
INCORPORATING THE COMMONS: A POLITICAL ECONOMIC ANALYSIS

OF CORPORATE INVOLVEMENT IN FREE AND OPEN SOURCE

SOFTWARE

by

BENJAMIN J. BIRKINBINE

A DISSERTATION

Presented to the School of Journalism and Communication
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

September 2014

DISSERTATION APPROVAL PAGE

Student: Benjamin J. Birkinbine

Title: Incorporating the Commons: A Political Economic Analysis of Corporate
Involvement in Free and Open Source Software

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the School of Journalism and
Communication by:

Dr. Janet Wasko Chairperson
Dr. Biswarup Sen Core Member
Dr. Gabriela Martinez Core Member
Eric Priest, J.D. Institutional Representative

and

J. Andrew Berglund Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate School.

Degree awarded September 2014

ii

DISSERTATION ABSTRACT

Benjamin J. Birkinbine

Doctor of Philosophy

School of Journalism and Communication

September 2014

Title: Incorporating the Commons: A Political Economic Analysis of Corporate
Involvement in Free and Open Source Software

Free (libre) and open source software (FLOSS) emerged in the 1980s as a radical

alternative to proprietary software. Fighting back against what FLOSS enthusiasts

viewed as overly restrictive intellectual property protections placed on proprietary

software, FLOSS was designed with the intent of granting users the right to study,

modify, adapt, or otherwise tinker with the source code of software. As such, FLOSS

users were able to collaborate in producing software that could be distributed freely and

widely to others, who could, in turn, make changes to the software. As FLOSS projects

grew in popularity, the productive process was spread throughout a broad network of

distributed users, all of whom could work on the code. The result of this process was the

creation of robust, effective, and efficient forms of software that could compete with

those offered by large software companies.

Increasingly, however, some of those large software companies became involved

in the development of FLOSS projects. On its face, this may seem to be a contradiction

of interests. Why would a for-profit company invest in the development of software that

is made freely available for others to use? This is the contradiction that lies at the heart

of this research project. More specifically, this project looks at the dynamics that exist

iv

between communities of FLOSS developers and the corporations that are involved in or

make use of their projects. Working from a critical political economy perspective, this

study complicates theories of the commons and commons-based peer production by

illustrating how FLOSS processes and products are being incorporated into broader

corporate structures and strategies.

The three case studies presented – Red Hat, Microsoft, and Oracle's acquisition of

Sun Microsystems – exemplify different elements of this dynamic. Red Hat provides an

example of how a company that relies exclusively on free software can be turned into a

profitable business. The Microsoft case demonstrates why the company has undergone a

transition from vehement opposition to FLOSS toward a more supportive position.

Finally, Oracle's acquisition of Sun Microsystems demonstrates how FLOSS

communities cope with changing ownership structures and unwanted corporate

interference into their projects.

v

CURRICULUM VITAE

NAME OF AUTHOR: Benjamin J. Birkinbine

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR
Southern Illinois University Carbondale, Carbondale, IL
University of Wisconsin-Green Bay, Green Bay, WI

DEGREES AWARDED:

Doctor of Philosophy, Media Studies, 2014, University of Oregon
Master of Arts, Media Theory and Research, 2010, Southern Illinois University

Carbondale
Bachelor of Arts, Communication, 2005, University of Wisconsin-Green Bay

AREAS OF INTEREST:

Political Economy of Communication
Open Source Technology
Communication Theory
Media Studies

PROFESSIONAL EXPERIENCE

Graduate Teaching Fellow, School of Journalism and Communication, University
of Oregon, 2010-2014

Teaching/Research Assistant, College of Mass Communication and Media Arts,
Southern Illinois University Carbondale, 2008-2010

Instructor, Department of Communication, University of Wisconsin-Green Bay,
2006-2008

GRANTS, AWARDS, AND HONORS

The Dallas Smythe Award, Awarded by the International Association of Media
and Communication Researchers for the paper, “Incorporating the
commons: Toward a political economy of corporate involvement in free
and open source software,” 2014.

Digital Scholarship Center Graduate Affiliate, 2014

vi

Rapid Response Grant, Co-sponsored by the Open Society Foundation and the
International Association for Media and Communication Researchers,
2014

The Columbia Scholarship, School of Journalism and Communication, University
of Oregon, 2013

Outstanding Teaching by a Doctoral Student, School of Journalism and
Communication, University of Oregon, 2013

Glenn Starlin Fellowship, School of Journalism and Communication, University
of Oregon, 2013

Nominee for Doctoral Research Fellowship, School of Journalism and
Communication, University of Oregon, 2013

The Columbia Scholarship, School of Journalism and Communication, University
of Oregon, 2011

Lucien P. Arant Scholarship, School of Journalism and Communication,
University of Oregon, 2010

vii

ACKNOWLEDGMENTS

No project as formidable as a dissertation can ever be undertaken in complete

isolation. Along the way, I've had inspiration, assistance, advice, critiques, clarifications,

and collaboration with numerous people who made this possible. I cannot do justice to

the entire community who helped, but I would like to thank a few in particular.

I thank my dissertation committee for their patience, comments, and critiques.

Janet Wasko was an incredibly gracious, accommodating, and fun adviser throughout the

process. Bish Sen provided critical feedback and always pushed me to think about the

broader implications of my work. Gabriela Martinez was equally supportive, provided

great feedback, and was always available for conversations. Finally, Eric Priest became

one of the few law professors to serve on a dissertation committee at the University of

Oregon. He deserves additional credit for coordinating his involvement while the law

school followed a different academic calendar than the rest of the university.

I thank the members of my cohort – Toby Hopp, Erica Ciszek, Francesco

Somaini, Brant Burkey, and Fatoumata Sow – who were sources of inspiration, support,

and friendship. In addition, I would like to thank Jeremy Swartz for the introduction to

open source and the guided tour of my first Open Source Convention (OSCON) in

Portland in the summer of 2011. That experience, along with the ensuing discussions

about the broader implications of open source, led to a change in my academic focus that

ultimately provided the impetus for this study. I'm also thankful for the support and

friendship of Brenna Wolf-Monteiro, Tewodros Workneh, Randall Livingstone, Jacob

Dittmer, Lauren Bratslavsky, Glenn Morris, Karen Estlund, Andre Sirois, Jolene Fisher,

and Geoff Ostrove.

viii

Outside the School of Journalism and Communication, Kat at the ResNet Help

Desk helped me with my first Linux install. Without her initial help, this journey may

have not been possible. I am now happy to say that I've passed the gift along to others.

John Russell and everyone at the Digital Scholarship Center provided support and were

always willing to assist in whatever way they could. In addition, the members of the

Eugene Unix Gnu Linux Users Group (EUGLUG) were an incredibly welcoming group

of people who were kind and patient enough to help a total noob like myself with various

Linux questions. I would especially like to thank Larry Price and Jacob Riddle for setting

aside extended periods of time to help me with this project and related topics.

Last, but certainly not least, I would like to thank my family. I thank my mother

and father for their years of support and patience as I've pursued graduate studies.

Undoubtedly, without you, none of this would be possible, and I am forever indebted.

My sister, Ann, inspires a wealth of adjectives: congenial, affable, good-humored,

gregarious, etc., and I'm thankful for the years of fun we've shared. My son, Caden, was

only two years old when this journey began, and he is now well on his way to becoming a

young man. I've enjoyed watching you grow over these years, and I look forward to

many more. You are a blessing. Finally, my love and inspiration, Roberta, meu coração.

You have truly been wonderful throughout all these years. In the past, I have seen other

writers thank their partners, they allude to the fact that a great deal of patience is

necessary to cope with someone who is going through the process of writing a

dissertation. I now know what they mean, and I am truly fortunate to have had you as a

companion throughout this process. You are truly a gift.

ix

For the community, and para o meu coração.

x

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION.. 1

Situating Free (Libre) and Open Source Software... 6

History of Computing and Software.. 7

The Size and Scope of FLOSS.. 13

Hacking, Cracking, and Motivation... 17

Justification for the Study and Its Contribution to Scholarship............................. 19

Overview.. 25

II. THEORETICAL FRAMEWORKS AND LITERATURE REVIEW..................... 27

Political Economy of Communication... 28

Of Marx and Machines.. 29

Communication Labor, Free Labor, Digital Labor.. 35

The Commons.. 40

Commons-Based Peer Production... 43

The Threat of Enclosure... 49

Open Source Business Models.. 54

Summary.. 58

III. RESEARCH QUESTIONS AND METHODOLOGY.. 61

Research Questions.. 62

Methodological Approach.. 65

Research Methods.. 67

Document/Textual Analysis... 68

xi

Chapter Page

Interviews... 74

Recruitment Process.. 75

Interview Setting.. 76

Interview Participants.. 76

Data and Analysis.. 78

Human Subjects Research and Institutional Review Board.................................. 79

Summary.. 80

IV. FROM THE COMMONS TO CAPITAL: RED HAT, INC. AND
INTELLECTUAL PROPERTY... 82

The Political Economy of Red Hat, Inc... 83

Red Hat's Core Commodities and Intellectual Property.................................. 88

Red Hat Linux.. 90

Red Hat Enterprise Linux and the Fedora Project..................................... 91

Ownership, Governance, and Intellectual Property in Fedora................... 92

Red Hat, Trademark, and CentOS... 96

Core Commodity Conclusions... 98

From the Commons to Capital... 99

V. SHIFTING TOWARD THE COMMONS: MICROSOFT'S LONG AND
WINDING HISTORY WITH FREE SOFTWARE... 103

The Rise of Microsoft 1975-1990.. 106

MS-DOS.. 108

Microsoft Windows.. 110

Apple Computer vs. Microsoft Corporation.. 112

xii

Chapter Page

Microsoft in the 1990s... 115

The Browser Wars.. 116

Mosaic and Netscape... 117

Microsoft Responds... 119

The United States vs. Microsoft Corporation.. 121

Effects of the Decision... 123

The Halloween Documents.. 126

Shifting Toward the Commons.. 131

Microsoft Shared Source... 132

Microsoft Open Technologies.. 134

Why Open Source? Why Now?... 136

VI. CONFLICT IN THE COMMONS: ORACLE CORPORATION AND ITS
ACQUISITION OF SUN MICROSYSTEMS.. 140

The Oracle Corporation and Sun Microsystems.. 141

A Brief History of the Market for Operating Systems..................................... 144

OpenSolaris.. 146

MySQL.. 148

StarOffice, OpenOffice, LibreOffice... 151

Protecting the Commons.. 156

VII. CONCLUSION.. 159

Major Findings... 160

Research Question #1.. 160

xiii

Chapter Page

Red Hat, Inc... 160

Microsoft Corporation... 162

Research Question #1A... 165

Oracle's Acquisition of Sun Microsystems.. 165

Research Question #2.. 167

Contributions of the Study... 168

Limitations of the Study.. 172

Concluding Thoughts: Capital and the Commons... 174

APPENDICES... 178

A. RECRUITMENT LETTER OR EMAIL.. 178

B. INFORMED CONSENT LETTER... 179

C. INTERVIEW GUIDE... 182

REFERENCES CITED.. 184

xiv

LIST OF FIGURES

Figure Page

4.1. Red Hat Annual Revenues 1998-2013.. 87

4.2. Red Hat Annual Net Profits 1998-2013.. 88

5.1. Netscape Navigator Usage Data 1994-2006... 120

5.2. Microsoft Annual Revenues 1999-2013... 125

5.3. Microsoft Annual Net Profits 1999-2013... 125

6.1. Oracle Corporation's Annual Revenues 1998-2013.. 142

6.2. Oracle Corporation's Annual Net Profits 1998-2013.. 143

6.3. Development of StarOffice Derivatives.. 155

xv

LIST OF TABLES

Table Page

2.1 Possibilities for Common Ownership.. 42

2.2 Types of Open Source Business Strategies.. 55

xvi

CHAPTER I

INTRODUCTION

In March of 2012, The Linux Foundation released a report entitled, “Linux Kernel

Development: How Fast it is Going, Who is Doing It, What They are Doing, and Who is

Sponsoring It.” The kernel is an essential part of an operating system that facilitates

communication between computer hardware and software, and the Linux kernel

development project is considered to be “one of the largest cooperative software projects

ever attempted” (The Linux Foundation, 2012, 1). Aside from a technical overview of

how kernel development has changed over time, the authors included a curious note in

the report's highlights: Microsoft was one of the top 20 contributors to the kernel. This

marks the first time that Microsoft appeared as a top contributor, but was not the only

corporation in the top 20. Other corporate contributors included Intel, IBM, Google,

Texas Instruments, Cisco, Hewlett-Packard, and Samsung, as well as others. The Linux

operating system is a form of Free (Libre) and Open Source Software, or FLOSS, which

allows users to freely study, use, copy, modify, adapt, or distribute the software. Why,

then, would major corporations contribute directly to a FLOSS project, especially when

that project seemingly does not directly contribute to corporate profits? This question

becomes even more curious when one considers that many of the companies contributing

to the kernel not only compete with one another in the market for information technology,

but companies like Microsoft and Google are direct competitors with Linux in the market

for operating systems.

Indeed, Steve Ballmer, the Chief Operating Officer of Microsoft, once referred to

Linux as “a cancer that attaches itself in an intellectual property sense to everything it

touches” (Greene, 2001). Ballmer was referencing the GNU General Public License, or

1

GNU GPL, which is the most commonly used free software license. The GPL grants

users of GPL-protected software the right to study, use, copy, modify, or adapt the

software as he or she wishes. In addition, users are granted the right to redistribute the

software, as well as a modified version, and the user may even charge a fee for the

modified version, provided that the distributor does not place greater restrictions on the

rights granted by the GPL. By granting such rights, the GPL does not preclude

corporations from modifying free software or charging a fee for their modified versions,

but the corporation must still grant free software rights to end users. Ballmer's quote

implies that free software is antithetical to commercial software companies. If this were

the case, then Microsoft or any other commercial software firm would have no incentive

to contribute directly to one of the largest open source projects. This seemingly

contradictory stance lies at the heart of this dissertation project. To further exacerbate

this contradiction, consider the fact that Ballmer made his denunciation of Linux on June

1, 2001. Merely 27 days later, on June 28, 2001, the United States Department of Justice

found Microsoft guilty of monopolistic business practices in violation of the Sherman

Antitrust Act primarily for bundling its Internet Explorer web browser with its Microsoft

Windows operating system as a way to rapidly increase its share of the market for web

browsers. However, Microsoft has dramatically changed its position on Linux and open

source since 2001, as signified by its inclusion in the top 20 contributors to the Linux

kernel.

In 2012, Microsoft created Microsoft Open Technologies, Inc., a wholly owned

subsidiary dedicated to facilitating interoperability between Microsoft and non-Microsoft

technologies, while promoting open standards and open source. What changed during

this twelve-year period that Microsoft would so dramatically reposition itself in relation

2

to FLOSS? Moreover, why are so many other corporations contributing to open source

projects?

In this project, I am primarily concerned with the seemingly contradictory

relationship between FLOSS communities and for-profit corporations. The dissertation

explores the nature of this relationship by focusing on three case studies that illustrate

different ways that corporations have been involved in FLOSS projects. However, I am

also interested in whether corporate involvement in FLOSS projects will change the

dynamics of the broader FLOSS community over time. In other words, this project

investigates the extent to which corporations like Red Hat, Microsoft, and Oracle wield

power over or within FLOSS projects. If so, in what ways? In this sense, the issue of

corporate power is the center of the analysis. Finally, one of the proposed outcomes for

this project is to speculate as to whether increasing corporate involvement in FLOSS

projects will have consequences for the future of FLOSS communities and what those

consequences may be. To sum up, then, the current project is guided by the following

research questions:

RQ1: What is the relationship between proprietary, for-profit corporations and
free and open source software communities, and how has this relationship
changed over time?

RQ1a: What are the power dynamics between corporations and the FLOSS
community? In other words, does one party hold the ability to
exert influence on the other and how?

RQ2: What constitutes value for each of these stakeholders? What value do
corporations provide for the FLOSS community, and what value does the
FLOSS community provide for corporations? Do any external factors or
stakeholders exist that may profit from this relationship?

To address these questions, three case studies illustrate different types of

relationships that FLOSS projects have with corporations. Specifically, I focus on Red

3

Hat, Microsoft, and the Oracle Corporation's acquisition of Sun Microsystems. These

case studies were strategically chosen because they represent three very different

examples of corporate involvement in FLOSS projects. Red Hat is the largest and only

publicly traded company providing software and services that are completely based on

free software. As such, Red Hat cannot rely on traditional copyright protections to

exclude others from using the underlying source code included in its software. Thus, I

explore how Red Hat has been able to create a profitable business based on free software.

Microsoft was chosen because it has been viewed as the antithesis to FLOSS

throughout its corporate history. Now, however, Microsoft has signaled that it is

committed to and supportive of FLOSS projects. Consequently, the chapter on Microsoft

traces the company's long and winding history with FLOSS, but focuses specifically on

key moments throughout the company's history that demonstrate contradictions between

the public claims made by the company and its actions. Whereas the investigation of Red

Hat was driven by an interest in how the company uses FLOSS, the investigation of

Microsoft is interested in why the company has shifted its position to FLOSS.

Finally, the third case study focuses on what happens when a company that

supports various FLOSS projects is acquired by a company that does not. Specifically,

Sun Microsystems provided support for various FLOSS projects, but was later acquired

by the Oracle Corporation, which had different plans for those projects. In that chapter, I

focus on the diverse destinies of three such projects – the OpenSolaris operating system,

the MySQL relational database management system, and the OpenOffice productivity

software – and the ways that the communities involved in those projects resisted Oracle's

encroachment into their projects.

4

When considered together, these three case studies are indicative of the general

tendencies of corporate involvement in FLOSS projects. Moreover, all three companies

are some of the largest software companies in the world. While Red Hat may not have

the same level of revenue as Microsoft and Oracle, the company is the largest and only

publicly traded company operating almost exclusively in FLOSS. As such, Red Hat was

chosen because it illustrates how FLOSS can be transformed into a profitable business.

Microsoft and Oracle were selected because they are the two largest software companies

in the world when measured in total revenue. An explanation of how, why, and when

these companies compete or cooperate with FLOSS communities offers a germane

moment for understanding the dynamics existing between corporations and FLOSS

communities.

Furthermore, an increasing amount of our lives spent on the Internet where we

communicate with friends and colleagues, read news, watch movies and television, and

listen to music, among other activities. When we connect to the Internet and visit web

sites, our requests for information are relayed through a network of interconnected

servers that facilitate communication between other clients on the network. The

operating systems running those servers are increasingly FLOSS projects like Linux or

FreeBSD, but Microsoft also designs server software. This provides another example of

FLOSS projects competing with proprietary companies like Microsoft. Therefore,

whether we realize it or not, our ability to connect to the Internet may depend, in part, on

the ability of FLOSS projects to work together with proprietary software. Consequently,

understanding the ways in which proprietary software and FLOSS projects work together,

as well as what happens when these relationships break down, is an important step in

5

unpacking the relationships that enable and, at times, constrain our ability to connect with

others online. This is precisely the purpose of this project.

To explain exactly how this project research was completed, CHAPTER III

provides a more in-depth overview of methodology and method. The remainder of this

chapter will focus on providing an introduction to FLOSS. Readers who are already

familiar with the history of FLOSS and its defining characteristics may wish to skip

directly to the next chapter, which more succinctly outlines the theoretical frameworks

drawn upon for this study, as well as an overview of the relevant literature that

contextualizes the study.

In the following sections, I situate FLOSS within the history of computing and

provide some basic information about its size and scope. In addition, I draw distinctions

between free software and open source by focusing on the foundational figures associated

with each community. While there are differences between free software and open

source, I will be using the combined term FLOSS throughout this dissertation unless a

specific reference to one or the other is required. After clarifying the differences between

free software and open source, some of the individual motivations for those contributing

to FLOSS projects are addressed. After this introductory material, I discuss the relevance

of this study and its contribution to a broader corpus of knowledge. Finally, the chapter

concludes with an outline of the remainder of the dissertation.

Situating Free (Libre) and Open Source Software

Although free software and open source communities are related and, in some

cases, not mutually exclusive, each of them have distinct characteristics that can best be

described by reference to the ethos underlying each movement. To contextualize the

6

emergence of FLOSS within the evolution of the computing and software industries, a

brief history of these industries is provided below. Following that discussion, I focus on

situating two key figures associated with FLOSS within their historical context: Richard

M. Stallman and Linus Torvalds. These two figures represent free software and open

source, respectively.

History of Computing and Software

Prior to the use of machines for processing information or calculating differences

in numbers, human beings performed such work. But human calculations were, at times,

prone to errors. To reduce this uncertainty, Charles Babbage, a philosopher and

mathematician working at the University of Cambridge in 1822, proposed that it was

“only by the mechanical fabrication of tables that such errors can be rendered

impossible” (Gleick, 2011, 95). Such was the proposition for Babbage's Difference

Engine, which performed routinized calculations mechanically, and was arguably the

genesis for modern computers as we know them today. Later, Babbage expanded on his

idea planned a new type of machine that was capable of being controlled by instructions

that could be encoded and stored to facilitate operation. The new iteration of the idea was

called the Analytical Engine, but this still only provided the idea for the hardware or

mechanisms necessary for such processes to occur. What was needed for this hardware

was software.

The idea for software arguably originates with Augusta Ada Byron King, the

Countess of Lovelace, or otherwise known simply as Ada Lovelace. She developed the

idea that Babbage's Analytical Engine could perform a series of operations beyond the

mere calculation of numbers. By abstracting from the differences between two things,

7

Lovelace posited that the Analytical Engine could be programmed to perform operations

that relied on symbols and meaning, which, in turn, could be communicated to the

machine. Although Lovelace's idea was never realized in her lifetime, she is credited

with developing the idea for software and is known as the first programmer (Computer

History Project, 2008).

While Babbage and Lovelace are credited as pioneers in developing the ideas for

modern computers and software, the construction of such machines did not begin until

World War II. Developments in the field of computer science and information theory –

like Kurt Gödel's incompleteness theorem, Alan Turing's idea for a Universal Turing

Machine, Claude Shannon's mathematical theory of communication, and Norbert

Wiener's cybernetics – provided the intellectual inspiration for the development of such

machines. Before, during, and after World War II, many of the developments leading to

modern computers were used for military purposes. Most notably, perhaps, were the

German Enigma machine that was used to encrypt secret messages and the electro-

mechanical bombes used by the United Kingdom to decipher those messages (Smith,

2011). However, in 1941, Konrad Zuse, a German electrical engineer, built the Z3, which

is regarded as the first electro-mechanical, programmable, fully automatic digital

computer (Zuse, et al., 2010). The first comparable computer in the U.S. was developed

by John Atanasoff at Iowa State University in 1942 (Copeland, 2006). Only one year

later, the first fully functioning electronic digital computer was put to use by the

cryptanalysts working at Bletchley Park in the U.K. as part of the Government Code and

Cypher School. The Colossus, as the new machine was known, was programmed to

decipher German communications during the war. By the end of the war, Bletchley Park

had 10 Colossi working to decode German communications (Copeland, 2006).

8

Following these initial developments, the development of modern computers

accelerated as many of the early pioneers began working for academic institutions and

private companies after the war. In the U.S., Grace Hopper, who served in the United

States Navy Reserves as a member of the Women Accepted for Voluntary Emergency

Service (WAVES) during World War II, was assigned to the Bureau of Ships Computation

Project at Harvard University. While there, she worked on the Mark I computer project,

which was built by IBM. Later, after she began working for private companies, Hopper

popularized the idea of machine-independent programming languages. This led to the

development of the Common Business-Oriented Language (COBOL). Hopper is also

credited with popularizing “debugging” as a term for removing defective material or code

from a program. While Hopper may not have invented the term, she popularized it by

literally removing a moth from a Mark II computer at Harvard University after it had

caused the machine to short circuit (Deleris, 2006).1

During the 1960s, the creation of microprocessors drastically reduced the cost of

computing. As such, communities of hobbyist programmers and computer enthusiasts

began to experiment with the technology. For example, Gordon French and Fred Moore

began the Homebrew Computer Club, which met at the Community Computer Center in

Menlo Park, California, and provided a forum for hobbyists to trade parts and advice

about the construction of personal computers. More will be said about this specific

hobbyist community in CHAPTER V when the rise of Microsoft is discussed. However,

aside from these hobbyist communities, the majority of computer development occurred

within the military, academic institutions, and private companies.

1 Interestingly, a photo of the moth that was removed from the machine is available from the Naval
Historical Center at http://www.history.navy.mil/photos/images/h96000/h96566kc.htm (last accessed
August 2, 2014).

9

http://www.history.navy.mil/photos/images/h96000/h96566kc.htm

Most notable were the initial developments within the Defense Advanced

Research Projects (DARPA), as well as the Artificial Intelligence Lab at the

Massachusetts Institute of Technology (MIT). Programmers working at the time were

using a proprietary programming language called Unix, the intellectual property rights for

which were owned by AT&T. One of the programmers working at MIT at the time was

Richard Stallman, who found that when he wanted to work with the Unix programming

language outside of officially sanctioned spheres, he was denied access to the code by

AT&T. In protest, he posted a message to a computer-based bulletin board saying that he

was developing a Unix-based language that would be available for free so that others

could use the language however s/he saw fit. The programming language was called

"GNU," a recursive acronym standing for "Gnu's Not Unix." Along with the

programming language, Stallman developed the GNU Public License (GPL), which

stipulated that anyone could access the source code for free, and that anyone using the

GPL agreed to make their contributions available under the same conditions. This would

ensure that computer programmers could freely share their work with one another,

thereby creating a common form of property that developed in opposition to its

proprietary and closed counterparts.

Stallman thus became the impassioned leader of the crusade against proprietary

software. He viewed access to source code as a fundamental right, which he wanted

others to believe in as well. He summed up this view in his famous dictum, "Free as in

freedom, not as in free beer," thus positioning free software as a moral right (Stallman,

2002). In addition, the free software definition stipulates that “users have the freedom to

run, copy, distribute, study, change and improve the software” (Free Software

Foundation, 2012). As the principles of free software grew beyond the borders of the

10

U.S., others have tried to reduce the confusion over the English term "free" by using the

French term libre rather than gratis. Stallman developed the Free Software Foundation

(FSF) as a way to promote his crusade against proprietary software, and he represents an

impassioned counter-cultural figure who still continues to espouse his free software

philosophy.

While Stallman is generally considered to be the leader of the free software

movement, open source software is generally associated with Linus Torvalds. In many

ways, Torvalds and Stallman have similar stories, but differ on philosophical terms.

During the 1980s, free software projects were being developed but generally on a smaller

scale. Free software had not yet found a way to coordinate efforts on a grand scale.

Torvalds wanted to work on kernel development for an open-source operating system.

Rather than relying on numerous programmers all working independently on such a task,

Torvalds released the source code for his project, which he was calling "Linux," a

portmanteau of his name, Linus, and the language he was working with, Minix (itself a

simplified derivative of AT&T's Unix). Torvalds suggested that anyone who was

interested in contributing to such a project was encouraged to do so, provided that they

release their work back to the community so that others could progressively work toward

completing the kernel. The project proved to be successful, and eventually led to the

creation of the open source operating system, Linux. Coordinating such a large-scale

programming project was accomplished by asking those working on the code to release

their work, no matter how small the changes seemed. The rationale was that coordinated

efforts reduce the amount of redundant work, which was summed up in the adage “with

many eyes, all bugs are shallow,” which Eric Raymond refers to as “Linus's Law”

(Raymond, 2000).

11

Stallman and Torvalds differ with respect to how free software projects ought to

relate to proprietary software. Whereas Stallman tends to be somewhat more rigid in his

opposition to proprietary software, Torvalds is less so. Williams (2002) describes the

decisive moment at a conference in which Stallman and Torvalds appeared on a

discussion panel together. Torvalds expressed admiration for the work that Microsoft was

doing and suggested that free software advocates could even work together with

companies. Such a suggestion was generally seen as taboo since Stallman was perceived

with esteem by the programming community, and the Free Software Foundation

generally took a very adamant stance against proprietary software companies. However,

this was apparently a watershed moment in which the fervor of the free software

movement thawed a bit and Torvalds came to represent a more liberal approach to free

software.

In sum, then, we can understand the free software and open source movements

within these differing philosophies. Stallman and free software advocates tend to make

moral claims against supporting proprietary software, while Torvalds and open source are

associated with a more liberal and inclusive stance. While Stallman and Torvalds have

been used to illustrate the differences between free software communities and open

source communities, they should not be viewed as mutually exclusive communities, nor

should Stallman and Torvalds be seen as representative of the entire free software and

open source communities. One of the peculiarities of the free and open source software

community is that, although the overall community is united in their belief that software

ought to be free for users to study, modify, adapt, or customize, its members will often

vehemently defend their preferred free software project while deriding others. In a sense,

this signals to others where their loyalties lie and engenders stronger ties within niche

12

communities that exist within the larger FLOSS community. The present project is less

concerned with these intra-group fissures than the relationship of the community as a

whole to the corporations that rely on their labor. To that end, the combined term “Free

(Libre) and Open Source Software” or “FLOSS” is used to refer to the overall

community.

The Size and Scope of FLOSS

Since its emergence in the 1980s and 1990s, FLOSS has proved to be a

tremendously efficient and effective way of producing software. As an example of the

size and scope of some FLOSS projects, consider the Linux kernel, which was discussed

in the introduction to this chapter. When it was first released in 1991, the Linux kernel

featured approximately 10,000 lines of code. Version 3.10 of the Linux kernel was

released in June of 2013 and featured almost 17 million lines of code, which was

produced by nearly 1,400 developers and 243 companies (The Linux Foundation, 2013).

Aside from the sheer growth in its size and complexity, Linux as an operating system has

become widely used. For example, Linux enjoys more than 96% market share in the

market for supercomputer operating systems (Top500.org, 2014). While Linux does not

yet have a significant share of the personal computing desktop market, the operating

system has been customized and used within a variety of contexts.

Between 1999-2001, four cities and municipalities in Brazil – Amparo,

Solonópole, Recife, and Ribeirão Pires – passed laws that required government agencies

to use or give preference to Linux (Tramontano & Trevisan, 2003; Festa, 2001). The

decision to switch to free software systems was mainly economic, as Brazil reported

spending nearly $1 billion on software licensing fees to Microsoft between 1999-2004

13

(Kaste, 2004). By switching to free and open source software, Brazil estimated that they

could save approximately $120 million per year (Kingstone, 2005). Similar measures

were taken in Kerala, India, during 2008, as the state banished Microsoft and allowed

only GNU/Linux free software to be used for the mandatory state information technology

exams (Kochi, 2008). The German city of Munich developed its own version of Linux

called LiMux (Linux in Munich), which it uses as an operating system for its 15,000 city

council members instead of Microsoft Windows (Saunders & Morrison, 2014). The

National University of Defense Technology in China has also developed its own Linux-

based operating system called Kylin. In addition, the computers used for the One Laptop

Per Child project, which was founded with the goal of bringing low-cost computers to

developing countries for educational purposes, featured a free and open source operating

system based on Fedora. Within the United States, Linux is used for high-level military

operations. For example, the United States Navy announced that its new $3.5 billion

warship, the USS Zumwalt, will effectively serve as an armed floating data center that

features server hardware running various Linux distributions and more than 6 million

lines of code (Gallagher, 2013). In addition, the Linux Foundation (2014) claims that the

International Space Station will migrate to Linux to power the station (The Linux

Foundation, 2014).

Beyond the increasing use of Linux, open-source principles have been used in

areas outside of information technology. For example, open source hardware increases

access to physical goods, including furniture, musical instruments, construction materials,

and wind turbines for generating renewable energy. Such projects are particularly

attractive to those living in developing countries, where access to information, goods, and

services may be restricted or limited. One of the more ambitious projects in this area is

14

the Open Source Ecology project, which offers “open source blueprints for civilization,”

and includes instructions for building industrial machines with recycled or low-cost

materials (Open Source Ecology, 2014). While this is just one notable example, it

demonstrates the optimism and creativity involved in applying open source principles to a

whole way of living rather than simply information technology. However, the core

values inherent in these projects do not necessarily originate in open source software.

Rather, the cultural values of openness and sharing are what hold the most value. When

applied throughout an entire community, these principles hold the promise of a more

sustainable future, especially when such principles are linked with environmental and

ecological preservation practices.2 But these principles only become radical propositions

in a system that discourages or provides little incentive for such behaviors.

What these examples should illustrate is that Linux in particular, but FLOSS more

generally, has become more than just a tool used within the computer hobbyist

community. Its widespread and increasing adoption across the globe within a variety of

high-level contexts demonstrates the power of the FLOSS production model as well as

the effectiveness of its products. As FLOSS continues to be used within an increasing

variety of contexts, understanding the ways in which corporations, governments, non-

profit organizations, and other types of institutions are involved in FLOSS projects will

become increasingly important. Therefore, FLOSS provide an important area for

research not just because of its increasing ubiquity, but also because of the claims that

have been made about the democratic, egalitarian, and non-market characteristics of its

2 These practices and the potential of environmental media were explored in greater detail during the
Inaugural History and Theory of New Media Unconference at the University of Oregon in 2012 (Jher
& Birkinbine, 2012).

15

products and processes. This is precisely how this project seeks to contribute to such

debates.

Before concluding this brief introductory overview, however, I would like to

clarify some additional terminology as well as situate the activities of the FLOSS

community within a broader context. FLOSS communities comprise a socio-technical

system insofar as their activities are made possible by and exist within a technologically

mediated realm. However, in larger cities or in cities with a relatively large community

of people working in the information technology industries, one can find local Linux

Users Groups, or LUGs, where regular meetings are held to promote FLOSS, to assist

new users with installing FLOSS, to troubleshoot any issues that may arise when using

FLOSS, or to simply meet other people interested in FLOSS. In this sense, the social

connections that exist within these groups are mediated by their mutual interest in

technology. Because members of the FLOSS community are brought together by their

mutual appreciation of technology, their cultural practices depend upon and are supported

by interconnected network technologies. As more people become connected to the

network, the opportunities for additional participants in these communities grow. This

also means that those who lack a network connection will have a difficult time

contributing directly to the cause of free software or open source software development.

Therefore, both free software and open source communities exist within a very

particular and privileged technological realm that requires a certain level of intellectual

and economic development. Furthermore, having a network connection is not necessarily

enough to enable direct participation to FLOSS projects; Stallman and Torvalds are

computer programmers who have the ability to read and write code. As such, they are not

just users of software, but they have the ability to actively engage with the software, to

16

make changes to its code. In this sense, both Stallman and Torvalds can be called

“hackers.”

Hacking, Cracking, and Motivation

The term “hacker” has taken on negative connotations recently, but the term is

generally used to describe anyone who "tinkers" with or makes changes to technology to

create something new. In this sense, the practice of hacking could be seen as a form of

innovation, although profitability is not always a prerequisite motivation for hacking.

Steven Levy (1984) outlined the principles of the hacker ethic. Among other elements,

Levy claimed that computers can be used for creative purposes, hackers ought to be

judged by the quality of their work rather than any other characteristic (gender, race,

ethnicity, etc.), and that having the ability to hack is a prerequisite for hacking. This last

caveat may seem obvious but, in order to perform a hack, a hacker must have access to

the technology (in this case, the source code). For hackers, closed, proprietary

technologies that do not allow for tinkering are unjust.

The practice of removing proprietary restrictions on closed technologies is known

as “cracking,” which can be performed on a CD or DVD that does not allow copying, a

video game console that requires users to only purchase games and software from a

company (Microsoft Xbox, Nintendo Wii, Sony Playstation), or on proprietary software

or operating systems. An important distinction to make here is that crackers and/or

hackers may not necessarily be interested in the consequences of their crack/hack.

Rather, they are motivated by the desire to signal to other crackers/hackers that they

deserve credit for the sophistication of their crack/hack. This signaling motivation is also

recognized within open source software communities (Lakhani & Wolf, 2005), but

17

whereas crackers are interested in freeing technology from its restrictive measures,

hackers are interested in remixing, modifying, adapting, or creating something new from

a given product.

The same signaling motivation that is used to explain why hackers do what they

do has been used to understand why programmers contribute to FLOSS projects.

Lakhani & Wolf (2005) explain that signaling can take place within at least a couple

levels. At the level of the individual, a single hacker may perform a hack in order to

signal his or her skills to others. Hackers might also use this type of signaling as a way to

communicate their skills to potential employers to secure paid employment. Gaining

recognition within the broader community for performing certain programming tasks

effectively can translate into increased job opportunities with companies looking for

specific skills. However, a different type of signaling takes place between groups of

hackers. Groups or collectives may signal their prowess to others by shutting down a

web site or otherwise disrupting services. Often, this is done in the spirit of competition,

but can also be explicitly driven by a particular ideology. For example, nationally based

hacker groups can be found in Syria where a pro-Syrian government hacking group

called the Syrian Electronic Army has waged hacking battles against the pro-rebel

hackers associated with the Free Syrian Army (Fitzpatrick 2012). In these situations,

hacker groups strategically target the web sites of their opponents to signal the strength of

their movement.

Although the signaling motivation appears to be the most prevalent motivation,

Weber (2004) identifies other motivations as well. In a survey of self-identified hackers,

respondents reported their primary motivation for contributing to FLOSS development

was a desire to challenge oneself and perform creative work. This seems to support what

18

Levy (1984) identified as a primary tenet of the hacker ethic: creativity and aesthetics.

