee FDOF values allowing similar root 

orientations and positions. 

Figure 82. Tyrannosaurus hindlimb LROM space. 

The constrained Tyrannosaurus hindlimb LROM space is based on a step length 

0.98 times the hip height. The space contains 24,346 samples. Figure 83 shows the 

constrained Tyrannosaurus hindlimb LROM space. 
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Figure 83. Constrained Tyrannosaurus hindlimb LROM space. 

Summary 

The methods presented in this chapter allow the exploration and evaluation of a 

limb's summary range of motion. LROMs are created by evaluating all combinations of 

a limb's FDOFs at some angular resolution. LROMs are subsequently organized into 

LROM spaces for visualization and experimentation. LROM spaces provide an intuitive 

map of the positions and orientations reachable by the root of the limb system which is 

particularly useful for observing the behaviors of limb joints during locomotion. 

Bipedal constraints (i.e., dual support and bilateral) provide substantial pruning of 

LROM spaces, removing configurations with positions and orientations that are not 

possible during locomotion. The GA selects candidates from the LROM space 

corresponding to the beginning and ending of the stance phase. Compared to mid stance, 
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there are relatively-few ways that a limb can reach forward and back (i.e., given an 

adequately- long step length), so joint functionality is largely unambiguous. Limb 

movements are dependent on the limb's FDOFs, so limb movements and joint 

functionality can be analyzed in terms of the contributions made by each FDOF during 

locomotion. 

The GA utilizes a candidate representation which guarantees that all possible 

solutions at least cause the limbs to propel the root position forward by a specified step 

length. Therefore, the GA need only be concerned with finding a solution that is 

optimally smooth in terms of the fitness function, allowing fast convergence. The fitness 

function discourages body pitching, yawing, and rolling, as well as lateral swaying, 

vertical bobbing, and unnecessary angular excursions at the joints. A pipeline 

architecture connects the discrete operations necessary to automatically generate walking 

gaits, and allows maximum reuse of data between operations. Appendix H demonstrates 

the process of selecting and evaluating a bipedal candidate gait. 

Quadrupedal walking gaits can be automatically generated by utilizing two 

parallel bipedal gaits connected by a trunk region. Exercising the trunk's ROM allows 

further pruning of the fore and hind LROM spaces to remove configurations which 

cannot be connected by the trunk. Similar to the bipedal candidate representation, the 

quadrupedal candidate representation guarantees that all possible solutions at least propel 

the root position forward by a specified step length and ipsilateral phase. Again, a 

pipeline architecture connects the discrete quadrupedal operations, allowing reuse of data 

computed at earlier stages. 
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Finally, five models were presented: two extant, three extinct; four quadrupedal, 

one bipedal. Resulting LROM spaces, both unconstrained and constrained, were 

presented along with visualizations of the trunk ROMs (for the quadrupeds only). In the 

next chapter, sensitivity analyses will be presented that use these models to determine the 

genetic parameters used by the GAs and for determining the impact of the LROM-space

generation parameters on solution fitness. The models will also be evaluated 

qualitatively with respect to functional joint behavior during locomotion, and finally 

evaluated quantitatively to test specific hypotheses about FDOF behaviors. 
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CHAPTER IV
 

RESULTS AND ANALYSIS 

In this chapter, data will be presented from sensitivity analyses of the parameters 

associated with the GAGA process and from studies carried out using GAGA methods. 

First, data will be presented related to the selection ofthe GA genetic parameters and 

parent selection method. Next, a sensitivity analysis will explore the effect of the 

parameters used to create and organize LROM spaces. Next, a qualitative analysis will 

compare walking gaits generated with GAGA to analogous real-world gaits. Finally, 

specific quantitative studies will test gait hypotheses using GAGA methods. 

Genetic Parameters 

The following sections provide the results of a sensitivity analysis for the genetic 

parameters used by the GA. The sensitivity analysis provides a means for tuning the GA 

and verifies that the chosen genetic parameters values are appropriate for the solution 

space. All test runs were based on the generation ofApatosaurus quadrupedal walking 

gaits using 39-bit binary candidates (i.e., 10 bits representing an index into the back data, 
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7 bits representing an index into the slice data, and two II-bit integers representing 

indices into the forelimb space based on the previous two hindlimb indices). Unless 

otherwise noted, all runs consist of 10,000 GA iterations with a candidate population size 

of 1000. All GA runs were executed ten times so that an accurate mean and standard 

deviation could be established. 

Parent Selection 

After each GA iteration (i.e., following crossover and mutation), parents are 

selected to populate the candidate population for the next GA iteration. To select parents, 

the GA compares each candidate solution with another randomly-selected candidate 

solution in the population. The candidate solution with the higher fitness value then has a 

fixed change of being selected. This selection method is known as Tournament 

Selection. Tournament Selection has an advantage over other selection methods (e.g., 

Rank Selection or Fitness Proportional Selection) in that it does not require sorting of the 

population, therefore decreasing computation time. Table 1 shows the effect of varying 

the Tournament Selection higher-fitness-selection coefficient (0.5 crossover coefficient, 

0.5 relative mutation coefficient). 
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Table 1. 

Effect o/varying Toumament Selection coefficient 

Tournament Selection coefficient 

Fitness (xlOI\3) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1:0 

M 5.73 6.75 6.90 7.23 7.66 8.08 8.57 8.68 8.64 8.71 8.68 

SD 0.15 0.08 0.20 0.28 0.32 0.26 0.16 0.19 0.24 0.37 0.32 

Tournament Selection performed best with a selection coefficient between 0.6 and 

1.0. A Tournament Selection coefficient of 0.9 was used for actual GA runs and for the 

remaining sensitivity analysis runs (see following sections). Always choosing the lower-

fitness candidate (i.e., coefficient of 0.0) provides a fitness of 5.73 ± 0.15 (x 10-3
), 

providing a good estimate of the worst-case solutions. Figure 84 shows a visual 

representation of Table 1. 
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Figure 84. Effect of varying Tournament Selection coefficient. 

Crossover Coefficient 

During each GA iteration, each candidate solution has a chance of being mated 

with another randomly-selected candidate solution based on the crossover coefficient. 

Candidates are mated by selecting a single crossover index; the first candidate receives 

the second candidate's genetic information up to a randomly-selected crossover index 

while the second candidate receives the first candidate's genetic information after the 

crossover index. Table 2 shows the effect of varying crossover coefficient in the absence 

of mutation. 
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Table 2. 

Effect of varying crossover coefficient with no mutation 

Crossover coefficient 

Fitness (x1Q/'3) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

M 6.13 7.79 8.26 8.59 8.52 8.77 8.69 8.71 8.90 8.83 8.71 

SD 0.24 0.66 0.52 0.42 0.41 0.36 0.28 0.36 0.41 0.29 0.28 

Without mutation, the GA depends on crossover to explore the space. Not 

surprisingly, the GA performed poorly with a crossover coefficient below 0.5. 0.8 is 

henceforth considered a high-performance crossover coefficient for the GA. Figure 85 

shows the results of Table 2. 
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Figure 85. Effect of varying crossover coefficient with no mutation. 
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With mutation enabled, a tradeoff must be made between the crossover coefficient 

and the mutation coefficient; a great amount of combined mating and mutation will 

perturb too many high-fitness candidates and hinder the 'success of the GA. Table 3 

shows the effect of varying crossover coefficient with a high-performance relative 

mutation coefficient of 0.5 (see next section). 

Table3. 

Effect ofvarying crossover coefficient with fixed mutation 

Crossover coefficient 

Fitness (xlO/\3) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

M 8.97 9.02 8.96 8.96 8.79 8.74 8.63 8.66 8.53 8.57 8.63 

SD 0.35 0.41 0.33 0.35 0.37 0.32 0.27 0.31 0.06 0.11 0.21 

As predicted, a high crossover coefficient hindered GA convergence performance 

when using a significant amount of mutation. Figure 86 shows a visual representation of 

Table 3. 
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Figure 86. Effect of varying crossover coefficient with fixed mutation. 

Mutation Coefficient 

During each GA iteration, every bit in the solution space has a chance of being 

flipped, thus mutating some of the candidate solutions. The mutation coefficient is scaled 

by the inverse of the candidate size so that a relative mutation coefficient of 1.0 implies 

that one bit per candidate will be flipped on average. Table 4 shows the effect of varying 

the relative mutation coefficient in the absence of crossover. 
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Table 4. 

Effect ofvarying relative mutation coefficient with no crossover 

Relative mutation coefficient 

Fitness (xlQ!'3) 1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 

M 8.05 7.89 8.39 8.89 9.16 8.75 8.66 8.48 8.43 8.25 8.34 

SD 0.63 0.58 0.58 0.52 0.35 0.20 0.14 0.25 0.35 0.27 0.38 

The GA benefited most from a relative mutation coefficient of 0.5. Coefficients 

below 0.5 did not perturb the solution space enough to generate high-fitness candidates. 

Coefficients above 0.5 perturbed the space so much that too many high-fitness candidates 

were destroyed, impeding GA convergence performance. Figure 87 shows a visual 

representation of Table 4. 

.__._--_.._.._._._.._-----------, 

1~:~ +---------------.--.-.-1- -..-.------.- - ..-. . 
9.0 +-------J~T__• 

- 85 --f--l-----·-··-----.-·····-t-----·tI±
<: 
o .... 
)(

M 

~.~- -i====-'.--..-.---.. -.----.~=.---- ..-II> 

(II '" c 7.0 
.'1: .... 6.5 - ------.--------. ---_.~---_._.. _._-_._--

--------------_._----~-_._._--6.0 

+--- _.._--------_._.. _._-_.._._--_.5.5 

5.0	 +---'---"---'-'-'---,--,--,---,.---r 

1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 

Relative mutation coefficient 

_._._-_..__._--------------_._---_. 

Figure 87. Effect of varying relative mutation coefficient with no crossover. 
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Table 5 shows the effect of varying relative mutation coefficient with a high-

performance fixed crossover coefficient of 0.8 (see previous section). 

Table 5. 

Effect ofvarying relative mutation coefficient with fixed crossover 

Fitness (xl 0""3) 

M 

SD 

1/32 

8.66 

0.32 

1/16 

8.64 

0.31 

1/8 

8.67 

0.34 

Relative mutation coefficient 

1/4 1/2 1 2 

8.55 8.64 8.66 8.60 

0.16 0.20 0.09 0.14 

4 

8.44 

0.23 

8 

8.35 

0.21 

16 

8.16 

0.25 

32 

8.16 

0.31 

Similar to varying crossover coefficient with a high-performance relative 

mutation coefficient, higher relative mutation coefficients hindered GA convergence 

performance when a high-performance crossover coefficient was used. GA convergence 

performance was best when using a high performance relative mutation coefficient with a 

modest crossover coefficient, so a relative crossover coefficient of 0.5 was used with a 

crossover coefficient of 0.1 for actual GA runs. Figure 88 shows Table 5 in graph form. 
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Figure 88. Effect of varying relative mutation coefficient with fixed crossover. 

Candidate Population Size 

The candidate population size determines the amount of initial randomness in the 

solution space; larger populations have a greater chance of generating initial candidates 

with high fitness. Larger populations also allow a greater amount of genetic material to 

be transferred between GA iterations, which provides more genetic diversity for mating 

and mutation. Table 6 shows the effect of varying candidate population size (0.1 

crossover coefficient, 0.5 relative mutation coefficient). The GA was limited to 100 runs 

to exaggerate the effect of limiting population size. 
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Table 6. 

Effect ofvarying candidate population size 

Candidate population size 

Fitness (xlOI\3) 10 100 200 300 400 500 600 700 800 900 1000 

M 6.80 8.39 8.35 8.54 8.61 8.71 8.90 8.79 8.80 8.91 8.96 

SD 0.62 0.63 0.61 0.50 0.37 0.39 0.32 0.27 0.35 0.36 0.35 

Maximum fitness grew almost monotonically with candidate population size, 

indicating that larger populations do improve GA convergence performance. The 

standard deviations also decreased significantly as population size increased, suggesting 

that larger populations allow more consistency in the candidate solutions found. Figure 

89 shows a visual representation of Table 6. 

10.0 l===----
HF=.~~ r J- ~ +-. F
 
8.0 1t--~ - 

----

5.0 ---r -,------" --,-----, 

10 100 200 300 400 500 600 700 800 900 1000 

Candidate population size 

Figure 89. Effect of varying candidate population size. 
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Convergence Comparison 

The GA was run against a simulated Hill Climbing algorithm to determine the 

relative convergence performance of the GA. Hill Climbing was simulated by running 

the GA with no crossover, a relative mutation coefficient of 1.0, and Best Selection to 

select population parents (Le., the most-fit candidate in each population is used to 

populate the entire next population). In this way, the simulated Hill Climbing algorithm 

flipped one bit per candidate on average. The simulated Hill Climbing algorithm used a 

population size of39 (i.e., the same size as the solution candidates) so that each genotype 

bit is flipped once per iteration on average. 

The GA was run with a crossover coefficient of 0.1 and a relative mutation 

coefficient ofO.5 (see previous sections). The GA used a population size of39 to be 

consistent with the simulated Hill Climbing algorithm (at the cost of some GA 

convergence performance). With equal candidate solution and population sizes, the two 

algorithms should be approximately equal in terms of computational cost. Table 7 shows 

the results of the GA/Hill Climbing comparison. 
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Table 7. 

Comparison ofGAlHill Climbing convergence performance 

Number of iterations 

Fitness (xlO"'3) 10 100 200 300 400 500 600 700 800 900 1000 

GA 

M 6.17 7.53 7.81 7.94 7.99 8.10 8.11 8.11 8.14 8.23 8.23 

SD 0.39 0.49 0.48 0.51 0.53 0.59 0.60 0.60 0.64 0.58 0.57 

Hill Climbing 

M 6.59 7.16 7.32 7.42 7.43 7.44 7.44 7.45 7.46 7.47 7.47 

SD 0.53 0.58 0.54 0.65 0.65 0.67 0.67 0.68 0.68 0.68 0.68 

Initially, the simulated Hill Climbing algorithm outperformed the GA. This is 

likely a result of the Hill Climbing algorithm's more aggressive rewarding of fit 

candidates; the GA sometimes selects less-fit candidates to maintain diversity in the 

candidate population. The GA outperformed the simulated Hill Climbing algorithm at 

100 iterations and beyond. After 300 iterations, the simulated Hill Climbing algorithm 

improved very little in fitness because it likely converged on a local maximum. The GA 

continued to improve until at least 900 iterations. Figure 90 shows the results from Table 

7 in graph form. 
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Figure 90. Comparison of GA/Hill Climbing convergence performance. 

The data presented in this section demonstrates the process of tuning the GA for 

maximum convergence. With the GA tuned, the sensitivity of input parameters on GA 

performance must next be evaluated. The next section will present data related to the 

various input parameters for exploring and organizing LROM spaces and for finding 

smooth bipedal and quadrupedal walking gait paths. 

Sensitivity Analysis 

The LROM space representation allows the search for "optimal" walking gait 

paths through the space, but how sensitive are the generated gaits to variations in the 

parameters used to generate the space? In this section, the sensitivity of space 
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exploration and organization parameters will be analyzed. The effects of iteratively 

refining spaces will also be addressed. Finally, the aggregate fitness function coefficients 

were varied to determine their qualitative effects on the generated walking gaits. All data 

in this section is based on the Apatosaurus forelimb, which utilizes seven FDOFs with a 

wide variety of functionality. Data was collected across ten GA runs to determine a mean 

and standard deviation for each data point. 

