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ABSTRACT
In this paper, we study a more general diffusive spatially dependent
vaccination model for infectious disease. In our diffusive vaccination
model,we consider both therapeutic impact andnonlinear incidence
rate. Also, in thismodel, the number of compartments of susceptible,
vaccinated and infectious individuals are considered to be functions
of both time and location, where the set of locations (equivalently,
spatial habitats) is a subset ofRn with a smooth boundary. Both local
and global stability of the model are studied. Our study shows that if
the threshold levelR0 ≤ 1, the disease-free equilibrium E0 is globally
asymptotically stable. On the other hand, ifR0 > 1 then there exists
a unique stable disease equilibrium E∗. The existence of solutions of
the model and uniform persistence results are studied. Finally, using
finite difference scheme, we present a number of numerical exam-
ples to verify our analytical results. Our results indicate that theglobal
dynamics of the model are completely determined by the threshold
valueR0.
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1. Introduction

Mathematical and epidemiological models are important tools for analysing various real
world phenomena in health science and epidemiology. For infectious diseases,manymath-
ematical and epidemiological models have been studied by researchers to understand the
effect of vaccination for controlling the spread of infectious diseases. Diffusive vaccination
models are useful models for analysing the impact of vaccination for infectious diseases.
Moreover, diffusive vaccination models are useful for getting information about how to
control the reasoning individuals.

It is known that vaccine works with the immune system. Evidently as the disease can not
provide immunity, so not the vaccination. As a result, most of the diseases have a recov-
ered/immune stage for which vaccination is successful. Some other bacteria can remain in
the host without causing any disease. This scenario is called carriage. The following SIS
model, a model where recovery is short lived, that is, brings the individuals return to the
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susceptible class is considerable in this action with vaccination [22]:

dS
dt

= a − bq1IS − (m + n)S, for t ∈ (0,∞) with S(0) = S0,

dV
dt

= nS − bq2IV − mV , for t ∈ (0,∞) with V(0) = V0,

dI
dt

= bq1IS + bq2IV − mI, for t ∈ (0,∞) with I(0) = I0.

where S, V, I are the number of compartments of susceptible individuals, vaccinated
individuals and infectious individuals at time t, respectively. a is the recruitment rate of
susceptible individuals, q1 and q2 are the transmission probabilities of susceptible and vac-
cinated individuals, the parameter b is the average number of contact partners, n is the
vaccination coverage of susceptible individuals, m is the natural death. Since the model
monitors population dynamics, it follows that all it’s dependent variables and parame-
ters must be non-negative. Further, it is assumed that the prevalent disease does not kill
infectious individuals, and treatment does not offer permanent immunity.

Periodic fluctuations occurs inmany infectious diseases. Such periodic fluctuationsmay
be driven by extrinsic factors, as reflected in periodic transmission rates, e.g. seasonality
[4, 20, 27], or may be caused by time delays [13], age structure [26], or non-linearity of
incidence rates [34]. In the above SIS model, the incidence rate is bilinear, and is given
by bq1IS. The bilinear model generally admits a trivial equilibrium (I = 0) correspond-
ing to the case in which the disease is not present. It also may admit a stable non-trivial
equilibrium corresponding to the situation in which the disease is maintained.Wilson and
Worcester [34] were the first to consider the more general incidence rate with a factor Sp
and their primarily goal was to investigate the consequences of various assumptions when
the laws are not known. In 1969, Severo [28] considered amore general bilinear form kIpSq
with q<1. Severo [28] also considered a nonlinear recovery rate. Capasso and Serio [7]
generalized the incidence rate by considering the bilinear term of the form kg(I)Swith the
condition g′(0) positive and finite. The model of Capasso and Serio [7] excludes the form
kIpS if p �= 1. Cunningham [33] pointed out that there may exist periodic solutions in a
model with an incidence rate k(IS)p with p > 1.

In 1986 and 1987 respectively, Liu et. al. [18, 19] considered some general incidence
rates. They also analysed the conditions under which a Hopf bifurcation occurs for a sta-
ble periodic solution and they discussed possible mechanisms for underlying nonlinear
incidence rates of the following system

dS
dt

= a − bq1H(I)S − (m + n)S, for t ∈ (0,∞) with S(0) = S0,

dV
dt

= nS − bq2H(I)V − mV , for t ∈ (0,∞) with V(0) = V0,

dI
dt

= bq1H(I)S + bq2H(I)V − mI, for t ∈ (0,∞) with I(0) = I0.

The authors also suggested to consider other forms for the incidence rate and the effects of
disease-induced mortality.

In recent years, many other mathematical and epidemiological models have been stud-
ied by researchers with different types of interesting incidence rates. Gumel andMoghadas



JOURNAL OF BIOLOGICAL DYNAMICS 3

[10] studied the following deterministic epidemicmodel with non-linear incidenceH(I) =
I

1+I

dS
dt

= a − bq1
I

1 + I
S − (m + n)S + cI for t ∈ (0,∞), with S(0) = S0;

dV
dt

= nS − bq2
I

1 + I
V − mV for t ∈ (0,∞), with V(0) = V0;

dI
dt

= bq1
I

1 + I
S + bq2

I
1 + I

V − mI − cI for t ∈ (0,∞), with I(0) = I0.

(1)

In the above model, the authors introduced the parameter c, the therapeutic treatment
coverage of infectious individuals I(t) removed to S(t) compartment. Note that the above
model is an SIS model and it was shown that the effectively treated infectious indi-
viduals return to the susceptible compartments and behaves similarly. The authors also
observed realistically that q2 ≤ q1 from the fact that vaccination can reduce or eliminate
the incidence of infection. Also, Gumel and Moghadas [10] analysed the corresponding
characteristic equation and studied the local stability of its disease-free and disease equilib-
ria and the optimal vaccine coverage threshold needed for disease control and eradication
analytically. In 2014, Buonomo et al. [5] constructed suitable Lyapunov functions and
established global stability of disease-free and disease equilibrium of the above system (1)
by using LaSalle’s invariance principle [16]. The authors also presented optimal vaccination
and treatment strategies to minimize both the disease burden and intervention.

Recently, many researchers have considered spatial structure as a central factor because
it affects the spatial spreading of disease [1, 2, 6, 14, 15, 24, 38, 39]. In this paper, we pro-
pose a spatially dependent vaccination model which is a diffusive version of the above
model (1), where we consider the individual movements of all three compartment cells.
We strongly believe that our proposed model is a more general and realistic biological and
epidemiological model. Throughout the paper, we use the following notation for simplic-
ity: A = �× (0,∞) and ∂A = ∂�× (0,∞). In the following, we present our proposed
spatially dependent vaccination model with nonlinear incidence

∂S
∂t

= δ1�S + a − bq1
I(x, t)

1 + I(x, t)
S(x, t)− (m + n) S(x, t)+ cI(x, t) inA,

∂V
∂t

= δ2�V + nS(x, t)− bq2
I(x, t)

1 + I(x, t)
V(x, t)− mV(x, t) inA,

∂I
∂t

= δ3�I + b
(
q1S(x, t)+ q2V(x, t)

) I(x, t)
1 + I(x, t)

− mI(x, t)− cI(x, t) inA.