Weber (2004) also found additional motivations reported in the survey, including the

belief that all software should be free, which echoes the philosophy of Richard Stallman

and the Free Software Foundation. Weber concludes that motivations are diverse and that

the results from these surveys need to be properly contextualized. For instance, many

contributors to FLOSS development do not disclose their identity or any institutional

affiliation. Indeed, a look at the credits file for users contributing to the development of

the Linux kernel shows that most contributors are listed in the "unknown" category. This

means that a large portion of the FLOSS community simply chooses not to self-identify.

Therefore, the results of any survey that claims to represent the entire FLOSS community

must be approached somewhat skeptically.

While motivations represent one category of questions about the FLOSS

community, the more robust questions about FLOSS community are related to the

economics and governance of FLOSS as both a process and the products created by the

community. These topics will be covered in more detail in CHAPTER II because they

are reflective of certain theories about the commons and commons-based peer

production. In what follows, however, the scope and focus of the study are discussed,

including how the study will contribute to a broader body of literature.

Justification for the Study and Its Contribution to Scholarship

FLOSS products and the productive process that make those products possible

have been widely lauded as revolutionary changes that enable greater degrees of freedom

and autonomy on behalf of users and contributors (Benkler, 2006; Raymond, 2000;

Stallman, 2002). This project intervenes in these debates by tempering these claims with

19

a critical approach to understanding technological change and systems of production

within a broader capitalist system. Although some of the more celebratory arguments

about FLOSS are notable for explaining the internal dynamics of FLOSS production and

the unique social, technical, and legal characteristics of FLOSS products that make peer

production possible, these analyses have not placed commons-based peer production

within a broader social context to illustrate how such production intersects with capitalist

production. The purportedly revolutionary changes brought about by FLOSS and

commons-based peer production are now becoming incorporated into corporate strategies

and corporate structures. As such, FLOSS projects constitute a contested terrain,

whereby these projects are faced with a number of organizational difficulties. These

difficulties are primarily associated with the benefits and detriments of finding corporate

sponsors to support those projects. In these cases, a community of developers must cope

with varying degrees of corporate influence in defining the direction of the project. In

many cases, employees of the corporation and members of the community are not

mutually exclusive. More specific cases will be discussed in the chapters that follow, but

the primary intention of this project is to highlight the diverse ways that both corporations

and the broader FLOSS community cope with co-presence.

Aside from tempering the claims of novelty by those who use FLOSS as a

primary example of commons-based peer production, this project also contributes

directly to our understanding of commonly held resources under capitalism. As will be

discussed in greater depth in the following chapter, the commons are often held in

contradistinction to capitalism. The rise of capitalism saw the enclosure of the commons

and the end of common right. The work of Elinor Ostrom (2005; 1990) has helped to

broaden our understanding of the diverse array of commonly held resources as well as

20

institutional diversity designed to protect them, particularly in the face of capitalism.

That said, the knowledge commons are also subjected to types of enclosure. James Boyle

(2008) referred to this as the Second Enclosure Movement, whereby knowledge and

information are becoming enclosed by restrictive intellectual property protections.

Copyleft, most notably in the form of the GNU General Public License, seeks to maintain

common rights for knowledge or informational resources. This project demonstrates how

FLOSS as a knowledge commons is not becoming enclosed in the absolute sense of total

exclusion, but how knowledge commons and their attendant cultural practices are

becoming incorporated into corporate strategies and corporate structures.

By looking at three different case studies that illustrate the different ways that

FLOSS is being incorporated into corporate structures, this dissertation also engages with

broader debates about the political economy of communication, digital labor,

participatory culture, and information politics. The project contributes most immediately

to the field of political economy of communication in that FLOSS remains a relatively

understudied phenomenon within the approach. Those working within the political

economy of communication approach are broadly interested in working toward more just

and democratic communication systems that truly serve the needs of local communities.

A large part of this work has been to critique both corporate and state power, particularly

in terms of the way it operates within media systems for the transmission of ideological

messages. While this project does not specifically focus on message transmission, I am

interested in analyzing the products and processes of FLOSS development by placing

issues of corporate power at the center of the analysis. By doing so, this project

highlights the dual challenge of the FLOSS community's need to ensure the long-term

21

survival of their projects and the corporations' desire to harness the collective labor power

of the FLOSS community.

By focusing on this dynamic, the current project also engages directly with

debates about digital labor (Lazzarato, 1996; Terranova, 2004; 2000; Scholz, 2013).

Debates about digital labor have focused on fan cultures and other forms participatory

cultures whereby individuals voluntarily contribute to the creation of novel cultural

artifacts (De Kosnik, 2013). But these debates have also focused on the unpaid free labor

performed by individuals online as value is extracted from data about their browsing

habits (Andrejevic, 2012; Fuchs, 2012). In addition, Fuchs (2013) has focused on issues

of class and exploitation, while Bauwens (2013) has focused on the possibilities of peer-

to-peer organizing. This project contributes directly to these debates by focusing on the

dynamics between laborers in the FLOSS community and the corporations that profit

from their labor. This project is unique in that it focuses on the intersection between the

digital labor of FLOSS programmers and the corporations using FLOSS as a part of their

business operations. As will be made more clear in the literature review, previous studies

have focused either solely on the ways businesses can use FLOSS to their advantage, or

on how FLOSS enables greater degrees of freedom and democracy. By focusing on the

intersection of labor and corporations, this project is also unique within the broader body

of literature on free and open source software.

Insofar as this project focuses on forms of collective labor that produce digital

texts, it is also broadly concerned with the changing institutional context of participatory

media. Jenkins (2006) used the term “participatory culture” to describe the ways in

which networked communications technologies enable novel forms of meaning-making

to arise, whereby consumers can remix cultural artifacts in new and creative ways. In

22

this sense, consumers are transformed into “prosumers” because their relationship with a

particular commodity is no longer solely based on consumption, but they have the

opportunity to produce new and unintended meanings. While Jenkins primarily focused

on audience members' relationships with commodities, free and open source software

projects might also be framed as a form of participatory culture. However, the

differences between these types of participatory culture need to be distinguished

carefully. While the processes of production may be similar in the sense that they rely on

a variety of inputs from geographically dispersed populations who contribute to an

overall project, the end product in each case is quite different.

Analyses of participatory culture tend to focus on cultural artifacts that are often

held under strict copyright protections by their ultimate owners. FLOSS, on the other

hand, relies on an increasing repository of code that is protected by copyleft and other

alternative intellectual property licenses that encourage and allow other users to build

upon the work that has been performed previously. Another key difference in this respect

is the form of the end product itself: in most instances of participatory culture, the end

products come in the form of content designed for literary, artistic, political, or

entertainment purposes (fan fiction, remixes, mash-ups, culture jamming, etc.), while the

end product in FLOSS is source code, with which others can study, modify, adapt, or

build upon. In this sense, the end product of FLOSS tends to be more technical, in the

literal sense of the word (of or relating to the applied and industrial sciences), than the

end products of participatory culture. This distinction is, perhaps, a crude one. I am not

trying to imply that FLOSS projects cannot be artistic, political, or even literary, nor am I

trying to imply that a mash-up or remix cannot be technical. Both of these creations

23

involve a certain level of craft, but it seems to me that there is still a fundamental

difference in the end products even if the productive processes are similar.

Finally, in an increasingly networked world that is mediated by the use of

information and communication technologies, the struggle for ownership and control of

information has risen to the forefront of many national and international debates. In this

sense, the current project can be contextualized within broader conversations and debates

about informational politics. The revelations of Edward Snowden in 2013 (and, at the

time of writing, still ongoing) that exposed the massive and widespread collection of

personal communications data by the National Security Agency (NSA) in the United

States revealed how the NSA systematically collected personal communications data

from citizens both within the United States and around the world. These revelations have

opened up a new space for debate about the right to privacy in the digital age.

The majority of these debates have focused on curbing the power of the state to

collect massive amounts of data on its citizens. However, these criticisms can also be

directed at the corporations who were either coerced into cooperating with the NSA or

complicit in such collection. While this project does not specifically focus on the

individual's right of privacy, the project does focus on the ways in which information – in

the form of source code – can provide a contested terrain in which struggles over

intellectual property and informational resources take place. The FLOSS community

often uses alternative intellectual property licenses to ensure that their creations remain

freely available as commons-based resources rather than becoming enclosed by

restrictive or exclusionary intellectual properties for use as a corporate commodity.

Throughout this study, I focus on the ways in which this is happening, why it is

24

happening, and how the FLOSS community responds to corporate encroachment into its

communities.

Overview

The remainder of the dissertation is structured as follows: CHAPTER II begins

with an overview of two main areas of theory used to provide a framework for the study.

Specifically, I draw from a critical political economy of communications approach to

study corporate involvement in FLOSS projects, and discuss why such an approach can

be advantageous for understanding corporate power. In addition, theories of the

commons are discussed, including different types of commons and how those commons

can be subject to various forms of enclosure within a capitalist system. CHAPTER II

concludes with some of the previous literature used to understand corporate involvement

in FLOSS projects. Having provided a conceptual framework for the current study,

CHAPTER III explains the specific methodology and research methods used. That

chapter also revisits the research questions that framed this investigation, as well as a

discussion of the potential shortcomings of the research because of the chosen

methodology and methods.

CHAPTERS IV through VI present the main findings of the study. Each chapter

provides the results of the three case studies. CHAPTER IV focuses on how Red Hat,

Inc. has become the largest and only publicly traded corporation with a business model

that relies almost entirely on free software, for which the company is unable to rely on

traditional copyright protections to exclude others from using the underlying source code.

CHAPTER V charts the history of the Microsoft Corporation and its relationship to

FLOSS. Specifically, the chapter focuses on why Microsoft has undergone a

transformation from total opposition to FLOSS toward embracing FLOSS through the

25

creation of a new division of its company entirely focused on supporting FLOSS projects.

Throughout that chapter, key moments in the history of Microsoft illustrate how the

company relies on strong intellectual property protections to exclude others from using its

software, but also how this strategy is somewhat contradictory to its own strategy of

negotiating partnerships and licensing agreements that either enable widespread adoption

of its software or provide the foundation for its development. Finally, whereas

CHAPTERS IV and V focus on how and why two corporations are involved in FLOSS

projects, CHAPTER VI illustrates what happens when a company that was supportive of

FLOSS projects is acquired by another company that does not support such projects in

the same way. CHAPTER VI focuses on the Oracle Corporation's acquisition of Sun

Microsystems and the effect that acquisition had on three separate FLOSS projects: the

OpenSolaris operating system, the MySQL relational database management system, and

the OpenOffice office productivity suite of software. The goal of this chapter is to

demonstrate the ways in which the FLOSS community copes with undue corporate

encroachment into its projects by focusing on its ability to leverage its collective labor

power to resist such influence.

Finally, CHAPTER VII summarizes the major findings and presents conclusions

from the study. The intent of the chapter is to illustrate what increasing corporate

involvement in FLOSS projects means for the FLOSS community and the corporations

involved in FLOSS projects, and what this dynamic can tell us about commons-based

peer production under capitalism. In addition, the chapter acknowledges the limitations

of the study, and suggests germane areas for future research.

26

CHAPTER II

THEORETICAL FRAMEWORKS AND LITERATURE REVIEW

To properly ground the current study within established theories and extant

literature, this chapter provides an overview of the primary areas of theory that are drawn

upon to understand corporate involvement in FLOSS projects. To that end, the chapter

begins with a discussion of the political economy of communication and how a critical

economic perspective in particular offers a useful lens for investigating corporate

involvement in FLOSS projects. Then, I discuss the ways that FLOSS has been

understood theoretically by focusing on theories of the commons and the ways that

information and knowledge have been understood as a type of commons. After

establishing this basic understanding of the types of commons that FLOSS represents as a

resource (or product), I focus more specifically on how the processes that enable FLOSS

have been understood as a form of commons-based peer production or non-market

production (Benkler, 2006). After theoretically situating FLOSS as both a product and

process, I consider the ways that the commons – both common land as well as the

knowledge commons – become enclosed under capitalism.

The argument presented in the theoretical overview is that even though we have a

relatively robust understanding of FLOSS as both a product and process, there is still a

gap in our understanding of how commons-based peer production and non-market

production are enmeshed in processes of capitalist production. This project is specifically

aimed at filling this theoretical gap by focusing on the different ways that capitalist firms

make use of FLOSS products and processes. To that end, the chapter concludes with a

review of relevant literature that has sought to provide a typology of FLOSS business

models. While this typology is useful for understanding various business strategies, we

27

have yet to link this typology with theorizations of commons-based peer production and

non-market production in a way that complicates our understanding of capitalist firms

that make use of FLOSS products and processes.

Political Economy of Communication

This research project has been informed by the political economy of

communication. At the heart of this approach is a concern for the “social relations,

particularly the power relations, that mutually constitute the production, distribution, and

consumption of media resources” (Mosco, 2009, 24). By investigating power relations,

those working from a political economic perspective are concerned with the ways in

which power manifests itself not just as a resource to achieve particular goals, but also as

a form of control that is embedded within a broader set of social relations. As such,

power itself is omnipresent throughout the social system and structures the way that

certain relationships exist and tends to reproduce those structures over time.

To that end, those working within within political economy or, more specifically,

a critical political economy of communication (CPEC), are interested in “uncover[ing]

connections between ownership, corporate structure, finance capital, and market

structures to show how economics affects technologies, politics, cultures, and

information” (Meehan, Mosco, and Wasko, 1993, 347). However, the concerns of those

working within the CPEC tradition are not only scholarly; rather, they are often

concerned with praxis or theoretically informed practice, in which scholarly activity is

pursued with the goal of achieving more just and democratic forms of communication

(Mosco, 2009). Most often, this is done by exposing the ways in which power is

manifested within communications industries, whereby the control of informational

28

production, distribution, and access or exhibition is concentrated within only a handful of

corporations. These large, often multinational and trans-industrial conglomerates often

hold oligopolistic power within media markets, which limits the possibility for alternative

or counter-hegemonic forms of communication to take place (Bagdikian, 2004; Meehan,

2005). By limiting the extent of available alternatives, these corporations reinforce

systems of ideology that, in turn, tend to reinforce institutions of cultural hegemony

(Gramsci, 1971). The CPEC approach is therefore rooted in a tradition of critical inquiry,

which has roots in the work of Karl Marx and his critique of classical political economy.

Of Marx and Machines...

By understanding FLOSS production from a critical and materialist perspective,

which derives its force from the work of Marx, we can debunk some of the claims that

digital technologies by themselves have the power to change the course of human history.

The unique technological features of FLOSS – mainly, the availability of the source code

and the ability to study, modify, adapt, or change the program for one's needs – is only

one part of the equation and does not, in itself, constitute the core value of FLOSS.

Rather, the collective labor power of the broader FLOSS community is what constitutes

the true value of FLOSS. Because FLOSS production as a process allows for highly

efficient, collaborative, and speedy development, the end products of FLOSS production

tend to be more secure, adaptable, and progressive because they are under constant

revision and improvement by members of the FLOSS community. From the standpoint

of corporations like Microsoft or Oracle, which rely on the sale of proprietary software or

services, FLOSS production offers an attractive option for investment because it

decreases in-house labor costs while effectively outsourcing development of core

29

components that can be integrated within their proprietary services. The exact details of

how this is done will be the focus of the following chapters.

Marx (1867) was not the first to investigate the inner workings of capitalism and

the processes by which wealth is created. However, he does represent a shift in the study

of political economy due to his criticism of previously existing political economic

thought. His three volumes of Capital offer some of his most thoroughly developed

arguments about political economy, and some of the key arguments made can provide a

framework for understanding technology and technological change within a broader set

of social relations. This background will prove useful as we consider the ways in which

digital technologies have either continued or extended such relations or whether they

mark a radical shift.

Marx (1906) begins his analysis of capitalism with a discussion of the commodity.

He explains how life appears to be an endless procession of commodities. The

commodity form, however, contains two different values: use value and exchange value.

To use a simple example, an apple has a use value if I eat the apple and receive its

nutrients, but it can also have an exchange value if I decide to trade the apple for some

other commodity. Although a commodity may contain two values simultaneously, the

commodity form is still a product of human labor. That is, the process of human labor

creates products in the form of commodities. Although different types of commodities

require different types of labor, what is common to all commodities is human labor. The

value of commodities, then, is determined by the socially necessary labor time required to

produce the commodities. This is the labor theory of value.

In early economic configurations, the trading of goods for other goods could be

expressed in the simple formula: C -- C (commodity for commodity trading), which

30

characterizes economies based on barter and trade. In order for such a trade to take place,

however, the producers of such goods need to agree on an equivalence in trade (i.e., ten

apples equate to one chair). This form of trading relies on the availability of equivalent

goods in order for such a market to operate effectively. In such a system, an apple farmer

who wanted to trade apples for a chair needs certain conditions to be met in order to

obtain the chair. First, a chair needs to be produced. Second, the chair needs to be

available for trade. Third, the person who produced the chair would have a need for

apples. If these criteria are met, then an exchange can occur. To reduce the uncertainty

of supply and demand in such a situation, the money form (M) was introduced as a

universal equivalent to which the value of all other commodities can be equated. So

instead of trading ten apples for a chair, the apple farmer can sell the apples for $5. The

money can then be used to buy a chair when one becomes available. The introduction of

the money form, then, introduces a new type of market exchange, expressed as C -- M --

C (commodity for money for another commodity).

Capitalism, however, relies on larger scale production and a reinvestment in the

productive process. In such a system, we can invert the C -- M -- C circuit to be

expressed as M -- C -- M', whereby money is invested in the production of a commodity

with the intention of re-selling it for profit (M' or, simply, more money). This is possible

in a system in which certain individuals do not have any commodity to sell other than

their labor power. In such a system, a division exists between those who own the means

of production and those who do not. As such, the owners of the means of production will

employ others who do not own the means of production. Importantly, however, the

owners of the means of production will only pay laborers enough to satisfy their demand,

for the ultimate goal is to increase profits. By doing so, those who own the means of

31

production can continuously reinvest their money into the means of production (buying

more land, developing technology, etc.). Consequently, those who own the means of

production extract a certain amount of surplus value from the productive process. Thus,

society is divided into classes based on ownership of the means of production (capital vs.

labor). In order to see the ways in which this form of exploitation continues, Marx

suggests that we delve into "the hidden abode of production” (Marx, 1906, 195).

In perhaps the most important section of Capital, Marx discusses surplus value in

depth, including the ways in which capital continues to realize surplus value, while labor

is subjected to various forms of exploitation. Particularly relevant for the current study,

however, are Marx's discussion of co-operative labor and the use of machinery. Before

proceeding, it is important to note that machinery is not given a determining role, per se.

Rather, machinery is just one way in which capital constantly reinvents itself to further

exploit labor. The focus on machinery is therefore simply to frame the discussion of new

digital technologies and the ways that they have been used by capital and labor alike.

Although technological change constantly ensures that labor is always at the mercy of

capital because labor does not own the means of production, the argument presented here

is that it is entirely possible for technologies to be used as tools of resistance against

unwanted encroachments by capital. When put into the service of capital, technology is

constantly used to increase the efficiency of production and thereby increase corporate

profits while further alienating labor from the production process. However, technology

may be used by labor as a broader part of social resistance and social struggle.

Capital is constantly looking for ways to increase surplus value, which requires

more productivity by labor. This can be accomplished in at least two ways: absolute

surplus labor and relative surplus labor. Absolute surplus labor is used to describe a

32

condition in which labor is asked to work beyond the normally required working time in

order to increase productivity. For example, workers could be asked to work through the

weekend as one way of increasing productivity. On the other hand, relative surplus labor

is realized when machinery supplements or supplants the time normally spent working by

labor. In this sense, workers can still work the same amount of time, thereby keeping the

wages owed to them constant, while human labor costs can be supplemented or

supplanted by investment in a technology that performs the same function as human

labor. With only limited exceptions, such a machine can be worked without the fear of

fatigue or the need for sleep. Therefore, production increases without the need to pay

additional wages to workers. This, then, is the key for understanding machinery (i.e.,

technological change) within the operation of capitalism: technology, when put in the

service of capital, increases productivity, exploits labor, and is used for the realization of

greater surplus value.

Continuing this line of argument, Braverman (1974) specifically provided an

extended discussion of machinery. Braverman's task was to begin a critical history of

technology, which would account for the specific ways that technology has been put in

the service of capital as a way to further exploit labor. Braverman demonstrated how

technological change has constantly forced labor to learn new skills in order to operate

machinery. Furthermore, machinery has been used to supplement and supplant human

labor, which drove members of the working class out of work and into unemployment.

Anyone wishing to become employed again was forced to learn how to operate new

machinery, which furthered the cycle of exploitation. Thus a vicious cycle of technology

development, unemployment, and re-education was implemented as a way to constantly

33

reinvigorate the productive process while demanding that labor constantly acquire new

skills.

Marx's analysis offers a useful framework for understanding the relationship

between capital, labor, value and machinery. These four factors are all intertwined in the

relationships that exist between FLOSS programmers, their collective labor power, the

software they create, and the corporations that make use of their software. The labor

theory of value can be used to understand why FLOSS as a process is so valuable. The

model of FLOSS production expands the possible labor force working on a piece of

software exponentially beyond those projects that are centralized within one firm. With

more programmers contributing changes to the core software project, it can grow more

efficiently and rapidly. The contributions to the core software take the form of fixing

bugs, developing new features, or increasing functionality in some other way. In

addition, and because the code is made open for anyone to view, FLOSS projects can be

more secure than proprietary software as well, although this is not an absolute certainty.3

While FLOSS as a process has been lauded as a highly efficient, effective, and

innovative production model, these treatments of FLOSS often focus on how the Internet

has made such production possible or how this model of production can change the

nature of commercial firms. However, the true value underlying this form of production

is the cooperative labor of the software developers and programmers who contribute their

labor time to the development of a FLOSS project, whether this labor is paid labor time

or voluntary labor time. By understanding FLOSS from the perspective of the labor

theory of value, we shift the focus away from organizational models, the nature of the

3 For example, in April 2014, a major security flaw was found in the open-source cryptography project,
OpenSSL. At the time of its discovery, the flaw, known as Heartbleed, was estimated to have affected
nearly 66% of all Internet users.

34

firm, or the technology that makes such coordinated labor possible. Instead, we can

focus on the people who actually perform the work and recognize that they constitute a

larger labor force than any one firm could possibly employ. As long as firms can

continue to attract development from the FLOSS community for their projects, they will

continue to enjoy the benefits of this collective labor power.

As we will see, however, corporations make use of FLOSS projects in a variety of

ways. Some firms view FLOSS as an existential threat to their business model and use

specific strategies to combat FLOSS production. Others have begun to embrace FLOSS

because of the efficiency of its productive process and the effectiveness of its products

even if they were once vehemently opposed to FLOSS. Finally, firms like Red Hat have

found a way to turn completely free software into a successful business model.

Communication Labor, Free Labor, Digital Labor

A critical understanding of capitalist production, and particularly its consequences

for labor, is useful for understanding the ways that information and communication

technologies (ICTs) operate today. Political economists of communication have called

for increased attention to be paid to communication laborers (McKercher and Mosco,

2007; Mosco, 2006). Communication labor encompasses a wide variety of labor,

including those who work directly in various media industries (i.e., television, film,

music, video game, and software industries, etc.), but it also includes various types of

knowledge work, digital labor, and types of free labor (McKercher & Mosco, 2007;

Scholz, 2013; Lazzarato, 1996; Terranova, 2004).

The terms “immaterial labor” and “digital labor” have found increased currency in

contemporary debates about online life. FLOSS labor can be viewed as a form of

35

“immaterial labor” insofar as the final products of work are “immaterial products such as

knowledge, information, communication, [or] a relationship” (Hardt & Negri, 2005, 108).

The term “immaterial labor” was first introduced by Lazzarato (1996) and has since been

debated by critical scholars.4 Similar debates have occurred within critical scholarship

circles about the nature of “digital labor” (see Scholz, 2013). The primary concern with

these debates has been the nature of work and labor within the information, knowledge,

and communication industries with a particular focus on forms of unpaid labor occurring

online (see Andrejevic, 2007, 2012; Fuchs 2012). In these cases, users' online behaviors

are tracked and can be transformed into an audience commodity in the same way that

Dallas Smythe (1981) identified with broadcasting. Whereas Smythe argued that media

programs constitute a “free lunch” used for producing audiences for advertisers, the same

occurs online where companies and others seek the attention of users while data is

collected about users' browsing habits. As most of us spend an increasing amount of time

online during both work and non-work time, our digital labor – socially necessary time

spent online – offers a more sophisticated form of the audience commodity as browsing

data is extracted and transformed into value by service providers and other third-party

elements (Fuchs, 2011a).

Similarly, Schiller's (1999) “digital capitalism” approach demonstrates how the

growth of digital networks originated within the context of neoliberal policy in order to

expand marketing opportunities across the globe. In this sense, digitally networked

technologies function merely as another way to expand capital's reach across time and

space, while decreasing the amount of time necessary to send and receive information

4 A fully developed account of the digital labor debates is not offered here, especially because it has been
applied to many different types of activities online. However, for a critique of “immaterial labor” as an
analytical concept, see Sayers, 2007.

36

about markets. Furthermore, “digital capitalism” enables other types of market

manipulation, especially when internetworked digital devices facilitate access to and

greater control of information (Schiller, 1999; 2007). In a free market, perfect

information would be a fundamental component of buyers and sellers' abilities to make

rational decisions. When information can be controlled and manipulated, it completely

undercuts the ability of markets to function equitably let alone perfectly as free markets

(see Taibbi, 2013; Salmon & Stokes, 2010).

Similarly, Streeter (2011) has argued that the Internet and attendant

romanticization of individualist entrepreneurs like Bill Gates arose within the neoliberal

period. The growth of large tech firms like Microsoft contributed further to the neoliberal

ethos that the romantic individualist was to be glorified along with the growth of his

company. While this type of subjectivity continues today in so-called “creative

industries” or in the romanticizing of start-up businesses and culture, the fragility and

precariousness of these industries were laid bare when the dot-com bubble burst in the

early 2000s. The optimism about the revolutionary potential of digital devices around the

turn of the 21st century drove massive investment capital into dot-com companies, which

created a speculative investment bubble (Cassidy, 2002). The companies emerging from

that crash are now some of the most recognizable and dominant Internet-based companies

today: Google, Amazon, eBay, Microsoft, and Yahoo!

That said, however, digital technologies have made it possible for diverse groups

of people across vast distances to connect with one another in new ways and to produce,

or remix, cultural artifacts. For this reason, others have celebrated rather than critiqued

the Internet and digital technologies. Within this optimistic camp, scholars like Henry

Jenkins (2006) celebrate “media convergence” and “participatory culture.” For Jenkins,

37

media convergence is the process by which previous media formats (i.e., print, film,

television, music, etc.) converge onto a digitally networked environment. The fact that a

computer allows these previously diverse forms of media to be reduced to digital

information, which can be distributed freely across a network, provides a watershed

moment in media history. The argument is that users have the freedom to remix cultural

artifacts in ways that allow them to participate in diverse meaning-making practices

because convergence enables such interconnection. To illustrate this, Jenkins provides

examples of fan communities who choose to write original stories using characters from

media franchises like Harry Potter. This type of fan fiction can feature Harry Potter

engaging in any number of different scenarios created by “fan-fic” authors. Thus, media

convergence, enabled by interconnected digital technologies, engenders a participatory

culture in which meaning-making resides within online communities.

While Jenkins celebrates the freedom for creative cultural expression, others have

focused on what digital technologies mean for our understanding of economics. Tapscott

and Williams (2006) argue that the lessons to be learned from Wikipedia mean that

projects of mass collaboration have literally "changed everything" (which is included in

the title of their book). The lesson is that businesses can learn from these changes in

order to position themselves for the future. In addition to these works, Yochai Benkler

(2006) offers perhaps the most sophisticated exposition of what digitally networked

technologies mean for economics, politics, and culture. Specifically, he focuses on the

greater degrees of freedom, autonomy, and creativity that are made possible by such

technologies. In response to these celebratory approaches, however, critical political

economists have offered more sobering accounts of how the Internet and digital

technologies have been used in the service of global capitalism.

38

In sum, we can see two distinct perspectives on digital technologies. On the one

hand, there are those scholars who celebrate the cultural practices made possible by

digital technologies. On the other, there are those scholars who claim that digital

technologies originated with the intent to more fully network the global capitalist system

and have only exacerbated previously existing inequalities. In the interest of reconciling

these two approaches, at least in some way, we can accept some of the claims of the

digital celebrants. Mainly, we can acknowledge that the Internet and digital technologies

have made it possible to connect and collaborate with others in novel ways.

Interconnection can make possible mass collaboration, commons-based peer production,

as well as both celebratory and critical forms of meaning-making. In addition, these

changes have caused us to rethink some of our assumptions about economic behavior and

the motivation for contributing to collaborative projects. However, although technology

has changed, the underlying class distinctions and social antagonisms that lie at the heart

of capitalist development have not changed. In other words, no matter how purportedly

revolutionary or novel the technology, the technology exists within a capitalist system

that has certain well-documented tendencies that cause it to remain relatively constant.

In this sense, Raymond Williams (1975) asserted that technology itself does not

constitute a determining factor. Rather, technologies are situated within a social system

that has the ability to shape how a technology is used. What matters is not the technology

itself, but how it is used. Technology, for Williams, is just one part of a broader social

struggle that may be put to alternative uses that were previously unforeseen by its

inventors. While the Internet may have originated with the intention of facilitating

greater interconnection within the global capitalist market, digital technologies may also

be used to disrupt the flow of global capital in other ways (see, for example, “Operation

39

https://en.wikipedia.org/wiki/Operation_Payback

Payback”).5 These alternative uses of technology become important particularly when a

commons-based resource is threatened. To understand how FLOSS has been understood

as a commons-based resource, the following section provides an overview of the

commons as well as commons-based peer production and the consequences such

practices have for the nature of capitalist firms.

The Commons

The concept of the commons has been used to describe FLOSS projects (Benkler,

2006; Lessig, 2006, 2001). However, FLOSS represents a particular type of commons:

knowledge or digital commons, which have different characteristics from the more

traditional meanings ascribed to the term. In medieval England, the commons referred to

a portion of land owned by the lord of the manor, in which certain tenants had the right to

use the land for their needs. This included cultivating the soil, producing crops, allowing

livestock to feed, and other activities. The concept has since been expanded from this

very specific meaning to encompass any resource that is owned by a community or to a

resource that may be accessed by a broader community of people. The concept of the

commons was critiqued most famously by Garret Hardin (1968), who developed the

"tragedy of the commons" argument. In Hardin's critique, he argued that the commons

were ultimately unsustainable. By using the example of sheep herders allowing their

sheep to graze on a commonly owned pasture, he argued that each sheep herder, acting in

his or her own self-interest, would want to increase their flock. As more sheep are added

to the pasture, it would eventually become depleted of its natural resources.

5 “Operation Payback” was a series of coordinated attacks against opponents of Internet piracy carried
out by Internet activists operating collectively under the name, Anonymous. For more information
about the operation, see the Wikipedia article: http://en.wikipedia.org/wiki/Operation_Payback (last
accessed July 30, 2014).

40

https://en.wikipedia.org/wiki/Operation_Payback
https://en.wikipedia.org/wiki/Operation_Payback

One of the more robust contributions to theorizing the commons comes from

Elinor Ostrom (2004, 1990). Ostrom (1990) provided some nuance to the way that we

understand commons, especially because they were often placed in a binary opposition:

either state provision of common property (socialism) or private property ownership

(capitalism). Ostrom focused on the diverse ways that different commons – fisheries,

waterways, tribal lands – are managed. In addition, Hess and Ostrom (2007) critiqued

Hardin's argument against the commons on two points: first, Hardin assumes that the

sheep herders are acting according to the principles of neoclassical economics and are

individually acting in their self-interest rather than allowing for forms of common

governance, whereby concessions are made to the other sheep herders. Second, Hardin

frames the issue within the binary choice between socialism and capitalism described

above. However, the framing is fallacious for a couple reasons. The commons under

feudalism were owned by a private individual and not the state. Furthermore, Ostrom

(1990) demonstrates how different types of commons can be governed collectively so

that the individual short-term gains can be compromised for the long-term survival of the

common resource.

Table 2.1 illustrates the possibilities for commons ownership by using a simple

matrix of two factors: rivalry and excludability. Rivalry refers to the extent to which a

resource is finite or requires reproduction. Highly rivalrous goods tend to be finite

objects like apples, which need to be planted again in order to reproduce the crop, while

low rivalry goods tend to be intangible goods that can be reproduced without much

additional cost, like ideas, information, or knowledge. Excludability refers to the extent

to which an owner of such goods can exclude others from accessing or using that good.

Highly excludable goods are protected by private property rights, whereas goods with

41

low excludability may be used by anyone. Following from these terms, the matrix for

rivalry and excludability would look something like this:

Table 2.1. Possibilities for Common Ownership

Excludability

High Low

Rivalry
High

Individual property
(finite resource)

Common property
(Infrastructure)

Low
Intellectual property

(books, music, consulting)
Knowledge commons

(FLOSS)

Source: Table adapted from Hess & Ostrom (2007) and Frischmann (2012).

FLOSS represents a knowledge commons in which knowledge – in the form of

source code, README files, software packages, and the shared documentation required

in collaborative production – is freely available for anyone to use and at no additional

cost for reproduction. One of the unique characteristics of free software as a knowledge

commons is that it avoids the free-rider problem, whereby someone who consumes or

uses a resource does not give back to the community. An example is the Linux-based

operating system, Ubuntu. I currently use Ubuntu, but did not need to pay for it, nor any

of the software included on my computer. While I may not yet have the skills to make

full use of the options available to me (i.e., writing or adapting code, tinkering with

software packages, etc.), I can still use programs and report any flaws or “bugs,” I

encounter while using the software. I can report these bugs directly to the development

community when I encounter them, or I can choose to share certain data about my

operating system's performance with the community upon installing it. When reported,

someone within the community can work on fixing the issue and ultimately submit his or

her fix to the project manager for inclusion in a subsequent release of the software, or the

fix may be distributed as an update to all users. This process is reflective of the adage

42

“with many eyes, all bugs are shallow,” (Raymond, 2000) which makes it possible for the

programs and operating system to maintain a high quality over time. In effect, my use of

free software serves as a form of quality control.

Commons-Based Peer Production

Because FLOSS exhibits the unique characteristics of knowledge commons and

because FLOSS production takes place within a digitally networked environment, some

scholars have focused specifically on the production process enabled by digitally

networked technologies (Benkler, 2006). Specifically, Benkler (2006) highlights the

ways in which commons-based peer production constitutes a new form of organization

that is “radically decentralized, collaborative, and nonproprietary; based on sharing

resources and outputs among widely distributed, loosely connected individuals who

cooperate with each other without relying on either market signals or managerial

commands” (60). Benkler positions social production in general and peer production in

particular in contradistinction to market-based production, arguing that these forms of

production constitute a form of non-market production. While these spheres are not

mutually exclusive, Benkler argues that diverse forms of non-market production, like

FLOSS, have the capability to influence market production.

Peer production can challenge market-based production in at least a couple of

ways. First, peer production can develop goods that will compete directly with those

produced by commercial firms. In this case, the commercial firm has a few different

options: compete, do nothing, or adopt and adapt. If the firm chooses to compete, it will

simply be required to somehow create a better product than that offered by the non-

market rival, although this may come at considerable cost to the firm. On the other hand,

43

the firm can choose to do nothing. In this case, the firm is basically relying on the belief

that its products are superior to the non-market option and that the non-market option will

not gain additional market share. This is a risky strategy for the commercial firm. In the

event that the non-market option does gain an increasing share of the market, the

commercial firm, or at least its product that directly competes with the peer-produced

option, runs the risk of becoming obsolete. The third option is to adapt to the changing

forces in the market by adopting some of the strategies of the non-market forces. This

type of strategic reorientation to non-market forces can have the consequence of altering

the basic structure of an organization. As Benkler (2006) notes,

As the companies that adopt this strategic reorientation
become more integrated into the peer-production process
itself, the boundary of the firm becomes more porous.
Participation in the discussions and governance of open
source development projects creates new ambiguity as to
where, in relation to what is 'inside' and 'outside' of the firm
boundary, the social process is (125).

Altering the firm's position in relation to peer production, which exists outside the

firm, arguably offers a higher form of risk for the firm. The firm gives up a certain level

of control over the production process. The traditional view of a firm's control over its

informational resources or, more specifically, knowledge, is that knowledge can be

viewed as an asset to be managed as an investment (Machlup, 1962). However, the peer-

production process in general is seen as far more innovative and efficient than centralized

production, including outside the realm of software production (Von Hippel, 2005). As a

knowledge commons, FLOSS advocates encourage users to tinker, adapt, improve upon,

or otherwise create something new. In this sense, FLOSS projects rely on intellectual

property rights that allow users to make changes to a project. Proprietary and closed

forms of production rely on strong intellectual property protection and the ability to

44

exploit those property rights across a variety of platforms. For example, before

contributing to Linux kernel development, Microsoft was (and, in many ways, still

remains) notorious for particularly strong protection of its intellectual property.