Space Exploration 

Each LROM is sampled at a specified angular resolution. The exact resolution is 

typically selected such that a large number of samples are generated, but not so many that 

computer memory and execution time become limiting factors. The number of samples 

grows exponentially with the sampling resolution (i.e., double the sampling resolution 

increases the size ofthe space by a factor of2/'FDOF count). The exact number of 

samples depends on the angular sampling resolution and the sum angular excursion of a 

limb's FDOFs. Figure 91 shows how the number of samples and the number of 

constrained samples (i.e., using the dual support and bilateral symmetry constrained) 

relates to sampling resolution. 
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Figure 91.	 Apatosaurus forelimb sample counts. 

The total number ofLROM samples grows exponentially, as expected. The 

number of constrained samples grows less quickly, but still increases from 7,719 samples 

at a 6° angular sampling resolution to 406,377 samples at a 4° sampling resolution. 

Fitness values were collected for sampling resolutions between 4° and 6° determine the 

effect of the angular sampling resolution on generated walking gait fitness. Table 8 

shows the effect of varying angular sampling resolution. 



172 

Table 8. 

Effect ofvarying sampling resolution on walk fitness 

Exploration sampling resolution n 
Fitness (xlOA 3) 6 5.75 5.5 5.25 5 4.75 4.5 4.25 4 

M 7.22 8.99 9.18 9.64 8.45 8.61 9.00 9.79 10.39 

SD 0.84 0.00 0.34 1.08 1.03 1.13 0.89 1.64 1.04 

The GA finds paths through the constrained LROM spaces, so it makes sense to 

evaluate fitness relative to the size of the constrained spaces. Table 8 shows that there is 

little variation in fitness based on sampling resolution, while Figure 91 shows that the 

size of the constrained spaces grows quickly as sampling resolution decreases (i.e., 

increasing the size of the space). This contrast indicates that the fitness of generated 

walking gaits is not dependent on the number of samples in the LROM space. Figure 92 

shows a graphical representation of Table 8. 



-------------------------------------

173 

12.0 

11.0 

n 
10.0 

J<: 
.... 9.0 ..0	 -+ 
~ 
III 
III 
(II 8.0 
s:: i 

M	 

t=i t 
J~ 

.~ 
1.1.. I7.0 

6.0 J 
5.0 ~--r-----,--,------,--,------,---,-------,-----, 

6	 5.75 5.5 5.25 5 4.75 4.5 4.25 4 

Exploration sampling resolution (O) 

Figure 92. Effect of varying sampling resolution on walk fitness. 

Qualitatively, each FDOF accomplishes some functional purpose during 

locomotion. The functional purposes of the FDOFs must not be dependent on the space 

sampling or organization parameters, otherwise FDOF functionality could not be 

determined using the LROM space representation. Figure 93 shows stance frames from 

Apatosaurus forelimb walking gaits generated from LROM spaces sampled at 4° (i.e., 

7,719 samples) and 6° (i.e., 406,377 samples) resolutions. The figure shows minor 

differences in some joint angles, but that the seven FDOFs accomplish similar goals in 

terms of body pitch, yaw, roll, vertical displacement, and forward travel. 
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Figure 93. Comparison of low (top) and high (bottom) resolution sampling. 

The angular sampling resolution of the sampling process does not have a 

significant effect on walking gait fitness. The sampling resolution also does not have a 

significant effect on the functional purpose of the animal's joints during locomotion. The 

next section will present data collected on the effect of varying space organization 

parameters on gait fitness. 
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Space Organization 

The samples of a constrained LROM space are sorted into a number of 3D boxes. 

The number of boxes along the direction of travel is specified and the number of boxes 

along the other two axes (i.e., lateral and vertical) is computed such that the boxes are 

geometric cubes. Larger box counts improve the computational efficiency of the GA 

because each box contains relatively-few samples so fewer evaluations are necessary. 

However, very large box counts can create a space that is too sparsely populated for the 

GA to find high-fitness walking gaits. Fitness values were collected for spaces created 

with box counts between 30 and 60 to determine the effect of box count on gait fitness. 

Table 9 shows the effect of box count on walking gait fitness. 

Table 9. 

Effect ofvarying LROM space box count on walk fitness 

LROM space boxes along direction of travel 

Fitness (xlO"'3) 30 35 40 45 50 55 60 

M 10.13 8.74 10.16 9.47 9.71 8.94 8.87 

SD 1.34 1.02 1.61 0.69 1.45 1.23 0.85 

Similar to the effect of exploration sampling resolution, the box count has little 

effect on the fitness of generated walks. The fitness data does show a trend towards 

lower fitness values with larger box counts, which is to be expected considering that 
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relatively-fewer samples are available to be evaluated by the GA. Figure 94 shows a 

graphical representation of the data from Table 9. 
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Figure 94. Effect of varying box count on walk fitness. 

Like sampling resolution, organization box count must not have an effect on the 

functional purposes of the FDOFs. Figure 95 shows stance frames from Apatosaurus 

forelimb walking gaits generated from LROM spaces organized with box counts of 30 

and 60. Again, the figure shows small differences in joint angles and that the FDOFs 

accomplish the same high-level locomotion goals between the two walking gaits; 

analogous FDOFs are utilized for the same locomotion purposes by both gaits. 
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Figure 95. Comparison of low (top) and high (bottom) box counts. 

The LROM space box count does not have a significant effect on walking gait 

fitness. The box count also does not have a significant effect on the functional purpose of 

the animal's joints during locomotion. In the next section, data will be presented related 

to the iterative refinement ofFDOFs. The refinement process adds resolution to LROM 

spaces at locations found to be related to locomotion. 
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Space Refinement 

After generating a walking gait from an LROM space created with some angular 

sampling resolution and box count, the space can be iteratively refined to populate the 

LROM space with more samples in locations found to be related to locomotion. A new 

LROM space is created for a target FDOF using the existing walking gait keyframes to 

specify all other FDOF values. The target FDOF is then sampled at a higher resolution, a 

new walking gait is generated, and the new gait animation is used to resample the next 

FDOF. Table 10 shows a comparison of candidate fitness values before and after 

iterative refinement at a 10 angular resolution. 

Table 10. 

Comparison oforiginal and refined walk fitness 

Exploration sampling resolution CO) 
Fitness (xlOJ'3) 6 5.75 5.5 5.25 5 4.75 4.5 4.25 4 

Original 

M 7.22 8.99 9.18 9.64 8.45 8.61 9.00 9.79 10.39 

SD 0.84 0.00 0.34 1.08 1.03 1.13 0.89 1.64 1.04 

Refmed 

M 130.61 23.98 41.54 29.65 101.00 83.30 96.54 123.17 61.45 

SD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.34 

The refinement process substantially increases candidate fitness, in some cases by 

an order of magnitude or more. The iterative process allows each FDOF to be fine-tuned 

to better match the fitness criteria, explaining the large increase in candidate fitness. 
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Figure 96 shows a graphical representation of candidate fitness before and after the 

iterative refinement process. 
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Figure 96. Effect of iterative refmement on candidate fitness. 

The refinement process can substantially increase candidate fitness, but does it 

alter the functional purposes of the FDOFs? Figure 97 shows stance frames from 

Apatosaurus forelimb walking gaits generated using an LROM space with a 4° angular 

sampling resolution and 50 boxes along the direction oftravel. The figure shows that 

while fitness increased from 12.27 (xlOl\-3) to 97.37 (xlOl\-3), the individual joint angles 

remained largely unchanged. 
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Figure 97. Walking gait before (top) and after (bottom) refinement. 

Iterative refinement of FDOFs can dramatically increase the fitness values of 

walking gaits, but does not significantly modify the functional purposes of the animal's 

joints. In the next section, the coefficients associated with the terms of the fitness 

function will be varied, and data collected on the resulting gait fitness and functional joint 

purposes will be presented. 
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Fitness Function 

The bipedal and quadrupedal fitness functions aggregate several error terms into a 

single error term. The error terms are: sum change in root pitch from neutral pose, sum 

change in root yaw from neutral pose, sum change in root roll from neutral pose, sum 

root lateral displacement from the initial sagittal plane, sum root vertical displacement 

from the target root height, and sum change in FDOF values. These values are computed 

at the RD and RLU keyframes only, allowing an extremely inexpensive fitness 

calculation (i.e., constant time with respect to the number ofFDOFs). The final fitness is 

1.0/ (1.0 + e), where e is the sum error term. 

Each fitness error term has an associated coefficient that determines the term's 

contribution to the final fitness value. The coefficients were initially determined by 

observing walking gaits generated for the generic dog and reptile models. Initially, both 

models had a tendency to pitch and roll, so the pitch and roll error coefficients were 

increased. All other coefficients have unit value as of the time of this writing. The same 

error coefficients (and therefore the same fitness function) are used across all models for 

the generation of walking gaits. 

Data was collected t6 determine the effect of varying the error coefficients on 

walking gait fitness. Table 11 shows the effect of modifying the pitch error coefficient 

on Apatosaurus forelimb gait fitness. The pitch fitness term generally discourages the 

body from pitching (i.e., rotation of the root about the lateral axis) during locomotion. 

Lowering the pitch error coefficient does indeed increase the resulting pitch error. The 

overall fitness remains generally unchanged, as several other error terms show reduced 
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error values (e.g., yaw, roll, and FDOF error). Conversely, raising the pitch error 

coefficient decreases the resulting pitch error. 

Table 11. 

Effect ofvarying pitch fitness coefficient on fitness error terms 

Fitness tenn 

Error Pitch Yaw Roll Lateral Vertical FDOF Total 

Halfpitch coefficient value 

M 6.84 4.75 7.16 12.79 13.88 26.98 72.39 

SD 2.92 2.83 2.69 5.25 8.26 5.96 10.06 

Base pitch coefficient value 

M 3.89 5.94 10.54 6.49 11.93 32.69 71.47 

SD 2.17 3.11 8.35 4.76 5.53 9.93 11.55 

Double pitch coefficient value 

M 3.36 5.48 12.49 15.80 9.88 31.24 78.26 

SD 2.39 3.48 6.48 12.04 4.85 12.93 19.01 

Qualitative observations were also made to determine whether or not the error 

coefficients have a significant effect on the functional purpose ofjoints with respect to 

locomotion. Figure 98 shows frames from a dog forelimb walk. The dog forelimb is 

particularly vulnerable to pitching due to the large number of redundant FDOFs (i.e., 

FDOFs with near-coincident instantaneous axes or rotation). The figure shows frames 

from a walk generated using one tenth the base pitch coefficient and from a walk 

generated using ten times the base pitch coefficient. 
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Figure 98. Comparison oflow (top) and high (bottom) pitch error coefficient. 

Figure 98 shows that the walk generated with a relatively-low pitch coefficient 

(top) is pitched back substantially more than the walk generated with a relatively-high 

pitch coefficient (bottom). Despite the two-orders-of-magnitude change in pitch error 

coefficient, the functional purposes of the limb's joints are the same in both gaits (e.g., 

humeral retraction; knee, wrist, and manus flexion). 

Table 12 shows the effect of varying the yaw error on gait fitness. The yaw error 

term generally discourages body yawing (i.e., rotation of the root around the vertical axis) 
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during locomotion. Yaw error is increased with a reduced yaw error coefficient; yaw 

error is reduced with an increased yaw error coefficient. As with modifications to the 

pitch error coefficient, sum fitness remains largely unchanged as the difference in yaw 

error is distributed to the other error terms. 

Table 12. 

Effect ofvarying yaw fitness coefficient on fitness error terms 

Fitness term 

Error Pitch Yaw Roll Lateral Vertical FDOF Total 

Half yaw coefficient value 

M 3.47 15.45 9.21 8.14 12.88 30.52 79.66 

SD 2.23 14.85 3.64 3.68 11.43 10.12 26.21 

Base yaw coefficient value 

M 3.89 5.94 10.54 6.49 11.93 32.69 71.47 

SD 2.17 3.11 8.35 4.76 5.53 9.93 11.55 

Double yaw coefficient value 

M 4.81 4.26 8.53 13.76 7.70 32.19 71.25 

SD 4.77 2.75 4.50 9.33 4.13 12.71 10.23 

The roll error term generally discourages rolling of the body (i.e., rotation of the 

root about the longitudinal axis) during locomotion. Table 13 shows the effect of varying 

the roll error coefficient on gait fitness. Lowering the yaw error coefficient increases 

yawing, raising the yaw error coefficient decreases yawing, as expected. 
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Table 13. 

Effect a/varying roll/itness coefficient on fitness error terms 

Fitness tenn 

Error Pitch Yaw Roll Lateral Vertical FDOF Total 

Half roll coefficient value 

M 5.26 6.74 14.25 13.26 12.07 26.52 78.10 

SD 2.60 4.87 10.75 6.18 8.92 7.10 19.15 

Base roll coefficient value 

M 3.89 5.94 10.54 6.49 11.93 32.69 71.47 

SD 2.17 3.11 8.35 4.76 5.53 9.93 11.55 

Double roll coefficient value 

M 6.47 4.02 9.30 14.54 12.18 22.60 69.11 

SD 2.62 2.28 2.93 5.38 8.36 8.11 10.49 

The lateral error term generally discourages the body from lateral swaying (Le., 

translation along the lateral axis) during locomotion. Table 14 shows the effect of 

varying the lateral error coefficient on gait fitness. Lowering the lateral error coefficient 

increases the lateral swaying of generated gaits. Raising the lateral coefficient, however, 

did not have a significant effect on the lateral error. The lack of change in lateral error is 

most likely because the lateral error is near its minimum possible value based on the 

sampling resolution of the LROM space (which is supported by the other tables in this 

section). 
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Table 14. 

Effect ofvarying lateralfitness coefficient on fitness error terms 

Fitness term 

Error Pitch Yaw Roll Lateral Vertical FDOF Total 

Half lateral coefficient value 

M 5.61 4.48 9.94 13.69 11.14 23.55 68.41 

SD 2.98 3.59 6.24 5.90 8.59 7.45 15.22 

Base lateral coefficient value 

M 3.89 5.94 10.54 6.49 11.93 32.69 71.47 

SD 2.17 3.11 8.35 4.76 5.53 9.93 11.55 

Double lateral coefficient value 

M 4.80 6.94 9.05 6.92 14.87 31.86 74.44 

SD 3.20 4.38 5.81 2.29 10.60 8.61 12.33 

Table 15 shows the effect of varying the vertical error coefficient on gait fitness. 

The vertical fitness term generally discourages vertical "bobbing" of the body (i.e., 

translation along the vertical axis) during locomotion. Lowering the coefficient increases 

vertical error; raising the coefficient reduces vertical error. The total error remains large 

unchanged. 
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Table 15. 

Effect a/varying vertical fitness coefficient on/itness error terms 

Fitness term 

Error Pitch Yaw Roll Lateral Vertical FDOF Total 

Half vertical coefficient value 

M 5.36 5.45 8.28 9.07 15.90 28.76 72.82 

SD 2.97 4.91 4.46 6.85 7.25 14.63 10.80 

Base vertical coefficient value 

M 3.89 5.94 10.54 6.49 11.93 32.69 71.47 

SD 2.17 3.11 8.35 4.76 5.53 9.93 11.55 

Double vertical coefficient value 

M 5.76 4.91 8.57 11.90 4.44 28.10 63.68 

SD 3.15 4.38 2.55 3.94 2.15 21.42 18.49 

The FDOF error terms discourages the limb from undergoing large angular joint 

excursions during locomotion. The FDOF error term is particularly effective when 

dealing with limbs with many redundant (i.e., near-coincident instantaneous axes of 

rotation) FDOFs, such as the dog and Tyrannosaurus limbs. Without this term, the GA 

might select a gait with a flexed ankle joint and extended pes joint for one keyframe and 

an extended ankle joint and flexed pes joint for the next keyframe. Qualitatively, such a 

gait looks unrealistic (and painful) because of the large joint angular accelerations joints 

relative to the movements of the rest of the body. 

