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ABSTRACT
Drugs of abuse, such as opiates, are one of the leading causes for
transmission of HIV in many parts of the world. Drug abusers often
face a higher risk of acquiring HIV because target cell (CD4+ T-cell)
receptor expression differs in response to morphine, a metabolite of
common opiates. In this study, we use a viral dynamics model that
incorporates the T-cell expression difference to formulate the prob-
ability of infection among drug abusers. We quantify how the risk
of infection is exacerbated in morphine conditioning, depending on
the timings of morphine intake and virus exposure. With in-depth
understanding of the viral dynamics and the increased risk for these
individuals, we further evaluate how preventive therapies, including
pre- and post-exposure prophylaxis, affect the infection risk in drug
abusers. These results are useful to devise ideal treatment protocols
to combat the several obstacles those under drugs of abuse face.
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1. Introduction

The human immunodeficiency virus (HIV) remains a persistent epidemic in the USA and
worldwide. It has been commonly understood that drugs of abuse, such as opiates, are one
of the leading causes of HIV transmission. According to the World Health Organization
[45], out of the 13 million people who inject drugs worldwide, 1.7 million of them are
living with HIV. More specifically, injection drug use accounts for nearly a third of all HIV
infections in the USA [4,10,25]. Given the high risk of infection associated with drugs of
abuse, it is of paramount importance to study HIV dynamics and the risk of infection in
the context of drugs of abuse.

Opioids remain amajor class of commonly abused drugs, among which heroin is one of
the most common in the drug abuser community [6]. Since a metabolite of heroin is mor-
phine [22], morphine is a common opiate used for experimental studies related to drugs
of abuse. Drugs of abuse are typically attributed to a higher risk of HIV infection due to
needle sharing and increased risky sexual behaviour [9,29]. While these behavioural fac-
tors contribute to an increased risk of transmission, an alteration of biological components
due to conditioning of drugs of abuse has been shown to have a significant impact on the
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risk of infection. Several experiments utilizing simian immunodeficiency virus (SIV) infec-
tion inmacaques have shown that whenmorphine is present within a body, the population
dynamics of CD4T cells, which are the primary target ofHIV, change [16,17]. In particular,
morphine promotes co-receptor expression in CD4 T cells, and these co-receptors, such as
CCR5 and CXCR4, are utilized by HIV to establish infection in CD4 T cells [27,40]. An
increase of co-receptor expression due to the presence of morphine increases the suscepti-
bility of target cells (CD4 T cells) to HIV infection. As a consequence, the risk of infection
may change as a result of the presence of morphine in the body of virus recipients. It is
of utmost importance to properly quantify the risk of infection in order to devise an ideal
strategy for HIV prevention among drug abusers. One of the main objectives of this study
is to predict the risk of HIV infection when morphine is present within a body and to
identify how much the risk of infection can be reduced by using preventive therapies.

Mathematicalmodels have been a powerful tool to describeHIVdynamics within hosts.
In this study, we implement a recently developed mathematical model under conditioning
of drugs of abuse to predict the risk of HIV transmission from infected individuals to unin-
fected drug abusers. Our novel probabilistic model takes into account three vital steps for
a successful infection: virus transfer from a source partner to the target cell site within a
drug abuser, initial infection of a target cell, and persistence of infection within the drug
abuser host. Using our model, we quantify the risk of infection in morphine condition-
ing depending on the timings of morphine intake and virus exposure. Our model predicts
that the presence of morphine can set a condition with significant increase in the risk of
HIV infection, underscoring a need of proper evaluation of prevention strategy for drug
abusers.

In a current situation of unavailability of an effective HIV vaccine, treatment as pre-
vention has been considered as planning for curbing the HIV epidemic. In particular,
individuals in risky groups, such as injection drug users and sexual workers, are recom-
mended to use pre- and/or post-exposure prophylaxis (PrEP/ PEP) as a way to prevent
the virus transmission [21]. We extended our basic probabilistic model for drug abusers
to incorporate preventive therapy and used the extended model to evaluate the role of
pre- and post-exposure prophylaxis in reducing the risk of HIV infection. Importantly,
our results indicate that the effectiveness of therapy on reducing the risk of HIV infection
highly depends on the timing of therapy initiation.

2. Cell population switch under morphine conditioning

To quantify the risk of HIV infection, it is necessary to understand target cell (CD4 T cell)
dynamics, which is affected bymorphine conditioning. In this section, we analyse amathe-
matical model that describes T-cell dynamics undermorphine conditioning in the absence
of virus. When an opiate interacts with target cells, it affects the co-receptors by increasing
their expression. Morphine has been proven to modulate co-receptor expression of CD4 T
cells, specifically the expressions of CCR5 andCXCR4 co-receptors [12,19,39]. An increase
in the co-receptor expression in a target cell causes the cell to be more susceptible to HIV
infection as the virus fusion into the cell ismediated through the help of these co-receptors.

As mentioned earlier, our objective is to compute the risk of infection in uninfected
drug abusers. Since the infection has not been established in these individuals,HIV-specific
immune responses are absent. Therefore, other immune cells, such as CD8 T cells and
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Figure 1. Schematic diagram of target cell population switch model.

B cells, are ignored, and only CD4 T cells, the primary target of HIV, are considered in
our model. To describe the effect of morphine on switching CD4 T cells between different
susceptibilities, we consider two subpopulations of these cells as done previously [44]: a low
susceptibility category, Tl, and a high susceptibility category, Th. We describe the dynamics
of these cells using the following model equations.

Ṫl = λ − dTl − rTl + qTh, Tl(0) = Tl0,

Ṫh = rTl − dTh − qTh, Th(0) = Th0. (1)

In this model, target cells are assumed to be generated in the low susceptible category, Tl,
at a rate of λ cells per day. Cells transit from the low, Tl, to high, Th, susceptible category
at rate r, and from high to low at rate q. These target cells die at per capita death rate of d
per day. A schematic diagram of the cell population switch model is shown in Figure 1.