Microsoft's model of production demands that only employees of the company have

access to and work with their proprietary code. This differs from the open source model,

whereby small, incremental changes to the open code are released early and often so that

many eyeballs can study the code and make improvements. Von Hippel (2005) argues

that innovation is much more effective in this latter model. Although he does not limit

his analysis specifically to software development, Von Hippel argues that users of

products like bicycles and surfboards routinely customize or adapt such products to their

particular needs. When someone buys a bicycle, he or she is free to add or remove other

parts or components of the bicycle to fit his or her particular need. Indeed, it would be

absurd to think of a bicycle that was protected in such a way that did not allow users to

change a tire. Keeping products like bicycles or software open enough for users to

customize, adapt, modify, or improve upon fosters a system of innovation that is much

more connected with users' unique needs. This type of open innovation is opposed to

closed and proprietary innovation, which is driven by a single corporation's in-house

capability, potential profitability, and perceived market need rather than real user demand.

Technologies that are sufficiently “open” enough to allow for this type of

tinkering and adaptation are known as generative technologies (Zittrain, 2008). Zittrain

(2008) identifies five principle factors in measuring the generativity of a technology.

First, how extensively does the technology leverage a set of possible tasks? In other

words, the more functions that a particular technology can serve is directly related to the

extent to which a technology can produce change. More possibilities equate to greater

45

opportunities for change. Second, how well can the technology be adapted to a range of

tasks? In other words, how easily can the technology be built upon or modified? Third,

how easily can new contributors master the technology? Fourth, how easily accessible is

the technology to those ready and able to build on it? Finally, how easily can the changes

be transferred to other users and, especially, non-experts? By applying these five

questions, we can measure the extent of a technology's generativity.

Importantly, Zittrain's (2008) argument is based on emerging trends that he sees as

threatening the generativity of the Internet. Specifically, he identifies three specific ways

that the generativity of the Internet is being attenuated. The first trend is tethered

appliances, which refers to the centrally controlled information devices we use to access

the Internet (i.e., mobile phones, gaming consoles, and tablets). While tethered

appliances make it very easy to assure functionality and distribute updates as they

become available, users are generally not allowed to make changes to these devices or the

software running on them. Control of the device is centralized by the vendor. Zittrain

argues that this is, on balance, a problematic trend for two reasons. This increases the

possibility for regulating both the Internet and the devices used to access the Internet,

while also decreasing the possibility for disruptive innovation to occur. In effect, tethered

devices enable a system of more complete surveillance and control so that unintended

uses or modifications of the technology become criminal activities.

The second trend that Zittrain sees as threatening the generativity of the Internet is

through software as a service (SaaS). Whereas his argument against tethered appliances

focused on hardware, Zittrain's argument against SaaS focuses on software. In SaaS, the

storage and maintenance of software becomes centralized by a vendor. While this can

ensure functionality and ease the distribution of security updates, the end users do not

46

have control over their software. They cannot study, modify, adjust, or make changes to

the software for their own purposes. In effect, the user's software is stored in “the cloud,”

which places it out of the control of the user. What makes SaaS even more problematic is

that user data is sent to the software vendor, effectively serving as a form of spyware or

surveillance of users' activities. Zittrain uses the metaphor of a walled garden to illustrate

how SaaS functions. In effect, the carrier or service provider has control over

applications, content, or media, while restricting convenient access to non-approved

applications or content. This is in contrast to an open platform, where users are granted

unrestricted access to applications or content.

Finally, the third trend threatening the generativity of the Internet is perfect

enforcement. This trend synthesizes the concerns of the previous two – tethered

appliances and SaaS – to identify the broader concerns of operating under such a system

and the ways that user behavior can be controlled. Vendors may preempt unforeseen or

unintended uses of technology by placing greater protections on the technology. For

example, stronger intellectual property protection can restrict user behavior by

criminalizing certain uses. In addition, vendors may issue specific injunctions against

certain types of behavior. These would take the form of tailored remedies to any issues

after they arise, such as security updates, fixes, or retroactive edits of software. Finally,

the last way that perfect enforcement is made possible is simply through surveillance.

Vendors can gather data about user practices and, perhaps, adjust future designs to cater

more directly to user preferences. For example, Apple gathers data on which applications

are downloaded onto a user's iPhone.

Zittrain's argument about the future of the Internet is important, especially if we

consider the ways in which generativity is important for innovation. But, even on a more

47

general level, Zittrain's arguments can be contextualized within broader considerations of

the way we frame information as a resource. Fritz Machlup (1962) was one of the first

scholars to propose that knowledge could serve as an economic resource, and Machlup's

work was one of the first to popularize the idea of the information society. However,

knowledge and information are typically viewed from a supply-side perspective,

especially in economics literature that treats these factors as investment costs for the firm.

Arguing from an alternative perspective, Frischmann (2012) suggests that we can view

knowledge, information, and cultural resources as a form of intellectual infrastructure.

Doing so will position these resources as “basic inputs into a wide variety of productive

activities,” which “often produce public and social goods that generate spillovers that

benefit society as a whole” (Frischmann, 2012, xii). Such an argument resonates nicely

with the arguments in favor of promoting commons-based peer production for the

purpose of enabling greater innovation (Benkler, 2006; Von Hippel, 2005). By framing

knowledge and information as an infrastructural component of social development,

protecting the knowledge commons becomes crucially important to the survival of

commons-based peer production.

The concept of the commons is useful for thinking about informational resources.

Given the increasing interconnectivity between people across vast spatial boundaries with

the ability to communicate and collaborate in online environments, maintaining a base of

commonly held resources that can be used for peer-production remains a central concern

for facilitating more open and democratic forms of communication. This is particularly

the case because the commons are subjected to the threat of enclosure, whereby the

commonly-held resource is privatized in a such a way that the right of access to the

commons is stripped away. Exactly how this occurs, however, differs depending on the

48

type of commons under consideration. To explain how enclosure threatens different

types of commons, the following section focuses on enclosure.

The Threat of Enclosure

The commons are generally held in contradistinction to private property. In other

words, once the commons become commodified or privatized, they cease to be commons

and are in the service of capital. The process by which commons become transformed

into private property is known as enclosure. Historically, the enclosure of common land

in England took place in varying degrees between the 15th century to the 19th century.6

Enclosure took various forms throughout this period, including voluntary enclosures,

forced enclosure, parliamentary legislation, and others. Throughout this process,

ownership of common land was transferred to private owners, who then had the right to

restrict access to the land. This effectively ended the open field system, whereby

commoners had a traditional right to use open fields for feeding livestock, farming, or

harvesting from the land. While historians still debate the extent to which enclosure

exacerbated class divisions and played an integral role in the development of capitalism

in general, the process nonetheless drastically affected the relationship between

commoners, capitalists, and the commonly held resources that once provided a means of

subsistence for commoners. Moreover, the state played a crucial role in facilitating

enclosure through the Enclosure Acts, which were passed between the 18th and 19th

centuries in England and Wales (Polanyi, 2001).

6 A fuller historical account of English enclosures is not possible here, especially because of the diverse
ways that common lands were enclosed. For some interpretations of this process, see Neeson, 1993;
Thompson, 1966; and Marx, 1906, especially Chapter 27: “Expropriation from the Agricultural
Population from the Land,” which is freely available at
http://www.marxists.org/archive/marx/works/1867-c1/ch27.htm

49

http://www.marxists.org/archive/marx/works/1867-c1/ch27.htm

Enclosure of common land was accomplished by literally erecting fences around

previously open fields. Enclosure of knowledge commons, however, depends on

restricting access or prohibiting certain uses of informational resources. James Boyle

(2003) refers to the process of enclosing the knowledge commons as the Second

Enclosure Movement, whereby increasingly protective intellectual property rights are

restricting access to those things which were once considered common property.

Focusing more on the consequences of the enclosure of digital spaces, Mark

Andrejevic uses the term digital enclosure to refer to the process by which two distinct

classes are formed online: “those who control privatized interactive spaces (virtual or

otherwise), and those who submit to particular forms of monitoring in order to gain

access to goods, services, and conveniences” (Andrejevic, 2007, 3). In other words,

Internet users, as a class, have nothing to sell but their data, which serves as a form of

value production for Internet Service Providers (ISPs), which represent a class that

controls the means of digital production. In this sense, the ISPs can restrict access to

their sites unless users agree to the Terms of Service (ToS) or End User Licensing

Agreement (EULA). These non-negotiable contracts place restrictions on how users may

interact with the site. The effect of these agreements is to enclose informational

resources, which are controlled by ISPs.

Concerns about digital enclosure are conceptually similar to Zittrain's (2008)

arguments about how the generativity of the Internet is being threatened. In addition,

Tim Wu (2010), argues that new technologies generally follow a pattern, which he simply

calls “The Cycle.” The cycle begins when a new technology is introduced and a

relatively chaotic period of experimentation and innovation occurs. Gradually, however,

as multiple producers vie for control of the technology and, by extension, control of an

50

industry, a free, open, and competitive market tends to become institutionalized when one

or a few firms control the vast majority of production. In such a state, competition

becomes moribund and the dominant firms strategically work to maintain the status quo

until a new disruptive technology enters the market and the cycle from an open to

controlled market repeats itself. Murdock and Golding (1973) describe a similar

situation, whereby media industries move from differentiation to concentration:

Firstly, small-scale or personalized production of a cultural
product expands. Distribution and selling become separated
anc commercialized. As new technology enters the medium,
production becomes industrialized and consumption
becomes large-scale and impersonal. This process of
differentiation is succeeded by a period in which the growth
of the industry reaches saturation and is hit by a series of
pressures due to rising costs, declining revenue, and a
changing pattern of demand...The final stage in this
sequence involves a developing tension between new
technological potentialities on the one hand and economic
concentration on the other (207).

Notably, for Murdock and Golding (1973), the focus is on general trends within industrial

economic activity, and the authors situate new technological development between its

potential for democratic use and its use in the service of capital. For Wu, on the other

hand, the focus is on the technology itself and the ways that technology is used. Wu

warns that the cycle of the Internet is trending toward a closed market, whereby it is

being subject to greater regulation by governments and fewer big firms are wielding

power. Indeed, McChesney (2013) demonstrates how a few dominant companies now

control much of what takes place online. These companies are those that survived the

dot-com crash of 2001 and have become recognizable names: Google, Amazon, eBay,

Apple, Microsoft, and others. All of this suggests that the digital commons are indeed

becoming enclosed in certain ways.

51

Digital enclosure would seem to follow a similar pattern to more traditional forms

of enclosure. However, the process or act of enclosing a commons generally denotes a

linear process with a predefined outcome. As capitalist relations expand, resources

generally move from open to closed systems. In this sense, resources are generally

thought of in dichotomous terms as either open or closed systems. While a finite

resource such as land may be thought of in these terms, knowledge or digital commons

have certain unique characteristics that resist such an easy interpretation. Knowledge can

be reproduced and distributed more easily than finite resources and, as such, knowledge

commons can contain elements that are proprietary as well as elements that are protected

as a commons-based resource. Indeed, this is most often the case for FLOSS code that is

supported by or used within proprietary software companies. This blending of both

commons-based and proprietary resources can lead to struggles for control of

informational resources, which are often legal battles for control over intellectual

property.

As Rossiter & Zehle (2013) argue, however, the commons are not purely “given

as a fragile heritage to be protected” against enclosure, but they must be actively

constructed. FLOSS communities actively produce knowledge commons as code is

produced and licensed under intellectual property licenses that permit users to use the

code and adapt it for their own purposes. These alternative intellectual property licenses

take many different forms. The original copyleft license to see widespread use was the

GNU General Public License.7 Other notable examples of alternative intellectual

property licenses, particularly because of their widespread use, are the many variations of

7 The text of the GNU General Public License (GPL) can be found at
http://www.gnu.org/copyleft/gpl.html (last accessed July 7, 2014).

52

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

the Creative Commons licenses,8 which allow varying levels of use for the protected

property under conditions set by the creator. For example, users may make their creation

freely available and permit others to use it, as long as those users provide attribution to

the original author. In addition to these licenses, certain companies have created licenses

that have different levels of restriction and permission. Most often, these licenses are

designed with a particular goal in mind, with the company wanting to allow certain uses

of the code while protecting against others.9 As CHAPTER VI demonstrates, the licenses

created by corporations can often lead to conflicts over commons-based resources.

As an increasing number of corporations are choosing to get involved in FLOSS

projects, there is a risk that FLOSS project development may increasingly be driven by

corporate imperatives. In the final section of this chapter, the different types of

involvement that corporations can have with FLOSS projects are discussed. The purpose

of this final section is simply to introduce a typology for understanding these dynamics.

While the typology identifies general tendencies for corporate involvement in FLOSS,

this does not mean that contradictions or differences cannot be found within particular

case studies. Indeed, a more in-depth discussion of the ways corporations are involved in

FLOSS projects is reserved for the following chapters and includes the ways that

corporations have profited from FLOSS, the ways they have tried to fight FLOSS

projects, and the ways that the broader FLOSS community has resisted unwanted

corporate encroachment into their projects.

8 The Creative Commons Licenses can be found at http://creativecommons.org/licenses/ (last accessed
July 7, 2014).

9 A full examination of the rights granted by different types of alternative copyright licenses is beyond
the scope of the present study. Certain licenses will be discussed in the case study chapters, but
Wikipedia features a good comparison of free and open source software licenses for those who are
interested. The Wikpedia page can be found at
http://en.wikipedia.org/wiki/Comparison_of_free_software_licences (last accessed July 7, 2014).

53

http://creativecommons.org/licenses/
http://en.wikipedia.org/wiki/Comparison_of_free_software_licences
http://en.wikipedia.org/wiki/Comparison_of_free_software_licences
http://creativecommons.org/licenses/

Open Source Business Models

The previous sections of this literature review focused on the ways in which

FLOSS as a knowledge commons is beneficial for development, production, innovation,

and democracy. I also discussed why a political economy of communication approach

can be useful for understanding the ways that FLOSS as a knowledge commons may be

subject to undue corporate influence and, perhaps, enclosure. In this final section, the

focus is on how FLOSS has been used by corporations, which establishes a framework

for understanding the different ways that businesses have tried to profit from involvement

in free software. This framework relies heavily on the typology developed by Deek and

McHugh (2008), since they provide one of the few attempts at categorizing the different

ways in which businesses have approached FLOSS.

As part of their broader treatment of open source software, Deek and McHugh

(2008) develop a typology of open source business models (Deek & McHugh, 2008,

272). The typology contains five different models that have been used in trying to profit

from FLOSS. Table 2.2 provides an illustration of this typology, providing the types of

business strategies employed, a description of the strategy, and an example of a company

or product that is representative of the strategy.

The first business model relies on dual licensing, in which the owner of

copyrighted software provides free and open distributions for nonprofit users but requires

for-profit customers to pay a fee to use the software. The exemplary case here is

MySQL, which is an open source database management system. The company provides

a free version of its software under the General Public License (GPL), which stipulates

that any derivative software using the GPL-licensed software must also be made available

under the same license. MySQL also provides an advanced commercial version of its

54

software to for-profit corporations, which can be customized to the users' specific needs

or integrated with that company's proprietary software.

Table 2.2. Types of Open Source Business Strategies

Business Strategy Description Examples

Dual Licensing

Owner of copyrighted software
provides free and open
distributions for non-profit
users, but requires for-profit
users to pay a fee to use the
software.

MySQL

Consulting

Company assists other
companies with planning,
strategy, and implementing
appropriate open source
solutions within their business.

OSSCube, Olliance
Consulting (a division of
Black Duck Software), LQ
Consulting

Distribution & Services

Company provides services for
non-expert computer users by
handling the compilation of
stable, updated, and
prepackaged software suites
that are distributed to users
(clients).

Red Hat, Canonical

Hybrid Open/Proprietary –
Vertical Development

Using open source software as
a base upon which proprietary
software can be built.

Google, Sun Microsystems
(i.e., StarOffice and
OpenOffice)

Hybrid Open/Proprietary –
Horizontal Arrangements

For-profit company becomes
directly involved in supporting
open source projects to
supplement its own business
operations.

IBM, Microsoft

Source: Table is adapted from Deek & McHugh (2008, 272).

The second type of business model is one in which a company provides

consulting services for FLOSS. Quite simply, companies that adopt this model assist

other companies with planning, strategy, and implementing appropriate open source

solutions within their business models. Among other things, Black Duck Software

provides consulting services through its Olliance Consulting division.

55

The third business model is one in which a company provides FLOSS

distributions and services, and the exemplary company here is Red Hat. Unlike MySQL,

which owns the copyrights for its software, Red Hat creates and provides its own

distribution of Linux. In addition, Red Hat provides training, eduction, documentation,

and support for its Linux distribution. In other words, Red Hat provides a service for

non-expert computer users by handling the compilation of stable, updated, and

prepackaged software suites to be distributed to users. In some ways, then, Red Hat

behaves similarly to a proprietary software provider, except that it does not own the

intellectual property rights for the software it sells and services. Rather, the company

sells and provides its own Linux distribution, which it is able to do because of the open

licensing model of Linux.

Whereas the first three business models are solely related to FLOSS, the

remaining two rely on a hybrid of both open and proprietary software. The fourth model

is a hybrid of both proprietary and open software that relies on vertical development with

FLOSS. Vertical development means using open source software as a base upon which

proprietary software can be built. One of the major corporations that uses this model is

Google. In fact, Google does not sell its software at all; it develops and maintains its own

software in-house, while selling services provided by its software to other customers. Of

course, Google's search engine is proprietary, but Google uses the Linux core to support

its proprietary search services.

The final model is a hybrid of proprietary and open software, but one in which the

company relies on horizontal arrangements. This is the business model that lies at the

heart of this dissertation project. In these relationships, for-profit corporations become

involved in open source projects. Drawing from Fogel (2005), Deek and McHugh (2008)

56

claim that the reasons for corporate involvement are diverse, but include everything from

spreading “the burden, cost, and risk of software development across multiple enterprises

to allowing companies to support open source projects that play a supportive or

complementary role to their own commercial products” (277). IBM is one example of

this type of business model. For example, IBM's WebSphere application, which enables

end-users to create their own applications, was built using the Apache web server, which

is open source. Thus, by supporting open source projects like Apache, IBM is indirectly

supporting its own interests. Furthermore, IBM directly competes with Microsoft as a

platform for applications. Because IBM supports Linux, it is not only investing in the

reliability of its own products but may simultaneously weaken Microsoft's market

position, especially because Linux is also a direct competitor of Microsoft.

In sum, then, this section has discussed how FLOSS has been used in differing

ways by drawing on the typology developed by Deek and McHugh (2008). The most

fruitful area of study for the purposes of this project was the hybrid open/proprietary

model that relies on horizontal arrangements, although other projects are discussed, like

MySQL, which represents other types of business strategies. The corporations that rely

on horizontal arrangements are most interesting because of their direct involvement in

FLOSS projects. Thus, these companies need to maintain a good relationship with the

broader FLOSS community. When the norms of the community are violated by a

company, the community can abandon a project, which can effectively end commons-

based production on the project. In this sense, the FLOSS community leverages its

collective labor power against undue corporate influence in its commons-based resources.

This was the case when the Oracle Corporation acquired Sun Microsystems. This case

will be discussed in greater detail in CHAPTER VI. For now, however, it is important to

57

note the two different examples of companies using hybrid horizontal agreements to two

different ends. In the case of IBM, the company was able to maintain a relatively stable

relationship with the open source community. In the other, Oracle overstepped its bounds

by violating the norms of the community. As more and more corporations become

involved in FLOSS projects, the relationships that exist between the community and the

corporations that rely on their collective labor power will be subject to changes. These

dynamics are the primary concern of this dissertation.

Summary

This chapter focused on how FLOSS production can be understood as both a

process as well as the products created by that process. The focus was on how FLOSS

can be understood as a commons and, more specifically, as a knowledge commons with

certain unique characteristics. Mainly, they are resources characterized by low rivalry

and low excludability, which do not make them susceptible to the same types of

enclosure that befell common lands. Rather, knowledge commons can, at times, contain

both proprietary and nonproprietary elements. This, in turn, can lead to conflict within

the commons. Most often, this conflict comes in the form of licensing disputes when a

corporation makes an ownership claim to the commonly held resource. In this sense,

knowledge commons like FLOSS may be susceptible to total enclosure but, more often,

are incorporated into a corporation's broader strategy. As such, corporations see a certain

value in FLOSS production and FLOSS projects.

Because this dynamic can lead to conflict and contradiction within the commons,

the political economy of communications approach can be a useful framework for

understanding this phenomenon. Informed by critical political economy, this approach

58

focuses on the ways by which corporations wield power over communication resources.

Drawing from Marx's dialectical understanding of labor and capital, the critical political

economic approach to the study of commnication resources stresses the primacy of

human labor that underlies communicative resources. Rather than focusing on the

innovative or purportedly revolutionary nature of the technology itself, critical political

economy responds by refocusing our attention on the specific cultural practices and

collective labor that make up both the technology and its attendant practices. Indeed, this

chapter argued that FLOSS production is powerful because of the scale of its collective

and co-operative labor power. Furthermore, many of the unique characteristics of FLOSS

labor make FLOSS projects an attractive option for corporations that are looking to

harness such power. On the other hand, increasing corporate presence in the commons

may have detrimental effects for the broader FLOSS community.

This points to a gap in the previous theoretical literature on FLOSS products and

processes. FLOSS products have been understood as a form of knowledge commons,

whereby anyone has the right to study, modify, adapt, or otherwise make changes to the

resource to suit his or her own needs. The productive processes used within FLOSS

communities have been theorized as commons-based peer production, which enables

forms of non-market production. Finally, some of the previous literature has attempted to

arrive at a typology of different strategies that businesses can use to profit from FLOSS

products and services. What becomes clear, however, is that these treatments either

overgeneralize and fail to address the idiosyncrasies of various types of FLOSS projects,

or they establish hard boundaries between market-based and non-market production.

This study seeks to complicate these understandings of FLOSS by providing examples of

how corporations are making use of commons-based resources and commons-based peer

59

production by becoming involved in FLOSS projects. Rather than a unified theory to

explain these strategies, the following chapters provide only certain examples of the

different ways that corporations have approached involvement in FLOSS projects.

Furthermore, this project seeks to identify strategies used by the FLOSS community to

resist undue corporate influence. Before presenting these case studies, the following

chapter explains how the research was conducted.

60

CHAPTER III

RESEARCH QUESTIONS AND METHODOLOGY

CHAPTER II laid out some of the main issues and contradictions that are at the

center of this project. Specifically, I explained why a critical political economy of

communication approach is a particularly useful research framework for addressing these

questions because of its focus on the production, distribution, and exhibition or

consumption of communications resources. More specifically, political economists are

interested in how power relations manifest themselves within communication industries.

Since FLOSS depends upon and is constituted by communicative activity, political

economy is well suited to address the primary concerns of maintaining just and

democratic forms of communication. Then, I focused on how FLOSS can be understood

as a knowledge commons with certain unique characteristics. Finally, I complicated this

framing of FLOSS resources by describing the ways that commons become enclosed and

how FLOSS may be at risk of enclosure in certain ways. While CHAPTER II

highlighted the central tension at the heart of this project, CHAPTER III focuses

primarily on how the current project was approached methodologically and what specific

research methods were used in the course of research.

To that end, this chapter begins by revisiting the research questions guiding the

project. Following this review, the following section discusses the methodological

approach employed in this study and the specific methods used to address the research

questions. Finally, and because this study included human subjects as part of the research

process, the chapter concludes with some brief information about the review and

approval of this project by the institutional review board.

61

Research Questions

Free and open source software has attracted a great deal of attention from scholars

and, increasingly, the broader business community. Most of this attention has focused on

the novel productive process enabled by commons-based peer production or the potential

for profitable business practices. Significantly less attention has been given to the

dynamics that exist between FLOSS communities and the corporations that make use of

their intellectual labor. While business models may change and adapt to emerging trends

as corporations seek higher profits, the underlying labor that comprises the power of the

productive process does not change – at least insofar as the products of collective

intellectual labor are sold for profit. As discussed in the previous chapters, extant

research has largely focused on how companies or society, writ large, can leverage the

collective labor power of the FLOSS community to foster innovation or democratize

productive processes. This project focused more specifically on the ways that

corporations make use of this collective power in different ways and to what extent these

corporations wield power within FLOSS communities to focus development on certain

projects that are instrumental to the goals of the corporation. In sum, the current study is

guided by the following research questions:

RQ1: What is the relationship between proprietary, for-profit corporations
and free and open source software (FLOSS) communities, and how has this
relationship changed over time?

RQ1a: What are the power dynamics between corporations and the
FLOSS community? In other words, which party holds the ability to
exert influence on the other?

RQ2: What constitutes value for each of these stakeholders? What value do
corporations provide for the FLOSS community, and what value does the
FLOSS community provide for corporations? Are there any external factors
or other stakeholders who may profit from this relationship?

62

To expound on these research questions, RQ1 exists at a descriptive level: the

question required an assessment of the current relationship between FLOSS communities

and corporations, as well as an historical account of how this relationship has developed

over time. RQ1a supplemented the descriptive information provided by RQ1 by

investigating the power dynamics between corporations and FLOSS communities. The

goal of this question was to determine who is able to influence what projects are

undertaken, whether they will succeed, and whom they will benefit. FLOSS has been

characterized as a more democratic form of organizing communication (Benkler, 2006),

thus RQ1a investigated whether corporate involvement in FLOSS provides some

evidence that this seemingly democratic form of organizing communication is becoming

institutionalized.

RQ2 was essentially an economic question, which also required a description of

how corporations and FLOSS communities provide value for one another. FLOSS

communities have been described as gift economies (Söderberg, 2008) or a form of

commons-based peer production (Benkler, 2006). However, the intention of this project

was to critically assess these claims by determining what value FLOSS communities

produce for corporations as well as what value corporations produce for FLOSS

communities. While this question required analysis of what value each party holds for

one another, or a relational value, the value within each community was studied as well.

This question also allowed me to investigate whether FLOSS products can be called

commodities in the traditional sense, and in what ways they differ, if at all. Finally, RQ2

necessitated an analysis of any additional stakeholders are involved in the relationship

between corporations and FLOSS communities.

63

To address these research questions, a largely qualitative multi-method approach

was used, including document analysis, semi-structured interviews, and some basic data

mining of FLOSS projects. Since this project was concerned with gaining an

understanding of the dynamics that exist between corporations and the FLOSS

community, both document analysis and semi-structured interviews were used to

understand corporate structures and strategies, as well as to understand FLOSS

communities. FLOSS projects depend on extensive and accurate documentation to make

the development of projects run effectively and efficiently, and these documents are made

publicly available so that other developers can work on the project. The source code is

one form of documentation, which enables users to understand how a project works, but

many FLOSS projects also contain credits files, licensing disclosures, README files,

and other documents that provide essential information to users. This information, as

well as the information found on publicly available discussion lists, was combined with

qualitative disclosures from interview subjects to understand the dynamics between the

corporations and the community. Furthermore, the information gathered from these

sources were combined with personal experiences using Linux and attending a variety of

different events and meetings focused on FLOSS.10 A more thorough discussion of the

methods and materials used for this project follows the next section, which discusses the

methodological approach.

10 Specifically, these included a trip to OSCON, the Open Source Convention, in Portland, OR, as well as
involvement in Eugene Unix Gnu Linux User's Group (EUGLUG) meetings and public talks in
Eugene, OR.

64

Methodological Approach

Empirical observation must in each separate instance bring
out empirically, and without any mystification and
speculation, the connection of the social and political
structure with production. The social structure and the State
are continually evolving out of the life-process of definite
individuals, but of individuals, not as they may appear in
their own or other people’s imagination, but as they really
are; i.e. as they operate, produce materially, and hence as
they work under definite material limits, presuppositions
and conditions independent of their will (Marx, 1845, 41).

The quote from Marx comes from a section of The German Ideology that

discusses the essence of historical materialism. The quote represents a methodological

approach to inquiry that is guided by particular assumptions about how reality can be

understood and described. The quote also nicely summarizes the goals of researchers

working within the critical political economy of communication – that is, to connect the

definite processes of material production with broader social and political structures.

Most often, the inquiries of critical political economists of communication are

directed at large corporations that hold extensive market power and the ability to

influence the production, distribution, exhibition, or access of communication resources.

In the process of investigation, the aim of critical political economists is to empirically

investigate the material operations of corporations and connect those operations to the

broader social system. The connections made to the social system can be situated within

national boundaries while accounting for the attendant institutions (religious, legal,

cultural, etc.) that encourage or discourage certain types of behavior, but can also be

made across those boundaries (internationally, regionally, globally).

By making these connections, political economists search for the general

tendencies of corporate behavior within a particular social system rather than seeking to

65

establish absolute laws. This allows the inquiry to remain open to the possibility of

contradictory factors, while also allowing for an account of diverse corporate practices

both within and across media industries. Indeed, the contradictory factors provide the

illuminating moments for critical researchers, particularly because they provide

opportunity for critique and resistance. To this end, critical political economists of

communication have provided important critiques of media corporations, especially the

ways in which they operate in conjunction with the general tendencies of a broader

capitalist system. As Meehan (1999) notes, “critical scholars share an ethical obligation

to produce knowledge that accurately describes the media and reveals the hidden

dynamics whereby media corporations attempt to commercialize and control expression

in service to advertisers and ultimately to capital” (162).

To search for such hidden dynamics, the current study employed a critical

interpretive methodological approach often used by critical political economists of

communication (CPEC). Maxwell (2003) describes this approach as used by Herbert I.

Schiller, a pioneering scholar working within the CPEC tradition. When working from a

critical perspective, one situates research findings within broader bodies of knowledge

and looks for disjunctures or contradictions arising from within the field of study. These

contradictions or disjunctures can provide germane moments for research, from which

previously accepted understandings can be challenged and refined. In this sense, CPEC

scholars tend to resist interpreting research findings according to their face value or as

prima facie evidence. Rather, the research findings are brushed against the grain of

alternative bodies of knowledge as a way to situate the results within a broader set of

relationships. Similarly, Mosco (2009) describes his epistemological stance as being

constitutive. That is, CPEC scholars resist causal, linear determinations as well as the

66

assumption that units of analysis are fully formed wholes. Instead, critical political

economists favor an epistemological position that is based on mutually constitutive

processes, which act on one another throughout various stages of formation. In this

sense, the approach is dialectical in that it considers both particular and more general

phenomenon as part of a totality of processes. These concerns are carried with the

researcher throughout the research process, regardless of what type of evidence is being

investigated or how it is being gathered.

To facilitate this type of investigation, critical political economists use a variety of

methods. However, the selection of method is often driven by the amount of access that

the researcher has to the subject being studied. When direct access to corporation is

available, critical political economists rely on research methods such as interviewing,

participant observation, ethnographic methods, and other methods that allow for direct

observation of the life-processes of definite individuals as they operate or produce

materially. In turn, these observations can be linked with the “definite material limits,

presuppositions and conditions independent of their will” (Marx, 1845, 41). When we do

not have direct access to corporations, critical political economists rely on documentary

evidence of corporate operations and the material production taking place within the

corporation. Most often, this data comes from documents that are produced by and about

the corporation. To that end, the following section discusses the specific methods used in

this study.

Research Methods

The methods used in this study focused primarily on document or textual

analyses, but documentary data was supplemented by qualitative, semi-structured

67

interviews with programmers and other representatives from the open-source community.

The original intent of this project was to include similar interviews with representatives

from the corporations under investigation, but these plans needed to be slightly altered

during the course of study after I was unable to secure any meaningful interactions with

corporate representatives, particularly at Microsoft. Consequently, I needed to rely more

heavily on documentary sources throughout the study.

The documentary or textual, and interview analysis methods were conducted at

two levels of analysis. On the one hand, the research focused on corporations or

institutions involved in FLOSS projects, but they also focused on the broader FLOSS

community, including programmers or others involved with FLOSS projects in some

way. In what follows, I describe how each of these research methods were used in the

course of study.

Document/Textual Analysis

Documents come in many forms, but in this study, documents are defined as any

artifact which has as its central feature an inscribed text which contains intentional

messages (Scott, 1990). This definition is sufficiently broad enough to include many

different types of documents regardless of their material basis, which includes electronic

or digital sources as well as material sources. To investigate the productive processes of

corporations – including its corporate structure, ownership structure, financing, joint

agreements, properties, and labor practices – CPEC scholars rely on a wide variety of

documents, which come from both primary and secondary sources. That is, documents

may be produced directly by the corporation and serve some function within its overall

68

operation (primary documents), or they may documents produced by another party about

the corporation (secondary documents).

Primary documents include budgets, press releases, internal memos, financial

statements, web sites produced by the organization, government filings, and other

documents produced directly by the corporation. CPEC scholars have historically relied

on government documents to investigate corporations. For example, to research the

American Telephone and Telegraph Company and the Bell Telephone System, Danielian

(1939) relied on documents from The Telephone Investigation, carried out by the Federal

Communications Commission (FCC) in 1935, which produced “sixty volumes of

transcript, more than 2000 exhibits and more than seventy volumes of staff reports,” all

of which was public record at the time but remained unpublished (preface, i). The

documents provided some of the most detailed and comprehensive data about AT&T's

sixty-year history. Although the FCC's report from the investigation relates specifically

to the problem of telephone rates, Danielian used the data contained within the

documents to present a social evaluation of the company's immense market power,

including its corporate structure, financial data, relations with independent telephone

companies, public relations and propaganda campaigns, and its influence on radio and

film industries.

Similarly, CPEC scholars have historically relied on disclosures made to the

Securities and Exchange Commission (SEC) of the United States. The Securities Act of

1933 requires that all publicly held companies in the U.S. disclose their properties,

business activities, certain financial information, and information about company

management to the SEC. Although these documents may not reveal a complete or wholly

truthful state of a corporation's structure and business activities, these documents can be

69

used as a means to gather data that would otherwise not be available in trade press

publications and other popular media sources.

The SEC filings used in this study, specifically Form 10-K annual reports, often

include favorable statements about the corporation's performance as well as “forward-

looking statements,” whereby representatives from the corporation make predictive

statements about the company's future business plans or performance. Some of the most

useful disclosures in these documents come from statements about partnerships,

acquisitions, key properties, or the ownership structure of the company. These

disclosures can help researchers obtain the names of the key stakeholders involved in the

corporation's operation.

However, documents of this type are not required of privately held firms,

including private equity firms even if these firms hold an ownership stake in the public

company. As Bettig (2009) points out, private equity firms are playing an increasing role

in media industries, which limits the ability of citizens and researchers to determine the

activities of media corporations. Many of the private equity firms and venture capital

firms discussed in this study were not necessarily central to the analysis, but

understanding their involvement can illustrated the massive investment in companies that

specifically cater to FLOSS projects. To the greatest extent possible, I investigated

private equity firms by relying on trade press publications, news stories, and other

publicly available documents.

The increasing presence and lack of information about private equity firms is not

the only challenge researchers face when using documents to analyze corporations. Scott

(1990) identifies four central categories to consider when assessing documents:

authenticity, representativeness, credibility, and meaning. The concern for authenticity is

70

related to whether a document originates from where it is said to have originated. In

other words, does the document represent a direct disclosure from the source under

investigation? A highly authentic document would be primary source material that

originated directly from the primary author. Conversely, secondary sources may be

authentic, but those documents do not originate from an original author, which may call

into question the representativeness of the disclosures. Representativeness refers to

whether the information contained in the document is representative of the phenomenon

under investigation. Highly representative documents contain data that provides a clear

and comprehensible picture of what it claims to represent. On the other hand, a

document that is not representative may only provide a small amount of data about the

phenomenon under investigation and may not be representative of general trends or

tendencies. Credibility is somewhat related to representativeness, but refers specifically

to whether the information contained within the document is trustworthy. That is, does

the document accurately represent what it claims to represent? Moreover, the

information contained in the document may need to be verified by consulting additional

sources. Finally, meaning is associated with whether or not the information holds any

value for the researcher, as well as what meanings are associated with the document

itself. In this sense, the concept of meaning is doubly significant; it refers to both the

content contained in the document as well as the entire document itself within a broader

context.

Two other factors affecting the reliability of documentary sources are selective

deposit and selective survival (Webb et al, 1981). Selective deposit refers to the

information that is contained within the document as well as what may have been

purposefully left out. After all, documents are created for specific reasons, especially by

71

corporations. Determining what information is contained in the document may also help

the researcher determine why the information is there at all. Similarly, the concept of

selective survival helps the researcher determine why the document itself was created.

Documents are generally created because they fulfill some function for the corporation.

Why was the document created, and for what reason does it still exist? These two

questions draw attention to the broader context within which the document must be

situated.

These concerns about documentary evidence not only apply to official primary

documents created on behalf of the corporation, but to secondary documents as well. In

the course of this research project, many different types of secondary documents were

consulted, including trade press publications, news articles, and online tools like blogs,

forums, and listservs that are specifically related to the topic under investigation. The

advantage of researching FLOSS communities is that nearly all FLOSS projects have

unique forums, bulletin boards, or wikis dedicated to providing documentation and

facilitating communication about the project. These sources typically contain repositories

of the project itself, but they also offer community discussion and historical data about

the project's development. This, in turn, can provide documentary evidence of ongoing

and past events in a way that is open to public. For example, the Fedora Project,11 which

is discussed in CHAPTER IV, features a wiki that contains extensive documentation

about the project, including news, events, recent changes, user guides, and links to

various sub-projects associated with the main Fedora Project (The Fedora Project, 2014).