Figure 99 shows a comparison between a Tyrannosaurus walking gait created 

using an FDOF error coefficient of 0.01 (top) and a gait created using a unit FDOF error 

coefficient (bottom). When using a very small FDOF error coefficient, the GA selects a 

gait that uses a large amount of ankle and knee flexion and pes joint extension to keep the 

body smoothly moving forward. Such large angular excursions during a small portion of 
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the total stance phase looks unnatural. When using a unit FDOF error coefficient, the 

gait is similarly smooth but uses much less angular excursion during early stance. 

Figure 99. Comparison oflow (top) and high (bottom) FDOF error coefficient. 

In principal, there are many approaches that could approximate the FDOF error 

term. In a dynamics simulation that keeps track of physical properties such as mass, 

velocity, and acceleration, minimizing either angular velocity or accelerations would 
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likely achieve the same goals. Raibert and Hogins (1991) and Chung and Hahn (1999) 

utilized angular accelerations for similar purposes. In the absence of physics, minimizing 

angular excursion would achieve a similar goal. FDOF indices are normalized, however, 

so joints with small angular excursions are not favored over joints with larger angular 

excursIOns. 

Table 16 shows the effect of varying the FDOF error coefficient on gait fitness. 

Not surprisingly, FDOF error increases when the FDOF error coefficient is reduced. 

Likewise, FDOF error decreases when the FDOF error coefficient is increased. Again, 

the sum error remained largely unchanged. 

Table 16. 

Effect ofvarying FDOF fitness coefficient on fitness error terms 

Fitness tenn 

Error Pitch Yaw Roll Lateral Vertical FDOF Total 

HalfFDOF coefficient value 

M 2.86 6.64 8.18 7.65 8.12 39.62 73.06 

SD 1.15 2.60 4.73 4.51 3.81 19.54 17.30 

Base FDOF coefficient value 

M 3.89 5.94 10.54 6.49 11.93 32.69 71.47 

SD 2.17 3.11 8.35 4.76 5.53 9.93 11.55 

Double FDOF coefficient value 

M 6.58 4.73 9.59 11.30 17.36 21.10 70.65 

SD 2.72 2.79 7.09 5.28 11.36 7.97 13.17 

The data presented in this section shows that the changes in the fitness function 

coefficients affect the generated gaits in intuitive ways (e.g., increasing the penalty 
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associated with body pitching results in walks with generally less pitching). However, 

the overall fitness values remain consistent; difference in error is distributed among the 

other error terms. In the next section, generated walking gaits will be qualitatively 

compared to extant animal data to determine how closely the generated gaits match real

world analogues. 

Qualitative Gait Analysis 

In this section, walking gaits automatically generated using GAGA methods will 

be compared to published examples of real-world animal gaits. First, the generic dog and 

reptile gaits will be compared against analogous examples of observed real-world 

locomotion. Next, walking gaits generated for the Apatosaurus, Triceratops, and 

Tyrannosaurus models will be qualitatively compared to locomotion characteristics of the 

dog and reptile gaits. Finally, observations on the functional locomotion purposes of 

specific joints will be discussed. 

Dog 

Goslow (1981) analyzed the forelimb and hindlimb behaviors of dogs during 

locomotion. High-frame-rate movies were first taken of walking dogs. The film was 

then projected onto a glass plane, onto which celluloid images ofthe major limb bones 

were placed to simulate the internal osteological structure of each limb at several 

keyframes. Figure 100 shows a comparison of a hindlimb walking gait generated using 
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Goslow (1981) methods (bottom) with a hindlimb walking gait generated using 

quadrupedal GAGA methods (top). 

Figure 100. Comparison of GAGA (top) and Goslow (bottom) hind dog walk.
 

Note. Goslow images (bottom) from "Electrical activity and relative length changes of dog limb muscles as
 

a function of speed and gait" by G. E. Goslow, 1981,Joumal ofExperimental Biology, 94(1), p. 32.
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In both walking gaits, the femur begins stance (left) with the femur protracted and 

the crus almost vertical. Througho~t stance, the femur retracts and the knee extends 

slightly. At the end of stance (right), the femur is nearly vertical in both gaits. During 

stance, the ankle and pes joints flex together, causing the ankle height to increase in the 

Goslow model. In the GAGA model, the ankle flexes more than the pes joint, causes less 

increase in ankle height. In summary, the functional movements are nearly identical 

between the two gaits. The difference in pes/ankle joint functionality appears to be an 

issue that cannot be solved with pure kinematics. Figure 101 shows a comparison of a 

forelimb gait generated using Goslow (1981) methods (bottom) with a forelimb gait 

generated using quadrupedal GAGA methods (top). 
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Figure 101. Comparison of GAGA (top) and Goslow (bottom) fore dog walk.
 

Note. Goslow images (bottom) from "Electrical activity and relative length changes ofdog limb muscles as
 

a function of speed and gait" by G. E. Goslow, 1981, Journal ofExperimental Biology, 94(1), p. 19.
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In both gaits, stance begins (left) with the scapula pointing forward, the humerus 

pointing slightly back, and the antibrachium outstretched and pointing forward. At the 

end of stance (right), the scapula is nearly vertical, the shoulder and elbow joints have 

counterrotated, and the manus joint has flexed. The joints appear to have the same 

functional behaviors between the two gaits. The only noticeable difference between the 

two gaits is that the GAGA stance phase starts with the limb farther forward and less 

outstretched than the Goslow model, causing the Goslow stance phase to end with the 

limb farther back than with the GAGA model. This longitudinal shift could be caused by 

any number of reasons, such as slightly-different limb proportions between the models or 

the combination of associated hindlimb and trunk behaviors (not shown). 

Muybridge (1887) is responsible for the world's first careful analyses of animal 

locomotion. In the late 1800s, Muybridge used linear arrays ofcameras to capture animal 

locomotion in a sequence of photographs. Today, Muybridge's animal studies, which are 

substantial in breadth, are still relevant for their historical and academic significance. 

Figure 102 shows a comparison of a Muybridge (1887) sequence of dog locomotion 

photographs with a quadrupedal walking gait generated using GAGA methods. 
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Figure 102. Comparison ofMuybridge (left) and GAGA (right) dog walk.
 

Note. Muybridge images (left) from "Animals in motion [1957 reprint)" by E. Muybridge, 1887, New
 

York: Dover, p. 115.
 



196 

The comparison confinns that the ipsilateral phase and the general limb 

movements of the GAGA gait are correct with respect to the Muybridge gait. The most 

noticeable difference between the Muybridge and GAGA gaits is the lack of wrist flexion 

during the swing phase. Recall that the swing phase is created using a simple IK method 

because the stance phases are the focus of these studies. The wrist FDOF could be 

extended to allow sufficient flexion for the swing phase, but such an increase in angular 

excursion would dramatically increase the total size of the forelimb LROM space (see 

Figure 57). 

The quadrupedal dog walking gait generated using GAGA methods has been 

shown to be qualitatively similar to published dog walking gait data from two studies. 

This analysis shows that, at least with a generic dog model, the GAGA methods are able 

to generate a walking gait that is similar to real-world gaits in tenns ofjoint functionality. 

In the next section, walking gaits generated for the generic reptile model will be 

compared to observed real-world walking gaits. 

Reptile 

Unfortunately, careful gait studies are not available for the Komodo dragon, the 

specific reptile on which the generic reptile model is based. To detennine how well the 

gross limb and body movements of a quadrupedal reptile gait generated using GAGA 

methods compares to the gait of a real-world Komodo dragon, the GAGA gait was 

compared to published video clips of Komodo dragon walking gaits (Fotosearch, 2007). 
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Figure 103 shows a comparison between frames of a walking gait generated using GAGA 

methods to frames of a real Komodo dragon walking. 

Figure 103. Comparison of Komodo dragon (left) and GAGA reptile (right) walk.
 

No/e. Fotosearch images (left) from "Komodo dragon walking on ground" by Fotosearch, 2007, retrieved
 

November 21,2007, from hUp://www.fotosearch.com/DVA002/006-0044.
 



198 

Both gaits operate with an ipsilateral phase of 0.5; diagonal limbs start and end 

stance at the same time. Both pelvic and pectoral assemblies rotate towards the stance 

limb during the limb's stance phase, which propels the body forward on an arc centered 

at the manus/pes position. This pelvic/pectoral rotation also helps the swing limbs to 

travel forward faster and to cover a greater distance before the limb begins stance, 

allowing longer stride lengths. The opposite rotations of the pelvic and pectoral 

assemblies cause the trunk to bend in a sinuous manner. Reptilian back bending is 

discussed by Reilly (1997, 1998). Figure 104 shows a comparison of reptile back 

bending between frames from the reptile walking gait generated using GAGA and 

published images (Reilly, 1998). 
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Figure 104. Comparison ofGAGA (top) and Reilly (bottom) reptile gait images. 

Note. Reilly images (bottom) from "Sprawling locomotion in the lizard Sceloporus clarkii: quantitative 

kinematics ofa walking trot" by S. M. Reilly, 1997, Journal ofExperimental Biology, 200(4), p. 756. 

The reptile limb movements are somewhat unintuitive, mostly because the knee 

and elbow axes are nearly parallel to the sagittal plane at mid stance. Therefore, 

flexion/extension of the knee/elbow at mid stance causes the crus/antibrachium to rotate 

mediolaterally with essentially no protraction/retraction. In order for the knee and elbow 

to be used functionally during locomotion, inner and outer rotation at the hip and 

shoulder must be used to rotate the femur/humerus and reorient the knee/elbow axes so 

that the crus and antibrachium can protract and retract. 
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Reorientation of the knee and elbow axes causes mediolateral movement of the 

crus and antibrachium that must be absorbed by mediolateral rotation at the pes and 

manus to avoid twisting and or slipping of the pes/manus on the ground. In addition, 

protraction/retraction of the femur and humerus must be absorbed by 

pronation/supination in the crus and antibrachium to avoid twisting or slipping of the 

pes/manus on the ground. Figure 105 shows frames from a reptile hindlimb walking gait 

generated using GAGA methods. 

Figure 105. Reptile hindlimb stance phase. 

Rotation of the femur is particularly obvious at the end of stance, when the knee is 

extended to allow a long stride. Flexion at the ankle and pes joints also helps to increase 

the stride. The pronation and supination of the antibrachium can also be seen clearly. In 

the absence of crus pronation/supination, the twisting of the limb caused by hip 

flexion/extension would need to be absorbed somewhere else in the limb; otherwise the 

twist would be transmitted through the pes, causing the pes to rotate on the ground about 
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the vertical axes. Figure 106 shows an analogous reptile forelimb walking gait generated 

using GAGA methods. 

Figure 106. Reptile forelimb stance phase. 

Like the hindlimb, the forelimb also uses the rotated elbow axis, along with wrist 

and manus joint flexion/extension to achieve long stride lengths. As with the hindlimb, 

limb twist caused by shoulder flexion/extension is absorbed by pronation/supination in 

the antibrachium. 

The quadrupedal reptile walking gait generated using GAGA methods has been 

shown to be qualitatively similar to published examples of reptile locomotion. In 

particular, the generated gait exhibits sinuous back bending that is seen in real-world 

reptiles. In addition, functional joint behavior is consistent with that observed in reptiles. 

GAGA methods have now been shows to recreate qualitatively-accurate walking gaits 

using a single fitness function. The differences in the generated gaits between the dog 
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and reptile models can therefore be attributed to the differences in limb geometries 

between the models. This observation is supported by Pike and Alexander (2002), who 

showed that animals with similar limb proportions and stances have similar gaits. 

Conversely, animals with differing limb proportions and stances displayed differences in 

limb joint behaviors. In the next section, the GAGA methods will be used to generate 

quadrupedal walking gaits for the Apatosaurus sauropod dinosaur model. 

Apatosaurus 

A quadrupedal Apatosaurus walking gait was automatically generated using the 

same GAGA methods and fitness function used to generate the dog and reptile gaits. 

Figure 107 shows hindlimb stance frames from the Apatosaurus walking gait. The 

Apatosaurus hindlimb has one less FDOF than the dog hindlimb; there is no 

flexion/extension in the pes. The hip, knee, and ankle flexion/extension FDOFs have 

nearly-parallel axes of rotation, like the dog's FDOFs. These three FDOFs function in 

the same way that they do in the dog: retraction at the hip coupled with a slight extension 

of the knee, both of which are counterrotated by flexion of the ankle to keep the pes in 

place on the ground. 
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Figure 107. Apatosaurus hindlimb stance phase. 

Like the Apatosaurus hindlimb, the forelimb has no manus flexion/extension 

FDOF. The forelimb has one additional FDOF at the scapulothoraxjoint. The dog 

model has one FDOF that describes scapulothorax movement because scapula movement 

is well understood for dogs. Movements of scapulae in dinosaurs, however, are not well 

understood due to the lack of osteological features indicating their possible positions and 

orientations. The Apatosaurus forelimb is therefore given two FDOFs (i.e., rotation and 

elevation) so that the GA can find suitable scapula positions and orientations. 

Figure 108 shows forelimb stance frames from the Apatosaurus walking gait. 

Similar to the dog forelimb, the shoulder and elbow joints counterrotate, with the wrist 
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joint flexing to keep the manus planted on the ground. The scapulothoraxjoint is used 

functionally in the same way that it is used in the dog. In the dog, the scapula is used to 

retract the limb during stance; the Apatosaurus scapula movement is not as pronounced, 

but scapulothorax does help to retract the limb during stance. 

Figure 108. Apatosaurus forelimb stance phase. 
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The Apatosaurus forelimb has relatively-large diversity in the instantaneous axes 

ofrotation of the scapulothorax rotation and shoulder, elbow, and ankle flexion/extension 

FDOFs. The differing axes of rotation for these FDOFs creates a robust LROM space 

(see Figure 71), as opposed to the dog's highly parasagittal forelimb LROM space (see 

Figure 57). The smoothest path through the Apatosaurus forelimb space does not utilize 

much scapula movement, indicating that the scapulothorax joint many not have been used 

much during locomotion. A quantitative analysis of the interactions between the 

Apatosaurus scapulothorax and shoulder joints will be presented in a later section. In the 

next section, the GAGA methods will be used to generate a walking gait for the 

Triceratops ceratopsid dinosaur model. 

Triceratops 

A quadrupedal Triceratops walking gait was automatically generated using the 

same fitness function used to generate the dog and reptile gaits. Figure 109 shows 

hindlimb stance frames from the Triceratops walking gait. Again, similar to the dog 

hindlimb, the hip retracts, the knee extends slightly, and the ankle flexes to keep the pes 

in contact with the ground. The knee and ankle FDOFaxes are nearly-coincident, which 

allows a mostly-parasagittal LROM space (see Figure 74). The shoulder FDOFaxis, 

however, differs significantly from the knee and ankle FDOFaxes. It is therefore 

interesting that the Triceratops displays mammalian hindlimb joint behaviors. The 

difference in FDOFaxes does cause some body rolling towards the stance limb. This 

body rolling could functionally aid in helping the swing leg clear the ground. 
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Figure 109. Triceratops hindlimb stance phase. 

Figure 110 shows forelimb stance frames from the generated Triceratops walking 

gait. Like the dog forelimb, again, the shoulder retracts while the elbow counterrotates. 

