
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=umcm20

Mechanics of Advanced Materials and Structures

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/umcm20

Nonstandard continualization of 1D lattice with
next-nearest interactions. Low order ODEs and
enhanced prediction of the dispersive behavior

F. Gómez-Silva , J. Fernández-Sáez & R. Zaera

To cite this article: F. Gómez-Silva , J. Fernández-Sáez & R. Zaera (2020): Nonstandard
continualization of 1D lattice with next-nearest interactions. Low order ODEs and enhanced
prediction of the dispersive behavior, Mechanics of Advanced Materials and Structures, DOI:
10.1080/15376494.2020.1799271

To link to this article:  https://doi.org/10.1080/15376494.2020.1799271

© 2020 The Author(s). Published with
license by Taylor and Francis Group, LLC

Published online: 07 Aug 2020.

Submit your article to this journal 

Article views: 94

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=umcm20
https://www.tandfonline.com/loi/umcm20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/15376494.2020.1799271
https://doi.org/10.1080/15376494.2020.1799271
https://www.tandfonline.com/action/authorSubmission?journalCode=umcm20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=umcm20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/15376494.2020.1799271
https://www.tandfonline.com/doi/mlt/10.1080/15376494.2020.1799271
http://crossmark.crossref.org/dialog/?doi=10.1080/15376494.2020.1799271&domain=pdf&date_stamp=2020-08-07
http://crossmark.crossref.org/dialog/?doi=10.1080/15376494.2020.1799271&domain=pdf&date_stamp=2020-08-07


ORIGINAL ARTICLE

Nonstandard continualization of 1D lattice with next-nearest interactions. Low
order ODEs and enhanced prediction of the dispersive behavior

F. G�omez-Silva, J. Fern�andez-S�aez, and R. Zaera

Department of Continuum Mechanics and Structural Analysis, University Carlos III of Madrid, Avda. de la Universidad, Legan�es,
Madrid, Spain

ABSTRACT
In this article, different standard and nonstandard continualization techniques are applied to a
one-dimensional solid consisting in a chain of masses interacting with nearest and next-nearest
neighbors through linear springs. The study focuses on the reliability of the different continua in
capturing the dispersive behavior of the discrete, on the order of the continuous governing equa-
tion because of its effect on the need for including nonclassical boundary conditions, as well as
on the physical inconsistencies that appear for short wavelengths. The Regularization method,
used by Bacigalupo and Gambarotta for a lattice with nearest interactions, presents advantages
over the others.
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1. Introduction

Formulations based on classical continuum mechanics fail
when applied to problems in which size effects are present
due to the discreteness of the matter. To deal with this kind
of problem, lattice dynamic and molecular dynamics
approaches appear as an alternative to classical continuum
models. Nevertheless, these frameworks require a very high
computational cost. Therefore, a considerable effort is
devoted to develop nonclassical continuum models that
could be able to reproduce the intrinsic dispersive behavior
of the discrete media. Although the first attempts to capture
the effects of microstructure using the higher-order equa-
tions of elasticity could be dated in the nineteenth century
(works by Cauchy and Voigt), and in the beginning of the
twentieth century (works by Cosserat brothers), these
approaches experienced a great revival in the 1960s and
1970s with the works by Mindlin, Toupin, or Eringen,
among others. The interest in these approaches remains to
this day with works like Tadi Beni et al. [1], Shafiei et al. [2],
and Barretta et al. [3]. These theories can be considered axio-
matic frameworks that need new equilibrium equations to gov-
ern the higher-order stresses, as well as a large number of new
nonclassical constants, that have to be calibrated from experi-
mental results. However, an alternative to the axiomatic
approaches is that based on the continualization of the discrete
system, trying to relate the new parameters with geometrical
and mechanical characteristics of the lattice.

