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ABSTRACT
This work investigates the Reynolds number sensitivity of the weakly compressible smoothed particle hydrodynamics method. A mode of instability
previously reported for Poiseuille flow is systematically analysed for six relevant test cases. We discuss the influence of the presence of physical
viscosity, investigate the origin of the instability for the Couette flow example and explore its implications on convergence properties. Moreover, a
novel instability of slightly different nature, which arises in pipe flow with expanding diameter, is detected and a qualitative explanation is given.
Since both types of instabilities also occur at Reynolds numbers well below the critical value, its origin is seen in high-frequency particle oscillations
independent of any effects of turbulence. We further demonstrate for a flow over a sill and a weir that if there is no breakup of the fluid structure at
low Reynolds numbers, then energy balance is accurately simulated even at high Reynolds numbers. Finally, the implications of the instability are
addressed from a theoretical, computational and practical perspective.

Keywords: Lagrangian particle methods; low-Reynolds-number flows; smoothed particle hydrodynamics model; transition to
turbulence; two-dimensional numerical simulation

1 Introduction

In 1977 Gingold and Monaghan and Lucy introduced the fully
Lagrangian meshless smoothed particle hydrodynamics (SPH)
method to solve astrophysical problems like star or galaxy for-
mation. Since then SPH has been applied to a wide range of
problems, predominantly in fluid mechanics, from free surface
flows (Monaghan 1994; Ferrari 2010; Gomez-Gesteira et al.
2010) to multiphase problems (Colagrossi and Landrini 2003;
Aristodemo et al. 2010) and transport phenomena (Tartakovsky
et al. 2007). The principle of SPH is to discretize the fluid into
particles, which are moved according to a kernel-smoothed influ-
ence of its neighbourhood. Consequently, particle interactions
are governed by discrete equations, in which derivatives of field
variables are expressed in terms of smoothing kernel gradients.
The Lagrangian nature of the method allows for exact treat-
ment of advection and conservation of mass, momentum and

energy (Price 2011). Additionally, free surfaces are implicitly
supported (Monaghan 1994) and its tracking is simple (Shao and
Gotoh 2005). In comparison with conventional computational
fluid dynamics methods, however, implementation of inflow and
outflow boundaries is complex and simulations are computation-
ally expensive due to continuous neighbourhood search. Hence,
numerical tests are frequently carried out in two dimensions even
though the step to 3D is in theory straightforward (Ferrari et al.
2009).

Depending on the application, the fluid incompressibility
criterion can be relaxed which subsequently leads to a reduc-
tion of the computational cost. The reason is that incom-
pressible smoothed particle hydrodynamics (ICSPH) accounts
for truly incompressible fluids, but requires the computa-
tionally expensive solving of a pressure Poisson equation.
In the weakly compressible approach (WCSPH), however,
the relation between pressure and density is given by an
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inexpensive equation of state (Monaghan 1994). This strat-
egy allows for small density variations (Morris et al. 1997)
and hence pressure fluctuations occur in the numerical solu-
tion. Whereas both methods yield comparable results in
dam-break simulations (Hughes and Graham 2010), a recent
comparative study concludes that WCSPH with a corrective
algorithm is slightly more attractive in terms of accuracy, sta-
bility and computational demand than ICSPH (Chen et al.
2013).

Fluid flow either occurs in laminar or turbulent regimes,
depending on whether the Reynolds number is below or above
a critical value. In the former case, the dynamics are character-
ized by parallel moving layers, though in the latter case effects of
randomness become important. The definition of the Reynolds
number for two-dimensional pipe flow is R = D|v|/ν, where D,
v and ν are pipe diameter, average velocity and kinematic vis-
cosity. While D and v are determined by the geometry and the
external forces of the problem, ν varies significantly depend-
ing on the fluid type. Due to the reciprocal relationship between
Reynolds number and viscosity, the dynamics of a certain type of
flow are subject to earlier transitions to a turbulent regime if the
fluid viscosity is reduced. Since SPH simulations are stabilized
by a fluid’s physical viscosity, it is challenging to simulate low
viscous flows.

Therefore, SPH Poiseuille and Couette flow simulations have
mainly been carried out in high viscous settings. Results are in
good agreement with analytical solutions (Watkins et al. 1996;
Morris et al. 1997; Adami et al. 2012) and are thus frequently
used for benchmarking no-slip wall conditions. Typically cho-
sen parameters are a viscosity ν > 10−2 m2s−1 and a maximum
Reynolds number of 5, which supports the stability of the sim-
ulation. The concept of this work is inspired by deteriorations
in the numerical solution for pipe and channel flow that occur if
viscosity is reduced to the value of water. Even though this is of
importance for practical applications, corresponding Poiseuille
flow has rarely been studied and only at low (Morris et al. 1997,
R = 1.25 × 10−2) or moderate (Sigalotti et al. 2003, R = 5)
Reynolds numbers. While in high viscous specifications tran-
sient velocity profiles are known to coincide with analytical
solutions up to a Reynolds number of about 103, exact local-
ization of the critical value, where the transition from laminar
to turbulent flow begins, is subject to ongoing work – in par-
ticular for low physical viscosity. Hence, the primary aim of
this work is to explore the sensitivity of the SPH method on the
Reynolds number. Therefore, we systematically study six rele-
vant test cases and explore a mode of instability, which depends
on and grows with the Reynolds number. Since this instability
also occurs well below the critical Reynolds number, its ori-
gin is not seen in effects of turbulence but in high-frequency
particle oscillations.