(2)

with the following initial values

S(x, 0) = S0(x) ≥ 0 in�,

V(x, 0) = V0(x) ≥ 0 in�,

I(x, 0) = I0(x) ≥ 0 in�,

(3)

and the zero-flux Neumann boundary conditions

∂S
∂ω
(x, t) = ∂V

∂ω
(x, t) = ∂I

∂ω
(x, t) = 0 on ∂A. (4)
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Figure 1. Modeling scheme.

where ∂
∂ω

denotes the outward normal on ∂�. The Neumann boundary conditions imply
that the populations do not move across the boundary ∂� or the population going out
and coming in are equal on the boundary. It is also noted that S(x, t),V(x, t), I(x, t) are the
number of compartments of susceptible individuals, vaccinated individuals and infectious
individuals at time t>0 and in location x ∈ �, respectively. The notion� is a spatial habi-
tat in R

n with a smooth boundary ∂�, � is the usual Laplacian Operator, and δ1, δ2 and
δ3 are the diffusion rates of susceptible, vaccinated and infectious compartments respec-
tively. Since the model monitors dynamics of population, it follows that all its dependent
variables and parameters, for examples, a, b, c,m, n, q1 and q2 must be non-negative as in
the non-spatial model (1). We also set the upper bound of c as c < c∗, which can be found
in the proof of Lemma A.1.

A schematic representation of the model (2) is shown in the following Figure 1.
One of the fundamental issues in the study of infectious diseases via mathematical and

epidemiologicalmodels is to find the stability of the two constant equilibria, that is, disease-
free equilibrium and disease equilibrium. In this paper, we study both local and global
stability of our model. Our study shows that if the threshold levelR0 ≤ 1, the disease-free
equilibrium E0 is globally asymptotically stable. On the other hand, ifR0 > 1 then there
exists a unique stable disease equilibrium E∗. The existence of solutions of the model and
the uniform persistence results for the model are studied. Finally, using finite difference
scheme, we present a number of numerical examples to verify our analytical results. Our
results indicate that the global dynamics of the model are completely determined by the
threshold valueR0.

The paper is organized in the following manner. In Section 2, we present disease-free
and disease equilibrium respectively. Moreover, we present basic reproduction number in
Section 2. We present our main results in Section 3. In Section 4, we present a number of
numerical examples to verify our analytical results using finite difference scheme. Bifur-
cation results are also supported with parameter varying graphs. In section 5, we present
existence and uniqueness of the solution of the system (2), local and global steady states
along with responsible constraints are presented. Uniform persistence theorems for the
model (2) are also highlighted as an interplay of our study. Finally, Section 6 discloses the
summary of the results.
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2. Preliminaries

For a deep look in the dynamics of the system (2), in this section, we will keep an eye on
the basic reproduction number, the expected number of secondary cases reproduced by
one infected individual in its entire infectious period.

2.1. Disease-free equilibrium

To define the disease-free equilibrium (S0,V0, I0) of the system (2), we write the diffusion
rates δi = 0, since disease-free equilibrium state is not spatially dependent; then

a − bq1
I0

1 + I0
S0 − (m + n) S0 + cI0 = 0,

nS0 − bq2
I0

1 + I0
V0 − mV0 = 0,

b
(
q1S0 + q2V0

) I0
1 + I0

− mI0 − cI0 = 0.

It is noted that for the disease-free equilibrium, we consider the count of compartments of
infectious individuals I0 = 0. Then we find,

a − (m + n)S0 = 0,

nS0 − mV0 = 0,

I0 = 0.

This gives the disease-free equilibrium:

E0 =
(

a
m + n

,
an

m(m + n)
, 0

)
. (5)

Let us now find the disease equilibrium of the governing system (2).

2.2. Disease equilibrium

In the case of equilibrium state, we have the disease equilibrium (S∗,V∗, I∗), where the
diffusion rates δi = 0. Then we write (2) as

a − bq1
I∗

1 + I∗
S∗ − (m + n)S∗ + cI∗ = 0,

nS∗ − bq2
I∗

1 + I∗
V∗ − mV∗ = 0,

b
(
q1S∗ + q2V∗) I∗

1 + I∗
− mI∗ − cI∗ = 0. (6)

Here, the number of compartments of infectious individuals I∗ �= 0. Then, we find the
count of susceptible individuals in the form

S∗ = (a + cI∗)(1 + I∗)
bq1I∗ + (m + n)(1 + I∗)

, (7)
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and the vaccinated individuals

V∗ = n(1 + I∗)2(a + cI∗)
(bq1I∗ + (m + n)(1 + I∗))(bq2I∗ + m(1 + I∗))

. (8)

Then, for the count of infectious individuals, we get the following polynomial of degree
two

α2(I∗)2 + α1I∗ + α0 = 0, (9)

where

α2 = −m(m2 + mn + bmq1 + bmq2 + bnq2 + b2q1q2)− c(m2 + mn + bmq2),

α1 = a(bmq1 + bnq2 + b2q1q2)− m(2m2 + 2mn + bmq1 + bmq2 + bnq2)

− c(2m2 + 2mn + bmq2),

α0 = ab(mq1 + nq2)− m(m + c)(m + n).

The real positive roots of (9) define the count of infectious individuals I∗; where the
constant term of the quadratic Equation (9)

α0

α2
= m(m + n)(m + c)(1 − R0)

m(m2 + mn + bmq1 + bmq2 + bnq2 + b2q1q2)+ c(m2 + mn + bmq2)

is negative whenR0 > 1.
Thereby, when R0 > 1, we get the unique disease equilibrium E∗(S∗,V∗, I∗) of the

model (2).
Now, from (7) and (8) we claim that

0 < S∗ <
a

m + n
, 0 < V∗ <

an
m(m + n)

,

and similarly for I∗

0 < I∗ <
abq1

(m + n)(m + c)
+ abnq2

m(m + n)(m + c)
.

The proof of these claims are given in Lemma A.1 in Appendix.

2.3. Basic reproduction number

The Jacobian matrix of the linearized model (2) at E0 is:

J =

⎛
⎜⎜⎜⎜⎜⎝

−(m + n) 0 − abq1
m + n

+ c

n −m − abnq2
m(m + n)

0 0
abq1
m + n

+ abnq2
m(m + n)

− (m + c)

⎞
⎟⎟⎟⎟⎟⎠
.

with eigenvalues λ1 = −(m + n), λ2 = −m and λ3 = abq1
m + n

+ abnq2
m(m + n)

− (m + c).

Since all the model parameters are positive, it can be easily observed that λ1, λ2 < 0. Thus,
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the equilibriumE0 is locally asymptotically stable providesλ3 < 0.Hence, by the definition
of basic reproduction number [3],R0 of (2) is

R0 = abq1
(m + n)(m + c)

+ abnq2
m(m + n)(m + c)

(10)

For the sake of comprehension and clarity, we state our key results in the following section.

3. Main results

Theorem 3.1: Assume that δ1 = δ2 = δ3 =: 	. Then for any given initial data ρ ∈ X
+,

system (2)–(4) has a unique solution u(·, t, ρ) on [0,∞) and further the solution semiflow
�(t) := u(·, t) : X+ → X

+, t ≥ 0, has a global compact attractor in X
+.

Theorem 3.2:

(i) WhenR0 < 1, the disease-free equilibrium E0 of the system (2) is locally asymptotically
stable;

(ii) When R0 > 1, the disease equilibrium E∗ of the system (2) is locally asymptotically
stable.

Theorem 3.3: If R0 ≤ 1, then the disease-free equilibrium E0(S0,V0, I0) of system (2) is
globally asymptotically stable.

Theorem3.4: IfR0 > 1, then the disease equilibriumE∗(S∗,V∗, I∗) of system (2) is globally
asymptotically stable if c = 0 or when the integral

Z =
∫
�

(
S∗

S
+ I

I∗
− S∗

S
I
I∗

− 1
)
dx

is non-positive or is dominated by negative values in the responsible Lyapunov function.

