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ABSTRACT
In this paper, we use an adaptive modeling framework to model
and study how nutritional status (measured by the protein to car-
bohydrate ratio) may regulate population dynamics and foraging
task allocation of social insect colonies. Mathematical analysis of our
model shows that both investment to brood rearing andbroodnutri-
tion are important for colony survival and dynamics. When division
of labour and/or nutrition are in an intermediate value range, the
model undergoes abackwardbifurcationandcreatesmultiple attrac-
tors due to bistability. This bistability implies that there is a threshold
population size required for colony survival. When the investment
in brood is large enough or nutritional requirements are less strict,
the colony tends to survive, otherwise the colony faces collapse. Our
model suggests that the needs of colony survival are shaped by the
brood survival probability, which requires good nutritional status. As
a consequence, better nutritional status can lead to a better survival
rate of larvae and thus a larger worker population.
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1. Introduction

In social insect colonies such as ants, bees and wasps, all members of the colony work
collectively to ensure colony survival. Colonies act as a single common organism capable
of making decisions and forming complex behavioural connections between its mem-
bers [17,18]. They exhibit a decentralized system with a sophisticated division of labour
resulting from interactions amongmembers of the colony and the environment [1,3,18]. In
addition to the reproductive division of labour between the queen and the workers, work-
ers also have a division of labour between foragers which leave the nest to search for food
and non-foragers that carry out tasks within the nest [9]. In social insect societies, foraging
responsibilities are assigned to a subset of adult colony members [8]. Internal and external
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factors happening at both the individual and colony level shape the foragers’ decision to
bring back a certain type of food [8].

Currently, there are few studies that have focused on the outcome of nutrient regula-
tion in social insects at the colony level [8] (but see [11,12,32]). Many of these studies lack
focus on the overall outcome of colony population dynamics, and how nutrient regula-
tion among foragers affects the number of reared brood, mortality of adult workers, and in
general colony survival. In this study, we focus on the mechanisms that regulate foraging
behaviour of eusocial workers and the outcomes of these mechanisms on colony perfor-
mance, including but not limited to the number of brood raised and worker mortality. The
collection of food resources by an individual forager is based not only on the colony’s cur-
rent nutritional status but also on the worker’s physical caste, age, and prior experience
[26,33]. The nutritional needs of the colony are shaped by the differing needs of larvae and
workers in the colony [8,10,26]. For instance, the growth of larvae relies heavily on protein,
while worker ants require primarily carbohydrates as a source of energy [4,5,10,13,24,34].
Many studies have shown that the ratio of protein to carbohydrates in the diet of a range of
insect species is crucial for performance [8,10,21,28,30], though, in general, carbohydrates
are often more attractive to foragers than protein [11,26]. However, the protein required
for growth may be in greater demand when a queen is laying eggs [26].

In order for social insect foragers to compensate for potential nutrient restrictions in the
food available to the colony [6,7,26,29], foragers adjust their collection in favour of food
sources containing limiting nutrients [7,11,26]. This guarantees that the colony meets its
longer term objectives and thus promotes colony growth and reproduction [26]. According
to Dussutour et al. [11], within a colony, workers recruit nestmates for food collection
at different rates depending upon food type [5,27], food concentration, and hunger level
[11,23]. At the individual level, when workers are starved, recruitment will be stronger to
carbohydrate-rich food sources than to sources high in protein [11]. At a collective level,
deployment of foragers to carbohydrate-rich or highly proteinaceous material increases
in the presence of larvae, resulting in an increase in the collection of carbohydrates and
protein [2,11,27].

There are several empirical studies that have studied howa colony is affected by the avail-
ability of required nutrients for colony growth and reproduction, and howworkers regulate
collection of these nutrients to meet individual and collective demands [8,11–13,22,26].
However, currently there are no mathematical models to our knowledge that have
attempted to study these mechanisms dynamically. The main goal of this paper is to pro-
pose and study an adaptive modeling framework to further understand how nutritional
status may regulate population dynamics and foraging task allocation of social insect
colonies. The proposed model contains three compartments that allow us to analyse and
measure the impacts of nutritional status that can benefit colony growth and survival. Our
model assumes that (1) nutritional status is measured by the protein to carbohydrate ratio,
which reflects the ratio of workers foraging for protein to workers foraging for carbohy-
drates; (2) brood are able to survive if the protein to carbohydrate ratio falls into a certain
range; and (3) the colony recruits workers to forage for protein or carbohydrate in order
to maximize the brood survival rate. In addition, our proposed model includes division
of labour implicitly. Also, by considering the basic mechanisms affecting colony growth
such as cooperative effort for reproductive division of labour, successful brood matura-
tion/survival, and recruitment of workers to collect different nutrients based on specific
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colony nutritional demands, our model could help us understand how other life history
factors affect the performance (number of brood raised and mortality of workers) of the
colony.

The rest of this article is organized as follows: In Section 2, we describe the detailed
derivation of our proposed model. In Section 3, we provide the mathematical analysis of
ourmodel including lemmas, propositions, and theorems, the proofs ofwhich can be found
in Section 6. In Section 4, we provide numerical simulations illustrating the equilibrium
dynamics of the model to further obtain biological insights of some life history parameters
of the colony. Lastly, the conclusion of this paper is found in Section 5.

2. Derivation of themathematical model

Let L(t) represent the brood population; Ap(t) be the portion of foragers collecting pro-
teinaceous material, called the protein forager; Ac(t) be the portion of foragers collecting
carbohydrates, called the carbohydrate forager. The total forager population is denoted as
A(t) = Ap(t) + Ac(t). The following ecological assumptions determine the population of
L, Ac and Ap:

1. Brood populationL(t):The brood population L increases with the average egg-laying
rate of the queen(s) given by γ , which is discounted by two factors:
(a) (a) The survival rate function of eggs is determined by the cooperative efforts

of workers A in the colony. We adopt the modeling approach from Kang et
al. [15,25], where the cooperative efforts that lead to the eggs’ survival ismeasured
by aHolling type-III function aA2

b+aA2 , where b is a half-saturation constant and a is
the portion of the division of labour invested towards the successful development
of the larvae.

(b) (b) The survival rate of larvae to workers is determined by the available nutri-
ents in the colony which is reflected through the protein to carbohydrate ratio of
worker collectors SL

(
Ap
Ac

)
. Examples of SL could be SL

(
Ap
Ac

)
= −α1

∣∣∣Ap
Ac

− θm

∣∣∣+
α2(θc − θm) with αi ∈ (0, 1) i = 1, 2 as a scaling factor of nutrient collection, θm
representing the optimal nutrient ratio, and θc representing the maximal nutri-
ent ratio that brood can survive (see Figure 1(a)), or general functions such as the
normal biological performance curve (see Figure 1(b)). Notice that SL ≤ 1 can be
negative, thus we define SLmax = max{0, SL} such that SLmax ∈ [0, 1] is a survival
probability.

The brood population decreases by a maturation rate βL, which describes the rate at
which brood matures into the adult class A. Thus, we have following equation:

L′ = γ · SLmax︸︷︷︸
nutrient effects

· aA2

b + aA2︸ ︷︷ ︸
adult worker efforts

− βL︸︷︷︸
maturation rate

.

When Ap
Ac

is less than θm, the brood survival rate increases, and decreases when Ap
Ac

is
greater than θm. This phenomenon has been supported by the work of [8,12,20,21], in
which it is explained that worker survivability decreases as a probable side effect of an
excess ingestion of proteins and of carbohydrate limitation. Figure 1(a) shows a general
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(a) (b)

Figure 1. Examples of a survival rate function: (a) A general case of SL
(
Ap
Ac

)
= −α1

∣∣∣ ApAc − θm

∣∣∣+
α2(θc − θm) with different α1 = 0.3 and α2 = 0.15; (b) The normal biological performance curve

SL
(
Ap
Ac

)
.

case of SL
(
Ap
Ac

)
= −α1

∣∣∣Ap
Ac

− θm

∣∣∣+ α2(θc − θm)with different α1 and α2. The partial

derivative of SL = SL
(
Ap
Ac

)
reveals constant rates, showing a linear relation between

the brood survival rate and nutritional status. In this study, we assume that when the
nutrition level hits or exceeds the critical value θc, i.e.