We begin by studying a Poiseuille flow to demonstrate the
Reynolds number dependency of the weakly compressible SPH
method. It is shown that good accuracy and convergence proper-
ties are found for low Reynolds number transient and steady

solutions, but once a certain threshold is exceeded the accu-
racy of the simulation significantly drops due to the numerical
breakup of the fluid structure. Therefore, we explore the origin
of the instability, which is shown to depend on and increase with
the Reynolds number. The novelty in comparison with previous
work (Sigalotti et al. 2003; Basa et al. 2009) is seen in a more
detailed discussion which, e.g. firstly demonstrates the analogy
of the instability for the Couette flow example and also explores
the difficulties that arise in the presence of a low physical vis-
cosity. Moreover, a novel mode of instability, which occurs in
pipe flow with expanding diameter, is presented and a qualita-
tive explanation for its initiation is given. We further address the
implications of the observed stability problems to open channel
flow applications. In particular, it is shown that for low viscous
free surface flows with an initially uniform particle distribution
the simulated velocity profile deviates shortly after imposing
the analytical solution. The second section of the paper is then
devoted to demonstrating two examples which are not affected
by the mode of instability: It is shown that for flow over a sill and
a sharp-crested weir energy balance based on Bernoulli’s prin-
ciple is accounted for correctly even at high Reynolds numbers.
In the final section the relevance of the instability is addressed
from a theoretical, computational and practical point of view.

2 Method

The fundamental principle of SPH is to discretize the fluid into
interpolation points which are interpreted as particles such that
their coordinates move along with the fluid. Initially, these parti-
cles are arranged on a rectangular grid with a uniform sampling
distance sd and associated with mass m, volume V , velocity
vector υ = [vx, vy], density ρ and pressure p. The mass is kept
constant, but other physical variables are governed by discrete
SPH equations derived through interpolation of the continuum
equations of fluid dynamics. Owing to the symmetries in the
corresponding Hamiltonian, conservation of energy as well as
of linear and angular momentum is inherent. Through time inte-
gration of the governing equations, the evolution of a particle’s
physical parameters is determined by a weighted influence of its
neighbourhood. Since we aim at testing the capabilities of stan-
dard weakly compressible SPH, no turbulence model is used and
only essential enhancements like the density reinitialization are
applied.

2.1 Governing equations

Characteristic of SPH is the weighting by a smoothing ker-
nel W (r, h), where r = [rx, ry] denotes the position vector in
space and h =̂ sd identifies the smoothing length. There is a
freedom in the choice of the kernel, but symmetry, partition of
unity and convergence to the δ-function in the limit of vanishing
smoothing length are required. Due to high computational accu-
racy (Hongbin and Xin 2005), we use the Quintic spline with a
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compact support of three neighbours:

Wquintic(q)

= 7
478h2π

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(3 − q)5 − 6(2 − q)5 + 15(1 − q)5, 0 ≤ q ≤ 1
(3 − q)5 − 6(2 − q)5, 1 < q ≤ 2
(3 − q)5, 2 < q ≤ 3
0, 3 < q

(1)

This Quintic kernel is expressed in terms of the dimensionless
variable q = |r|/h and normalized for two dimensions. Disad-
vantages of the Quintic spline include significant computational
cost owing to its piecewise definition and the appearance of the
pairing instability (Dehnen and Aly 2012).

For derivation of the equations of motion see, e.g. (Monaghan
1988; Gomez-Gesteira et al. 2010). We choose the following
discrete representation of the continuity equation to ensure that
the null pressure condition at free surfaces is implicitly satisfied
(Bonet and Lok 1999):

dρi

dt
= ρi

∑
j

Vjvij∇iWij (2)

with the abbreviations vij = vi − vj and Wij = W (ri − rj , h).
Technically, the sum over the index j involves all fluids except for
particle i. Due to the chosen kernel width, however, only the three
adjacent neighbours of i have a non-vanishing contribution. The
momentum equation, which controls a particle’s acceleration,
has pressure, artificial viscosity and shear forces contributions:

dvi

dt
= −m

∑
j

(ρ−2
i + ρ−2

j )p̃ij∇iWij

︸ ︷︷ ︸
pressure gradient

+ m
∑

j

�ij∇iWij

︸ ︷︷ ︸
artificial viscosity

+ mν
∑

j

(ρ−2
i + ρ−2

j )ρ̃ij
vij

xij

∂W
∂xij︸ ︷︷ ︸

shear forces

+ Fext

m︸︷︷︸
external force

(3)

The variable ν corresponds to the physical viscosity, weighted
density and pressure are abbreviated as ρ̃ij = 2ρiρj/(ρi + ρj)

and p̃ij = (ρipj + ρjpi)/(ρi + ρj). Note that the antisymmetry of
Eq. (3) is required to ensure conservation of linear momentum.
Artificial viscosity, as defined in Section 2.3, is added to stabi-
lize the method. To close the set of equations we further require
a relation between pressure and density, which is given by the
equation of state (WCSPH, Monaghan 1994)

p(ρ) = ρ0c2

7

[(
ρ

ρ0

)7

− 1

]
(4)

Thereby the reference densityρ0 = 1 kg m−3 is equal to the initial
fluid density and the sound speed is set to c = 10 maxj(|vj|).
Hence, it can be shown by a scale analysis that maximum density
fluctuations δρ/ρ are limited to 1% (Morris et al. 1997).