Remark 3.1: See the last part of the proof of Theorem 3.4 in Section 5. The result in [5]
that corresponds to Theorem 3.4, and on whose proof the proof of Theorem 3.4 is based,
simply requires c = 0.

Theorem 3.5: Assume that δ1 = δ2 = δ3 =: 	. IfR0 > 1, then there exists a constant η >
0 such that for any ρ ∈ X

+ with ρ3(·) �≡ 0, we have

lim
t→∞ inf S(x, t) ≥ η, lim

t→∞ inf V(x, t) ≥ η, lim
t→∞ inf I(x, t) ≥ η, uniformly for x ∈ �.

The proofs of the Theorems 3.1–3.5 are formulated through a series of steps in the
Section 5.

At this stage, first we want to justify all the key results by considering several numerical
examples.

4. Examples and applications

For numerical verification for our analytic work, we choose finite-differencemethod based
on Crank-Nicolson implicit time difference [8, 17].
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Figure 2. Disease free equilibrium of the model (2) with time and spatial domain.

We can nicely observe the simulation part of the model (2) by using some graphical
presentations. We take the initial conditions as:

S0(x) = 100 sin(x)+ 500, in�,

V0(x) = 100 cos(x)+ 500, in�,

I0(x) = 100 sin(0.5x)+ 10, in�,

and the boundary condition is:

∂S
∂ω

= ∂V
∂ω

= ∂I
∂ω

= 0, on ∂A.

Let us assume the diffusion rates δ1 = δ2 = δ3 = 1.

Example 4.1: Let set the system parameters as followings:

a = 1000, b = 5, q1 = 0.0001, q2 = 0.000001, m = 0.7, n = 0.8, c = 0.05.

Then the formula (10) gives us the basic reproduction number as R0 = 0.4495 < 1. Of
course, Theorem 3.3 ensures that, these values of parameters lead us to the disease-free
equilibrium results as shown in Figure 2.

From the formula (5), we can calculate our analytic values of disease-free equilibrium
E0(666.67, 761.90, 0) and compare with the graphical interpretations to be accepted.

Example 4.2: Now let the system parameters are:

a = 1000, b = 5, q1 = 0.0001, q2 = 0.000001, m = 0.1, n = 0.1, c = 0.01.

Then the formula (10) gives us the basic reproduction number asR0 = 22.9545 > 1which
ensures by Theorem 3.4 that, these values of parameters leads us to the disease equilibrium
results as shown in Figure 3.

4.1. Parameter bifurcation observations

Now we are interested to know how the system (2) responses for different values of the
system parameters.
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Figure 3. Disease equilibrium of the model (2) with time and spatial domain.

Figure 4. Bifurcation over therapeutic treatment impact c for a = 1000, b = 5, q1 = 0.0001,
q2 = 0.000001,m = 0.57, n = 0.1.

From these Figures (Figure 4), we clearly see that the disease is being extincted faster as
c is increasing. But when c is more than 24.0 then c has no valuable effect for the disease
for this parametric setup and more interestingly we get a cusp at t = 0.

Though, in our system (2) we assumed c to be non-negative anyhow; but if the dis-
ease causing environment still predominates, then we may consider c to be negative, for
example, c ∈ [−m, 0). And in that scenario, we get the following results,

Figure 5 shows that, if c is negative i.e. in disease causing environment when basic repro-
duction numberR0 < 0.001, then it is a disease-free equilibriumwhileR0 > 0.001 reveals
disease equilibrium. We also see the infection is increasing in a constant rate very roughly
whenR0 is undefined in the case of c = −m.

Here, in Figure 6, we clearly observe the impacts of vaccination coverage parameter n
over susceptible (S) and vaccinated (V) individuals. Susceptible (S) count converges to a
minimum level and vaccinated (V) count increases to amaximum level as n growing large.
But infectious (I) count remains approximately same for each cases.

5. Auxiliary results and proofs

5.1. Existence and uniqueness of solution

In this portion, we prove the existence and uniqueness of the solution of the system (2) by
learning the algorithm partially from a similar study of Xu et al. [36].

Let us denote the subset of R3 with vectors x ≥ 0 as R
3+ and X := C(�,R) be a Banach

space with the supremum norm ‖ · ‖X. Also we define X
+ := C(�,R3+) then (X,X+) is a

strongly ordered space. Suppose that

(T1(t),T2(t),T3(t)) : C(�,R) → C(�,R)
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Figure 5. Bifurcation over therapeutic treatment impact c for a = 1000, b = 5, q1 = 0.0001,
q2 = 0.000001,m = 0.57, n = 0.8.

is the C0 semigroups associated with δ1�− (m + n), δ2�− m and δ3�− (m + c) sub-
ject to the Neumann boundary conditions, respectively. Then it follows that for any ρ ∈
C(�,R) and t ≥ 0

(T1(t)ρ)(x) = e−(m+n)t
∫
�


1(x, y, t)ρ(y) dx

(T2(t)ρ)(x) = e−mt
∫
�


2(x, y, t)ρ(y) dx

(T3(t)ρ)(x) = e−(m+c)t
∫
�


3(x, y, t)ρ(y) dx

where,
i, i = 1, 2, 3 are theGreen functions associatedwith δi�, i = 1, 2, 3, subject to the
Neumann boundary conditions, respectively. It then follows from [29] that the function

Ti(t) : C(�,R) → C(�,R), i = 1, 2, 3, for all t > 0

is compact and strongly positive. Particularly,

T(t) = (T1(t),T2(t),T3(t)) : C(�,R) → C(�,R), ∀ t ≥ 0

is a strongly continuous semigroup.
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Figure 6. Bifurcation over vaccination coverage impact n for a = 1000, b = 5, q1 = 0.0001,
q2 = 0.000001,m = 0.57, c = 0.25.

If Ai : G(Ai) → X is the generator of Ti, i = 1, 2, 3, then T(t) = (T1(t),T2(t),T3(t)) :
X → X is a semigroup generated by the operator A = (A1,A2,A3) which is defined
on G(A) := G(A1)× G(A2)× G(A3). Now for any ρ = (ρ1, ρ2, ρ3) ∈ X, let us define
F = (F1,F2,F3) : X+ → X by:

F1(ρ)(x) = a − bq1
ρ3(x)

1 + ρ3(x)
ρ1(x)− (m + n)ρ1(x)+ cρ3(x), ∀ x ∈ �

F2(ρ)(x) = nρ1(x)− bq2
ρ3(x)

1 + ρ3(x)
ρ2(x)− mρ2(x), ∀ x ∈ �

F3(ρ)(x) = bq1
ρ3(x)

1 + ρ3(x)
ρ1(x)+ bq2

ρ3(x)
1 + ρ3(x)

ρ2(x)− (m + c)ρ3(x), ∀ x ∈ �.

Using these operators, we can write (2)–(4) as the following integral equation

u(t) = T(t)ρ +
∫ t

0
T(t − s)F(u(s)) ds,

where,

u(t) =
⎛
⎝S(t)
V(t)
I(t)

⎞
⎠ , T(t) =

⎛
⎝T1(t) 0 0

0 T2(t) 0
0 0 T3(t)

⎞
⎠ .
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It can also be rewritten as the following abstract differential equation

du
dt

= Au + F(u), t > 0,

u0 = ρ ∈ X
+, (11)

where, u = (S,V , I) and ρ = (S0,V0, I0).
Since F(ρ) is local Lipschitz continuous onX

+, it then follows that for any ρ ∈ X
+, (11)

admits a unique noncontinuous mild solution u(·, t, ρ) such that u(·, t, ρ) ∈ X for all t in
its maximum interval of existence. Moreover, it follows from ([35], Corollary 2.2.5) that
u(·, t, ρ) is a class solution of (2) with Neumann boundary conditions (4) for all t > 0.
Further, by the scalar parabolic maximum principle, we see from the equation in (2) that
S(x, t), V(x, t) and I(x, t) are all non-negative. Therefore, we obtain the following basic
result on solution of the governing system (2)–(4).

