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ORIGINAL ARTICLE

A membrane theory for circular graphene sheets, based on a hyperelastic
material model for large deformations

Raphael H€ollera, Florian Libischb, and Christian Hellmicha

aInstitute for Mechanics of Materials and Structures, TU Wien – Vienna University of Technology, Vienna, Austria; bInstitute for Theoretical
Physics, TU Wien – Vienna University of Technology, Vienna, Austria

ABSTRACT
Large deflections relevant for suspended circular graphene sheets with simply supported bounda-
ries are computed by a theory for 2D membranes subjected to several types of vertical axisym-
metric forces, based on the principle of virtual power (PVP). Corresponding stress–strain relations
are provided in the form of a nonlinear hyperelastic material model for graphene. When approxi-
mating the deflections through Fourier series, the PVP yields a nonlinear algebraic system of equa-
tions, which is solved by the iterative Newton–Raphson procedure. The new computational
efficient method is validated through comparison of the numerical results it provides, with predic-
tions obtained from experimental nanoindentaion measurements.

ARTICLE HISTORY
Received 17 June 2020
Accepted 17 June 2020

KEYWORDS
Graphene; membrane
theory; hyperelasticity;
principle of virtual power;
axisymmetric loads;
bending problem

1. Introduction

Two-dimensional (2D) graphene membranes, consisting of
carbon atoms arranged in a hexagonal lattice, attract consid-
erable attention in the fields of chemistry, physics, and
material science [1–5]. As regards membrane theories for
computing the deflections of suspended graphene sheets,
several methods have been used up to the present day:
Atomistic models of graphene membranes have been devel-
oped by molecular dynamics simulations using interatomic
Lennard–Jones potentials and Tersoff–Brenner potentials
[6–9], as well as by truss-type models consisting of beam
elements for simulating covalently bonded carbon atoms in
a hexagonal graphene lattice [10–12]. The by far most popu-
lar method for the solution of mechanical deformations is
that of the finite element method, which has been the basis
for many scientific contributions up to the present day
[13–21]. Besides mechanical deformations, vibrational ana-
lysis of graphene sheets was performed indicating its funda-
mental frequencies and mode shapes [19, 22–24].

However, for a circular graphene membrane, simply sup-
ported at its boundary, a more computationally efficient
Fourier series-based theory can be provided: Therefore, we
resort to the principle of virtual power (PVP) [25–33], which
we specify for the kinematic characteristics of a 2D graphene
membrane in bending mode, see Section 2. In this context,
we consider large deformations using Lagrangian quantities,
namely the Green–Lagrange strain and the energetically con-
jugated second Piola–Kichhoff stress. Corresponding stress–-
strain relations are linked by a nonlinear, anisotropic

hyperelastic material model of graphene [34], based on density
functional theory (DFT) [35, 36]. Furthermore, the investi-
gated circular membranes are subjected to several types of axi-
symmetric vertical forces, namely to single forces or to
distributed surface loads acting on circular areas, whereby the
action points and the areas form axisymmetric patterns. Such
kinds of concentrated loads allow for consideration of nanoin-
dentation of free-standing graphene membranes [3]. In
Section 3, the PVP-based governing equation is used for con-
structing a nonlinear algebraic system of equations for deter-
mining the sought deflection function. The latter is expanded
into Fourier series according to Navier’s proposal [37] and the
unknown Fourier coefficients of the nonlinear multivariate
system of equations are determined iteratively using the
Newton–Raphson method [38]. Section 4 is devoted to
numerical investigations in the form of three representative
examples, and to comparing respective results with experi-
mental measurements. Finally, concluding remarks are pro-
vided in Section 5. Appendix A contains the algebraic system
of equations for the three aforementioned numerical examples,
in order to solve the unknown Fourier coefficients.

2. Kinematics and stress resultants of suspended
graphene membranes for large deformations –
reviewed in the context of the PVP

2.1. Basics

The PVP is an efficient and safe method for constructing
energetically consistent theories of structural members, as
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documented by [25–27] and [29, 30]. Setting our focus point
on 2D graphene membranes, we start with the formulation
of the PVP for a standard 3D continuum, in the format put
forward by Germain and followers [30–33,39],

Pext þ Pint ¼ 0, (1)

with

Pext ¼ þ
ð
V

fðxÞ � v̂ðxÞ dV þ
ð
S

Tðn, xÞ � v̂ðxÞ dS, (2)

Pint ¼ �
ð
V

r : d̂ dV , (3)

where Pext and Pint denote the virtual power of the external
forces and of the internal forces, respectively; x denotes the
actual location vectors throughout the continuum and at its
boundaries with outward normals n; f denotes volume
forces; T denotes traction (surface) forces; v̂ denotes the vir-
tual velocity; r denotes the Cauchy stress; and d̂ denotes the
virtual Eulerian strain rate. The PVP implies both kinematic
compatibility and equilibrium of the solid continuum.

In the case of circular membranes, undergoing large
deformations, we formulate strains and stresses as a function
of the location vector X in the undeformed configuration
(Lagrangian representation). Any position within the surface
of such a membrane is described by a cylindrical coordinate
system, with an origin located in the center of the mem-
brane, and with base vectors er, eu, and ez: The latter is
orthogonal to the undeformed membrane and the azimuth
of u ¼ 0 corresponds to a base vector er pointing in the so-
called “zigzag” direction of graphene. Thus, for describing
large deformations, the following virtual power of external
and internal forces are provided in Lagrangian representa-
tion

Pext ¼
ðR
0

ð2p
0

v̂ðXÞ � F � pðXÞ � NðXÞ r du dr, (4)

Pint ¼ �
ðR
0

ð2p
0

ðþh
2

�h
2

p : Ê
:

r dz du dr, (5)

where X denotes the initial location vectors throughout the
membrane with outward normals N and radius R; F denotes
the deformation gradient; p denotes the second
Piola–Kirchhoff stress tensor; and Ê

:
denotes the virtual

Green–Lagrange strain rate. Note that we neglected volume

force vectors due to the infinitesimal small thickness of gra-
phene (single layer of carbon atoms), see Section 2.2.