Similar sources can be found for all the FLOSS projects discussed in this study. In

11 Additional information about The Fedora Project can be found at
http://fedoraproject.org/wiki/Fedora_Project_Wiki (last accessed July 9,2014).

72

http://fedoraproject.org/wiki/Fedora_Project_Wiki
http://fedoraproject.org/wiki/Fedora_Project_Wiki

addition to the project wiki, I also relied on documentation from Wikipedia as well,

especially for links, figures, and disclosures about Oracle's acquisition of Sun

Microsystems, which is discussed in CHAPTER VI. However, rather than drawing

information only from the Wikipedia pages, additional sources were consulted to confirm

that the information was correct.

Using wikis for this study was a conscious decision to try to lend some credibility

to the wiki as a platform for conducting research, especially research about FLOSS

projects and contributors. Because FLOSS projects rely on extensive documentation to

facilitate development of the project and to coordinate productive activity, FLOSS

communities comprise communities of practice whose productive activities are mediated

by information technology. The collective productive activity of these communities can

be found, nearly in its entirety, in the project's documentation, although full

documentation of the project may be distributed across numerous platforms. For

example, even conversations that take place via an online chat or Internet Relay Chat

(IRC) system can be archived and made available somewhere online. In this sense, these

conversations can be preserved in their entirety, and function similarly to minutes that are

kept during corporate board meetings. Indeed, CHAPTER VI provides a discussion of

the community's reaction to Oracle acquiring Sun Microsystems. Some of the most

illuminating reactions were revealed during an IRC conversation with the board members

of the OpenOffice project when the community members decided to leave the

OpenOffice project.

In addition to these individual project pages, specialized trade publications and

news sources that cater to open source were invaluable resources throughout the research

project. Specifically, publications like Ars Technica, ReadWriteWeb, CNet, and ZDNet

73

offer coverage of free and open source developments. Moreover, these publications

provide some of the best documentation, from an historical standpoint, of corporate

maneuvering within the open source industry. Although these publications do not

necessarily reveal opinions about how corporate activities were perceived, they do

provide information about the key individuals, the venture capital firms, and the

monetary value of some of the mergers and acquisitions discussed throughout this study.

Interviews

Aside from the non-reactive or non-invasive research of document analysis, I also

relied on interview data for the study. These interviews were intended to come from two

different sets of people: individuals representing the corporations discussed in the study

as well as members of the broader FLOSS community. As a way to solicit perspectives

from the corporations, I sought interviews with those individuals working directly with

FLOSS projects within the companies. For example, some companies specifically

employ an open source strategist or project coordinator. Other companies, like Red Hat,

rely completely on FLOSS projects to support their business model, and I attempted to

communicate with anyone working for the company, especially those involved in

defining a strategic vision for the company.

In order to get a sense of how corporate involvement within the broader open

source community is perceived, I relied on interviews with open source programmers,

advocates, or activists. These individuals were primarily from local groups like the

Eugene Unix Gnu Linux Users Group (EUGLUG), but others were located regionally

and even internationally. All interview participants from the broader FLOSS community

74

were either supporters or directly involved with the development of FLOSS projects in

some way.

Recruitment Process

The initial contact with interview participants from the FLOSS community was

with those individuals whom I had already established contact. From these initial

contacts, I used a snowball sampling method, whereby I asked these individuals if they

were familiar with anyone else who would be interested in speaking with me about the

topic. After this initial round of recruiting, I then turned to local groups involved in

FLOSS, like the EUGLUG. After using similar snowball sampling from within these

local groups, I then relied on personal contacts. Specifically, I consulted individuals in

Brazil who are involved in FLOSS communities as either researchers or activists.

For individuals representing corporations, however, I used a more selective

sampling process to solicit participation. Specifically, I was looking for those individuals

with knowledge of the company's operations relating to FLOSS projects. In the case of

Red Hat, the entire company is related to FLOSS projects, and I was able to attempt

speaking with nearly anyone as a way to understand Red Hat's involvement in FLOSS

projects. In the case of Microsoft, I was looking for very specific people since Microsoft

is a large company with diverse operating segments. Most of these individuals were

identified by using publicly available documents, like press releases and trade press

publications, which specifically identified them as being involved in the company's

FLOSS-related activities. Once I had identified these individuals, I attempted to contact

them through a variety of means (email, phone, social networking sites, or personal

75

contacts). Whenever anyone was contacted for an official interview, I used the

recruitment script that can be found in APPENDIX A.

Interview Setting

The interviews for this project were conducted in settings and formats that were

most convenient for the interviewees. Because the members of the EUGLUG are locally

based, I was able to meet with members of the group at public locations. However, I also

attended the group's local meetings whenever possible. When travel was not possible in

order to conduct an interview, the interview took place via the Internet by using a voice

over Internet protocol (VoIP) service, like Skype. For example, I conducted certain

interviews with personal contacts in Brazil using this method. In addition, I was also able

to rely on email correspondence with those contacts with whom I had already established

a relationship.

Interview Participants

In the end, nearly twenty interviews were conducted with members of the broader

FLOSS community. All of these participants were either actively involved in coding

FLOSS projects or had worked on FLOSS projects in the past. All participants tended to

be supportive of FLOSS in general, although to varying degrees. Many of them

recommended that I interact directly with the communities who were currently working

on the FLOSS projects chosen for inclusion in this study. When I was unable to

communicate directly with members of specific projects, I relied on the documentation

found on the project's web pages and other sources.

76

The individuals interviewed from the broader FLOSS community were

tremendously helpful to this study. Those interviews provided the initial impetus for

exploring additional aspects of the chapter about Red Hat as well as Oracle's acquisition

of Sun Microsystems. In addition, those interviews provided invaluable insight into some

of the technical features of FLOSS projects, as well as providing some technical support

when it was needed.

Those interviewed had varying degrees of direct experience with the cases chosen

in this study. For example, some of the interviewees were actively using or working with

Red Hat's products, including both Fedora and Red Hat Enterprise Linux. Others had

direct experience with Sun's products before the acquisition by Oracle, and those

individuals were really helpful in understanding the links between the various properties

and their fate after the acquisition by Oracle.

The one shortcoming of the interview research, however, was a lack of connection

with those directly associated with Microsoft's involvement in open source projects. The

interview subjects were able to provide feedback on some of Microsoft's history in

relation to the FLOSS community, especially the creation of the Shared Source program,

but none of them had direct access to the projects being developed at Microsoft Open

Technologies. Therefore, the focus of the Microsoft chapter shifted to concentrate more

on the historical trajectory of Microsoft's involvement in FLOSS projects. To accomplish

this, documentary evidence was used to a greater extent in the Microsoft chapter as a way

to understand the company's relationship with the FLOSS community and its reasons for

doing so. Particularly helpful in this regard were the court cases and subsequent antitrust

investigation by the U.S. Department of Justice (DOJ). The findings of fact and final

ruling documents prepared by the DOJ in their investigation, plus additional secondary

77

sources about the company's compliance with the consent decrees provided detailed

information about Microsoft's operations. In addition, the publicly available documents

by or about the Microsoft Open Technologies division provided the bulk of the

information for that portion of the study. Because the division was newly created in

2012, however, the information available about the division was still somewhat limited

and changed periodically throughout the study.

Data & Analysis

In the end, the data gathered from both documentary sources as well as interviews

was used to identify key moments or projects in the history of corporate involvement in

FLOSS that illustrated the dynamic between the community and corporations. For the

interview data, I was specifically interested in the participants' perceptions, opinions,

beliefs, or other qualitative disclosures about practices associated with corporate

involvement in open source software. In addition, the interviewees were asked about

specific cases that exemplify some of the ways that this relationship was perceived as

successful, as well as examples of when the relationship was strained and how. From

these disclosures, I was looking for moments of contradiction or disjuncture from

information found in documents to determine whether there was a difference between the

ways that members of the community perceive corporate involvement and the way that

the corporations perceive their involvement. For this study, the primary unit of analysis

was the corporation, and I used the qualitative disclosures from the interviews as a way to

supplement the evidence from documents.

78

Human Subjects Research and Institutional Review Board

Because this study involved methods for research including human subjects

(interviewing), the study was reviewed by the University of Oregon Institutional Review

Board (IRB) and Research Compliance Services. The protocol for this research

(04222013.022) was determined to be a minimal risk research protocol that qualified for

exemption from IRB review under 45 CFR 46.101(b)(2) on May 28, 2013. Further

review of this research would not be required unless the research continued for more than

five years. Benjamin J. Birkinbine was the primary and sole investigator for this study,

and he completed the Collaborative IRB Training Initiative (CITI) on October 24, 2012

with an expiration date of October 24, 2014. All interactions with the human subjects for

this research strictly adhered to the regulations and ethical considerations set forth by the

IRB and Research Compliance Services.

As approved by the IRB, interview subjects were emailed the approved

Recruitment Letter or Email (Appendix A), notifying them of the purpose of the study

and why they were being selected. The letter also indicated that their involvement was

completely voluntary and they would be able to opt out at any time. In many cases, a

recruitment letter was not needed. Rather, I approached many interview subjects directly

through my involvement with the Eugene Unix Gnu Linux Users Group (EUGLUG)

during weekly meetings. These meetings were held for general Linux questions or

discussion, but more formalized topical presentations were scheduled once per month.

For example, the EUGLUG hosted speakers from nearby organizations who were

involved in FLOSS in some way, and the group also held workshops on a range of topics

from cryptography and Bitcoin to interfacing with GitHub. Prior to conducting any

formalized interviews with these individuals, however, interviewees completed the

79

Informed Consent Form (Appendix B), which listed the risks and benefits of participating

in the study, as well as reiterating the voluntary nature of their involvement. In addition,

the Informed Consent Form contained information about confidentiality, including the

right for interview subjects to remain anonymous. In the case that interview subjects

preferred to remain anonymous, they were asked to select a pseudonym. If an

interviewee did not select a pseudonym, one was created for use in the study (DevOp1,

DevOp2, etc.).

Summary

In sum, then, the methodological approach of this research project can be

described as critical interpretive. The methods used in the research process were

document or textual analysis as well as interviews. I drew from both primary and

secondary sources, as well as interviews with representatives from the broader FLOSS

community. The goal, again, is to arrive at an understanding of the relationship between

corporations and the FLOSS community.

In the chapters that follow, I discuss three separate case studies are discussed.

CHAPTER IV focuses on Red Hat, Inc., which is the largest and only publicly traded

corporation operating solely on free software. The primary focus of the chapter is to

describe how Red Hat has been able to accomplish this. CHAPTER V focuses on

Microsoft Corporation's long and checkered history with the FLOSS community. The

chapter charts the history of Microsoft's involvement in FLOSS projects by focusing on

the company's antithetical stance to FLOSS during its earlier years to more recent

attempts to become more involved in FLOSS projects. The primary focus of the chapter

is to try to understand why Microsoft's position toward FLOSS has shifted. Finally,

80

CHAPTER VI focuses on Oracle's acquisition of Sun Microsystems. The primary focus

of that chapter is to illustrate what happens when a company that is generally not

supportive of FLOSS projects acquires a company that had previously supported FLOSS

projects. The discussion details the ways in which the FLOSS community coped with the

corporate acquisition by discussing the OpenSolaris operating system project, the

MySQL relational database management project, and the OpenOffice office productivity

software project.

81

CHAPTER IV

FROM THE COMMONS TO CAPITAL: RED HAT, INC. AND INTELLECTUAL

PROPERTY

The previous chapters focused on establishing a framework for the present study.

This chapter, as well as the two subsequent chapters, offer in-depth case studies on the

different ways that companies are involved in free and open source software projects.

And, in turn, how the FLOSS community has responded to this involvement. This

chapter begins with an overview of Red Hat, Inc., which is the largest and only publicly

traded company whose business model relies entirely on free software. Within the

typology established by Deek and McHugh (2008), Red Hat's business model follows the

distribution and service model. Beyond situating Red Hat's business practices within this

typology, this chapter explains how Red Hat incorporates free and open source software

protected under the GNU General Public License (GPL) by using trademark law since it

does not (and cannot) restrict access to the underlying source code that is used to build its

products. In doing this, Red Hat has found a way to move from the commons to capital.

To illustrate exactly how Red Hat represents this model, the chapter is structured

accordingly: first, some basic historical information about the company is provided,

including economic performance data and how the company has changed over time. The

specific focus is on its core commodities – previously Red Hat Linux and now Red Hat

Enterprise Linux – both of which rely on collaborative commons-based peer production

from within the FLOSS community. Then, the ways in which Red Hat negotiates

relationships with the FLOSS community through Contributor Licensing Agreements

(CLAs) are explained. These agreements separate authorship from ownership in a way

that protects Red Hat against any claims to ownership by community members. Since the

82

intellectual property rights of user contributions are centralized within Red Hat, the

company then embeds its trademarked corporate logo into the distributions it sells, which

gives it the ability to restrict access to and redistribution of its commodities. Finally, the

chapter concludes with reflections about the Red Hat business model and what it means

for the broader FLOSS community. The argument throughout this chapter is that Red

Hat's business model is based on its ability to serve as an intermediary between the

FLOSS community and other businesses. However, its ability to perform such a function

requires that it centralizes commons-based peer production under its corporate trademark,

which the company can then use to protect its core commodities.

The Political Economy of Red Hat, Inc.

Red Hat Software, Inc. was founded in 1995. At that time, Linux, the open-source

operating system was still an emerging phenomenon but was growing rapidly. Linus

Torvalds released the code for his Linux kernel project in 1991. Those who supported the

open-source project were extremely dedicated to its cause, but the market for software

and the market for operating systems in particular was still dominated by large firms,

most notably Microsoft and its Windows operating system. In 1993, Bob Young formed

a company called the ACC Corporation, which primarily sold Unix and Linux related

accessories and books. In 1994, Mark Ewing created his own distribution of Linux called

Red Hat Linux. One year later in 1995, Red Hat Software, Inc. (simply referred to as

“Red Hat” from here) was founded after Bob Young's ACC Corporation merged with

Mark Ewing's company. Red Hat was founded with the purpose of making open source a

commercially viable business model by lending credibility to the emerging open-source

phenomenon. In effect, Red Hat was a way to bring the power of open-source to other

83

businesses by providing packaged solutions to customers, while funneling their earnings

back into the open-source community by supporting free software projects. As Bob

Young described in 1999,

We recognized the value of giving customers control of
their software, and sought to bring brand reliability to the
Linux product. We would offer support to customers and
accelerate development of the operating system by
investing our own R&D [research and development] dollars
in new Linux technology that would then be given back for
free to the community, for any Linux programmer or
distributor to use. We had no intention of ever 'owning' the
intellectual property we created. Instead, our business
model was based on quickly expanding the market, and
earning a small amount of revenue from a large number of
customers who would buy a product that was better quality
that that being offered by the industry leader, Microsoft
(Young & Rohm, 1999, 10).

The “better quality” that Young is referring to is the Linux-based operating system.

Previous chapters have already discussed the purported benefits of collaborative

development, most notably its efficiency, innovativeness, and security, but Red Hat

offered an operating system that could be easily adapted to the needs of the customer.

This was particularly important in a time when hardware vendors were reliant on large,

proprietary firms like Microsoft to develop operating systems that could make use of

their hardware. The speed at which new versions of proprietary operating systems could

be developed was much slower compared to the open-source options. Consequently, Red

Hat received and continues to rely on strategic partnerships with hardware manufacturing

companies like Intel, IBM, Dell, CISCO, Hewlett-Packard, Sony, and others.

These partnerships are beneficial to both Red Hat and their partners for a couple

reasons. First, Red Hat is able to pursue its original goal of lending credence to free and

open source software (FLOSS) solutions by receiving backing from major information

84

technology firms. Second, Red Hat continues to position itself as a leading company

dealing solely in FLOSS. Third, Red Hat can continue to funnel funding back into

FLOSS projects that ultimately benefit the developer communities who work on these

projects. In this sense, Red Hat does serve as a intermediary between large information

technology firms and the FLOSS community.

However, Red Hat also benefited from venture capital investment, particularly at a

time when the “dot-com” investment bubble was on the rise. Frank Batten Jr., through

Landmark Communication, was an early investor in Red Hat and committed $2 million to

the company in 1997 (Young & Rohm, 1999). Landmark Communication was famous

for investing in the Weather Channel, and the company remains a privately held

investment firm but now operates under the name Landmark Media Enterprises. Red Hat

also received investment capital from Greylock Limited Partnership and Benchmark

Capital, a company based in Menlo Park, CA, and known for its investment in and

support of the open-source community. All three of these parties – Landmark

Communication, Greylock, and Benchmark Capital – became major shareholders in Red

Hat after its initial public offering (IPO) in 1999.

Red Hat held its IPO in August of 1999. The previous rounds of investment

coming from venture capital firms, plus the company's partnerships with major

information technology companies, led to rapid growth of the firm's value. In September

of 1999, Red Hat's stock price rose to more than $122 per share, which was up from its

original price of $14 per share. At the time, Frank Batten Jr. owned 15 million shares of

the company, while Greylock Limited Partnership owned 8.7 million shares, and

Benchmark Capital owned 5.8 million shares (Kanellos & Shankland, 1999). However,

in the interest of giving back to the FLOSS community that Red Hat relied upon for their

85

business model to work, the company tried to compile a list of all the FLOSS developers

who contributed to Linux and other FLOSS projects. While arriving at a fully

comprehensive list was not possible, the company managed to develop a list of

approximately 5,000 developers. The intention was to make these developers stock

holders in the company so they could benefit from the company's growth. Doing so was

seen as a way for the company to give back to the FLOSS community. While Securities

and Exchange Commission regulations prevented a large portion of these developers

from becoming investors, more than 1,000 of the eligible 1,300 developers became early

investors in the company (Young & Rohm, 1999). Making this effort at including

members of the FLOSS community as shareholders in the company is one example of

how Red Hat has tried to maintain a good relationship with the FLOSS community.

In the years following the IPO, Red Hat continued to enjoy growth in revenues.

Figure 4.1 provides an illustration of Red Hat's rising revenues from 1998 until 2013.

What is particularly striking about this illustration is the fact that Red Hat's revenues

were not adversely effected by the dot-com bubble crash between 1999-2001. Red Hat

emerged from this period and continued to grow. This is most likely because of the

strategic partnerships Red Hat was able to negotiate with large information technology

firms in the lead up to the dot-com crash. Those firms – Intel, Cisco, IBM, Dell, etc. –

also survived the dot-com crash and have solidified their positions within the market for

information and communication technologies. Even though Red Hat was a start-up

company at the time, the partnerships that the company formed with these larger firms

ensured that Red Hat would be supported by these businesses into the future.

86

Figure 4.1. Red Hat Annual Revenues 1998-2013

Looking at the trajectory of Red Hat's net profits, on the other hand, exhibited a

noticeable dip during the dot-com bubble crash (see Figure 4.2). Red Hat's profits dipped

from 1998 until 2002, but rose again in 2003. This performance almost perfectly

coincides with changes in management, and can also be explained by a shift in Red Hat's

business strategy during those periods. In 1999, the original co-founders of the company,

Bob Young and Mark Ewing, left the company. In 2001, Paul Cormier joined the

company and began to lobby for shifting the company's business model. Specifically,

Cormier wanted to provide FLOSS solutions at the enterprise level rather than in the

consumer market. To more fully explain the nuances of this shift, the following section

contains an in-depth discussion of Red Hat's core commodities, how those commodities

shifted focus over time, and how Red Hat was able to centralize intellectual property

within its corporate structure.

87

1998
1999

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010
2011

2012
2013

0

200

400

600

800

1000

1200

1400

Red Hat, Inc.
Annual Revenues (in millions)

R
ev

en
ue

Source: Data is from Red Hat's 10-K Annual Reports filed with the SEC for the years 1998-2013.

Figure 4.2. Red Hat Annual Net Profits 1998-2013

Red Hat's Core Commodities and Intellectual Property

Red Hat's business model relies primarily on its ability to provide an easy-to-use

and accessible version of Linux by producing packaged distributions of the operating

system, while also providing additional services and customer support that cater to its

products. Red Hat's revenues then come from these two streams.12 The majority of Red

Hats' revenues comes from a subscription model, whereby clients get both products and

support from Red Hat in exchange for a fee. The types of products and services provided

depend on the level of subscription. The effectiveness of this subscription model is

based, to a large degree, on two interrelated factors: Red Hat's recognition as a

trustworthy provider of FLOSS products and services, as well as Red Hat's position as a

legally recognized institution, which can be held liable for the products and services it

provides.

12 Unless otherwise noted, the information from this section comes from Annual Reports (Form 10-K)
filed with the Securities and Exchange Commission in the United States between the years 2000-2013.

88

1998
1999

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010
2011

2012
2013

-200000
-150000
-100000

-50000
0

50000
100000
150000
200000

Red Hat, Inc.
Net Profits (in millions)

P
ro

fi
t

Source: Data is from Red Hat's 10-K Annual Reports filed with the SEC for the years 1998-2013.

Most importantly for its customers, Red Hat is able to provide a way to outsource

services that may otherwise be too expensive to perform within one's own company.

Indeed, any one of Red Hat's customers could perform the work done by Red Hat,

especially because the underlying code that Red Hat relies on is available for free. Red

Hat does not own the intellectual property rights for the free software that its services are

based upon, and the company is not necessarily trying to exclude others from this

intellectual property. Indeed, Red Hat has built its business model based solely on free

software that is protected by the GNU General Public License (GPL). As such, any of its

customers could, in theory, produce the same software that is sold by Red Hat, but they

would need to perform the work themselves. However, Red Hat is a legally recognized

institution that can be liable for the products and services it supplies. Because of this, its

customers can feel comfortable with the sense of security they get when they sign a

contract with Red Hat, and this, in turn, is how Red Hat has been able to become the

market leader providing FLOSS distributions and services to earn its revenues. Prior to

its founding, FLOSS projects had differing degrees of trustworthiness. By forming a

corporate entity that could be held liable for the products and services provided, Red Hat

served as a way to legitimize a system of production that was massively distributed and

seemingly anarchic. To its customers, then, Red Hat serves as a legally recognized entity

providing an assurance for the free software products and services it supplies.

But to understand the types of products and services that underlie Red Hat's

market position, we will need to examine exactly how Red Hat has been able to profit

from free software, especially as it does not own any of the intellectual property that

makes up its business model. To do so, this section begins with a discussion of Red Hat

Linux, which was the original operating system sold to customers from 1994-2004.

89

Then, the shift that occurred when Red Hat focused more on providing enterprise

solutions through their Red Hat Enterprise Linux offering is discussed. The relationship

between Red Hat's core commodities and Fedora, which is the primary FLOSS project

supported by Red Hat, is also described.

Red Hat Linux

When Red Hat first began offering products and services in the early 1990s, it

began selling a compact disc for approximately $50, which contained a Linux distribution

called Red Hat Linux, some additional applications, and documentation. Red Hat Linux

was based purely on computer code that was protected by the GPL – that is, code that

needs to remain freely available for distribution, modification, adaptation, etc. Red Hat

Linux provided the principle source of revenue for Red Hat during its early years.

Revenues came primarily from sales of Red Hat Linux to distributors and original

equipment manufacturers (OEMs) for inclusion on their hardware. These companies are

some of the same who invested directly in Red Hat during its early years: Dell, Cisco,

Hewlett-Packard, IBM, and Intel. Because Red Hat had the power of a potentially very

large and distributed labor force behind it, like the FLOSS community, its business model

was highly scalable. That is, Red Hat had the ability to quickly expand its market

without incurring increased investment costs. In other words, the Red Hat Linux product

could be distributed to a large number of customers without need for more investment.

This was precisely Red Hat's strategy: to rapidly increase the market, deriving a small

amount of revenue from a large number of transactions, while reinvesting its earnings

back into the FLOSS community.

90

While Red Hat Linux provided the primary commodity for Red Hat during its

early years, the bulk of its work was coming from the support it provided for this

software. Red Hat's employees provided customer support, education, training, and

technical support to its clients who were using Red Hat Linux. This strategy, along with

Red Hat's strategic partnerships, allowed the company to begin picking up market share

during its early years. While the company's revenues were still growing up until 2004, it

still had not become a profitable business. This was, in part, due to its acquisitions of

other software firms before the dot-com bubble crash, but also because the company had

not yet found a way to substantially increase subscription sales at the enterprise level to

other businesses. This is precisely the change that occurred when the company shifted its

focus to Red Hat Enterprise Linux, which became its core commodity and continues to be

today. The final stable version of Red Hat Linux was released in 2003, which was the

same year that Red Hat Enterprise Linux was released.

Red Hat Enterprise Linux and the Fedora Project

In 2003, Red Hat split its Red Hat Linux project into two separate projects: Red

Hat Enterprise Linux and the Fedora Project. Red Hat Enterprise Linux continued as a

core commodity for Red Hat in the same way that Red Hat Linux had been before. The

Fedora project, however, became a community-based FLOSS project. Red Hat

Enterprise Linux relied on the same model as Red Hat Linux in terms of providing

packaged distributions of a free operating system but, rather than selling individual

compact discs containing the software, Red Hat Enterprise Linux was made available

through a subscription model. Depending on the level of subscription, customers could

get access to customized versions of the Red Hat Enterprise Linux operating system plus

91

different levels of support services for the operating system. In effect, Red Hat

Enterprise Linux was a sufficiently similar product to Red Hat Linux with a different

model for how the product would be provided to customers. Red Hat then used the

revenues from sales of Red Hat Enterprise Linux to support the Fedora Project. The

relationship between these two projects provides perhaps the most interesting insight into

how Red Hat incorporates the commons.

The split into Red Hat Enterprise Linux and the Fedora Project in 2003 was made

with the intention of finding a mutually beneficial way for the community and Red Hat to

collaborate on developing software. Red Hat Enterprise Linux continues to serve as the

primary core commodity of Red Hat, and the company profits from subscription sales to

its customers. The Fedora Project was meant to be a community-sponsored project that

would provide an incubator for innovation. In return, the innovation that occurred within

the Fedora Project could then be implemented into Red Hat's commercial offerings. This

was possible was because of the ownership and governance structure of the Fedora

Project, as well as the worker contracts established with contributors to the project.

Ownership, Governance, and Intellectual Property in Fedora

The Fedora Project is ultimately owned by Red Hat. However, the Fedora Project

is led by the Fedora Project Board, which has nine members.13 Of those nine members,

five are elected by the community of developers who contribute to the Fedora Project.

The remaining four members are appointed directly by the Fedora Project Leader, who is

a full-time employee of Red Hat. The Fedora Project Leader also serves as Chair of the

13 Information about the Fedora Project Board is publicly available on the project's wiki, which is
available at: http://fedoraproject.org/wiki/Board (last accessed July 7, 2014)

92

http://fedoraproject.org/wiki/Board
http://fedoraproject.org/wiki/Board

Fedora Project Board and holds veto power over any decision made by the board. Any

person involved in the Fedora Project, whether a Red Hat employee or community

member, may be elected to serve on the Fedora Project Board. This suggests, however,

that Red Hat ultimately holds power over the decisions made by the community. While

Red Hat does have an incentive not to abuse this veto power, the power still exists.

CHAPTER VI will discuss in greater depth how the community reacts to an abuse of

governance power by corporations that sponsor FLOSS projects.

The ownership and governance structure of the Fedora Project ultimately gives

Red Hat the power to direct the types of development that occur within the community.

Red Hat supports the community by sponsoring the project, but it then uses the work

performed by the community in its commercial offering, Red Hat Enterprise Linux. The

second reason Red Hat is able to appropriate the labor performed within the community

is because all contributors to the Fedora Project have had to sign a contributor's

agreement. These agreements have changed throughout the history of the Fedora Project,

but both have similar effects. Originally, contributors needed to sign the Individual

Contributor Licensing Agreement (ICLA), which effectively assigned the contributors'

copyright to the Fedora Project.14 However, the ICLA was later abandoned for the Fedora

Project Contributor Agreement (FPCA), which no longer assigned copyright to Red Hat

but specified the types of licenses that could be included in the Fedora Project.15 This

shift made it possible for code that had already been licensed under a previous licensing

14 Information about the Individual Contributor Licensing Agreement can be found on the project's wiki
at http://fedoraproject.org/wiki/Legal:Licenses/CLA (last accessed July 7, 2014)

15 Information about the Fedora Project Contributor Agreement can be found on the project's wiki at
http://fedoraproject.org/wiki/Legal:Fedora_Project_Contributor_Agreement (last accessed July 7,
2014).

93

https://fedoraproject.org/wiki/Legal:Fedora_Project_Contributor_Agreement
https://fedoraproject.org/wiki/Legal:Fedora_Project_Contributor_Agreement
http://fedoraproject.org/wiki/Legal:Licenses/CLA
http://fedoraproject.org/wiki/Legal:Licenses/CLA
http://fedoraproject.org/wiki/Legal:Fedora_Project_Contributor_Agreement
https://fedoraproject.org/wiki/Legal:Licenses/CLA

scheme to be included in the Fedora Project, as long as the licenses were compatible with

the guidelines established by Fedora.

Both the ICLA and the FPCA enable Red Hat to centralize control and ownership

of commons-based peer production into into its corporate structure. In the case of the

ICLA, it provided a direct assignment of a contributor's copyright to Red Hat, whereas

the FPCA does not necessarily assign copyright to Red Hat. In this sense, the FPCA can

be viewed as less restrictive because it allows contributors to assign licenses to their work

prior to submitting the work to the Fedora Project. However, those licenses must be

compatible with the goals of the Fedora Project, and the Fedora Project wiki maintains a

Software License List that identifies the acceptable and unacceptable licenses that can be

included in Fedora.16 Code protected by these licenses can still be legally defended by

Red Hat. In the event that content other than code is included in the submission (text,

images, logos, etc.), the contributor must waive his or her moral rights to the content.

This ensures that Red Hat will not be subject to infringement claims. In effect, these

licensing agreements provide a way for Red Hat to control what is included in the

commons-based project (Fedora) so that when that material is included in their

commercial offering (Red Hat Enterprise Linux or other software), the company will not

be subject to intellectual property infringement claims.

By taking these preventative measures to control what is included in Fedora, Red

Hat can provide its customers with a guarantee that they will not need to fear a potential

claim against intellectual property infringement. Red Hat does this through its Open

Source Assurance Program. The details of the program are codified in the Open Source

16 The Software License List can be found at http://fedoraproject.org/wiki/Licensing:Main?
rd=Licensing#Software_License_List (last accessed July 7, 2014).

94

http://www.redhat.com/legal/open_source_assurance_agreement.html
http://fedoraproject.org/wiki/Licensing:Main?rd=Licensing#Software_License_List
http://fedoraproject.org/wiki/Licensing:Main?rd=Licensing#Software_License_List
http://fedoraproject.org/wiki/Licensing:Main?rd=Licensing#Software_License_List

Assurance Agreement17 contract, which states that in the event that a third party alleges

infringement of intellectual property in the software provided to the client by Red Hat,

the company will,

(i) defend Client against the Claim and (ii) pay costs,
damages and/or attorneys fees that are included in a final
judgment against Client (without right of appeal) or in a
settlement approved by Red Hat that are attributable to
Client's use of the Covered Software; (Red Hat, Inc., 2014)

Furthermore, if the Client's use of Red Hat's software is found to infringe the third party's

intellectual property rights, then Red Hat will

(i) obtain the rights necessary for Client to continue to use
the Covered Software consistent with the Support
Agreement(s); (ii) modify the Covered Software so that it is
non-infringing; or (iii) replace the infringing portion of the
Covered Software with non-infringing code of similar
functionality (subsections (i), (ii) and (iii) are the "IP
Resolutions"); provided that if none of the IP Resolutions is
available on a basis that Red Hat finds commercially
reasonable, then Red Hat may terminate the Support
Agreement(s) without further liability under this paragraph,
and, if Client then returns the Covered Software that is
subject to the Claim, Red Hat will refund any prepaid
subscription fees related to Covered Software. (Red Hat,
Inc., 2014).

From Red Hat's perspective, then, this is the legal-juridical benefit of controlling what is

included in the Fedora Project as well as centralizing control of the intellectual property

rights within its corporate structure. Red Hat relies on the FLOSS community to perform

the cooperative labor of developing new features, fixing bugs, or otherwise improving the

Fedora Project so that these features can be included in its commercial offerings. In order

to assure its customers that they will not be subject to intellectual property infringement

claims from third parties, Red Hat requires contributors to assign licenses to their work

17 The full text of the Open Source Assurance Agreement can be found at
http://www.redhat.com/legal/open_source_assurance_agreement.html (last accessed July 7, 2014).

95

http://www.redhat.com/legal/open_source_assurance_agreement.html
http://www.redhat.com/legal/open_source_assurance_agreement.html

that will allow Red Hat to continue providing its services. In effect, Red Hat is

separating authorship from ownership, which is one of the primary critiques of

intellectual property laws (see Bettig, 1992). However, Red Hat does not use copyright

to prevent authors or anyone else from making use of the code in other ways. Basically,

Red Hat is just trying to ensure that the code in Fedora can be legally defensible, while

allowing the company to provide assurances to its customers. Red Hat's method for

protecting its core intellectual property does not come from copyright, but the company

still prevents exact redistributions of its property through trademark law.

Red Hat, Trademark, and CentOS

As stated earlier in this chapter, Red Hat does not own the intellectual property

that makes up its core commodities. Most of the code that makes up Red Hat's core

commodities is covered by the GPL, which allows others to freely copy, modify, and

redistribute the code. Therefore, rather than relying on copyright to protect its core

commodities, Red Hat relies on trademark law to protect its properties. The details of

this strategy can be found in Red Hat Trademark Guidelines18 document (Red Hat, Inc.,

2006). In theory, anyone could make an exact copy of Red Hat's open source software

and begin selling it, but they would be prevented from including any registered

trademarks. These trademarks include the logos and names of software, which means

that exact copies of Red Hat's open source software would need to be given a different

name. Red Hat's trademarks also prevent products from having names that are

sufficiently similar, like “Green Hat” or “Red Cap,” or “Redd Hatte.” While these

18 The Red Hat Trademark Guidelines are available at http://www.redhat.com/f/pdf/corp/RH-
3573_284204_TM_Gd.pdf (last accessed July 7, 2014).

96

http://www.redhat.com/f/pdf/corp/RH-3573_284204_TM_Gd.pdf
http://www.redhat.com/f/pdf/corp/RH-3573_284204_TM_Gd.pdf
http://www.redhat.com/f/pdf/corp/RH-3573_284204_TM_Gd.pdf

restrictions exist, CentOS provides an example of a project that served as an exact

replacement for Red Hat Enterprise Linux.

CentOS began in 2004, and served as a functionally compatible version of Red

Hat Enterprise Linux. Indeed, CentOS was based on the publicly available code for Red

Hat Enterprise Linux. Rather than competing with CentOS or trying to prevent them

from using code included in Red Hat Enterprise Linux, Red Hat was largely ambivalent

about CentOS. This is, in part, due to the perception that customers who want to use

CentOS will probably continue to use it, but also because those customers could switch to

Red Hat Enterprise Linux at any time because the two operating systems were basically

the same. However, whatever tension may have existed between the two operating

systems became a moot point in 2014, when Red Hat officially became a sponsor of the

CentOS project. The move was perceived as a way to meet users' demands across the

three major versions of Red Hat's software – Red Hat Enterprise Linux, Fedora, and

CentOS – by giving users access to features that may not be included across all versions

of the operating system (Vaughn-Nichols, 2014). As part of Red Hat's new sponsorship

of the CentOS project, all CentOS trademarks were transferred to Red Hat.

Red Hat's use of trademark law to protect its market position is used in

conjunction with its ability to control the intellectual property included in its commercial

offerings. By sponsoring the CentOS project, Red Hat is able to increase its intellectual

property holdings, while also eliminating a rival form of free software that was offering a

functional equivalent of its commercial software. In this sense, Red Hat's sponsorship of

the CentOS project functions similarly to a corporate acquisition or an instance of

horizontal integration.

97

Core Commodity Conclusions

What becomes clear from this discussion of Red Hat's core commodities and the

services provided for those commodities is that Red Hat, as an institution, may be viewed

in at least two different ways. On the one hand, Red Hat can be viewed as a pragmatic

way to centralize commons-based peer production in a capitalist system. In effect, Red

Hat serves as a gateway for access to commons-based peer production by being

dialectically situated between capital and the commons. In other words, Red Hat

leverages the power of the commons by finding a way to centralize production into a few

core commodities that can then be sold to other businesses as information technology

solutions. This offers another part of the explanation for why Red Hat maintains a good

reputation with the FLOSS community. Red Hat is clear about its intentions for being

involved in FLOSS projects. Indeed, Red Hat's entire business model is founded on

finding a way to sell the power of FLOSS production to other businesses. In return, Red

Hat reinvests in the FLOSS community by supporting FLOSS projects, acquiring new

businesses and releasing source code to the community. The relationship between Red

Hat and the FLOSS community is one of mutual benefit: Red Hat's financial success

benefits the FLOSS community, more revenue for Red Hat means more investment in

FLOSS projects, and more investment in FLOSS projects means higher quality products

and services that Red Hat can offer to its customers.