Ap
Ac

≥ θc, the nutrient becomes
toxic such that no brood can survive. Lastly, Figure 1(b) shows how the survival rate
grows with respect to the collection of nutrients until it reaches θm.
In general, we expect the protein to carbohydrate ratio Ap

Ac
of the colony to fall in a

certain range in order for the colony to survive and grow, say, Ap
Ac

∈ [θ0, θm], where
θ0 is the minimum nutrient ratio necessary for brood survival. This is supported by
[8,12]. Thus it is reasonable to assume that SLmax

(
Ap
Ac

)
has the following simple form:

SLmax

(
Ap

Ac

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 when 0 ≤ Ap

Ac
< θ0,

α1

(
Ap

Ac
− θ0

)
when θ0 ≤ Ap

Ac
< θm,

−α2

(
Ap

Ac
− θc

)
when θm ≤ Ap

Ac
< θc,

0 when θc ≤ Ap

Ac
,

(1)

subject to αi ∈ (0, 1), i = 1, 2 and α1(θm − θ0) + α2(θm − θc) = 0 and 0 < α1(θm −
θ0) ≤ 1.
In particular, we have

SL = α1

(
Ap

Ac
− θ0

)
when

Ap

Ac
< θm; SL = −α2

(
Ap

Ac
− θc

)
when

Ap

Ac
≥ θm.
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Then we have

∂SL
∂
Ap
Ac

= α1;
∂SL
∂ Ac
Ap

= −α1

(
Ap

Ac

)2
< 0 when

Ap

Ac
< θm,

∂SL
∂
Ap
Ac

= −α2;
∂SL
∂ Ac
Ap

= α2

(
Ap

Ac

)2
> 0 when θm ≤ Ap

Ac
< θc. (2)

In the symmetric case, i.e. α1 = α2 = α, then we have

SL
(
Ap

Ac

)
= −α

∣∣∣Ap

Ac
− θm

∣∣∣+ α(θc − θm) when
Ap

Ac
∈ [θ0, θc]

with α ∈ (0, 1), θ0 = 2θm − θc and θc ∈ [θm, 2θm + 1
α

]
. Thus, SL =

α
(
Ap
Ac

+ θc − 2θm
)
if 2θm − θc ≤ Ap

Ac
< θm and SL = α

(
θc − Ap

Ac

)
if θm ≤ Ap

Ac
< θc.

In addition, we have the following:

∂SL
∂
Ap
Ac

= α;
∂SL
∂ Ac
Ap

= −α

(
Ap

Ac

)2
when 2θm − θc ≤ Ap

Ac
< θm,

∂SL
∂
Ap
Ac

= −α;
∂SL
∂ Ac
Ap

= α

(
Ap

Ac

)2
when θm ≤ Ap

Ac
< θc. (3)

The special case of the symmetric scenario above is SL(0) = 0, i.e. θc = 2θm. In
this case, we have SL

(
Ap
Ac

)
= −α

∣∣∣Ap
Ac

− θm

∣∣∣+ αθm with θm ∈ (0, 1
α
) in our proposed

model (4). In the following section, we will provide mathematical analysis of the gen-
eral case of SLmax

(
Ap
Ac

)
shown in (1) and the related results can be applied to the

symmetric case and its special case directly.
2. The total forager population A(t): The population A increases by the matura-

tion rate of brood and decreases with a density-dependent death rate dA2. The
density-dependent mortality rate follows the approach of [15], thus we have following
equation:

A′ = βL︸︷︷︸
maturation from brood

− dA2︸︷︷︸
average mortality rate

.

3. The protein forager population Ap(t): The ratio Ap
Ac

measures the nutritional sta-
tus of the colony. Assume that the brood can survive in a range of nutrient ratio, i.e.
Ap
Ac

∈ (θ0, θc), and any ratio greater than θc can be toxic to brood. In addition, there is

an optimal nutritional ratio Ap
Ac
, denoted by θm, such that brood could have the opti-

mum survival rate at this ratio.More specifically, the brood survival rate increases with
respect to the value of Ap

Ac
when Ap

Ac
∈ (θ0, θm), and passing this optimal ratio θm, the

brood survival rate decreases with Ap
Ac
. The survival rate of brood is zero when Ap

Ac
≤ θ0

or Ap
Ac

≥ θc. Thus,
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• The portion of the successful brood developed into adults which enter into the

protein forager pool can be modeled by the term: βL · max
{
0, ∂SL

∂
Ap
Ac

}
, where

max
{
0, ∂SL

∂
Ap
Ac

}
∈ [0, 1] represents the nutritional requirements of the colonymea-

sured by the ratio Ap
Ac

and a nutrient collection factor.
• Based on the nutritional requirements of the colony and other related stimuli,

a protein forager can become a carbohydrate forager, and vice versa. This task
switching rate depends upon different factors such as the nutritional status of
the colony, presence of larvae, individual preference, food type, food concen-
tration and hunger level [5,7,11,23,26,27]. In this paper, we assume that the
task switching rate of protein foragers to carbohydrate foragers depends on the

brood population L, the nutritional requirement of the colony max
{
0, ∂SL

∂
Ac
Ap

}
,

and the available carbohydrate forager Ac = A − Ap, thus its switching rate is

max
{
0, ∂SL

∂
Ac
Ap

}
ApL. Similarly, the switching rate of carbohydrate foragers to pro-

tein foragers is termed asmax
{
0, ∂SL

∂
Ap
Ac

}
AcL. This gives the net task switching rate

of the protein forager:
(
max

{
0, ∂SL

∂
Ap
Ac

}
Ac − max

{
0, ∂SL

∂ Ac
Ap

}
Ap

)
L. For instance,

if the ratio Ap
Ac

is less than the optimal nutrient ratio θm (where the maximum
brood survival rate occurs), then we expect ∂SL

∂
Ap
Ac

> 0 and ∂SL
∂
Ac
Ap

< 0, thus this

indicates that carbohydrate foragers will switch tasks to forage for protein, i.e.

max
{
0, ∂SL

∂
Ac
Ap

}
ApL = 0. In a similar fashion, if the ratio θm ≤ Ap

Ac
≤ θc, protein

foragers will switch to forage for carbohydrates, that is, max
{
0, ∂SL

∂
Ap
Ac

}
AcL = 0.

• The total forager population A = Ap + Ac decreases with a density-dependent
death rate dA2 = dA(Ap + Ac), then the protein forager population decreases
with the density-dependent mortality rate dAAp.

Considering the factors above, we derive the population dynamics of the protein
forager as follows:

A′
p = βL · max

⎧⎨
⎩0, ∂SL

∂
Ap
Ac

⎫⎬
⎭︸ ︷︷ ︸

portion of matured adults entering Ap

+
⎛
⎝max

⎧⎨
⎩0, ∂SL

∂
Ap
Ac

⎫⎬
⎭Ac − max

⎧⎨
⎩0, ∂SL

∂ Ac
Ap

⎫⎬
⎭Ap

⎞
⎠L

︸ ︷︷ ︸
net task switching

− dAAp︸ ︷︷ ︸
mortality rate

.
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Table 1. Parameter description and interval values of Model (4).

Parameter Description Range Reference

a Portion of the division of labour invested on larvae (0, 0.25) [15]
b Half-saturation constant (0.001, 10) [15]
d Adult worker death rate (0.001, 1) [15]
α,αi , i = 1, 2 Scaling factor(s) of nutrient collection (0, 1)
β Maturation rate from larvae to adult worker (0, 1) [7]
γ Average egg-laying rate of queen (0, 1) [11]
θm Optimal nutrient ratio (0, θc)

θc Maximal nutrient ratio that brood can survive
(
0, 1

α
+ θm

)
θ0 Minimal nutrient ratio for brood survival (0, θm)

Based on the ecological assumptions above, the population dynamics of a social insect
colony with nutrient regulating foraging activities is described as follows:

L′ = γ SLmax

aA2

b + aA2 − βL,

A′ = βL − dA2,

A′
p = βL · max

⎧⎨
⎩0, ∂SL

∂
Ap
Ac

⎫⎬
⎭+

⎛
⎝max

⎧⎨
⎩0, ∂SL

∂
Ap
Ac

⎫⎬
⎭Ac − max

⎧⎨
⎩0, ∂SL

∂ Ac
Ap

⎫⎬
⎭Ap

⎞
⎠ L − dAAp.