2.2. Kinematics

2D graphene membranes in so-called bending mode are
characterized by the following kinematic features:

1. The thickness of graphene is negligibly small [4, 5],
such that all straight lines (generators) orthogonal to
the undeformed membrane remain, throughout the
deformation process, straight, constant in length, and
orthogonal to the undeformed membrane plane.

2. All points of a generator have, in good approximation,
the same displacement in the z-direction, namely the
deflection uz, see Figure 1.

3. The deflections are large when compared to the thick-
ness of the membrane.

4. Axisymmetric loads result in axisymmetric patterns of
the displacements.

5. Stretching stiffness is dominant over negligible shear
and bending stiffnesses.

Under the aforementioned kinematic conditions, the dis-
placement field of the membrane reads as

uðXÞ ¼ uzðrÞ ez, (6)

and the corresponding virtual velocity field follows from a
virtual displacement field of the form

ûðXÞ ¼ ûzðrÞ ez: (7)

Namely, temporal derivation of (7) yields the virtual velocity
field as

v̂ðXÞ ¼ û
:

ðXÞ ¼ v̂zðrÞ ez, (8)

with v̂z as the temporal derivative of the time-dependent
virtual displacement ûz:

Displacement field (6) implies a Green–Lagrange strain
tensor E [32]

E ¼ 1
2

@u
@X

þ @u
@X

� �T

þ @u
@X

� �T

� @u
@X

" #

¼
X

i¼r,u, z

X
j¼r,u, z

Eij ei � ej, (9)

with non-zero components reading as

ErrðrÞ ¼ 1
2

@uzðrÞ
@r

� �2

, (10)

Figure 1. Sideview in the r–z-plane of a graphene membrane in the undeformed and in the deformed configuration.
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where the transverse shear strains are neglected due to the
extreme thinness of the 2D membrane. Derivation of (10)
with respect to the time, and substitution of the occurring
time derivatives of displacements by virtual velocities, yields

Ê
:

¼ _̂Err er � er, (11)

with

_̂ErrðrÞ ¼ @uzðrÞ
@r

@v̂zðrÞ
@r

: (12)

Thus, the virtual Green–Lagrange strain rate (appearing in
the virtual power of internal forces) depends on both the
virtual velocity v̂z and the actual deflection uz indicating a
non-linearity in the structural problem.

Furthermore, displacement field (6) implies a deform-
ation gradient, F ¼ 1þ @u=@X (appearing in the virtual
power of external forces), reading as

F ¼ Frr er � er þ Fuu eu � eu þ Fzr ez � er þ Fzz ez � ez,

(13)

with

Frr ¼ 1, Fuu ¼ 1, Fzr ¼ @uzðrÞ
@r

, and Fzz ¼ 1: (14)

2.3. Virtual power of internal forces and corresponding
hyperelastic material model of graphene

As regards specification of the virtual power of internal
forces (5) for the kinematic characteristics of graphene
membranes undergoing large deformations, the virtual
Green–Lagrange strain rates (12) imply that only stresses prr
perform power along the virtual strain rates _̂Err: Hence, the
virtual power of the internal forces reads as

Pint ¼ �
ðR
0

ð2p
0

ðþh
2

�h
2

prrðrÞ _̂ErrðrÞ r dz du dr

¼ �
ðR
0

ð2p
0

ðþh
2

�h
2

prrðrÞ @uzðrÞ
@r

@v̂zðrÞ
@r

� �
r dz du dr:

(15)

Equation (15) indicates that the membrane-specific “degrees
of freedom” @uzðrÞ

@r
@v̂zðrÞ
@r induce internal stress resultants on

which they produce power, namely internal forces per unit
length

nL, rrðrÞ ¼
ðþh
2

�h
2

prrðrÞ dz � p2Drr ðrÞ: (16)

Stress resultant (16) can be interpreted as the normal compo-
nent of the 2D second Piola–Kirchhoff stress tensor in er dir-
ection acting on a 2D solid. For a hexagonal graphene lattice,
the nonlinear, anisotropic material behavior is described by the
following hyperelastic stress–strain relation [34]

nL, rr ¼ q2Dm, 0 b1 þ b2 Err þ b3 Srr½ �: (17)

In Eq. (17), q2Dm, 0 is the initial mass density per area of gra-
phene; b1, b2, and b3 are scalars depending on graphene’s
DFT-based material fitting coefficients ci and principal
invariants Ii of the strain and structural tensor [34]1

b1 ¼ c2 I1 þ c6 I21 þ c9 I31 þ c13 I3,

b2 ¼ �c2 þ 2 c4 þ ð3 c5 � c6ÞI1 þ ð4 c7 � c9ÞI21 ,
b3 ¼ c3 þ c13 I1,

(18)

with

I1 ¼ Err, I3 ¼ E3rr cos ð6uÞ: (19)

Srr refers to the anisotropic behavior and is the component
of the second-order tensor, S ¼ @I3=@E, reading as,

Srr ¼ 3 E2rr cos ð6uÞ, (20)

characterizing the influence of the strain of Err onto the
mechanical response of graphene.

