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Estimating the boundary of the region of attraction of Lotka-Volterra system

with time delays
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ABSTRACT

This paper considers the local stability problem and estimates the region of attraction (RA) of the pos-
itive equilibrium of Lotka-Volterra (L-V) competitive system with time-delays. Based on the stability
theory and the quadratic system theory, by choosing some less conservative integral inequalities and
appropriate Lyapunov-Krasovskii (L-K) functional, a local stability condition is obtained by means of
linear matrix inequalities (LMI) and the estimate of RA of the positive equilibrium is first discussed.
Furthermore, the corresponding optimization problem for the estimate of RA is given. Numerical
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simulations show that the proposed stability condition in this paper is less conservative as compared
with the most existing ones and the method of estimating RA is effective.

1. Introduction

In this paper, the following two-species competitive
Lotka-Volterra (L-V) type system with discrete delays is
considered:

{X(t) = x(0)[b1 — anx(t — 1) — apy(t — 112)],
y(t) = y(O[by — axx(t — 121) — axny(t — 122)],

where x(t) and y(t) are densities of population at time t,

respectively; b;, a;(i,j = 1,2) are positive constants.
The initial condition of system (1) is given as

X(s) =¢'1(s),—1 <5 <0,¢'1(s) > 0, )

y(s) = ¢/'5(s), -1 <5 < 0,¢'5(s) > 0,

where t = ]maxz{rij}, and ¢7(s), ¢ (s) are assumed to be
<ij<

continuous.

If ajq/ax > by/by > ai2/az, by denoting z*=(x*, y*)
with x* = P1a=t0n \x — Ladu—bid it js seen that
x*,y* € (0,1). The four equilibrium points of system
(1) are(0,0), (0,b2/az2), (b1/a11,0), and z* respectively.
Define z(t) = (x(t),y(t)) as all the positive solutions of
system (1). The point z* is the only positive equilibrium
point. The equilibrium point z* indicates the coexistence
of the two species.

It is well known that the foundation of two-species
competitive L-V type system (1) was laid by Lotka and
Volterra sixty years ago (Lotka, 1956; Volterra, 1931). Dur-
ing the past several decades, L-V type systems have

received much attention. The most basic questions aris-
ing from this system are competitive species’ persis-
tence, attractivity, extinctions, global (or local) asymptotic
behaviour and other dynamical behaviours (Ahmad &
Stamova, 2015; Chen et al.,, 2012; Jiang & Liang, 2020;
Kuang, 1996; Lai & Fang, 2020; Ma et al., 2019; Park, 2005;
Sun & Meng, 2007; Teng & Yu, 2000; Wang et al., 1995;
Zhao et al., 2014; Zhen & Ma, 2002; Zhu & Liu, 2017).

There are considerable works on the study of the
global and local asymptotical behaviours of L-V type sys-
tems. However, few studies have discussed the estimate
of the region of attraction (RA) or the edge of chaotic
attractorsin L-V systems (Lai & Fang, 2020). In Laiand Fang
(2020), a topological approach for plotting the boundary
of the region of asymptotic stability of L-V predator-prey
system was proposed. But the systems considered by Lai
and Fang (2020) don't contain time delay. To the best of
our knowledge, the estimate of the RA in L-V system with
time delays has not been considered due to probably the
mathematical complexity.

Two-species competitive L-V type system is a quadratic
system. Quadratic systems play an important role in the
modelling of a wide class of nonlinear processes (elec-
trical, robotic, biological, etc.). For such systems, it is of
mandatory importance not only to determine whether
the origin of the state space is locally asymptotically sta-
ble but also to ensure that the operative range is included
into the convergence region of the equilibrium. Over the
years, several papers have focused on the estimate of
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the RA of the zero-equilibrium point of quadratic system
(Caldeira et al., 2018; Chen et al., 2013; Chesi et al., 2005;
Chiang et al., 1988; Genesio & Vicino, 1984; Li-Ya et al.,
2019; Merola et al.,, 2017; Tesi et al., 1996; Xu et al., 2020).
In Genesio and Vicino (1984), a Lyapunov-based proce-
dure is proposed to compute an ellipsoidal estimate of
the RA of a quadratic system. Considering this method
is computationally heavy, an estimate of the RA based
on topological considerations was provided in Chiang
et al. (1988) or based on linear matrix inequalities (LMls)
feasibility problem (Chesi et al., 2005; Tesi et al., 1996).