Lemma 5.1: For any initial value function ρ = (ρ1, ρ2, ρ3) ∈ X
+, system (2)–(4) has a

unique solution u(x, t, ρ) on [0, σρ) with u(x, t, ρ) = ρ and u(·, t, ρ) ∈ X
+,∀ t ∈ [0, σρ),

where σρ ≤ ∞.

Next, we show that the solution of the system (2)–(4) with the initial value function
ρ ∈ X

+ actually exists globally, that is, σ = ∞. To this end, we need the following result
([21], Lemma 5.1).

Consider the following reaction-diffusion equation

∂v(x, t)
∂t

= D�v(x, t)+ A − dv(x, t), inA,
∂v
∂ω
(x, t) = 0, on∂A,

(12)

where D > 0,A > 0 and d > 0 are positive constants.

Lemma 5.2: The system (12) admits a unique positive steady state v∗ = A
d which is globally

attractive in C(�,R).

Now we are ready to produce the proof of the Theorem 3.1.

Proof of Theorem 3.1.: By Lemma 5.1, the system (2)–(4) has a unique solution u(·, t, ρ)
on [0, σρ) and u(x, t, ρ) ≥ 0 for any t ∈ [0, σρ) and x ∈ �.

Now, let define the total population

N(x, t) = S(x, t)+ V(x, t)+ I(x, t) (13)

and recall the primary assumption of Theorem 3.1 statement: δ1 = δ2 = δ3 =: 	. Then

∂N(x, t)
∂t

= ∂S(x, t)
∂t

+ ∂V(x, t)
∂t

+ ∂I(x, t)
∂t

= 	�S + a − bq1
I(x, t)

1 + I(x, t)
S(x, t)− (m + n) S(x, t)+ cI(x, t)
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+	�V + nS(x, t)− bq2
I(x, t)

1 + I(x, t)
V(x, t)− mV(x, t)

+	�I + b
(
q1S(x, t)+ q2V(x, t)

) I(x, t)
1 + I(x, t)

− mI(x, t)− cI(x, t)

= 	N(x, t)+ a − mN(x, t). (14)

It follows from Lemma 5.2 that a
m is a global attractor for the reaction-diffusion

Equation (14).
By (14), for any ρ ∈ X

+, we see that there exist some t1 = t1(ρ) > 0 such that

N(x, t) ≤ a
m

+ 1 := M, ∀ t ≥ t1, x ∈ �.

Now, according to (13), as the first equation of (2) is local Lipschitz continuous on X
+, it

can easily be said that, for any ρ ∈ X
+, there exist some t1 = t1(ρ) > 0 such that

S(x, t) ≤ M1, ∀ t ≥ t1, x ∈ �.
Then by the similar argument as above, we also show that there areMi > 0, independent
of the choice of ρ ∈ X

+, and ti = ti(ρ) > 0, i = 1, 2, 3, such that

V(x, t) ≤ M2, I(x, t) ≤ M3, ∀ t ≥ t1, x ∈ �.
Therefore, the non-negative solution of (2)–(4) is ultimately bounded with respect to the
maximum norm. This means that the solution semiflow �(t) : X+ → X

+ defined by
(�(t)ρ)(x) = u(x, t, ρ), x ∈ �, is point dissipative. In view of [35], �(t) is compact for
any t > 0. Thus, [11] implies that�(t) : X+ → X

+, t ≥ 0, has a global compact attractor
in X

+.
This completes the proof. �

5.2. Analysis of local steady states

In this section, we want to explain the local stability of the equilibria for the system (2).
Thus we consider the proof of our second result, Theorem 3.2.

Proof of Theorem 3.2.: By linearizing the system (2) at E0, we get

∂u
∂t

= δ�u(x, t)+ κ1u(x, t),

where,

δ =
⎛
⎝δ1 0 0
0 δ2 0
0 0 δ3

⎞
⎠ ,

κ1 =
⎛
⎝−(m + n) 0 −bq1S0 + c

n −m −bq2V0
0 0 bq1S0 + bq2V0 − (m + c)

⎞
⎠ .
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Then, we can obtain the following characteristic polynomial

|λI + δL2 − κ1| = 0,

where,λ is the eigenvaluewhich determines temporal growth,I is the 3 × 3 identitymatrix
and L is the wave-number [24]. Then, we have

(λ+ δ1L2 + m + n)(λ+ δ2L2 + m)(λ+ δ3L2 + m + c − bq1S0 − bq2V0) = 0. (15)

Now, it is clear that

λ1 = −(δ1L2 + m + n) < 0,

λ2 = −(δ1L3 + m) < 0,

and λ3 = −(δ3L2 + m + c − bq1S0 − bq2V0)

= −(δ3L2 + (m + c)(1 − R0)).

It follows fromR0 < 1 that E0 is locally asymptotically stable.
In the following, we prove the second part of the theorem. Linearizing the system (2) at

E∗, we obtain
∂u
∂t

= δ�u(x, t)+ κ2u(x, t),

where,

κ2 =

⎛
⎜⎜⎜⎜⎜⎝

−
(
m + n + bq1

I∗

1 + I∗

)
0

n −
(
m + bq2

I∗

1 + I∗

)

bq1
I∗

1 + I∗
bq2

I∗

1 + I∗

c − bq1
1

(1 + I∗)2
S∗

−bq2
1

(1 + I∗)2
V∗

b(q1S∗ + q2V∗)
1

(1 + I∗)2
− (m + c)

⎞
⎟⎟⎟⎟⎟⎠
.

Then we obtain the following characteristic equation

λ3 + G1(L2)λ2 + G2(L2)λ+ G3(L2) = 0 (16)

where,

G1(L2) = δ1L2 + m + n + bq1
I∗

1 + I∗
+ δ2L2 + m + bq2

I∗

1 + I∗

+ δ3L2 + m + c − b
(
q1S∗ + q2V∗) I∗

1 + I∗
,

G2(L2) =
(
δ2L2 + m + bq2

I∗

1 + I∗

) (
δ3L2 + m + c

) + bq1S∗ 1
(1 + I∗)2

bq1
I∗

1 + I∗

+
(
δ1L2 + m + n + bq1

I∗

1 + I∗

)
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×
(
δ2L2 + m + bq2

I∗

1 + I∗
+ δ3L2 + m + c

)

+ bq2V∗ 1
(1 + I∗)2

bq2
I∗

1 + I∗

−
(
δ1L2 + m + n + bq1

I∗

1 + I∗
+ δ2L2 + m + bq2

I∗

1 + I∗

)

×
(
bq1S∗ 1

(1 + I∗)2
+ bq2V∗ 1

(1 + I∗)2

)
,

G3(L2) =
(
δ1L2 + m + n + bq1

I∗

1 + I∗

) (
δ2L2 + m + bq2

I∗

1 + I∗

) (
δ3L2 + m + c

)

+ bq2V∗ 1
(1 + I∗)2

bq2
I∗

1 + I∗
(δ3L2 + m + c)+ nbq1S∗ 1

(1 + I∗)2
bq2

I∗

1 + I∗

+ bq1S∗ 1
(1 + I∗)2

bq1
I∗

1 + I∗

(
δ2L2 + m + bq2

I∗

1 + I∗

)

−
(
δ1L2 + m + n + bq1

I∗

1 + I∗

) (
δ2L2 + m + bq2

I∗

1 + I∗

)

×
(
bq1S∗ 1

(1 + I∗)2
+ bq2V∗ 1

(1 + I∗)2

)

− bq2
I∗

1 + I∗
bq2

1
(1 + I∗)2

(
bq1S∗ 1

(1 + I∗)2
+ bq2V∗ 1

(1 + I∗)2

)
.