Inserting (16) together with (17)–(19) into the power
expression (15) yields the virtual power of internal forces in
the following form

Pint ¼ �q2Dm, 0

ðR
0

ð2p
0

2 c4 Err þ 3 c5 þ c3 cos ð6uÞð ÞE2rr
�

þ4 c7 þ c13 cos ð6uÞð ÞE3rr
�� @uzðrÞ

@r
@v̂zðrÞ
@r

� �
r du dr:

(21)

Substitution of the Green–Lagrange strain (10) results in

Pint ¼ �q2Dm, 0

ðR
0

ð2p
0

c4
@uzðrÞ
@r

� �2

þ 3
4

c5 þ c3 cos ð6uÞð Þ @uzðrÞ
@r

� �4
"

þ 1
2

c7 þ c13 cos ð6uÞð Þ @uzðrÞ
@r

� �6
#
� @uzðrÞ

@r
@v̂zðrÞ
@r

� �
r du dr:

(22)

2.4. Virtual power of external forces and formulation of
the PVP

Evaluating (4) for a membrane with outward normals N ¼
ez, with virtual velocity (8) and deformation gradient (13)
and (14) yields

Pext ¼ þ
ðR
0

ð2p
0

v̂ðXÞ � F � pðXÞ � ez r du dr

¼ þ
ðR
0

ð2p
0

v̂zðrÞ � pzzðrÞ þ @uzðrÞ
@r

przðrÞ
� �

r du dr:

(23)

Eq. (23) indicates that the membrane-specific degree of free-
dom v̂zðrÞ induces external Lagrangian stress resultants on
which power is produced, namely vertical Lagrangian sur-
face loads (dimension force per unit area), reading as

1The fitting coefficients within the used hyperelastic material model of
graphene are valid for Green–Lagrange strains between �0.03 and þ0.28 [34,
Table 2].
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pL, zðrÞ ¼ pzzðrÞ þ @uzðrÞ
@r

przðrÞ: (24)

Substitution of (24) into the power expression (23) yields
the virtual power of external forces in the following form

Pext ¼ þ
ðR
0

ð2p
0

pL, zðrÞ v̂zðrÞ r du dr: (25)

Regarding more complex loading cases, Eq. (25) can be
straightforwardly extended to membranes loaded by surface
loads per unit area pL, zðrÞ over the entire membrane, dis-
tributed forces �pL, z over the centered circular area of radius
RT, and vertical single forces PL, z acting at the center of the
membrane, see Figure 2. In this context, the virtual power
of external forces for a circular membrane subjected to axi-
symmetric loads reads as

Pext ¼ þ
ðR
0

ð2p
0

pL, zðrÞ v̂zðrÞ r du dr þ �pL, z

ðRT

0

ð2p
0

v̂zðrÞ r du dr

þ PL, z v̂zðrÞ
����
r¼0

:

(26)

Insertion of the expression for the virtual power of
internal forces (22) as well as of the expression for the vir-
tual power of external forces (26), into the PVP (1), yields

Pext þ Pint

¼ þ
ðR
0

ð2p
0

pL, zðrÞ v̂zðrÞ r du dr þ �pL, z

ðRT

0

ð2p
0

v̂zðrÞ r du dr þ PL, z v̂zðrÞ
����
r¼0

� q2Dm, 0

ðR
0

ð2p
0

c4
@uzðrÞ
@r

� �2

þ 3
4

c5 þ c3 cos ð6uÞð Þ @uzðrÞ
@r

� �4
"

þ 1
2

c7 þ c13 cos ð6uÞð Þ @uzðrÞ
@r

� �6
#
� @uzðrÞ

@r
@v̂zðrÞ
@r

� �
r du dr ¼ 0:

(27)

The PVP (27) is the basis for determining the unknown
deflection function uzðrÞ: We therefore expand the latter
into a Fourier series, which leads to the so-called Galerkin
method, as described in Section 3.

3. Mathematical solution procedure

The PVP in the form (27) can also be used for constructing a
nonlinear algebraic system of equations giving access to the
deflection function uzðrÞ: For this purpose, we resort to Navier
[37], representing the axisymmetric deflection function as a
series of trigonometric functions, that is, a Fourier series

uzðrÞ ¼
XNm

m¼1

am wmðrÞ, (28)

where am are unknown Fourier coefficients (amplitudes),
and wm denote corresponding trigonometric functions read-
ing as

wmðrÞ ¼ cos
m r p
2 R

� �
for m ¼ 1, 3, 5::: (29)

Subscripts m refer to the number of waves related to the
trigonometric functions, with Nm as the total number of
employed deflection modes. Eq. (29) automatically ensures a
circular membrane with simply supported boundaries, that
is, deflection modes are zero for r¼R: wmðRÞ ¼ 0:

Similar choices are made for the virtual velocities v̂zðrÞ,
through introduction of ansatz functions identical to those
in Eq. (28),

v̂zðrÞ ¼
XNt

t¼1

_̂at wtðrÞ, (30)

with the virtual velocity coefficient _̂at: Insertion of (28) and
(30) into Eq. (27) yields the following Galerkin-type solution
scheme

Pext þ Pint

¼
XNt

t¼1

_̂at

ðR
0

ð2p
0

pL, z wt r du dr þ �pL, z

ðRT

0

ð2p
0

wt r du dr þ PL, z wt

����
r¼0

8><
>:

�q2Dm, 0

ðR
0

ð2p
0

c4
XNm

m¼1

am
@wm

@r

 !2

þ 3
4

c5 þ c3 cos ð6uÞð Þ
XNm

m¼1

am
@wm

@r

 !4
2
4

þ 1
2

c7 þ c13 cos ð6uÞð Þ
XNm

m¼1

am
@wm

@r

 !6
3
5�

XNm

m¼1

am
@wm

@r

 !
@wt

@r
r du dr

9=
;

¼ 0:

(31)

After simplification, we further obtain a more suitable solu-
tion scheme

Figure 2. (a) Vertical surface load pL, zðrÞ non-uniformly distributed over the entire membrane; (b) vertical surface load �pL, z uniformly distributed over a centered cir-
cular area of radius RT ; and (c) vertical single force PL, z acting in the center of the membrane.
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Requiring validity of (32) for any combinations of the vir-
tual coefficients _̂at yields a nonlinear system of Nt algebraic
equations for the unknowns am, reading as

ft ¼ Vp
t þ Vt�p þ VP

t �
XNm

j, k, l¼1

aj ak al M
I
jklt

�
XNm

j, k, l,m,n¼1

aj ak al am an M
II
jklmnt

�
XNm

j, k, l,m,n, q, s¼1

aj ak al am an aq as M
III
jklmnqst ¼ 0, for t ¼ 1, 3, :::,Nt,

(33)

with

MI
jklt ¼ 2 p q2Dm, 0 c4

ðR
0

@wj

@r
@wk

@r
@wl

@r
@wt

@r
r dr, (34)

as the stiffness matrix elements associated to deformation
amplitudes of third power (see Appendix A, Eq. (A.4), for
analytical expressions concerning (34));