The estimate of the RA of time-delay systems is tack-
led by means of a two-steps procedure: (i) choice of
a Lyapunov-Krasovskii (L-K) functional, which proves
local asymptotic stability of the equilibrium of system
(Qian, Li, Chen, et al., 2020; Qian, Xing, and Fei, 2020);
(i) computation of the estimate of the RA associated
to that particular L-K functional. The integral terms are
common in the derivative of L-K functionals, and the
approximation methods are used to replace the inte-
gral terms with some more effective expressions (Dong
et al., 2019). So, the choice of the optimal L-K func-
tional and the less conservative inequality are impor-
tant and may severely affect the conservativeness of the
estimate.

In this paper, our main contributions are given as fol-
lows: (1) we study local stability and estimate the RA of the
positive equilibrium of L-V competitive system with time-
delays based on quadratic system theory; (2) By choos-
ing an appropriate L-K functionals and using less conser-
vative inequalities, we develop LMI to ensure the local
asymptotic stability of the positive equilibrium point with
a guaranteed region of stability inside some polytopic
region of the state-space.

The paper is organized as follows: In Section 2, the
problem we deal with is precisely stated and some pre-
liminary notation is provided. Section 3 proposes some
preliminaries. In Section 4, we derive the local stability
conditions and estimate the RA of the positive equilib-
rium z*. Finally, simulations are given to illustrate the
effectiveness of the obtained results.

Notation. The superscript "T" is the transpose of a
matrix. The matrix P > 0(P > 0) denotes that P is pos-
itive definite (positive semi-definite). || - || denote the
2-norm of a vector. A(R)y is the maximum eigenvalue
value of matrix R. The symmetric terms in a matrix are
denoted by x.

2. Problem formulation

Letting u(t) 4 x(t) — x*, v(t) 4 y(t) — y*, system (1) can
be written as

{U(t) = [u(®) + x*[—anu(t — t11) — anpv(t — 112)],
v(t) = [v(t) + y*ll—axu(t — 121) — axnv(t — 1)1
(3)

Denote e(t) 2 (u”(t),v' () and rewrite (3) in the fol-
lowing matrix form:

2
e(t) = — > [Aj + Bj(e)le(t — ty), (@)
ij=1

where

_(anx* 0 (0 appx*
An—( 0 0)’ A12—(0 0 ),

e’B .
B2j(€) = (eTAzj/y*> j=12

with B=(3J). The initial condition e(s) = [¢](s),
$1()]",s € [-7,0] associated with the system (4) is
defined by initial condition (2).

In this paper, the initial condition e(s)(s € [—1,0)) of
the system (4) is assumed to belong to a set of the form

X, = {e(s) € C'[—7,0]: max |le(s)||
se[—1,0]
< p1, max_|le(s)|| < ,02}~ (5)
se[—1,0]

where p; > 0, pp > Oare scalars to be maximized.
We introduce the square

x = [—en, el x [—ey e, (6)
which can be equivalently written as follows:

X =Colvi,v,v3,va} = {e € R?: |he| < &,i=1,2},

(7)

where ‘Co’ denote the convex hull and the corresponding
vertices vj(i = 1,2, 3,4) are given as follows:

vi=[ & -& ]T. vo=[-& & ]T,

e ]T,
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3. Preliminaries
Next, we will introduce the following integral inequalities,

which are important in obtaining our main results.