(4)

The biological meaning of the parameters and the related values are listed in Table 1.

3. Mathematical analysis

The state space of the proposed ecologicalmodel (4) isR
3+. All parameters a, b, d, α, β , γ ,

θ0, θm, θc are assumed to be strictly positive based on their biologicalmeaning.We focus on
the proposed function SL

(
Ap
Ac

)
shown in Equation (1) and Figure 1(a). The related mathe-

matical results should be easily adopted to the symmetric case (3). Under such conditions,
we first show that Model (4) is biologically well-defined, i.e. it is positively invariant and
bounded in R

3+ in the following lemma:

Lemma 3.1: Model (4) is positively invariant and bounded in R
3+ = {(L,A,Ap) : L ≥ 0,

A ≥ 0, Ap ≥ 0}. In particular, if L(0) > 0, A(0) > 0 and Ap(0) > 0, then L(t) > 0, A(t) >

0 and Ap(t) > 0 for all t>0.

The extinction equilibrium E0 = (0, 0, 0) of Model (4) always exists. The local stability
of the trivial equilibrium E0 cannot be analysed directly for our model (4). However, from
the first two equations of Model (4), we have

(L + A)′ = γ SLmax

aA2

b + aA2 − dA2 ≤
[
γα1(θm − θ0)a

b + aA2 − d
]
A2

≤
[
γα1(θm − θ0)a

b
− d
]
A2.
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Note that Model (4) is positively invariant and bounded from Lemma 3.1, thus we can
conclude that if aα1γ (θm−θ0)

b < d, then the inequality above implies that lim supt→∞(L +
A) converges to a nonnegative constant. In addition, we have L′|A=0,L>0 = −βL < 0,
A′|L=0 = −dA2 < 0 and Ap

′|L=0,A>0 = −dApA < 0. Therefore, if aα1γ (θm−θ0)
b < d, then

for some initial conditions around E0 = (0, 0, 0), Model (4) converges to the extinction
equilibrium E0 in R

3+. Thus, we have the following proposition:

Proposition 3.1: If aα1γ (θm−θ0)
b < d, then for some initial condition around the extinction

equilibrium point E0 = (0, 0, 0), taken in R
3+, the trajectory of Model (4) converges to E0.

Remark 3.1: Note that the inequality aα1γ (θm−θ0)
b < d implies that a < bd

γα1(θm−θ0)
. Propo-

sition 3.1 implies that if a is not large enough (i.e. the investment to the brood growth is
small), or the death rate of adults is too large, then the brood population and the total for-
ager population approaches the extinction equilibrium point E0. In the symmetric case, we
have θ0 = 2θm − θc, then the inequality becomes aαγ (θc−θm)

b < d with α1 = α2 = α.

Assume that E∗ = (L∗,A∗,A∗
p) is an interior equilibrium of Model (4) with the general

case of SL. Then based on the equation of dAp
dt shown in (4), we can conclude that A∗

p can

exist only if ∂SL
∂
Ap
Ac

> 0 as it requires max
{
0, ∂SL

∂
Ap
Ac

}
> 0. Biologically, this implies that the

colony survival requires the nutritional needs of brood being on the positive gradient of
the brood survival probability SLmax . Thus, we have

A∗
p

A∗
c

= A∗
p

A∗−A∗
p

∈ (θ0, θm), and therefore

SL
(
Ap
Ac

)
= α1

(
Ap
Ac

− θ0

)
and

∂SL
∂
Ap
Ac

∣∣∣∣∣∣Ac=A∗
c ,Ap=A∗

p = α1;
∂SL
∂ Ac
Ap

∣∣∣∣∣∣
Ac=A∗

c ,Ap=A∗
p

= −α1

(
A∗
p

A∗
c

)2

< 0.

To solve for (L∗,A∗,A∗
p), we set L′ = A′ = A′

p = 0, which implies the following equations

L′ = 0 =⇒ α1γ

[
Ap

Ac
− θ0

]
aA2

b + aA2 − βL = 0,

A′ = 0 =⇒ L = d
β
A2,

A′
p = 0 =⇒ α1βL + α1AcL − dAp A = 0 =⇒ L = dApA

α1β + α1Ac
,

which gives

L = d
β
A2 and L = dApA

α1β + α1Ac
.

Therefore, A∗ of an interior equilibrium (L∗,A∗,A∗
p) satisfies the following equation:

adβ(1 − α1)A2 − aα2
1γA + β[(1 − α1)(bd + aα1γ θ0) − aα2

1γ ] = 0. (5)

Recall that α1 ∈ (0, 1). Depending on the exact values of a, b, d, α1, β , γ , θ0, θm, θc, the
Equation (5) can have zero, one, or two positive roots.
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Let

A1 = aα2
1γ − √

�

2aβd(1 − α1)
, A2 = aα2

1γ + √
�

2aβd(1 − α1)
,

where

� = a(aα4
1γ

2 − 4dβ2[(1 − α1)
2(bd + aα1γ θ0) − aα2

1γ (1 − α1)])

be the possible positive roots of Equation (5). Let us denote â∗ as follows:

â∗ = 4bd2β2(1 − α1)
2

α4
1γ

2 + 4dβ2α1γ (1 − α1)[α1 − θ0(1 − α1)]

= bd(1 − α1)

α1γ (α1 − (1 − α1)θ0)

4dβ2(1 − α1)

α3
1γ

α1−(1−α1)θ0
+ 4dβ2(1 − α1)

<
bd(1 − α1)

α1γ (α1 − (1 − α1)θ0)
(6)

which is an increasing function of θ0.
In the symmetric case, we have θ0 = 2θm − θc, then â∗ shown in (6) can be rewritten as

ã∗ = 4bd2β2(1 − α)2

α4γ 2 + 4dαβ2γ (1 − α)[α − (1 − α)(2θm − θc)]
<

bd(1 − α)

αγ [α − (1 − α)(2θm − θc)]
.

(7)

Also note that α3
1γ+4dα1β2(1−α1)

4dβ2(1−α1)2
= α3

1γ

4dβ2(1−α1)2
+ α1

1−α1
> α1

1−α1
. Then the following

theorem provide conditions for existence of equilibrium solutions of Model (4):

Theorem 3.1 (Existence of Equilibria): For Model (4),

1. If 0 < a < â∗ and θ0 <
α3
1γ+4dα1β2(1−α1)

4dβ2(1−α1)2
, then there is only one trivial equilibrium

E0 = (0, 0, 0) and no other positive equilibrium.
2. If a = â∗ and θ0 <

α3
1γ+4dα1β2(1−α1)

4dβ2(1−α1)2
, then Model (4) has two positive equilibria which

collapse into one equilibrium E∗

E∗ = (L∗,A∗,Ap∗) =
(
d
β
A2

∗,
α2
1γ

2βd(1 − α1)
,

α1βA∗ + α1A2∗
β + α1A∗

)

in addition to E0 = (0, 0, 0).
3. If a >

bd(1−α1)
α1γ (α1−(1−α1)θ0)

and θ0 < α1
1−α1

, thenModel (4) has only one positive equilibrium
E2

E2 =
(
d
β
A2
2,A2,

α1βA2 + α1A2
2

β + α1A2

)
in addition to E0.

4. If â∗ < a <
bd(1−α1)

α1γ (α1−(1−α1)θ0)
and θ0 < α1

1−α1
, then Model (4) has two positive equilibria

in the following form in addition to E0:

E1 =
(
d
β
A2
1,A1,

α1βA1 + α1A2
1

β + α1A1

)
and E2 =

(
d
β
A2
2,A2,

α1βA2 + α1A2
2

β + α1A2

)
.
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Remark 3.2: The detailed proof of Theorem 3.1 is shown in the last section. The number
of equilibria ofModel (4) is determined by the positive root(s) of Equation (5). Theorem3.1
implies that the value of the division of labour invested on larvae a and theminimal protein
to carbohydrate ratio θ0 determine the existence of the interior equilibrium (Li,Ai,Api), i =
1, 2.