MII
jklmnt ¼

3
2
p q2Dm, 0 c5

ðR
0

@wj

@r
@wk

@r
@wl

@r
@wm

@r
@wn

@r
@wt

@r
r dr, (35)

as the stiffness matrix elements associated to deformation
amplitudes of fifth power (see Appendix A, Eq. (A.5), for
analytical expressions concerning (35));

MIII
jklmnqst ¼ p q2Dm, 0 c7

ðR
0

@wj

@r
@wk

@r
@wl

@r
@wm

@r
@wn

@r

@wq

@r
@ws

@r
@wt

@r
r dr,

(36)

as the stiffness matrix elements associated to deformation
amplitudes of seventh power (see Appendix A, Eq. (A.6), for
analytical expressions concerning (36));

Vp
t ¼

ðR
0

ð2p
0

pL, z wt r du dr, (37)

as the load vector elements associated to general surface
loads acting on the entire membrane, respectively (see
Appendix A, Eq. (A.1), for analytical expressions concerning
(37), specified for constant and cosine-type loads);

Vt�p ¼ �pL, z

ðRT

0

ð2p
0

wt r du dr, (38)

as the load vector elements associated to the distributed load
acting over the centered circular area of radius RT (see
Appendix A, Eq. (A.2), for analytical expressions concerning
(38));

VP
t ¼ PL, z wtjr¼0 , (39)

as the load vector elements associated to single forces act-
ing in the center of the membrane (see Appendix A, Eq.
(A.3), for analytical expressions concerning (39)). The
corresponding approximative solution for uzðrÞ is more
accurate for a larger number Nm of included series deflec-
tion members.

As regards solving the derived nonlinear multivariate sys-
tem of Eq. (33), we resort to the iterative Newton–Raphson
method [38] being defined as:

aiþ1 ¼ ai � J�1ðaiÞ � fðaiÞ, (40)

where vector ai ¼ ½a1, i, a3, i , :::, aNm , i�T contains the
unknown amplitudes am, i for each iteration step i; vector
f ¼ ½f1, i, f3, i, :::, fNt , i�T contains each line t of the nonlinear
system of equation according to (33); and J is the so-
called Jacobian matrix as the partial derivative of f with
respect to the amplitudes a: Thus, the elements of the
Nt � Nj Jacobian matrix for iteration step i, when speci-
fied for (33), read as:

Pext þ Pint

¼
XNt

t¼1

_̂at

ðR
0

ð2p
0

pL, z wt r du dr þ �pL, z

ðRT

0

ð2p
0

wt r du dr þ PL, z wt

����
r¼0

8><
>:

�2 pq2Dm, 0 c4
XNm

j, k, l¼1

aj ak al

ðR
0

@wj

@r
@wk

@r
@wl

@r
@wt

@r
r dr

� 3
2
p q2Dm, 0 c5

XNm

j, k, l,m, n¼1

aj ak al am an

ðR
0

@wj

@r
@wk

@r
@wl

@r
@wm

@r
@wn

@r
@wt

@r
r dr

�p q2Dm, 0 c7
XNm

j, k, l,m, n, q, s¼1

aj ak al am an aq as

ðR
0

@wj

@r
@wk

@r
@wl

@r
@wm

@r
@wn

@r

@wq

@r
@ws

@r
@wt

@r
r dr

9>=
>;

¼ 0:

(32)
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Jtj, i ¼ @ft, i
@aj, i

¼ �3
XNm

k, l¼1

ak al M
I
jklt � 5

XNm

k, l,m, n¼1

ak al am an M
II
jklmnt

� 7
XNm

k, l,m, n, q, s¼1

al al am an aq as M
III
jklmnqst:

(41)

According to the first iteration step, i¼ 0, an initial estimate
for the amplitudes a0 can be directly calculated using a
reduced system of equations, including deflection amplitudes
up to the third power, namely

Vp
t þ Vt�p þ VP

t �
XNm

j, k, l¼1

aj, 0 ak, 0 al, 0 MI
jklt ¼ 0,

for t ¼ 1, 3, :::,Nt:

(42)

Based on the initial estimate a0, the Newton–Raphson iter-
ation process (40) is repeated until convergence is reached.

4. Application to circular graphene membranes and
validation by means of AFM experiments

The structural problem (33)–(39) is now applied to the ana-
lysis of a free-standing circular graphene membrane of
R¼ 500 nm radius, simply supported at its boundary. In the
following, this membrane is subjected to different axisym-
metric mechanical loads as constant and cosine-type loads
pL, zðrÞ over the entire membrane, respectively, as well as
distributed loads �pL, z over a circular area of radius RT (see
Figure 3), each of them resulting in a force of F¼ 500 nN.
Corresponding results will be presented in a dimensionless
way, which does not only comprise the actual deformations
arising from the aforementioned material, structural, and
loading characteristics, but which reflects infinitely many
additional problems which are associated with different
membrane radii and different mechanical loads. In more
detail, we consider a dimensional analysis [40] of the deflec-
tion function (28) arising from the solution of (33), together

Figure 4. Dimensionless deflections ½uz=R� in circular graphene membrane, with simply supported boundary, subjected to a concentrated surface load
�pL, z R=ðq2Dm, 0 c6Þ ¼ 1:657 : (a) deflections in entire membrane, (b) deflections in r–z-plane, (c) convergence study of the dimensionless deflection located at r ¼ 0
as a function of the number of deflection modes Nm , and (d) corresponding computing time for results associated to one point of the plate.