Lemma 3.1: (Park et al., 2015): For a given n x n matrix
R > 0, two scalars a and b satisfying b > a and a differ-
entiable vector function w(t) € R", the following integral
inequalities holds:

(M) b -a) f7 o ORo(s)ds = (f; w(s)ds)TR( 18 p(s)ds)
+ 3Q]RQ,,

2 (b-a) [° T (5)Ra(s)ds > (fabw(s)ds>TR( I w(s)ds)
+ 3QIRQ + 5QIRQ,,

.
3) @fab febw(s)dsde > <ff faba)(s)dee) R( fab fgb
w(s)dsdf) + 8Q1RQ3,

where

b
Q1 =/ w(s)d ——/ / w(s)dsdo,
b
sz/ w(s)ds——/ f w(s)dsdo
12
—_— dsdodx,
+(b—a)2/a /,; /0 0(5)ds
b b 3 b pb b
523:/ f w(s)dsd@——/ / f w(s)dsdod.
a Jo b—a a Jr JO

Lemma 3.2: (Qian, Li, Zhao, et al., 2020): For a given n x
n matrix Z > 0, two scalars a and b satisfying b > a and a
differentiable vector function w(t) € R", the following two
inequalities holds:

(1) (b-a) [P (5)Zw(s)ds > ( fabw(s)ds>TZ
(f7 w(5)ds),
(2) ©59D (78t T ()2 (s)dsdo (b > a = 0)

z (f—_ba frt+0 w(s)dsd@)TZ (f—_tf frt+9 w(s)dsd@) :

4. Main results

In this section, we will first use L-K stability theory and
the quadratic systems theory to derive the local asymp-
totical stability conditions of the equilibrium point z*. For
presentation convenience, we denote that

=1
AOE / e(s)ds,
t

—Tjj

t
aj(t) 2 f e(s)ds,
tf‘r,‘j

0 pt
Bij(t) 4 / f e(s)dsde,
—Tjj Jt+6

—Tk t
B (1) = / e(s)dsd®,
—Tj t+6

Tj = Tj — T ik I =1,2, 10i4+j <10k 4+,
_ A T
ety = [ef(t—me(t—mp e (t—m)e (t—m2)],

A T
x(1) = [+17(1) x2" (O *0(1) *22" ()],

20 2 [ 02 @320 121 0533 0 3 0]
*=ao,pB,

e(Z, )2 eeR2:eZe<1,Z > 0}

Theorem 4.1: Let the scalars 1 > 0, &; > 0 and T >
0,i,j = 1,2 be given. The system (4) is locally asymptotically
stable, if there exist 42 x 42-dimensional symmetric matrix
P,and 2 x 2-dimensional matrices Q; > 0,R;; > 0, Qf.j‘.’ > 0,
R > 0,k,1 =1,2and10i +j < 10k +1,Z > 0,Ty, Ty, such
that the following LMIs hold:

D11(vm) P12 P13(Vm)
* Dy Dy3 | +sym(FIPF) <0,
* * @33
m=1,273,4, (8)
DI
P+ [ H} >0, 9)
x B
hTh, <&z, hlh, <&’z (10)
where
F = [ 02x8  02xa40 0 }
040x2 Os0ox8 la0xa0 Osox2
R 02x12
By = |n 212,
a=|f O ]
[A Oxx12  —Th
D13(vp) = | ~ - ,
13(Vm) A A Tm)
[ 0 0O2xs 0O2xg 0O2x12 0O2x20 !/
'y  —lgxg Ogxg Ogx12 0Ogx20 Ogx2
F2 = 101242 T2 0O12x8 012x12 012x20 O12%2
I's  Ogxg —lgxs Ogx12 0Osx20 Osgx2
L T4 01248 O12x8 —l12x12 012x20 O12%2
rgll g2
== | * EZZ:|'
"v1 R11(Vm) R12(vm) R21(Vm) Raz(vm)
* YN 3R12  3RZ] 3R2?2
D11(vm) = | * * Y12 3R] 3R% |
* * * Y21 3R§
L X k k *k Y22