2.2 Velocity-verlet integration

We use the second-order velocity-Verlet integration as a time-
stepping scheme

vn+1/2
f = vn

f + �t
2

(
dvf

dt

)n

rn+1/2
f = rn

f + �t
2

vn+1/2
f

ρn+1
f = ρn

f + �t
dρ

n+1/2
f

dt

rn+1
f = rn+1/2

f + �t
2

vn+1/2
f

vn+1
f = vn+1/2

f + �t
2

(
dvf

dt

)n+1

(5)

which is sensible in terms of computational cost as a particle’s
acceleration only has to be calculated once per time-step. The
size of �t is determined by the flow velocity, viscosity and
gravitational acceleration:

�t = min

(
0.25

h
cmax + |vmax| , 0.125

h2

ν
, 0.25

(
h
|g|

)1/2
)

(6)

2.3 Artificial viscosity

In WCSPH artificial viscosity is required to stabilize the method
(for an overview see González et al. 2009). The following term,
which gives rise to a physical kinematic viscosity ν = αch/8, is
applied between fluid particles (Monaghan and Gingold 1983):

�ij = αh
∑

j

cij
vijrij

ρij(x2
ij + 10−2h2)

, cij = ci + cj

2
,

ρij = ρi + ρj

2
(7)

This formulation reduces irregular unphysical motion, but
requires a tuning parameter in the range of 0 ≤ α ≤ 0.5. If the
influence of artificial viscosity becomes comparable to physical
viscosity, it can modify the global solution. Particularly in low
viscous settings it is challenging to dampen small fluctuations
whilst otherwise not affecting the simulation.

A further drawback of weakly compressible SPH oscillations
spurious pressure are which can be cured with low additional
computational cost by applying a Shepard filter. In doing so the
kernel is corrected at zeroth-order and consequently the fluid den-
sity is reinitialized every 25 time-steps according to (Monaghan
and Gingold 1983)

ρcorr
i = m

∑
j

W̃ij , W̃ij = Wij∑
j VjWij

(8)
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2.4 Boundary conditions

Two different strategies are followed to model solid boundaries
with SPH. One approach is to correct the SPH equations with
an Eulerian renormalization term which depends on the shape
of the wall. Alternatively, solid boundaries are represented by
fixed wall particles, where the interaction is either modelled
by an unphysical Lennard-Jones-like potential or an expensive
creation of mirror particles at each time-step. We use a conceptu-
ally simple and adaptive modification based on imposing a local
force balance between fluid and fixed wall particles (Adami et al.
2012).

With this method wall particles are not evolved according to
the governing equations, but the influence of its physical param-
eters is included in the continuity and momentum equations.
Hence, three layers of solid particles are required to ensure full
kernel support. A virtual wall particle velocity is determined by
an antisymmetric extrapolation from adjacent fluid particles

vw = 2vwall −
∑

f vf Wwf∑
f Wwf

(9)

and its incorporation in the shear forces contribution in Eq. (3)
imposes a no-slip condition at the wall. The prescribed velocity
vwall is set to zero except for moving boundaries. Local force
balance gives rise to a wall particle’s pressure of

pw =
∑

f pf Wwf + g
∑

f ρf rwf Wwf∑
f Wwf

(10)

so that fluid particles are repelled as they approach the solid
boundary. Density is then assigned by the inverted equation of
state

ρw = ρ0

(
1 + 7pw

ρ0c2

)1/7

(11)

For the modelling of in- and outflow boundaries, depending on
the characteristics of the test case we either impose periodic
boundaries or use buffer zones for insertion and removal of parti-
cles. The former boundary conditions are achieved my mirroring

the kernel from the inflow to the outflow section and vice versa.
We refer to Federico et al. (2012) for a detailed description of
the buffer zone technique.

3 Two-dimensional test cases

In Sections 3.1 and 3.2 the WCSPH model is applied to two-
dimensional pipe and open channel flow to explore the Reynolds
number sensitivity of the method. Thereby, we closely explore
a mode of instability previously reported by other authors for
Poiseuille flow (Sigalotti et al. 2003; Basa et al. 2009). Apart
from firstly demonstrating an analogue behaviour in the Cou-
ette flow example, we investigate the influence of the amount
of physical viscosity being present. Hereafter, the use of the
term low viscosity refers to a kinematic viscosity parameter of
ν = 10−6 m2 s−1, which approximates the value of water at a
temperature of 20 ◦C. Contrary, high viscous settings indicate
a viscosity of ν > 10−2 m2 s−1. We further detect and qualita-
tively explain a novel mode of instability for pipe flow with
expanding diameter, which is shown to depend on the geometric
specifications of the problem. At the end of this work, it is then
demonstrated that energy balance of flow over a sill and over a
sharp-crested weir is satisfied at high Reynolds numbers without
any deteriorations in case of low physical viscosity. Thereby, it
becomes clear that the occurrence of the instability is restricted
to certain geometries.