Figure 3. Circular graphene membrane with simply supported boundaries and radius R, subjected to (a) vertical load �pL, z distributed over a centered circular area
of radius RT , (b) uniform vertical surface load pL, z , and (c) non-uniform vertical cosine-type load pL, zðrÞ:
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with (34)–(39). This yields the following dimensionless rela-
tions

uz
R

¼ uz
R

r
R
,
RT

R
,
c3
c4
,
c5
c4
,
c7
c4
,
c13
c4

,
pL, z R
q2Dm, 0 c4

,
�pL, z R

q2Dm, 0 c4

 !
: (43)

Eq. (43) elucidates that the basic dimensionless functions
½uz=R� depend on geometrical characteristics, in-plane stiff-
ness constants of graphene [34], and dimensionless quanti-
ties related to mechanical loadings, so as to deliver
dimensionless quantities related to deflections. These
relations, depicted in the format of ½uz=R�ðr=R ¼ RT=R ¼
c3=c4 ¼ c5=c4 ¼ c7=c4 ¼ c13=c4 ¼ pL, z R=ðq2Dm, 0 c4Þ ¼ �pL,
z R=ðq2Dm, 0 c4Þ ¼ constant) in Figures 4, 6, and 7, are valid
for any rescaling R ! kR, once r ! k r, RT ! kRT ,
pL, z ! pL, z=k, and �pL, z ! �pL, z=k:

4.1. Example 1/validation: Circular graphene membrane
subjected to a concentrated load

The circular membrane of radius R¼ 500 nm is subjected to
a vertical load �pL, z, which is distributed over the centered
circular area of radius RT ¼ 16:5 nm, see Figure 3(a). This
concentrated load represents the AFM tip used to indent the
graphene membrane in the experiment by Lee et al. [3]. In
this context, a circular graphene membrane of radius
R¼ 500 nm is subjected to the indenter tip, representing a
resulting force F acting on a circular area of radius RT of
16.5 nm and 27.5 nm, respectively. The relation between the
Eulerian loading area dS and the Lagrangian loading area
dS0,

dS0 Nz ¼ dS
detF

nz, (44)

results in equivalent loading areas of the indenter, dS0 ¼ dS,
when considering detF ¼ 1 according to (13) and (14), as
well as a horizontal tangent of the aforementioned tip with
outward normals Nz ¼ nz ¼ �1:

The approximative solution for the dimensionless max-
imum deflection ½uz=R� located at r¼ 0 can be regarded as
converged once Nm¼ 16 series members are employed,

see Figure 4(c). With Matlab version R2012b [41] running
on a computer AMD Phenom(tm) II X6 1090 T with 8 GB
RAM, this related to 24.4 s computing time, see Figure
4(d). Considering corresponding fields, the maximal
deflections occur at the center of the membrane, see
Figure 4(a)–(b).

For validation of the obtained structural problem accord-
ing to (33)–(39), the resulting deflections stemming from
the concentrated load are transferred to force–displacement
curves up to a force F of 1000 nN. Those curves are then
compared to the aforementioned measurements by Lee et al.
[3] performed with an atomic force microscope (AFM), see
Figure 5. Maximum differences between experimental meas-
urements and series-based results of the deflections uz,max

are as low as 0.27% for F¼ 500 nN, and 1.44%
for F¼ 1000 nN.

4.2. Example 2: Circular graphene membrane subjected
to an uniform surface load

The membrane is subjected to an uniform surface load
pL, zðrÞ ¼ constant ¼ pL, z, representing the deadload of a
graphene membrane for example, see Figure 3(b). The
approximative solution for the dimensionless maximum
deflection uz=R½ � at the membrane’s center can be regarded
as converged once Nm¼ 7 series members are employed, see
Figure 6(c). With Matlab version R2012b running on a com-
puter AMD Phenom(tm) II X6 1090 T with 8GB RAM, this
related to 0.2 s computing time, see Figure 6(d). Considering
corresponding fields, the maximal deflections occur at the
center of the membrane, see Figures 6(a)–(b).

4.3. Example 3: Circular graphene membrane subjected
to a cosine-type surface load

The membrane is subjected to a cosine-type surface load
pL, zðrÞ ¼ pL, z cos ðr p=ð2 RÞÞ, representing an external
pressure for example, see Figure 3(c). The approximative
solution for the dimensionless deflection uz=R½ � at the
membrane’s center can be regarded as converged once

Figure 5. Validation of series-based solution procedure (33) according to Example 1 by experimental measurements, as provided by Lee et al. [3] using AFM
nanoindentation.
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Nm ¼ 8 series members are employed, see Figure 7(c).
With Matlab version R2012b running on a computer
AMD Phenom(tm) II X6 1090 T with 8 GB RAM, this

related to 0.3 s computing time, see Figure 7(d).
Considering corresponding fields, the maximal deflections
occur at the center of the membrane, see Figure 7(a)–(b).

Figure 7. Dimensionless deflections ½uz=R� in circular graphene membrane, with simply supported boundary, subjected to a cosine-type surface load
pL, z R=ðq2Dm, 0 c6Þ ¼ 0:0039 : (a) deflections in entire membrane, (b) deflections in r–z-plane, (c) convergence study of the dimensionless deflection located at r ¼ 0
as a function of the number of deflection modes Nm , and (d) corresponding computing time for results associated to one point of the plate.

Figure 6. Dimensionless deflections ½uz=R� in circular graphene membrane, with simply supported boundary, subjected to constant surface load pL, z R=ðq2Dm, 0 c6Þ ¼
0:0018 : (a) deflections in entire membrane, (b) deflections in r–z-plane, (c) convergence study of the dimensionless deflection located at r ¼ 0 as a function of the
number of deflection modes Nm , and (d) corresponding computing time for results associated to one point of the plate.