: -2 -2 -2 pl2
<D22 = —792dlag{‘l,'” R11,~-~ %Y R22/T1112R11/

’



4 (& JLYANGETAL

"52122R21} D3 = [® 020><2]:
®33 = —720diag{t;;*Ri1, -+, 155 Raa, 1111, RI3,

< Tyr9oR3Y —/ 720},

z

2
-7+ Z 6‘Ein/j,
=1

o

1 P —
= diag{E1,- -+, Bz, By, , BN

2 = dag(al, -+, 8L 2l TR
322 = dlag{Ef‘lr ] :%2! E:Il%zr ’ Egz}:
9 = [2” D 3P 21112 2%]2
1 1 121 221
Yoo Xy Xy o X ]'
with
N ‘E11/
/ ‘E12/
F = y F =
! / 3 ‘521/
L/ T2/
-1 1 0 0] 211101 ]
-1 0 I o0 1121/
-1 0 0 | 71122/
F = 7 F = ’
2 0 -1 I 0 T ol
0 -1 0 | 71222/
L 0 0 - i _‘[2122/_

2
y1 =Y (Qj—9Rp,

ij=1

yin =—Q11 — Z T11k/Q11 —9R1 — Z 9R11,

k=1 k=1
2

v22 =—Q2+ Z 7j22Q57 — 9Rzz — Z R,

ij=1 ij=1
kI
Z 579 Z T — Oy
ij=1 k=1
-y o= Y oA
k=1 ij=1

10i +j < 10i +j < 10k +1, (i,j) = (1,2) or (2, 1),
Rj(vim) = 3Rj — TlAj + Bj(Vm)],

R=-24 [‘E1_11R11 ‘L'1_21 R12 ‘172_11R21 T2_21R22] ,

R = 36diag{z;;' R11, 715 R12, 731 Ro1, 735 Raa)s

-1 p12 21 22
37192R19 371121R11 371122R11

12
R 2T1112R11 0 0
0 271121R11 0
0 0 2711225’%%
0 0 0
-1 p21 -1 p22
37101R12 3f1_2122R%% _O
0 . 2755R75 2’21 R%;
2f1221R12 0 372122R
A= 60[ ™ R11 ‘L';zzRu Ty Rz] ‘L’{z Ry> ],
A = —60diag{t;;2R11, 35°R12, T5;2R21. 7552 Raa),

O = 360diag{r1_13R11, e IT2_23R22'

71112R11r"'rfz122R i

u_—Tz—Tz+Zt Ri

ij=1
2 2
+Y > (j—w)’RY, Tj=6Ry,
ij=1 kJ=1
Ek/ _ 6Rfj’, 21 — _241..—1R,-j,

= = —247, R, Ej=(4Q;+18RpT; ",

]
= x

gl = Q) +18Rfl7, ],
Ej = —67; % (Qj + 8Ry),

i = —615) Q) + 8T,
Ej =12(Q5+ 12RU)IIT3,

i = 12,7 @) + 12R' T, ),

ijk

T1112R11 71121R11 T1122R11

2
A =60 TRl O 0
0 72, R2! 0
1121777
0 0 r1122R11
0 0 0
2 22
T1221R1; T1222R1% 0 |
0 T1222R12 t2122’?21
T1221R12 0 t2122'[?21
[A11 4 By1(vim)1T
[A12 4 Bra(vim)1T T
M(vy) = — T
(Vm) g1 + Bt (vl | 2
[A22 + B (vim)]'

Proof: Choose the following augmented L-K functional:

V() = Vi) + Vot + Va(b) (1)



where

Vi () = 0" (0PN (D) + Z

ij=1

2 0 ot
+Y 1 / / &7 (s)Rje(s)dsdo),
ij=1 —Tj Jt+0

/ eT(s)Q,-je(s)ds
Tij
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1
R o o7[& ®]
x| 0 3R; 0 g,fz)(t)
. 3)
0 0 SR |