The wrist flexes to keep the manus in contact with the ground. Like the dog but unlike 

the Apatosaurus, the scapulothorax is used to further retract the limb. Like the 

Apatosaurus forelimb LROM space, the Triceratops LROM space is quite robust (see 

Figure 78) due to the diverse instantaneous axes of rotation of the limb's FDOFs. In the 

case of the Triceratops forelimb, the smoothest path through the space utilizes the 

scapulothorax joint, indicating that is was probably used during locomotion. 
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Figure 110. Triceratops forelimb stance phase. 

Quadrupedal walking gaits have been generated for the Apatosaurus and 

Triceratops dinosaur models using the same GAGA methods and fitness function used to 

automatically generate walking gaits for the generic dog and reptile models. The GAGA 

models and fitness function have been shown to create walking gaits with functional joint 

behaviors that approximate the functional joint behavior of real animals, so it is, 

reasonable to assume that the functional joint behaviors observed in the dinosaur walking 
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gaits are also realistic. In the next section, a walking gait will be generated for the 

Tyrannosaurus theropod dinosaur model. 

Tyrannosaurus 

A bipedal Tyrannosaurus walking gait was automatically generated using the 

same fitness function used to generate the dog and reptile gaits. The Tyrannosaurus limb 

has one extra FDOF; the Tyrannosaurus pes has a phalangeal flexion/extension FDOF 

that no other model has. The phalangeal joint FDOF is redundant (i.e., has a near

collinear instantaneous axis of rotation) with the hip, knee, ankle, and pes 

flexion/extension joints. Such a large number (i.e., five) of redundant FDOFs would be a 

nightmare for any IK system due to the massive number of near-identical configurations 

at mid stance. 

At the beginning and end of stance, however, there are relatively-few ways that 

the limb can stretch out for long strides. Selection of keyframes at or near these events 

greatly reduces the number of possible limb configurations (i.e., the space is pruned from 

2,882,880 samples to 24,346, a reduction by more than two orders of magnitude). The 

fitness function's FDOF error term helps to ensure that problematic sets of keyframes 

(i.e., similar root positions and orientations with dramatically-different internal joint 

angles) are not selected. Selection of such problematic sets of keyframes has been 

observed when using a very low FDOF error coefficient in the fitness function. Figure 

111 shows hindlimb stance frames from the Tyrannosaurus walking gait. 



209 

Figure 111. Tyrannosaurus hindlimb stance phase. 

Again like the dog hindlimb, the Tyrannosaurus hip retracts the limb while the 

knee extends slightly. A combination of ankle, pes, and phalangeal joint rotation keep 

the distal digits of the pes planted on the ground. The GA is able to find a smooth and 

functional combination of movements for these joints by selecting keyframes only at and 

near the start and end of the stance phase and by utilizing the FDOF error term in the 

fitness function. In the next section, an overview of the functional purposes ofjoints with 

respect to locomotion will be presented. 
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Joint Functionality 

Across the five models, hindlimb and forelimb joints seemed to be utilized for the 

same functional purposes. The five models provide diversity in body plans and limb 

proportions, from mammalian and lizard extremes to dinosaurs that fall somewhere in 

between. The differences in body plans are especially apparently when comparing the 

LROM spaces of the various limbs. Even with this diversity, very few differences in the 

gross functionality of the joints were observed. 

In hindlimbs, hips generally protract the limb. Knees generally extend slightly to 

allow the animal to move forward with minimal vertical bobbing. It is interesting to note 

that all of the gaits cause the hindlimb and forelimb root to travel on a slight vertical arc 

even though the fitness function tries to minimize vertical displacement. Keyframes are 

only selected at and near the beginning and end of stance, so this arc is caused by 

interpolation between the keyframes; adding a keyframe at mid stance could flatten out 

the vertical arc. This vertical arc is generally accepted as a characteristic for the walking 

gaits of both mammals and reptiles (Farley, 1997), so it is interesting the GA implicitly 

selects gaits that exhibit this behavior without an explicit fitness function term to 

encourage it. 

The reptile hindlimb differs in that the knee axis of rotation is rotated almost 90° 

relative to the dog's knee axis of rotation. Inner/outer rotation of the hip is used to 

reorient the knee axis so that it can contribute to locomotion. Flexion/extension of the 

hip causes rotation of the limb about the world vertical axis which is cancelled out by 

pronation/supination within the crus, preventing the pes from twisting on the ground. 
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The ankle and pes elements vary from having one flexion/extension FDOFs (i.e., 

Apatosaurus, Triceratops) to having three flexion/extension FDOFs (i.e., 

Tyrannosaurus). Regardless of the number ofFDOFs, the function of these distal 

elements is to flex in summary, counter rotating with the retraction at the hip. When 

possible, the pes elements also raise the height of the ankle, which aids the vertical 

smoothness of the walk and allows longer stride lengths. The model reptile model 

additionally utilizes medial/lateral rotation in the pes to absorb mediolateral movement of 

the crus. 

In the forelimbs, the scapulothorax and shoulder joints act together to retract the 

limb. The elbow counterrotates along with the wrist and manus joints to move the animal 

along a smooth path while keeping the distal elements ofthe manus in contact with the 

ground. Like the reptile hindlimb, the reptile forelimb also differs from that of the other 

models. Inner/outer rotation at the shoulder is required to reorient the elbow axis for 

locomotion, and flexion/extension at the shoulder causes rotation of the limb which is 

cancelled out by pronation/supination within the antibrachium. 

In this section, quadrupedal walking gaits were generated for extant animals and 

subsequently compared to published gait images. Joint functionality was nearly identical 

between simulated and published gaits, indicating that the GAGA methods and fitness 

function generate walking gaits that are closely related to real-world analogues. Gaits 

generated for dinosaurs using these methods, therefore provide valuable insight into the 

probably functional joint behaviors ofthese extinct animals. In the next section, specific 
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hypotheses will be presented that are related to joint and body functionally with respect to 

locomotion. 

Quantitative Gait Analysis 

In this section, quantitative data will be presented to support specific locomotion 

hypothesis. The data presented will represent variations in gait observab1es (i.e., body 

. pitch, roll, yaw, lateral and vertical displacement, and angular excursion at FDOFs) 

sampled at a standard interval over complete gait cycles. This gait observable data 

differs from that presented earlier, which focused on gait fitness error. The fitness 

function does not evaluate complete gait cycles for performance reasons, so the fitness 

error terms (i.e., based on the configurations at limb events RD and RLU) are the only 

data available to the fitness function. Gait observable data collected over a complete gait 

cycle provides a more realistic representation of the generated walking gait and is 

therefore better suited for sensitive studies. 

First, walking gaits will be generated without the use of some limb FDOFs to 

determine the functional purposes ofthose FDOFs with respect to locomotion. Next, 

ankle height will be varied for animals with little pes flexibility and pes FDOFs will be 

disabled for animals with greater pes flexibility to determine optimal ankle heights with 

respect to pes flexibility. Lastly, ipsilateral phase will be varied to evaluate the effect of 

this phase term on quadrupedal gait observables. 
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Scapulothorax/Shoulder Contributions 

The scapulothorax and shoulder joints of the Apatosaurus and Triceratops models 

have a combined five FDOFs. The scapulothorax and shoulder joints of the dog models 

have a combined four FDOFs. Combinations of those FDOFs, mostly scapulothorax 

rotation and shoulder flexion/extension, are used to propel the animal forward. The dog 

model's forelimb LROM space is highly parasagittal, so abduction/adduction and 

medial/lateral rotation are likely not utilized much. The Apatosaurus and Triceratops 

models, however, have robust forelimb LROM spaces due to the diversity in FDOF 

instantaneous axes of rotation and therefore likely utilize combinations of all available 

FDOFs to propel the animal forward smoothly. 

To determine the functional purposes of the scapulothorax and shoulder FDOFs, 

observable data was collected for gaits that were not allowed to utilize certain 

combinations ofFDOFs. The collected data shows that disallowing FDOFs forces the 

gait to either make greater use of other FDOFs or suffer greater pitching, yawing, rolling, 

or lateral/vertical displacement during locomotion. Table 17 shows· the effect of 

removing FDOFs on dog forelimb gait observables. 
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Table 17. 

Effect of removing forelimb FDOFs on dog gait observables 

Observable 

Body angle (0) Body displacement (em) FDOF angular excursion (0) 

Value Pitch Yaw Roll Lateral Vertical Scapulothorax a Shoulder 2 b Shoulder 3 C 

All limb FDOFs 

M 1.10 0.19 0.17 0.08 2.80 22.42 0.01 0.00 

SD 0.60 0.07 0.08 0.02 1.59 4.02 0.01 0.00 

Missing shoulder abduction/adduction FDOF 

M 0.71 0.24 0.28 0.11 1.30 21.49 0.00 0.00 

SD 0.61 0.13 0.08 0.02 0.52 3.29 0.00 0.00 

Missing shoulder abduction/adduction and scapulothorax FDOFs 

M 1.41 0.55 0.04 0.12 0.86 0.00 0.00 0.00 

SD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Missing shoulder medial/lateral rotation FDOF 

M 0.80 0.19 0.20 0.09 1.82 23.21 0.00 0.00 

SD 0.62 0.05 0.08 0.03 1.26 1.97 0.00 0.00 

Missing shoulder medial/lateral rotation and scapulothorax FDOFs 

M 1.41 0.55 0.04 0.12 0.86 0.00 0.00 0.00 

SD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Note. a Scapulothorax rotation. b Shoulder abduction/adduction. cShoulder medial/lateral rotation. 

As expected, shoulder abduction/adduction and medial/lateral rotation are almost 

entirely unused. Scapulothoraxjoint rotation can be removed at the cost of additional 

body pitching and yawing. Again, the lack of shoulder abduction/adduction and 

medial/lateral rotation and the general lack of body yawing, rolling, and lateral 

displacement can be attributed to the highly-parasagittal nature of the LROM space. 

Table 18 shows the effect of removing FDOFs on Apatosaurus forelimb gait observables. 

The Apatosaurus was not capable of a step length 0.34 times the hip height without all 

forelimb FDOFs, so a step length 0.31 times the hip height was used for this study. 
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Table 18. 

Effect ofremoving fo relimb FDOFs on Apatosaurus gait observables 

Observable 

Body angle (0) Body displacement (em) FDOF angular excursion (0) 

Value Pitch Yaw Roll Lateral Vertical Scapulothorax • Shoulder 2 b Shoulder 3 c 

All limb FDOFs 

M 1.44 1.46 1.73 3.71 6.52 8.78 12.19 7.98 

SD 0.54 0.57 0.43 2.25 4.58 5.08 6.48 4.66 

Missing shoulder abduction/adduction FDOF 

M 1.92 1.53 2.63 4.07 3.97 23.36 0.00 0.60 

SD 0.41 0.33 0.60 0.60 1.11 3.30 0.00 1.88 

Missing shoulder abduction/adduction and scapulothorax FDOFs 

M 2.22 1.54 3.32 10.70 10.37 0.00 0.00 0.00 

SD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Missing shoulder medial/lateral rotation FDOF 

M 1.07 0.99 2.55 4.74 5.26 23.36 3.31 0.00 

SD 0.28 0.01 1.08 2.35 3.50 5.31 5.33 0.00 

Missing shoulder medial/lateral rotation and scapulothorax FDOFs 

M 1.41 4.37 3.62 5.48 6.66 0.00 13.17 0.00 

SD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Note. • Scapulothorax rotation. b Shoulder abduction/adduction. C Shoulder medial/lateral rotation. 

Unlike the dog model gaits, the Apatosaurus walking gaits make extensive use of 

shoulder abduction/adduction and medial/lateral rotation to produce smooth forward 

locomotion. Removing shoulder abduction/adduction causes more body roll and yaw, 

but increased scapulothorax rotation keeps the body moving forward in relatively-smooth 

manner. Additionally removing scapulothorax rotation causes more pitching and yawing, 

and a substantial increase in lateral and vertical displacement. 

Removing shoulder medial/lateral rotation causes increased rolling and lateral 

displacement, but increased scapulothorax rotation help to keep the body moving forward 

relatively smoothly. Body rolling, yawing, and lateral displacement are all increased by 
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additionally removing the scapulothorax rotation FDOF. It is interesting to note that 

shoulder medial/lateral rotation is virtually unused in the absence of abduction/adduction, 

indicating the coupling between the FDOFs. Table 19 shows the effects of removing 

FDOFs on Triceratops gait observables. The Triceratops was not capable of a step 

length 0.34 time the hip height without all forelimb FDOFs, so a step length 0.24 times 

the hip height was used for this study. 

Table 19. 

Effect ofremoving forelimb FDOFs on Triceratops gait observables 

Observable 

Body angle (0) Body displacement (em) FDOF angular excursion (0) 

Value Pitch Yaw Roll Lateral Vertical Scapulothorax a Shoulder 2 b Shoulder 3 c 

All limb FDOFs 

M 2.27 1.03 1.66 5.31 1.67 12.86 17.92 5.32 

SD 0.08 0.52 0.51 0.34 1.09 4.23 2.31 3.65 

Missing shoulder abduction/adduction FDOF 

M 2.28 0.48 1.31 2.37 1.84 25.95 0.00 5.83 

SD 0.48 0.24 0.13 0.59 1.55 1.14 0.00 1.47 

Missing shoulder abduction/adduction and scapulothorax FDOFs 

M 1.74 4.58 3.50 5.81 0.77 0.00 0.00 16.00 

SD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Missing shoulder medial/lateral rotation FDOF 

M 2.42 0.99 2.19 4.45 2.93 20.21 6.39 0.00 

SD 0.56 0.39 0.93 2.26 0.43 5.64 6.66 0.00 

Missing shoulder medial/lateral rotation and scapulothorax FDOFs 

M 2.51 5.36 7.32 4.64 2.79 0.00 8.23 0.00 

SD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Note. a Scapulothorax rotation. b Shoulder abduction/adduction. C Shoulder medial/lateral rotation. 
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Like Apatosaurus, the Triceratops utilizes combinations of shoulder 

abduction/adduction and medial/lateral rotation to move the body forward smoothly. 

Without shoulder flexion/extension, increased scapulothorax rotation helps to minimize 

the observables. Additionally removing scapulothorax rotation causes a substantial 

increase in body roll and yaw. 

Removing shoulder medial/lateral rotation causes an increase in pitch, roll, and 

vertical displacement, but again an increased in scapulothorax rotation helps to keep the 

body moving forward relatively smoothly. By additionally removing the scapulothorax 

rotation FDOF, the body experiences a significant increase in yawing and rolling. It is 

also interesting to note that Triceratops does not utilize as much shoulder 

abduction/adduction in the absence of medial/lateral rotation, indicating the coupling 

between these FDOFs. 

The data presented in this section showed that shoulder abduction/adduction and 

medial/lateral rotation are not utilized by the dog walking gaits. The Apatosaurus and 

Triceratops walking gaits use combinations of these FDOFs to create smooth forward 

walking gaits. With both models, increased scapulothorax rotation was utilized to 

partially compensate for the loss of either shoulder FDOF. Both models experienced 

significant increases in gait observable values in the absence of scapulothorax rotation 

and one of the shoulder FDOFs. In the next section, optimal ankle heights will be 

determined for animals with varying amounts of pes flexibility. 
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Optimal Ankle Height 

Coombs (1978) describes a high ankle height as a cursorial (i.e., running) 

specialization, as opposed to graviportal (i.e., specialized for bearing weight) animals 

which generally have lower ankle heights. The generic dog has a relatively-high ankle 

height, as does the Tyrannosaurus model. Both of these models also have a highly 

flexible manus and pes (modeled by a manus/pes joint in both models and an additional 

phalangeal joint in the Tyrannosaurus model). The Apatosaurus and Triceratops models, 

however, have relatively-low ankle heights and a relatively-inflexible manus and pes. 