8 R. HÖLLER ET AL.



5. Conclusion

The PVP, with rigorous discrimination of internal versus exter-
nal forces, was applied to the problem of a circular suspended
graphene membrane, simply supported at its boundary, and
subjected to different axisymmetric mechanical loads. As
regards material behavior of graphene, the DFT-based hypere-
lastic material model [34] was used, and the resulting Fourier
series-based nonlinear algebraic system of equations was solved
by the iterative Newton–Raphson method. The aforementioned
solution procedure also appears as an efficient and computa-
tional fast method for modeling specific mechanical problems
of graphene membranes. The numerical results are validated by
experimental measurements as presented by Lee et al. [3] using
AFM nanoindentation, being in good agreement up to large
deformations. We regard this as an interesting example for
energetically consistent formulations appearing as the basis for
particularly relevant and reliable solutions to the growing field
of the structural mechanics of graphene. Such an energetically
consistent theory is comparable to other nonlinear problems
regarding large deformations as the analyses of laminated com-
posite beams using the principle of virtual work and a finite
element approximation in a total Lagrangian manner [42]; of
inflated circular hyperelastic membranes based on the vari-
ational method including a Mooney–Rivlin strain energy [43];
and of the nonlinear vibration response of a neo-Hookean
membrane obtained by means of the Galerkin method [44].

Nomenclature

ai vector containing amplitudes am, i for each iteration step i
associated to Newton–Raphson method

am Fourier coefficient of deflection approximation
_̂at Fourier coefficient in approximation of virtual velocity
ci DFT-based fitting coefficients for hyperelastic material model
d̂ virtual Eulerian strain rate
er, eu, ez base vectors of cylindrical coordinate system
E Green–Lagrange strain tensor
Err normal component of E in the r-direction
Ê
:

virtual Green–Lagrange strain rate
_̂Err normal component of Ê

:
in the r-direction

f volume force vector
fNR vector containing functions f NRt associated to

Newton–Raphson method
f NRt multivariate function of the nonlinear system of equations
F deformation gradient
Frr normal component of F in the r-direction
Fuu normal component of F in the u-direction
Fzz normal component of F in the z-direction
Fzr shear component of F in the r–z-plane
h effective thickness of graphene
i index of summation/of vector component
I1, I3 principal invariants of the strain and structural tensor
J Jacobian matrix associated to Newton–Raphson method
Jtj, i elements of J for each iteration step i
j index of summation/of vector component
k index of summation/of vector component
l index of summation/of vector component
m index of summation/of vector component
MI

jklt “stiffness matrix element” associated to deformation ampli-
tudes of third power

MII
jklmnt “stiffness matrix element” associated to deformation ampli-

tudes of fifth power
MIII

jklmnt “stiffness matrix element” associated to deformation ampli-
tudes of seventh power

n index of summation/of vector component
n outward normal vector onto the boundaries of

deformed continuum
N outward normal vector onto the boundaries of

undeformed membrane
nL, rr internal normal force per unit length in the r-direction
Nm number of Fourier series members approximating

the deflection
Nt number of Fourier series members approximating the vir-

tual velocity
PL, z single force acting in vertical direction (z)
�pL, z vertical surface load per unit area, acting over specific circu-

lar area
pL, z vertical surface load per unit area, acting over

entire membrane
PVP principle of virtual power
Pext virtual power of external forces
Pint virtual power of internal forces
q index of summation/of vector component
r radial coordinate of the cylindrical coordinate system
R radius of the membrane
RT radius of the surface load �pL, z
S derivative of the principal invariant I3 with respect to E
Srr component of S in the r-direction, characterizing graphene’s

anisotropic material behavior
s index of summation/of vector component
t index of summation/of vector component
T traction vector
u displacement vector
û virtual displacement vector
uz deflection of the membrane
ûz virtual deflection of the membrane
v̂ ¼ û : virtual velocity vector
vz component of v̂ in the z-direction
Vp
t “load vector element” associated to surface load acting on

entire membrane
Vt�p “load vector element” associated to surface load acting on

circular area
VP
t “load vector element” associated to single force

wm mth deflection mode associated to 2D Fourier series
x location vector throughout the deformed membrane
X location vector throughout the undeformed membrane
z vertical coordinate of the cylindrical coordinate system
b1, b2, b3 scalar functions of the hyperelastic material model for graphene
k scaling factor
p second Piola–Kirchhoff stress tensor
prr normal component of p in the r-direction
prz shear component of p in the r–z-plane
pzz normal component of p in the z-direction
p2Drr normal component of 2D second Piola–Kirchhoff

stress tensor
q2Dm, 0 initial mass density per area of graphene
r Cauchy stress tensorP

summation operator
u azimuth of the cylindrical coordinate system

Funding

The support of the doctoral college TU-D funded by TU Wien is grate-
fully acknowledged. The authors acknowledge the TU Wien University
Library for financial support through its Open Access
Funding Program.

References

[1] A.A. Balandin, et al., Superior thermal conductivity of single-
layer graphene, Nano Lett., vol. 8, no. 3, pp. 902–907, 2008.
DOI: 10.1021/nl0731872.

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 9

https://doi.org/10.1021/nl0731872


[2] K.I. Bolotin, et al., Ultrahigh electron mobility in suspended
graphene, Solid State Commun., vol. 146, no. 9–10, pp.
351–355, 2008. DOI: 10.1016/j.ssc.2008.02.024.

[3] C. Lee, X. Wei, J.W. Kysar, and J. Hone, Measurement of the
elastic properties and intrinsic strength of monolayer graphene,
Science, vol. 321, no. 5887, pp. 385–388, 2008. DOI: 10.1126/
science.1157996.

[4] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov,
and A.K. Geim, The electronic properties of graphene, Rev.
Mod. Phys., vol. 81, no. 1, pp. 109–155, 2009. DOI: 10.1103/
RevModPhys.81.109.

[5] C.N. Lau, W. Bao, and J. Velasco, Properties of suspended gra-
phene membranes, Materialstoday, vol. 15, no. 6, pp. 238–245,
2012. DOI: 10.1016/S1369-7021(12)70114-1.