éT(s)Rf;' e(s)ds < —

—
—_
w

-

- k(1 T
TG

A0

HO =3 1 f " (5)QMe(5)ds,
Tij

ij=1k,I=1

Va(t) = Z Z - f o

ij=1k,I=1

t
x/ e’ (s)Rie(s)dsdd, 10i+j < 10k +1,
t+60

with

n=[ew o awm AW

Through some direct calculations, one can obtain that

V(t) = Vi) + Va(t) + V3(0)

where

2
Va(t) =27 (OPA(t) + €T () Y Qje(t)
ij=1

Z e (t — 1) Qje(t — 7j) + €' (1) Z t2Rje(t)

ij=1
—~ Z Tj f e (s)Rje(s)ds,
ij=1 Tij
2 2
Vo) =Y > mjale’ (t — i) Qffe(t — i)
ij=1k,l=1

— e’ (t — T Qfe(t — 7],

2 2
Vs(t) = Z Z Tijkl [r,-jk/ér(t)Rk’e(t)

ij=1kJ=1

/t—‘[k/
t—1j

éT(s)Rf;’é(s)ds] )

Ao 1.

(12)

ij=1

=1
— Tijkl /
t—1j

RO o o[
x| 0 3R¢ o0 g,"’(z)(t) ,

0]

"7
(14)

where

g0 = e(t) —e(t — 1),

20 = e(t) + e(t — ) — 217 e(1),

7 () = e(t) — e(t — j) + 677 'e(t) — 12
&'V () = e(t — 1) —e(t -
&'
01 = et — 1) — et — )

—2 gkl
121’Uk, Bij (0.

-2
Tjj),

= e(t — 1) +e(t — 1) — 27

-1 Kl
+ 6tukl ojj (t) —

For any matrix T1, T, € R?*?, it follows that the follow-
ing equation is true:

20" (OT1 4 " ()T,

2
x 1= > 1A + Bj(e)le(t — ) — é(t) (15)

ij=1

Adding the left side of (15) to V(t) and using (13) and (14)
yields
V() < ¢TI (e) + sym(F] PF2)1¢ (1) (16)

where

c@)=[eT) et o’ & (1) BT BT €T (1]

Using the inequality (2) of Lemma 3.1, it is seen that

t
—_— -Cij /
t—1jj

M a7
& (O
e’ (s)Rje(s)ds < — 5(2) )

s<3><t)

[®11(e) P12 Pr3(e)
d(e) = * D D3 :|
* * (1333
e = [2 012 ‘T‘]
A A I
1 Ri1(e) Ria(e) Rai(e) Raale)
* yn  3R1Z 3RYL  3RE
Dri(e) = | = * Y12 3Rﬂ 3R%§ '
* * * Y21 3R%$
Lk * * * Y22
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with
Rij(e) = 3R — T1[Aj + Bj(e)],
[A11 + Bi(e)]
[A12 +Bia(@)] | 1
I(e) = — T,.
© A1 + B (@) | 2
[Ax + Bpa(e)]”

Note that ®(e) is affine with respect to the states
eq1(t) and e, (t). Hence, if the LMIs in (8) are satisfied, the
inequality ®(e) < 0 can be ensured on x. Then, we have

V(t) <0 (17)
on the square x, which implies that
V() =V(0), t=0. (18)

On the other hand, using the integral inequalities (1)
and (3) in Lemma 3.1, one can obtain the inequality

2
VO = " OPn®O + Y 1 o (0Qpat)
ij=1
+ 2[zje(t) — (O] Rjlzje(t) — ()]
— 67, B
— 67, Bji(1)]
;B0 Qylay(t) - 2
+ Z Z (el 0ol )

ij=1k,I=1

+ 4lzje(t) + 20(t)
x Rjjltje(t) + 2a(t)

+3[a(t) — 2 ;' Bi(D])