3.1 Pipe flow

The first set of test cases represents flows within closed conduits.
Except for example 3, we simulate a section of small width such
that Lx = Ly and impose periodic boundaries on the edges (c.f.
Fig. 1, solid lines). No-slip boundary conditions are prescribed
on the solid walls.

Poiseuille flow

External force-driven flow between two plates is referred to as
Poiseuille flow. Whilst fully developed Poiseuille flow with high
viscosity was simulated with SPH (Watkins et al. 1996; Ferrand

Figure 1 Poiseuille flow particle distribution (left) and velocity profile (right) (t = 40 s, R = 1050)
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et al. 2012), stabilization of low Reynolds number Poiseuille flow
requires an adapted formulation of viscosity based on an estima-
tion of viscous diffusion to maintain accurate velocity profiles
(Morris et al. 1997). Since we find that also the velocity profile
of moderate Reynolds number Poiseuille flow is disturbed by
artificial viscosity, this procedure is not applied. For low viscous
Poiseuille flow with a plate distance of 9.7 × 10−2 m, the results
agree with the series solution for 52 s after an external accelera-
tion parallel to the plates of strength 3 × 10−4 m s−2 commenced.
In Fig. 1 layer-wise moving particles are depicted and the SPH
velocity profile measured at the centre of the simulated section is
compared with the analytical solution. At t = 40 s the agreement
is within 0.6% and improves to 0.1% by doubling the number of
particles. The convergence rate is 1.9, slightly below the theoret-
ical order 2 of the velocity-Verlet scheme. Identical convergence
is obtained for high viscous Poiseuille flow (Adami et al. 2012;
Ferrand et al. 2012). Comparable convergence properties are
found for transient states up to t = 40 s, although the rate of con-
vergence drops at later times due to the initiating transition to
turbulent flow.

To explore the Reynolds number dependency of the simula-
tion more closely, a series of Poiseuille flow studies with varying
body forces is performed. The sound speed is set to 10 times the
maximum flow velocity of the steady state. If instabilities lead to
programme abortion before obtaining a steady solution, 10 times
the flow speed prior to abortion is used. We achieve steady states,
where driving and friction forces are in balance, for flows up to
a Reynolds number of 62.5. The agreement is within 0.5 % for
R = 7.7, but reduces to 8.2 % as the threshold is approached.
If the Reynolds numbers are further increased, however, the
laminar fluid structure, i.e. parallel layer-wise moving particles,
breaks and thus we do not attain any steady state. The higher the
Reynolds number, the earlier the particle distribution differs from
a laminar state. The results in Table 1 confirm that transient lam-
inar distributions are achieved up to R = 1350, but suggest that
steady laminar states are only obtained for R < 65. In particular,
we find that due to low viscous forces the velocity of each particle
layer fluctuates around the analytical solution. Owing to particle
interactions, neighbouring rows alternately have a too high or
low velocity. Hence, if a particle gets marginally vertically dis-
placed, it swings past a neighbouring particle of the next layer
(Basa et al. 2009) such that small eddies develop which spoil
the laminar fluid structure. The effect can be reduced by adding
artificial viscosity. However, this is avoided to maintain accurate

Figure 2 Couette flow velocity profile

velocity profiles. If the particle movement is constricted to the
direction parallel to the plates, vertical oscillations are suppressed
and hence the stability threshold is deferred to higher Reynolds
numbers.

Couette flow

Since previous work only reported the mode of instability for
Poiseuille flow (Sigalotti et al. 2003; Basa et al. 2009), it is
important to investigate if the unstable behaviour is specific to
this test case or whether it appears more generally. For the slightly
modified Couette flow example (c.f. Fig. 2), which is driven by
an upper wall of constant velocity vwall = 1.25 × 10−2 ms−1, we
expect similar stability properties as for Poiseuille flow. With the
same geometric specifications as before and a sound speed of 10
times the upper wall velocity, the simulation is stable for 30 s.
Up to this time the error in reference to the series solution and
the order of convergence are comparable to the Poiseuille flow
results.

We now locate the Reynolds number threshold, where steady
states are achieved, by varying the upper wall velocity. At large
times and for Reynolds numbers above 25, the top and bottom
fluid layers approach the plates. Consequently, neighbouring lay-
ers arrange pairwise and thus the accuracy is reduced. Once a
threshold of R > 70 is crossed, the layer-wise moving struc-
ture breaks and thus the programme aborts before pairwise
arrangements occur (c.f. Table 2).