However, Red Hat can also be viewed as an institution that operates no differently

than other corporations operating under a capitalist system. Red Hat relies on

centralizing production within its corporate structure, separating authorship from

ownership through workers agreements, and protecting intellectual property through

98

trademark laws all for the purpose of making profit. The difference in Red Hat's case is

that it cannot prevent others from using its intellectual property through copyright laws.

Moreover, Red Hat does not directly employ its entire labor force. As such, the company

does not compensate all of its laborers through wages, but must rely on other informal

ways of compensating laborers. Because the company relies on this labor force, it must

maintain a good relationship with that community, or the community may move

production elsewhere. CHAPTER VI will describe some of the specific ways that the

community maintains this ability to leverage its labor power. The purpose of this chapter

is to demonstrate the ways in which one company centralizes commons-based peer

production into a commercial product.

From the Commons to Capital

Red Hat offers an example of how a distributed system of commons-based peer

production can become centralized within a corporation and turned into a profitable

business. In part, Red Hat's success can be explained by its strategic partnerships with

large information technology companies. These partnerships can at least explain how

Red Hat was able to survive the period immediately following its initial public offering.

Interestingly, it became a publicly traded company at the same time that many dot-com

companies were the targets of massive capital investment, a period referred to as the “dot-

com bubble.” Red Hat was also one of the earliest companies to position itself as the

leading company providing services for FLOSS. As such, Red Hat sought to lend an

element of professionalism to the emerging FLOSS phenomenon by establishing the

formally recognized institution of a publicly traded corporation that could be legally

liable for the services provided. Consequently, Red Hat needed a way to hold the rights

99

to the commons-based peer production that made up its core commodities. The company

accomplished this through Individual Contributor License Agreement (ICLA) and later

the Fedora Contributor License Agreement (FCLA) that granted the company rights to

use the production that was performed by developers.

The CLA is a striking example of how authorship is separated from ownership.

This separation is essential to Red Hat's business model because it grants exclusive rights

to Red Hat so that the company becomes both legally liable for the products it is selling

as well as legally able to defend those products in the event of a violation. However, it is

important to note that Red Hat is not alone in using these types of worker agreements.

The issuing of contributor licensing agreements (CLAs) is common practice in FLOSS

projects. These CLAs represent the most striking example of how institutions, whether

for-profit or non-profit corporations, or any other type of legally recognizable

organization, centralize commons-based peer production by separating authorship from

ownership.

However, the peculiar thing about Red Hat is that it does not use contributor

agreements to protect copyrights. Most, if not all, of the code underlying its core

commodities is protected by the GPL, which grants the right to copy, modify, or

redistribute the work. In addition, the GPL requires that modified versions of the

intellectual property be protected by the same license. By using code that is protected by

this license as well as similar licenses, Red Hat cannot rely on copyright law to prevent

others from making exact copies of the code it makes publicly available. Rather, Red Hat

relies on trademark laws that protect the names and logos for their products.

For all the rhetoric of revolutionary productive processes, massively decentralized

and distributed systems, FLOSS as a process and product still exists within a capitalist

100

system that requires commercial entities to be held liable for the products and services

they provide. Therefore, productive activity under capitalism still takes the form of

centralization, control, and appropriation of surplus value. Even in the case of so-called

“non-market production,” the labor performed under these conditions can still be

appropriated for corporate gain. Even if the producers are not centralized within a

particular institution, corporations require any claims to the knowledge commons be

surrendered so that the commons may be exploited for corporate gain. In the case of Red

Hat, the company provides a legally recognized and formalized institution that makes use

of trademark laws to effectively brand commons-based peer production. This may be

viewed as a mutually beneficial relationship that provides a pragmatic solution to the

problem of how to organize commons-based peer production in a way that allows

members of the community to earn a living. However, this condition only benefits a

portion of the community.

In the event that contributors to the knowledge commons are not employed by one

of the institutions supporting a FLOSS project, their payment comes to them informally

when they attend public events or trade shows where institutions like Red Hat provide

sponsorship or other goods and services for the community. This informal economy is

only sustainable for as long as the institutions supporting FLOSS projects remain

transparent about their intentions for the products of FLOSS developers' labor and

continue to support the community through the provision of paid employment,

sponsorship of additional FLOSS projects and events, and informally through gifts given

to the community.

This chapter has demonstrated how profitable Red Hat has become. This is,

undoubtedly, due in part to its relatively low labor costs in comparison to the size of its

101

workforce. Red Hat offers an example of a way that commons-based peer production can

be centralized within a corporate structure. Red Hat has grown because of the

relationships it has negotiated, the strategies it uses to control its intellectual properties,

and its willingness to give back to the FLOSS community in a variety of ways. The

following chapter charts the very different history of the Microsoft Corporation's long

and checkered relationship with the FLOSS community.

102

CHAPTER V

SHIFTING TOWARD THE COMMONS: MICROSOFT'S LONG AND WINDING

HISTORY WITH FREE SOFTWARE

The Microsoft Corporation (“Microsoft” hereafter) offers perhaps the most

contentious relationship with the open source community. Primarily, this is due to

Microsoft's core business model, which relies on the sale of proprietary software.

Through strategic partnerships, strong intellectual property protections, and a robust

strategy for capturing the consumer market for personal computer (PC) sales, Microsoft

grew to become one of the largest software companies in the world. At its peak,

Microsoft enjoyed a nearly 97% market share of all computing devices in the year 2000

(Tu, 2012). This was before the company was found to be in violation of the Sherman

Antitrust Act by the U.S. Department of Justice (DOJ). However, the antitrust decision

did little to curb Microsoft's economic growth at the turn of the 21st century. Rather, the

company's profits continued to grow, and Microsoft still ranks as one of the largest and

most dominant software companies in the world. What has changed, particularly after the

antitrust ruling, is the company's relationship to the broader free and open source

software community.

As mentioned in the introduction to this dissertation, Microsoft's former Chief

Executive Officer, Steve Ballmer, referred to Linux – the open source operating system –

as “a cancer” in 2001. Slightly more than eleven years later, the company opened an

entire division of its company devoted to the promotion and development of open source

software. In this chapter, the history of Microsoft's checkered relationship with free and

open source software (FLOSS) is charted, focusing on three specific moments that

illustrate this relationship. First, the company's initial growth and its rise as one of the

103

most dominant software companies in the world is described. During this time, the

company took an adversarial approach to open source software. This includes Bill Gates'

“Open Letter to Hobbyists” in which he decried the widespread culture of freely sharing

software in the hobbyist community, as well as the leak of internal documents known as

“The Halloween Documents” in 1998, which clearly outline the company's views on

open source software. The second section discusses the U.S. Department of Justice's

investigation and, ultimately, its conviction of Microsoft for violating the Sherman

Antitrust Act. Findings from the investigation and the subsequent decrees issued to the

company in the wake of the conviction are detailed. The final section focuses on the

most recent history of Microsoft, including its Shared Source program as well as its

decision to create Microsoft Open Technologies, a wholly owned subsidiary dedicated

solely to promoting and developing open source software, open standards, and open

technologies.

The Microsoft case study exemplifies the clash between two opposing systems of

production. On the one hand, Microsoft relies upon strong intellectual property

protections to exclude others from making use of its products. Those products have been

produced in-house as part of Microsoft's core business model. Microsoft uses these

intellectual property rights not only to protect its own works, but to threaten FLOSS

projects with infringement lawsuits. It is within this context that we can view Microsoft's

long history of railing against the lack of intellectual property within the FLOSS

community, beginning with Bill Gates' “Open Letter to Hobbyists” in 1976, through

Steve Ballmer's “Linux is a cancer” claim. What changed after the DOJ antitrust ruling is

that Microsoft shifted its position toward FLOSS projects in general by submitting its

own licenses for approval by the Open Source Initiative (OSI). The shift in Microsoft's

104

stance toward FLOSS after the antitrust ruling represents an important moment for

Microsoft, specifically, but also for the software industry in general. The shift can be

read as a humble admission that the business model upon which Microsoft relied for most

of its history had been mostly usurped by a more efficient and effective model of

production. But it can also be read within the broader context of the dot-com bubble

burst that hit the economy at the end of the 20th century, which coincided with many

Internet-related companies failures but also the emergence of the Web 2.0 phenomenon.

It was during this time after the DOJ ruling that Microsoft not only readjusted its

positioning with respect to FLOSS projects, but also attempted to become more directly

involved in FLOSS projects. The company's reasons for doing so were primarily to

comport with the consent decrees that the company agreed to as part of the antitrust

ruling, but also because the commons-based peer production of FLOSS had proven to be

a viable and successful business model. In short, Microsoft was basically forced to adopt

a more open stance to the broader FLOSS community – first because of the consent

decrees and, second, because of broader historical forces affecting the software industry.

Ultimately, the goal of this chapter is twofold: first, to argue that the antitrust

conviction in 2001 marks a critical moment in Microsoft's history that, when paired with

the bursting of the dot-com bubble and the emergence of the so-called Web 2.0

phenomenon, caused a shift in Microsoft's business strategy whereby the company tried

to find ways of harnessing the power of commons-based peer production. Second, it

demonstrates how Microsoft's own history is contradictory to its stance against the open

sharing of ideas. In fact, many of Microsoft's most successful products have incorporated

or licensed design features that were developed by others. By making these two points,

the chapter shows how Microsoft's relationship with the FLOSS community can be

105

understood as a strategic readjustment that was undertaken in response to Microsoft's

declining market share at the same time that Linux-based systems were gaining market

share. Although not a complete transformation of its initial stance, Microsoft's shift in its

relationship to the broader FLOSS community can be described as moving from capital

toward the commons.

The Rise of Microsoft 1975-1990

Microsoft was founded in 1975 after Paul Allen and Bill Gates developed the

Altair BASIC interpreter. An interpreter is a computer program that directly performs

functions written in a programming language. In the case of Altair BASIC, the

interpreter was designed to execute functions written in the BASIC (Beginner's All-

purpose Symbolic Instruction Code) programming language so that they could be

performed on the Micro Instrumentation and Telemetry Systems (MITS) Altair 8800

microcomputer. Altair BASIC became Microsoft's first product, which was distributed

by MITS under contract with the newly created company. From its very beginnings,

then, Microsoft focused on providing software solutions that could be included on

hardware devices. Microsoft's business model relied on establishing contracts with

hardware providers, which would allow Microsoft products to be included on hardware.

However, the company has consistently exhibited an antagonistic position with respect to

alleged infringements on its intellectual property. The first example of such behavior

came from unauthorized copying of its original Altair BASIC interpreter.

The Altair 8800 microcomputer has been credited as the device that ushered in the

microcomputer revolution (Garland, 1977). The Altair 8800 became widely popular after

being featured on the cover of the January 1975 edition of Popular Electronics. From the

106

magazine, readers could order kits for the computer, which could then be assembled by

hobbyists interested in experimenting with the device. As part of the order, readers could

purchase the Altair BASIC language for a fixed price. Since the Altair BASIC language

could be included with orders for the Altair 8800, Altair BASIC also became widely used.

However, hobbyists often made copies for friends or others as a way to allow them to

experiment with the device as well. This made Altair BASIC subject to unauthorized

copying, which prompted Bill Gates to publish an “Open Letter to Hobbyists” on

February 3, 1976.19

In the letter, Gates noted that “hundreds of people who are...using BASIC” have

all provided positive feedback about the interpreter. However, he claims that “most of

these 'users' never bought BASIC,” as “less than 10% of all Altair owners have bought

BASIC,” and the “amount of royalties [Gates and Allen] have received from sales to

hobbyists makes the time spent of [sic] Altair BASIC worth less than $2 per hour”

(Gates, 1976, 2). Gates continued by decrying the fact that most hobbyists steal software,

and asked whether this is a fair practice because it ultimately prevents good software

from being written. In effect, Gates was arguing that the time, labor, and resources spent

on developing software ought to be returned to him in the form of fair payment for use of

the software.

Gates' open letter signaled what would become a recurring theme throughout

Microsoft's history. Specifically, Gates and Microsoft accused members of the hobbyist

community of infringing on their intellectual property rights. The hobbyist community,

then, represented a threat to Microsoft's business model, which was one founded on the

19 The “Open Letter to Hobbyists” is available via the Wikimedia Commons here:
https://upload.wikimedia.org/wikipedia/commons/1/14/Bill_Gates_Letter_to_Hobbyists.jpg (Last
accessed July 3, 2014)

107

https://upload.wikimedia.org/wikipedia/commons/1/14/Bill_Gates_Letter_to_Hobbyists.jpg
https://upload.wikimedia.org/wikipedia/commons/1/14/Bill_Gates_Letter_to_Hobbyists.jpg

need to protect its products by using strong intellectual property protections. Indeed,

some of the responses to Gates' open letter focused more on the business strategy,

especially the shortcomings of Microsoft's contractual negotiations with the hardware

vendor (Hayes, 1976). In the years that followed the Altair BASIC beginnings, Microsoft

pursued a course of action that sought to do exactly that. By ingratiating itself with large

hardware manufacturers, Microsoft rapidly gained market share and became one of the

most dominant software companies in the world.

MS-DOS

Microsoft's business strategy during its early years focused primarily on providing

BASIC interpreters, but the company shifted its focus to operating systems in the early

1980s. From the 1980s until the mid 1990s, Microsoft primarily relied on its Microsoft

Disk Operating System, or MS-DOS, as its core commodity. MS-DOS originated in

1981 after IBM put out a request for an operating system to use on its IBM-PC line of

personal computers (PC). Shortly after the initial request from IBM, Microsoft acquired

the rights to the 86-DOS, an operating system from Seattle Computer Products, which it

renamed MS-DOS.20 Microsoft customized the newly acquired operating system to the

specifications required by IBM and licensed the operating system to IBM, which

included it in its IBM-PCs under the name PC DOS.

Microsoft's contract with IBM was not without controversy, however. The rise of

the PC was made possible by advances in integrated circuit, or microchip, technology.

Microchips for the consumer market were first used commercially in calculators, which

20 The original name for 86-DOS was actual QDOS, which stood for “Quick and Dirty Operating
System,” but Seattle Computer Products changed the name to 86-DOS once it began marketing the
product.

108

were manufactured by companies like Hewlett-Packard and Texas Instruments. As

demand for higher performance calculators increased, Intel was commissioned by

Busicom, a Japanese firm, to produce the first commercially available microprocessor

that could receive digital data and process it according to its programmed functions. The

new microprocessor was called the Intel 4004 (Nairn, 2002). However, these new chips

still needed language capable of converting instructions into signals that the chip could

process. This operating system came from Gary Kildall, who had authored a language

capable of performing such functions. Eventually, Kildall's language was transformed

into the first operating system for personal computers, known as CP/M. The rights to

CP/M were held by Kildall's company, Digital Research, Inc., or DRI.

Throughout the late 1970s, CP/M became the industry leader in operating systems

for personal computers. When IBM announced its initial line of personal computers, the

company chose Intel as the provider for microprocessors, but it also needed a supplier for

the operating system. Both Microsoft and DRI were consulted about providing an

operating system. The exact details about what transpired during the negotiations are a

bit murky,21 but we know that Microsoft eventually won the contract, which resulted in

the acquisition of 86-DOS that was subsequently rebranded as MS-DOS. Kildall,

however, would claim that MS-DOS infringed on his copyright for CP/M. Kildall

confronted both Gates at Microsoft and IBM about the alleged infringement but, on

advice from lawyers, decided not to sue. Instead, Kildall chose to license CP/M to IBM

for inclusion on their personal computers. When the IBM PCs were eventually released,

21 There are many different accounts of what happened. One of the most popular stories claims that
Kildall snubbed the executives from IBM by choosing to go flying in his personal airplane at the time
the meeting was scheduled. Other accounts claim that Kildall's wife killed the deal by insisting on
changes to the contract, and others claim that Kildall did not want to release the source code for CP/M
to IBM. These stories are recounted on the DRI Web site, which can be found at
http://www.digitalresearch.biz/HISZMSD.HTM (last accessed May 14, 2014)

109

http://www.digitalresearch.biz/HISZMSD.HTM

IBM offered a choice of operating system: $240 for CP/M or $40 for DOS (Hamm &

Greene, 2004). In effect, Microsoft became the clear choice for consumers, and DRI was

eventually purchased by Novell in 1991.

Microsoft's contract with IBM was perhaps the biggest turning point on its path to

becoming the largest software company in the world. As part of Microsoft's contract, it

reserved the right to sell its operating system to third-party vendors as well, which

allowed the company to exploit sales of its operating system to any hardware

manufacturer. Employing this strategy, Microsoft grew tremendously from 1981-1995,

with an increase in annual revenues from $16 million in 1981 to more than $6 billion in

1995 (Campbell-Kelly, 2001). Although exact figures are not publicly available, some

estimates suggest that MS-DOS held nearly a 90% market share of the PC market

(Gilbert, 1995). Although MS-DOS would continue to be produced until September 14,

2000, Microsoft began to focus its efforts on developing an operating system that would

use a graphical user interface (GUI). The product that it ultimately developed, Microsoft

Windows, would continue Microsoft's dominance of the personal computer software

industry.

Microsoft Windows

Operating systems featuring a GUI did not start with Microsoft. Researchers

working at Xerox's Palo Alto Research Center (PARC) first developed the GUI, which

was used on the Xerox Alto computer in 1973. However, Xerox did not successfully

exploit the GUI commercially. Since the market for personal computers and operating

systems was already dominated by IBM and Microsoft, Xerox found it difficult to focus

its efforts on commercially exploiting the GUI. Consequently, Xerox invited Steve Jobs

110

and other representatives from Apple to its PARC for access to its prototypes in exchange

for a $1 million investment in Apple prior to its initial public offering (Ward, 2013).

During this visit, Jobs viewed prototypes of a computer mouse used for navigation as

well as the ability to move text around on the screen. From this meeting, Jobs is said to

have refocused efforts at Apple toward developing a GUI operating system. However,

others have argued that assigning too much causality to Jobs' single visit is an erroneous

assumption, as other Apple engineers had ties to the PARC and Jobs himself made more

than one visit (Pang & Marinaccio, 2000). Whatever the inspiration, Apple worked on

developing a GUI operating system for its Macintosh personal computers. However,

Apple still lagged behind IBM and Microsoft in developing applications for its operating

system.

Since Microsoft had established itself as a leader in the market for operating

systems for PCs, and had previously worked with Apple by producing the SoftCard, a

microprocessor designed to run programs designed for CP/M on the Apple II computer,

Microsoft negotiated a licensing agreement for access to the Mac operating system in

1985. At this point, Microsoft had already been working on Microsoft Windows, its GUI

operating system, which was announced in 1983. The purpose of the license was to allow

Microsoft access to certain visual elements of the Mac operating system so that Microsoft

could develop applications for the Macintosh (The History of Computing Project, 2014).

Indeed, Microsoft used its powerful position in the PC software market by threatening to

“cease development work on important Mac applications unless such a license was

granted” (Nairn, 2002, 375). Windows version 1.0 was released the same year that the

license was granted in 1985.

111

Both Microsoft and Apple then worked on GUI-based operating systems as a way

to provide an easy-to-use solution for consumers. Although neither the first Microsoft

Windows release nor the Macintosh computer proved to be commercially successful,

GUI-based operating systems soon allowed massive diffusion of PCs to the consumer

market. Microsoft held its IPO in 1986, which earned $61 million in cash, which the

company used to invest heavily in developing its Microsoft Windows operating system.

Microsoft emerged as the clear winner during this period, and the company's relationship

with IBM ensured that its operating system would be installed on IBM-compatible

computers. Microsoft's growth during this period was immense, as reported earlier in this

chapter when its market share rose to 90% by some estimates (Gilbert, 1995). This

growth in market share coincided with an increase in revenues, and the Windows

operating system with its GUI elements was the key product that fueled the growth.

However, Apple challenged Microsoft's claims to the GUI elements of Windows,

claiming that Microsoft had infringed its intellectual property.

Apple Computer vs. Microsoft Corporation

In 1988, Apple began a copyright infringement lawsuit against Microsoft. Apple

claimed that Microsoft had infringed on 189 elements of its GUI, which, when taken

together, constituted a “look and feel” of its Macintosh operating system that was

protected by copyright. Apple claimed that the infringements occurred in version 2.03

and, later, 3.0 of Microsoft Windows. The lawsuit stemmed from the initial licensing

agreement that was negotiated between Apple and Microsoft when Apple granted

Microsoft access to its GUI for developing applications for the Mac. The resulting

litigation lasted four years, but the case was interrupted by Xerox bringing a suit against

112

Apple, whereby Xerox claimed Apple had violated its copyrights by using some of the

GUI elements originally featured in its PARC operations. Xerox further claimed that

Apple was guilty of unfair business practices because of its copyright claims on the GUI,

which made it difficult for Xerox to license the technology to other customers. The case

against Apple grew out of the meetings held between Xerox and Apple when Steve Jobs

and other Apple representatives visited the Xerox PARC to see prototypes of the GUI in

exchange Xerox's ability to acquire stock prior to Apple's IPO.

Xerox's claims against Apple were ultimately dismissed, as Apple claimed that,

while it may have borrowed ideas from Xerox's PARC, those ideas were not able to be

protected by copyright, and Xerox ought to settle any remaining dispute with the

Copyright Office (Pollack, 1990). Similarly, Apple's case against Microsoft was rejected.

Of the 189 claims of copyright infringement, all but 10 were dismissed. In the end, the

district court ruled in favor of Microsoft, claiming that the remaining 10 claims were over

ideas rather than expressions that could be protected by copyright. Furthermore, the

original licensing agreement signed between Microsoft and Apple that allowed Microsoft

access to the GUI developed by Apple granted Microsoft the “right to transfer individual

elements or design features using its 'Windows' program” (Apple Computer, Inc. v.

Microsoft Corporation, 1994).

While the 1994 case may not be directly related to corporate involvement in

FLOSS, it does illustrate a couple things about software development, intellectual

property, and Microsoft. First, the case demonstrates that early software development,

particularly of those features that we may take for granted today like the GUI, was not the

result of rugged individuals developing the technology alone. Rather, technological

113

development is a collective and collaborative process in which the ideas of others can

influence the direction of development.

Second, the case is instructive for the exploitation of intellectual property,

specifically because it illustrates how original authorship can be separated from

ownership (Bettig, 1992). While the idea and design for the GUI may have originated in

Xerox's PARC, Xerox had not commercially exploited its designs in the same way that

Apple and Microsoft sought to do. Through a series of licensing agreements – first

between Apple and Xerox, and later, between Apple and Microsoft – the rights to the

individual elements of the GUI became diffused as they were shared among peers.

Microsoft was already in a strong market position to be able to exploit the GUI through

its Microsoft Windows operating system, whereas Apple relied on assistance from

Microsoft for developing applications for its emerging Macintosh computer. By doing

so, however, Apple gave access to its GUI operating system to Microsoft. In turn,

Microsoft honored the stipulations of its original licensing agreement with Apple, but it

would later continue development of its Windows operating system by making use of

some of the same elements that Apple had been using. Furthermore, because Microsoft

maintained strategic alliances with major information technology manufacturers, the

company was in a position to ensure that its operating system could be commercially

exploited as its market share for personal computer operating systems rose to nearly 90%

during the 1990s (Gilbert, 1995).

Third, there is a great contradiction at the heart of this case when compared with

the history of Microsoft. Although the company benefited from sharing ideas to develop

its Windows operating system, the company relied heavily on strong intellectual property

protections to exclude others from its software as it ruthlessly defended its position atop

114

the software industry throughout the 1990s. As we will see, however, this ruthlessness is

ultimately what led to investigations for antitrust violations.

Microsoft in the 1990s

Microsoft's partnership with IBM was what ultimately allowed the company to

solidify its strategic position atop the computer software industry. Sales of the IBM PC

and its clones reached nearly 16 million by 1990, which represented nearly 84% of the

market share for personal computers (Reimer, 2005). Originally, Microsoft had teamed

with IBM to produce the OS/2 operating system, which IBM intended to be included on

its PCs, but Microsoft was busy working on its Windows operating system. By the time

Windows 3.0 was released in 1990, the relationship between IBM and Microsoft had

become strained to the point that the companies decided to terminate their Joint

Development Agreement,22 which specified the partnership between the two firms for the

purpose of working on OS/2 (TechInsider.org, 2013). Because the Windows operating

system was much more developed when the companies ended their relationship,

Microsoft rapidly picked up market share as its operating system was included on sales of

IBM-compatible PCs. Indeed, the relationship between IBM and Microsoft was what

initiallly drew attention from the United States Federal Trade Commission (FTC) in

1990.

The investigation by the FTC was initiated because of a joint news release by

IBM and Microsoft during the Comdex trade show in Las Vegas, NV, on November 13,

1989 (Wallace & Erickson, 1992). In the press release, the companies claimed that

22 A digitized version of the Joint Development Agreement is available at http://tech-
insider.org/os2/research/acrobat/871126.pdf (last accessed July 3, 2014).

115

http://tech-insider.org/os2/research/acrobat/871126.pdf
http://tech-insider.org/os2/research/acrobat/871126.pdf
http://tech-insider.org/os2/research/acrobat/871126.pdf
http://tech-insider.org/os2/research/acrobat/871126.pdf

“Microsoft would hold back features for Windows in order to help industry acceptance of

the OS/2 operating system” (Wallace & Erickson, 1992, 373). The FTC was concerned

that the companies were colluding to control the market for operating systems.

Ultimately, the FTC investigation ended in 1993 when the commissioners were split 2-2

on whether to bring an administrative action against Microsoft. In the same year,

however, the Antitrust Division of the United States Department of Justice (DoJ) picked

up the investigation, which would eventually lead to Microsoft's conviction for antitrust

violations. The main issues in that case, however, did not center around Microsoft's

control of the operating system market but business practices associated primarily with its

Internet browser, Internet Explorer. Around the same time that Microsoft was seeking to

solidify its position atop the computer software industry, however, at least three

concurrent technological developments and their attendant cultural practices were

emerging as challengers to the model used by Microsoft in its rise to power. These

developments were the emergence of the World Wide Web, the development of graphical

web browsers, and the creation of Linux. While the introduction to this dissertation

discussed the rise of Linux in the early 1990s, the following section will focus more

specifically on the so-called “browser wars” that followed the rise of the World Wide

Web.

The Browser Wars

In November of 1990, Tim Berners-Lee and Robert Caillau authored a proposal

for a hypertext project called the World Wide Web, which would provide “a way to link

and access information of various kinds as a web of nodes in which the user can browse

at will” (Berners-Lee & Caillau, 1990). The creation of such a project relied on server-

116

level applications to manage the nodes stored on the server and to facilitate the display

and access of those nodes with a browser. Browsers served as the application running on

a user's machine that could request access to the nodes stored on the server and display

those nodes to the user. Finally, web pages would need to be created that could store

textual, graphical, or other types of information that could be accessed by users. By the

end of the year in 1990, models of all these components had been created, and companies

began developing browsers that would allow users to access the burgeoning technology

of the World Wide Web.

Mosaic and Netscape

In 1993, the Mosaic web browser was developed by a team of researchers at the

National Center for Supercomputing Applications (NCSA) at the University of Illinois at

Urbana-Champaign. The browser had the ability to display graphical content on the web

and, although it was not the first browser to do so, Mosaic would drastically increase the

popularity of browsing the web. Prior to its creation, most of the pages on the World

Wide Web had been primarily text-based. However, Mosaic's place in the history of web

browsers is perhaps best illustrated by tracing the history of its ownership and, ultimately,

its transformation into the open-source web browser, Mozilla Firefox.

From its beginnings at the NCSA at the University of Illinois, the Mosaic browser

spawned at least two primary companies that sought to commercially exploit the

browser's technology. One company was called Mosaic Communications, and the other

was Spyglass. The code base for the Mosaic browser was handled by Spyglass after an

agreement was signed between the company and the University of Illinois, whereby

Spyglass would retain the rights to commercially exploit the code. The other company,

117

Mosaic Communications, created the Mosaic Netscape browser. In fact, many of the

employees at Mosaic Communications had worked previously on the Mosaic browser at

the NCSA, although the Netscape browser was built entirely by the team at Mosaic

Communications. What was truly novel about the Netscape browser, however, was that it

was made freely available to the general public for personal use, which was

unprecedented up to that point. Moody (2001) describes the significance of this strategy:

Along with a beta-testing program on a scale that was
unprecedented, the decision to allow anyone to download
copies of Netscape free had another key effect: It
introduced the idea of capturing market share by giving
away free software, and then generating profits in other
ways from the resulting installed base. In other words, the
Mosaic Netscape release signaled the first instance of the
new Internet economics that have since come to dominate
the software world and beyond. (187).

Indeed, the Netscape browser began to pick up market share, and the University of

Illinois noticed. To resolve any additional trademark disputes with the university, Mosaic

Communications changed its name to Netscape Communications and reissued its browser

under the name Netscape Navigator (Moody, 2001).

 Netscape Navigator quickly picked up market share from 1994-1996, reaching its

peak at nearly 90% in April 1996, according to some sources (Cusumano & Yoffie,

1998). Riding this extraordinary wave of enthusiasm for Netscape, the company held its

IPO in August 1995. On the day of its IPO, shares of the company began selling at $28

and reached $58.25 by the end of the day, valuing the company at nearly $3 billion after

only 18 months of operation (Moody, 2001). At that point, Netscape's IPO was the

largest in history. The success of Netscape was not lost on Microsoft, and the company

began to focus its efforts on developing a browser to rival Netscape. Thus began the first

“browser wars.”

118

Microsoft Responds

Since Microsoft had not devoted any significant amount of time and resources to

developing a web browser of its own, the company decided not to build its browser from

scratch. Rather, Microsoft approached Spyglass, which held the rights to the code base of

the original Mosaic browser. Spyglass had been developing its own version of Mosaic,

known as Spyglass Mosaic. Microsoft negotiated a license to use the Spyglass Mosaic

code base in exchange for royalty payments for each copy of the browser issued, with an

annual cap of $5 million (Elstrom, 1997).23 The resulting browser was called Internet

Explorer (IE), which was based on the same foundation as Netscape. As evidence of how

aggressively Microsoft pursued its new Internet strategy, Page and Lopatka (2007) note

that the company only had five or six employees working in the browser department in

1995 but, the company had more than 1,000 by 1999.

In addition to assigning more employees to the browser division, Microsoft began

packaging IE with distribution of its Windows operating system. As Microsoft had nearly

90% of the market for operating systems because of its contractual relationships with

Original Equipment Manufacturers (OEMs), the company was able to quickly make gains

in the market for web browsers. In effect, Microsoft was giving away copies of IE for

free by bundling it with its Windows operating system. To do so, the company began

distributing versions of IE to OEMs by sending discs to the manufacturers, and

eventually required the OEMs to install IE with Windows 95. OEMs were prohibited

from “modifying or deleting any part of Windows 95, including Internet Explorer, prior

to shipment” because of a non-negotiable licensing restriction that Microsoft placed on

23 This agreement would become a point of contention between Spyglass and Microsoft, as tracking the
exact number of IE copies issued proved to be incredibly difficult. Ultimately, the dispute was settled
in 1997 after Microsoft agreed to issue a one-time payment of $7.5 million and an additional $500,000
in “software and other considerations” to Spyglass (Elstrom, 1997).

119

OEMs (United States, 1999, see Finding 158). This restriction did not allow OEMs to

ship new PCs without IE installed. The effect on the market for web browsers was

almost immediate. Figure 6.1 shows the sharp rise in market share for the Netscape

browser, and its eventual sharp decline.

Figure 5.1. Netscape Navigator Usage Data 1994-2006

Source: Image has been released to the public domain, and is available via Wikimedia Commons at
http://commons.wikimedia.org/wiki/File:Netscape-navigator-usage-data.svg

Because of these tactics, Microsoft and its Internet Explorer won the first browser

wars. Microsoft was simply too big and had too much power to influence the market for

Netscape to compete. However, the novelty of distributing software freely for personal

use was not lost on Microsoft. Netscape's Navigator browser had rapidly picked up

market share by using such a tactic, and Microsoft effectively gave away its IE browser

by bundling it with its Windows operating system. Just as Microsoft was reaching its

most dominant market position and using tactics that eventually led to its conviction for

antitrust violations, Linux and the open-source model of production was beginning to

grow as a potential threat. Indeed, after Netscape Navigator had lost significant market

120

share to Microsoft, Netscape released the source code to the broader community in 1998

as a way to attract development for a new browser. That new browser would eventually

become Mozilla's Firefox, which was first released in 2002. Microsoft took notice of this

general trend toward open source as well and, in 1998, a series of leaked documents

demonstrated exactly how Microsoft viewed this emerging threat. The Halloween

Documents24 were made publicly available and their authenticity was later confirmed by

Microsoft (Harmon & Markoff, 1998). They will be discussed later in this chapter.

Before doing so, however, Microsoft's conviction for antitrust violations needs to be

discussed. In many ways, the antitrust conviction marks an important turning point, not

just in Microsoft's history but in the broader history of the software industry.

The United States vs. Microsoft Corporation

Microsoft's behavior during the Browser Wars was what ultimately led to its

conviction for violations of Sections 1 and 2 of the Sherman Act. Section 1 of the

Sherman Act prohibits “every contract, combination..., or conspiracy, in restraint of trade

or commerce...” (15 U.S.C. §1). Section 2 states it is unlawful for any person or firm to

“monopolize...any part of the trade or commerce among the several States, or with

foreign nations...” (15 U.S.C. §2). The court ultimately found Microsoft to be in

violation of both sections of the Act. Microsoft violated Section 1 by unlawfully tying its

web browser – Internet Explorer – to its operating system. Furthermore, the company

violated Section 2 by maintaining its monopoly power by anticompetitive means and

attempting to monopolize the web browser market.

24 The Halloween Documents can be found at http://www.catb.org/esr/halloween/ (last accessed July 3,
2014).

121

http://www.catb.org/esr/halloween/
http://www.catb.org/esr/halloween/
http://www.catb.org/esr/halloween/

These convictions rested upon the fact that Microsoft engaged in anticompetitive

behaviors in its contractual relationships with Original Equipment Manufacturers

(OEMs). In particular, Microsoft used “contractual and, later, technological shackles in

order to ensure the prominent (and ultimately permanent) presence of Internet Explorer

on every Windows user's PC system, and to increase the costs attendant to installing and

using [Netscape] Navigator on any PCs running Windows” (United States, 2000, 11). In

addition, Microsoft restricted OEMs from reconfiguring Windows 95 and Windows 98 in

ways that could lead to greater use of Netscape Navigator. Finally, Microsoft “used

incentives and threats to induce” certain OEMs from designing “distributional,

promotional and technical efforts” that would favor Internet Explorer instead of

Navigator (United States, 2000, 11).

The final judgment in the antitrust case found that Microsoft had violated sections

one and two of the Sherman Act, as well as more than 35 state law provisions in 19 states

plus the District of Columbia. In light of these violations, the U.S. District Court Judge,

Thomas Penfield Jackson, ordered Microsoft to divest its operating systems business

operations from its applications business operations. Furthermore, all the intellectual

property rights previously held by the two businesses were to be transferred to the

Applications Division, which was required to grant a perpetual, royalty-free license to the

operating systems business so that it could license, develop, and distribute modified or

derivative versions of the intellectual property. However, the Operating Systems

Division was prohibited from doing this with the intellectual property related to the

Internet browser (Internet Explorer). Aside from divesting the operations of these two

businesses, Microsoft was ordered to transfer all the assets from either one of the

divisions into a newly formed company, for which the transfer of ownership was to be

122

accomplished by a distribution of stock to shareholders not connected with Microsoft.

The intent of these decrees was to separate Microsoft's operating system business from

the business operations that handled its web browser development. These actions would

prevent Microsoft from engaging in the same types of anticompetitive behavior that it

had used during the Browser Wars.

Effects of the Decision

In 2001, District Judge Thomas Penfield Jackson recused himself from the case

because of some public comments that he made, which gave the impression that he had a

personal bias or prejudice against Microsoft (Wilcox, 2001). In his place, U.S. District

Judge Colleen Kollar-Kotelly took over the case and, in late 2001, approved a settlement

between the parties. The approved settlement would no longer seek the break up of

Microsoft's Operating Systems and Applications Divisions. Instead, Microsoft agreed to

a series of consent decrees in November, 2002, whereby the company would be

prohibited from retaliating against any OEM that develops, distributes, promotes, uses,

sells, or licenses any non-Microsoft products (United States, 2002). In addition,

Microsoft would need to establish a clearly documented schedule of all royalties that

would be received from OEMs for its Windows Operating System.

These provisions were aimed at prohibiting Microsoft from engaging in any

anticompetitive behaviors, but most importantly for the purposes of this analysis,

Microsoft would also be forced to promote interoperability for its products. This would

ensure that other companies could develop products that would operate smoothly with

Microsoft's products. As such, Microsoft was ordered to disclose its Application

Programming Interfaces (APIs), which would specify how software components should

123

interact with one another. By releasing its APIs to independent hardware vendors (IHV),

independent software vendors (ISV), OEMs, Internet Access Providers (IAPs), and

Internet Content Providers (ICP), those parties could develop software that could operate

on and interact with Microsoft's operating systems and other software. Microsoft would

also need to make any communications protocol available to third parties for the same

purposes. The consent decrees to which Microsoft agreed were supposed to last five

years from the decision in 2002. However, these decrees were renewed twice – once in

2006 and again in 2009 – and finally expired May 12, 2011 (Chan, 2011).