Due to these correlations, it seems reasonable that a lower ankle height may be necessary 

for animals with inflexible feet. 

Two studies were conducted to determine the effect ofankle height on gait 

observables. First, the hindlimb proportions ofthe Apatosaurus, Triceratops, dog, and 

Tyrannosaurus models were varied to determine an optimal ankle height. Ankle heights 

were adjusted by scaling the limb elements distal to the ankle and then scaling the 

crus/antibrachium to maintain a constant hip height. Figure 112 shows the Apatosaurus 

model with differing ankle heights. The optimal limb proportions were not evolved as 

they were in the work presented by Sims (1994b, 1994b) and others; instead, GAs were 

used to evaluate three possible ankle heights for each animal. For the second study, gait 

observable data was collected for the dog and Tyrannosaurus models both with and 

without pes flexibility to determine the effect of pes flexibility on the smoothness of the 

generated walking gaits. 
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Figure J12. Comparison of high (top) and low (bottom) Apatosaurus ankle heights. 

When walking, animals "pole vault" over their limbs along a vertical arc during 

the limb's stance phase (Farley, 1997). In the absence of pes flexibility, the radius of the 

"pole vault" arc is largely determined by the distance between the ankle joint and root 

positions. Angular excursion at the knee affects this arc to a lesser extent because the 

knee joint is closer to the root. Similarly, angular excursion at the shoulder has even less 

effect on the arc. Therefore, animals with limited to no pes flexibility should be capable 
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of taking longer steps with lower ankle heights. Table 20 shows the effect of varying 

ankle height on Apatosaurus gait observables. 

Table 20. 

Effect ofvarying ankle height on Apatosaurus gait observables 

Gait observable 

Value Pitch CO) Yaw CO) Roll (0) Lateral (cm) Vertical (cm) 

Half ankle height 

M 0.97 0.13 0.15 0.81 5.79 

SD 0.30 0.02 0.00 0.04 1.15 

Base ankle height 

M 1.64 0.15 0.10 0.62 4.17 

SD 0.29 0.01 0.02 0.14 0.37 

Double ankle height 

M 11.21 6.50 1.02 4.31 29.53 

SD 0.00 0.00 0.00 0.00 0.00 

As expected, the Apatosaurus experiences a general increase in all gait 

observables as the ankle height increases. Body pitch and vertical displacement increase 

dramatically with ankle height, which is significant because these observables contribute 

directly to an animal's kinematic ability to take relatively-long steps. In terms of 

smoothness of forward locomotion, the animal would have benefitted most from a very 

low ankle. However, this observation is purely kinematic; a tradeoff must exist between 

ankle height and overall pes size such that the animal's pes could support a significant 

portion of its overall mass. Table 21 shows the effect ofvarying ankle height on 

Triceratops gait observables. 
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Table 21. 

Effect ofvarying ankle height on Triceratops gait observables 

Gait observable 

Value Pitch (") Yaw (0) Roll (0) Lateral (cm) Vertical (cm) 

Half ankle height 

M 1.17 0.49 0.51 6.49 2.06 

SD 0.35 0.05 0.05 0.41 0.87 

Base ankle height 

M 2.46 0.76 2.06 6.93 4.02 

SD 0.31 0.03 0.04 0.Ql 0.10 

Double ankle height 

M 3.07 2.23 1.46 4.96 11.91 

SD 0.46 0.07 0.06 0.25 0.45 

Like Apatosaurus, the Triceratops also experiences a general increase in almost 

all gait observables as ankle height increases, although not as pronounced as with 

Apatosaurus. In fact, the lateral displacement decreases with respect to ankle height. 

This observed difference between the two models is likely related to the less-parasagittal 

LROM space of the Triceratops, indicating more complex interactions between FDOFs. 

Like Apatosaurus, a low ankle height is kinematically optimal for Triceratops. Table 22 

shows the effect ofvarying ankle height on dog gait observables. 
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Table 22. 

Effect ofvarying ankle height on dog gait observables 

Gait observable 

Value Pitch (") Yaw CO) Roll (0) Lateral (em) Vertical (em) 

Half ankle height 

M 2.65 1.36 0.43 0.97 2.92 

SD 0.00 0.00 0.00 0.00 0.00 

Base ankle height 

M 3.31 1.70 0.64 0.98 0.68 

SD 0.31 0.54 0.33 0.41 0.09 

Double ankle height 

M 6.12 1.67 1.01 0.65 2.23 

SD 1.03 0.14 0.70 0.07 0.40 

The dog model experiences increased pitching as ankle height increases, similar 

to the other models. However, analogous trends were not observed with respect to the 

other gait observables, as they were with the Apatosaurus and Triceratops models. The 

dog model has one pes FDOF while the Apatosaurus and Triceratops have no pes 

flexibility. This additional FDOF contributes to a more-robust LROM space, which 

would intuitively allow smoother gaits. Table 23 shows the effect of varying ankle 

height on Tyrannosaurus gait observables. 
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Table 23. 

Effect ofvarying ankle height on Tyrannosaurus gait observables 

Gait observable 

Value Pitch n Yawn Roll (0) Lateral (em) Vertical (em) 

Half ankle height 

M 1.67 4.91 2.14 6.19 11.42 

SD 0.21 0.62 0.61 1.81 2.18 

Base ankle height 

M 1.70 4.76 1.91 3.89 14.95 

SD 0.27 0.16 0.34 0.74 2.40 

Double ankle height 

M 4.05 1.13 1.80 4.66 14.58 

SD 1.12 0.08 0.87 0.90 2.02 

Like the dog model, gaits generated for the Tyrannosaurus model show a general 

increase in body pitching, but no similar trends in terms of the other gait observables. In 

fact, body yawing is significantly reduced with a high ankle height. These differences 

can be attributes to the two pes FDOFs ofthe Tyrannosaurus model, contributing to a 

dense, largely-parasagittal LROM Space. Figure 113 shows a comparison of LROM 

spaces corresponding to high and low Tyrannosaurus ankle heights. 
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Figure 113. Comparison of high (top) and low (bottom) Tyrannosaurus ankle heights. 

Across all four models, reduced body pitching was observed in gaits generated 

with low ankle heights. Body pitching is an important gait observable because it directly 

relates to an animal's reasonable step length. Additional reduction in other gait en"or 

terms was observed for Apatosaurus and Triceratops gaits, likely due the lack of 

flexibility in the Apatosaurus and Triceratops pes. Lower ankle heights have a kinematic 

advantage over higher ankle heights, so there must be other advantages for higher ankle 

heights in cursorial animals. One such advantage could be related to the dynamics of the 
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limb; a higher ankle height indicates a longer pes, which provides a greater moment arm 

for thrusting the animal forward. 

The Apatosaurus and Triceratops models have no flexibility in the pes, resulting 

in low optimal ankle heights. The dog and Tyrannosaurus models do have pes flexibility, 

so the functional purpose of that flexibility can be evaluated by collecting gait observable 

data for walking gaits with and without pes flexibility. Like the models without pes 

flexibility, the dog and Tyrannosaurus models should be capable of longer step lengths 

when utilizing pes flexibility. Table 24 shows the effect of removing pes FDOFs on dog 

gait observables. The dog model was not capable of a step length 0.48 times the hip 

height without pes FDOFs, so a step length 0.26 times the hip height was used for this 

study. 

Table 24. 

Effect of removing pes FDOF on dog gait observables 

Gait observable 

Value Pitch (") Yaw (0) Roll (0) Lateral (em) Vertical (em) Pes a (0) 

AllFDOFs 

M 0.74 1.14 0.63 0.48 0.62 20.14 

SD 0.13 0.35 0.18 0.11 0.25 14.34 

Missing pes joint FDOF 

M 3.26 4.59 2.89 1.02 6.03 0.00 

SD 0.00 0.00 0.00 0.00 0.00 0.00 

Note. a Pes flexion/extension. 
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As predicted, the dog makes extensive use of the pes flexion/extension FDOF. 

Without this FDOF, all gait observable are increased significantly. This data supports the 

observation that a relatively-high ankle is not very useful without a highly-flexible pes. 

Table 25 shows the result of remove pes and phalangeal joint FDOFs on the 

Tyrannosaurus gait observables. The Tyrannosaurus model is not capable of a step 

length 0.98 times the hip height without pes FDOFs, so a step length 0.64 times the hip 

height was used for this study. 

Table 25. 

Effect o/removing pes FDOFs on Tyrannosaurus gait observables 

Gait observable 

Value Pitch (0) Yaw CO) Roll n Lateral (cm) Vertical (em) Phalangeal b (0) 

All FDOFs 

M 1.46 0.61 1.09 3.75 10.53 37.44 0.00 

SD 0.36 0.10 0.10 0.69 5.15 13.01 0.00 

Missing pes jand phalangeal joint FDOFs 

M 3.08 5.28 2.40 4.53 19.36 0.00 0.00 

SD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Note. a Pes flexion/extension. b Phalangeal flexion/extension. 

Like the dog, the Tyrannosaurus model experienced increases in all gait 

observables in the absence of pes and phalangeal flexion/extension FDOFs. The pes joint 

FDOF was used extensively, but the phalangeal joint FDOF was surprisingly unutilized. 

The phalangeal joint FDOF was observed in use during the qualitative analysis of the 

Tyrannosaurus walking gait in a previous section, so the lack of phalangeal-joint 
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utilization is likely due to the reduced step length used for this study. Intuitively, this is a 

nice result as it indicates that the phalangeal joint FDOF is used only to gain extra limb 

retraction during relatively-long steps. 

Animals with limited or no pes flexibility seem to be able to make use of a low 

ankle height to achieve long, smooth strides. Conversely, animals with high ankles 

seemingly need a large about of pes flexion/extension to achieve long, smooth strides. 

The data presented in this section supports these arguments by showing that animals with 

no pes flexibility take smoother strides with low ankles and that animals with high ankles 

make extensive use of pes flexion/extension. In the next section, the effect of ipsilateral 

phase will be evaluated on quadrupedal gaits. 

Ipsilateral Phase 

Ipsilateral phase describes the phase relationship between the hindlimbs and 

forelimbs. This phase is a normalized quantity (i.e., on the range [0.0, 1.0]) representing 

the full 3600 of possible phases. An ipsilateral phase of 0.0 or 1.0 indicates that the right 

hindlimb and right forelimb begin their stance phases at the same time (i.e., a pacing 

gait); a phase of 0.5 indicates that the right hindlimb and left forelimb begin their stance 

phases at the same time (i.e., a diagonal trotting gait). In this section, data will be 

presented that shows the relationship between ipsilateral phase and gait observables. 

Gait observable data was collected for ipsilateral phases between 0.0 and 0.9 at 

0.1 phase intervals. This gait observable data shows quantitatively how gaits change with 

respect to ipsilateral phase. In general, animals with non-parasagittal gait movements 
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(i.e., with substantial yaw and/or lateral displacement) should be affected by ipsilateral 

phase because this phase changes the relative time at which hindlimbs and forelimbs are 

yawed and displaced relative to each other. Conversely, animals with highly-parasagittal 

limb movements should not be greatly affected by ipsilateral phase. 

Some amount of diversity in yaw and lateral displacement observable values with 

respect to ipsilateral phase is expected due to the discrete sampling of the trunk ROM 

space. It is interesting to note that extreme differences in yaw and lateral displacement 

between forelimbs and hindlimbs may not even be achievable by the trunk of an animal. 

Table 26 shows the effect of varying ipsilateral phase on the dog yaw and lateral 

displacement observables. 

Table 26. 

Effect ofvarying ipsilateral phase on dog gait observables 

Ipsilateral phase 

Observable 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Yaw CO) 
M 5.64 6.97 7.11 6.42 5.12 5.18 5.34 6.03 7.21 6.89 

SD 1.17 2.19 2.02 1.11 0.74 0.38 0.39 1.47 1.89 0.50 

Lateral displacement (cm) 

M 1.48 1.25 1.36 1.33 1.48 1.51 1.45 1.66 1.51 1.49 

SD 0.23 0.22 0.23 0.28 0.22 0.36 0.28 0.30 0.17 0.35 

As predicted, the dog model gait observables are not largely dependent on
 

ipsilateral phase. The yaw values vary between ~5° and ~7°, which generally fall within
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the standard deviations. The lateral displacements also show little variation. Figure 114 

shows a graphical representation of the yaw observable with respect to ipsilateral phase. 

10.00 

9.00 L---- --+-------------------------j----~ 
8.00 --------+---1---- ----------------+--

7.00 +--,---........---.--}
6.00-f------------&----+--.- 5.00 ~~__I_---.L.---~+__~------
4.00 +----~--------------------

3.00 ----------------------------------------

2.00 -----------------------~---

1.00 +----------------------------

0.00 +,---,----,----,-~,--_____r-__,_,-----,-- -.-----,-~-----, 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Ipsilateral Phase 

------~------_.._-

Figure 114. Effect of varying ipsilateral phase on dog body yawing. 

Like the dog model, the Apatosaurus hindlimb LROM space is highly 

parasagittal. Unlike the dog model, the Apatosaurus forelimb LROM space is robust, but 

the model is capable of smooth paths through the forelimb space. Table 27 shows the 

effect of varying ipsilateral phase on Apatosaurus yaw and lateral offset observables. 
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Table 27. 

Effect ofvarying ipsilateral phase on Apatosaurus gait observables 

Ipsilateral phase 

Observable 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Yawn 

M 1.38 1.29 1.79 1.43 1.51 1.41 1.31 1.65 1.76 1.58 

SD 0.16 0.39 1.23 0.29 0.26 0.49 0.45 0.54 1.49 0.26 

Lateral displacement (cm) 

M 3.65 3.96 3.90 3.99 3.45 5.14 4.33 2.84 4.33 3.83 

SD 0.20 1.56 2.51 0.52 1.45 3.11 1.84 1.19 1.07 1.85 

Like the dog model, the Apatosaurus yaw and lateral displacement gait 

observables are largely unaffected by ipsilateral phase. Figure 115 shows a graphical 

representation of the effect of ipsilateral phase on the Apatosaurus yaw observable. 
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Figure 115. Effect of varying ipsilateral phase on Apatosaurus body yawing. 
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Like the Apatosaurus model, the Triceratops hindlimb LROM space is highly 

parasagittal and the forelimb LROM space is robust, but the model is capable of 

supporting smooth forward locomotion. Table 28 shows the effect ofvarying ipsilateral 

phase on Triceratops yaw and lateral displacement. 

Table 28. 

Effect ofvarying ipsilateral phase on Triceratops gait observables 

Ipsilateral phase 

Observable 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Yaw (") 

M 5.12 5.32 4.66 4.20 4.46 4.53 4.66 4.35 2.94 3.79 

SD 1.71 1.62 1.56 1.53 1.26 1.11 2.74 1.81 1.37 0.75 

Lateral displacement (cm) 

M 11.84 10.94 11.04 10.75 9.32 10.40 11.33 11.55 11.31 12.26 

SD 3.06 1.48 2.69 2.76 1.69 1.71 2.61 2.03 2.22 1.45 

Again, there is no obvious relationship between ipsilateral phase and the yaw and 

lateral displacement observables of the Triceratops model. Figure 116 shows a visual 

representation of the effect of ipsilateral phase on the Triceratops yaw and lateral 

displacement observables. 
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Figure 116. Effect of varying ipsilateral phase on Triceratops body yawing. 