Table 1 Poiseuille flow simulation characteristics with 39 particles across the diameter (ν = 10−6 m2 s−1)

R 7.7 38 56.9 62.5 67.4 89.1 1350

Sound speed c (ms−1) 1.2 × 10−3 5.9 × 10−3 9.5 × 10−3 1.1 × 10−2 1.2 × 10−2 1.8 × 10−2 1.2 × 10−1

|a| (ms−2) 10−7 5 × 10−7 8 × 10−7 9 × 10−7 10−6 1.5 × 10−6 3 × 10−4

tsteady state (s) =̂ 4800 =̂ 4000 =̂ 2450 =̂ 2200 – – –
L2 error < 0.5 % 1.1 % 6.1 % 8.2 % – – –
tabortion (s) – – – – =̂ 1980 =̂ 1400 =̂ 52
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Table 2 Couette flow simulation characteristics with 39 particles across the diameter (ν = 10−6 m2s−1)

R 5.8 27.4 34.8 40 < R < 60 72.4 77.8

sound speed c (ms−1) 1.2 × 10−3 6 × 10−3 9 × 10−3 10−2 < c < 2.5 × 10−2 3.85 × 10−2 1.25 × 10−1

|vwall| (ms−1) 1.2 × 10−4 6 × 10−4 9 × 10−4 10−3 < |vwall| < 2.5 × 10−3 3.85 × 10−3 1.25 × 10−2

tsteady state (s) =̂ 4800 =̂ 2460 =̂ 1300 < 1300 – –
L2 error 0.5 % 3.4 % 11.7 % > 12 % – –
tabortion (s) – – – – =̂ 277 =̂ 30

Figure 3 Particle and velocity distribution in a pipe with varying diameter at (a) high (R = 1.4 × 106) and (b) low (R = 7 × 10−1) Reynolds number
for 50 particles along the pipe diameter and with an artificial viscosity parameter of α = 2 × 10−2

In summary, low viscous Poiseuille and Couette flow simula-
tions have similar characteristics: steady solutions are found for
R < 65, but the agreement rapidly deteriorates as this threshold
is approached. If the bulk velocity is further increased, the sim-
ulation aborts before steady particle distributions are obtained.
Transient states, however, are simulated accurately. Since in the
Couette flow the fluid is driven by a constant wall velocity, in
proximity of the upper wall boundary neighbouring fluid particles
of the same layer arrange pairwise. Consequently, deterioration
and abortion of the simulation occurs slightly earlier than for
Poiseuille flow.

Low viscous pipe flow with variable diameter

We replace the periodic boundaries by a continuous two-
dimensional inflow of Qin = 1 m2 s−1 to simulate a frictionless
pipe with a diameter of 1 m. Preliminary simulations indicate
that the previously identified mode of instability does not occur
in this example since the limited length restricts the buildup of
particle fluctuations. In addition, the modified inflow algorithm
is also expected to counteract the instability because particles do
not arrange in a strict layer-wise structure. After modifying the
pipe geometry, however, such that its middle segment narrows to
HB = 7 × 10−1 m before increasing to its initial height, a novel
instability of different nature is discovered (c.f. Fig. 3a). The aver-
age simulated velocities at the centre of each segment are |vA| =
9.8 × 10−1 ms−1, |vB| = 1.39 ms−1 and |vC | = 1.37 ms−1. Thus,
the flow rates in areas A and B,

QA = 9.77 × 10−1 m2 s−1 ≈ 9.73 × 10−1 m2 s−1 = QB ≈ Qin

(12)

satisfy continuity of flow.

The fluid, however, is not decelerated in area C as it should
when the pipe expands. As a consequence, an instability develops
in the expanding section and eventually breaks the fluid struc-
ture. Increasing the artificial viscosity raises the coherence
of particles, but it does not prevent the fluid structure from
breaking. Interestingly, these stability problems are not encoun-
tered after reducing the inflow and length scales to obtain
a decreased Reynolds number of 7 × 10−1. The simulation
results presented in Fig. 3b indicate a uniform particle distri-
bution and consequently continuity of flow is now satisfied in
all areas:

QA = 4.92 × 10−7 m2 s−1 ≈ QB = 4.91 × 10−7 m2 s−1

≈ QC = 5.02 × 10−7 m2 s−1 ≈ Qin

(13)

To investigate the Reynolds number dependency of the insta-
bility and to find a qualitative explanation for the breakup of the
fluid structure, we slowly increase the Reynolds number. No sta-
bility problems arise up to a Reynolds number of 100, but once
this threshold is crossed the prior uniformly distributed parti-
cles arrange in pairwise lines in the expanding part of the pipe.
At later times the neighbouring lines collide at the edges and
repel each other in the centre (c.f. Fig. 4). As a consequence,
a breakup of the fluid structure initiates from the centre of the
pipe and eventually spreads throughout the expanding section.
The propagation of the instability increases with higher Reynolds
numbers.

In conclusion, narrowing sections in a pipe are simulated
accurately even at high Reynolds numbers. Without appropri-
ate corrections, however, particles fail to rearrange uniformly as
the pipe expands, which eventually results in the breakup of the
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Figure 4 Initiating breakup of the fluid structure in the expanding
section of the pipe (R = 100)

fluid structure. This problem does not occur at Reynolds numbers
below 100.