Our simulations (see Section 4) suggest that Model (4) has simple dynamics: no limit
cycle and only equilibrium dynamics. At the stable equilibrium, the ratio describing the
nutritional level of the colony is

A∗
p

A∗
c

= α1(A∗ + β)

β(1 − α1)
∈ (θ0, θc). (8)

Equation (8) suggests that the larger the total population of workers investing in nutrient
collection is, the higher the ratio of protein to carbohydrates will be, i.e. better nutrient
status of the colony. Notice that A∗ depends on θ0, so

A∗
p

A∗
c
does as well.

Nowwe discuss stability of the interior equilibrium forModel (4). Let E∗ = (L∗,A∗,A∗
p)

be an arbitrary positive interior equilibrium of Model (4). The Jacobian matrix associated
to Model (4) at equilibrium is:

J|E∗ =
⎛
⎝−β J12 J13

β −2dA∗ 0
J31 J32 J33

⎞
⎠ ,

J12 = aα1γA∗[A∗
p(bA∗ − aA∗3 − 2bA∗

p) − 2b(A∗ − A∗
p)

2θ0]
(A∗ − A∗

p)
2(b + aA∗2)2

,

J13 = aα1γA∗3

(A∗ − A∗
p)

2(b + aA∗2)
> 0,

J31 = α1(β + A∗ − A∗
p) > 0, J32 = α1L∗ − dA∗

p , J33 = −(α1L∗ + dA∗) < 0. (9)

Then the characteristic equation of J|E∗ is

f (λ) = λ3 + C1λ
2 + C2λ + C3 = 0, (10)

where

C1 = β + αL∗ + 3dA∗ > 0,

C2 = J11J33 + J11J22 + J22J33 − J21J12 − J31J13,

C3 = −det(J|E∗
i
) = J11J22J33 + J21J32J13 − J21J12J33 − J31J22J13. (11)

The stability of the steady state E∗ = (L∗,A∗,A∗
p) can be determined by the distribution of

the roots of Equation (10). That is, if all the roots of Equation (10) have negative real parts,
then E∗ is locally asymptotically stable; if at least one root of Equation (10) has positive real
parts, then E∗ is unstable; if any root has zero real part and other roots all have negative
real parts, then the stability of E∗ cannot be determined by the linearized system directly.

The following theorem provides a global result on dynamics of the proposed model (4)
regarding when a colony will collapse.
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Theorem 3.2 (Extinction of species): If 0 < a < â∗ and θ0 <
α3
1γ+4dα1β2(1−α1)

4dβ2(1−α1)2
, then

Model (4) has global stability at E0 = (0, 0, 0).

Biological implications: Theorem 3.2 has stronger result than results stated in Proposi-
tion 3.1 and indicates that the portion of the division of labour invested on larvae a and
the nutrient θ0 are important factors determiningwhether larvae and adult worker ants can
survive. This theorem provides a sufficient condition leading to the collapse of the colony.

Theorem 3.3 (Stability Conditions): For Model (4),

1. Assume that a >
bd(1−α1)

α1γ (α1−(1−α1)θ0)
and θ0 < α1

1−α1
, then Model (4) has a unique inte-

rior equilibrium E2 = (L2,A2,Ap2) =
(
d
β
A2
2,A2,

α1βA2+α1A2
2

β+α1A2

)
. If it satisfies C1(E2)C2

(E2) > C3(E2) > 0, then E2 is locally asymptotically stable.
2. Assume that â∗ < a <

bd(1−α1)
α1γ (α1−(1−α1)θ0)

and θ0 < α1
1−α1

, Model (4) has two inte-

rior equilibria Ei = (Li,Ai,Api) =
(
d
β
A2
i ,Ai,

α1βAi+α1A2
i

β+α1Ai

)
, i = 1, 2, where E1 < E2, if

C1(E1)C2(E1) − C3(E1) < 0 but C1(E2)C2(E2) > C3(E2) > 0, then the interior equi-
librium E2 is locally asymptotically stable while E1 is unstable.

Biological Implications: The results in Lemma 3.1, Theorems 3.1 and 3.3, imply that
the division of labour invested on larvae a decreases past the critical point â∗ =

4bd2β2(1−α1)
2

α4
1γ

2+4dα1β2γ (1−α1)(α1−(1−α1)θ0)
shown in (6) and the first dotted line in Figure 2.Model (4)

(a) (b)

Figure 2. Backward bifurcation diagram of the division of labour invested on brood a v.s. the total
forager population A. Other parameters values are b = 0.1, d = 0.1, α1 = 0.3, β = 0.7, γ = 0.9. The
solid line indicates that the equilibrium is locally asymptotically stable while the dashed line indicates
that the equilibrium is unstable. The first vertical dotted line is the critical point â∗ for saddle node bifur-
cation and the second dotted line is the transition point when the system has two interior equilibrium to
one interior equilibrium. The blue colour indicates E2 which is always stable; the green colour indicates
E1 which is always unstable; and the red colour is the extinction equilibrium E0. (a) θ0 = 0.1. (b) θ0 = 0.2
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(a) (b)

Figure 3. Bifurcation diagrams of the ratio of Ap
Ac

v.s. the division of labour invested on larvae a with:
(a) different values of nutrient threshold θ0 and (b) different values of optimal nutrient ratio θm when
θc = 7.8. Other parameters values are b = 0.1, d = 0.1, α1 = 0.3, β = 0.7, γ = 0.9. (a) Effects on θ0.
(b) Effects on θm.

exhibits a backward bifurcation shown in Figure 2 where b = 0.1, d = 0.1, α1 = 0.3, β =
0.7, γ = 0.9. In Figure 2(a), we set θ0 = 0.1 and in Figure 2(b), we set θ0 = 0.2. Based
on the expression of the critical value â∗ shown in (6), â∗ is an increasing function of
θ0, which is reflected in the difference between Figure 2(a) and Figure 2(b). The value
of θ0 measures the minimum ratio of protein to carbohydrates that can allow the sur-
vival of larvae. Simulations shown in Figure 2(a, b) and 3 suggest that the larger value
of θ0, the more likely the colony can survive with a larger population of workers A and
thus the higher nutrient ratio Ap

Ac
. In summary, our theoretical work combined with the

related simulations suggest that the division of labour invested on larvae a and theminimal
nutrient ratio θ0 can affect colony survival, the distribution of the brood and the total for-
ager population affect the protein forager population. For instance, the larger θ0, the more
division of labour invested on larvae is required to ensure survival of the colony. Also,
under this scenario, the population distribution of brood and workers is smaller. More-
over, Figure 3 shows the bifurcation diagrams of the ratio of Ap

Ac
versus the division of labour

invested on larvae awith different values of θ0, other parameters values are taken as those in
Figure 2.

All our theoretical results can apply to the symmetric case when α1 = α2 = α and θ0 =
2θm − θc. Nowwe focus on the special case of the symmetric case θ0 = 0. For convenience,
let

a∗ � 4bd2β2(1 − α)2

α2γ [α2γ + 4dβ2(1 − α)]
= bd(1 − α)

α2γ

4dβ2(1 − α)

[α2γ + 4dβ2(1 − α)]
<

bd(1 − α)

α2γ
.

(12)
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Let � = a2α2γ [α2γ + 4dβ2(1 − α)] − 4abd2β2(1 − α)2 and

A1 = aα2γ − √
�

2aβd(1 − α)
, A2 = aα2γ + √

�

2aβd(1 − α)
.

(L∗,A∗,Ap∗) =
(
d
β
A2

∗,
α2γ

2βd(1 − α)
,

αβA∗ + αA2∗
β + αA∗

)
.