In the absence of HIV infection, the total amount of CD4 T cells in uninfected indi-
viduals remains approximately constant, i.e.Tl + Th = Tl0 + Th0 = T0, a constant. This
implies that Ṫl + Ṫh = 0, which fromModel 1, gives λ = d(Tl + Th) = dT0. Then, solving
the differential equations, we obtain

Th(t) = rT0 + [(d + q + r)Th0 − rT0]e−(d+q+r)t

d + q + r
, (2a)

Tl(t) = T0 − Th(t). (2b)

Since morphine causes a cell population switch, the model parameters that are affected
by morphine are r and q. For example, an estimation using the data from morphine
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Figure 2. Dynamics of cell subpopulations (left) and proportion of high susceptible cells (right) in the
absence of virus infection. Time t = 0 represents the time of morphine intake. Before the morphine
intake (t ≤ 0), the cell populations are assumed to be at the steady state Tl = T0(d + q)/(d + q + r) ∼
6.1 × 105, Th = T0r/(d + q + r) ∼ 3.9 × 105 (with parameters corresponding to the absence of mor-
phine, i.e. T0 = 106, d = 0.01, r = 0.16, q = 0.24). After the morphine intake (t ≥ 0), the parameters
corresponding to the presence of morphine are used (i.e. d = 0.01, r = 0.5, q = 4.42 × 10−7, Tl0 =
6.1 × 105, Th0 = 3.9 × 105).

addicted SIV-infectedmacaques [44] shows a higher r and a lower q in the presence ofmor-
phine (r = 0.5 per day, q = 4.42 × 10−7 per day in the presence of morphine and r = 0.16
per day, q = 0.24 per day in the absence of morphine).

In Figure 2, we present the typical cell dynamics predicted by Equations (2a) and (2b),
within a susceptible individual undermorphine conditioning. In this case,morphine enters
the system at day 0, before which the cell subpopulation is assumed to be at the steady
state (a constant level before morphine intake). The proportion of high susceptible cells,
P = Th

Tl+Th
, rapidly increases after morphine exposure (Figure 2 right). In the absence of

morphine, the proportion of high susceptible cells remains at approximately 39% while
with a prolonged maintenance of morphine, this proportion reaches approximately 98%
within 10 days. This implies that the maintenance of a constant level of morphine can
cause the proportion of high susceptible cells to be more than double in the body of drug
abusers. Depending on when the virus is introduced, before or after the morphine intake,
the number of high susceptible cells available can be quite different. The dynamical nature
of the high susceptible cells post-morphine intake indicates that the risk of infection may
depend on the amount of time between morphine intake and virus exposure.

We also performed a sensitivity analysis to identify the most impactful parameter on
the proportion of high susceptible cells, P, by computing the following sensitivity index

Sx = x
P

∂P
∂x

,

where x is a parameter, whose impact on P is sought [30]. Note that the higher the value
of Sx, the more impactful the parameter is. Also, a positive (negative) value indicates that
an increase in the parameter increases (decreases) P. Our computations (Figure 3) reveal
that the most impactful parameter on the proportion of high susceptible cells is r, the rate
at which low susceptible cells, Tl, transit to the high susceptible category, Th. The impact is
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Figure 3. Sensitivity analysis of parameters on the proportion of high susceptible cells, P. The value on
the y-axis represents the sensitivity index, Sx and the time t = 0 represents the time ofmorphine intake.

particularly pronounced at the beginning of the morphine intake until about 10 days post-
morphine intake. A higher positive effect of r indicates that the presence of a higher amount
of morphine results in a higher proportion of high susceptible cells. The parameters q and
d have low sensitivity indices, implying that they have a low effect on the proportion of
high susceptible cells, P.

3. Formulation of risk of infection

We define a risk of infection, Pinf , as the probability of a successful establishment of HIV
infection in a susceptible individual upon a single contact (exposure to virus source) with
an HIV-infected individual. In order for a susceptible individual (recipient) to become
infected upon contact with an infected individual (donor), three steps must occur:

(1) transmission (the transfer of virus from the donor to the site of the target cells of the
recipient)

(2) infection initiation (infection of at least one target cell by the virus)
(3) infection persistence (establishment of a persistent infection by infecting other cells)

A detailed stepwise process starting from virus in the donor to a successful establish-
ment of HIV infection in the recipient is depicted through a schematic diagram in Figure 4.
Wenow formulate each step leading to an overall risk of infection,Pinf , which is a combined
effect of the transfer of virus from the donor to the recipient, the probability of infection
initiation, Pcell, and the probability of infection persistence, Ppersist.
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Figure 4. Schematic diagram showing steps starting from virus in the donor to a successful establish-
ment of HIV infection in the recipient.

Step-1: Transmission

We denote a viral load in the blood of the donor as Vdonor per mL, which can be clinically
measured in HIV-infected patients. We take m1 to represent the ratio between the viral
concentration in the blood and the released bodily fluid, such as semen, of the donor such
that the recipient is exposed to the totalm1Vdonor viruses.We further assume that a fraction
m2 of these exposed viruses cross any mucus barrier and reach the target cell site of the
recipient [24]. Thus, the total amount of viruses that survive transmission and make it to
the recipient’s target cell site is given by mVdonor, where m = m1m2. Depending on the
mode of transmission,m can take on several different values. For example, the value of m
is higher when the mode of transmission is injection drug use rather than sexual contact,
as the virus is directly injected into the blood causing fewer barriers to cross to make it to
the target cell site [42].

Step-2: Infection initiation

In this section, we formulate the probability, Pcell, that the viruses that reached the recip-
ient’s target cell site infect at least one of the target cells. We consider the time of the
morphine intake as t = 0 (same as above) and the time of virus exposure as t = tp
(Figure 5). A positive tp represents virus being introduced after morphine has entered
the system and a negative tp represents virus being introduced before morphine intake
(Figure 5).

In the absence of target cell infection, free virus, V, gets cleared by the body at a virus
clearance rate c. The dynamics of virus introduced into the target cell site at the time of
virus exposure t = tp is governed by the equation

V̇ = −cV , V(tp) = mVdonor. (3)



JOURNAL OF BIOLOGICAL DYNAMICS 7

Figure 5. Timeline showing the time ofmorphine intake (t = 0) and the time of virus exposure (t = tp).
When the recipient is exposed to virus before morphine intake (top, tp < 0) and after morphine intake
(bottom, tp > 0).