The Born-Von K�arm�an lattice composed by a one-dimen-
sional (1D) chain of identical masses connected with linear

springs (i.e. nearest neighbor interaction), is the simplest lattice
model to understand the dispersive behavior of discrete media.
It has been widely studied and it is possible to show that this
model leads to the classical lineal elastic rod equation when a
standard (based on Taylor expansions) continualization of low
order is applied to the discrete displacement field. Polyzos and
Fotiadis [4] showed different continualization procedures, lead-
ing to different continuous governing equations, all of them
with fourth-order spatial derivatives. Considering the linear
spring with distributed mass, and developing a standard con-
tinualization of the total energy of the system [4], it is possible
to recover the governing equation of a rod modeled with
Form-II of the strain gradient elasticity of Mindlin [5].

Nonstandard continualization techniques have been also
used [6–9]. These techniques consist in transforming the dis-
crete equations into pseudodifferential equations, which are
later expanded by Taylor series [6, 7, 9] or by Pad�e approxim-
ants [8]. Bacigalupo and Gambarotta [7] proposed an
enhanced continualization scheme in which, besides using
pseudodifferential operators, a central difference scheme is
employed to discretize the first spatial derivative of the con-
tinuous displacement, achieving a continuous governing equa-
tion of higher order than that corresponding to the classical
one. This approach has been applied to several 1D systems: a
rod lattice, a beam lattice with node rotations, and a beam lat-
tice with generalized displacements [7].

In the context of 1D nonlinear lattices, Vila et al. [10] pro-
posed a nonstandard continualization of a kind of nonlinear sys-
tem, defined as a discrete chain of masses interacting through
nonlinear springs, analogous to the Fermi-Pasta-Ulam-Tsingou
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system [11]. The results obtained by this nonstandard method
reproduce the dynamic behavior of the lattice more accurately
than those corresponding to the nonlinear classical continuum.

One-dimensional lattices with springs connecting nearest
neighbors as well as next-nearest neighbors are also exten-
sively studied. Most works analyze the discrete model, either
considering it as a finite (bounded) solid and analyzing the
effect of the number of masses that form the system
[12–15], or as an infinite solid, studying their dispersion
relations [16, 17]. Triantafyllidis and Bardenhagen [18] and
Metrikine [19] proposed a nearest and next-nearest interac-
tions system and compared it with high-order gradient theo-
ries. On the other hand, Di Paola et al. [20] and Zingales
[21] studied nonlocal elastic models and used this discrete
system to show their mechanical equivalence. Fewer works
apply continualization techniques to this kind of system
with nearest and next-nearest interactions. Polyzos and
Fotiadis [4] and Tarasov [22] employed standard continuali-
zation methods to achieve a continuous governing equation
which allows to capture the behavior of the discrete system.

In general, work centered on the development (using both
continuum techniques and axiomatic theories) of continuous
models to capture the size effects present in discrete media,
focuses on an adequate representation of their dispersive behav-
ior. For this purpose, high order governing equations are com-
monly used to approximate the dispersion relation toward the
high wavelength zone. For the study of wave propagation phe-
nomena in unbounded solids, the use of high order governing
equations may not pose a major problem. However, these equa-
tions require nonclassical boundary conditions, the physical
interpretation of which is not simple, for their resolution when
considering finite solids. In this sense, the proposal of low order
models that maintain a precise approximation of the dispersion
ratio in a wide range of wavelengths is of interest for real appli-
cations in the microscale and nanoscale. In addition, the use of
continualization techniques allows to establish the relationship
between the parameters of discrete and continuous models, thus
avoiding calibration.

In this article, the analysis of a 1D linear lattice with
nearest and next-nearest neighbor interactions is revisited.
Different continualization techniques are used and, for the
first time, some nonstandard methods of continualization
are applied to this kind of system with next-nearest springs.
The dispersion relations obtained with the different continu-
alized equations are compared with those derived from the

discrete system, with the regularization procedure proposed
by Bacigalupo and Gambarotta [7] applied to a nearest and
next-nearest lattice for the first time here, showing the best
performance. Interestingly, this model leads to continuous
equations with second-order derivatives in the spatial vari-
able. Therefore, nonclassical boundary conditions are not
needed to solve the dynamics of a finite system.