In effect, the antitrust ruling against Microsoft did not seek a breakup of the

company into distinct operating units, but focused more specifically on Microsoft's

intellectual property practices. The decrees forced Microsoft to disclose its APIs to third

parties as a way to encourage and support interoperability with its products. The logic

was that doing so would curb the anticompetitive behavior Microsoft had displayed

during the browser wars and in its contract bargaining with OEMs, while promoting

competition within the software industry. It is within this context that Microsoft's shift

toward (but not completely to) open source can be viewed.

Nevertheless, the consent decrees had little effect on the economic performance of

the company. Figures 5.2 and 5.3 illustrate Microsoft's economic performance in the

wake of the antitrust conviction and the consent decrees. Figure 5.2 presents the

company's annual revenues in billions of dollars. Clearly, the company's annual revenues

have continued to grow, and revenues were not affected by the dot-com crash that

negatively affected the United States economy during 2001. Indeed, the same could be

said of the company's profits during the same time, which are shown in Figure 5.3. The

124

company experienced a dip in profits in 2001, but still maintained nearly $7 billion in

profits during this time with a substantial jump in the 2005-2006 fiscal year.

Figure 5.2. Microsoft Annual Revenues 1999-2013

Figure 5.3. Microsoft Annual Net Profits 1999-2013

125

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
0

10

20

30

40

50

60

70

80

90

Microsoft Corporation
Annual Revenues (in billions)

R
ev

en
ue

Source: Data is from Microsoft's 10-K Annual Reports filed with the SEC for the years 1999-2013.

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
0

5

10

15

20

25

Microsoft Corporation
Net Profits (in billions)

Pr
of

it

Source: Data is from Microsoft's 10-K Annual Reports filed with the SEC for the years 1999-2013.

In sum, the consent decrees did little to affect the overall economic performance

of Microsoft. However, along with broader shifts occurring in the software industry at

the time, they did have the effect of changing some of Microsoft's practices associated

with open source. Indeed, the date of the consent decrees perfectly coincides with

Microsoft's creation of the Shared Source program. Furthermore, the end of the consent

decrees in May, 2011, coincides with the creation of the Microsoft Open Technologies

Division in 2012. To understand more fully Microsoft's relationship with FLOSS, the

remainder of the chapter charts the company's history with FLOSS, beginning with the

Halloween Documents, then discusses the Shared Source program and Microsoft Open

Technologies. The previous discussion in this chapter, provides an important context

within which Microsoft's shift toward FLOSS can be interpreted.

The Halloween Documents

In October 1998, Eric Raymond, who was a well-known member of the free and

open source software community and author of The Cathedral and the Bazaar, received a

series of internal documents from a confidential source that outlined Microsoft's strategy

against Linux and open source software. These documents were subsequently released to

the public by Raymond and their authenticity was later verified by Microsoft. These

documents became known as the Halloween Documents because many were released

near the end of October over different years. The Halloween Documents focus on

Microsoft's assessment of the strengths and weaknesses of open source software,

including Linux, and how the company could combat the growing popularity of the

movement. What is clear from the documents is that Microsoft viewed free software

products as a genuine threat to its own products, especially because the free software

126

projects had “acquired the depth and complexity traditionally associated with commercial

projects” (Raymond, 1998a). As such, the Halloween Documents contain information

about how Microsoft planned to combat open source software as a competitor.

In Halloween Document I ,25 Vinod Valloppillil discusses open source software as

a potential threat to Microsoft. Rather than focusing on a particular open source project

or organization, however, Valloppillil focuses on the process used in open source

development. Valloppillil writes, “to understand how to compete against OSS [open

source software], we must target a process rather than a company” (Raymond, 1998a).

The author goes on to assess possible strategies for combating open source software, and

gives special attention to “FUD tactics,” which is an acronym for Fear, Uncertainty,

Doubt. FUD is a tactic used in sales, marketing, public relations, and propaganda,

whereby one attempts to instill those feelings in consumers about the quality of a

competitors' products. For example, in an advertisement for Microsoft Server 2003,

Microsoft claimed that research demonstrated “Linux was found to be over 10 times

more expensive than Windows Server 2003” (BBC News, 2004). Microsoft was asked to

change the advertisement by the Advertising Standards Authority in the United Kingdom

because the results of the study were deemed to be misleading to consumers. In effect,

the advertisement was viewed as a way to instill FUD in consumers about the total cost of

ownership for Linux.

Halloween Document II26 largely contains a much more detailed technical analysis

of Linux's functionality when compared to other products. The author also describes his

25 Halloween Document I, along with Eric Raymond's commentary, can be accessed at
http://www.catb.org/esr/halloween/halloween1.html (last accessed July 3, 2014).

26 Haloween Document II, along with Eric Raymond's commentary, can be accessed at
http://www.catb.org/esr/halloween/halloween2.html (last accessed July 3, 2014).

127

http://www.catb.org/esr/halloween/halloween2.html
http://www.catb.org/esr/halloween/halloween1.html
http://www.catb.org/esr/halloween/halloween1.html
http://www.catb.org/esr/halloween/halloween1.html

personal experience with installing the DHCP Client Daemon and ultimately claims that,

even though he was a poorly skilled UNIX programmer, he was able to easily figure out

how to extend the DHCP client code and “the feeling was exhilarating and addictive”

(Raymond, 1998b). Importantly, however, the conclusion of the document suggests

possible strategies for competing against Linux. While the author concedes that Linux

was the greatest threat to Microsoft in the server market, he claims that a possible

strategy for fighting Linux may have been patent and copyright litigation.

Halloween Document III27 is a document from Microsoft Netherlands in which

Aurelia van den Berg, Press and Public Relations Manager, responds to the leak of the

two internal documents in 1998. Her response tends to downplay the significance of the

leaked documents, claiming that all companies conduct assessments of their competitors,

and that the leaked documents do not represent official Microsoft positions. At the end of

the document, however, van den Berg still manages to criticize FLOSS in general for its

inability to be a long-term solution. Alluding to the need for strong intellectual property

protections, van den Berg claims, “unless Linux violates IP rights, it will fail to deliver

innovation over the long run” (Raymond, 1998c).

Documents VII, VIII, and X are the other documents that were directly leaked

from Microsoft. The remaining documents are commentaries, satires, and criticisms of

Microsoft created by others in response to the leaked documents. Halloween Document

VII28 provides the results of an internal survey conducted by Microsoft in 2002 about

attitudes and opinions of FLOSS in general, Linux in particular, and the general

27 Halloween Document III, along with Eric Raymond's commentary, can be accessed at
http://www.catb.org/esr/halloween/halloween3.html (last accessed July 3, 2014).

28 Halloween Document VII, along with Eric Raymond's commentary, can be accessed at
http://www.catb.org/esr/halloween/halloween7.html (last accessed July 3, 2014).

128

http://www.catb.org/esr/halloween/halloween7.html
http://www.catb.org/esr/halloween/halloween7.html
http://www.catb.org/esr/halloween/halloween1.html
http://www.catb.org/esr/halloween/halloween3.html
http://www.catb.org/esr/halloween/halloween1.html

familiarity with Microsoft's newly created Shared Source program, which will be

discussed later in this chapter. The results of Microsoft's internal survey showed that

FLOSS in general and Linux in particular were viewed favorably by those included in the

survey, which mainly included policymakers, decision makers, and corporate executives

selectively chosen by Microsoft. The survey also showed that messaging designed to

criticize or question the quality of FLOSS, Linux, or the GPL were not effective

(Raymond, 2002a). In light of these findings, the authors recommend that Microsoft

could more effectively compete with FLOSS by focusing on the total cost of ownership

(TCO) of Microsoft products when compared with Linux. In addition, Microsoft should

focus on the benefits of its newly created Shared Source program.

Halloween Document VIII29 was an internal email sent by Orlando Ayala, Group

Vice President of Microsoft's Worldwide Sales, Marketing, and Services Group, to the

heads of Microsoft's subsidiaries in 2002. The message was sent as a reaction to the fact

that many governments and other large institutions had begun to transition to Linux. As

such, Ayala suggests that Microsoft and its subsidiaries needs to be better prepared to

respond to those types of announcements by communicating these announcements

internally so the company can try to respond to these cases directly. In short, the

document suggests that Microsoft's internal communication needed to be more fully

integrated to respond to their declining market share, particularly among large

institutions.

29 Halloween Document VIII, along with Eric Raymond's commentary, can be accessed at
http://www.catb.org/esr/halloween/halloween8.html (last accessed July 3, 2014).

129

http://www.catb.org/esr/halloween/halloween8.html
http://www.catb.org/esr/halloween/halloween1.html

Finally, Halloween Document X30 was leaked in 2004 and features an internal

email from the SCO Group in which the author discusses, albeit somewhat vaguely, the

relationship between SCO Group and Microsoft. The email appears to disclose the

amount of money paid to SCO on behalf of Microsoft. Although not discussed at length

here, the SCO Group was a software company that became infamous for engaging in a

number of legal battles over alleged intellectual property infringement in Linux related

software. The SCO Group went bankrupt in 2007, but between 2003 and 2011 the

company alleged that various Linux vendors had infringed copyrights belonging to the

SCO Group. These vendors notably included IBM, Novell, and Red Hat, but also

included claims against Daimler-Chrysler and AutoZone. Particularly relevant for this

discussion is that Document X suggests that Microsoft was contributing large amounts of

money to the SCO Group as a way to fuel the intellectual property litigation against

Linux and its vendors. This would be consistent with some of the suggestions in the

previous documents that possible strategies for combatting Linux would be copyright and

patent litigation.

In sum, the Halloween Documents allowed direct access to Microsoft's

assessment of FLOSS in general and Linux in particular. What becomes clear from the

documents is that Microsoft believed Linux was a legitimate threat to its own products.

However, Microsoft correctly placed the true value of FLOSS projects within the process

of production. To compete against the perception that FLOSS projects provided at least

the same level of quality as those of proprietary companies, Microsoft used FUD tactics

to suggest that the open source model of production was inherently unstable or not

30 Halloween Document X, along with Eric Raymond's commentary, can be accessed at
http://www.catb.org/esr/halloween/halloween10.html (last accessed July 3, 2014).

130

http://www.catb.org/esr/halloween/halloween10.html
http://www.catb.org/esr/halloween/halloween1.html

secure. Ironically, Microsoft's own survey data suggested that these tactics were not

effective, nor were any attempts to criticize the FLOSS development model. Instead,

Microsoft needed to shift their strategy to focus more on the quality of its own products,

including its newly developed Shared Source program. The Halloween Documents

provide an illuminating perspective on the internal culture of Microsoft during the critical

years from 1998-2004 when it underwent somewhat of a transformation. The antitrust

suit against the company began in 1998 and was ultimately decided in 2001, and the

company developed its Shared Source program in 2001.

Shifting Toward the Commons

Three concurrent factors ultimately led to Microsoft's change of position in regard

to FLOSS. First, the company was convicted of antitrust in 2001 and agreed to a series

of consent decrees in 2002 that sought to curb the company's anticompetitive practices by

requiring Microsoft to disclose its APIs to third parties. Second, the dot-com bubble

burst, which marked the end of the massive speculative investment in web-based

companies. Third, the rise of Linux and Linux-related businesses had demonstrated the

commercial viability of FLOSS-based business models. Microsoft responded to these

factors by initiating a couple different projects that were claimed to be dedicated to

FLOSS principles, although these initiatives were met with different levels of acceptance

by the broader FLOSS community. The next sections chart the rise of two such projects:

the Shared Source Initiative and the Microsoft Open Technologies Division. Because the

Microsoft Open Technologies division is still relatively new, however, extensive

information about its operations is limited. Therefore, I attempt to position the opening

131

of the division within the broader historical trajectory of Microsoft's shift after the

antitrust ruling.

Microsoft Shared Source

The Shared Source Initiative (SSI) began at Microsoft in 2001 as a way to provide

access to certain source code for debugging and reference purposes. While Microsoft had

been releasing portions of its Windows source code to academic institutions and OEMs as

early as 1991, the SSI expanded the range of code that was made available in 2001. The

code made available under this program was protected by a number of different licenses,

including the Research Source Licensing Program, Enterprise Source Licensing Program,

ISV Source Licensing, OEM Source Licensing, Windows CE source code access, and

others. While a full description of the rights granted by these licenses and programs is

well beyond the scope of this analysis, these licenses are mentioned here as a way to

demonstrate that the sharing of source code by Microsoft was not entirely new to the

period following the antitrust ruling. However, these licenses were not considered free

software or open source in its true sense because Microsoft still claimed copyright

protection on the underlying source code. Under most of these licenses, code was made

available for academic and reference purposes, but the company prohibited redistribution

of the code or limited distribution to those working on Microsoft software. In effect,

these licenses served as a way to allow others to view the source code, but it could not be

modified unless it adhered to the limitations set forth in the licenses.

What was novel about the SSI in 2001 was the expansion of its Shared Source

program by the release of more types of source code as well as the creation of new

licenses that were designed to grant different types of rights to users. Most notably for

132

the purpose of this project are the two licenses that were submitted to the Open Source

Initiative (OSI) for official registration as open source licenses: the Microsoft Public

License and the Microsoft Reciprocal License. Both were approved by the OSI in

October of 2007 (Open Source Initiative, 2007). This marked the first time that

Microsoft officially had a license approved by the open source community, even though

these licenses were still not fully compatible with the GPL.

Indeed, some within the broader community viewed Microsoft's Shared Source

Initiative and its new licenses as simply a marketing ploy. Even Michael Tiemann, the

president of OSI, the organization that approved the licenses, claimed:

Shared source is a marketing term created and controlled by
Microsoft. Shared source is not open source by another
name. Shared source is an insurgent term that distracts and
dilutes the Open Source message by using similar-sounding
terms and offering similar-sounding promises. And to date,
“share source” has been a marketing dud as far as Open
Source is concerned (Tiemann, 2007).

Of course, Microsoft's views differed from Tiemann's claim. In a speech in 2001,

Microsoft Senior Vice President, Scott Mundie, noted that Microsoft's expansion of its

Share Source Initiative may be viewed by some as a failed attempt at becoming an open

source company. Mundie claimed this assertion would be false because, “Shared Source

is Open Source” (Mundie, 2001). Mundie continued by saying Microsoft would be

incorporating many of the positive aspects of the FLOSS development, while continuing

to preserve the company's strong intellectual property protections. Mundie went on to

claim that FLOSS production was unstable as a business model in the long run because it

was not secure and subject to “unhealthy 'forking'” (Mundie, 2001).

These vastly different assessments of the SSI are indicative of the contentious

relationship that exists between Microsoft and the FLOSS community. Although

133

Microsoft had shifted its position toward FLOSS, the community still maintained a

healthy skepticism about Microsoft's involvement in FLOSS projects. After all,

Microsoft had a history of threatening intellectual property infringement suits against

firms using Linux, even though this stance began to thaw around the same time that

Microsoft's Shared Source licenses were approved by the OSI. In 2006, Microsoft agreed

not to sue Novell's Linux users in exchange for a share of Novell's open source revenue,

as Microsoft claimed that Novell was infringing its intellectual property. As a result of

the agreement, Novell claimed that its Linux business had increased 243% through the

first three quarters of the 2007 fiscal year (Lai, 2007). This agreement, as well as other

similar agreements between companies using Linux and Microsoft, caused somewhat of a

split within the FLOSS community as to whether companies should be signing such

agreements. While the split existed in 2007, the lines of this split have blurred

significantly in the years since these types of agreements began. Indeed, Microsoft has

now opened an entire division of its company dedicated to open source, which will be

discussed in the next section.

Microsoft Open Technologies

Microsoft Open Technologies opened in 2012 as a wholly owned subsidiary to

build “bridges between Microsoft and non-Microsoft technologies” (Microsoft Open

Technologies, 2014a). To do so, the subsidiary claimed to promote interoperability

through open standards and open source. One of the primary ways this is accomplished

is the building of open source code, which is hosted on the popular web-based

development platform GitHub, as well as Microsoft's own CodePlex platform. As of

2014, the company claimed to have 25 projects available on GitHub and CodePlex

134

(Microsoft Open Technologies, 2014b). These projects appeared to serve a variety of

purposes that were grouped into six thematic areas: cloud-based services, data and

business intelligence, device applications, open web, virtual machines, and devops.31

At the time of writing, it was still too early to tell whether the specific projects

hosted by Microsoft Open Technologies would be successful. More generally, however,

the creation of an entire subsidiary dedicated to open source at least signals a shift in

Microsoft's relationship to the broader open source community. Throughout Microsoft's

history, isolated individuals or smaller working groups may have advocated for greater

involvement in open source projects, but the creation of an entirely new subsidiary

marked the first concerted institutional effort at direct involvement. Notably, the creation

of the new subsidiary coincided with two major events at Microsoft. The first was the

expiration of the consent decrees in 2011, and the second was the resignation of Steve

Ballmer as Chief Executive Officer.

The consent decrees required Microsoft to make its APIs more openly available so

that developers could create technologies that could easily interact with Microsoft's

technologies. In other words, the consent decrees provided an impetus for forcing the

promotion of greater interoperability between Microsoft and non-Microsoft technologies.

In addition, Microsoft expanded its Shared Source initiative as a way to make its code

more openly available to the broader community. However, this move was met with

some skepticism by the FLOSS community, particularly because most of the licenses that

protected the code did not comply with open source standards. This changed in 2007

when the OSI approved two Microsoft licenses as open source.

31 “devops” is a portmanteau combining the terms “development” and “operations,” which is used to
describe a software development method.

135

In addition to the changes brought about by the consent decrees, Microsoft

experienced a change in leadership shortly after Microsoft Open Technologies opened.

CEO Steve Ballmer, who is credited with the “Linux is a cancer” indictment, announced

his resignation on August 23, 2013. He ultimately resigned in 2014, and Bill Gates

stepped down as Chairman of the company. However, Gates was invited to serve as

technology adviser to the newly appointed CEO, Satya Nadella. The shift in leadership

could similarly signal a new direction for Microsoft, although it is still far too early to

tell. What is clear, however, is the notable shift in Microsoft's stance toward open source.

Why Open Source? Why Now?

Microsoft's transformation in regards to open source can be interpreted within

broader historical shifts in web technology. On the one hand, the company's initial

strategy of relying on strong intellectual property rights and enforcing them ruthlessly

while simultaneously framing open source as an adversary ultimately led to an antitrust

conviction shortly after the turn of the 21st century. Throughout the 1980s and 1990s,

Microsoft's closed-source strategy led to tremendous growth within the software market.

The findings of the antitrust case, however, revealed the darker side of this growth.

Mainly, that the company engaged in monopolistic practices by using its dominance in

the market for personal computer operating systems to distribute copies of its Internet

Explorer web browser. This marked an historical turning point not just for Microsoft, but

of a more general trend that saw the end of the dot-com bubble and Web 1.0.

Microsoft was, and still remains, the largest software company in the world, and

the company managed to survive the burst of the dot-com bubble. Indeed, as

demonstrated in this chapter, the company was able to thrive in its wake. But in the years

136

shortly after the dot-com bubble burst in 2001, a host of new web-based companies arose

that promised interactivity and a focus on the consumer. This era, which marks the rise

of so-called “Web 2.0” companies, was characterized by companies providing services

rather than packaged software, controlling robust data sets that expanded as more people

use them, trusting users as co-developers of companies' products and services, harnessing

collective intelligence, relying on customer self-service, providing software across

multiple devices, and featuring lightweight user interfaces, development models and

business models (O'Reilly, 2005). These technological features functioned ideologically

insofar as they gave the illusion of participation, collaboration, and egalitarianism when,

in fact, they merely justified the provision of personal data to corporate Internet Service

Providers (ISPs), who, in turn, harvested and sold that data to advertisers (see Fuchs,

2011b).

This suggests that the antitrust ruling cannot be viewed as the sole factor that

affected Microsoft's business model. Rather, the antitrust decision combined with the

other emerging historical forces within the technology field – Web 2.0, the commercial

viability of Linux, and the ideology of romantic individualism within start-up culture – to

effect a change in Microsoft's business strategy. In 2002, only a year after the antitrust

ruling, Microsoft launched its “shared source” program, which provided greater access to

some of its source code, but still placed restrictions on its modification and redistribution.

Consequently, the program was widely viewed as somewhat of a marketing ploy and a

strategy to gain a better reputation with the open source community.

When viewed in this way, Microsoft needed to embrace open source – not only

because the consent decrees required a more open approach, but because the industry in

general was trending toward collaboration and Linux was proving to be commercially

137

viable. In part, Microsoft has an interest in promoting interoperability and open

standards, which enables it to keep up with the always-changing technological landscape.

But the company's turn to open source may also be viewed as a humble recognition that

the commons-based peer production taking place within the FLOSS community was an

efficient and effective model of production that could supplement its own business

practices.

In sum, Microsoft represents an example of how a corporation that was widely

viewed as the antithesis to the FLOSS ethos transitioned toward a more open stance

toward it. In effect, Microsoft is now seeking to incorporate elements of FLOSS

production within its broader corporate structure. While not fully transforming to an

open source business, Microsoft has shifted its position even while it maintains strong

intellectual property protections over some of its core software. Consequently, Microsoft

does not seem poised to fully embrace FLOSS, but it also does not seem to be fully

competitive. The decision to collaborate or compete with the broader FLOSS community

will most likely be based on the company's assessment as to its relative strengths and

weaknesses in certain areas of software.

In the meantime, Microsoft will need to attract FLOSS developers to work on its

open source projects. However, this is not without potential pitfalls. The following

chapter presents a case in which a company that supported FLOSS projects was acquired

by another company that had other intentions for those projects. In response to this

undue corporate encroachment into their FLOSS projects, the community took certain

measures to resist such involvement, ultimately abandoning production on those projects.

More specifically, the following chapter discusses Oracle's acquisition of Sun

138

Microsystems and the effect this acquisition had on three software projects: OpenSolaris,

MySQL, and OpenOffice.

139

CHAPTER VI

CONFLICT IN THE COMMONS: ORACLE CORPORATION AND ITS

ACQUISITION OF SUN MICROSYSTEMS

The previous two chapters focused on case studies of Red Hat and Microsoft,

respectively. Red Hat demonstrates how free software can be turned into a profitable

business, and the company still maintains a good relationship with the broader open

source community today. Microsoft demonstrates how a company that depends on strong

intellectual property to protect its proprietary software eventually shifted to embrace open

source, albeit in limited and only certain ways. This chapter will look at how another one

of the largest software companies in the world, the Oracle Corporate (simply “Oracle”

hereafter), has tried to incorporate open source projects into its corporate structure.

Oracle did this by acquiring Sun Microsystems, which supported open source software

projects. Whereas Sun Microsystems (simply “Sun” hereafter) maintained a good

relationship with the open source community, these relations became strained after Oracle

acquired the company in 2010. After the acquisition, Oracle used a differnet strategy

with regards to Sun's open source projects. In certain cases, Oracle ended open source

activities, in others it tried to influence open source development to meet its own goals,

and in other it altered the way that the project was governed. In response, the community

employed different strategies to protect their commons-based resources.

In this chapter, I focus on the histories of three such projects: the OpenSolaris

operating system, the MySQL relational database management system, and the

OpenOffice productivity software that was designed as an alternative to Microsoft Office.

Throughout the chapter, I focus on the ways that the FLOSS community maintains a

unique ability to leverage its collective labor power against corporate encroachment into

140

its projects by using technical, legal, and governance strategies that allow them to

abandon a project without losing the products of their labor. This has a similar effect to a

factory walk out, whereby workers halt the productive process by abandoning the site of

production. When dealing with software, however, production is not reliant on a

particular space. Rather, productive activity can simply be moved to a new location.

And, because of the unique legal institutions and technical features of open source

software, a project can be “forked,” whereby project can be copied and moved to a new

location under a new name without violating the intellectual property protections of the

original project. As we will see, this is one of the primary ways that the FLOSS

community leverages its collective labor power against undue corporate influence.

To this end, I have structured the argument in the following ways. First, I provide

some background about Oracle and Sun. Next, I discuss the histories of each of the three

projects – OpenSolaris, MySQL, and OpenOffice – by focusing on their initial

development, their acquisition by Sun, and their fates after Oracle acquired Sun in 2010.

Finally, I conclude with some thoughts about why it will be important for the FLOSS

community to maintain its ability to leverage its collective power.

The Oracle Corporation and Sun Microsystems

The Oracle Corporation (hereafter simply Oracle) is one of the largest software

companies in the world. The company has three main operating segments: software

business, hardware business, and services.32 In turn, these three segments are divided into

seven smaller operating divisions: 1) new software licenses and cloud software

32 Unless otherwise noted, all of this information was derived from Oracle's annual filings (Form 10-K)
with the Securities and Exchange Commission (SEC) of the United States, which is available
here:http://www.oracle.com/us/corporate/investor-relations/financials/fy2013-form-10k-1966521.pdf
(last accessed March 4, 2014)

141

http://www.oracle.com/us/corporate/investor-relations/financials/fy2013-form-10k-1966521.pdf

subscription service; 2) software license updates and product support; 3) hardware

systems products; 4) hardware systems support; 5) consulting services; 6) managed cloud

services; and 7) education services. However, of the three main operating segments,

Oracle earns nearly 75% of its total income from the software business segment. In 2013

alone, the company earned more than $37 billion in total revenues and employed

approximately 120,000 people. Figure 6.1 provides an illustration of Oracle's total

revenues from 1998-2013. If calculated by total revenues, Oracle is the third largest

company in the global software market behind only IBM and Microsoft. Oracle has

remained competitive within the global software market, in part, because of its strategic

acquisitions. One of the company's largest acquisitions took place when it acquired Sun

Microsystems in 2010.

Figure 6.1. Oracle Corporation's Annual Revenues 1998-2013

142

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
0

5

10

15

20

25

30

35

40

Oracle Corporation
Annual Revenues (in billions)

R
ev

en
ue

Source: Data is from Oraclet's 10-K Annual Reports filed with the SEC for the years 1998-2013.

Figure 6.2 shows the rise in Oracle's net profits in the wake of its acquisition of

Sun Microsystem. The company's net profits dipped in 2001 after the dot-com bubble

burst, which had an effect on the entire economy in the U.S. at the time. However,

Oracle has enjoyed a steady rise in profits since that time, with a noticeable spike in

profits between 2010 and 2013. The company's profitablity can be directly tied to its

acquisition of Sun Microsystems.

Figure 6.2. Oracle Corporation's Annual Net Profits 1998-2013

Prior to its acquisition by Oracle in 2010, Sun Microsystems provided network

computing infrastructure solutions, which included software, systems, storage, and

microelectronics. In 2009, the final year of its independent operation, Sun reported

approximately $11.45 billion in revenues and employed approximately 29,000 employees

in more than 100 different countries. The majority of the company's revenues (42%)

came from its Systems operating segment, which includes the sale of servers that provide

computing and storage power to customers as a key part of Internet infrastructure. The

143

1998
1999

2000
2001

2002
2003

2004
2005

2006
2007

2008
2009

2010
2011

2012
2013

0

2000

4000

6000

8000

10000

12000

Oracle Corporation
Net Profits (in millions)

P
ro

fi
t

Source: Data is from Oraclet's 10-K Annual Reports filed with the SEC for the years 1998-2013.

other core brands owned by Sun Microsystems were the Java technology platform, the

Solaris Operating System, MySQL database management software, Sun StorageTek

storage solutions and the UltraSPARC processor. Because the company relied on the

provision of infrastructure-based services and products, the company was a large

supporter of interoperability. Interoperability, here, is simply defined as the ability for

different programs to exchange data with one another by using common formats. To

facilitate innovation and interoperability, Sun made its key intellectual properties freely

available as a way strategy to support open standards, open interfaces, and open source

software. By making a commitment to open source, Sun was viewed favorably by the

open source community and maintained a relatively good relationship with the

community because it was transparent about its corporate goals. To better understand the

reasons for Sun open-sourcing some of their key intellectual properties, we need to

consider some of the historical development for corporate involvement in FLOSS

projects.

A Brief History of the Market for Operating Systems

Throughout the 1980s, the market for operating systems was dominated by

proprietary versions of Unix-based operating systems. For example, Hewlett Packard

offered HPUX, IBM offered AIX, and Sun Microsystems offered SunOS. These

operating systems dominated high computing, or infrastructural level computing, while

the consumer market was dominated by Microsoft DOS, which was not based on Unix

but developed entirely by Microsoft. Importantly, the proprietary Unix-based systems

were source-incompatible. In effect, although these systems were all based on Unix, the

development of separate proprietary versions had caused the code to diverge in such a

144

way that programmers could no longer assume interoperability between the systems. As

a result, programmers had to maintain separate code bases for each system, and

companies could sell entire stacks of software to their customers who had to accept the

entire stack. This resulted in an inefficient system that was dominated by proprietary

software vendors, while simultaneously increasing the workload for programmers.

During the mid-1980s, however, the Free Software Foundation began as a response to the

overly protective intellectual property restrictions placed on software. This, in turn, led

to the development of free and open source software, which was collaboratively

developed as a commons-based resource for others to study, use, adapt, or modify in any

way.

Because this model of development was so successful, by the mid-1990s Linux,

an open-source operating system, had become the dominant Unix-like operating system.

Linux undercut the competition by offering a comparable product at a significantly lower

cost. Furthermore, because Linux is licensed under the GNU General Public License

(GPL), an alternative form of intellectual property (“copyleft”), improvements to Linux

could be shared by everyone, which improved the quality and stability of Linux. The

proprietary companies could not compete with Linux because the commons-based peer

production driving Linux constituted a larger labor force than any of the individual

companies could employ. Rather than competing directly with Linux, certain proprietary

companies began to open source their products as a way of joining forces with the free

and open source software community. Sun Microsystems was one of those companies.

Although Sun supported many different open source projects, I will focus on just

three here. Sun open-sourced their Solaris operating system, which became OpenSolaris.

They also open-sourced the MySQL database management software, as well as

145

StarOffice, which became OpenOffice. As I mentioned earlier, Sun maintained a good

relationship with the broader FLOSS community because of their commitment to and

support for FLOSS projects. After the company was acquired by Oracle, this relationship

was strained in certain ways. In what follows, I will discuss how the developers working

on the three projects mentioned above – OpenSolaris, MySQL, and OpenOffice –

strategically resisted the corporate acquisition.

OpenSolaris

In 1987, Sun Microsystems and AT&T announced that they were going to merge

some of the most popular Unix-based operating systems into a single project. This

project eventually became Solaris, which was a proprietary operating system held by Sun

that contained both open-source and closed-source components. To attract interest in the

project and build a community of users and developers around the project, Sun

Microsystems created OpenSolaris. OpenSolaris was an open-source version of the

Solaris operating system, although OpenSolaris did contain some elements in the code

that were not open source. After attracting a larger community of interest in the project, a

Community Advisory Board (CAB) was created to direct the project. The CAB was

comprised of two Sun employees, two members who were elected by the broader

community, and one member who was appointed by Sun from the broader free software

community. In effect, most of the CAB members were connected with or appointed by

Sun, and Sun made clear what its intentions were for the OpenSolaris project.

Sun's strategy for the OpenSolaris project was to incorporate some of the

developments from OpenSolaris into their proprietary Solaris operating system. In turn,

Sun could sell the proprietary version of Solaris to other enterprises. The money earned

146

from sales of the Solaris project could then be used to support the developers and

community involved in the OpenSolaris project. To facilitate this type of strategy, Sun

protected OpenSolaris under a free software license created by the company called the

Common Development and Distribution License (CDDL). This license enabled Sun to

include proprietary, free software, or software protected under any other license in their

Solaris and OpenSolaris operating systems. Consequently, Sun could use the

OpenSolaris community as a way to drive development, quality control, or innovation

that could be included in their proprietary Solaris offering. Importantly, however, Sun

made this strategy very clear to the OpenSolaris community, and Sun was supportive of

the broader FLOSS community, which gave it a good reputation within the community.

Once they acquired Sun, Oracle took a very different approach to this strategy.

After Oracle acquired Sun, they announced plans to discontinue the regular

distribution and development model of OpenSolaris (Laishram, 2010). Instead, Oracle

would focus its development strategy on a new proprietary version of Solaris called

Solaris Express. In effect, the new strategy from Oracle would not allow the community

of developers that supported OpenSolaris to continue their work. In response, the

Community Advisory Board directing the OpenSolaris project decided to fork the project.

When a project is forked, developers take a copy of the source code for a particular

project and begin to develop it as a distinct form of software. The resulting fork of the

OpenSolaris project is called OpenIndiana, which was created to continue the

development and distribution of the OpenSolaris project. Currently, Oracle still

continues development on the proprietary Solaris Express operating system, while the

community of developers supporting OpenSolaris have left Oracle to work on the forked

version of OpenSolaris called OpenIndiana.

147

In the case of the OpenSolaris operating system, Oracle's strategy was simply to

discontinue the open source project and focus development on a proprietary version of

Solaris under the new name Solaris Express. This represents the most direct strategy for

ending open development. Oracle announced that the open source project would be

discontinued and, in response, the community had to fork the project to continue

development under a new name. This is a similar fate to that of MySQL and OpenOffice,

but Oracle's strategy for ending development took different forms in each case.

MySQL

In 2008, Sun Microsystems acquired MySQL AB for approximately $1 billion

(MySQL, 2008). At the time, MySQL was growing in the market for relational database

management software (RDBMS), and Sun's acquisition of MySQL would allow the

company to compete directly with Oracle in that particular market. Only one year later,

however, Oracle acquired Sun, and the MySQL property was one of the key properties

that drew Oracle's interest. Indeed, the Sun-Oracle merger was originally approved by

regulators in the United States, but the European Union (EU) did not immediately

approve the deal specifically because of concerns that Oracle's acquisition of the MySQL

property would lead to an anticompetitive market for RDBMS in Europe (Chapman &

Newman, 2009). Consequently, the EU pressured Oracle to divest the MySQL property

as a condition for approval of the merger. As leaked documents provided to the whistle-

blowing site WikiLeaks have since shown, the United States Department of Justice

communicated directly with the European Commission's Directorate General for

Competition in support of the merger in October of 2009 (United States Mission to

148

European Union, 2009). Less than three months later, in December of 2009, the merger

was approved without the divestiture conditions sought by the EU.

MySQL relied on a dual licensing approach that was similar to the licensing of

OpenSolaris. The dual license model for MySQL would allow the code base for MySQL

to be protected by the GNU GPL copyleft license, but proprietary versions could be

created for enterprises that wanted customized installations. When the Sun-Oracle

merger was approved, employees working for MySQL had reservations about Oracle's

intentions for the GPL-protected code base of MySQL. Most notably among them was

Michael “Monty” Widenius who authored the original version of MySQL and co-founded

MySQL AB, which was the original owner of MySQL. Widenius later sold MySQL AB

to Sun before Sun was acquired by Oracle. Widenius along with other MySQL

developers were concerned that Oracle would try to discontinue MySQL or make it a

closed-source program by using the same strategy it had with OpenSolaris. In response,

Widenius urged MySQL users to “Help MySQL” by starting an online petition. Leading

up to the acquisition of Sun, however, Oracle pledged to keep the same licensing

strategies in place that had been negotiated with current customers for an additional five

years (Whitney, 2009). That commitment is set to officially expire in December of 2014.

Fueled by the concerns about Oracle's intentions for MySQL, the developers

forked the project to create MariaDB.33 The code base for MariaDB is protected by the

GNU GPL, and is designed to be a drop-in replacement for MySQL. As a forked project

of MySQL, MariaDB allows its community of developers and users to ensure that the

code will continue to be protected by the GNU GPL regardless of what Oracle decides to

do with MySQL. Furthermore, although MySQL remains dominant in the RDBMS

33 MariaDB is just one fork of the MySQL project. Others include Drizzle and Percona Server.

149

market with an approximately 58% market share, MariaDB has now grown to claim

approximately 18% of the market (Fydorenchyk, 2014). MariaDB has experienced

increased growth in the database market in part because of some notable companies

switching from MySQL to MariaDB, including Google and the Wikimedia Foundation.

MariaDB once again illustrates how the community of developers and users of an

open source software can protected their projects from unwanted corporate

encroachment. In the case of MariaDB, the project has gained additional attention from

some of Oracle's competitors who have invested directly in the project. Most notably,

SkySQL recently invested nearly $20 million to support the growth of MariaDB. Backed

by capital from Intel and other venture capital firms, SkySQL is directed by some of the

founding members of MySQL as well as former executives who left the company after

Oracle acquired the project. SkySQL recently announced a merger with The Monty

Program AB, which is led by Monty Widenius, the original author of MySQL. The

merger reunites the original members of MySQL and transfers ownership of the MariaDB

trademark to SkySQL. The resulting partnership will focus on developing MariaDB to

compete with MySQL.

Furthermore, both the Monty Program AB and SkySQL belong to the MariaDB

Foundation. The MariaDB Foundation is a non-stock, non-profit corporation, which was

established to provide legal and technical support for the MariaDB project and provide a

platform for supporters to contribute money to the project. For example, the MariaDB

Foundation sells corporate memberships beginning at $50,000 and corporate

sponsorships beginning at $5,000. According to the Foundation's web site, corporate

memberships allow “engagement with the governance of the Foundation,” although no

further details are provided about exactly what that entails (MariaDB Foundation, 2014).