By solving Equation 3,we findV(s) = mVdonore−c(s−tp), s ≥ tp, which provides the amount
of virus that survive at the end of the time interval of [tp, ti] to be V(ti) [23]. We assume
the infection rate of low (Tl) and high (Th) susceptible cells to be βl per virus per day and
βh per virus per day, respectively. Thus, the total cell infection rate per virus is given by
(βlTl + βhTh) per day.

As in previous work [1,31,42], we now assume that the viral infection of target cells
follows an inhomogeneous Poisson process. Here, the Poisson parameter represents the
expected number of newly infected target cells of the recipient in the time interval [tp, ti],
which is given by

γ (ti) = mVdonor

∫ ti

tp
e−c(s−tp) [βlTl(s) + βhTh(s)] ds. (4)

Then using the Poisson process [1,31,42], we obtain the probability that at least one tar-
get cell becomes ultimately infected as limti→∞(1 − e−γ (ti)). Hence, the probability of
infection initiation is given by

Pcell = 1 − exp

(
−mVdonor

∫ ∞

tp
e−c(s−tp) [βlTl(s) + βhTh(s)] ds

)
, (5)

where the dynamics of Th and Tl beforemorphine intake (t<0) and after morphine intake
(t>0), as discussed in Section 2, are given by

Th(t) =

⎧⎪⎨
⎪⎩
Th0 if t < 0,
rT0 + [(d + q + r)Th0 − rT0]e−(d+q+r)t

d + q + r
if t ≥ 0,

(6a)

Tl(t) = T0 − Th(t). (6b)

Step-3: Infection persistence

We assume that a single cell is successfully infected at time t = ti ≥ tp, where tp is the
time of virus exposure as discussed above. Given the single cell is successfully infected, we
now formulate the probability that the initiated infection establishes a persistent infection,
Ppersist. For this, we again assume the inhomogeneous Poisson process, with a new Poisson
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Figure 6. Schematic diagram of viral dynamics after infection is initiated.

parameter. This new parameter represents the expected number of secondary infections
from a single infected cell, which is known as the basic reproduction number, R0 [3].
For t ≥ ti (after infection initiation), we extend Model (1) to incorporate the dynamics
of infected cells, I, and free virus, V, along with target cells, Tl and Th. The governing
equations are as follows.

Ṫl = λ − dTl − rTl − βlTlV + qTh,

Ṫh = rTl − dTh − βhThV − qTh,

İ = βlTlV + βhThV − δI,

V̇ = pI − cV , (7)

with initial conditions at the time of infection initiation, Tl(ti), Th(ti), I(ti) = 1, and V(ti).
The schematic diagram of the model is shown in Figure 6. Target cells, Tl and Th become
infected cells, I, when they come in contact with free virus, V, at rates βl and βh, respec-
tively. δ represents the death rate of infected cells, and p and c are rate constants for virus
production per infected cell and virus clearance, respectively. A comprehensive list of the
parameters, their meanings, and values are shown in Table 1 [44].

To compute the basic reproduction number, R0 (the Poisson parameter for Ppersist), we
use the next generation matrix method [18,48] on Model (7). According to the next gen-
eration method, we compute the Jacobian, J, of the infectious equations, (İ, V̇), linearized
about the infection-free equilibrium, IFE = (

λ(d+q)
d(d+q+r) ,

λr
d(d+q+r) , 0, 0). The Jacobian is then

split into two matrices, F (the new infection matrix) and V (the transfer matrix) such that
J = F−V,

F =
⎡
⎣0 βl

(
λ(d + q)

d(d + q + r)

)
+ βh

(
λr

d(d + q + r)

)
p 0

⎤
⎦ , V =

[
δ 0
0 c

]
.
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Table 1. Model parameters.

Meaning Value Units Source

δ Death rate of infected cells 0.38 day−1 [44]
d Death rate of uninfected cells 0.01 day−1 [38]
λ Target cell production rate 104 cell ml−1 day−1 [38]
r Rate of switch Tl to Th 0.5 (morphine) day−1 [44]

0.16 (no morphine)
q Rate of switch Th to Tl 4.42 × 10−7 (morphine) day−1 [44]

0.24 (no morphine)
βl Infection rate of Tl 5.13×10−10 ml day−1virion−1 [44]
βh Infection rate of Th 3.02×10−8 ml day−1virion−1 [44]
p Virus production rate 2500 virion day−1cell−1 [44]
c Clearance rate of virus 23 day−1 [26]
m Fraction of viruses reaching target cells 1.64 × 10−5 dimensionless [46], Estimated

The spectral radius of FV−1 gives the basic reproduction number, i.e. R0 = ρ(FV−1).
Hence,

R0 = λp
[
βl(d + q) + βhr

]
δcd(d + r + q)

. (8)

Note that the basic reproduction number can take on different values depending on
the availability of the two different target cell subpopulations (Tl(ti),Th(ti)) (Figure 2)
at the time of infection initiation. Since the lifespan of free virus particles and infected
cells is short, the difference between target cell populations at ti (the time of infec-
tion initiation) and at tp (the time of virus exposure) can be assumed to be neg-
ligible, implying (Tl(ti),Th(ti)) ∼ (Tl(tp),Th(tp)). Thus, replacing the expression of
IFE = (

λ(d+q)
d(d+q+r) ,

λr
d(d+q+r) , 0, 0) in Equation (8) by the initial infection-free condition

(Tl(tp),Th(tp), 0, 0), we obtain the basic reproduction number as

R0 = p
cδ
[
βlTl(tp) + βhTh(tp)

]
, (9)

where

Th(tp) =
⎧⎨
⎩
Th0 if tp < 0,
rT0 + [(d + q + r)Th0 − rT0]e−(d+q+r)tp

d + q + r
if tp ≥ 0,

(10a)

Tl(tp) = T0 − Th(tp). (10b)

As established in the following three theorems, we are able to prove that R0 can fully
describe both virus and cell dynamics after the initiation of infection.