There are a number of engineering problems in which
the characteristic length of the phenomena studied is similar
to the size of the microstructure. A clear example of this is
the nanostructures used in engineering applications such as
nanoelectromechanical and microelectromechanical sensors
[23], which are widely used in robotics and biosensors [24,
25]. Similarly, size effects can also appear in structures at
the meso or macroscale, like in composites and polycrystal-
line solids and granular materials. On the other hand, in the
last years, wave propagation phenomena in metamaterials
has generated a great interest [26–28] because of the ability
of these materials to manipulate and control waves, thanks
to the unconventional properties inherited from their lattice
structure. Hence, the need for continuum mechanics theo-
ries that permit to account for scale effects [29, 30].

The article is organized as follows. In Section 2, the discrete
model, taken as a reference, is introduced. Its discrete govern-
ing equation is achieved, and its dispersion relation and phase
velocity are presented. In Section 3, the different continualiza-
tion procedures are described and the dispersion relations of
the different models are obtained. In Section 4, all models are
compared, highlighting their advantages and drawbacks.
Finally, in Section 5, some concluding remarks are presented.

2. Discrete reference model

In this section, the discrete system, considered here as a ref-
erence, is introduced. This model is made up of a chain
formed by a number of N identical particles with mass M,
interacting with each other through linear springs. These
particles are equally spaced at distance l, which is considered
as a characteristic length, so the chain length is defined by
L ¼ lðN � 1Þ, and the reference position of an arbitrary par-
ticle n is xn ¼ ðn� 1Þl, n¼ 1,… ,N. As can be observed in
Figure 1, springs which connect nearest particles have stiff-
ness k1 and those that join next-nearest particles have stiff-
ness k2. It is well known that the interaction force between

Figure 1. Nearest and next-nearest interaction lattice model.
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particles decays with the distance, so that it can be assumed
that the value of k1 is significantly higher than that of k2.
The displacement variables are defined as unðtÞ, n¼ 1, … ,
N, where t is the time variable.

Keeping in mind the previous considerations, the dimen-
sionless governing equations of the system can be obtained
as follows, using the following parameters and variables

un ¼ un
l
; xn ¼ xn

l
; t ¼ ~xt; ~x ¼

ffiffiffiffiffi
k1
M

r
;

a ¼ k2
k1

; W ¼ W
k1l2

; T ¼ T
k1l2

;

(1)

where W and T are the potential and kinetic energy,
respectively. The dimensionless potential energy of the linear
elastic lattice is defined by

W ¼
XN�1

n¼1

1
2
ðunþ1 � unÞ2 þ

XN�2

n¼1

1
2
aðunþ2 � unÞ2, (2)

and the dimensionless kinetic energy of the system is

T ¼
XN
n¼1

1
2
ð@t unÞ2, (3)

where @t refers to the dimensionless time derivative. The
dimensionless Lagrangian of the system is

L ¼ T �W , (4)

where L ¼ L=ðk1l2Þ and L is its dimensional counterpart.
Through the use of Lagrange equations, the dimension-

less governing equation for an interior particle n is obtained

@t t un ¼ ðunþ1 þ un�1 � 2unÞ þ aðunþ2 þ un�2 � 2unÞ: (5)

Now, the dispersive behavior of the model is studied. For
this purpose, we assume that Eq. (5) admits a plane wave
solution of the form

un ¼ uoe
iðKxn�xtÞ, (6)

where K ¼ Kl is the wavenumber and x ¼ x=~x the wave
frequency, both dimensionless, being K and x their

dimensional counterparts. From Eqs. (5) and (6), the disper-
sion equation, relating the wavenumber and the frequency,
can be found

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos ðKÞÞ þ 2að1� cos ð2KÞÞ

q
: (7)

This dispersion relation is nonlinear, and depends on the
dimensionless parameter a, which relates the springs stiff-
ness. In Figure 2, dispersion curves of the discrete model,
for the irreducible Brillouin zone K 2 ½0, p� [31], are shown.
These curves correspond to different values of a. Since k1 is
considerably greater than k2, a ¼ 0:15 is considered here to
be the upper limit for a practical case. It can also be seen
how a Band Gap appears. This kind of behavior can be con-
trasted with experimental results such as those presented by
Eringen [32].