Unlike the dog, Apatosaurus, and Triceratops models, the generic reptile model is 

not capable of either parasagittal hindlimb or forelimb movements due to its sprawling 

gait. Therefore, it seems intuitive that the reptile would likely not be capable of 

accomplishing the requested hind and fore step lengths for certain ipsilateral phase 

values. For example, an ipsilateral phase of 0.0 should give similar orientation for hind 

and fore roots because a 0.5 phase gives nearly opposite orientation due to sinuous trunk 

movements. Such similar orientation would only be possible if the orientations pointed 

the both roots nearly forward, otherwise the trunk would need to bend in unnatural ways 

with at least two inflection points. Table 29 shows the result of varying ipsilateral phase 

on the reptile yaw and lateral displacement observables. 
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Table 29. 

Effect ofvarying ipsilateral phase on reptile gait observables 

Ipsilateral phase 

Observable 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Yaw (") 

M 23.60 26.34 28.50 28.00 25.76 27.02 27.49 27.14 27.58 25.84 

SD 2.36 2.97 3.41 4.40 5.17 2.37 3.27 3.32 2.35 1.19 

Lateral displacement (cm) 

M 24.27 25.08 25.81 26.49 25.51 24.79 26.57 30.04 27.43 27.58 

SD 1.07 2.24 4.12 2.57 2.86 5.56 5.81 3.76 2.82 3.43 

Surprisingly, there does not seem to be a relationship between ipsilateral phase 

and body yaw or lateral displacement. Figure 117 shows a graphical representation of the 

effect of ipsilateral phase on reptile gait yawing and lateral displacement. 
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Figure 117. Effect of varying ipsilateral phase on reptile body yawing. 
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Upon further investigation, it became obvious that the reptile model's hindlimbs 

are kinematically capable of pointing the hindlimb root nearly forward, allowing 

quadrupedal gaits with any ipsilateral phase value. The ability to point the hindlimb root 

forward could be taken away by limiting the shoulder flexion/extension FDOF, but doing 

so would result in less-characteristic reptile gaits. Figure 118 compares reptile gaits with 

a 0.5 ipsilateral phase (top) and a 0.0 ipsilateral phase (bottom). 

Figure 118. Comparison of0.5 (top) and 0.0 (bottom) reptile ipsilateral phases. 
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Based on these results, ipsilateral phase seems to be a non-kinematic issue that 

cannot be resolved with this approach. Ipsilateral phase is more likely related to the issue 

of support; animals with a relatively-low COM will tend to use diagonal couplet (i.e., 

trotting) gaits because they can more easily keep their COM between supporting limbs. 

Hildebrand (1980) supports this argument by stating that tetrapods tend to avoid lateral 

couplet gaits at slow speeds in favor of lateral sequence and diagonal couplet gaits 

because of the increased support triangle area. Alexander (1983) reports that 

contralateral and ipsilateral gait phases observed in animals are related to limb lengths 

and velocity (i.e. Froude numbers). 

The data presented in the section confirm that the gait observables of quadrupedal 

models capable ofparasagittal gait movements (i.e., dog, Apatosaurus, Triceratops) are 

not significantly affected by ipsilateral phase. Surprisingly, the gait observables of the 

reptile model were also not significantly affected by ipsilateral phase. The latter result 

helps to confirm the observations of others that gait selection and ipsilateral phase are 

stability and dynamics issues, and not simple kinematic issues. 

Summary 

The data presented in this chapter confirms the utility of the LROM space 

representation and the use of efficient GAs to find gaits that smootWy move the animal 

through the space. Data related to the tuning of the GA was first presented. Parent 

selection parameters were varied, along with crossover and mutation coefficients to fmd 

optimal GA parameters. Candidate populate size was also varied to find a sufficient 
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population size parameter. A convergence comparison was then presented that showed 

the tuned GA's ability to outperform a simulated Hill Climbing algorithm. 

A sensitivity analysis of the parameters used to build the LROM spaces 

demonstrated that the angular sampling resolution used to initially exercise the limb did 

not significantly alter the fitness of generated gaits. Varying the number of LROM space 

boxes that the LROM root positions are sorted into also did not have a significant effect 

of generated gait fitness. Space refinement was shown to significantly increase gait 

fitness without changing functional joint behavior, indicating that joint behavior is not 

sensitive to isolated changes in fitness error values. Lastly, an analysis of variations to 

the fitness function coefficients showed that changes to the coefficients had an intuitive 

result on gait fitness (e.g., increasing the pitch error coefficient decreased the amount of 

observed pitching) without affecting functional joint behaviors. 

A qualitative gait analysis demonstrated that the hindlimb and forelimb 

movements of the generated quadrupedal dog gaits match closely to published data. 

Similarly, the hindlimb and forelimb movements of the generated quadrupedal reptile 

gaits matched closely to published data. Comparisons were then made between the 

hindlimb and forelimb movements of the dog and reptile to analogous movements of the 

Apatosaurus, Triceratops, and Tyrannosaurus dinosaurs. Observations were then 

presented on the similarities in joint functionality between animals. 

Finally, a quantitative analyses presented data on specific gait hypotheses: The 

dog model was shown to not utilize its shoulder abduction/adduction and medialllateral 

rotation FDOFs; the Apatosaurus and Triceratops models were shown to make use of 
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combinations of these FDOFs to achieve smooth forward locomotion. Next, animals 

without pes flexibility were shown to benefit from low ankle heights while animals with 

high ankle heights were shown to depend heavily on pes flexibility. Lastly, ipsilateral 

phase was shown to not have a significant effect on kinematically-generated gaits, 

indicating that ipsilateral phase selection is more an issue of stability and dynamics than 

kinematics. 

The data presented in this chapter demonstrates some of the capabilities and 

limitations of the GAGA methods presented in the previous chapter. These methods are 

capable of exploring an LROM, and sorting the results into an LROM space, pruning the 

space, and finding combinations of configurations in the space that represent smooth 

gaits. The next chapter will present an in-depth discussion of the capabilities and 

limitations of the GAGA approach and the significance ofthe data and results presented 

in this chapter. 
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CHAPTER V 

DISCUSSION 

3D animations oflocomotion are particularly useful for gait analysis. The GAGA 

methods presented in earlier chapters allow such animations to be automatically 

generated using kinematic explorations of limb capabilities and GAs to find plausible 

locomotion paths through LROM spaces. Using these methods, generated walking gaits 

were compared to real-world analogues as controls to confirm the viability of a particular 

GA fitness function for locomotion synthesis. The same fitness function was then used to 

generate forward walking gaits for dinosaurs, about which relatively little is known. The 

methods and investigations presented in this paper have several interesting implications 

and corollaries, which will be discussed in this chapter. 

Limb biomechanics are usually described in proximal-to-distal order. For 

example, the hip and knee joints are generally considered to be responsible for moving 

the animal forward, while the ankle joint and pes flexibility are responsible for adjusting 

to uneven terrain (Daley, Felix, and Biewener, 2007). When describing joint behaviors 

with respect to LROM spaces, however, it is most intuitive to consider joints in distal-to

proximal order. This distal-to-proximal ordering is more natural when considering 



239 

locomotion as a process of first constraining the location of the foot that is in contact with 

the ground, then considering the forward movement of the body as constrained by the 

kinematics of the limb and body above that foot. 

In general, the contribution that an FDOF makes to the LROM space increases 

with the 3D distance between the joint and the root position (i.e., exercising the FDOF in 

isolation causes the root to rotate on an arc about the joint). Of course the distance 

between a joint and the root will generally change during locomotion due to intermediate 

joints. Combinations ofFDOFs will move the root along paths which are largely within 

the animal's sagittal plane if the limb's FDOFs have axes of rotation that are nearly 

perpendicular to the sagittal plane. Conversely, a limb with divergent FDOFaxes will 

have a broader LROM space. 

It is therefore the distal-most joints (e.g., the ankle joint and pes flexibility) that 

have the greatest effect in moving the root joint forward, allowing the root to move on an 

arc long enough to move the animal forward by a step length. The mid-limb joints (i.e., 

knee and elbow) can contribute to the arc of the root to a lesser extent. The mid-limb 

joints can also alter the limb's length through flexion/extension, allowing less vertical 

displacement during locomotion. The proximal joints (e.g., hip, shoulder, and 

scapulothorax) are sufficiently close to the root position that their major contribution is to 

modify the root orientation such that body pitching, rolling, and yawing are minimized. 

The configurations of an LROM space are typically distributed along an animal's 

sagittal plane, with enough thickness in the space to allow many possible forward 

movements. When an LROM space is initially generated and visualized, it is sometimes 
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obvious that there are not enough parasagittal LROM space configurations to allow a 

reasonable step length. These situations typically occur when a generally-planar LROM 

space is not aligned with the animal's sagittal plane, either by rotation due to the 

manus/pes orientation parameter or lateral translation due to step width parameter. In 

these cases, the step width, manus/pes orientation and/or limb FDOFs must be modified 

to better align the LROM space with the animal's sagittal plane. Otherwise, not enough 

configurations will survive the contralateral constraint process and the GA will not be 

able to find forward paths through the constrained space. Figure 119 shows an example 

of a planar but non-parasagittal LROM space for the Apatosaurus hindlimb. 

Figure //9. Planar but non-parasagittal Apatosaurus hindlimb LROM space. 

Variations on FDOFs can quickly be evaluated due to the fast computational 

speed of the GAGA methods (i.e., automatically generating bipedal gaits in about one 
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minute and quadrupedal gaits in under five minutes on a laptop). For example, 

pronation/supination in the generic reptile model's crus and antibrachium can be turned 

off by changing a scripted parameter. The reptile would likely not be capable of its 

current step length 2.2 times the hip height, indicating that the animal requires 

crus/antibrachium pronation/supination to achieve that step length without twisting or 

squishing the manus/pes on the ground. If the reptile were able to achieve a step length 

2.2 times the hip height without pronation/supination, the GA gait observables (e.g., body 

pitch, roll, and yaw, and lateral/vertical displacement) and visualization of the gait itself 

would give indications as to whether or not the gait would be realistic. 

The case studies presented in the last chapter show the utility ofthe GAGA 

methods for quantitative analysis. The studies varied scripted FDOF parameters to 

evaluate the functionality ofFDOFs, used scripted scaling values to vary ankle height, 

and varied phase parameters to determine the effect of ipsilateral phase on quadrupedal 

gaits across animals. These case studies yielded significant and publishable results. Due 

to the computational efficiency of the kinematics-only exploration, constraint, and GA 

algorithms, study data can be collected relatively quickly; roughly 100 quadrupedal data 

points can be collected (i.e., ten GA runs per data point) over a 24 hour period. 

The contributions of the scapulothorax and shoulder joint FDOFs were isolated 

for the dog, Apatosaurus, and Triceratops models. The investigation revealed that the 

dog model uses little shoulder abduction/adduction and mediaVlateral rotation, and 

utilizes scapulothorax rotation to minimize body pitching during locomotion. These 

results are intuitive given the highly-parasagittal nature of the dog forelimb LROM space. 
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The forelimbs ofApatosaurus and Triceratops, however, make extensive use of shoulder 

abduction/adduction and medial/lateral rotation to allow the limbs to navigate smoothly 

through their broader LROM spaces (i.e., which result from divergent limb FDOFaxes). 

Cursorial (i.e., specialized for running) animals typically exhibit high ankle 

heights while graviportal (i.e., specialized for bearing weight) animals typically have 

lower ankle heights (Coombs, 1978). The investigation into the significance of ankle 

height revealed that animals with lower ankle heights have a kinematic advantage over 

animals with higher ankle heights. Animals with higher ankle heights require additional 

flexibility in their manus and pes to be capable of long strides. 

Gaits were generated with varying ipsilateral phase values for all four 

quadrupedal models. The results of this investigation showed no discernible kinematic 

advantages for some phase values over others. These results were not surprising for the 

dog, Apatosaurus, and Triceratops models, as those models are capable of generally

parasagittallimb movements that should allow locomotion without much lateral bending 

ofthe trunk. The reptile, however, utilizes extensive sinuous lateral trunk movements 

during locomotion (Reilly, 1997, 1998), so it was surprising that ipsilateral phase had 

little effect on the gait observables. The lack of change in trunk behavior was due to 

ROMs of the reptile hips; the ROMs needed to allow angular excursions sufficient for 

reptilian limb movements, but these ROMs then also allowed the hips to keep the body 

pointing relatively forward during locomotion (see Figure 118). These results indicate 

that gait phase is a complicated issue that requires more than kinematics to properly 

investigate. 
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A qualitative analysis was used to determine how well GAGA-generated gaits 

match those of real-world animals. Much thought was given to the possibility of a 

quantitative analysis to show these properties. Ultimately, there did not seem to be any 

reasonable quantitative means for comparison. Exact joint angles are difficult to 

determine reliably and are dependent on a large number of external factors. Froude 

numbers are often used to compare gaits, but usually in terms of relative velocities 

(which cannot be easily computed using kinematics-only models). For these reasons, a 

quantitative gait comparison study is left for future work. 

GAGA methods use kinematics only to analyze gaits; dynamics were omitted by 

design to allow an exploration of the viability of kinematics-only gait analysis. Stability 

studies based on support triangles (Henderson, 2006) would be difficult because the 

system does not keep track of an animal's COM. COM tracking could be added, 

however, by scripting a mass parameter for each body segment and then computing the 

instantaneous overall COM during locomotion. Similarly, gaits with an aerial phase 

cannot be modeled with GAGA methods because the system has no way ofpredicting 

COM trajectories during aerial phases. These omissions have been largely strategic; 

adding terms to the fitness function that require dynamics simulation would increase the 

running time ofthe GAs by several orders of magnitude. Nonetheless, dynamics-based 

gait observables could be integrated into the GAGA methods at a future time. 

The GAGA methods have applications in any area that requires a quantitative 

analysis of changes to joint functionality or limb proportions. FDOFs can be based on 

any movement, so LROM spaces could theoretically be generated for a typical knee joint 
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and a knee joint with a prosthetic articular surface, similar to the study by Piazza and 

Delp (2001). The two spaces could be compared to determine how well the prosthetic 

approximates a typical knee joint. Gaits could also be generated from the two spaces so 

that the difference in movements could be viewed in terms of gait observables, but the 

fitness function and gait observables might need to be modified so that the biological 

knee model behavior matches closely to that of a real knee. Such fitness function 

changes are straightforward with respect to GAGA, but determining an appropriate 

fitness function in terms of the high-level goals of a joint or limb can be difficult. 

GAGA methods could also be used for limb-based studies other than locomotion. 

These methods could be used to investigate how an animal transitions from a sitting to 

standing posture and vice versa, similar to Stevens, Larson, Wills, and Anderson (2008). 

Such transitions are likely generally constrained by the osteology of an animal with the 

musculature acting on the bones and joints, much like with locomotion. Therefore, 

GAGA methods could be used for the kinematic synthesis and analysis of these 

movements. 
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CHAPTER VI 

CONCLUSIONS 

The LROM space representation provides intuitive visualizations ofLROMs 

consisting of discrete FDOFs. Changes in FDOFs can be easily detected by comparing 

resulting LROM spaces. LROM spaces are pruned using dual support and bilateral 

symmetry constraints so that only limb configurations relevant to bipedal locomotion are 

considered by the GAs. LROM spaces are further pruned by trunk: constraints for 

quadrupedal locomotion. Highly-optimized GAs find plausible paths through these large 

spaces with relatively-little computational effort, allowing the evaluation of many FDOF 

and gait parameter variations. 