Theorem 3.1: If R0 < 1, the infection-free equilibrium is locally asymptotically stable and if
R0 > 1 the IFE is unstable.

Proof: See Appendix 1. �

Theorem 3.2: If R0 < 1, the infection-free equilibrium is globally asymptotically stable.

Proof: See Appendix 2. �



10 A. BLOOMQUIST AND N. K. VAIDYA

Theorem 3.3: If R0 > 1, system (7) is uniformly persistent with respect to (X0, ∂X0),
where X = R

4+, such that there exists a positive constant ξ > 0, and every solution
(Tl(t),Th(t), I(t),V(t)) with initial value (Tl0,Th0, I0,V0) ∈ X0 satisfies

lim
t→∞ inf I(t) ≥ ξ , lim

t→∞ inf V(t) ≥ ξ . (11)

Furthermore, system (7) admits at least one positive equilibrium.

Proof: See Appendix 3. �

These three theorems have important biological interpretations. Note that R0 represents
the average number of infected cells produced by a single infected cell and can be esti-
mated using themodel parameters (Equations (8) and (9)). According to the Theorems 3.1
and 3.2, if the magnitude of R0 is less than unity, the infection dies out eventually converg-
ing to the infection-free equilibrium. On the other hand, the Theorem 3.3 shows that if the
magnitude of R0 is greater than unity, the infection establishes with virus persisting in the
body.

While R0 > 1 can ascertain the persistence of infection in the deterministic dynamics
(Theorem3.3), due to the small number of initially infected cells, the infectionmaynot per-
sist because of the stochastic nature of cell dynamics [8,15]. To incorporate this stochastic
factor, we use R0 as a rate parameter in the Poisson process, which implies the probability
of infection persistence is (1 − e−R0). Therefore, the probability, Ppersist, that the initiated
infection establishes a persistent infection is given by

Ppersist = 1 − exp

(
−p

[
βlTl(tp) + βhTh(tp)

]
cδ

)
, (12)

where

Th(tp) =
⎧⎨
⎩
Th0 if tp < 0,
rT0 + [(d + q + r)Th0 − rT0]e−(d+q+r)tp

d + q + r
if tp ≥ 0,

(13a)

Tl(tp) = T0 − Th(tp). (13b)

Overall risk of infection

We now combine all steps to formulate the overall risk of infection. The probability of a
susceptible individual becoming infected from a single contact with an infected individual
having a viral load of Vdonor is given by

Pinf = Pcell · Ppersist

=
[
1 − e−mVdonor

∫∞
tp e−c(s−tp)(βlTl(s)+βhTh(s))ds

] [
1 − e−

p[βlTl(tp)+βhTh(tp)]
cδ

]
, (14)
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where

Th(t) =
⎧⎨
⎩
Th0 if t < 0,
rT0 + [(d + q + r)Th0 − rT0]e−(d+q+r)t

d + q + r
if t ≥ 0,

(15a)

Tl(t) = T0 − Th(t). (15b)

4. Computation of risk of infection

Model parameters are estimated based on literature survey [26,38,43,44] and are given
in Table 1. Note that as discussed above, the transmission-related parameter, m, depends
upon themode of transmission. For sexual transmission, the risk of receivingHIV from an
infected individual has been estimated to be 0.82% per coital act [46]. Thus, we estimatem
by adjusting its value in order to attain a risk of infection of 0.82% in the absence of drugs of
abuse. As a result, we obtain a value ofm = 1.64 × 10−5. Using these estimated parameters
(Table 1), we now compute the basic reproduction number and the risk of infection.

In the absence of drugs of abuse, the basic reproduction number is R0 = 3.46. The com-
puted R0 value is consistent with previous estimates [43], and R0 > 1 indicates that the
infection persists in the deterministic framework. Importantly, the target cell population
switch due to morphine which results in a higher number of high susceptible cells can
bring the value of R0 as high as 8.47 after prolonged use of morphine. This implies that
morphine can set the within-host environment for a significantly high chance of infection
persistence.

The probability of infection for the different timing of virus-exposure (tp) predicted by
ourmodel is given in Figure 7. The level of probability beforemorphine intake (tp < 0) rep-
resents the risk of infection for individuals without drugs of abuse in their system (red filled
circle, Figure 7). The presence of morphine gradually increases the risk of infection until it
saturates at some steady-state level (Figure 7). The steady state of probability reached after
morphine intake represents the risk of infection for individuals who experience prolonged
conditions of drugs of abuse (blue-filled circle, Figure 7). For comparison, our model pre-
dicts that the risk of infection for a susceptible individual per sexual act is 0.83% in the
absence of drugs of abuse while the risk increases to 2.09% for prolonged conditioning of
drugs of abuse. Therefore, from a single exposure to virus, drug abusers can be 2.5 times
more likely to get infected with HIV than those individuals without drugs of abuse. It is
interesting to note that the probability is higher even before the morphine-intake (Figure 7
inset), showing that there is a higher risk of infection for drug abusers evenwhenmorphine
is taken after virus exposure. This is due to the fact that the virus can remain long enough
until the morphine taken later switches target cell populations.

5. Impact of preventive therapy

Antiretroviral therapy (ART) as preventive therapy, such as pre-exposure prophylaxis
(PrEP) and post-exposure prophylaxis (PEP), has been commonly practiced. Currently
the five classes of ART, nucleoside reverse transcriptase inhibitors (NRTI), nonnucleoside
reverse transcriptase inhibitors (NNRTI), protease inhibitors (PI), fusion inhibitors (FI),
and integrase inhibitors (II) [32,33], show their antiviral activity either by reducing the
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Figure 7. Infection probability for the different timing of virus exposure (tp). Note that tp = 0 repre-
sents the time of morphine intake. The red filled circle represents the risk of infection when morphine
is absent, and the blue-filled circle is the maximum risk of infection for an individual under prolonged
morphine conditioning. The following parameter values were used: m = 1.64 × 10−5, c = 23,βl =
5.13 × 10−10,βh = 3.02 × 10−8, p = 2500, δ = .38, r = 0.5, q = 4.42 × 10−7, d = 0.01, Tl0 = 6.1 ×
105, and Th0 = 3.9 × 105.

infection rate βl and βh to the rates (1 − ε)βl and (1 − ε)βh, respectively, or the viral pro-
duction rate, p, to the rate (1 − η)p. Here, ε ∈ [0, 1] and η ∈ [0, 1] represent the efficacy of
ART to reduce infection rates and to reduce the virus production rate, respectively. These
terms corresponding to ART efficacy affect our formulation of both Pcell and Ppersist.