3.2 Open channel flow

In this section the implications of the discovered mode of insta-
bility are discussed on the basis of open channel flow simulations.
If periodic boundaries are imposed at the edges, then the simplest
open channel flow test case is to drive an initially stationary fluid
by the component of the gravitational acceleration parallel to a
channel bed of slope s0. Apart from the additional force com-
ponent orthogonal to the flow direction and the absence of an
upper solid wall, the flow characteristics are similar to Poiseuille
flow. Consequently, we a priori expect an instability even though
fluid structure problems have not previously been reported in the
literature for these type of flows.

The first part of this section is devoted to showing that in high
viscous specifications the viscous force contributions are strong
enough to stabilize the simulation such that the velocity profile
converges to the correct values. If the simulation, however, is
repeated after reducing the viscosity to the value of water, then
the velocity distribution deviates shortly after imposing the ana-
lytical solution. In the second part we demonstrate on the basis
of two subproblems of open channel flow, namely for flow over
a sill and over a sharp-crested weir example, that energy balance
is simulated correctly without any Reynolds number-dependent
stability problems.

High viscous free surface channel flow

An initially stationary fluid block of height Ly = Lx/2 = 2.9 ×
10−1 m is driven by a bed slope s0 = 10−3. Since abrupt initiation
of gravitational forces would lead to spurious oscillations, the
impact of the body force is deferred by a sine-like damping term
for the first 3 s (Monaghan and Kajtar 2009). As for pipe flow
artificial viscosity modifies the velocity profile and thus it is not

Figure 5 Converged velocity profile of laminar free surface chan-
nel flow for a resolution of 36 particles across the channel height
(t = 50 s, R = 7.5 × 10−1)

applied. The simulation converges to a uniform laminar solution
with a horizontal velocity distribution of (Graf and Altinakar
1998)

vx(ry) = s0|g|
2ν

(2ryLyry − r2
y ) (14)

As the flow characteristics only depend on the vertical distance
from the channel bed, the velocities are horizontally averaged.
For the chosen resolution the velocity profile converges (c.f.
Fig. 5) and the agreement is within 1%.

Low viscous free surface channel flow

The simulation is repeated in low viscous conditions with
reduced geometric specifications such that Ly = Lx/2 = 3 ×
10−2 m. Despite varying both the channel slope parameter s0 and
the particle spacing, we could not reproduce the results achieved
for high viscous channel flow. Due to the strong vertical com-
ponent of the gravitational force, a small bed slope results in a
dislocation of horizontal layers at early times. In particular, layers
close to the bottom move with significantly different velocities –
at times opposite to the direction of flow. A choice of higher bed
slopes, which is significantly limited by demanding for laminar
flow conditions, defers the experienced problems, but does not
prevent the laminar structure from breaking. As neither increas-
ing artificial viscosity nor adding a damping term improves the
results, we substitute the initially stationary fluid block for its
analytical solution and investigate stability.

Consequently, the damping term is removed. The horizon-
tal velocity as determined by Eq. (14) and the corresponding
pressure distribution are initially imposed. For a bed slope
of s0 = 10−5 Fig. 6 shows the particle distribution and com-
pares the velocity profile to the analytical solution. The particle
plot indicates that the layer-wise moving fluid structure breaks,
several particles close to the bottom move opposite to the
flow direction. As the simulation continues, the velocity pro-
file clearly deviates from the analytical solution. These results
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Figure 6 Open channel flow particle distribution (left, t = 1.4 s, R = 798) and deviation of the velocity profile (right) for a resolution of 59 particles
across the channel height

Figure 7 Flow over a sill particle plot for (a) a transition from sub- to supercritical flow and (b) supercritical flow (α = 5 × 10−2, sd = 2 × 10−2 m)

indicate the difficulties in simulating steady laminar states for
low viscous fluids like water with the standard formulation
of SPH.

Flow over a sill

To simulate a flow over a sill it is important to track deformed
free surfaces and thus mesh-free particle methods are often pre-
ferred to Eulerian approaches (Sahebari et al. 2011). The special
case of a hydraulic jump, i.e. the transition from super- to sub-
critical flow, is a standard SPH experiment (Lopez et al. 2010;
Federico et al. 2012). Since distinctive backwater results in a dis-
continuous free surface level and hence causes significant losses,
it is challenging to monitor energy balance. However, both the
converse transition and supercritical flow are approximately loss-
free and can be realized by placing a crested sill with a linear slope
of s0 = �y/�x in the centre of the channel.

Sub- to supercritical flow

The particle distribution of a low viscous flow over a crested sill
with subcritical upstream and supercritical downstream condi-
tions is shown in Fig. 7a. The simulated free surface levels and
fluid velocities (c.f. Table 4) correspond to an upstream Froude
number below 1, which increases to 1.12 downstream of the
sill. Since the continuous water surface level implies negligi-
ble energy losses, the fluid is accelerated downstream of the sill
such that the water level declines. By computing the downstream
water surface level (subindex B) from the measured upstream
quantities (subindex A), we find that energy balance is accounted

Table 3 Inflow and geometric specifications for the flow over a
sill problem

Flow Inflow Inflow Sill Sill
velocity height height width

condition (ms−1) (m) �x (m) �y (m)

Sub- to supercritical 5 × 10−1 1 2 × 10−1 1.5
Supercritical 7 3 × 10−1 4 × 10−1 1.5