150

In sum, MariaDB represents another example of how communities of FLOSS

projects maintain the ability to protect their commons-based resource against unwanted

corporate influence. In this case, however, Oracle's strategy was not to discontinue the

open source project, per se. Rather, Oracle's acquisition of Sun would allow the company

to gain a greater market share of the RDBMS market, and Sun's ownership of MySQL

was one of the primary properties that attracted Oracle to acquire Sun. Although

development of MySQL still continues under Oracle, many of the community members

resigned from Sun, and Oracle's commitment to maintain the same licensing agreements

for MySQL are set to expire at the end of 2014. To resist what could ultimately be a

similar fate to that of OpenSolaris, the MySQL community forked the project to develop

MariaDB. Furthermore, MariaDB has the additional benefit of having received

investment capital from some of Oracle's competitors, which ensures the survival of the

project for at least the foreseeable future. By establishing the MariaDB Foundation, the

community has a legally recognizable organization to provide technical and legal support

for the project, while also collecting additional donations to the project. In the third and

final example provided in this paper, I focus on a series of office productivity software

that eventually led to another forked project.

StarOffice, OpenOffice, LibreOffice

During the dot-com bubble in the mid- to late-1990s, Sun Microsystems

experienced dramatic growth that allowed the company made some key acquisitions. In

1999, Sun acquired the German company, StarDivision, which developed StarOffice.

StarOffice was designed as a proprietary office software featuring a word processing,

spreadsheet, presentation, drawing, database, and formula programs. When Sun acquired

151

StarDivision, the company continued to develop StarOffice as a proprietary software.

However, Sun forked the project and relicensed the software so that the source code

could be made open source under a free and open source license. Once again, Sun's

strategy was to use the newly open-sourced software, known as OpenOffice, to develop

new features and fix bugs in the software. Then, the changes made to OpenOffice could

be integrated into StarOffice, which contained certain proprietary elements. OpenOffice

could continue to remain free to consumers, while Sun would try to monetize StarOffice

by selling the software and services to customers who wanted the additional features.

The upshot for Sun was the maintenance and support for essentially two different

versions of the same software: OpenOffice 1.0 was a forked version of StarOffice 6.0,

and Sun maintained the legal rights to both properties, although they were protected by

different licenses.

The early versions of OpenOffice were protected by the Sun Industry Standards

Source License (SISSL) and the GNU Lesser General Public License (GNU LGPL).

Later versions were protected by an updated version of the LGPL after Sun discontinued

the SISSL. The LGPL was chosen because it had less restrictive requirements for

integrating free and open source software components into proprietary versions of the

software. Although a full discussion of the distinctions between free and open source

software licenses is beyond the scope of this essay, the basic differences between the

GNU General Public License (GPL) and the GNU LGPL can be summarized quickly.

The GPL requires that any modified or derivative software produced using a GPL-

protected software as its base must be redistributed under the same licensing

requirements. This ensures that free software remains free software rather than being

exploited by commercial companies. The LGPL is a more permissive license that allows

152

free software elements to be incorporated into proprietary software. The only restriction

on using LGPL-protected software is that the end-user must have the ability to modify the

source code. By protecting OpenOffice in this way, Sun could ensure that developments

in OpenOffice could be used in their proprietary StarOffice.

Thus, the symbiotic relationship between StarOffice and OpenOffice continued

under Sun because Sun was transparent about what its intentions were for the two

properties. Importantly, however, OpenOffice was governed by a Community Council

comprised primarily of members from the broader OpenOffice community but also

including a Sun employee as well. The Sun member on the Community Council was

responsible for communicating Sun's intentions to the community. Once again, however,

this relationship was strained when Oracle acquired Sun in 2010.

Since Oracle had discontinued the OpenSolaris operating system, members of the

OpenOffice Community Council decided to create The Document Foundation and fork

the OpenOffice project under the name LibreOffice until Oracle made its intentions clear

for the OpenOffice project. Both The Document Foundation and LibreOffice were

established with the intention of being temporary projects until Oracle made its intentions

clear. In the event that Oracle ultimately decided to discontinue OpenOffice, however,

the Community Council would be able to move development to the newly created

LibreOffice. Furthermore, The Document Foundation was established as a non-profit

organization to manage the LibreOffice project and promote the use of open-source

document software more broadly. The initial governance of The Document Foundation

was directed by a temporary steering council featuring some of the same members of the

OpenOffice Community Council. Oracle viewed the Community Council members'

positions on two governing boards as a conflict of interest and asked members on the

153

Community Council to step down from their positions (OpenOffice Community Council,

2010). This move effectively ended community support for OpenOffice and the project

was renamed Oracle OpenOffice. Oracle OpenOffice became the proprietary software

offering from Oracle that was meant to replace Sun's StarOffice.

While the official position of Oracle was to cite a conflict of interest, members of

the broader open source community viewed Oracle's broader strategy as simply wanting

to discontinue open source projects that existed under Sun because they did not provide

any real value to the company. In response to this, however, The Document Foundation

continued its development of LibreOffice. Since LibreOffice had strong community

support, LibreOffice essentially surpassed OpenOffice within one release. In effect, all of

the collective labor behind the development of OpenOffice abandoned the project but

continued to work on LibreOffice. Because OpenOffice had been abandoned, Oracle

announced that it would end development on the project entirely and fire the majority of

OpenOffice developers. Ultimately, Oracle donated the code base for OpenOffice to The

Apache Software Foundation, which has resumed development on the project under the

name Apache OpenOffice.

To summarize this somewhat confusing history of a software that has been forked

numerous times, Figure 1 illustrates the development history of StarOffice, its transition

to OpenOffice (OOo) under Sun, the dual development of StarOffice (SO) alongside

OpenOffice, the forks into LibreOffice (LO) and Oracle OpenOffice after Oracle acquired

Sun in 2010, and the donation of OpenOffice back to The Apache Software Foundation to

be developed as Apache OpenOffice (AOO). Figure 1 also includes additional forked

projects that have not been discussed in this paper, which includes IBM Lotus Symphony

(Symphony) and Go Open Office (Go-oo). As illustrated in the figure, the developments

154

http://en.wikipedia.org/wiki/File:StarOffice_major_derivatives.svg
http://creativecommons.org/publicdomain/zero/1.0/

examples of how the FLOSS community uses legal, technical, and governance strategies

to protect their commons-based resources.

Protecting the Commons

Throughout this chapter, I have demonstrated how the FLOSS community

maintains the ability to leverage its collective labor power against undue corporate

influence by employing technical, legal, and governance strategies to protect its

commons-based resources. On the one hand, FLOSS has unique technical characteristics

that allow it to be reproduced and distributed widely without any significant cost. This

allows FLOSS projects to be forked so that development can occur collaboratively,

simultaneously, and continuously throughout the life of the project. Although dispersed

development occurs, however, the community employs certain governance strategies for

effectively coordinating development and protection of the project. These governance

strategies include the establishment of non-profit organizations, which hold the

intellectual properties for projects. These organizations provide a legally recognizable

entity that can more effectively defend the intellectual property and licensing

requirements of the project. Furthermore, more direct governance of the development

project can occur through governing councils that are democratically elected or appointed

by the community.

The legal strategies for defending FLOSS projects relies on alternative intellectual

property protections like copyleft or other free and open source software licenses. These

licenses free the software from overly protective copyright and allows the community to

fork the project in the event of undue corporate influence. On the other hand,

corporations can also use licensing strategies to their benefit as well. In the case of Sun,

156

the company used licensing that allowed for free and open source software development

but that were less restrictive to the corporation. These licenses allowed the company to

incorporate some of the commons-based peer production of FLOSS projects into their

proprietary offerings. This strategy was understood and accepted by the FLOSS

community because Sun was clear about its strategies but also because Sun supported

FLOSS development projects. In a sense, then, licensing a project becomes a site of

struggle, especially because a single project may contain code that is protected by

different licenses. These licenses may have competing or conflicting terms that need to

be resolved or the project becomes susceptible to intellectual property litigation. As was

the case during Oracle's acquisition of Sun, the licenses can be changed as a way to direct

development toward different ends. Sun was transparent about its licensing strategies as

a part of its broader commercial strategies, while Oracle made either temporary

commitments to use existing licensing strategies (i.e., MySQL) or sought to change those

licensing requirements altogether (i.e., OpenSolaris).

However, the dynamics that exist between FLOSS communities and corporations

are comprised of a combination of technical, legal, and governance strategies. The

particular forms that these strategies take will vary depending on the individual project,

but the FLOSS community's ability to defend its commons-based resources depends, in

part, on a shared consciousness of what is permissible within the community. In a sense,

this shared consciousness constitutes a sort of moral economy (Thompson, 1971). The

FLOSS community leverages its collective labor power against corporate power by

protecting its commons-based resources. When a corporation infringes on the moral

economy of the community, the community rebels by forking the project and abandoning

the project that has been overly influenced by the corporation. This moral economy has

157

foundations in the shared ideals of peer-to-peer relationship building, collaborative

development, transparency, and community.

Even though the FLOSS community maintains the ability to leverage its power

against undue corporate influence, community members are still in a somewhat

precarious position as digital laborers. One definition of success in open source projects

is to receive backing from a company, which at least ensures the project's survival if not

its overall attractiveness. However, the FLOSS community depends on keeping projects

protected under free software licenses, albeit of many different types, so that the

community maintains the ability to keep the code for the program open. This is

particularly true in cases where hybrid models of proprietary and free software are used

in FLOSS projects. Throughout this paper, I have demonstrated how such struggles can

occur, particularly after corporate mergers, acquisitions, or take overs.

In the face of growing corporate involvement in FLOSS projects, the broader

FLOSS community must maintain its ability to protect its commons-based resources. At

the same time, however, the protection of these resources depends, at least in part, on a

shared collective understanding of how the community can leverage its collective labor

power against increasing corporate involvement. The lessons to be learned from Oracle's

acquisition of Sun Microsystems need to remain salient if similar strategies are to be

effective. Most important, however, is the recognition that the struggles taking place

within the FLOSS community are just one part of a broader social struggle. As Christian

Fuchs (2008) has observed, commons-based production is not truly possible until we

have a commons-based society. Until that time, commons-based movements like FLOSS

will be subjected to increasing corporate encroachment that threatens to abate, assimilate,

or altogether annihilate progress toward alternative economic configurations.

158

CHAPTER VII

CONCLUSION

Throughout this study, I have demonstrated the different ways that FLOSS

projects have been incorporated into the corporate structures of various firms.

CHAPTER II emphasized how a critical political economic perspective can be used to

counteract some of the sweeping and, at times, overly celebratory treatments given to

FLOSS communities in the theoretical literature. If we accept the claim that FLOSS as a

process of production constitutes a form of commons-based peer production or non-

market production that makes use of the knowledge commons (Benkler, 2006; Ostrom,

1990), then a critical political economic approach can both temper and complicate our

understanding of these claims by emphasizing how these forms of production have been

incorporated into larger corporate strategies. Each of the case studies discussed in this

project have different implications for our understanding of commons-based peer

production as a process, the knowledge commons as a resource, and FLOSS processes

and products within the broader capitalist order.

In what follows, then, I discuss the major findings from each case study. Next, I

explain how these novel findings can enrich our understanding of FLOSS products as

commons-based resources and FLOSS processes as commons-based peer production.

After establishing the major findings and their implications for our understanding of

FLOSS products and processes, I discuss the limitations of the present study as well as

areas that will be germane for future study. Finally, the chapter concludes with some

final thoughts about the nature of the commons and commons-based peer production

under capitalism.

159

Major Findings

The current study posed three primary research questions, which each sought to

address certain characteristics of the dynamics existing between FLOSS communities and

the corporations that are involved in FLOSS projects. Each of the questions was specific

enough to address a core concern of the research project, while simultaneously broad

enough to allow for careful attention to the complexity and diversity of different cases.

The following section demonstrates how the case studies addressed these research

questions.

Research Question #1

Research question #1 asked what is the relationship between proprietary, for-profit

corporations and free and open source software communities, and how has this

relationship changed over time?

The case studies demonstrated three different ways that corporations are involved

in FLOSS projects. Consequently, the answer to this research question cannot be

addressed without considering the contributions of each case study. The relationships

between proprietary, for-profit corporations and FLOSS communities are diverse and do

not always follow specific patterns. However, the cases of Red Hat and Microsoft most

directly address this research question.

Red Hat, Inc.

In the case of Red Hat, which still maintains a relatively good relationship with

the FLOSS community, the company was able to harness (which is to say, centralize) the

collective labor power of the FLOSS community and transform it into a profitable

160

business strategy. Red Hat was created with the intention of providing a formalized

institution that could bring the power of free software to the market. However, since the

underlying source code for free software was protected by the Gnu General Public

License (GPL), Red Hat was unable to rely on using copyright protection to exclude

others from providing similar software and services. As a result, the company began

offering customized versions of free software that could be packaged and protected under

the Red Hat corporate logo. As such, the company's products could be protected by

trademark. The software that the company provides, then, is protected by the Red Hat

trademark, and the company sells customized subscriptions for its software and services.

However, Red Hat still needed a way to protect its customers against potential intellectual

property infringement claims. Consequently, the company needed a way to control the

types of licenses allowed in its software offerings. To accomplish this, Red Hat first

required all contributors to its software to sign a Individual Contributor License

Agreement (ICLA), which would assign the rights to protect the code to the company.

The ICLA later changed to the Fedora Project Contributor Agreement (FPCA), which

served as a mechanism to control the range of possible licenses that could be included in

contributions to its Fedora project. Nonetheless, the consequence of controlling the

commons was the same.

From a particular point of view, then, Red Hat can be seen as a pragmatic solution

to the problem of organizing commons-based peer production under capitalism. In effect,

Red Hat has been able to establish itself as a trusted company that can accept liability for

the products and services it provides. In effect, the problem of organizing commons-

based peer production under capitalism was solved by establishing a legally recognizable

and formal institution that serves as a mediator between corporations and the commons.

161

In doing so, however, Red Hat needed to find a way to control what types of code – or at

least the types of intellectual property licenses – were included in its software so that it

could protect itself and its clients against intellectual property infringement claims. In

this sense, Red Hat functions as a curator of the commons. Just as a curator is

responsible for collecting, organizing, and interpreting artifacts for the purpose of public

display, Red Hat performs a similar function for its subscribers. In each case, the curator

charges a fee to the public for entrance to a purposefully organized and constructed

display of artifacts that has been interpreted in a particular way. The key difference,

however, is that Red Hat does not rely on the collection of artifacts exactly as they

existed previously. Rather, Red Hat relies on commons-based peer production from its

FLOSS project, Fedora, for inclusion into its customized distributions of Red Hat

Enterprise Linux. Moreover, the contributions to Fedora are controlled by worker

agreements that all contributors to the Fedora project must sign. Importantly, however,

because Red Hat is transparent about its intentions, the company has been able to enjoy a

relatively good relationship with the broader FLOSS community throughout its history.

This, of course, differs from the case of Microsoft.

Microsoft Corporation

Microsoft has a long history of opposition to FLOSS. This stance began as early

as 1976 when Bill Gates authored the “Open Letter to Hobbyists,” in which he railed

against the culture of sharing software within the community. He argued that this

practice harmed the ability of others to produce software and be compensated for their

work. However, this stance contradicts some of Microsoft's own history, as it relied on

others' designs to produce some of its most successful software. This was particularly the

162

case for the MS-DOS operating system and the graphical user interface of Windows,

which were built on top of previously existing technologies developed in Gary Kildall's

CP/M operating system and Apple's graphical user interface. Both of these technologies

were instrumental to Microsoft's success throughout the 1980s and 1990s, especially

when paired with its strategic partnerships with IBM and other OEMs, which allowed the

company to gain widespread adoption of its software. The same can be said of its

Internet Explorer web browser, which the company packaged with distribution of its

Windows operating system. This practice ensured that the company's web browser would

win the first of the browser wars, but it also was one of the primary business practices

that led to its conviction for antitrust violations by the Department of Justice.

Microsoft's ascent to the top of the personal computer software market culminated

around the same time that it was being investigated for antitrust violations. When the

DoJ issued its decree in 2001, Microsoft was forced to divest its operating system and

applications operations. However, after the original District Court judge recused himself

from the case after making some public comments that gave the impression of bias

against Microsoft, the subsequent judge no longer sought divestment. Rather, Microsoft

would need to agree to a series of consent decrees that were designed to prevent the type

of predatory and uncompetitive behaviors that led to its conviction. The consent decrees

were intended to last for five years, but they were renewed twice and finally came to an

end in 2011. However, the decrees did little to affect Microsoft's economic performance,

as the company's annual revenues and profits continued to climb in the wake of the DoJ's

decision. Nevertheless, as argued in CHAPTER V, the antitrust suit marks a major

historical moment both for Microsoft and the larger software industry. Most notably, the

antitrust suit forced Microsoft to make its APIs more openly available to other developers

163

so they could design software that could interact with Microsoft's technologies. More

generally, however, the antitrust decision coincides with the bursting of the dot-com

bubble in 2001, the emergence of Linux as a commercially viable business model, and

the emergence of the so-called Web 2.0 era, which shifted the business focus of many

high-tech companies during that era.

If Microsoft needed any additional convincing that it could no longer rely on its

old business model, the antitrust conviction signaled to Microsoft that the company

needed to find new ways of doing business. Because Linux was becoming more

widespread, Microsoft could no longer take an antagonistic stance toward open source.

Instead, it needed to find ways to ensure that its products could function on devices that

use Linux. To facilitate greater interoperability between Microsoft and non-Microsoft

technologies, Microsoft expanded its Shared Source program and, in 2012, opened an

entire division of the company dedicated to promoting and supporting open source, open

standards, and open platforms. This shift is indicative of the fact that FLOSS, by many

measures, has proven to be an effective and commercially viable production model. The

shift in supporting open source projects suggests that Microsoft is trying to accomplish

two primary goals: harnessing the power of commons-based peer production to

supplement its own commercial goals as well as promoting interoperability between its

technologies and other systems.

The Microsoft case study is indicative of a company undergoing a transformation

in its stance to FLOSS. In part, this shift was driven by the antitrust conviction in 2001,

but the leaked Halloween Documents suggest that the company was already concerned

with the FLOSS phenomenon and how to combat it in 1998. Perhaps not coincidentally,

164

this is the same year that the antitrust investigation began. In this sense, Microsoft

represents a strategy of incorporating the commons, or at least attempting to do so.

Research Question #1A

As a supplement to the first question, research question 1A asked about the power

dynamics between corporations and the FLOSS community? In other words, which party

holds the ability to exert influence on the other, if at all?

Oracle's Acquisition of Sun Microsystems

The third case study, Oracle's acquisition of Sun Microsystems, most directly

addressed this question. That chapter illustrated how the FLOSS community has coped

with undue corporate influence into its projects by focusing on three different FLOSS

projects that were supported by Sun Microsystems prior to its acquisition by Oracle: the

OpenSolaris operating system, the MySQL relational database management system, and

the OpenOffice office productivity suite of software. What becomes clear from the case

study is that FLOSS projects may not be able to avoid corporate influence altogether,

especially when those projects are sponsored or supported by a particular company.

However, given the nature of FLOSS code, the community maintains the ability to

effectively abandon production on a particular FLOSS project by forking the project and

continuing development under a new name. This is precisely what happened in each of

the three cases discussed in Chapter VI.

Furthermore, the case study also provides evidence that FLOSS projects are not

immune from the corporate maneuvering – acquisitions, integration, takeovers, buyouts,

etc. – that is commonplace in a capitalist system. That is, although the projects may find

165

a corporation willing to provide support through sponsorship, financing, or partnerships,

those relations can become strained in the wake of an acquisition in which the acquiring

company is unwilling to provide the same level of support as the previous company. If

this is the case, the community of developers who contribute to the FLOSS project have

technical, legal, and governance strategies at their disposal to resist undue corporate

influence in the project. Technically, code can be reproduced ad infinitum without any

substantial reinvestment costs. Legally, most code that is used in FLOSS projects is

protected by permissive licenses that allow the community to fork their project and begin

development under a new name. Coinciding with the process of forking the project is the

transitioning of the governing board members to oversee the new project.

The Oracle Corporation's acquisition of Sun Microsystems illustrates how the

power dynamics existing between FLOSS communities and the corporations that rely on

their projects are complex and varied. While the community still retains the power to

abandon production on a project in the face of undue corporate influence, this still places

the community in a precarious position with respect to the long-term survivability of their

projects. The community retains the ability to fork the project and begin new

development, but it cannot rely on the same level of support it received from its corporate

sponsor unless it can find new investors. For instance, the OpenIndiana, MariaDB, and

LibreOffice projects were able to find additional investment capital, although to varying

degrees. In other words, the ability to fork a project is just one step in assuring

productive autonomy. However, the productive autonomy of those who contribute to

projects that are sponsored by other organizations may always be at risk of undue

influence. In those situations, the community can take steps to try to reduce such

influence.

166

Research Question #2

The second research question asked about value for each of these stakeholders.

What value do corporations provide for the FLOSS community, and what value does the

FLOSS community provide for corporations? Finally, do any external factors or

stakeholders exist that may profit from this relationship?

In the case studies presented in this project, the value derived from FLOSS

projects becomes quite clear. The value of all FLOSS projects comes from the software

developers, programmers, and others who contribute time and labor to the project.

Whether the developers perform the labor out of love for the project or work for a

corporation that wants to support the project, the sheer number of contributors who focus

on a particular project tends to be much larger than any single corporation could directly

employ to work on developing a project. As such, the FLOSS community represents a

large pool of collective laborers whose labor power is derived from the scale of their

collective productive capacity. Because the FLOSS community features a potentially

large pool of labor, the contributions of each individual, no matter how small, can be

incorporated into FLOSS projects. These small, incremental changes can lead to the

rapid completion of complex tasks when spread throughout an entire community of

developers. Consequently, FLOSS projects tend to innovate more quickly, tend to be

more secure, and tend to be competitive with their commercial counterparts. The

literature discussed in CHAPTER II tends to focus on exactly these qualities of FLOSS

projects and processes, but very few go as far as assigning the true value to the labor that

makes such qualities possible.

The value that corporations hold for the FLOSS community is derived from their

ability to provide support for FLOSS projects by funneling money or other resources into

167

a project, which is to say, a community. As mentioned previously, not all FLOSS projects

require a direct corporate sponsor. However, some of the larger projects that do not have

a direct corporate sponsor may still be governed by a non-profit entity that indirectly

receives support from other firms or individual contributors. Direct sponsorship by a

corporation may be another way to attract contributions to a project, as this ensures that it

is likely to survive for awhile. Furthermore, this offers an avenue for contributors to

signal their abilities to members within the project who may be working for a company

that could provide employment to others who are looking for work.

Finally, the external stakeholders who exist in the relationships between FLOSS

projects and the corporations who become involved in their projects are those who make

use of the technology developed within the FLOSS community. Many of these

technologies are used without much public awareness, like the Linux kernel, but others

are used extensively and are highly recognizable, like the Mozilla Firefox web browser.

Contributions of the Study

This study makes a number of contributions to the existing scholarship in digital

media studies and the political economy of communication, as well as our understanding

of the commons and commons-based peer production under capitalism. As suggested in

CHAPTER II, the internal dynamics of FLOSS communities and their models of

production have been studied somewhat extensively. The individual motivations of

contributors to FLOSS projects is diverse and varied (Deek & McHugh, 2008), but the

FLOSS community as a whole generally believes in protecting the right to productive

freedom (Coleman, 2013). The broader implications of the FLOSS community's

practices have received their most notable theorizations in the work of Yochai Benkler

168

(2006), who used the term commons-based peer production to refer to the “radically

decentralized, collaborative, and nonproprietary” forms of production that are based on

“sharing resources and outputs among widely distributed, loosely connected individuals

who cooperate with each other without relying on either market signals or managerial

commands” (60). Benkler continues by arguing that this new modality of organizing

production engenders greater degrees of freedom and democracy.

Benkler's assessment of commons-based peer production is largely celebratory in

that he focuses on the institutional novelty of the arrangements and the capability of such

production to facilitate high degree of innovation and entrepreneurship. However, this

form of production still exists within a broader capitalist system. As such, capitalist firms

have found a way to harness the entrepreneurship and innovation of some FLOSS

communities and incorporate them into their broader corporate structures.

This study complicates and extends theorizations of commons-based peer

production by investigating sites where the idealism of FLOSS production meets with the

material realities of capitalism. These contested sites make up the case studies in this

research project, for they are where commons-based peer production has been

incorporated into the corporate structures of capitalist firms. By employing a critical

political economic approach, this study focused on the power relations that exist between

corporations that rely on capitalist, market-driven production, and the broader FLOSS

communities that rely on non-market, commons-based peer production. An important

part of this focus was to shift the discussion of the FLOSS community's innovativeness

away from its instrumentality to business and couch its contributions in terms of

collective labor and the collective labor power of the broader community. By focusing

on the community's labor power, CHAPTER VI in particular was able to identify some of

169

the technical, legal, and governance strategies used within FLOSS communities to resist

undue corporate influence.

Furthermore, the case studies provided the opportunity to investigate the unique

ways that different corporations have incorporated the commons-based peer production

of FLOSS communities. In previous literature, major projects like the Linux kernel or

Wikipedia have been lauded as examples of effective and productive commons-based

peer production can be (Benkler, 2006; Lessig, 2006; Weber, 2004). Significantly less

studied, however, is how capitalist firms can use commons-based peer production to

supplement their commercial offerings. The case studies for this project, particularly the

discussion of Red Hat and Sun Microsystems, provided an in-depth look at how capitalist

firms rely on the innovations and bug fixes from within the FLOSS community for

implementation in their commercial products. That said, however, these case studies

should not necessarily be viewed as generalizable across all FLOSS projects. The

broader ecosystem of FLOSS projects features certain projects that are completely

supported by its community of developers and do not rely on investment or sponsorship

from corporate firms. Additional studies could continue to investigate the extent to which

FLOSS projects rely upon or seek corporate sponsorship. Moreover, additional studies

could investigate the extent to which sponsorship or capital investment is linked with the

long-term survivability of a FLOSS project.

By selecting cases in which capitalist firms are incorporating commons-based

peer production, this study was able to yield a novel insight into how intellectual property

is used both within the FLOSS community and corporations. Specifically, the case of

Red Hat demonstrated how a firm is able to profit off of intellectual property that is

covered by the GPL and, therefore, not amenable to enclosure by traditional copyright.

170

Because Red Hat cannot exclude others from using its source code by relying on

copyright, the company uses its trademarks to prohibit competitors from making a direct

use of its products. However, Red Hat's trademarks cannot prevent someone from using

the underlying source code, which is protected by copyleft. Indeed, this was the case of

CentOS, which was designed as a functionally equivalent operating system to that offered

by Red Hat Enterprise Linux, Red Hat's core commercial product. Similarly, Red Hat

controls the types of licenses that can be included in its Fedora project, which is the

FLOSS project that generates the code included in its commercial offerings. The ways in

which Red Hat controls the intellectual property included in its commercial offerings

complicates the claims made about the productive autonomy within FLOSS communities.

In the vast majority of work on FLOSS, one of the defining features of its novelty

is often traced back to its protection under more permissive copyright licenses, or

copyleft licenses (Benkler, 2006; Stallman, 2002; Lessig, 2001). In addition, the

software industry has been broadly plagued by a surge in patent infringement claims.

However, the issue of trademark is an often overlooked feature of software development,

most likely because it has not been used as a traditional method for enforcing intellectual

property protections. Red Hat uses trademark protections to circumvent the permissive

nature of the GPL and the other licenses that do not allow it to claim exclusive ownership

of the code used in its core products. To my knowledge, the extent to which other firms

are using this strategy has yet to be investigated, particularly within the FLOSS

community. Although Red Hat is just one example and, perhaps, an exceptional one, the

case serves as a counter-factual example to the overarching claims made about the

degrees of freedom, democracy, and autonomy within FLOSS production.

171

Further complicating these claims are the often-overlooked Contributor Licensing

Agreements within FLOSS production, particularly when a project has a corporate or

other institutional sponsor. While these agreements are not uniform across all FLOSS

projects, the organizations that issue them rely on these agreements to maintain control

over their projects. However, control is achieved in at least a couple different ways. The

CLAs may ask contributors to surrender the rights to their submissions so that the

organization can defend itself from intellectual property claims. Similarly, the CLAs may

be used to control the types of licenses that are allowed into the code base. This was seen

in the Red Hat case study, whereby Red Hat wanted guarantee its customers that they

would not be in danger of intellectual property infringement suits. A common theme

running throughout the Red Hat chapter was the extent to which copyright separates

authorship from ownership. In this sense, the current project contributes to this critical

understanding of copyright by demonstrating how FLOSS laborers are forced to abandon

claims to ownership of their work in order to contribute directly to certain FLOSS

projects. Further studies could investigate the differences between these agreements,

which organizations are using them, and whether or not these agreements deter some

contributors from becoming involved in projects.

Limitations of the Study

Despite these contributions, the present study was limited in certain ways. This is

particularly the case with respect to the case study selections as well as the

methodological choices. By choosing to operate from a critical political economic

perspective, the study focused primarily on the power dynamics that exist between the

FLOSS community and the corporations that rely on their labor. This directed attention

172

more toward corporate structures and strategies, as well as how these operations affected

the FLOSS community, particularly how and why corporations were involved in FLOSS

projects. In addition, the third case study, in particular, focused on the FLOSS

community's response to such involvement.

The cases chosen were purposively selected because of their prominence within

both corporate and FLOSS communities. Red Hat, Microsoft, and Oracle represent some

of the largest and most publicly visible software companies in the world. This is

primarily the reason for selecting these companies, but also means that the findings from

each case study may not be applicable to a broader range of corporations or FLOSS

projects. In this sense, the study can only provide a snapshot of some of the dynamics

occurring at the intersection of corporations and the commons.

Furthermore, the study tended to concentrate more on the institutional

arrangements between corporations and FLOSS communities. This was driven mainly by

the theories drawn upon for the study. The intent was to demonstrate what happens if we

accept the claims made by Benkler (2006) about commons-based peer production and

non-market production and, in turn, contrast those claims with the dynamics existing at

the intersection of corporations and communities of commons-based peer production. By

taking this position, the study did not delve into the internal dynamics of different FLOSS

communities. Indeed, one of the shortcomings was the constant reference to FLOSS

communities, writ large, while each community has unique governance structures, unique

relationships to its sponsoring organization (if it has one at all), and a unique culture.

This is indicated by the point made about contributors to FLOSS projects and their

support for FLOSS projects in general often being masked by their very particular

preferences for certain software projects over others. For example, a contributor's

173

support for a particular project may be driven by the culture of the community developing

the software or the proclaimed ideology of the project. On a related note, the FLOSS

projects covered in this study all have (or had) corporate sponsors. However, this is not

the case for all FLOSS projects. Consequently, future studies could do more to account

for the diversity of FLOSS projects' goals, as well as the development community's

internal dynamics. One notable example of this type of work is Gabriella Coleman's

work on the Debian community (Coleman, 2013).

One final factor to consider in relation to the selection criteria for this study is the

relatively recent opening of the Microsoft Open Technologies division. Because the

subsidiary is still growing, the analysis was not able to offer a clear picture as to where

the company is ultimately headed in its involvement in FLOSS projects. Throughout the

course of the research, the publicly available information about the subsidiary changed

extensively. The web page, for example, was continuously adding new information and

organizing that information in new ways. Consequently, official press releases and

secondary sources were used for the limited amount of information included about the

newly formed subsidiary. As the MS Open Tech subsidiary grows and begins to develop

more projects, we may be able to get a better sense of the exact types of projects that the

company will be supporting.

Concluding Thoughts: Capital and the Commons

Commons-based peer production offers the potential to provide a truly novel form

of organizing collective and collaborative production. However, the emergent or novel

forms of organizing still exist within a broader capitalist order. Therefore, commons-

based peer production should not be viewed as a comprehensive solution to the unequal

174

social relations of a capitalist system. Rather, commons-based peer production may be

viewed as one part of a broader social struggle against global capital. More specifically,

commons-based peer production can be viewed within the context of a broader resistance

movement that seeks to reclaim commons of all types, whether they be tangible goods

like land, water, and air, or the intangible goods of data, information, or knowledge that

provide the infrastructure for social relations.

When Karl Polanyi authored The Great Transformation, he critiqued the then-

emerging market fundamentalism of the Austrian School of economics, exemplified by

Friedrich Hayek and inspired by the work of Ludwig von Mises, for its disembedding of

market relations from social relations. For Polanyi, the market and market relations had

historically been embedded within social relations, such that the social bonds connecting

communities of people together were not subjected to a market logic. Rather, the market

existed within and as a part of social relations. This, however, transformed after the

market became elevated to a degree whereby all other relations became molded according

to its logic. This disembedding of the market from social relations has the normative

effect of creating certain “fictitious commodities,” like land, labor, and money that had all

previously been important infrastructural elements of social life. In other words, when

land becomes a commodity, concerns about its long-term sustainability become

subsumed under a market logic that seeks profit from its exploitation. The same applies

to labor, which is to say, human beings, who become exploited and valued according to a

market logic. Finally, money becomes something to be hoarded for its intrinsic or future

value rather than its function as a universal equivalent for exchanging different goods.

Polanyi's critique could, perhaps, be expanded to include information as a

fictitious commodity. This would offer a framework for situating information

175

dialectically between the market and social relations, as well as the increasing tendency

to extract information out of its social function and treat it as a commodity. Indeed,

Schiller (2007) draws this distinction between information as a commodity and

information as a resource. When treated as a commodity and enclosed by intellectual

property protections, information becomes highly valued as a privileged resource that can

only be accessed by those who are willing to pay for access. When treated as a resource

and made freely available for all, information can be studied, modified, adapted, and

redistributed to others who can also benefit from access to it. Thus, we arrive at two

conceptualizations of information: as a privately owned resource transformed into a

commodity, and as a commonly held resource available for all.

Corporations, like Microsoft, have sought to transform information into a

privately owned resource that can be protected by copyright. The FLOSS community has

sought ways to preserve information as a commonly held resource for all to use, most

notably through copyleft licenses like the GPL. By doing so, the community has been

able to establish a knowledge commons that resists enclosure. However, the knowledge

commons under capitalism may be facing a similar fate to the commons of the past,

although with certain careful distinctions. This project has demonstrated that how capital

has readjusted its relatively inflexible position in relation to commons-based production.

It needed to reorient its strategies to incorporate without enclosing the commons. By

doing so, capitalist firms pursue profits while finding a variety of ways to give back to

the community, whether by making code freely available under free software or open

source licensing, or by supporting the informal institutions that govern various open

source projects. While this may provide ad hoc support for commons-based production,

it may not provide a long-term solution to commons-based labor. Instead, commons-

176

based peer labor may be placed in an ever-more-precarious position of depressed or non-

existent wages while corporations make commercial use of their contributions. What will

be needed as this type of involvement continues is a sustainable way to protect the

commons, but also a way to ensure investment in commons-based peer labor. In other

words, not just investment in institutions, organizations, technologies, or innovations, but

long-term and sustainable investment in the true source of their value, which is to say,

people.

177

APPENDIX A

RECRUITMENT LETTER OR EMAIL

Dear [insert name],

My name is Ben Birkinbine, and I am a Ph.D Candidate from the School of Journalism
and Communication at the University of Oregon. I am writing to invite you to participate
in my research study about corporate involvement in open source projects. You're eligible
to be in this study because of your involvement in such projects.

If you decide to participate in this study, you agree to be interviewed about your
experiences, attitudes, beliefs, or opinions about corporate involvement in open source
projects.

I would like to record audio of our interview. I plan to use this recording as a way to
accurately represent your perspective on the research topic. However, you will have the
option to not be recorded. You can indicate your preference on the Interview Consent
Form.

Your participation in this study is completely voluntary. You can choose to be in the study
or not. If you'd like to participate or have any questions about the study, please email or
contact me at bjb@uoregon.edu or XXX-XXX-XXXX.

Thank you very much.

Sincerely,

Benjamin J. Birkinbine

Ph.d Candidate, Media Studies

School of Journalism & Communication

University of Oregon

178

mailto:bjb@uoregon.edu

APPENDIX B

INFORMED CONSENT LETTER

University of Oregon, School of Journalism & Communication
Informed Consent for Participation as a Subject in “Free Software and Capital”

Investigator: Benjamin J. Birkinbine
Type of consent Adult Consent Form

Introduction
You are being asked to be in a research study that investigates corporate participation in
open source software projects. You were selected as a possible participant because of
your involvement in open source software projects. Please read this form and ask any
questions that you may have before agreeing to be in the study.

Purpose of Study:
The purpose of this study is to solicit participants' perceptions, opinions, beliefs, or other
disclosures about practices associated with involvement in open source software.
Participants in this study are either representatives from corporations involved in open
source software projects or representatives from the broader open source community,
whether they be programmers, advocates, members of non-profit groups, community
organizations, or any other group involved in open source software development.