[6] M. Neek-Amal and F.M. Peeters, Continuum-molecular model-
ling of graphene, Phys. Rev. B, vol. 81, no. 23, pp. 235421,
2010. DOI: 10.1103/PhysRevB.81.235421.

[7] T.-H. Fang, T.H. Wang, J.-C. Yang, and Y.-J. Hsiao,
Mechanical characterization of nanoindented graphene via
molecular dynamics simulations, Nanoscale Res. Lett., vol. 6,
pp. 481, 2011. DOI: 10.1186/1556-276X-6-481.

[8] A. Shakouri, T.Y. Ng, and R.M. Lin, A new rebo potential
based atomistic structural model for graphene sheets,
Nanotechnology, vol. 22, no. 29, pp. 295711, 2011. DOI: 10.
1088/0957-4484/22/29/295711.

[9] K. Samadikhah, R. Larsson, F. Bazooyar, and K. Bolton,
Continuum-molecular modelling of graphene, Comput. Mater.
Sci., vol. 53, no. 1, pp. 37–43, 2012. DOI: 10.1016/j.commatsci.
2011.09.018.

[10] A. Sakhaee-Pour, M.T. Ahmadian1, and R. Naghdabadi,
Vibrational analysis of single-layered graphene sheets,
Nanotechnology, vol. 19, no. 8, pp. 085702, 2008. DOI: 10.
1088/0957-4484/19/8/085702.

[11] A. Sakhaee-Pour, Elastic buckling of single-layered graphene
sheet, Comput. Mater. Sci., vol. 45, no. 2, pp. 266–270, 2009.
DOI: 10.1016/j.commatsci.2008.09.024.

[12] S. Rouhi and R. Ansari, Atomistic finite element model for axial
buckling and vibration analysis of single-layered graphene
sheets, Physica E, vol. 44, no. 4, pp. 764–772, 2012. DOI: 10.
1016/j.physe.2011.11.020.

[13] A.J. Gil, S. Adhikari, F. Scarpa, and J. Bonet, The formation of
wrinkles in single-layer graphene sheets under nanoindentation,
J. Phys.: Condens. Matter., vol. 22, no. 14, pp. 145302, 2010.
DOI: 10.1088/0953-8984/22/14/145302.

[14] F. Scarpa, S. Adhikari, A.J. Gil, and C. Remillat, The bending of
single layer graphene sheets: the lattice versus continuum
approach, Nanotechnology, vol. 21, no. 12, pp. 125702, 2010.
DOI: 10.1088/0957-4484/21/12/125702.

[15] R. Larsson and K. Samadikhah, Atomistic continuum modeling
of graphene membranes, Comput. Mater. Sci., vol. 50, no. 5,
pp. 1744–1753, 2011. DOI: 10.1016/j.commatsci.2011.01.006.

[16] M. Xu, J.T. Paci, J. Oswald, and T. Belytschko, A constitutive
equation for graphene based on density functional theory, Int.
J. Solids Struct., vol. 49, no. 18, pp. 2582–2589, 2012. DOI: 10.
1016/j.ijsolstr.2012.05.019.

[17] M. Xu, A. Tabarraei, J.T. Paci, J. Oswald, and T. Belytschko, A
coupled quantum/continuum mechanics study of graphene frac-
ture, Int. J. Fract., vol. 173, no. 2, pp. 163–173, 2012. DOI: 10.
1007/s10704-011-9675-x.

[18] X. Wei and J.W. Kysar, Experimental validation of multiscale
modeling of indentation of suspended circular graphene mem-
branes, Int. J. Solids Struct., vol. 49, no. 22, pp. 3201–3209,
2012. DOI: 10.1016/j.ijsolstr.2012.06.019.

[19] S. Jiang, S. Shi, and X. Wang, Nanomechanics and vibration
analysis of graphene sheets via a 2D plate model, J. Phys. D:
Appl. Phys., vol. 47, no. 4, pp. 045104, 2014. DOI: 10.1088/
0022-3727/47/4/045104.

[20] S. Seifoori and H. Hajabdollahi, Impact behavior of single-lay-
ered graphene sheets based on analytical model and molecular

dynamics simulation, Appl. Surf. Sci., vol. 351, pp. 565–572,
2015. DOI: 10.1016/j.apsusc.2015.05.114.

[21] R. Ghaffari, T.X. Duong, and R.A. Sauer, A new shell formula-
tion for graphene structures based on existing ab-initio data,
Int. J. Solids Struct., vol. 135, pp. 37–60, 2018. DOI: 10.1016/j.
ijsolstr.2017.11.008.

[22] M. Sadeghi and R. Naghdabadi, Nonlinear vibrational analysis
of single-layer graphene sheets, Nanotechnology, vol. 21, no. 10,
pp. 105705, 2010. DOI: 10.1088/0957-4484/21/10/105705.

[23] J.R. Mianroodi, S.A. Niaki1, R. Naghdabadi, and M. Asghari,
Nonlinear membrane model for large amplitude vibration of
single layer graphene sheets, Nanotechnology, vol. 22, no. 30,
pp. 305703, 2011. DOI: 10.1088/0957-4484/22/30/305703.

[24] C.G. Wang, L. Lan, Y.P. Liu, H.F. Tan, and X.D. He, Vibration
characteristics of wrinkled single-layered graphene sheets, Int. J.
Solids Struct., vol. 50, no. 10, pp. 1812–1823, 2013. DOI: 10.
1016/j.ijsolstr.2013.02.002.

[25] P. Germain, M�ecanique des milieux continus [Continuum
Mechanics], C. R. Acad. Sc. Paris., vol. 274, no. S�erie A, pp.
1051–1055, 1972. in French.

[26] P. Germain, La m�ethode des puissances virtuelles en m�ecanique
des milieu continus [The principle of virtual power in solid
mechanics], J. M�ec., vol. 12, no. 2, pp. 235–274, 1973. in
French.

[27] P. Germain, The method of virtual power in continuum
mechanics. Part 2: microstructure, SIAM J. Appl. Math., vol.
25, no. 3, pp. 556–575, 1973. DOI: 10.1137/0125053.