Walking gaits are generated from only two key configurations, representing the 

RD and RLU gait events. These two key configurations are near the beginning of the 

right limb's support phase, when the limb is reaching forward. The RD and RLU gait 

events, the dual support constraint, and the bilateral symmetry constraint determine two 

additional key configurations, namely for RLD and RU. The RLD and RU 

configurations are near the end of the right limb's support phase, when the limb is 

reaching back. The limb is sent on a "pole vaulting" trajectory between RLU and RLD 
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which is detennined by all four right-side limb events. The four right-side events are 

bilaterally mirrored to the left side, specifying configurations for the four left-side events. 

In this way, configurations for a total of eight locomotion events are specified from the 

original two key configurations (i.e., RD and RLU). 

Limbs have relatively few ways of reaching forward and backwards, compared to 

a limb's many possible mid-stance configurations. The GAs are therefore able to search 

relatively-small spaces of possible configurations (i.e., pruned by the dual support and 

bilateral symmetry constraints). GA performance is additionally improved by a candidate 

representation and fitness function that guarantee that each candidate gait at least 

accomplishes a specified stride length. The GAs therefore focus entirely on reducing gait 

error values (i.e., body pitch, yaw, roll, lateral/vertical displacement, and angular 

excursions at the joints). 

The gaits generated using GAGA methods were shown to be stable with respect 

to changes in the LROM space parameters. Changes to the fitness function error tenns 

were shown to have intuitive effects on the generated gaits. Gaits can be refined to 

further increase fitness, but this process does not have a significant effect on joint 

functionality, indicating that limb movements are highly constrained by their limited 

ROMs near the beginning and end of their stance phase. By pruning LROM spaces such 

that only configurations during dual support are considered, GAGA methods are able to 

quickly and accurately reproduce complete gait cycles. 

Future work will likely involve further qualitative and quantitative studies on the 

animal models presented in this paper and on animals not yet modeled. There are 
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potentially a number of additional publishable results that could come out of future 

studies using these methods. A quantitative study may be devised to compare GAGA

generated gaits to those of real-world animals. Such a study would likely require 

extensive collaboration with a laboratory capable of collecting large amounts of animal 

gait data. This type of study would provide more insight into the capabilities and 

limitations of kinematic-only gait synthesis and analysis. 
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APPENDIX A 

DOG MODEL DATA 

Table 30. 

DogFDOFs 
Rotation (0) Position (em) 

FDOF x y z x y z 
Hip_Joint_R 

Base 0 0 0 -8 -9 -8 
FDOF 1 

Minimum -25 0 0 0 0 0 
Neutral -12 0 0 0 0 0 
Maximum 20 0 0 0 0 0 

FDOF2 
Minimum 0 -8 0 0 0 0 
Neutral -12 0 0 0 0 0 
Maximum 0 8 0 0 0 0 

FDOF3 
Minimum 0 0 -10 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 10 0 0 0 

Knee Joint R 
Base 0 0 0 0 0 41 
FDOF 1 

Minimum -20 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 20 0 0 0 0 0 

Ankle Joint R 
Base 0 0 0 0 0 47 
FDOF 1 
Minimum -20 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 15 0 0 0 0 0 
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Dog FDOFs (continued) 

Rotation CO) Position (ern) 

FDOF x y Z x y Z 

Pes Joint R 
Base 0 0 0 0 0 23 
FDOF 1 

Minimum -20 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 20 0 0 0 0 0 

Hip_Joint_L 
Base 0 0 0 8 -9 -8 
FDOF1 

Minimum -25 0 0 0 0 0 
Neutral -12 0 0 0 0 0 
Maximum 20 0 0 0 0 0 

FDOF2 
Minimum 0 8 0 0 0 0 
Neutral -12 0 0 0 0 0 
Maximum 0 -8 0 0 0 0 

FDOF3 
Minimum 0 0 10 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 -10 0 0 0 

Knee Joint L 
Base 0 0 0 0 0 41 
FDOF1 

Minimum -20 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 20 0 0 0 0 0 

Ankle Joint L 
Base 0 0 0 0 0 47 
FDOF 1 

Minimum -20 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 20 0 0 0 0 0 

Pes Joint L 
Base 0 0 0 0 0 23 
FDOF 1 

Minimum -20 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 20 0 0 0 0 0 

Seapulothorax_Joint_R 
Base 0 0 0 -10 2 -5 
FDOFI 

Minimum 8 0 0 0 0 0 
Neutral 8 0 0 0 0 0 
Maximum 36 0 0 0 0 0 
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Dog FDOFs (continued) 

Rotation (0) Position (em) 
FDOF x y z x y z 

Shoulder Joint R 
Base 0 0 0 0 0 18 
FDOFI 

Minimum -26 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 20 0 0 0 0 0 

FDOF2 
Minimum 0 -8 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 8 0 0 0 0 

FDOF3 
Minimum 0 0 -10 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 10 0 0 0 

Elbow Joint R 
Base 0 0 0 0 0 31 
FDOF 1 
Minimum -30 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 20 0 0 0 0 0 

Wrist Joint R 
Base 0 0 0 0 0 39 
FDOF 1 

Minimum -25 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 35 0 0 0 0 0 

Manus Joint R 
Base 0 0 0 0 0 17 
FDOFI 

Minimum -25 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 25 0 0 0 0 0 

Seapulothorax_Joint_L 
Base 0 0 0 10 2 -5 
FDOF 1 

Minimum 8 0 0 0 0 0 
Neutral 8 0 0 0 0 0 
Maximum 36 0 0 0 0 0 

Shoulder Joint L 
Base 0 0 0 0 0 18 
FDOF 1 
Minimum -26 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 20 0 0 0 0 0 
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Dog FDOFs (continued) 
Rotation CO) Position (em) 

FDOF x y Z x y z 
FDOF2 

Minimum 0 8 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 -8 0 0 0 0 

FDOF3 
Minimum 0 0 10 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 -10 0 0 0 

Elbow Joint L 
Base 0 0 0 0 0 31 
FDOF 1 

Minimum -30 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 20 0 0 0 0 0 

Wrist Joint L 
Base 0 0 0 0 0 39 
FDOF 1 

Minimum -25 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 35 0 0 0 0 0 

Manus Joint L 
Base 0 0 0 0 0 17 
FDOF 1 

Minimum -25 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 25 0 0 0 0 0 
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APPENDIXB 

REPTILE MODEL DATA 

Table 31. 

Reptile FDOFs 

Rotation (0) Position (em) 
FDOF x y z x y z 
Hip_Joint_R 

Base 0 0 0 0 0 10 
FDOF 1 

Minimum 0 -50 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 10 0 0 0 0 

FDOF2 
Minimum -10 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 10 0 0 0 0 0 

FDOF3 
Minimum 0 0 -60 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 8 0 0 0 

Knee Joint R 
Base 0 0 0 0 0 58 
FDOF 1 

Minimum -11 -26 2 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 9 21 2 0 0 0 

Crus PS R 
Base 0 0 0 0 0 42 
FDOFI 

Minimum 0 0 -60 0 0 0 
Neutral 0 0 0 0 0 0 
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Reptile FDOFs (continued) 
Rotation (0) Position (em) 

FDOF x y z x y z 
Maximum 0 0 12 0 0 0 

Ankle Joint R 
Base 0 0 0 0 0 50 
FDOF1 

Minimum -20 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 5 0 0 0 0 0 

Pes Joint R 
Base 0 0 0 0 0 37 
FDOF1 

Minimum -30 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 5 0 0 0 0 0 

FDOF2 
Minimum 0 0 -20 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 20 0 0 0 

Hip_Joint_L 
Base 0 0 0 0 0 10 
FDOF1 

Minimum 0 50 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 -10 0 0 0 0 

FDOF2 
Minimum -10 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 10 0 0 0 0 0 

FDOF3 
Minimum 0 0 60 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 -8 0 0 0 

Knee Joint L 
Base 0 0 0 0 0 58 
FDOF1 

Minimum -11 26 -2 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 9 -21 -2 0 0 0 

Crus PS L 
Base 0 0 0 0 0 42 
FDOF 1 

Minimum 0 0 60 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 -12 0 0 0 

Ankle Joint L 
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Reptile FDOFs (continued) 
Rotation (0) Position (em) 

FDOF x y Z x y z 
Base 0 0 0 0 0 50 
FDOF 1 

Minimum -20 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 5 0 0 0 0 0 

Pes Joint L 
Base 0 0 0 0 0 37 
FDOF 1 

Minimum -30 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 5 0 0 0 0 0 

FDOF2 
Minimum 0 0 20 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 -20 0 0 0 

Shoulder Joint R 
Base 0 0 0 0 0 20 
FDOF 1 

Minimum 0 -40 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 10 0 0 0 0 

FDOF2 
Minimum -10 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 10 0 0 0 0 0 

FDOF3 
Minimum 0 0 -30 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 10 0 0 0 

Elbow Joint R 
Base 0 0 0 0 0 63 
FDOF 1 

Minimum 12 -37 -3 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum -4 15 -1 0 0 0 

Antibrachium PS R 
Base 0 0 0 0 47 
FDOF 1 

Minimum 0 0 -25 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 30 0 0 0 

Wrist Joint R 
Base 0 0 0 0 -1 45 
FDOF 1 
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Reptile FDOFs (continued) 

Rotation CO) Position (em) 

FDOF x y Z x y Z 

Minimum -20 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 5 0 0 0 0 0 

Manus Joint R 
Base 0 0 0 0 0 37 
FDOF 1 

Minimum -30 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 5 0 0 0 0 0 

FDOF2 
Minimum 0 0 -20 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 20 0 0 0 

Shoulder Joint L 
Base 0 0 0 0 0 20 
FDOF 1 

Minimum 0 40 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 -10 0 0 0 0 

FDOF2 
Minimum -10 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 10 0 0 0 0 0 

FDOF3 
Minimum 0 0 30 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 -10 0 0 0 

Elbow Joint L 
Base 0 0 0 0 0 63 
FDOF 1 

Minimum 12 37 3 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum -4 -15 1 0 0 0 

Antibrachium PS L 
Base 0 0 0 0 47 
FDOF 1 

Minimum 0 0 25 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 -30 0 0 0 

Wrist Joint L 
Base 0 0 0 0 -1 45 
FDOF 1 

Minimum -20 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
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Reptile FDOFs (continued) 
Rotation (0) Position (em) 

FDOF x y Z x y z 
Maximum 5 0 0 0 0 0 

Manus Joint L 
Base 0 0 0 0 0 37 
FDOF 1 

Minimum -30 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 5 0 0 0 0 0 

FDOF2 
Minimum 0 0 20 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 -20 0 0 0 
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.... 

APPENDIXC 

APATOSAURUS MODEL DATA 

Table 32. 

Apatosaurus FDOFs 

Rotation (0) Position (em) 

FDOF x y Z x y z 
Hip_JoineR 

Base 3 0 0 22 -13 11 
FDOFI 

Minimum -21 0 1 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 18 0 -1 0 0 0 

FDOF2 
Minimum 0 -10 -1 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 13 1 0 0 0 

FDOF3 
Minimum 0 0 -10 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 10 0 0 0 

Knee_JoineR 
Base -4 -2 -32 18 149 
FDOFI 

Minimum -20 0 0 0 -3 0 
Neutral 0 0 0 0 -5 0 
Maximum 74 0 0 0 -14 0 

Ankle_JoineR 
Base 0 0 0 6 7 128 
FDOFI 

Minimum -19 -5 -28 0 2 1 
Neutral 0 0 0 0 0 0 
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Apatosaurus FDOFs (continued) 
Rotation CO2 Position (em) 

FDOF x y z x y z 
Maximum 20 -5 29 0 0 0 

Hip_Joint_L 
Base 3 0 0 -22 13 -11 
FDOF 1 

Minimum -21 0 1 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 18 0 -1 0 0 0 

FDOF2 
Minimum 0 -10 -1 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 13 1 0 0 0 

FDOF3 
Minimum 0 0 -10 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 10 0 0 0 

Knee Joint L 
Base -4 -2 32 -18 -149 

FDOF 1 
Minimum -20 0 0 0 3 0 
Neutral 0 0 0 0 5 1 
Maximum 74 0 0 0 14 0 

Ankle Joint L 
Base 0 0 0 -6 -7 -128 
FDOF 1 

Minimum -19 -5 -28 0 2 1 
Neutral 0 0 0 0 0 0 
Maximum 20 -5 29 0 0 0 

Seapulothorax_Joint_R 
Base 2 -9 -13 -83 -16 53 
FDOF 1 

Minimum -17 5 -5 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 10 0 4 0 0 0 

FDOF2 
Minimum 0 0 0 0 15 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 0 0 -10 0 

Shoulder Joint R 
Base 0 8 -20 -4 -2 29 
FDOF1 

Minimum -35 0 0 0 0 0 
Neutral -4 -3 1 0 0 0 
Maximum 35 0 0 0 0 0 

FDOF2 
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Apatosaurus FDOFs (continued) 
Rotation (0) Position (em) 

FDOF x y Z x y z 
Minimum 0 -18 0 0 0 0 
Neutral -4 -3 1 0 0 0 
Maximum 0 18 0 0 0 0 

FDOF3 
Minimum 0 0 -10 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 10 0 0 0 

Elbow Joint R 
Base 3 6 -40 -15 6 100 
FDOF 1 

Minimum -33 -15 2 1 2 0 
Neutral 0 0 0 0 0 0 
Maximum 25 2 4 0 0 0 

Ulnoearpal_Joint_R 
Base -54 0 15 -6 2 88 
FDOFI 

Minimum -10 -14 -3 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 24 27 13 0 0 0 

Seapulothorax_Joint_L 
Base 2 -9 -13 -21 -16 97 
FDOF 1 

Minimum -17 5 -5 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 10 0 4 0 0 0 

FDOF2 
Minimum 0 0 0 0 15 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 0 0 -10 0 

Shoulder Joint L 
Base 0 8 -20 4 2 -29 
FDOFI 

Minimum -35 0 0 0 0 0 
Neutral -4 -3 1 0 0 0 
Maximum 35 0 0 0 0 0 

FDOF2 
Minimum 0 -18 0 0 0 0 
Neutral -4 -3 1 0 0 0 
Maximum 0 18 0 0 0 0 

FDOF3 
Minimum 0 0 -10 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 10 0 0 0 

Elbow Joint L 
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Apatosaurus FDOFs (continued) 
Rotation (0) Position (em) 

FDOF x y Z x Y z 
Base 3 6 -40 15 -6 -100 
FDOF1 

Minimum -33 -15 2 1 2 0 
Neutral 0 0 0 0 0 0 
Maximum 25 2 4 0 0 0 

Ulnoearpal_Joint_L 
Base -54 0 15 6 -2 -88 
FDOF 1 

Minimum -10 -14 -3 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 24 27 13 0 0 0 
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APPENDIXD 

TRICERATOPS MODEL DATA 

Table 33. 