Now, let us take

bq1S∗ 1
(1 + I∗)2

+ bq2V∗ 1
(1 + I∗)2

≤ b(q1S∗ + q2V∗)
1

1 + I∗
= m + c,

then we can get

G1(L2) ≥ δ1L2 + m + n + bq1
I∗

1 + I∗
+ δ2L2 + m + bq2

I∗

1 + I∗
+ δ3L2 > 0,

G2(L2) > δ3L2
(
δ2L2 + m + bq2

I∗

1 + I∗

)
> 0,

G3(L2) >

(
δ1L2 + m + n + bq1

I∗

1 + I∗

) (
δ2L2 + m + bq2

I∗

1 + I∗

)
δ3L2 > 0.

These lead us to the following conclusion

G1(L2)G2(L2)− G3(L2) > bq2
I∗

1 + I∗
bq2V∗ 1

(1 + I∗)2
b(q1S∗ + q2V∗)

1
(1 + I∗)2

> 0.

By the Routh-Hurwitz criterion, we know that all eigenvalues of (16) have negative real
parts. Itmeans that the disease equilibriumE∗ of system (16) is locally asymptotically stable
whenR0 > 1. �
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5.3. Global stability analysis

In this section, we investigate the global stability of the two constant equilibria E0 and E∗ in
the case of a bounded domain� in which (S(x, t), V(x, t), I(x, t)) is an arbitrary positive
solution of the system (2). First, let us consider the following shortcuts for convenience

S = S(x, t), V = V(x, t), I = I(x, t).

In case of global analysis, we consider the Lyapunov functional and the results varies with
basic reproduction number. We stated two important results in the earlier Section 2.

At this phase, we are in stable setting to establish the Theorem 3.3 as long as the basic
reporduction numberR0 ≤ 1.

Proof of Theorem 3.3.: Let define a Lyapunov function as

V1(t) =
∫
�

W1(x, t) dx,

where,

W1(x, t) = S0
(
S
S0

− 1 − ln
S
S0

)
+ V0

(
V
V0

− 1 − ln
V
V0

)
+ I.

Calculating the time derivative ofW1(x, t) along the solution of (2) gives

∂W1

∂t
=

(
1 − S0

S

)
∂S
∂t

+
(
1 − V0

V

)
∂V
∂t

+ ∂I
∂t

.

Then from (2), we can write

∂W1

∂t
=

(
1 − S0

S

) (
δ1�S + a − bq1

I
1 + I

S − (m + n)S + cI
)

+
(
1 − V0

V

) (
δ2�V + nS − bq2

I
1 + I

V − mV
)

+
(
δ3�I + bq1

I
1 + I

S + bq2
I

1 + I
V − mI − cI

)
.

But, as a = (m + n)S0 andmV0 = nS0, we can write

∂W1

∂t
=

(
1 − S0

S

)
δ1�S +

(
1 − V0

V

)
δ2�V + δ3�I + mS0

(
2 − S

S0
− S0

S

)

+ nS0
(
3 − S0

S
− V

V0
− S

S0
V0

V

)
− (m + c)(1 + I − R0)

I
1 + I

+
(
1 − S0

S

)
cI.

By Green’s formula and Neumann boundary conditions (4), we get∫
�

�S dx =
∫
∂�

∂S
∂ω

dS = 0. (17)

Similarly, ∫
�

�V dx =
∫
�

�I dx = 0. (18)
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Again, byGreen’s formula and theNeumann boundary conditions (4), we have theGreen’s
first identity as

∫
�

(
�S
S

− ‖∇S‖2
S2

)
dx =

∫
∂�

1
S
(∇S · ω) dS = 0,

which implies ∫
�

�S
S

dx =
∫
�

‖∇S‖2
S2

dx. (19)

By the same arguments, we also can write
∫
�

�V
V

dx =
∫
�

‖∇V‖2
V2 dx, (20)

and
∫
�

�I
I

dx =
∫
�

‖∇I‖2
I2

dx. (21)

Then using the above arguments, we have

dV1

dt
= −δ1S0

∫
�

‖∇S‖2
S2

dx − δ2V0

∫
�

‖∇V‖2
V2 dx + mS0

∫
�

(
2 − S

S0
− S0

S

)
dx

+ nS0
∫
�

(
3 − S0

S
− V

V0
− S

S0
V0

V

)
dx − (m + c)

∫
�

(
(1 + I − R0)

I
1 + I

)
dx

+ c
∫
�

I
(
1 − S0

S

)
dx,

= −δ1S0
∫
�

‖∇S‖2
S2

dx − δ2V0

∫
�

‖∇V‖2
V2 dx − mS0

∫
�

(S − S0)2

S0S
dx

− nS0
∫
�

(
S0
S

+ V
V0

+ S
S0

V0

V
− 3

)
dx − (m + c)

∫
�

(
(1 + I − R0)

I
1 + I

)
dx

− c
∫
�

I
(
S0
S

− 1
)
dx. (22)

Recall the Equation (A6) which is described in the proof of Theorem A.1 (Appendix)

S ≤ a
m + n

≡ S0. (23)

Since c>0, then using (23) the last integral of (22) satisfies
∫
�

I
(
S0
S

− 1
)
dx ≥ 0.

Hence, dV1
dt < 0 wheneverR0 ≤ 1.

And, when S = S0,V = V0, I = 0; we calculate, dV1
dt = 0 and vice-versa. Consequently,

the singleton E0 is the greatest compact invariant set in {(S,V , I) ∈ C(�,R3+) :
dV1
dt = 0}.

Then, LaSalle’s invariance principle [12] refers to limt→∞(S(x, t),V(x, t), I(x, t)) → E0;
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which means, whenever R0 ≤ 1, the disease-free equilibrium E0 = (S0,V0, 0) is globally
asymptotically stable. This establishes Theorem 3.3. �

In a similar manner, it is stated that the disease equilibrium of (2) is globally asymptot-
ically stable and the proof is prescribed as follows:

Proof of Theorem 3.4.: Let us define a Lyapunov function as

V2(t) =
∫
�

W2(x, t) dx,

where,

W2(x, t) = S∗
(

S
S∗ − 1 − ln

S
S∗

)
+ V∗

(
V
V∗ − 1 − ln

V
V∗

)
+ I∗

(
I
I∗

− 1 − ln
I
I∗

)
.

Calculating the time derivative ofW2(x, t) along the solution of (2) gives

∂W2

∂t
=

(
1 − S∗

S

)
∂S
∂t

+
(
1 − V∗

V

)
∂V
∂t

+
(
1 − I∗

I

)
∂I
∂t

.