Table 4 Simulated water surface levels and average fluid veloc-
ities for a flow over a sill with a transition from sub- to supercritical
flow

Position relative to sill F |v| (ms−1) H (m)

1 m upstream (A) 3.1 × 10−1 7.2 × 10−1 5.5 × 10−1

1 m downstream (B) 1.12 1.7 2.3 × 10−1

for correctly:

HB = |vA|2
2|g| + HA − |vB|2

2|g| − �y ≈ 2.3 × 10−1 m (15)

Supercritical flow

The inflow characteristics and the sill height are adapted as spec-
ified in Table 3. Thereby, the critical Froude number F = 1 is
exceeded up- and downstream the sill such that the flow condi-
tions are supercritical throughout the channel. Conservation of
energy implies a downstream free surface level of 3.9 × 10−1 m,
which roughly agrees with the measured value (c.f. Table 5).
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Table 5 Simulated water surface levels and fluid veloc-
ities for a supercritical flow over a sill

position relative to sill F |v| (ms−1) H (m)

1 m upstream (A) 4.09 7.01 3 × 10−1

1 m downstream (B) 3.44 6.29 3.4 × 10−1

In summary, high Reynolds number SPH simulations of a
flow over a sill are in agreement with Bernoulli’s principle. In
case of the transition from sub- to supercritical flow the down-
stream water level rises, whereas it declines for supercritical flow.
Accuracy is only marginally influenced by the choice of artificial
viscosity. In contrast to previous test cases, we do not detect any
stability problems at high Reynolds numbers.

Flow over a sharp-crested weir

In the final test case we investigate energy balance of a flow
over a sharp-crested weir. Again, the aim is to show that high
Reynolds number standard SPH simulations are stable and agree
with Bernoulli’s principle. The simulation characteristics are
summarised in Table 6.

Frequently, Poleni’s formula is chosen as reference solution

Q = 2
3μh̄3/2

√
2|g| (16)

where h̄ denotes the weir head. Since in this formula the geom-
etry of the weir is only incorporated by an empiric shape factor
μ and the inflow velocity v0 is neglected, we aim for a more
sophisticated reference solution. If frictionless conditions are
assumed, the differential flow rate can be expressed in terms
of the parabolic velocity distribution. Integrating yields the total
flow rate (Bollrich 2010)

Qan = 2
3

√
2|g|

[(
h̄ + |v0|2

2|g|
)3/2

−
(

h̄M + |v0|2
2|g|

)3/2
]

(17)

The weir head h̄ and the average inflow velocity v0 are measured
3h̄ upstream of the weir, M corresponds to the lowering rate of
the overfall flow (c.f. Fig. 8a).

For the observed time period, Fig. 8b indicates convergence
of the overfall flow rate with an order of 1.38 and hence at the

Table 6 Simulation characteristics of the flow over a
sharp-crested weir example

inflow observation
velocity (ms−1) sd (m) α period (s)

1 2 − 6 × 10−2 3 × 10−1 24.5 − 25

highest resolution the computed rate is in good agreement with
the analytical solution according to Eq. (17):

Qavg = 1.675 ± 0.045 m2s−1 ≈ 1.661 m2s−1 = Qan (18)

Consequently, energy balance of a flow over a sharp weir is
simulated correctly even at high Reynolds numbers without any
breakup of the fluid structure. The flow rates fluctuate around the
analytical solution, but average quantities closely match the ref-
erence values. Whilst no stability problems arise in low viscous
settings, the fluctuations of the flow rate reduce even further if
the amount of physical viscosity is increased.

4 Relevance of the instability

At the end of this work we discuss the theoretical, computational
and practical relevance of the instability. In summary, two differ-
ent categories of instabilities are identified. The instability of the
first type is attributed to the fundamental principle of the SPH
method. If a certain Reynolds number threshold is exceeded,
unphysical particle oscillations build up which eventually result
in a breakup of the fluid structure. All test cases where this insta-
bility is observed have the similarities of an infinite problem
domain and a regular layer-wise initial particle distribution. The
second type of instability, however, depends on the geometry of
the problem and is demonstrated with the example of pipe flow
with expanding diameter.

Theoretical relevance. Due to its universal origin the insta-
bility of the first type is highly relevant from a theoretical per-
spective. Even though Basa et al. (2009) qualitatively explains
the instability for the Poiseuille flow example, it is of future
interest to rigorously analyse and understand its source. This is
also the first step required to developing a corrective algorithm

Figure 8 Velocity distribution of the flow over a sharp-crested weir with a convergence analysis of the overfall flow rate
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specifically devoted to curing this instability. Applying estab-
lished non-specific particle shifting algorithms (Adami et al.
2013) or coarsely constricting the oscillatory particle movement
may defer but not prevent the breakup of the fluid structure. In
comparison, it is simpler to understand and cope with the insta-
bility of the second type. The associated fluid structure problems,
however, are less relevant from a theoretical perspective since
its occurrence is associated with specific geometries.