+ 4ty [ryue(t) + 205 () — 67, B (O
x Ril[zje(t) + 2af (1) — 67, BY (D)
+3lof'(0) — 275 B 01 QLo (1) — 27, B (0]

+25) (te(t) — o () RY (rjge(t) — aff 1)
_ T 2
=n (1) (P + [*

14
HD n(t) (19)
where ¥ = ij:1 67jRjj.

Using (9) and noting (19), it follows that
V(t) = e () Ze(t), (20)

which shows that the L-K functional V(t) is positive defi-
nite.
In addition, it can be inferred from (10) that

e(Z,1) C x. 1)

For all initial state e(s) € X, satisfying V(0) < 1, itis seen
from (18) and (20) that all trajectories e(t) are contained

inthe sete(Z, 1). Noting (17) and (21), it is concluded that
the system (4) is asymptotically stable for all e(s) satisfying
V(0) < 1.This completes the proof.

Remark 4.1: Let Qf}’, Rf.l‘.’ = 0, the interconnected terms
related to four time delays in the functional (11) have
been ignored, then the dimension of matrix P in
Theorem 4.1 will be greatly reduced to 18 x 18. The LMI
(8) will be turned into

D11 (vm) D12 D43(vim)
* D'y D3
* * d'33
+ sym(F;"PF)) <0, m=1,2,3,4,
where
F’=_ I 02«8 0O2x16 0 :|
"7 | 016x2 Ot6xs hexi6  Orex2
[~ A7 IN\ —T]
@’ZRTRT],d)/VzA ,
2= 13(Vm) A Ty
[0 0248 0Oxg Ooxg |/
Fy=|T1 —lgxs Osxs Osxs Osx2 |,
| I's  Osxg —lsxg 0Osxs Osx2
'E'I'I E'IZ
== |« Ezz]r
@, = —192diag{t;*Ri1, - - , 795> R2a},
q)/23 = [®/ 08)(2] ’
@3 = —720diag{t;,*Ri1, - -+, Ty5 Raa, —11/720},
e = 360diag{‘f1_13R11,- - ,‘52_23R22}.

When the time delays are varying, the system we con-
cern is as follows:

{X(t) =x(0)[b1 — anx(t — 11 () — any(t — r12(1)],
y() = y(®[by — axx(t — 121(8)) — axny(t — 122(1))],

(22)
where 0 < 7;(t) < dj, 7j(t) < h; with d; >0,h; >
0G,j=1,2).

The initial condition of system (22) is given as

{x(s) =¢/1(5),—T <5< 0,¢'1(s) >0,

y(s) = ¢/'5(5), —1 <5 < 0,¢'5(s) > 0,

wheret = 1m,c,zxz{r,-j(t)}, and ¢1/(s), 2’ (s) are assumed to
<ij<

be continuous.
Similar to the previous operation, we can rewrite (22)
in the following matrix form:

2
e(t) = — Y _[Aj+ Bj(e)le(t — 7(t)), (23)
ij=1
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denote @;(t) 4 frt_rﬁ(t) e(s)ds, then we can obtain the fol-
lowing Corollary 4.1.

Corollary 4.1: Let the scalars e; > 0,&; > 0 and dj; >
0,7 > 0,i,j=1,2 be given. The system (23) is locally
asymptotically stable, if there exist 10 x 10-dimensional
symmetric matrix P, and 2 x 2-dimensional matrices é;j >
0, l~?,-j >0,ij=1,2 Z >0, T, To, such that the following
LMils hold:

[5911(Vm) &)13(Vm)

} + sym(F]PF;) <0, m=1,2,3,4,
* D

(24
* =
hThy <2z, hih, < &%z, (26)
where
(71 Rivm) Riaim) Roi(vm)  Raa(vim)
* 3711 0 0 0
DPi1(vm) = | = * 12 0 0 ,
* * * Y21 0
* * * * )722
. R T
DPialvm) = | _ ! ,
| R TI(vm)
&)22 = —72diag{d?12f~?11,d;22/~?12,dizkﬂ,
X d2_22R221 _1'1/12}1
2 2
fi=-To—T]+> diR;, 1= (Qj— 4Ry,
ij=1 ij=1