[28] P. Germain, Q.S. Nguyen, and P. Suquet, Continuum thermo-
dynamics, Trans. ASME, vol. 50, no. 4b, pp. 1010–1020, 1983.
DOI: 10.1115/1.3167184.

[29] G.A. Maugin, The method of virtual power in continuum
mechanics: application to coupled fields, Acta Mech., vol. 35,
no. 1–2, pp. 1–70, 1980. DOI: 10.1007/BF01190057.

[30] G.A. Maugin, The principle of virtual power: from eliminating
metaphysical forces to providing an efficient modelling tool,
Contin. Mech. Thermodyn., vol. 25, no. 2–4, pp. 127–146,
2013. DOI: 10.1007/s00161-011-0196-7.

[31] M. Touratier, An efficient standard plate theory, Int. J. Eng.
Sci., vol. 29, no. 8, pp. 901–916, 1991. DOI: 10.1016/0020-
7225(91)90165-Y.
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Appendix A. Stiffness matrix and load
vector elements

In order to determine the unknown coefficients am, we have to solve
the system of algebraic equations (33) together with the corresponding
stiffness matrix and load vector elements (34)–(39), for the employed
trigonometric functions of type wmðrÞ, see (29). First, we provide the
load vector elements for any combinations of t ¼ 1, 3, :::,Nt :

(i) Load vector element associated to the constant and cosine-type
surface load pL, zðrÞ acting on the entire membrane:

Vp
t ¼

ðR
0

ð2p
0

pL, z wt r du dr

¼
pL, z

4R2 p t sin p t
2ð Þ�2½ �

p t2

pL, z
R2ðp2�4Þ

2 p

pL, z
8R2 2 t sin p t

2ð Þ�t2�1½ �
p ðt2�1Þ2

for

pL, zðrÞ ¼ pL, z,

pL, zðrÞ ¼ pL, z cos r p
2R

	 

, t ¼ 1

pL, zðrÞ ¼ pL, z cos r p
2R

	 

, t 6¼ 1,

8>>>><
>>>>:

(A.1)

(ii) Load vector element associated to the distributed load �pL, z act-
ing over the centered circular area of radius RT :

Vt�p ¼ �pL, z

ðRT

0

ð2p
0

wt r du dr

¼ �pL, z
4R p t RT sin p t RT

2R

� �
� 4R sin 2 p t RT

4R

� �h i
p t2

, (A.2)

(iii) Load vector element associated to single forces PL, z acting in
the center of the membrane:

VP
t ¼ PL, z wt

��
r¼0 ¼ PL, z: (A.3)

Next, we provide the stiffness matrix elements MI
jklt ,M

II
jklmnt , and

MIII
jklmnrst , for any combinations of j, k, l,m, n, q, s, and t up to the

chosen number of 16 deflection modes (with Nm ¼ 31) being sufficient
for various mechanical loading cases, see Section 4:

1. Stiffness matrix elements associated to deformation amplitudes of
third power:

MI
jklt ¼ 2 pq2Dm, 0 c4

ðR
0

@wj

@r
@wk

@r
@wl

@r
@wt

@r
r dr

¼ q2Dm, 0 c4
j k l t p5

8R4

ðR
0

sin
j r p
2R

� �
sin

k r p
2R

� �

� sin
l r p
2R

� �
sin

t r p
2R

� �
r dr

¼ q2Dm, 0 c4
R2

AI
jklt , for j, k, l, t ¼ 1, 3, :::, 31:

(A.4)

2. Stiffness matrix elements associated to deformation amplitudes of
fifth power:

MII
jklmnt ¼

3
2
pq2Dm, 0 c5

ðR
0

@wj

@r
@wk

@r
@wl

@r
@wm

@r
@wn

@r
@wt

@r
r dr

¼ 3
2
q2Dm, 0 c5

j k l m n t p7

64R6

�
ðR
0

sin
j r p
2R

� �
sin

k r p
2R

� �
sin

l r p
2R

� �

� sin
mr p
2R

� �
sin

n r p
2R

� �
sin

t r p
2R

� �
r dr

¼ q2Dm, 0 c5
R4

AII
jklmnt ,

for j, k, l,m, n, t ¼ 1, 3, :::, 31:

(A.5)

3. Stiffness matrix elements associated to deformation amplitudes of
seventh power:

MIII
jklmnqst ¼ q2Dm, 0 p c7

ðR
0

@wj

@r
@wk

@r
@wl

@r
@wm

@r
@wn

@r

@wq

@r
@ws

@r
@wt

@r
r dr

¼ q2Dm, 0 c7
j k l m n q s t p9

256R8

�
ðR
0

sin
j r p
2R

� �
sin

k r p
2R

� �
sin

l r p
2R

� �
sin

mr p
2R

� �

� sin
n r p
2R

� �
sin

q r p
2R

� �
sin

s r p
2R

� �
sin

t r p
2R

� �
r dr

¼ q2Dm, 0 c7
R6

AIII
jklmnqst ,

for j, k, l,m, n, q, s, t ¼ 1, 3, :::, 31:

(A.6)

The dimensionless stiffness matrix elements AI
jklt ,A

II
jklmnt , and AIII

jklmnqst
are provided in form of an electronic data set for up 16 deflection
modes, see Supplementary material. Since the trigonometric functions
of form sin ðj r p=ð2RÞÞ, appearing in (A.4)–(A.6), are of similar shape,
the ordering of the matrix indices can be chosen arbitrarily. Thus, it is
sufficient to calculate matrix elements for indices in descending order,
j � k � l � m � n � q � s � t, which then can be used for any other
chosen ordering of the indices.2

2For example, one obtains identical results for dimensionless stiffness matrix
elements AIjklt with indices of form AI3111 ¼ AI1311 ¼ AI1131 ¼ AI1113: The same
holds for the matrix elements AIIjklmnt and AIIIjklmnqst :
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