Computational relevance. An understanding of both instabil-
ities is particularly important to limit the computational demand.
The absence of any criterion for programme abortion causes a
significant computational overhead since the simulation contin-
ues over long times despite obviously inadequate results. In the
Poiseuille flow example the simulation characteristics presented
in Table 1 indicate that the transition time between the initia-
tion of the instability and the final breakup can be long. Hence,
we recommend to monitor the distance between particles of the
same layer to detect the instability of the first type at early times.
The transition time of the instability of the second type is much
shorter such that void zones develop shortly after its initiation.
These regions are easily identifiable in graphical outputs or by
monitoring the number of neighbours of each particle.

Practical relevance. In this work the Reynolds number sen-
sitivity of the SPH method is explored for several subproblems,
which if assembled may constitute a practical application. Hence,
a rough assessment on the robustness of a more complex appli-
cation can be made by dividing the set-up into a number of
subproblems whose stability properties are known. As indicated
at the beginning of this section the instability of the first type
only occurs in infinite domains with an initially regular particle
configuration. These conditions are rarely fulfilled in practical
applications since particles do not arrange in strict layers which
limits the buildup of unphysical particle oscillations. If the geom-
etry of the problem stimulates the instability of the second type,
a corrective algorithm is required to obtain meaningful results.
With respect to the determined Reynolds number threshold, it has
to be pointed out that due to the low physical viscosity this critical
value is exceeded in the majority of applications which include
water as liquid phase. In consequence, steady-state laminar flow
conditions cannot be obtained with the standard formulation of
SPH except for very small Reynolds numbers.

5 Conclusions

Weakly compressible SPH without any turbulence model was
systematically applied to six relevant test cases to explore the
method’s sensitivity on the Reynolds number. It is shown that
the accuracy of SPH pipe and channel flow simulations strongly
depends on the physical viscosity being present and correspond-
ingly on the Reynolds number governing the flow. In high viscous
settings accurate pipe flow results are obtained up to the criti-
cal Reynolds number threshold where the transition of the flow
to a turbulent regime begins. In low viscous settings, however,

unphysical particle fluctuations occur and rise with the Reynolds
number. Once a threshold value of about 65 is exceeded, i.e.
effects of turbulence can be ruled out, the particle fluctuations
build up and lead to programme abortion before a steady solution
is attained. It is further demonstrated that a mode of instability
with similar characteristics arises in open channel flow simula-
tions of infinite length. In pipe flow with varying diameter a novel
Reynolds number dependent mode of instability is detected. This
instability is shown to be sensitive to the geometry of the prob-
lem such that it only occurs in expanding sections of the pipe.
Neighbouring lines of particles collide at the edges and repel
each other in the centre, which eventually initiates a breakup of
the fluid structure from the centre of the pipe.

To confine the area of influence of the instabilities, it is shown
that two subproblems of open channel flow, namely a flow over
a sill and a weir, are not affected by the mode of instability.
The key difference to previous test cases is that the periodic
boundaries are substituted by inflow buffer zones such that the
problem domains are of finite length and the initial particle con-
figuration is unregular. Because both requirements are usually
satisfied in real applications, from a practical perspective the
instability of the second type is of higher relevance. Since the
origins of the instability of the first type are attributed to the fun-
damental principle of the SPH method, the associated structure
problems are theoretically and computationally relevant. From
the theoretical viewpoint the future work remains to develop
an algorithm that cures the origins of the instability. Regard-
ing computational effectiveness, we recommend to monitor the
inter-particle distances to deliberately abort the simulation if the
instability initiates.
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Notation

a = body force acceleration (ms−2)
α = artificial viscosity strengthness parameter (−)
c = sound speed (ms−1)
D = pipe diameter (m)
Fext = external force (kg ms−2)
F = Froude number (−)
g = gravitational acceleration (ms−2)
h = smoothing length (m)
h̄ = weir head (m)
H = water surface level (m)
Lx = length of a channel (m)
Ly = width of a channel (m)
m = mass (kg)
M = lowering rate of overfall flow (−)
μ = shape factor in Poleni’s formula (−)
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p = pressure (Pa)
ρ0 = reference density (kgm−3)
ρi = density of particle i (kgm−3)
q = dimensionless kernel distance (−)
Q = total 2D flow rate (m2s−1)
r = position vector in space (m)
rx = x-coordinate of the position vector (m)
ry = y-coordinate of the position vector (m)
R = Reynolds number (−)
sd = particle spacing (m)
s0 = channel bed slope (−)
t = elapsed simulation time (s)
tabortion = time until simulation aborts (s)
tsteady state = simulation time until steady state is

reached (s)
�t = time increment (s)
v = fluid velocity (ms−1)
v0 = average velocity 3h̄ upstream of

overfall flow (ms−1)
vi = velocity of particle i (ms−1)
vwall = prescribed velocity of wall

particles (ms−1)
vx = x-coordinate of the velocity vector (ms−1)
vy = y-coordinate of the velocity vector (ms−1)
Vi = volume of particle i(m3)
ν = kinematic viscosity (m2s−1)
W = smoothing kernel (m−2)
�x = difference in horizontal position (m)
�y = difference in vertical position (m)
f = fluid particle index
i = reference particle index
j = neighbouring particle index
w = wall particle index
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