Define a1, a2 andM as follows:

a1 =
b
(
α2γ + 4dβ2(1 − α) − α

√
γ (α2γ + 8dβ2(1 − α))

)
2α2β2γ

,

a2 =
b
(
α2γ + 4dβ2(1 − α) + α

√
γ (α2γ + 8dβ2(1 − α))

)
2α2β2γ

,

M = 1
β2

(
2αdA2

2 + (α + 2d)βA2 + 3β2)+ d
aαγ

(
A2

Ap2
(aA2

2 − b) + 2b

)
. (13)

Theorem 3.4 (Dynamics of the Special Symmetric Case): Model (4) is positive invari-

ant in R
3+ and every trajectory attracts to a compact set C =

[
0, αγ θm

β

]
×
[
0,

√
dαγ θm
d

]
×[

0, αβ
√

dαγ θm+α2γ θm
dβ

]
. In addition,

1. If a < min
{
a∗, bd

αγ θm

}
, then Model (4) has global stability at E0 = (0, 0, 0).

2. If a >
bd(1−α)

α2γ
, a1 < a < a2 and

max
{
0,

β

β − αA2

}

<
A2

Ac2
< min

{
αL2 + dA2

αL2 + dAp2

[
d(aA2

2 − b)
aαγ

+ 2Ap2
A2

(
bd
aαγ

+ 1
)]

,M

}
,

then Model (4) has a unique interior equilibrium E2 = (L2,A2,Ap2) that is locally
asymptotically stable.

3. If a∗ < a <
bd(1−α)

α2γ
, a1 < a < a2, and

A1

Ac1
>

1
β2 (2αdA1

2 + (α + 2d)βA1 + 3β2) − d
aαγ

(
A1

Ap1
(b − aA1

2) − 2b

)
,

A2

Ac2
<

1
β2 (2αdA2

2 + (α + 2d)βA2 + 3β2) + d
aαγ

(
A2

Ap2
(aA2

2 − b) + 2b

)
,

then Model (4) has two interior equilibria Ei = (Li,Ai,Api) =
(
d
β
A2
i ,Ai,

αβAi+αA2
i

β+αAi

)
,

i = 1, 2, where the interior equilibrium E2 is locally asymptotically stable while E1 is
unstable.



14 F. RAO ET AL.

4. If a >
bd(1−α)

α2γ
, a1 < a < a2 and

max
{
0,

β

β − αA
,

β + αA
β(1 − α)

}

<
A
Ac

< min
{

αL + dA
αL + dAp

[
d(aA2 − b)

aαγ
+ 2Ap

A

(
bd
aαγ

+ 1
)]

,

M,
adA2 + bd + aαγ

aαγ

}
,

then Model (4) has a unique interior equilibrium E2 which is globally stable.

Remark 3.3: Theoretical results and numerical simulations (see Section 4) confirm that
the special symmetric case of Model (4), i.e. θ0 = 0 and θc = 2θm, undergoes a backward
bifurcation as a decreases past the critical value a∗ defined in (12). Conditions shown in
Theorem 3.4 suggest the importance of the protein to carbohydrate ratio, i.e. A2

Ac2
= 1 +

Ap2
Ac2

, in determining the colony population dynamics.

Summary of Dynamics: According to our analytical results shown in this section, we can
conclude that Model (4) undergoes a backward bifurcation as a decreases past â∗ (or a∗
in the case of θ0 = 0 and θc = 2θm). More specifically, it exhibits the following global
dynamics:

1. If 0 < a < â∗ and θ0 <
α3
1γ+4dα1β2(1−α1)

4dβ2(1−α1)2
, then the colony collapses due to the lack of

efforts of division of labour invested on larvae and theminimumnutrient requirement
θ0 being too low.

2. If 0 < â∗ < a <
bd(1−α1)

α1γ (α1−(1−α1)θ0)
, the survival of the colony depends on its initial

population size.
3. If a >

bd(1−α1)
α1γ (α1−(1−α1)θ0)

> 0, then the colony persists.

Our theoretical results suggest that the survival rate of larva to worker SLmax

(
Ap
Ac

)
plays

critical roles in determining colony population dynamics.We assume that SLmax

(
Ap
Ac

)
takes

the form of (1) based on relevant biological studies. Our analysis implies that the values of
parameters α1 and θ0 in SLmax

(
Ap
Ac

)
have pronounced impacts on dynamical outcomes. In

the next section, we use bifurcation diagrams to explore detailed impacts.

4. Numerical simulations

In this section, we use numerical simulations to illustrate equilibrium dynamics of the pro-
posed model and obtain further biological insights on the dynamical outcomes of certain
life history parameters of the colony.

For the general case of SLmax

(
Ap
Ac

)
, the dynamics of Model (4) depends on the divi-

sion of labour a, egg laying rate γ , the scaling factor on the brood survival rate due to the
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nutritional status α1, the minimal nutrition ratio θ0, the maturation rate β , and the natural
mortality d. To explore the effects of a and θ0, we perform bifurcation diagrams in Figures 2
and 3 by setting

b = 0.1, d = 0.1, α1 = 0.3, β = 0.7, γ = 0.9.

Figures 2 and 3 suggest that (1) small values of division of labour a can lead to colony
collapse; (2) intermediate values of a can make the system go through saddle node bifur-
cation; and (3) large values of a can insure colony survival. This implies thatModel (4) goes
through backward bifurcation on a. We can see that the larger value of a can lead to the
larger population A (see Figure 2) and the larger nutrient ratio Ap

Ac
(see Figure 3). Figures 2

and 3 also show the effects of the minimal nutrient requirement for brood survival θ0: The
larger value of θ0, (1) the larger critical threshold â∗; (2) the smaller population A; and (3)
the smaller nutrient status, i.e. the smaller value of Ap

Ac
.

Next, we perform bifurcation diagrams ofModel (4) regarding how theminimumnutri-
tional requirement θ0 and the scaling factor of survival probability of brood α1 affect
population dynamics of the colony in Figure 4. Figure 4(a) shows that Model (4) exhibits
reversed backward bifurcation on θ0. Figure 4(b) suggests that the larger value of α1, the
larger population of worker A and the better probability of colony survival.

In the remaining of this section, we focus on the symmetric case of SLmax

(
Ap
Ac

)
shown

in (3) where α1 = α2 = α and θ0 = 2θm − θc.

Special symmetric case θc = 2θm (i.e. θ0 = 0): Figure 5(a) provides an example of bifur-
cation diagram on division of labour invested on larvae a of Model (4) by choosing the
following parameters values:

b = 0.1, d = 0.1, α = 0.3, β = 0.7, γ = 0.9, θc = 8, θm = 4.

Figure 4. (a) The bifurcation diagrams of L, A and Ap v.s. the nutrient threshold θ0 with α1 = 0.3; and
(b) the bifurcation diagram of A v.s. the nutrient threshold θ0 with different values of α1. Other param-
eters values are taken as a = 0.15, b = 0.1, d = 0.1, β = 0.7, γ = 0.9. (a) Effects of θ0 on population
dynamics. (b) Effects of α1 on A
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(a) (b)

Figure 5. Bifurcation diagrams of the division of labour invested on larvae a for Model (4). Back-

ward bifurcation occurs at a∗ � 4bd2β2(1−α)2

α2γ [α2γ+4dβ2(1−α)]
for the case of 2θm = θc = 8 (a); and at

ã∗ = 4bd2β2(1−α)2

α4γ 2+4dαβ2γ (1−α)(α−(1−α)(2θm−θc))
for the case of 2θm > θc = 7.8 (b). Other parameters values

are taken as b = 0.1, d = 0.1, α = 0.3, β = 0.7, γ = 0.9, θm = 4. The solid line indicates that the
equilibrium is locally asymptotically stable while the dotted line indicates that the equilibrium is unsta-
ble. The blue colour indicates E2 which is always stable; the green colour indicates E1 which is always
unstable; and the red colour is the extinction equilibrium E0. (a) 2θm = θc = 8. (b) 2θm > θc = 7.8

Figure 5(a) shows that Model (4) goes through backward bifurcation at a∗ =
4bd2β2(1−α)2

α2γ [α2γ+4dβ2(1−α)] = 0.054. If a < a∗, then colony collapses; if 0.054 = a∗ < a <
bd(1−α)

α2γ
,

Model (4) has two positive interior equilibria E1 = (L1,A1,Ap1) and E2 = (L2,A2,Ap2)

with E2 being locally stable; and if a >
bd(1−α)

α2γ
, then the colony survives.