5.1. Formulation of risk of infection under preventive therapy

Weassume that the treatment begins at time tt such that tt ≤ tp represents PrEP and tt > tp
represents PEP, where tp represents the time of virus exposure. Including the treatment
conditions (βl → (1 − ε)βl, βh → (1 − ε)βh, and p → (1 − η)p) into the formulation
above, we obtain the probability of infection, Pinf(PrEP) and Pinf(PEP), for both cases, PrEP
and PEP, respectively.

ART as pre-exposure prophylaxis (PrEP). When ART is used as PrEP, i.e. tt ≤ tp, we
obtain

Pcell(PrEP) = 1 − e−mVdonor

(∫∞
tp [(1−ε)βlTl(s)+(1−ε)βhTh(s)]e−c(s−tp)ds

)
, (16)

where

Th(t) =
⎧⎨
⎩
Th0 if t < 0,
rT0 + [(d + q + r)Th0 − rT0]e−(d+q+r)t

d + q + r
if t ≥ 0,

(17a)

Tl(t) = T0 − Th(t). (17b)

In this case, the basic reproduction number under PrEP, R0(PrEP), is given by

R0(PrEP) = (1 − ε)(1 − η)R0, (18)
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and the probability of persistence is given by

Ppersist(PrEP) = 1 − e−R0(PrEP) (19)

Finally, with Pcell(PrEP) from Equation (16) and Ppersist(PrEP) from Equation (19), we
compute the risk of infection under PrEP using the following expression.

Pinf(PrEP) = Pcell(PrEP) · Ppersist(PrEP). (20)

ARTas post-exposure prophylaxis (PEP).WhenART is used as PEP, i.e. tt > tp, we obtain
the probability that the infection is ultimately initiated (i.e. at least one cell is eventually
infected) as

Pcell(PEP) = 1 − e−mVdonor

(∫ tt
tp [βlTl(s)+βhTh(s)]e−c(s−tp)ds+∫∞

tt [(1−ε)βlTl(s)+(1−ε)βhTh(s)]e−c(s−tp)ds
)
,

(21)
where

Th(t) =
⎧⎨
⎩
Th0 if t < 0,
rT0 + [(d + q + r)Th0 − rT0]e−(d+q+r)t

d + q + r
if t ≥ 0,

(22a)

Tl(t) = T0 − Th(t). (22b)

In the case of PEP, there are two possibilities for an infection to occur: (1) the infection
is initiated before the treatment begins (ti < tt), or (2) the infection is initiated after the
treatment begins (ti ≥ tt). The probability that the infection occurs before treatment begins
ti < tt is given by

AA = 1 − exp

(
−mVdonor

∫ tt

tp
e−c(s−tp)[βlTl(s) + βhTh(s)] ds

)
,

where

Th(t) =
⎧⎨
⎩
Th0 if t < 0,
rT0 + [(d + q + r)Th0 − rT0]e−(d+q+r)t

d + q + r
if t ≥ 0,

(23a)

Tl(t) = T0 − Th(t), (23b)

and the basic reproduction number for this case remains the same as above (R0 in
Equation (9)). Thus, the probability of persistence under PEP if the infection occurs before
treatment begins (ti < tt) is Ppersist(PEP1) = 1 − e−R0 .

Similarly, the probability that the infection is initiated after the treatment begins (ti ≥ tt)
is given by (Pcell(PEP) − AA) and the corresponding basic reproduction number is

R̂0t = (1 − η)(1 − ε)p
δc

[βlTl(tt) + βhTh(tt)] . (24)

This implies that the probability of persistence under PEP if the infection occurs after
treatment begins (ti ≥ tt) is Ppersist(PEP2) = 1 − e−R̂0t .
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Therefore, including both possibilities, we obtain the risk of infection in the case of PEP
as follows:

Pinf(PEP) = AA · Ppersist(PEP1) + [Pcell(PEP) − AA] · Ppersist(PEP2)
= AA

(
1 − e−R0

)+ [Pcell(PEP) − AA]
(
1 − e−R̂0t

)
. (25)

5.2. Computation of risk of infection under preventive therapy

The net efficacy of treatment can be affected by many factors, such as the frequency of
dosages, the timing of dosages, drug choice, and the timing relevant to virus exposure
[13,43]. Strict abidance to PrEP guidelines have also been associated with increased treat-
ment efficacy [37]. In general, the efficacy of a treatment is expected to be less than 100%;
it typically has an effectiveness between 0% and 75% [2,11]. For the purpose of our com-
putation, we chose values for both efficacies as ε = 0.5 and η = 0.5 which falls in line with
[5].

The impact of PrEP/PEP on the probability of infection predicted by our model (Equa-
tions (20) and (25)) is shown in Figure 8. The graphs shown are the infection probability for
the different timings of treatment initiation pre-/post-virus exposure (tt − tp) in an indi-
vidual without (red) and with (blue) prolonged conditioning of drugs of abuse (Figure 8).
Note that tt − tp = 0 represents PrEP and tt − tp > 0 represents PEP. Comparing two indi-
viduals taking PrEP, one with morphine in their system and another without, we observe
quite different risks of infection between them. An individual without drugs of abuse and
taking PrEP has a risk of infection of 0.2% while an individual using drugs of abuse and
taking PrEP has a risk of infection of 0.9%, a 4.5 times higher risk of infection. Also, in the
case of both PrEP and PEP, the risk of infection always remains higher in individuals with
conditioning of drugs of abuse (Figure 8). In fact, the individual using drugs of abuse while
taking PrEP has a higher risk of infection than an individual without drugs of abuse who
never seeks preventive therapy.