Description of the Study Procedures:
If you agree to be in this study, I will ask you to do the following: agree to a semi-
structured interview in which I will be asking you for disclosures about your experiences,
attitudes, opinions, beliefs, or other feelings associated with free and open source
software. Most interviews will last anywhere from 30-60 minutes, but certain interviews
may last for a longer or shorter duration.

Risks/Discomforts of Being in the Study:
There are no reasonable foreseeable (or expected) risks. This study may include risks
that are unknown at this time.

Benefits of Being in the Study:
The purpose of the study is to gain a better understanding of the relationship between for-
profit corporations and the broader free and open source software community. By
participating in this study, you are contributing to this understanding and have a chance
for your voice to be heard.

Payments and Costs:
You will not be receiving any payment for participating in this study. There are no costs
to you for participating in this research study.

Confidentiality:
The records of this study will be kept private. In the final published report, I would like
to be able to identify you as well as your affiliations unless you request to remain

179

anonymous. You will have the opportunity to indicate your preference at the end of this
form. If you choose to remain anonymous, I will not include any information that will
make it possible to identify you. Research records will be kept in a locked file.

I would also like to keep an audio recording of our interview. If you consent to being
recorded, the digital audio files will be kept on a password protected personal computer
and destroyed after the final written report is published. You will have the opportunity to
indicate your preference for being recorded at the end of this form.

Access to the records will be limited to the researchers; however, please note that the
Institutional Review Board and internal University of Oregon auditors may review the
research records.

Voluntary Participation/Withdrawal:
Your participation is voluntary. If you choose not to participate, it will not affect your
current or future relations with the University. You are free to withdraw at any time, for
whatever reason.
There is no penalty or loss of benefits for not taking part or for stopping your
participation.

Contacts and Questions:
The researcher conducting this study is Benjamin J. Birkinbine. For questions or more
information concerning this research you may contact him at XXX-XXX-XXXX or
bjb@uoregon.edu
If you have any questions about your rights as a research subject, you may contact:
Research Compliance Services, University of Oregon at (541) 346-2510 or
ResearchCompliance@uoregon.edu

Copy of Consent Form:
You will be given a copy of this form to keep for your records and future reference.

Statement of Consent:
I have read (or have had read to me) the contents of this consent form and have been
encouraged to ask questions. I have received answers to my questions. I give my
consent to participate in this study. I have received (or will receive) a copy of this form.

Participant Preferences (please mark one for each preference):

□ I agree to have audio from the interview recorded, OR □ I DO NOT agree to be
recorded.

□ I agree to be identified by name and affiliation, OR □ I would like to remain
anonymous.

180

Signatures/Dates

Study Participant (Print Name)

Signature Date

181

APPENDIX C

INTERVIEW GUIDE

Interviews will be semi-structured. Questions provided here serve as a base from which
additional follow-up questions may be asked.

General Questions (for all participants):

How are you involved with free and open source software?

How long have you served in that role?

Do you know how to program or code using free and open source software?

Do you currently contribute to developing free and open source software? If so, which
project?

What are your thoughts about the relationship between corporations and the open source
community?

More broadly, do you think cooperation has a place in a competitive economy?

Do you think the relationship between corporations and the open source community has
changed over time?

Questions Specifically For Participants Representing Corporations:

Why is your company supporting free and open source software projects?

How are these projects licensed?

How long has your company been contributing to or supporting open source software
projects?

Do you currently employ people specifically responsible for open source projects?

How does your company benefit from open source projects?
Do open source projects tend to be profitable? If so, how?

How do you measure an open source project's benefits to your company?

Do you have any data about your company's open source projects?

Do you know how many people contribute to your projects from outside the company?

182

Does your company plan to continue supporting open source projects?

Are there any risks to your company by becoming involved in open source projects?

183

REFERENCES CITED

Andrejevic, M. (2012). Exploitation in the data mine. In Christian Fuchs, Kees Boersma,
Albrechtslund and Sandoval (eds.), Internet and surveillance: The challenges of Web 2.0
and social media. New York, NY: Routledge, pp. 71-88.

Andrejevic, M. (2007). ISpy: Surveillance and power in the interactive era. Lawrence,
KS: University Press of Kansas.

Apple Computer, Inc. v. Microsoft Corporation, 35 F.3d 1435 (1994)

Bagdikian, B. (2004). The new media monopoly. Boston, MA: Beacon Press.

Bauwens, M. (2013). Thesis on digital labor in an emerging P2P economy. In Scholz, T.
(ed.). (2013). Digital labor: The Internet as playground and factory. New York, NY:
Routledge, pp. 211-224.

BBC News, Inc. (2004, August 26). Microsoft Linux ad 'misleading.' BBC News. Last
accessed May 22, 2014 from http://news.bbc.co.uk/2/hi/technology/3600724.stm

Benkler, Y. (2006). The wealth of networks: How social production transforms markets
and freedom. New Haven, CT: Yale University Press.

Berners-Lee, T., & Caillau, R. (1990, November 12). WorldWideWeb: Proposal for a
hypertext project. Last accessed May 20, 2014 from http://www.w3.org/Proposal.html

Bettig, R. (2009). Private equity, private media. Democratic Communiqué, 23(1), pp. 22-
44.

Bettig, R. (1992). Critical perspectives on the history and philosophy of copyright.
Critical Studies in Mass Communication, 9(2), pp. 131-155.

Boyle, J. (2008). The public domain: Enclosing the commons of the mind. New Haven,
CT: Yale University Press.

Boyle, J. (2003). The Second Enclosure Movement and the construction of the public
domain. Law and Contemporary Problems, 66, pp. 33-74. Last accessed May 26, 2014
from http://scholarship.law.duke.edu/cgi/viewcontent.cgi?article=1273&context=lcp

Braverman, H. (1974). Labor and monopoly capital: The degradation of work in the
twentieth century. New York, NY: Monthly Review Press.

Campbell-Kelly, M. (2001). Not only Microsoft: The maturing of the personal computer
software industry, 1982-1995. The Business History Review, 75(1), pp. 103-145. Last
accessed May 14, 2014 from http://www.jstor.org/stable/3116558

Cassidy, J. (2002). Dot.con: The greatest story ever sold. New York, NY: HarperCollins.

184

http://www.jstor.org/stable/3116558
http://scholarship.law.duke.edu/cgi/viewcontent.cgi?article=1273&context=lcp
http://www.w3.org/Proposal.html
http://news.bbc.co.uk/2/hi/technology/3600724.stm

Chan, S.P. (2011, May 11). Long antitrust saga ends for Microsoft. The Seattle Times.
Last accessed http://seattletimes.com/html/microsoft/2015029604_microsoft12.html

Chapman, P., & Newman, M. (2009, September 3). Oracle faces in-depth EU probe over
Sun purchase (update 2). Bloomberg. Last accessed August 4, 2014 from
http://www.bloomberg.com/apps/news?pid=newsarchive&sid=aCWYuHl5bHC8

Computing History Project. (2008). Ada Lovelace - The Babbage Engine. Computing
History Project. Last accessed August 1, 2014 from
http://www.computerhistory.org/babbage/adalovelace/

Coleman, G. (2013). Coding freedom: The ethics and aesthetics of hacking. Princeton,
NJ: Princeton University Press.

Copeland, B.J. (2006). The modern history of computing. Stanford Encylopedia of
Philosophy. Last accessed August 2, 2014 from
http://plato.stanford.edu/entries/computing-history/

Cusumano, M.A., & Yoffie, D.B. (1998). Competing on Internet time: Lessons from
Netscape and its battle with Microsoft. New York, NY: The Free Press.

Danielian, N. R. (1939). A.T. & T: The story of industrial conquest. New York, NY: The
Vanguard press.

Deek, F.P., & McHugh, J.A.M. (2008). Open source: Technology and policy. New York,
NY: Cambridge University Press.

Deleris, B. (2006, December 1). Battling bugs: Embedded debugging tactics. EDN. Last
accessed August 2, 2014 from http://edn.com/electronics-news/4317260/Battling-bugs-
embedded-debugging-tactics

Elstrom, P. (1997, January 22). Microsoft's $8 million goodbye to Spyglass.
Businessweek.com. Last accessed May 20, 2014 from
http://www.businessweek.com/bwdaily/dnflash/january/new0122d.htm

Fairclough, N. (2001). The discourse of new labour: Critical discourse analysis. In
Simeon Yates, Stephanie Taylor, and Margaret Wetherell (eds.), Data as Discourse: A
Guide for Analysis, pp. 229-245 Thousand Oaks, CA: SAGE.

Festa, P. (2001). Governments push open-source software. Cnet News. Last accessed May
30, 2014 from http://news.cnet.com/2100-1001_3-272299.html

Fitzpatrick, M. (2012, August 10). “What is the Syrian Electronic Army?” Mashable.com.
Last accessed February 1, 2013 from http://mashable.com/2012/08/10/syrian-electronic-
army/

185

http://mashable.com/2012/08/10/syrian-electronic-army/
http://mashable.com/2012/08/10/syrian-electronic-army/
http://news.cnet.com/2100-1001_3-272299.html
http://www.businessweek.com/bwdaily/dnflash/january/new0122d.htm
http://edn.com/electronics-news/4317260/Battling-bugs-embedded-debugging-tactics
http://edn.com/electronics-news/4317260/Battling-bugs-embedded-debugging-tactics
http://plato.stanford.edu/entries/computing-history/
http://www.computerhistory.org/babbage/adalovelace/
http://www.bloomberg.com/apps/news?pid=newsarchive&sid=aCWYuHl5bHC8
http://seattletimes.com/html/microsoft/2015029604_microsoft12.html

Fogel, K. (2005). Producing open source software: How to run a successful free software
project. Sebastopol, CA: O'Reilly Media.

Free Software Foundation, Inc. (2012). The free software definition. Last accessed
January 22, 2013 from https://www.gnu.org/philosophy/free-sw.html

Frischmann, B. M. (2012). Infrastructure: The social value of shared resources. New
York, NY: Oxford Univesity Press.

Fuchs, C. (2013). Class and exploitation on the Internet. In Scholz, T. (ed.). (2013).
Digital labor: The Internet as playground and factory. New York, NY: Routledge, pp.
211-224.

Fuchs, C. (2012). Critique of the political economy of web 2.0 surveillance. In Christian
Fuchs, Boersma, Anders Albrechtslund and Marisol Sandoval (eds.), Internet and
surveillance: The challenges of Web 2.0 and social media. New York, NY: Routledge, pp.
31-70.

Fuchs, C. (2011a, February 01). New Media, Web 2.0 and Surveillance. Sociology
Compass, 5(2), 134-147.

Fuchs, C. (2011b). Web 2.0, prosumption, and surveillance. Surveillance & Society 8(3),
pp. 288-309. Last accessed May 28, 2014 from
http://library.queensu.ca/ojs/index.php/surveillance-and-society/article/view/4165

Fuchs, C. (2008). Internet and society: Social theory in the information age. New York,
NY: Routledge.

Fydorenchyk, T. (2014, February 6). Software stacks market share: January 2014.
Jelastic. Last accessed August 4, 2014 from http://blog.jelastic.com/2014/02/06/software-
stacks-market-share-january-2014/

Gallagher, S. (2013, October 18). The navy's newest warship is powered by Linux. Ars
Technica. Last accessed on May 30, 2014 from http://arstechnica.com/information-
technology/2013/10/the-navys-newest-warship-is-powered-by-linux/

Garland, H. (1977). Design innovations in personal computers. Computer, 10(3), pp. 24-
27. doi:10.1109/C-M.1977.217669

Gates, B. (1976). An open letter to hobbyists. In Robert Reiling (ed.), Homebrew
Computer Club Newsletter, 2(1), pp. 2. Mountain View, CA: Hombrew Computer Club.
Available from Digibarn Computer Museum, last accessed May 13, 2014 from
http://www.digibarn.com/collections/newsletters/homebrew/V2_01/index.html

186

http://www.digibarn.com/collections/newsletters/homebrew/V2_01/index.html
http://arstechnica.com/information-technology/2013/10/the-navys-newest-warship-is-powered-by-linux/
http://arstechnica.com/information-technology/2013/10/the-navys-newest-warship-is-powered-by-linux/
http://blog.jelastic.com/2014/02/06/software-stacks-market-share-january-2014/
http://blog.jelastic.com/2014/02/06/software-stacks-market-share-january-2014/
http://library.queensu.ca/ojs/index.php/surveillance-and-society/article/view/4165
https://www.gnu.org/philosophy/free-sw.html

Gilbert, R.J. (1995). Networks, standards, and the use of market dominance: Microsoft.
In John E. Kwoka Jr. and Lawrence J. White (eds.) (2004), The Antitrust Revolution:
Economics, Competition, and Policy. New York, NY: Oxford University Press, pp. 409-
429.

Gleick, J. (2011). The information: A history, a theory, a flood. New York, NY: Pantheon
Books.

Gramsci, A. (1971). Selections from the prison notebooks. New York, NY: International
Publishers.

Greene, T.C. (2001). Ballmer: “Linux is a Cancer.” The Register. Last accessed March 8,
2013 from http://www.theregister.co.uk/2001/06/02/ballmer_linux_is_a_cancer/

Hamm, S. and Greene, J. (2004). The man who could have been Bill Gates. Bloomberg
Businessweek Magazine. Last accessed May 14, 2014 from
http://www.businessweek.com/stories/2004-10-24/the-man-who-could-have-been-bill-
gates

Hardin, G. (1968). The Tragedy of the Commons. Science, 162 (3859), pp. 1243-1248.

Hardt, M., & Negri, A. (2005). Multitude: War and democracy in the age of empire. New
York, NY: Penguin Books.

Hardt, M., & Negri, A. (2000). Empire. Cambridge, MA: Harvard University Press.

Harmon, A., & Markoff, J. (1998, November 3). Internal memo shows Microsoft
executives' concern over free software. The New York Times. Last accessed May 21, 2014
from http://www.nytimes.com/library/tech/98/11/biztech/articles/03memo.html

Hayes, M. (1976, February 20). Regarding your letter of 3 February 1976 appearing in
Homebrew Computer Club Newsletter vol. 2 no. 1. In Robert Reiling (ed.), Homebrew
Computer Club Newsletter, 2(2), pp. 2. Mountain View, CA: Hombrew Computer Club.
Available from Digibarn Computer Museum, last accessed May 13, 2014 from
http://www.digibarn.com/collections/newsletters/homebrew/V2_02/homebrew_V2_02_p
2.jpg

Hess, C., & Ostrom, E. (2007). Introduction: An overview of the knowledge commons.
In Charlotte Hess & Elinor Ostrom (eds.), Understanding knowledge as a commons:
From theory to practice. Cambridge, MA: MIT Press, pp. 3-26.

Jenkins, H. (2006). Convergence culture: Where old and new media collide. New York,
NY: New York University Press.

187

http://www.digibarn.com/collections/newsletters/homebrew/V2_02/homebrew_V2_02_p2.jpg
http://www.digibarn.com/collections/newsletters/homebrew/V2_02/homebrew_V2_02_p2.jpg
http://www.nytimes.com/library/tech/98/11/biztech/articles/03memo.html
http://www.businessweek.com/stories/2004-10-24/the-man-who-could-have-been-bill-gates
http://www.businessweek.com/stories/2004-10-24/the-man-who-could-have-been-bill-gates
http://www.theregister.co.uk/2001/06/02/ballmer_linux_is_a_cancer/

Jher, & Birkinbine, B. (2012, March 19). Ecological media: Technology and the
environment. Paper presented at the Inaugural History and Theory of New Media
Unconference, held in the McKenzie Hall Collaboration Center, University of Oregon.
Eugene, OR.

Kanellos, M., & Shankland, S. (1999, September 8). Red Hat stock surge creates
billionaires. CNet. Last accessed April 23, 2014 from http://news.cnet.com/Red-Hat-
stock-surge-creates-billionaires/2100-1001_3-205557.html

Kaste, M. (2004, September 15). Brazil switches from Microsoft to 'open source'
software. National Public Radio. Last accessed May 30, 2014 from
http://www.npr.org/templates/story/story.php?storyId=3919175

Kingstone, S. (2005). Brazil adopts open source software. BBC News. Last accessed May
30, 2014 from http://news.bbc.co.uk/2/hi/4602325.stm
Lai, E. (2007, October 29). Microsoft and open-source backers eye each other – warily.
ComputerWorld.

Laishram, R. (2010, August 14). Oracle has killed OpenSolaris. TechieBuzz. Last
accessed August 2, 2014 from http://techie-buzz.com/foss/oracle-has-killed-
opensolaris.html

Lakhani, K.R., & Wolf, R.G. (2005). Why hackers do what they do: Understanding
motivation and effort in free/open source software projects. In Joseph Feller, Brian
Fitzgerald, Scott A. Hissam, and Karim R. Lakhani (eds.), Perspectives on free and open
source software. Cambridge, MA: MIT Press.

Lazzarato, M. (1996). Immaterial labor. In Paul Virno & Michael Hardt (eds.), Radical
thought in Italy: A potential politics. Minneapolis, MN: University of Minnesota Press.

Lessig, L. (2006). Code: Version 2.0. New York: Basic Books.

Lessig, L. (2001). The future of ideas: The fate of the commons in a connected world.
New York, NY: Random House.

Levy, S. (1984). Hackers: Heroes of the computer revolution. Garden City, N.Y: Anchor
Press/Doubleday.

Machlup, F. (1962). The production and distribution of knowledge in the United States.
Princeton, NJ: Princeton University Press.

MariaDB Foundation. (2014). About the MariaDB Foundation. Last accessed August 2,
2014 from http://mariadb.org/en/foundation

Marx, K. (1906). Capital, a critique of political economy. New York, NY: Modern
Library.

188

http://mariadb.org/en/foundation
http://techie-buzz.com/foss/oracle-has-killed-opensolaris.html
http://techie-buzz.com/foss/oracle-has-killed-opensolaris.html
http://news.bbc.co.uk/2/hi/4602325.stm
http://www.npr.org/templates/story/story.php?storyId=3919175
http://news.cnet.com/Red-Hat-stock-surge-creates-billionaires/2100-1001_3-205557.html
http://news.cnet.com/Red-Hat-stock-surge-creates-billionaires/2100-1001_3-205557.html

Marx, K. & Engels, F. (1845). The German ideology. Amherst, NY: Prometheus Books.

Maxwell, R. (2003). Herbert Schiller. Lanham, MD: Rowman & Littlefield.

McKercher, C., & Mosco, V. (2007) (eds.). Knowledge workers in the information
society. Lanham, MD: Lexington Books.

Meehan, E.R. (2005). Why TV is not our fault: Television programming, viewers, and
who's really in control. Lanham, MD: Rowman & Littlefield Publishers, Inc.

Meehan, E.R. (1999). Commodity, culture, common sense: Media research and paradigm
dialogue. Journal of Media Economics, 12(2), pp. 149-163.

Meehan, E.R., Mosco, V., & Wasko, J. (1993). Rethinking political economy: Continuity
and change. Journal of Communication, 43(4), pp. 347-358.

Microsoft Open Technologies. (2014a). Company web site – main page. Last accessed
June 4, 2014 from http://msopentech.com/

Microsoft Open Technologies. (2014b). What we do. Last accessed June 4, 2014 from
http://msopentech.com/what-we-do/

Moody, G. (2001). Rebel code: The inside story of Linux and the open source revolution.
Cambridge, MA: Perseus Publishing.

Mosco, V. (2009). The political economy of communication. London: SAGE.

Mosco, V. (2006). Knowledge and media workers in the global economy: Antimonies of
outsourcing. Social Identities, 12, 6, 771-790.

Mundie, C. (2001, May 3). Speech transcript – Craig Mundie, The New York University
Stern School of Business. Microsoft.com. Last accessed June 2, 2014 from
http://www.microsoft.com/en-us/news/exec/craig/05-03sharedsource.aspx?navIndex=2

Murdock, G. & Golding, P. (1973). For a political economy of mass communications.
Socialist Register, 10, 205-234.

MySQL. (2008). Sun to acquire MySQL. Press Release. Last accessed August 4, 2014
from http://www.mysql.com/news-and-events/sun-to-acquire-mysql.html

Nairn, A. (2002). Engines that move markets: Technology investing from railroads to the
internet and beyond. New York, NY: John Wiley & Sons.

Neeson, J.M. (1993). Commoners: Common right, enclosure and social change in
England, 1700-1820. New York, NY: Cambridge University Press.

189

http://www.mysql.com/news-and-events/sun-to-acquire-mysql.html
http://www.microsoft.com/en-us/news/exec/craig/05-03sharedsource.aspx?navIndex=2
http://msopentech.com/what-we-do/
http://msopentech.com/

Neilson, B., & Rossiter, N. (January 01, 2008). Precarity as a Political Concept, or,
Fordism as Exception. Theory, Culture and Society, 25, 7-8.

O'Reilly, T. (2005). What is Web 2.0: Design patterns and business models for the next
generation of software. O'Reilly.com. Last accessed May 28, 2014 from
http://oreilly.com/pub/a/web2/archive/what-is-web-20.html?page=all

OpenOffice Community Council. (2010, October 14). Community council log 201014.
Last accessed August 4, 2014 from
http://wiki.openoffice.org/wiki/Community_Council_Log_20101014

Open Source Ecology. (2014). Web site. Last accessed August 5, 2014 from
http://opensourceecology.org/

Open Source Initiative. (2007, October 12). OSI approves Microsoft license submissions.
Opensource.org. Last accessed June 2, 2014 from http://opensource.org/node/207

Oracle Corporation. (2013). Annual report: Form 10-k. Last accessed August 2, 2014
from http://oracle.q4cdn.com/e8a91886-38c1-427e-a6c5-a32536c1fa4e.pdf

Ostrom, E. (2005). Understanding institutional diversity. Princeton: Princeton University
Press.

Ostrom, E. (1990). Governing the commons: The evolution of institutions for collective
action. Cambridge: Cambridge University Press.

Page, W.H., & Lopatka, J.E. (2007). The Microsoft case: Antitrust, high technology, and
consumer welfare. Chicago, IL: The University of Chicago Press.

Pang, A.S. & Marinaccio, W. (2000). The Xerox PARC visit. Included as part of the
Making the Macintosh: Technology and Culture in Silicon Valley project, an ongoing
project available online. Last accessed May 15, 2014 from http://www-
sul.stanford.edu/mac/parc.html

Polanyi, K. (2001). The great transformation: The political and economic origins of our
time. Boston, MA: Beacon Press.

Pollack, A. (1990, March 24). Most of Xerox's suit against Apple barred. The New York
Times. Last accessed May 15, 2014 from
http://www.nytimes.com/1990/03/24/business/most-of-xerox-s-suit-against-apple-
barred.html

Rahemipour, J. (2010, October 31). [native-lang] Every end is a new beginning.
Retrieved from The Mail Archive, last accessed March 6, 2013 from http://www.mail-
archive.com/dev@native-lang.openoffice.org/msg04865.html

190

http://www.mail-archive.com/dev@native-lang.openoffice.org/msg04865.html
http://www.mail-archive.com/dev@native-lang.openoffice.org/msg04865.html
http://www.nytimes.com/1990/03/24/business/most-of-xerox-s-suit-against-apple-barred.html
http://www.nytimes.com/1990/03/24/business/most-of-xerox-s-suit-against-apple-barred.html
http://www-sul.stanford.edu/mac/parc.html
http://www-sul.stanford.edu/mac/parc.html
http://oracle.q4cdn.com/e8a91886-38c1-427e-a6c5-a32536c1fa4e.pdf
http://opensource.org/node/207
http://opensourceecology.org/
http://wiki.openoffice.org/wiki/Community_Council_Log_20101014
http://oreilly.com/pub/a/web2/archive/what-is-web-20.html?page=all

Raymond, E.S. (2004). Halloween X: Follow the money. The Halloween Documents.
Last accessed May 31, 2014 from http://www.catb.org/esr/halloween/halloween10.html

Raymond, E.S. (2002a). Halloween VII: Survey says. The Halloween Documents. Last
accessed May 31, 2014 from http://www.catb.org/esr/halloween/halloween7.html

Raymond, E.S. (2002b). Halloween VIII: Doing the damage-control dance. The
Halloween Documents. Last accessed May 31, 2014 from
http://www.catb.org/esr/halloween/halloween8.html

Raymond, E.S. (2000). The cathedral and the bazaar [online version]. Last accessed
January 23, 2013 from http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-
bazaar/ar01s04.html

Raymond, E.S. (1998a). Open source software: A (new?) development methodology. The
Halloween Documents: Halloween Document I (Version 1.17). Last accessed May 31,
2014 from http://www.catb.org/esr/halloween/halloween1.html

Raymond, E.S. (1998b). Linux OS competitive analysis: The next Java VM? The
Halloween Documents: Halloween Document II (Version 1.7). Last accessed May 31,
2014 from http://www.catb.org/esr/halloween/halloween2.html

Raymond, E.S. (1998c). Microsoft's reaction to the 'Halloween Memorandum.' The
Halloween Documents: Halloween Document III (Version 1.6). Last accessed May 31,
2014 from http://www.catb.org/esr/halloween/halloween3.html

Red Hat, Inc. (2014). The Fedora Project wiki. Last accessed May 9, 2014 from
http://fedoraproject.org/wiki/Fedora_Project_Wiki.

Red Hat, Inc. (2013). Form 10-K. Annual report. Last accessed May 1, 2014 from
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter=

Red Hat, Inc. (2012). Form 10-K. Annual report. Last accessed May 1, 2014 from
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter=

Red Hat, Inc. (2011). Form 10-K. Annual report. Last accessed May 1, 2014 from
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter=

Red Hat, Inc. (2010). Form 10-K. Annual report. Last accessed May 1, 2014 from
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter=

Red Hat, Inc. (2009). Form 10-K. Annual report. Last accessed May 1, 2014 from
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter=

Red Hat, Inc. (2008). Form 10-K. Annual report. Last accessed May 1, 2014 from
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter=

191

http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter
http://fedoraproject.org/wiki/Fedora_Project_Wiki
http://www.catb.org/esr/halloween/halloween3.html
http://www.catb.org/esr/halloween/halloween2.html
http://www.catb.org/esr/halloween/halloween1.html
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ar01s04.html
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ar01s04.html
http://www.catb.org/esr/halloween/halloween8.html
http://www.catb.org/esr/halloween/halloween7.html
http://www.catb.org/esr/halloween/halloween10.html

Red Hat, Inc. (2007). Form 10-K. Annual report. Last accessed May 1, 2014 from
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter=

Red Hat, Inc. (2006a). Form 10-K. Annual report. Last accessed May 1, 2014 from
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter=

Red Hat, Inc. (2006b). Red Hat trademark guidelines. Last accessed May 1, 2014 from
http://www.redhat.com/f/pdf/corp/RH-3573_284204_TM_Gd.pdf

Red Hat, Inc. (2005). Form 10-K. Annual report. Last accessed May 1, 2014 from
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter=

Red Hat, Inc. (2004). Form 10-K. Annual report. Last accessed May 1, 2014 from
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter=

Red Hat, Inc. (2003). Form 10-K. Annual report. Last accessed May 1, 2014 from
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter=

Red Hat, Inc. (2002). Form 10-K. Annual report. Last accessed May 1, 2014 from
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter=

Red Hat, Inc. (2001). Form 10-K. Annual report. Last accessed May 1, 2014 from
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter=

Red Hat, Inc. (2000). Form 10-K. Annual report. Last accessed May 1, 2014 from
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter=

Reimer, J. (2005, December 14). Total share: 30 years of personal computer market share.
Ars Technica. Last accessed May 19, 2014 from
http://arstechnica.com/features/2005/12/total-share/6/

Rossiter, N., & Zehle, S. (2013). Acts of translation: Organized networks as algorithmic
technologies of the common. In Trebor Scholz (ed.), Digital labor: The Internet as
playground and factory. New York, NY: Routledge, pp. 225-239.

Salmon, F. & Stokes, J. (2010, December 27). Algorithms take control of Wall Street.
Wired. Last accessed March 5, 2014 from
http://www.wired.com/magazine/2010/12/ff_ai_flashtrading/all/

Saunders, M., & Morrison, G. (2014). The big switch: How Munich switched 15,000 PCs
from Windows to Linux. Linux Voice. Last accessed May 30, 2014 from
http://www.linuxvoice.com/the-big-switch/

Sayers, S. (2007). The concept of labor: Marx and his critics. Science & Society, 71(4),
pp. 431-454.

192

http://www.linuxvoice.com/the-big-switch/
http://www.wired.com/magazine/2010/12/ff_ai_flashtrading/all/
http://arstechnica.com/features/2005/12/total-share/6/
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter
http://www.redhat.com/f/pdf/corp/RH-3573_284204_TM_Gd.pdf
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter
http://investors.redhat.com/sec.cfm?DocType=Annual&Year=&FormatFilter

Schiller, D. (2007). How to think about information. Urbana, IL: University of Illinois
Press.

Schiller, D. (1999). Digital capitalism: Networking the global market system. Cambridge,
MA: MIT Press.

Scholz, T. (ed.). (2013). Digital labor: The Internet as playground and factory. New
York, NY: Routledge.

Scott, J. (1990). A matter of record. Cambridge, MA: Polity Press.

Smith, M. (2011). The secrets of Station X: How the Bletchley Park codebreakers helped
win the war. London: Biteback Publishers.

Smythe, D.W. (1981). Dependency road: Communications, capitalism, consciousness,
and Canada. Norwood, NJ: Ablex Publishing Corp.

Smythe, D.W. (1960). On the political economy of communications. Journalism & Mass
Communication Quarterly, 37(4), pp.563-572.

Söderberg, J. (2008). Hacking capitalism: The free and open source software movement.
New York, NY: Routledge.

Stallman, R. (2012). Why open source misses the point of free software. Last retrieved
January 22, 2013 from https://www.gnu.org/philosophy/open-source-misses-the-
point.html

Stallman, R.M. (2002). Free software, free society: Selected essays of Richard M.
Stallman. Boston, MA: GNU Press.

Streeter, T. (2011). The net effect: Romanticism, capitalism, and the internet. New York,
NY: New York University Press.
Taibbi, M. (2013, April 25). Everything is rigged: The biggest price-fixing scandal ever.
Rolling Stone. Last accessed March 5, 2014 from
http://www.rollingstone.com/politics/news/everything-is-rigged-the-biggest-financial-
scandal-yet-20130425

Tapscott, D., & Williams, A. D. (2006). Wikinomics: How mass collaboration changes
everything. New York, NY: Portfolio.

TechInsider.org. (2013). Joint development agreement between IBM and Microsoft. Last
accessed July 3, 2014 from http://tech-insider.org/os2/microsoft.html

Terranova, T. (2004). Network culture: Politics for the information age. Ann Arbor, MI:
Pluto Press.

193

http://tech-insider.org/os2/microsoft.html
http://www.rollingstone.com/politics/news/everything-is-rigged-the-biggest-financial-scandal-yet-20130425
http://www.rollingstone.com/politics/news/everything-is-rigged-the-biggest-financial-scandal-yet-20130425
https://www.gnu.org/philosophy/open-source-misses-the-point.html
https://www.gnu.org/philosophy/open-source-misses-the-point.html

Terranova, T. (2000). Free labor: Producing culture for the digital economy. Social Text,
63, 18(2), pp. 33-58.

The History of Computing Project. (2014). Microsoft company 15 September 1975. Last
accessed May 15, 2014 from
http://www.thocp.net/companies/microsoft/microsoft_company.htm

The Linux Foundation. (2013). Linux kernel development: How fast it is going, who is
doing it, what they are doing, and who is sponsoring it. Last accessed August 4, 2014
from http://www.linuxfoundation.org/publications/linux-foundation/who-writes-linux-
2013

The Linux Foundation. (2012). Linux kernel development: How fast it is going, who is
doing it, what they are doing, and who is sponsoring it. Last accessed January 24, 2013
from http://www.linuxfoundation.org/publications/linux-foundation

Thompson, E.P. (1971). The moral economy of the English crowd in the eighteenth
century. Past and Present, 50, pp. 76-136.

Thompson, E.P. (1966). The making of the English working class. New York, NY:
Vintage Books.

Tiemann, M. (2007). Who is behind 'Shared Source' misinformation campaign? Open
Source Initiative. Last accessed May 28, 2014 from http://opensource.org/node/225

Top500.org. (2014). Operating system family/Linux. Top500.org. Last accessed May 30,
2014 from http://www.top500.org/statistics/details/osfam/1#.U4i_InKfoxA

Tramontano, M., & Trevisan, N. (2003). A dimensão digital de Solonópole, Brasil.
SIGraDi: Proceedings from the 7th Iberoamerican Congress of Digital Graphics, pp. 74-
77. Rosario, Argentina. Last accessed May 30, 2014 from
http://cumincades.scix.net/data/works/att/sigradi2003_060.content.pdf

Tu, J.I. (2012, December 7). Goldman Sachs: Microsoft has gone from 97 percent market
share of compute [sic] market to 20 percent. The Seattle Times. Last accessed May 12,
2014 from
http://seattletimes.com/html/microsoftpri0/2019853243_goldman_sachs_microsoft_os_h
as_gone_from_more_than.html

United States Mission to European Union. (2009, October 27). Oracle concerned over EU
investigation of Sun merger. WikiLeaks. WikiLeaks cable: 09BRUSSELS1455. Last
accessed August 2, 2014 from
http://wikileaks.org/cable/2009/10/09BRUSSELS1455.html

United States vs. Microsoft (2002). Final Judgement. Retrieved from the United States
Department of Justice. Last accessed June 2, 2014 from
http://www.justice.gov/atr/cases/f200400/200457.htm

194

http://www.justice.gov/atr/cases/f200400/200457.htm
http://wikileaks.org/cable/2009/10/09BRUSSELS1455.html
http://seattletimes.com/html/microsoftpri0/2019853243_goldman_sachs_microsoft_os_has_gone_from_more_than.html
http://seattletimes.com/html/microsoftpri0/2019853243_goldman_sachs_microsoft_os_has_gone_from_more_than.html
http://cumincades.scix.net/data/works/att/sigradi2003_060.content.pdf
http://www.top500.org/statistics/details/osfam/1#.U4i_InKfoxA
http://opensource.org/node/225
http://www.linuxfoundation.org/publications/linux-foundation
http://www.linuxfoundation.org/publications/linux-foundation/who-writes-linux-2013
http://www.linuxfoundation.org/publications/linux-foundation/who-writes-linux-2013
http://www.thocp.net/companies/microsoft/microsoft_company.htm

United States vs. Microsoft. (2000). Conclusions of Law. Retrieved from the United
States Department of Justice. Last accessed May 31, 2014 from
http://www.justice.gov/atr/cases/f218600/218633.htm

United States vs. Microsoft. 84 F. Supp. 2D 9. (1999). Retrieved from Westlaw Campus
database.

Vaughn-Nichols, S.J. (2014, March 28). Red Hat reveals CentOS plans. CDNet. Last
accessed May 1, 2014 from http://www.zdnet.com/red-hat-reveals-centos-plans-
7000027812/

Von Hippel, E. (2005). Democratizing innovation. Cambridge, MA: The MIT Press.

Ward, J. (2013). Apple lore: The creation of the Macintosh. Vectronic's Apple World.
Last accessed May 15, 2014 from
http://vectronicsappleworld.com/macintosh/creation.html

Webb, E.J., Campbell, D.T., Schwartz, R.D., Sechrest, L., & Grove, J.B. (1981). Non-
reactive measures in the social sciences, 2nd ed. Boston, MA: Houghton Mifflin
Company.

Weber, S. (2004). The success of open source. Cambridge, MA: Harvard University
Press.

Whitney, L. (2009, December 14). Oracle pledges to play well with MySQL. Cnet. Last
accessed August 2, 2014 from http://news.cnet.com/8301-1001_3-10414686-92.html

Wilcox, J. (2001, March 13). Jackson exits Microsoft discrimination case. Cnet. Last
accessed June 2, 2014 from http://news.cnet.com/Jackson-exits-Microsoft-discrimination-
case/2100-1001_3-254049.html

Williams, R. (1975). Television: Technology and cultural form. New York, NY: Schocken
Books.

Williams, S. (2002). Free as in freedom: Richard Stallman's crusade for free software.
Sebastopol, CA: O'Reilly.

Wu, T. (2010). The master switch: The rise and fall of information empires. New York,
NY: Alfred A. Knopf.

Young, R., & Rohm, W.G. (1999). Under the radar: How Red Hat changed the software
business – and took Microsoft by surprise. Scotsdale, AZ: The Coriolis Group.

Zittrain, J. (2008). The future of the Internet and how to stop it. New Haven, CT: Yale
University Press.

195

http://news.cnet.com/Jackson-exits-Microsoft-discrimination-case/2100-1001_3-254049.html
http://news.cnet.com/Jackson-exits-Microsoft-discrimination-case/2100-1001_3-254049.html
http://news.cnet.com/8301-1001_3-10414686-92.html
http://vectronicsappleworld.com/macintosh/creation.html
http://www.zdnet.com/red-hat-reveals-centos-plans-7000027812/
http://www.zdnet.com/red-hat-reveals-centos-plans-7000027812/
http://www.justice.gov/atr/cases/f218600/218633.htm

Zuse, Konrad, Bauer, F. L., Zemanek, H., McKenna, P., & Ross, J. A. (2010). The
computer: My life. New York, NY: Springer-Verlag New York Inc.

196