Another possibility to study the system’s dispersive behavior
is analyzing its phase velocity, which is calculated as

vphase ¼ x

K
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos ðKÞÞ þ 2að1� cos ð2KÞÞ

p
K

: (8)

Figure 3 shows the phase velocity related to the model,
for different values of a. As can be observed in Figures 2
and 3, the role of the parameter a is to increase the sys-
tem’s stiffness.

3. Different continualization methods

As verified in the previous section, the discrete model shows
dispersive behavior. In order to achieve continuous equa-
tions capturing this behavior, different methods of continu-
alization applied to the discrete system are studied. The first
group includes those using standard techniques, where
Taylor’s series are employed to expand the displacement
variables. The rest of the methods are based on nonstandard
techniques, using pseudodifferential operators.

Figure 2. Dispersion curves of the discrete model for different values of a. Figure 3. Phase velocity of the discrete model for different values of a.
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3.1. Standard continualization

To obtain an equivalent continuous model, one of the sim-
plest continualization procedures consists in expanding the
displacements variables by Taylor series as

un6m ¼ uðx, tÞ6 @uðx, tÞ
@x

ml þ 1
2
@2uðx, tÞ

@x2
ðmlÞ2

6
1
6
@3uðx, tÞ

@x3
ðmlÞ3

þ 1
24

@4uðx, tÞ
@x4

ðmlÞ46O
@5

@x5

� �
; m ¼ 1, 2,

(9)

where uðx, tÞ is the continuous displacement such that
unðtÞ ¼ uðxn, tÞ and l ¼ l=l ¼ 1: Equation (9) is written
with dimensionless variables. Therefore, the approximation
order is determined by the order of the spatial dimension-
less derivative.

In this section, two different standard continualization
methods are employed, expanding either the discrete gov-
erning Eq. (5), or the Lagrangian of the system. These mod-
els, for the remainder of this document, will be mentioned
as Standard I and Standard II models, respectively.

3.1.1. Standard I model
If expression (9) is introduced in the discrete dimensionless
governing Eq. (5), including terms up to second order, it
turns into the governing equation

a1@xxu ¼ @tt u, (10)

where @x refers to the dimensionless position derivative and

a1 ¼ 1þ 4a: (11)

As can be seen, Eq. (10) is similar to the simple classical
rod equation, adding the parameter a, which increases the
stiffness of the continuous model. Assuming a plane wave
solution

u ¼ uoe
iðKx�xtÞ, (12)

the dispersion relation of this continuous model is

x ¼ ffiffiffiffiffi
a1

p
K : (13)

This equation satisfactorily describes long wave propaga-
tion (K!0) in the discrete system. Nevertheless, this does
not occur for short waves, whose propagation is affected by
the solid’s microstructure. To account for dispersive behav-
ior, it is necessary to keep terms until fourth order in Eq.
(9). In this way, now Eq. (5) takes the form

a1@xxu � a2@xxxxu ¼ @tt u, (14)

where

a1 ¼ 1þ 4a; a2 ¼ � 1
12

ð1þ 16aÞ: (15)

As can be noted, by means of including fourth-order
derivatives, an internal scale factor, a2, is introduced. The
dispersion relation in this case is

x ¼ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ a2K

2
q

, (16)

which predicts a dispersive behavior.

3.1.2. Standard II model
Following a different approach, Polyzos and Fotiadis [4]
expanded the discrete displacements in the potential energy
expression. The expression of the dimensionless potential
energy is written as

Wl ¼ 1
2

1
2
un � un�1½ �2 þ 1

2
unþ1 � un½ �2

� �

þ 1
2

1
2
a un � un�2½ �2 þ 1

2
a unþ2 � un½ �2

� �
:

(17)

Equation (17) can be expanded via Taylor’s series with
Eq. (9), until second order in this case, leading to

Wl ¼ 1
2

ð@xuÞ2 þ 1
4
ð@xxuÞ2

� �
þ a

2
4ð@xuÞ2 þ 4ð@xxuÞ2
	 


,

(18)

which is positive definite regardless of the value of a, as can be
easily proven. Figure 4 shows isoenergy curves of Eq. (18) and
its functional dependence on strain and strain gradient.