Triceratops FDOFs 

Rotation C) Position (em) 

FDOF x y Z x y Z 

Hip_JoinCR 
Base 0 0 0 8 -11 -29 
FDOFI 

Minimum 8 20 16 0 0 0 
Neutral 0 2 -3 0 0 0 
Maximum -1 -31 -22 0 0 0 

FDOF2 
Minimum -3 -8 13 0 0 0 
Neutral 0 2 -3 0 0 0 
Maximum 1 6 -8 0 0 0 

FDOF3 
Minimum -12 3 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 15 -3 0 0 0 0 

Knee_JoinCR 
Base 0 0 0 91 21 12 
FDOFI 

Minimum -20 4 -24 0 0 0 
Neutral -23 4 -1 0 0 0 
Maximum -19 0 63 0 0 0 

Ankle_JoinCR 
Base 4 -20 -1 77 -1 0 
FDOFI 

Minimum -58 -1 9 3 0 0 
Neutral -4 10 0 0 -1 -1 
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Triceratops FDOFs (continued) 

Rotation CO) Position (em) 

FDOF x y Z x y z 
Maximum 56 20 0 3 -1 -3 

Hip_Joint_L 
Base 0 0 0 8 -11 29 
FDOF 1 

Minimum -8 -20 16 0 0 0 
Neutral -4 -2 -3 0 0 0 
Maximum -1 31 -22 0 0 0 

FDOF2 
Minimum 3 8 13 0 0 0 
Neutral -4 -2 -3 0 0 0 
Maximum -1 -6 -8 0 0 0 

FDOF3 
Minimum 12 -3 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum -15 3 0 0 0 0 

Knee Joint L 
Base 0 0 0 91 21 -12 
FDOF 1 

Minimum 20 -4 -24 0 0 0 
Neutral 23 -4 -1 0 0 0 
Maximum 19 0 63 0 0 0 

Ankle Joint L 
Base -4 20 -1 77 -1 0 
FDOF 1 

Minimum 58 1 9 3 0 0 
Neutral 4 -10 0 0 -1 1 
Maximum -56 -20 0 3 -1 3 

Seapu1othorax_Joint_R 
Base 0 0 0 72 27 -5 
FDOF 1 

Minimum 9 4 -2 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum -17 -3 -2 0 0 0 

FDOF2 
Minimum 0 0 0 1 10 1 
Neutral 0 0 0 0 0 0 
Maximum 0 0 0 -2 -13 -2 

Shoulder Joint R 
Base 0 0 0 13 -4 14 
FDOF 1 

Minimum 3 2 -23 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum -5 0 39 -4 -2 -5 

FDOF2 
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Triceratops FDOFs (continued) 
Rotation (0) Position (em) 

FDOF x y z x y z 
Minimum 0 7 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 -12 0 0 0 0 

FDOF3 
Minimum -8 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 8 0 0 0 0 0 

Elbow Joint R 
Base 0 0 0 66 -5 -8 
FDOF 1 

Minimum 6 28 39 1 -4 -2 
Neutral 0 0 0 0 0 0 
Maximum 6 -16 -13 0 0 0 

Wrist Joint R 
Base 0 0 0 48 0 0 
FDOF 1 

Minimum 1 1 20 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum -1 -3 -32 3 1 0 

Seapulothorax_Joint_L 
Base 0 0 0 40 27 -60 
FDOF 1 

Minimum -9 -3 -3 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 17 3 -2 0 0 0 

FDOF2 
Minimum 0 0 0 1 10 1 
Neutral 0 0 0 0 0 0 
Maximum 0 0 0 -2 -13 -2 

Shoulder Joint L 
Base 0 0 0 13 -4 -14 
FDOF1 

Minimum 1 -3 -23 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 5 -3 41 -3 -4 2 

FDOF2 
Minimum 0 -7 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 12 0 0 0 0 

FDOF3 
Minimum 8 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum -8 0 0 0 0 0 

Elbow Joint L 
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Triceratops FDOFs (continued) 
Rotation CO) Position (em) 

FDOF x y z x y z 
Base 2 0 0 67 -5 8 
FDOF 1 

Minimum -4 -26 40 0 -4 1 
Neutral 0 0 0 0 0 0 
Maximum -6 16 -13 0 1 0 

Wrist Joint L 
Base 0 0 0 48 0 0 
FDOF 1 

Minimum -2 -1 20 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 1 -32 4 1 0 
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APPENDIXE
 

TYRANNOSAURUS MODEL DATA
 

Table 34. 

Tyrannosaurus FDOFs 

Rotation CO) Position (em) 
FDOF x y Z x Y z 
Hip_JoineR 

Base 0 0 0 4 5 -6 
FDOF1 

Minimum 0 -10 -35 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 20 0 0 0 

FDOF2 
Minimum 0 -10 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 5 0 0 0 0 

FDOF3 
Minimum -10 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 10 0 0 0 0 0 

Knee_JoineR 
Base 0 0 0 114 7 23 
FDOF1 

Minimum 0 0 -20 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 25 0 0 0 

Ankle_JoineR 
Base 0 0 0 115 -4 0 
FDOFI 

Minimum 0 0 -25 0 0 0 
Neutral 0 0 0 0 0 0 
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Tyrannosaurus FDOFs (continued) 

Rotation CO) Position (em) 

FDOF x y Z x y z 
Maximum 0 0 30 0 0 0 

Pes Joint R 
Base 0 0 0 60 -10 
FDOF 1 

Minimum 0 0 -20 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 30 0 0 0 

Phalangeal_Joint_R 
Base 0 0 0 21 0 
FDOF 1 

Minimum 0 0 -5 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 30 0 0 0 

Hip_Joint_L 
Base 0 0 0 -4 -5 6 
FDOF 1 

Minimum 0 -10 -35 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 20 0 0 0 

FDOF2 
Minimum 0 -10 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 5 0 0 0 0 

FDOF3 
Minimum -10 0 0 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 10 0 0 0 0 0 

Knee Joint L 
Base 0 0 0 -113 -6 -20 
FDOF 1 

Minimum 0 0 -20 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 20 0 0 0 

Ankle Joint L 
Base 0 0 0 -115 4 0 
FDOF 1 

Minimum 0 0 -25 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 30 0 0 0 

Pes Joint L 
Base 0 0 0 -60 10 -1 
FDOF 1 

Minimum 0 0 -20 0 0 0 
Neutral 0 0 0 0 0 0 
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Tyrannosaurus FDOFs (continued) 

Rotation CO) Position (em) 

FDOF x y Z x y z 
Maximum 0 0 30 0 0 0 

Pha1angea1_Joint_L 
Base 0 2 0 -21 -1 0 
FDOF 1 

Minimum 0 0 -5 0 0 0 
Neutral 0 0 0 0 0 0 
Maximum 0 0 30 0 0 0 
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APPENDIXF 

FIXING ORIENTATION AND POSITION 

1.	 Store the initial y axis of the end effector as initialYAxis 

2.	 Store the initial z axis of the end effector as initialZAxis 

3.	 Store the initial quatemion rotation state of the root as initialRotation 

4.	 Store the initial position of the end effector as initiaLEndPosition 

5.	 Store the initial position of the root as initialRootPosition 

6.	 For each frame rendered following a limb configuration change: 

a.	 Store the current y axis of the end effector as yAxis 

b.	 Store the current z axis of the end effector as zAxis 

c.	 Calculate the quatemion that rotates yAxis into initialYAxis and store as 

yRotation 

d.	 Multiply zAxis by yRotation 

e.	 Calculate the quateniion that rotates zAxis into initialZAxis and store as 

zRotation 

f.	 Set the root orientation to zRotation*yRotation*initialRotation 
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g.	 Store the current end effector position as position 

h.	 Calculate the vector that moves position to initialEndPosition and store as 

translation 

1.	 Set the root position to initialRootPosition + translation 
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APPENDIXG 

GENETIC ALGORITHM STRUCTlTRE 

1.	 Create an initial population consisting of randomly-generated, fixed-length binary 

strings and store as population 

2.	 Create a binary string to hold the overall best (i.e., highest fitness) candidate 

solution and store as globalBest 

3.	 For each genetic algorithm iteration: 

a.	 Apply crossover to the population by potentially combining each 

candidate with another randomly-selected binary string 

b.	 Apply mutation to the population by potentially flipping bits in each 

binary string 

c.	 Evaluate the fitness of the population, storing the fitness of each candidate 

d.	 If any candidate has a fitness higher than that of globalBest, store that 

candidate as globalBest 
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e.	 Select new parents for the next iteration by comparing each candidate to 

another randomly-selected candidate and usually selecting (i.e., based on a 

probability coefficient) the higher-fitness candidate 

f.	 Store the new parents as population 

4.	 Report and handle the highest-fitness candidate, globalBest 
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APPENDIXH 

EXAMPLE BIPEDAL CANDIDATE 

1.	 An LROM space for the right Tyrannosaurus hindlimb is generated by exploring 

all possible combinations of the limb's six FDOFs (see Appendix E) at a 5° 

angular resolution while keeping the pes position/orientation fixed on the ground 

(see Appendix F); the space contains 2,882,880 total samples 

2.	 Each sample in the LROM space contains 12 floating point values: the FDOF 

values that specify the joint configurations of the limb (i.e., one float per FDOF, 

six total floats), the 3D position of the sample (i.e., 3 floats), and the pitch, yaw, 

and roll of the root element necessary to reach the sample position using the 

associated FDOF values 

3.	 The LROM space is organized into 3D boxes, with 50 boxes along the direction 

oftravel (i.e., the number of boxes along the direction oftravel is an input 

parameter): 

a.	 The LROM space measures 5.03 meters along the directionoftravel, so 

each box is 10 cm x 10 cm x 10 cm 
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b.	 The space is 0.57 meters wide along the lateral axis, so there are 6 boxes 

along the lateral axis 

c.	 The space is 2.76 meters tall along the vertical axis, so there are 28 boxes 

along the vertical axis 

d.	 The space contains 6 x 50 x 28 boxes for a total of 8,400 boxes 

e.	 Each LROM space sample is sorted into the 3D box that surrounds the 

sample's 3D position, resulting in a list of samples for each 3D box 

4.	 The LROM space is pruned based on the dual support and bilateral symmetry 

constraints; a suitable sibling sample is attempted to be found for each sample in 

the LROM space: 

a.	 The three indices of the sample's 3D box are determined based on the 

sample's 3D position, the bounds of the LROM space, and the 3D box 

dimensions 

b.	 The forward index ofthe sibling 3D box is determined by subtracting the 

dual support length from the step length (i.e., the step length is an input 

parameter, the dual support length is a function of the step length and the 

duty factor), then dividing by the box dimensions to determine the number 

of boxes that the animal will move forward through between the RD and 

RLD events 

c.	 The sibling lateral index is determined by reflecting the original index 

across the sagittal plane (i.e., using the lateral index of the sagittal plane) 

d. The vertical sibling index is equal to the original vertical index 
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e.	 If the sibling 3D box contains a sample with an RMS angular offset (i.e., 

the absolute value of the sibling sample angles minus the original sample 

angles) less than the specified epsilon error, store that sample as a sibling 

match for the original sample; if multiple sibling samples are found with 

less than the epsilon angular offset, use the sibling sample with the 

smallest angular offset 

f.	 Remove all samples from the space that do not have a sibling match, 

ensuring that all remaining samples satisfy the dual support and bilateral 

symmetry constraints 

g.	 The constrained space contains 80,640 total samples (i.e., including 

sibling samples) 

5.	 The size of the linear binary candidates is computed: 

a.	 The size of the back data is computed as the number of non-sibling 

samples in the constrained space that are at least a step length back from 

the front ofthe space (i.e., so selections for the RD event will be able to 

complete a step of the specified length); the back data contains 11,145 

samples, so 14 bits are required to index all back data samples 

b.	 The size of the largest slice in the slice data is computed by looking for the 

largest number of samples in any plane of 3D boxes perpendicular to the 

direction of travel; the largest slice contains 3,665 samples, so 12 bits are 

needed to address all slice data samples 
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c.	 Each candidate is a 14-bit index into the back data representing a sample 

for the RD event and a 12-bit index into a slice in the slice data 

representing a sample for the RLU event (i.e. the specific slice for the 

RLU event sample is determined by the slice of the RD event sample and 

the forward distance that the animal must travel during dual support); each 

candidate is represented by a 26-bit binary string 

6.	 The GA is run for 10,000 iterations with a population of 1000 candidates (see 

Appendix G), each iteration: 

a.	 Each candidate is potentially combined with another randomly-selected 

candidate using single-point crossover and a crossover probability of 0.1 

b.	 Each candidate is potentially mutated with a probability of 0.5 per 

candidate (i.e., on average one bit is flipped for half ofthe candidates in 

the population) 

c.	 The fitness of each candidate is calculated as 1.0 I (1.0 + e), where e is the 

weighted sum of terms stored in the RD and RLU event samples (i.e., 

from the 12 values stored in each sample): 5.0 times the sum body pitch 

caused by the RD and RLU events, 2.0 times the sum body yaw cause by 

these events, the sum body roll caused by these events, the sum vertical 

displacement between the event sample positions and the target vertical 

height, the sum lateral displacement between the event sample positions 

and the initial sagittal plane position, and the sum differences between the 

FDOF values of the RD and RLU events; the body roll/pitch/yaw and sum 



276 

FDOF difference terms are multiplied by the step length so that these 

angular terms can be related to the translational terms 

d.	 If any candidate has higher fitness than the highest-fitness candidate found 

thus far, store that candidate as the highest-fitness candidate 

e.	 Select new parents for the next GA iteration using Tournament Selection 

with a 0.9 probability of selecting the higher-fitness candidate (i.e., 

compare each candidate in the population with another randomly-selected 

candidate and select the higher-fitness candidate 90% of the time) 

7.	 The highest-fitness candidate after the 10,000 GA iterations is 0 0 1 0 0 0 1 1 0 0 

1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 0, which corresponds to 1,531st entry in the back data 

(i.e., specified by the 14 highest-order bits), which is in the 6th slice (i.e., 

determined by the forward 3D position ofthe sample), and the 3,362nd entry (i.e. 

determined by the 12 lowest-order bits) in the 12th slice (i.e., determined by the 

slice of the RD sample and the number of slices the animal must travel through 

during dual support to achieve the specified step length); the fitness of this 

candidate is 1.67642 x 101\-3 

8.	 The stored sibling samples for the RD and RLU event samples are retrieved and 

used as the RLD and RU event samples, respectively 

9.	 Animate the highest-fitness candidate by creating an animation curve for each 

FDOF of the right limb; each curve has six key frames: the FDOF values at RD, 

RLU, RLD, RU, a FDOF value for mid swing phase to get the pes off the ground 
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(i.e., detennined by simple IK and/or direct posing), and the FDOF value at RD to 

ensure that the animation is cyclical 

10. Create animation curves for the left limb using the same key frames as the right 

limb but advanced along the animation timeline by 0.5 times the animation time 

to ensure a 0.5 ipsilateral phase 

11. During animation, fix the position/orientation ofthe right pes on the ground 

between the RD and RLD events and fix the position/orientation of the left pes on 

the ground between the LD and LRD (i.e., between the RLD and RD) events (see 

Appendix F) 
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APPENDIX I 

GLOSSARY 

2D: Two Dimensional 

3D: Three Dimensional 

ALife: Artificial Life 

ANN: Artificial Neural Network 

BMR: Basic Metabolic Rate 

COM: Center of Mass 

DOF: Degree of Freedom 

EA: Evolutionary Algorithm 

FDOF: Functional Degree of Freedom 

GA: Genetic Algorithm 

GAGA: Genetic Algorithms Gait Analysis 

GP: Genetic Programming 

GRF: Ground Reaction Force 
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GUI: Graphical User Interface 

IK: Inverse Kinematics 

KLAW: Keyframe-less Animation of Walking. 

L-Systems: Lindenmayer Systems 

LD: Left Down 

LRD: Left when Right Down 

LROM: Limb Range of Motion 

LRU: Left when Right UP 

LU: Left Up 

M: Mean 

PAR: Parameterized Action Representation 

PD: Proportional Derivative 

RD: Right Down 

RLD: Right when Left Down 

RLU: Right when Left Up 

RMS: Root Mean Square 

ROM: Range of Motion 

RU: Right Up 

SAN: Sensor Actuator Network 

SCA: Sense Control Action 

SD: Standard Deviation 
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SIMM: Software for Interactive Musculoskeletal Modeling 

SR: Stimulus Response 

ZMP: Zero Moment Point 
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