Previous studies have shown that the early initiation of antiretroviral therapy can signif-
icantly reduce rates of transmission ofHIV [7,28]. However, it is commonly unknownwhat
defines early and when treatment no longer affects the risk of infection [14]. Our model
predicts that an increase in tt − tp (delay in treatment post-virus exposure), increases the
risk of infection in both cases (with/without drugs of abuse). We found that the risk of
infection reaches a maximum value at approximately tt − tp = 4 hours for both individ-
uals. Therefore, delay of treatment initiation more than 4 hours from virus exposure may
not be as effective as beginning PEP earlier.

We now observe how the risk of infection changes when the effectiveness of treatment
(ε and η) are varied. The risk of infection predicted for different efficacy levels of PrEP
(tt − tp = 0) is presented in Figure 9 (left). With an increase in efficacy of PrEP, the risk of
infection is estimated to be decreased for both individualswith andwithout conditioning of
drugs of abuse. However, the risk of infection under drugs of abuse remains higher for any
efficacy of treatment; even at the 75% effective level of PrEP (the highest level considered),
the risk of infection for an individual with drugs of abuse in their system is 5.2 times higher
than an individual without drugs of abuse.
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Figure 8. Infection probability for the different timings of treatment initiation pre-/post-virus
exposure (tt − tp). Note that tt − tp = 0 represents PrEP and tt − tp > 0 represents PEP. We con-
sidered two cases: the absence of drugs of abuse (red curve) and prolonged presence of drugs of
abuse (blue curve). The parameter values used were as follows: m = 1.64 × 10−5, c = 23,βl =
5.13 × 10−10,βh = 3.02 × 10−8, p = 2500, δ = .38, r = 0.5, q = 4.42 × 10−7, d = 0.01, Tl0 =
6.1 × 105, Th0 = 3.9 × 105, ε = 0.5 and η = 0.5.

Figure 9. (left) Risk of infection under PrEP (tt − tp = 0) and (right) the delay in treatment initiation
(tt − tp) causing the risk of infection at its maximum value, for various treatment efficacies. All other
parameters are the same as in Figure 8.

For PEP (tt − tp > 0), the risk of infection increases as the initiation of treatment is
delayed longer (i.e. tt − tp higher) and eventually reaches the maximum risk of infection
for long enough delay (Figure 8 right). It is important to identify how the varying effi-
cacy of treatment affects the amount of minimum delay in treatment that causes the risk
of infection at its maximum value. As shown in Figure 9 (right), with a 10% efficacy of
treatment, the maximum risk is reached if treatment is delayed for longer than 2 hours. As



16 A. BLOOMQUIST AND N. K. VAIDYA

the effectiveness of the treatment increases, the delay in treatment, for which the risk is at
maximum value, also increases. For example, with 25% and 50% efficacies, an individual
has a three-hour and four-hour window of opportunity, respectively, to begin treatment to
maintain a risk of infection lower than its maximum value.

6. Discussion

In this study, we develop a mathematical model which allows us to quantify the risk of
HIV infection in individuals under conditioning of drugs of abuse. This model illustrates
the impact of complex biological alteration due to drugs of abuse such as morphine can
have on HIV infection and the risk of its transmission. In particular, analyzing the virus
dynamics under morphine conditioning, our model demonstrates that because morphine
alters co-receptor expression in target cells, individuals under morphine conditioning can
have a substantially higher proportion of high susceptible target cells (CD4 T cells). We
found this proportion to be 39% in the absence of morphine vs. 98% under a prolonged
exposure to morphine, indicating higher risk of infection in drug abusers. Moreover, the
proportion of high susceptible cells is mostly amplified by the transition rate of CD4 T
cells from the low to the high susceptible category, r, which depends on the presence of
morphine. Using a thorough analysis of deterministic models along with a probabilistic
approach, we have successfully formulated a risk of infection for an uninfected drug abuser
after a single contact with an HIV-infected partner.

Our model predicts that the prolonged conditioning of drugs of abuse in individuals
can cause a 2.5-fold higher risk of infection per sexual contact (0.83% without drugs of
abuse vs. 2.09% under drugs of abuse). Importantly, the amount of increase in the risk of
infection in drug abusers highly depends upon the duration of time between morphine
intake and virus exposure; the longer the morphine stays in the body before virus expo-
sure, the higher the risk of infection. An increase in the risk of infection is observed even
in the case when morphine is taken after virus exposure. In our base case computation,
when virus is introduced up to four hours before morphine intake, the risk of infection
can be increased. This interesting phenomena of increase in the risk of infection even
with morphine intake after the virus exposure is because the virus may still survive until
the time of morphine intake causing the target cells switch to higher susceptibility. While
these results are obtained based on parameters related to sexual transmission, the model
can easily be adjusted to predict the risk of infection through other routes of transmis-
sion, such as injection drug use, by choosing the appropriate value of transmission-related
parameterm.

We also implemented ourmodels to evaluate the effects of preventive therapy (PrEP and
PEP) on reducing the risk of infection. Our model predicts that the timing of treatment
initiation is highly critical in both cases, with and without drugs of abuse. For example, as
revealed in our computationwith the 50% efficacy level, if an individual doesn’t begin treat-
ment within 4 h of virus exposure, the probability of infection might have already reached
its maximum value and the treatment may not be as effective as an earlier initiation of PEP.
This shows that there is a time-window of opportunity (i.e., minimum delay for treatment
initiation after virus exposure) during which the treatment should be initiated to assure
the reduced risk of infection, increasing the chance for HIV prevention. In general, we
observe that the time-window of opportunity is wider for a higher efficacy of PEP. This
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result may explain why the PEP begun as early as 3 days post-infection in a recent study
[47] on monkey experiments could not prevent the SIV (simian immunodeficiency virus)
infection.

Using the model to compute the two cases of individuals taking PrEP with a 50% effi-
cacy, one without drugs of abuse and the other under drugs of abuse, the individuals with
the drugs of abuse have a predicted risk 4.5 times higher than the other individuals. A
similar effect was observed in the case of 50% effective PEP, in which the risk of infection
always remains higher (up to 2.5 times) in individuals with drugs of abuse, compared to
individuals without the conditioning of drugs of abuse. This trend holds true with varying
efficacies of treatment as well. For example, an individual under drugs of abuse using PrEP
with a 75% efficacy has the risk of infection approximately the same as an individual with-
out drugs of abuse using a 50% effective PrEP. The significant higher risk of infection for
the drug abusers than the individuals not using drugs of abuse can partly explain the high
percentage of drug abusers contracting HIV.