Then from (2), it can written as

∂W2

∂t
=

(
1 − S∗

S

) (
δ1�S + a − bq1

I
1 + I

S − (m + n)S + cI
)

+
(
1 − V∗

V

) (
δ2�V + nS − bq2

I
1 + I

V − mV
)

+ (
I − I∗

) (
δ3�I
I

+ bq1
1

1 + I
S + bq2

1
1 + I

V − (m + c)
)
. (24)

Note that from (6), we have

a = bq1
I∗

1 + I∗
S∗ + (m + n)S∗ − cI∗,

nS∗ = bq2
I∗

1 + I∗
V∗ + mV∗,

(m + c)I∗ = b(q1S∗ + q2V∗)
I∗

1 + I∗
.

and by substituting these in (24) yields

∂W2

∂t
=

(
1 − S∗

S

)
δ1�S +

(
1 − V∗

V

)
δ2�V +

(
1 − I∗

I

)
δ3�I

+
(
1 − S∗

S

) (
bq1

I∗

1 + I∗
S∗ + (m + n)S∗ − cI∗ − bq1

I
1 + I

S − (m + n)S + cI
)

+
(
1 − V∗

V

) (
nS∗

(
S
S∗ − V

V∗

)
+ nS∗ V

V∗ − bq2
I

1 + I
V − mV

)

+
(

I
I∗

− 1
) (

bq1
I∗

1 + I
S + bq2

I∗

1 + I
V − (m + c)I∗

)
.
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For writing convenience, let assume, f (I) = I
1+I such that

∂W2

∂t
=

(
1 − S∗

S

)
δ1�S +

(
1 − V∗

V

)
δ2�V +

(
1 − I∗

I

)
δ3�I

+ mS∗
(
2 − S

S∗ − S∗

S

)
+ mV∗

(
3 − S∗

S
− V

V∗ − S
S∗

V∗

V

)

+ bq1f (I∗)S∗
(
3 − S∗

S
− S

S∗
1 + I∗

1 + I
− 1 + I

1 + I∗

)

− b(q1S∗ + q2V∗)
(I − I∗)2

(1 + I)(1 + I∗)2

+ bq2f (I∗)V∗
(
4 − S∗

S
− S

S∗
V∗

V
− 1 + I

1 + I∗
− V

V∗
1 + I∗

1 + I

)

−
(
1 − S∗

S

)
cI∗

(
1 − I

I∗

)
.

Applying the Green’s formula and zero Neumann boundary conditions, we obtain

dV2

dt
= −δ1S∗

∫
�

‖∇S‖2
S2

dx − δ2V∗
∫
�

‖∇V‖2
V2 dx − δ3I∗

∫
�

‖∇I‖2
I2

dx

+ mS∗
∫
�

(
2 − S

S∗ − S∗

S

)
dx + mV∗

∫
�

(
3 − S∗

S
− V

V∗ − S
S∗

V∗

V

)
dx

+ bq1f (I∗)S∗
∫
�

(
3 − S∗

S
− S

S∗
1 + I∗

1 + I
− 1 + I

1 + I∗

)
dx

− b(q1S∗ + q2V∗)
∫
�

(I − I∗)2

(1 + I)(1 + I∗)2
dx

+ bq2f (I∗)V∗
∫
�

(
4 − S∗

S
− S

S∗
V∗

V
− 1 + I

1 + I∗
− V

V∗
1 + I∗

1 + I

)
dx

+ cI∗
∫
�

(
S∗

S
+ I

I∗
− S∗

S
I
I∗

− 1
)
dx. (25)

We know the arithmetic mean is greater than or equal to the geometric mean. Conse-
quently, for all S > 0,V > 0 and I > 0, we find

2 − S
S∗ − S∗

S
≤ 0,

3 − S∗

S
− V

V∗ − S
S∗

V∗

V
≤ 0,

3 − S∗

S
− S

S∗
1 + I∗

1 + I
− 1 + I

1 + I∗
≤ 0,

and 4 − S∗

S
− S

S∗
V∗

V
− 1 + I

1 + I∗
− V

V∗
1 + I∗

1 + I
≤ 0.
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Moreover, if either c = 0 or S = S∗, and I = I∗ then

Z = cI∗
∫
�

(
S∗

S
+ I

I∗
− S∗

S
I
I∗

− 1
)
dx = 0,

and the result is immediately proved. RewriteZ in the following form

Z = −c
∫
�

(S − S∗) (I∗ − I)
S

dx.

For c>0, it is remarked that the outcome of the integral Z can be either negative or non-
negative depending on the sign of (S − S∗)(I∗ − I) and these two different scenarios are

Case (a): (S − S∗)(I∗ − I) ≥ 0,
Case (b): (S − S∗)(I∗ − I) < 0.

When Case (a) is true for all t ∈ (0,∞), or for at-least large t > t1 or t → ∞, the
situation is clearly in favour and the result is well established.

But for Case (b) to be true, the integral functionZ coincides with our expected result if
the rest part of (25) equates or dominates on Z for all t ∈ (0,∞), or for at-least large t or
t → ∞.

Hence, the Equation (25) reveals that, dV2
dt ≤ 0 for S,V , I > 0. Since the above

inequalities become equalities whenever S = S∗,V = V∗andI = I∗ and hence dV2
dt = 0 for

(S,V , I) = (S∗,V∗, I∗). Now, LaSalle’s invariance principle [12] refers to

lim
t→∞(S(x, t),V(x, t), I(x, t)) → E∗

which means, whenR0 > 1, the disease equilibrium E∗ = (S∗,V∗, I∗) is globally asymp-
totically stable. This concludes the proof. �

5.4. Uniform persistence

By linearizing the third equation of system (2) at E0, the disease-free equilibrium, we get
the followings:

∂I
∂t

= δ3�I + b(q1S0 + q2V0)I − (m + c)I inA,

∂I
∂ω

= 0 in ∂A.
(26)

Then referring the arguments as in the proof of ([6], Theorem 2.2), ([24], Theorem 2),
([12], Theorem 4.2), ([21], Theorem 2.11), ([32], Theorem 3.4), ([36], Theorem 3.2), ([29],
Theorem 4.2); Yang et al. [37] established the uniform persistence result for the respective
system through the following procedure.

Setting I(x, t) = eλtρ̂(x), we get

λρ̂(x) = δ3�ρ̂(x)+ (bq1S0 + bq2V0)ρ̂(x)− (m + c)ρ̂(x) for x ∈ �,
∂ρ̂(x)
∂ω

= 0 for x ∈ ∂�.
(27)



JOURNAL OF BIOLOGICAL DYNAMICS 21

Now substituting ρ̂(x) ≡ 1 and the values of S0,V0 into (5.4) we obtain the principal
eigenvalue of (26)

λ(S0,V0) = b(q1S0 + q2V0)− (m + c) = (m + c)(R0 − 1),

corresponding to which there is the unique positive eigen-function ρ̂(x) ≡ 1.
Thus, observing this equation we can claim the following lemma:

Lemma 5.3: The principal eigenvalue, λ(S0,V0) has the same sign as (R0 − 1).

To claim the uniform persistence of the system (2)–(4), we now establish the following
lemma and theorem using the similar arguments from [37].

Lemma 5.4: If u(x, t, ρ) is the solution of the system (2)–(4) with u(·, 0, ρ) = ρ ∈ X+,
then

(i) for any ρ ∈ X+, we always have S(x, t, ρ) > 0 and V(x, t, ρ) > 0 in A. Furthermore,
we have

lim
t→∞ inf S(x, t) ≥ a

bq1 + m + n
, uniformly for x ∈ �,

and

lim
t→∞ inf V(x, t) ≥ an

2(bq1 + m + n)(bq2 + m)
, uniformly for x ∈ �,

(ii) if there exists some t0 ≥ 0 such that I(·, t0, ρ) �≡ 0 is not true, then I(x, t, ρ) > 0, ∀ x ∈
�, t > t0.