The dimensionless kinetic energy is written as

Tl ¼ 1
2
ð@t uÞ2: (19)

The dimensionless Lagrangian of this model becomes

L l ¼ 1
2
ð@t uÞ2 �

1
2

ð@xuÞ2 þ 1
4
ð@xxuÞ2

� �

� a
2

4ð@xuÞ2 þ 4ð@xxuÞ2
	 


: (20)

All the above energy variables have been calculated per
unit length and are written in dimensionless form dividing
by k1l:

Applying the Hamilton’s Principle to the Eq. (20), the
following governing equation is obtained

a1@xxu � a2@xxxxu ¼ @tt u, (21)

Figure 4. Nonclassical potential energy corresponding to the Standard II model.
Isoenergy curves for a ¼ 0:05:
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where

a1 ¼ 1þ 4a; a2 ¼ 1
4
ð1þ 16aÞ: (22)

The structures of Eqs. (14) and (21) are identical, and the
only difference is the value of a2, which leads to different
dispersive behaviors. In this case, the dispersion equation is
also given by Eq. (16). An interesting discussion about this
continualization technique can be found in [33] and [34].

Both Eqs. (14) and (21) include fourth order spatial
derivatives. This implies that in problems involving finite
(bounded) solids, it is necessary to impose four boundary
conditions to solve it, two of them being nonclassical, whose
physical meaning is unclear.

3.2. Nonstandard continualization via shift operator

In this section, nonstandard continualization methods are
used, applying the shift operator [10]

un6m ¼ E
6m

un; m ¼ 1, 2: (23)

where

E ¼ el@x , (24)

First, the shift operator will be applied to the discrete gov-
erning Eq. (5), using Pad�e approximants, as Kevrekidis et al.
[8] proposed for a nearest interaction lattice. On the other
hand, the shift operator will also be applied to the kinetic
energy of the system in order to obtain a nonclassical
enriched kinetic energy (EKE; see [9] and [35]). Lastly, the
Regularization method, proposed by Bacigalupo and
Gambarotta [7] for nearest interactions model, is applied.
These three models, for the rest of this document, will be
referred as Pad�e, EKE, and Regularization, respectively.

3.2.1. Pad�e model
Substituting Eq. (23) in the discrete governing Eq. (5), results

@t t un ¼ ðe@x þ e�@x � 2Þ þ aðe2@x þ e�2@x � 2Þ
	 


un, (25)

and taking into account trigonometric identities, we get

@t t un ¼ 4sinh
@x
2

� �
þ 4asinhð@xÞ

� �
un: (26)

Now, the pseudodifferential operators are expressed via
Pad�e (2,2) approximants

4 sinh
@x
2

� �
� @2

x

1� 1
12 @

2
x

, (27)

4 sinhð@xÞ �
4@2

x

1� 1
3 @

2
x

: (28)

Considering that un ¼ uðx, tÞ, and Eqs. (27) and (28),
the following continuous governing equation is obtained

ð1þ 4aÞ@xxu � 1
3
ð1þ aÞ@xxxxu

¼ @t t u � 5
15

@xxtt u þ 1
36

@xxxxtt u, (29)

Keeping terms including factors up to l3 in dimensional
form (see Appendix), we get the continuous governing equa-
tion of this model

a1@xxu � a2@xxxxu ¼ @t t u � a3@xxtt u, (30)

where

a1 ¼ 1þ 4a; a2 ¼ 1
3
ð1þ aÞ; a3 ¼ 5

12
: (31)

In this case, a new scale parameter a3 appears, which
increases the flexibility of the model, according to the dis-
persion relation equation

x ¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ a2K

2

1þ a3K
2

s
: (32)

As can be observed, the Eq. (30) includes a fourth-order spatial
derivative, which implies the use of nonclassical boundary condi-
tions. This does not occur when this method is applied to a near-
est interaction lattice, where fourth-order spatial derivatives do
not appear [8]. In order to achieve a continuous governing equa-
tion without fourth-order spatial derivatives, in the case of nearest
and next-nearest interactions, the following novel nonstandard
continualization method is proposed.