We acknowledge several limitations of our model. Our computation is based on the
parameters estimated from the limited study on drugs of abuse. Therefore, some of our
quantitative predictions may need the further evaluation with rich data sets. We used a
constant morphine concentration rather than a time-varying concentration as the body
clears the morphine from the system over time. The model also assumes a constant treat-
ment efficacy, however, the treatment concentration within the body decreases overtime
between doses, or efficacy of the treatment changes if doses are missed. Further analysis
on these limitations allows for higher resolution of probability of infection predicted by
the models. Also, we have considered only CD4 T cells as a target for HIV infection and
have ignored the possibility of infecting other immune cells such as macrophages and den-
dritic cells. Extendedmodels including all of these cellsmay help to predict amore accurate
probability of infection. However, such models require more reliable parameters related to
additional cells under morphine. As the effectiveness of the transfer of T cells and other
immune cells from the infected source partner is not well understood, we did not consider
transfer of these cells from the source partner and have only considered the viruses that
reach the target cell site of the recipient individual.

In summary, we developed a mathematical model to compute the risk of infection for
drug abusers, including those who are under preventive therapy. With a more comprehen-
sive understanding of the risk of infection for individuals under drugs of abuse, strides
can be made towards improving therapy guidelines and regulations. These results can be
helpful for medical professionals and policy makers to design more effective treatment
protocols for the control and prevention of HIV transmission in drug abusers.
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Appendices

Appendix 1. Proof of Theorem 3.1

Jacobian of the model system (7) is given by

J =

⎡
⎢⎣

−d − r − βlV q 0 −βlTl
r −d − q − βhV 0 −βhTh

βlV βhV −δ βlTl + βhTh
0 0 p −c

⎤
⎥⎦

Linearizing the Jacobian around the IFE, we get

J|IFE =
[
X2×2 Y2×2
O2×2 Z2×2

]
,

https://www.who.int/hiv/topics/idu/about/en/
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where

X =
[−d − r q

r −d − q

]
,Y =

⎡
⎢⎢⎣
0 −βl

λ(d + q)
d(d + q + r)

0 −βh
λr

d(d + q + r)

⎤
⎥⎥⎦ ,

Z =
⎡
⎣−δ βl

λ(d + q)
d(d + q + r)

+ βh
λr

d(d + q + r)
p −c

⎤
⎦ .

Here, the eigenvalues of J|IFE are given by the eigenvalues of the block matrices X and Z. Since
trace(X) = −2d − r − q < 0, and det(X) = d(d + q + r) > 0, the eigenvalues of X are negative.
Similarly, trace(Z) = −δ − c < 0, and det(Z) = δc(1 − R0), which is positive if R0 < 1. Therefore,
the eigenvalues of Z are negative if R0 < 1. This implies that all eigenvalues of J|IFE are negative if
R0 < 1. Hence, if R0 < 1, the IFE is locally asymptotically stable, and if R0 > 1, the IFE is unstable.

Appendix 2. Proof of Theorem 3.2

The infection-free equilibrium of the system (7) is given by IFE = (T∗
l ,T

∗
h , 0, 0), where T∗

l =
λ(d+q)

d(d+q+r) and T∗
h = λr

d(d+q+r) . The Jacobian corresponding to the infectious equations (i.e. I and V
equations) at IFE is

J1 =
[−δ βlT∗

l + βhT∗
h

p −c

]
.

We define s(R) = max{Re(σ ) : σ is an eigenvalue of R}. Clearly, J1 is an irreducible matrix with
non-negative off-diagonal elements, thus we conclude that s(J1) is a simple eigenvalue of J1 with
a positive eigenvector [36].

From the local asymptotically stability proof, we have the following statements:

(i) R0 = 1 if and only if s(J1) = 0;
(ii) R0 > 1 if and only if s(J1) > 0;
(iii) R0 < 1 if and only if s(J1) < 0.

Therefore, assuming R0 < 1, we obtain that s(J1) < 0. Thus, we can find a sufficiently small
positive value ρ0 such that s(J1ρ0) < 0, where

J1ρ0 =
[−δ βl(T∗

l + ρ0) + βh(T∗
h + ρ0)

p −c

]

From the system (7), we have

Ṫl ≤ λ − dTl − rTl + qTh,

Ṫh ≤ rTl − dTh − qTh. (A1)

This implies limt→∞ Tl(t) ≤ T∗
l and limt→∞ Th(t) ≤ T∗

h . Then, there exists a t1 > 0, such that ∀t ≥
t1,

Tl(t) ≤ T∗
l + ρ0,

Th(t) ≤ T∗
h + ρ0. (A2)

Using the infectious equations of system (7) for t ≥ t1, we obtain the following:

İ ≤ V[βl(T∗
l + ρ0) + βh(T∗

h + ρ0)] − δI,

V̇ = pI − cV . (A3)
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We now consider the auxiliary system for t ≥ t1

İ = −δI + [βl(T∗
l + ρ0) + βh(T∗

h + ρ0)]V ,

V̇ = pI − cV . (A4)

Since J1ρ0 is irreducible with non-negative off-diagonal elements we have that s(J1ρ0) is associ-
ated with a strongly positive eigenvector ṽ ∈ R

2 [36]. For any solution Tl(t),Th(t), I(t),V(t) of
system (7), with a non-negative initial condition Tl(ti),Th(ti), I(ti),V(ti), we can find a sufficiently
large b> 0, such that (I(t1),V(t1)) ≤ bṽ. It is easy to see that H(t) = bes(J1ρ0 )(t−t1)ṽ is a solution of
the auxiliary system (A4) with H(t1) = bṽ. Using the comparison principle [36], we conclude that

(I(t),V(t)) ≤ bes(J1ρ0 )(t−t1)ṽ, ∀t ≥ t1.