Figure 6 provides two examples of population dynamics of Model (4) to show the
effects of a. The initial condition is (L(0),A(0),Ap(0)) = (0.09, 0.1, 0.035) and other
parameters values are the same as in Figure 5(a). According to Theorem 3.4, Model (4)
has global stability at E0 = (0, 0, 0) (i.e. colony collapses) if a = 0.07 < min

{
a∗, bd

αγ θm

}
(see Figure 6(a)) and Model (4) has two positive interior equilibria with E2 =
(0.434, 1.743, 1.045) being a locally asymptotically stable interior equilibrium if a = 0.1 >

a∗ (see Figure 6(b)). It indicates that larvae L, worker ants A, and the ants collecting pro-
teinaceous material Ap can coexist with proper initial conditions if a is in the intermediate
range.

Symmetrical case θc ≤ 2θm (i.e. θ0 = 2θm − θc > 0): Figure 5(b) provides an example of
bifurcation diagram on division of labour invested on larvae (a) of Model (4) by taking
same parameter values in Figure 5(a) except that θc = 7.8. Figure 5(b) shows thatModel (4)
undergoes a bifurcation as the portion of the division of labour invested on larvae a
decreasing past ã∗ = 4bd2β2(1−α)2

α4γ 2+4dαβ2γ (1−α)(α−(1−α)(2θm−θc))
. Notice that the symmetrical case

has θ0 = 2θm − θc > 0. Thus, the comparisons between Figure 5(a) and Figure 5(b) can
provide insights on the effect of a and θc (or θ0 because we set θm = 4 and θ0 = 2θm − θc):
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(a) (b)

Figure 6. The time series of Model (4) when θc = 2θm = 8 with an initial value (L(0), A(0), Ap(0)) =
(0.09, 0.1, 0.035) and other parametric values being b = 0.1, d = 0.1, α = 0.3, β = 0.7, γ = 0.9,
which is the same set of parameters values in Figure 5(a). Figure (a) is the case when a = 0.07 where
population goes extinct over time. Figure (b) is the case when a = 0.1 where the colony has a locally
asymptotically stable interior equilibrium E2 = (0.434, 1.743, 1.045). (a) Time series of Model (4) when
θc = 2θm when the portion of the division of labour invested on larvae is a = 0.07. (b) The time series
of Model (4) when θc = 2θm when the portion of the division of labour invested on larvae is a = 0.1.

Figure 7. Bifurcation diagram for Model (4) on the optimal nutrient ratio θm. An unstable interior equi-

librium (green dotted) bifurcates θ∗
m = 1

2

(
θc + α

1−α
+ α3γ

4dβ2(1−α)2
− bd

aαγ

)
. The solid line indicates that

the equilibrium is stable, while the dotted line indicates that the equilibrium is unstable. Parameters
values: a = 0.15, b = 0.1, d = 0.1, α = 0.3, β = 0.7, γ = 0.9, θc = 7.8.

(1) The smaller value of θc, the larger critical threshold a∗; (2) The smaller value of θc,
the smaller population A. The dynamical outcomes of symmetrical cases are similar to the
general case shown in Figures 2 and 3.
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To understand the effects of the optimal nutrient ratio θm (or θ0 = 2θm − θc = 2θm −
7.8), we perform a bifurcation diagram on θm shown in Figure 7 by setting

a = 0.15, b = 0.1, d = 0.1, α = 0.3, β = 0.7, γ = 0.9, θc = 7.8.

Notice that θ0 = 2θm − θc ≥ 0, thus the value of θm in Figure 7 starts with θm = 1/2θc =
3.9. Figure 7 shows that Model (4) exhibits reversed backward bifurcation on θm (or θ0):
(1) small values of the optimal nutrient ratio θm can insecure the persistence of the colony;
(2) intermediate values of θm can go through saddle node bifurcation; and (3) large values
of θm can lead to colony collapse.

5. Conclusion

Variation in nutrient consumption among individuals is considered a conserved mecha-
nism regulating castes and division of labour in social insects colonies. In eusocial insects,
foragers, who perform food collection tasks, need to satisfy their own nutrient require-
ments in addition to those of the non-foraging workers, as well as the larvae and queen(s),
which have significantly higher protein needs [14]. In this paper, we propose and study
a nonlinear differential equations system to explore how nutritional status may regulate
population dynamics and foraging task allocation of social insect colonies by applying
adaptive modeling framework. Our model assumes that foragers adjust their preferences
in favour of food sources containing limiting nutrients to maintain colony growth and
reproduction [7,11,26].

Our proposed model consists of a population of larvae L, foragers collecting carbohy-
drate Ac, and foragers collecting protein Ap. We assume that the survival rate of larvae is
determined by the available nutrition in the colony, which is reflected through the ratio of
workers collecting protein to those collecting carbohydrates SLmax

(
Ap
Ac

)
. Our formulation

of SLmax

(
Ap
Ac

)
is based on biological studies (see [11,26]) and embeds with an adap-

tive modeling approach adopted from [15,16,19]. Our theoretical results and bifurcation
analysis conclude that our proposed model exhibits backward bifurcations that generate
bistability (see examples in Figure 6). The bistability of the colony implies that initial
conditions are important for colony survival under certain ranges of life history param-
eters. More specifically, the dynamical features and the related biological implications of
Model (4) can be summarized as follows:

1. The nutrition status measured by Ap
Ac

is an increasing function of the total population
of workers A, or vice versa. This result may stem from the assumption that larvae
(or brood in general) have higher nutritional needs to ensure survival. The biological
implications of this are that higher nutritional status Ap

Ac
can lead to a better survival

rate of larvae, thus the colony can grow with larger worker population A.
2. The survival probability of brood is an increasing function of the following important

life history parameters of colony:
(a) The division of labour invested on brood measured by a can have huge impacts

on dynamical outcomes of the colony. From Lemma 3.1, Theorems 3.1 and 3.3,
Model (4) exhibits a backward bifurcation (shown in Figure 2) as a decreasing
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past its critical point

â∗ = 4bd2β2(1 − α1)
2

α4
1γ

2 + 4dα1β2γ (1 − α1)(α1 − (1 − α1)θ0)

which is an increasing function of the maturation rate β , the minimal nutrient
ratio θ0; and a decreasing function of queen(s) laying egg rate γ . The larger the
value of a, the more likely it is that the colony survives and grows.

(b) Effects of nutrient thresholds θ0, θm, θc: Figures 2, 3 and 7 suggest that Model (4)
exhibits reversed backward bifurcation on θm (or θ0): (1) small values of the opti-
mal nutrient ratio θm can insecure the persistence of the colony; (2) intermediate
values of θm can go through saddle node bifurcation that leads to bistability; and
(3) large values of θm can lead to colony collapsing.In addition, the larger value of
the optimal nutrient ratio θm (or θ0) leads to (1) larger critical threshold â∗; (2)
smaller population A; and (3) smaller nutrient status, i.e. smaller value of Ap

Ac
.

(c) Effects of the brood survival rate α1: Figure 4(a) shows that Model (4) exhibits
reversed backward bifurcation on θ0. Figure 4(b) suggests that the larger value of
α1, the larger the population of workersAwill be, which increases the probability
of colony survival.

Our proposed model and study provide new insights into the strategies used by social
insects (such as harvesting ants) facing nutritional challenges, and our results deepen
our understanding of their nutritional ecology. Task allocation has been studied in social
insects, that is, how colonies change the allocation of tasks in response to changing colony
needs. One of future directions would be extending our current model to include more
tasks such as brood care, foraging, and study how different tasks are related to colony needs
including nutritional requirement. An another future direction is to extend our current
model to include an additional level such as food resource of the colony. For example, leaf-
cutter ants collect leaves as food resource to cultivate fungi and harvest the fruits of fungi
as their food. The nutrient requirement of the leaf-cutter ants colony has two levels: one is
the needs of the colony itself such as brood and the other one is the needs of the fungi. It
would be interesting to explore how nutrient needs of the colony and fungus garden affect
the foraging behaviour of leaf-cutter ants during its ontology.