3.2.2. EKE model
A different continualization method consists in extending
the displacements in the Lagrangian of the system, in a simi-
lar way to the Standard II model. In this case, the potential
energy density per unit of length is extended via Taylor’s
series until first order (classical potential energy)

Wl ¼ ð1þ 4aÞð@xuÞ2: (33)

On the other hand, to succeed in capturing the dispersive
behavior, the kinetic energy can be considered in a nonclass-
ical way. Rosenau [9] suggests a nonstandard expression of
the kinetic energy of the discrete system

Tl ¼ 1
2

ð@t uÞ2 þ
1
12

ð@xtuÞ2
� �

: (34)

Applying Hamilton’s Principle to the new Lagrangian
expression

Ll ¼ 1
2

ð@t uÞ2 þ
1
12

ð@xtuÞ2
� �

� ð1þ 4aÞð@xuÞ2, (35)

the governing equation obtained is

a1@xxu ¼ @t t u � a3@xxtt u, (36)

where

a1 ¼ 1þ 4a; a3 ¼ 1
12

: (37)

The corresponding dispersion equation is

x ¼ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1

1þ a3K
2

r
, (38)

which is nonlinear and depends on the dimensionless par-
ameter a. In this case, the scale parameter a3 appears again,
now with a value a3 ¼ 1=12:

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 5



3.2.3. Regularization model
Another continualization method, proposed by Bacigalupo
and Gambarotta [7], is here considered. Using the central
difference scheme for the first derivative of the continuous
displacement

@u
@x

����
xn

¼ unþ1 � un�1

2
, (39)

and applying the shift operator

@u
@x

����
xn

¼ @xujxn ¼
e@x � e�@x

2
un, (40)

an expression relating discrete and continuous fields is
obtained

un ¼ 2@x
e@x � e�@x

u

����
xn

: (41)

Using Eq. (41) in the pseudodifferential discrete govern-
ing Eq. (25), we get

D1u þ aD2u ¼ D3@t t u, (42)

where

D1 ¼ 2ðe@x þ e�@x � 2Þ
e@x � e�@x

@x , (43)

D2 ¼ 2ðe2@x þ e�2@x � 2Þ
e@x � e�@x

@x , (44)

D3 ¼ 2
e@x � e�@x

@x : (45)

The previous expressions can be expanded by Taylor’s
series as

D1 ¼ @2
x þ

1
12

@4
x þ Oð@6

xÞ, (46)

D1 ¼ @2
x þ

1
12

@4
x þ Oð@6

xÞ, (47)

D3 ¼ 1� 1
6
@2
x þ

7
360

@4
x þ Oð@6

xÞ: (48)

Disregarding terms higher than second order, the govern-
ing equation takes the form

a1@xxu ¼ @t t u � a3@xxtt u, (49)

where

a1 ¼ 1þ 4a; a3 ¼ 1
6
: (50)

This governing equation is similar to that of the EKE
model (Eq. 38), with a different value of the parameter a3.

To finish this chapter, and with the intention of sum up
the results achieved and compare the obtained governing
and dispersion equations, the following general expressions
are employed

a1@xxu � a2@xxxxu ¼ @t t u � a3@xxtt u, (51)

x ¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ a2K

2

1þ a3K
2

s
, (52)

which depend on the parameters a1, a2, and a3, shown for
each model in Table 1.

4. Discussion

In this section, the dispersive curves obtained with the dif-
ferent studied models are compared to that derived from the
discrete one, considered as reference. The same comparison
is also provided for the phase velocity.

The different dispersion curves are shown in Figures 5
and 6. Each figure is devoted to a different value of the
dimensionless parameter a (0.05 and 0.15, respectively).