Proof: From the system (2), it is clear that S(x, t, ρ) > 0 and V(x, t, ρ) > 0 in A for any
ρ ∈ X

+. Then,

∂S
∂t

≥ δ1�S + a − (bq1 + m + n)S + cI inA
⇒ ∂S

∂t
≥ δ1�S + a − (bq1 + m + n)S inA since cI ≥ 0.

Now applying ([21], Lemma 1) and the comparison principle, we get

lim
t→∞ inf S(x, t) ≥ a

bq1 + m + n
, uniformly for x ∈ �.

Then there exists a t1 > 0 such that

S(x, t) ≥ 1
2

a
bq1 + m + n

, ∀ t ≥ t1.

Consequently, the second equation of system (2) follows that

lim
t→∞ inf V(x, t) ≥ an

2(bq1 + m + n)(bq2 + m)
, uniformly for x ∈ �,
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Finally, from the third equation of the system (2), we can write

∂I
∂t

≥ δ3�I − (m + c)I inA,

∂I
∂ω

= 0 in ∂A.

By the strong maximum principle and the Hopf boundary Lemma [25], this validates the
second part. �

After the completion of the above arguments, we obtain the results for disease persis-
tence as described in Theorem 3.5 in Section 2. Now, it is time to produce the last result,
Theorem 3.5 when the disease are persisting.

Proof of Theorem 3.5.: Let us assume that δ1 = δ2 = δ3 = 	 and also suppose

X0 := {ρ ∈ X
+ : ρ3(·) �= 0},

and

∂X0 := X
+ \ X0 = {ρ ∈ X

+ : ρ3(·) = 0},
From Lemma 5.4, for any ρ ∈ X0, we get I(x, t, ρ) > 0, inA, that is,�tX0 ⊆ X0, ∀ t ≥ 0.

Let define R∂ := {θ ∈ X0 : �t(θ) ∈ ∂X0, ∀ t ≥ 0}, and ω(θ) be the omega limit
set of the orbit O+(θ) := {�t(θ) : t ≥ 0}. Now, first, let us claim that ω(ρ) =
{(S0,V0, 0)}, ∀ θ ∈ R∂ .

Since ρ ∈ R∂ , we have �t(ρ) ∈ ∂X0, ∀ t ≥ 0. Hence, I(·, t, ρ) ≡ 0. From the first
equation of system (2), we know that limt→∞ S(x, t, ρ) = S0 uniformly for x ∈ �. Hence
ω(ρ) = {(S0,V0, 0)}, ∀ ρ ∈ R∂ . It follows from Lemma 5.3 that λ(S0,V0) > 0 whenR0 >

1. By the continuity of λ(S0,V0), there exists a sufficiently small positive number δ0 > 0
such that λ( S0−δ01+δ0 ,

V0−δ0
1+δ0 ) > 0.

Let us now claim that (S0,V0, 0) is a uniform weak repeller for X0 in the sense that

lim
t→∞ sup |�t(ρ)− (S0,V0, 0)| ≥ δ0, ∀ ρ ∈ X0.

Suppose, by contradiction, there exists ρ0 ∈ X0 such that

lim
t→∞ sup |�t(ρ0)− (S0,V0, 0)| < δ0.

Then there exists t2 > 0 such that S(x, t, ρ0) > S0 − δ0,V(x, t, ρ0) > V0 − δ0 and 0 <
I(x, t, ρ0) < δ0, for all x ∈ � and t ≥ t2. Therefore, I(x, t, ρ0) satisfies

∂I
∂t

≥ 	�I + b(q1(S0 − δ0)+ q2(V0 − δ0))

1 + δ0
I − (m + c)I for x ∈ � and t ≥ t2,

∂I
∂ω

= 0 for x ∈ ∂� and t ≥ t2.

By Lemma 5.3, we conclude that ρ̂ is the strongly positive eigenfunction corresponding to
λ( S0−δ01+δ0 ,

V0−δ0
1+δ0 ). It follows from I(x, t, ρ0) > 0 for all x ∈ � and t > 0 that there exists ε >

0 such that I(x, t, ρ0) ≥ ερ̂. Clearly, u(x, t) = ε exp(λ( S0−δ01+δ0 ,
V0−δ0
1+δ0 )(t − t2))ρ̂ is a solution
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of the following system

∂u
∂t

≥ 	�u + b(q1(S0 − δ0)+ q2(V0 − δ0))

1 + δ0
u − (m + c)u for x ∈ � and t ≥ t2,

∂u
∂ω

= 0 for x ∈ ∂� and t ≥ t2.

According to the comparison principle, we can obtain

I(x, t, ρ0) ≥ ε exp
(
λ

(
S0 − δ0

1 + δ0
,
V0 − δ0

1 + δ0

)
(t − t2)

)
ρ̂, for x ∈ � and t ≥ t2.

This implies that I(x, t, ρ0) is unbounded, which is a contradiction.
Define a continuous function P : X+ → [0,∞) by

P(ρ) = min
x∈�

ρ3(x), ∀ ρ ∈ X
+.

It is easy to see thatP−1(0,∞) ⊆ X0.Moreover, we conclude that ifP(ρ) > 0 orP(ρ) = 0
andρ ∈ X0, thenP(�t(ρ)) > 0 for all t > 0. Thus,P is a generalized distance function for
the semiflow �t : X+ → X

+. It follows from the above discussion that any forward orbit
of �t in R∂ converges to {(S0,V0, 0)}. It is obvious that {(S0,V0, 0)} is isolated in X

+ and
Ws(S0,V0, 0) ∩ X0 = ∅. Further, there is no cycle in R∂ from {(S0,V0, 0)} to {(S0,V0, 0)}.
Applying ([30], Theorem 3), there exists a � > 0 such that

min
ψ∈ω(ρ)

P(ψ) > �, ∀ ρ ∈ X0.

Therefore,

lim
t→∞ inf I(·, t, ρ) ≥ �, ∀ ρ ∈ X0.

Then by Lemma 5.4(i), the proof of this theorem is established. �

Since TheoremA.1 from appendix proves existence of global solution for the system (2)
with distinct diffusion rates, the persistence theorem is also true for the system (2) where
the diffusion rates (δ1, δ2, δ3) are not identical and we describe the following statement as
a remark.

Remark 5.1: IfR0 > 1, then there exists a constant η > 0 such that for any ρ ∈ X
+ with

ρ3(·) �≡ 0, we have

lim
t→∞ inf S(x, t) ≥ η, lim

t→∞ inf V(x, t) ≥ η, lim
t→∞ inf I(x, t) ≥ η, uniformly for x ∈ �.

6. Conclusion

In this manuscript, a spatially dependent vaccination model is proposed for infectious
diseases. We have studied analytic inter-locution of disease-free equilibrium, disease equi-
librium, basic reproduction number, existence and uniqueness of the solution of the
corresponding system, local stability, global stability and uniform persistence theorem for
the system. We present a number of numerical examples to verify our analytical results.
It is shown that the numerical solution of the system corresponds to the analytical results.
Our studymay help to predict the upcoming probable results of treatments via vaccination
and therapy against malignant diseases.
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Appendix

Lemma A.1: For disease equilibrium E∗(S,V , I) ≡ E∗(S∗,V∗, I∗), we claim that

0 < S∗ <
a

m + n
, 0 < V∗ <

an
m(m + n)

,

0 < I∗ <
abq1

(m + n)(m + c)
+ abnq2

m(m + n)(m + c)
;

when, ξ = sup{I∗, I} and c < c∗ = abq1
(m+n)(1+ξ) .