6. Proofs

Proof of Lemma 3.1

Proof: For any L, A ∈ R2+, from Model (4), we obtain L′|L(0)=0 ≥ 0 and A′|A(0)=0 ≥ 0
for all t ≥ 0. Since A = Ap + Ac, then A′

p|Ap(0)=0 ≥ 0 for all t ≥ 0. Moreover, if L(0) =
0, A(0) = 0 and Ap(0) = 0, then (L(t),A(t),Ap(t)) = (0, 0, 0) for all t ≥ 0. If L(0) >

0, A(0) > 0 and Ap(0) > 0, then by continuity arguments, it is impossible for either L(t)
or A(t) or Ap(t) to drop below 0. Hence, for any L(0) ≥ 0, A(0) ≥ 0 and Ap(0) ≥ 0, we
obtain L(t) ≥ 0, A(t) ≥ 0 and Ap(t) ≥ 0 for all t ≥ 0.
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Now assume L(0) ≥ 0, A(0) ≥ 0 and Ap(0) ≥ 0, then since the function of SL
(
Ap
Ac

)
exists maximumwhen Ap

Ac
∈ (max{0, θ0}, θc) and according to the expression of L′, we have

L′ = α1γ

(
Ap

Ac
− θ0

)
aA2

b + aA2 − βL ≤ α1γ (θm − θ0) − βL

for all t ≥ 0 when θm > θ0. Thus, a standard comparison theorem shows that
lim supt→∞ L(t) ≤ α1γ (θm−θ0)

β
. This indicates that for any ε > 0, there exists T large

enough, such that

L(t) ≤ α1γ (θm − θ0)

β
+ ε for all t > T.

Therefore, from the expression of A′, we have

A′ = βL − dA2 ≤ β

(
α1γ (θm − θ0)

β
+ ε

)
− dA2 for all t > T.

Since ε can be arbitrarily small, thus lim supt→∞ A(t) ≤
√

dα1γ (θm−θ0)
d . Thus, we have

shown that the Model (4) is positively invariant and bounded in R2+. More specifically,

the compact set
[
0, α1γ (θm−θ0)

β

]
×
[
0,

√
dα1γ (θm−θ0)

d

]
attracts all points in R2+. Due to

A = Ap + Ac and the boundedness of A(t), hence we can obtain Ap is bounded for all
t ≥ 0.

Moreover, if L(0) > 0, A(0) > 0 and Ap(0) > 0, then we have follows:

L′ = α1γ

(
Ap

Ac
− θ0

)
aA2

b + aA2 − βL ≥ −βL ⇒ L(t) ≥ L(0)e−βt > 0,

A′ = βL − dA2 ≥ −dA2 ⇒ A(t) ≥ A(0)
1 + dt

> 0,

A′
p = α1βL + α1AcL − dApA ≥ −dApA ⇒ Ap(t) ≥ Ap(0)e−d

∫ t
0 A(s)ds > 0.

Therefore, if L(0) > 0, A(0) > 0 and Ap(0) > 0, then L(t) > 0, A(t) > 0 and Ap(t) > 0
for all t>0. �

Proof of Theorem 3.1

Proof: It is easy to see that E0 = (0, 0, 0) is always an equilibrium of Model (4). The
nullclines of (4) can be found as

L′ = 0 =⇒ α1γ

(
Ap

Ac
− θ0

)
aA2

b + aA2 − βL = 0,

A′ = 0 =⇒ L = d
β
A2,

A′
p = 0 =⇒ α1βL + α1AcL − dApA = 0 =⇒ L = dApA

α1β + α1Ac
.
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By solving dApA
α1β+α1Ac

= d
β
A2 for Ap, we have Ap = α1βA+α1A2

β+α1A and substitute it to L′ = 0,
which results in the following equation:

adβ(1 − α1)A2 − aα2
1γA + β[(1 − α1)(bd + aα1γ θ0) − aα2

1γ ] = 0. (14)

The roots of (14) are given by

A1 = aα2
1γ − √

�

2aβd(1 − α1)
, A2 = aα2

1γ + √
�

2aβd(1 − α1)
,

where � = a(aα4
1γ

2 − 4dβ2[(1 − α1)
2(bd + aα1γ θ0) − aα2

1γ (1 − α1)]).
Thus, we have the following three cases:
Let θ∗

0 = α3
1γ

4dβ2(1−α1)2
+ α1

1−α1
− bd

aα1γ .

1. If θ0 > θ∗
0 and a >

4bd2β2(1−α1)
2

α2
1γ (α2

1γ+4dβ2(1−α1))
, then there is only one trivial equilibrium:

E0 = (0, 0, 0) and no other positive interior equilibrium.
2. If θ0 = θ∗

0 and a >
4bd2β2(1−α1)

2

α2
1γ (α2

1γ+4dβ2(1−α1))
, then Model (4) has two positive equilibria

which collapse into one equilibrium E∗ as

(L∗,A∗,Ap∗) =
(
d
β
A2

∗,
α2
1γ

2βd(1 − α1)
,

α1βA∗ + α1A2∗
β + α1A∗

)
.

Or if 0 < θ0 < α1
1−α1

− bd
aα1γ and a >

bd(1−α1)
α2
1γ

, then Model (4) has only one positive
equilibrium

(L2,A2,Ap2) =
(
d
β
A2
2,A2,

α1βA2 + α1A2
2

β + α1A2

)
.

3. If max
{
0, α1

1−α1
− bd

aα1γ

}
< θ0 < θ∗

0 and a >
bd(1−α1)

α2
1γ

, then Model (4) has two posi-
tive equilibria in the following form:

(L1,A1,Ap1) =
(
d
β
A2
1,A1,

α1βA1 + α1A2
1

β + α1A1

)
and

(L2,A2,Ap2) =
(
d
β
A2
2,A2,

α1βA2 + α1A2
2

β + α1A2

)
.

�

Proof of Theorem 3.2

Proof: From Proposition 3.1, we know that for some initial condition taken in R
3+ and if

a < bd
α1γ (θm−θ0)

, the trajectory of Model (4) is converging to the origin E0 = (0, 0, 0). And

according to Theorem 3.1, if 0 < a < â∗ and θ0 <
α3
1γ+4dα1β2(1−α1)

4dβ2(1−α1)2
, then there is only

one trivial equilibrium E0 = (0, 0, 0) and no other positive equilibrium. Therefore, we can
conclude that Model (4) has global stability at (0, 0, 0)when a < min

{
â∗, bd

α1γ (θm−θ0)

}
and

θ0 <
α3
1γ+4dα1β2(1−α1)

4dβ2(1−α1)2
. �
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Proof of Theorem 3.3

Proof: The local stability of equilibria is determined by computing the eigenvalues of the
Jacobian matrix about each equilibrium.

Let E∗ = (L∗,A∗,A∗
p) be an arbitrary positive equilibrium of Model (4). The Jacobian

matrix at this equilibrium is

J|E∗ =
⎛
⎝−β J12 J13

β −2dA∗ 0
J31 J32 J33

⎞
⎠ , (15)

where

J12 = aα1γA∗[A∗
p(bA∗ − aA∗3 − 2bA∗

p) − 2b(A∗ − A∗
p)

2θ0]
(A∗ − A∗

p)
2(b + aA∗2)2

,

J13 = aα1γA∗3

(A∗ − A∗
p)

2(b + aA∗2)
> 0,

J31 = α1(β + A∗ − A∗
p) > 0, J32 = α1L∗ − dA∗

p , J33 = −(α1L∗ + dA∗) < 0.

Then we have the characteristic equation of J|E∗ is

f̂ (λ) = λ3 + C1λ
2 + C2λ + C3 = 0, (16)

where

C1 = β + αL∗ + 3dA∗ > 0,

C2 = J11J33 + J11J22 + J22J33 − J21J12 − J31J13

= 2dβA∗ + (β + 2dA∗)(α1L∗ + dA∗) − aα2
1γA

∗3(β + A∗ − A∗
p)

(A∗ − A∗
p)

2(b + aA∗2)

− aα1βγA∗[A∗
p(bA∗ − aA∗3 − 2bA∗

p) − 2b(A∗ − A∗
P)

2θ0
]

(A∗ − A∗
p)

2(b + aA∗2)2
,

C3 = −det(J|E∗
i
) = J11J22J33 + J21J32J13 − J21J12J33 − J31J22J13

= −2dβA∗(α1L∗ + dA∗)

+ aα1γA∗3[β(α1L∗ − dA∗
p + 2dα1A∗) + 2dα1A∗(A∗ − A∗

p)]
(A∗ − A∗

p)
2(b + aA∗2)

+
aα1βγA∗(α1L∗ + dA∗)

[
A∗
p(bA∗ − aA∗3 − 2bA∗

p − 2b(A∗ − A∗
p)

2θ0)
]

(A∗ − A∗
p)

2(b + aA∗2)2
.