As can be observed, all the models developed permit to
reproduce the long wavelength propagation, since the dis-
persion curves match perfectly with that of the discrete sys-
tem for low wavenumbers. However, this does not occur
when the wavenumber increases. In this case, the behavior
of the different models is analyzed in detail below.

Regardless of the reliability of the different models in
capturing the dispersive behavior, it is necessary to point
out several features of the different approaches. The
Standard I model, has a major drawback since the propaga-
tion for wavenumbers K >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12=ð1þ 16aÞp

is not stable. In
such a case, imaginary frequencies appear, thus short waves
grow exponentially in time without any external energy
source, which is not consistent in a conservative system.
This shortcoming, widely discussed in Metrikine and Askes
[36] and Gazis and Wallis [14], does not appear in the other

Table 1. Values of the parameters for the continuous models.

a1 a2 a3
Classic 1þ 4a 0 0
Standard I 1þ 4a � 1

12 ð1þ 16aÞ 0
Standard II 1þ 4a 1

4 ð1þ 16aÞ 0
Pad�e 1þ 4a 1

3 ð1þ aÞ 5/12
EKE 1þ 4a 0 1/12
Regularization 1þ 4a 0 1/6

Figure 5. Dispersion curves for a ¼ 0:05: Comparison of the continuous mod-
els with the discrete model.
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studied models where the wave frequency presents real val-
ues for any wavenumber.

Another commonly studied feature is whether the group
velocity is bounded from above, i.e., whether there is a max-
imum speed at which disturbances may propagate (see [36]).
In the case of Standard II model, the group velocity is
unbounded for any value of a, since it tends to infinity in
the short wavelength limit. When using nonstandard con-
tinualization procedures, described in Section 3.2, this does
not occur. The three of them lead to governing equations
including an inertia length scale parameter a3 which
increases the flexibility of the model. Then, the group vel-
ocity tends to a constant value in the short wavelength limit.

Regarding the ability of the different models to reproduce
the dispersion relation of the discrete system, Figures 7 and
8 show, for three different values of the dimensionless par-
ameter a, the relative error defined as

eð%Þ ¼ jxcontinuous � xdiscretej
xdiscrete

� 100: (53)

For long wavelengths, all continuous models present a
small error, with Standard I, Pad�e, and Regularization mod-
els showing the best approximation. For small wavelengths,
the equation obtained with the Regularization method
clearly presents the lowest errors, close to 5% in the limit of
the Brillouin zone (K ¼ p) for a ¼ 0:05, and around 22% in
the case of a ¼ 0:15:

The comparison of the phase velocities derived from the dif-
ferent models shows similar results. Figures 9 and 10 present the
variation of vphase for two different values of a. As it can be
seen, the continuous model obtained with the regularization tech-
nique provides the best approximation to the discrete system.

Therefore, taking into account the physical consistency of
the Regularization approach and the good approximation of
the dispersion curve of the discrete system, this technique can
be considered as a suitable method to describe with a continu-
ous model the wave propagation trough 1D linear lattice with
nearest and next-nearest interactions. Furthermore, the govern-
ing equation achieved through this technique does not require
nonclassical boundary condition to solve problems involving
finite solids, widely used in engineering applications. Some
examples of these applications are nanoelectromechanical and
microelectromechanical sensors used in the field of biomedi-
cine and biotechnology [29, 30], as well as in robotics and
machines with significant weight or size problems [24, 25].
Another relevant problem where the inner structure of the
solid is revealed in its dynamic properties can be found in the
field of metamaterials, employed to control, and manipulate
the wave propagation [26–28].

5. Conclusions

A large number of works deal with lattices with nearest
neighbor interactions (Born Von-K�arm�an model), applying

Figure 6. Dispersion curves for a ¼ 0:15: Comparison of the continuous mod-
els with the discrete model.

Figure 7. Relative error of the dispersion curves for a ¼ 0:05: Comparison of
the continuous models with the discrete model.

Figure 8. Relative error of the dispersion curves for a ¼ 0:15: Comparison of
the continuous models with the discrete model.
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different continualization methods. However, fewer frame-
works study nearest and next-nearest neighbor interactions.
In this article, a 1D linear lattice with nearest and next-near-
est neighbor interactions has been continualized by different
standard methods, as well as nonstandard techniques.