Proof: Recall the disease-free equilibrium:

E0 ≡
(

a
m + n

,
an

m(m + n)
, 0

)
≡ (S0,V0, I0). (A1)
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For endemic equilibrium, similarly we also recall the equations which counts S∗ andV∗, respectively
such that

S∗ = (a + cI∗)(1 + I∗)
bq1I∗ + (m + n)(1 + I∗)

, (A2)

V∗ = n(1 + I∗)2(a + cI∗)
(bq1I∗ + (m + n)(1 + I∗))(bq2I∗ + m(1 + I∗))

. (A3)

Now, from (A1) and (A2)

S0
S∗ = a

a + cI∗
×

m + n + bq1
I∗

1 + I∗
m + n

Then,
S0
S∗ − 1 > 0 is equivalent to

a
a + cI∗

×
m + n + bq1

I∗

1 + I∗
m + n

> 1

⇔ a + cI∗

a
<

m + n + bq1
I∗

1 + I∗
m + n

⇔ 1 + cI∗

a
< 1 + bq1

m + n
× I∗

1 + I∗

⇔ c
a
<

bq1
m + n

× 1
1 + I∗

, since I∗ > 0

⇔ c <
abq1

(m + n)(1 + I∗)
.

Hence, we consider

c < c∗ = abq1
(m + n)(1 + ξ)

≤ abq1
(m + n)(1 + I∗)

,

where ξ = sup{I∗, I} and I∗ is defined later in (A5). Thus, this condition indicates the inequality as

0 < S∗ < S0.

Next, it is time to show that
0 < V∗ < V0.

Similarly, from (A1), (A2) and (A3), we obtain

V0

V∗ × S∗

S0
= bq2I∗ + m(1 + I∗)

m(1 + I∗)
which yields

V0

V∗ =
(
1 + bq2

I∗

1 + I∗

)
× S0

S∗ . (A4)

Introducing an inequality

1 ≤ 1 + bq2
I∗

1 + I∗
,

and using the relation
S0
S∗ > 1, from the equation (A4), it is easy to show that

1 ≤ 1 + bq2
I∗

1 + I∗
<

(
1 + bq2

I∗

1 + I∗

)
× S0

S∗ = V0

V∗
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Finally, from the third equation of system (6), we get

b
(
q1S∗ + q2V∗) I∗

1 + I∗
− (m + c)I∗ = 0

⇒ b
(
q1S∗ + q2V∗) − (m + c)(1 + I∗) = 0

⇒ 1 + I∗ = b
(
q1S∗ + q2V∗)
(m + c)

⇒ I∗ = b
(
q1S∗ + q2V∗)
(m + c)

− 1

⇒ I∗ <
b
(
q1S0 + q2V0

)
(m + c)

− 1 <
abq1

(m + n)(m + c)
+ abnq2

m(m + n)(m + c)
.

Therefore,

0 < I∗ <
abq1

(m + n)(m + c)
+ abnq2

m(m + n)(m + c)
. (A5)

Hence the proof is completed. �

Now we are going to state and prove the Theorem 3.1 for distinct diffusion coefficients:

Theorem A.1: For any given initial data ρ ∈ X
+, system (2)–(4) has a unique solution u(·, t, ρ) on

[0,∞) and further the solution semiflow �(t) := u(·, t) : X+ → X
+, t ≥ 0, has a global compact

attractor in X
+.

Proof: By Lemma 5.1, the system (2)–(4) has a unique solution u(·, t, ρ) on [0, σρ) and u(x, t, ρ) ≥ 0
for any t ∈ [0, σρ) and x ∈ �.

We want now to find the upper bound of u ≡ (S,V , I) that will be enough to complete the proof
[9, 23, 31]. First, we assume the following

� = {(S,V , I) : 0 ≤ S ≤ a
m + n

, 0 ≤ V ≤ an
m(m + n)

, 0 ≤ I ≤ R0}.

We claim that� is invariant [31]. To see this, we set U = [f1, f2, f3], where

f1 = a − bq1
I

1 + I
S − (m + n) S + cI,

f2 = nS − bq2
I

1 + I
V − mV ,

f3 = b
(
q1S + q2V

) I
1 + I

− (m + c)I.

Then successively, if G = S − a
m + n

then

�G · U |S= a
m+n

= −bq1
I

1 + I
× a

m + n
+ cI

= −
(

abq1
(m + n)(1 + I)

− c
)
I

≤ −
(

abq1
(m + n)(1 + ξ)

− c
)
I = − (

c∗ − c
)
I ≤ 0 in�,

where c∗ is defined in Lemma A.1 and c∗ > c. Which implies,

S ≤ a
m + n

. (A6)
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Again if G = V − an
m(m + n)

then

�G · U |V= an
m(m+n)

= nS − bq2
I

1 + I
× an

m(m + n)
− m

an
m(m + n)

= nS − abnq2
m(m + n)

× I
1 + I

− an
m + n

≤ nS − abnq2
m(m + n)

× I
1 + I

− nS

≤ − abnq2
m(m + n)

× I
1 + I

≤ 0 in�.

Hence,

V ≤ an
m(m + n)

. (A7)

Now, we take G = I − R0 such that

�G · U |I=R0 = b(q1S + q2V)× R0

1 + R0
− (m + c)R0

≤ b
(
q1

a
m + n

+ q2
an

m(m + n)

)
× R0

1 + R0
− (m + c)R0

= (m + c)R0 ×
(
1 − 1

1 + R0

)
− (m + c)R0

= −(m + c)
R0

1 + R0
≤ 0 in�.

Therefore,
I ≤ R0. (A8)

Which proves that� is invariant [9, 23, 31].
Therefore, the non-negative solutions of (2)–(4) are ultimately bounded with respect to the max-

imum norm. This means that the solution semiflow �(t) := u(·, t) : X+ → X
+, t ≥ 0 defined by

(�(t)ϕ)(x) = u(x, t,ϕ), x ∈ �, is point dissipative. In view of [[35], Corollary 2.2.6],�(t) is com-
pact for any t > 0. Thus, [[11], Theorem 3.4.8] implies that �(t) : X+ → X

+, t ≥ 0, has a global
compact attract in X

+.
This completes the proof. �

Glossary of Notation

� Bounded spatial habitat
∂� Smooth boundary of bounded spatial habitat�
R Set of real numbers
R
n Set of ordered n-tuples of real numbers

R0 Basic reproduction number
E0 Disease-free equilibrium
E∗ Disease equilibrium
N Total population
S Number of susceptible individuals
V Number of vaccinated individuals
I Number of infectious individuals
a Recruitment rate of susceptible individuals
b Average number of contact partners
q1 Transmission probability of susceptible individuals
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q2 Transmission probability of vaccinated individuals
m Natural death
n Vaccination coverage of susceptible individuals
c Therapeutic treatment coverage of infected individuals
t Time
x Column vector or element of R

n
I

1+I Nonlinear incidence rate
A �× (0,∞)

∂A ∂�× (0,∞)

δi Diffusion rates
� Laplacian Operator
ω Outward normal to the boundary
J Jacobian matrix
λ Eigenvalue
C Banach space
‖ · ‖ Arbitrary norm
‖ · ‖X Supremum norm

 Green function
G Generator set
� Solution semiflow
V Lyapunov function
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