This indicates the following two cases:

1. If Model (4) has a unique interior equilibrium E2 = (L2,A2,Ap2) =(
d
β
A2
2,A2,

α1βA2+α1A2
2

β+α1A2

)
, then under the conditions 0 < θ0 < α1

1−α1
− bd

aα1γ and a >



JOURNAL OF BIOLOGICAL DYNAMICS 23

bd(1−α1)
α2
1γ

and C1(E2)C2(E2) > C3(E2) > 0, thus, by applying the Routh-Hurwitz cri-
terion, we can obtain that the interior equilibrium E2 of Model (4) is locally asymp-
totically stable.

2. If Model (4) has two interior equilibria Ei = (Li,Ai,Api) =
(
d
β
A2
i ,Ai,

α1βAi+α1A2
i

β+α1Ai

)
,

i = 1, 2 where E1 < E2, then under the conditions max
{
0, α1

1−α1
− bd

aα1γ

}
< θ0 <

θ∗
0 , a >

4bd2β2(1−α1)
2

α2
1γ (α2

1γ+4dβ2(1−α1))
, and C1(E1)C2(E1) − C3(E1) < 0 but C1(E2)C2(E2) >

C3(E2) > 0, we can obtain that the interior equilibrium E2 is locally asymptotically
stable while E1 is unstable.

�

Proof of Theorem 3.4

Proof: For any L, A, Ap ∈ R
3+, note that

L′|L=0 = αγ
Ap

A − Ap

aA2

b + aA2 ≥ 0,

A′|A=0 = βL ≥ 0,

A′
p|Ap=0 = αβL + αAL ≥ 0,

thus according to Theorem A.4 (p. 423) of [31], we can conclude that the model (4) is
positive invariant in R

3+. Now we can proceed to show the boundedness of the system.
First, assume L(0) ≥ 0, A(0) ≥ 0 and Ap(0) ≥ 0, then since the function of SL

(
Ap
Ac

)
exists

maximumwhen 0 <
Ap
Ac

≤ θm and according to the expression of L′, we have the following
inequalities due to the property of positive invariance:

L′ = αγ
Ap

Ac

aA2

b + aA2 − βL ≤ αγ θm − βL

which implies that

lim sup
t→∞

L(t) ≤ αγ θm

β
.

This suggests that there exists ε > 0 such that the following inequalities hold as time t is
large enough,

A′ = βL − dA2 ≤ β

(
αγ θm

β
+ ε

)
− dA2

which indicates that

lim sup
t→∞

A(t) ≤
√

αγ θm

d
.
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Then, we also have the following inequalities hold as time t is large enough,

A′
p = αβL + α(A − Ap)L − dAAp ≤ α

(
αγ θm

β
+ ε

)(
β +

√
αγ θm

d
+ ε

)

− d

(√
αγ θm

d
+ ε

)
Ap

which shows that

lim sup
t→∞

Ap(t) ≤ α

(√
αγ θm

d
+ αγ θm

dβ

)
.

Therefore, every trajectory starting from R
3+ converges to the compact set

C =
[
0,

αγ θm

β

]
×
[
0,
√

αγ θm

d

]
×
[
0,α

(√
αγ θm

d
+ αγ θm

dβ

)]
.

Let E∗ = (L∗,A∗,A∗
p) be an interior equilibrium of Model (4). Then its stability is deter-

mined by the eigenvalues λi(E∗), i = 1, 2, 3 of its associated Jacobian matrix as follows:

J|E∗ =

⎛
⎜⎜⎜⎝

−β −aαγA∗A∗
p(aA∗3 − bA∗ + 2bA∗

p)

(A∗ − A∗
p)

2(b + aA∗2)2
aαγA∗3

(A∗ − A∗
p)

2(b + aA∗2)
β −2dA∗ 0

α(β + A∗ − A∗
p) αL∗ − dA∗

p −αL∗ − dA∗

⎞
⎟⎟⎟⎠ ,

since βL∗ = dA∗2, βL∗ = αγ
A∗
p

A∗
c

aA∗2
b+aA∗2 , and

A∗
A∗
p

= β
α(β+A∗

c )
. Therefore, we have

J|E∗ =

⎛
⎜⎜⎝

−β −d2A∗2(aA∗2 − b)
aαγA∗

p
− 2bd2A∗

aαγ

dA∗3

A∗
pA∗

c
β −2dA∗ 0

α(β + A∗ − A∗
p) αL∗ − dA∗

p −αL∗ − dA∗

⎞
⎟⎟⎠ ,

and the characteristic equation of J|E∗ is

f (λ) = λ3 + c1λ2 + c2λ + c3 = 0,

where

c1 = −tr(J|E∗) = −(λ1(E∗) + λ2(E∗) + λ3(E∗)) = β + 3dA∗ + αL∗ > 0,

c2 = (β + 2dA∗)(αL∗ + dA∗) + βd2A∗

aαγ

(
A∗(aA∗2 − b)

A∗
p

+ 2b

)
+ 2dβA∗ − βdA∗2

A∗
c

,

c3 = −det(J|E∗) = −λ1(E∗)λ2(E∗)λ3(E∗)

=
[

βd2A∗

aαγ
(
A∗(aA∗2 − b)

A∗
p

+ 2b) + 2dβA∗
]

(αL∗ + dA∗)

− βdA∗3

A∗
pA∗

c
(αL∗ − dA∗

p) − 2βd2A∗3

A∗
c

.
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This indicates the following two cases:

1. If Model (4) has a unique interior equilibrium E2 = (L2,A2,Ap2) =(
d
β
A2
2,A2,

αβA2+αA2
2

β+αA2

)
, then under the conditions a >

bd(1−α)

α2γ
, a1 < a < a2 and

max
{
0,

β

β − αA2

}

<
A2

Ac2
< min

{
αL2 + dA2

αL2 + dAp2

[
d(aA2

2 − b)
aαγ

+ 2Ap2
A2

(
bd
aαγ

+ 1
)]

,M

}
,

where

a1 =
b
(
α2γ + 4dβ2(1 − α) − α

√
γ (α2γ + 8dβ2(1 − α))

)
2α2β2γ

,

a2 =
b
(
α2γ + 4dβ2(1 − α) + α

√
γ (α2γ + 8dβ2(1 − α))

)
2α2β2γ

,

M = 1
β2 (2αdA2

2 + (α + 2d)βA2 + 3β2) + d
aαγ

(
A2

Ap2
(aA2

2 − b) + 2b

)
, (17)

we get c2 > 0, c3 > 0. And we can verify that c1c2 − c3 > 0. Thus, we can con-
clude that the interior equilibrium E2 is locally stable by applying the Routh-Hurwitz
criterion.

2. IfModel (4) has two interior equilibria Ei = (Li,Ai,Api) =
(
d
β
A2
i ,Ai,

αβAi+αA2
i

β+αAi

)
, i =

1, 2 where E1 < E2, then under the conditions a∗ < a <
bd(1−α)

α2γ
, a1 < a < a2, and

A1

Ac1
>

1
β2 (2αdA1

2 + (α + 2d)βA1 + 3β2) − d
aαγ

(
A1

Ap1
(b − aA1

2) − 2b

)
,

A2

Ac2
<

1
β2 (2αdA2

2 + (α + 2d)βA2 + 3β2) + d
aαγ

(
A2

Ap2
(aA2

2 − b) + 2b

)
,

we obtain A1 <

√
b
a < A2 and c2(E1) < 0 but c2(E2) > 0. We also can verify that

c1(E2)c2(E2) − c3(E2) > 0. Therefore, the interior equilibrium E2 is locally asymp-
totically stable while E1 is unstable. �
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