The main objective of this work is to compare the per-
formance of all the models achieved by the different con-
tinualization techniques. To that aim, a benchmark test for
the dispersion and phase velocity curves of the continuous
governing equations have been realized. An analysis of the
ability of these models to capture the dispersive behavior of
the discrete system permitted to extract the following
conclusions:

� If terms higher than second order are disregarded, all
continualized models lead to the classical rod equation.

� When Standard I and II methods are applied, the
continuous governing equations achieved have a fourth-
order spatial derivative, thus nonclassical boundary con-
ditions are needed. These boundary conditions can be
derived from energy principles, but their physical mean-
ing is unclear.

� The Standard I method leads to a model presenting
physical inconsistencies. Its dispersion curve, although
fits quite well that of the discrete system in the long-
wavelength regime, has imaginary frequencies at short
waves. Furthermore, this model is derived from a non-
positive definite strain energy function; thus, the applica-
tion of this model has to be prevented. Using the
Standard II method, the elastic potential energy density
is positive definite, but its group velocity is unbounded
when the wavenumber tends to infinity.

� In Nonstandard methods, the drawbacks explained in the
previous point are eliminated. However, the Pad�e model
needs nonclassical boundary conditions when a finite
(bounded) solid is studied. This does not occur with the
governing equation obtained via both EKE and
Regularization models.

� Applying the Pad�e method [8], to the lattice here studied,
a fourth-order spatial derivative appears. However, by
means of the EKE method, applied to the nearest and
next-nearest interactions lattice the first time in this
work, the fourth-order spatial derivative does not appear,
and the structure of the continuous governing equation
achieved is like the obtained in [8] (nearest interaction
lattice), but including the influence of the parameter a.

� The Regularization method shows the best performance.
Moreover, the governing equation achieved via this
method does not lose the physical consistency nor needs
nonclassical boundary conditions in bounded problems.
The continuous governing equation has the same struc-
ture as that of the EKE model. However, the different
coefficient in the term with spatial and time derivative
leads to a better approximation to the dispersive behavior
of the discrete system.

Nomenclature

xn discrete dimensionless position
x continuous dimensionless position
t dimensionless time variable
un discrete dimensionless displacement
u continuous dimensionless displacement
x dimensionless wave frequency
K dimensionless wavenumber
L dimensionless Lagrangian
L l dimensionless Lagrangian per unit of length
T dimensionless kinetic energy
Tl dimensionless kinetic energy per unit of length
W dimensionless potential energy
Wl dimensionless potential energy per unit of length
vphase dimensionless phase velocity
@x dimensionless spatial derivative
@t dimensionless time derivative
k1 stiffness of the interaction between nearest neighbors
k2 stiffness of the interaction between next-nearest neighbors
a interaction stiffness ratio

Figure 9. Phase velocity curves for a ¼ 0:05: Comparison of the continuous
models with the discrete model.

Figure 10. Phase velocity curves for a ¼ 0:15: Comparison of the continuous
models with the discrete model.
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Appendix: Disregarding high-order terms in the
Pad�e model

In Eq. (29), terms higher of third order in l3 are dismissed. If this
equation is rewritten in dimensional form

l2ðk1 þ 4k2Þ@xxu� 1
3
l4ðk1 þ k2Þ@xxxxu

¼ 1

~x2 @ttu� 5
15

l2

~x2 @xxttuþ 1
36

l4

~x2 @xxxxttu, (A1)

and taking into account that

~x2 ¼ k1
M

¼ k1
ql

, (A2)

lðk1 þ 4k2Þ@xxu� 1
3
l3ðk1 þ k2Þ@xxxxu

¼ q
k1

@ttu� 5
15

ql2

k1
@xxttuþ 1

36
ql4

k1
@xxxxttu, (A3)

it can be checked that there is a derivative multiplied by l4 (term
smaller than the rest) which can be disgreaded.
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