And because s(J1ρ0) < 0, we can conclude

lim
t→∞ (I(t),V(t)) = (0, 0). (A5)

It then follows that Tl and Th are asymptotic to the following system:

Ṫl = λ − dTl − rTl + qTh, (A6)

Ṫh = rTl − dTh − qTh. (A7)

and using the asymptotically autonomous semiflows theory [41], we have the following:

lim
t→∞Tl(t) = T∗

l

lim
t→∞Th(t) = T∗

h (A8)

Now combining Equations (A5) and (A8), we have

lim
t→∞ (Tl(t),Th(t), I(t),V(t)) = (T∗

l ,T
∗
h , 0, 0).

This proves that the IFE is globally attractive inR
4 ifR0 < 1. Thus, the IFE is globally asymptotically

stable if R0 < 1.

Appendix 3. Proof of Theorem 3.3

If R0 > 1, we obtain s(J1) > 0. SupposeP(t)H is the solutionmaps generated by the system (7) with
initial valueH. Here, the system, {P(t)}t≥0 admits a global attractor inX = R

4+ [20]. We now prove
that {P(t)}t≥0 is uniformly persistent with respect to (X0, ∂X0), where

X0 := {(Tl,Th, I,V) ∈ X : I > 0 and V > 0},
and

∂X0 := X\X0 = {(Tl,Th, I,V) ∈ X : I = 0 or V = 0}.
Given any initial value (Tl0,Th0, I0,V0) ∈ X0, from the first equation of the system (7), we get

Tl(t) = e−
∫ t
0 b(s1) ds1

[∫ t

0
e
∫ s2
0 b(s1) ds1a(s2) ds2 + Tl0

]
, (A9)

where
a(t) := λ + qTh(t) ≥ λ > 0, (A10)

and
b(t) := d + r + βlV(t). (A11)

Thus, Tl(t) > 0, ∀ t > 0. Also, from the second equation of system (7), we get

Th(t) = e−
∫ t
0 b̂(s1) ds1

[∫ t

0
e
∫ s2
0 b̂(s1) ds1 â(s2) ds2 + Th0

]
, (A12)
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where
â(t) := rTl(t) > 0, (A13)

and
b̂(t) := d + q + βhV(t). (A14)

Thus, Th(t) > 0, ∀ t > 0.
Treating Theorem 4.1.1 of [34] as generalized to nonautonomous systems, the irreducibility of

the cooperative matrix

C =
[−δ βlTl(t) + βhTh(t)
p −c

]
(A15)

implies that
(I(t),V(t))T 
 0, ∀ t > 0. (A16)

Therefore, we have the following lemma.

Lemma A.1: Assuming that (Tl(t),Th(t), I(t),V(t)) is a solution of the system (7) with initial value
(Tl0,Th0, I0,V0) ∈ X0, we have the following

(Tl(t),T)h(t), I(t),V(t)) 
 0, t > 0.

Lemma A.1 implies that X0 and ∂X0 are positively invariant. Clearly, X0 ∪ ∂X0 = X,X0 ∩
∂X0 = ∅ and ∂X0 is relatively closed in X.

Let
M∂ = {(Tl0,Th0, I0,V0) ∈ ∂X0 : P(t)(Tl0,Th0, I0,V0) ∈ ∂X0,∀t ≥ 0}.

Then, we claim that
M∂ := {(Tl0,Th0, I0,V0) ∈ X : I0 = V0 = 0}. (A17)

In order to prove this claim, it is sufficient to show that for any (Tl0,Th0, I0,V0) ∈ M∂ , (I(t),V(t)) =
(0, 0) ∀t. If this does not hold true, then there exists a t2 such that (I(t2),V(t2)) 
= (0, 0). Since the
matrix C (Equation (A15)) is irreducible with non-negative off-diagonal elements, s(J1) is simple
with an associated strongly positive eigenvector. Thus, it follows that

(I(t2),V(t2)) 
 (0, 0),∀t ≥ t2,

which is a contradiction to the definition ofM∂ . Thus, we conclude that A17 is correct.
Clearly, there exists a unique fixed point of P(t) in M∂ which is the E0 = (T∗

l ,T
∗
h , 0, 0). So if

(Tl(t),T)h(t), I(t),V(t)) is a non-negative solution of our system inM∂ , it is clear that every forward
orbit ofP(t) inM∂ converges to E0 as t → ∞, which is isolated inR

4+. DefiningWs(E0) as the stable
manifold set of E0, we haveWs(E0) ∩ X0 = ∅ [35]. It is obvious that there is no cycle inM∂ from E0
to E0. By Theorem 1.3.1 in [49], we conclude that the system (7) is uniformly persistent with respect
to (X0, ∂X0). More specifically, there exists a positive constant ξ > 0 such that conditions (11) hold.

By Theorem 1.3.7 of [49], system (7) has at least one equilibrium (T̂l, T̂h, Î, V̂) ∈ X0, where Î > 0
and V̂ > 0. Thus, we can conclude that (T̂l, T̂h, Î, V̂) is a positive equilibrium of system (7). Further
computation allows us to find the following closed form of the positive equilibrium.

T̂l = δc
βlp

− βhT̂h

βl

T̂h = c dδ − βlλp
p(βhd − βld)

− (βhc dδ − βhβlλp − √
� + βlc dδ + βlcδq + βhcδr)

2βhp(βhd − βld)

Î = cV̂
p

V̂ = −βhc dδ − βhβlλp − √
� + βlc dδ + βlcδq + βhcδr
2βhβlcδ
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where � is defined as

� = β2
hβ

2
l λ

2p2 − 2β2
hβlc dδλp + 2β2

hβlcδλpr + β2
hc

2d2δ2 + 2β2
hc

2 dδ2r + β2
hc

2δ2r2

+ 2βhβ
2
l cdδλp + 2βhβ

2
l cδλpq − 2βhβlc2d2δ2 − 2βhβlc2 dδ2q − 2βhβlc2 dδ2r + 2βhβlc2δ2qr

+ β2
l c

2d2δ2 + 2β2
l c

2 dδ2q + β2
l c

2δ2q2
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