Rj(vm) = —2Rj — TilAj + Bj(vim)],
7ij = (hj — 1)Qj — 4Ry,
R = 6[ d1_11::?11 d1_21l~?12 d2_11::?21 d2_21l~?22 :|,

E = 6diag |:d1_11/~?11 d1_21 RQ d2_11 f?21 d2_21 Rzz] ,

3 :|: / Ooxg Oxg O }
Osx2 Osxg Igxs Osx2]’
E _[ 0 Oxs Oaxg ! ]
2_
I'' TI's Ogxsg 0Ogx2

I's = diag{(h11 — 1)I, (h12 — D),
x (ha1 — DI, (hoa — D},

_ 2
S =-Z+) 2d;Ry,
ij=1
5:—2[ f?n l~?12 f~?21 F?zz ],

& = diag{dy;' (Q11 + 2R11),d5; (Q12 + 2R12),
x dy7' (Qa1 + 2Ra1), d3y (Qa2 + 2R2)},

Proof: Choose the following augmented L-K functional:

2 t

V() =7 (OPAD + )

ij=1 t*T[j(t)

e’ (s)Qje(s)ds

0

i

t
/ el (s)Rje(s)dsdo,  (27)
=1 ij(t) Jt+0

with
i =[ew® a0 aL,m a,o aLo].

Through some direct calculations, one can obtain that

2
V(t) < 27T (0)Pij(t) + €T (1) ) Qye(t)

ij=1

2
— > (1 = hypel (t — 7(1)Qye(t — T(1))

ij=1

2
+el ()Y diRze)

ij=1

Y

=1 t—;()

t
e (s)Rje(s)ds,

Using the inequality (1) of Lemma 3.1, it is seen that

t
— dj / e (s)Rje(s)ds
t—j(t)
~ T ~ ~ ’|)
EGRCIBE R RIERG
=< |:§,'j('2) (t) 0 3’2“?” 5,1(-2) (t) (28)

V(0 = e(t) — e(t — 7(1)),

EP (D) = e(t) +e(t — (1) — 2d; @y (1),

where

For any matrix T, T € R?*2, it follows that the following
equation is true:

2[e"(OT1 + € (O]
2
x { = > [Aj + Bj(e)le(t — (1)) — é(t) ¢ = 0. (29)
ij=1
Adding the left side of (29) to V(t) and using (28) yields

V(t) < ZT()[d(e) 4+ sym(F]PF)IZ (1) (30)
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where

t=[e") elt—t®) e’ (t — 122(0))

a1 (1) ant e ]

&)(e)z-&)”(e) élz(e)] B1ale) = R -T
[ * dy | R Ti(e)

71 Rile) Rizle) Rale) Rale)

* P 0 0 0
Dqq(e) = | * * 712 0 0o |,

* * * V21 0

* * * * V22

with
Rj(e) = —2R; — ThlA; + Bj(e)),

Note that ®(e) is affine with respect to the states e (t) and
e>(t). Hence, if the LMIs in (24) are satisfied, the inequality
®(e) < 0can be ensured on x. Then, we have

V() <0 31
on the square x, which implies that
V() =V(0), t=0. (32)

On the other hand, using the integral inequalities (1) and
(2) in Lemma 3.2, one can obtain the inequality

2
V(o =i P + Y dy {a) (0Qgay(t)+
ij=1
+ 2d,§r,.j—2(r)[r,-j(t)e(t) — &;(O1"R;

x [Tj(t)e(t) — a;(H)]}
— () (/3 4 [f D i) (33)

where ¥ = ij:1 2d;iR.
Using (25) and noting (33), it follows that

[ ot

V(t) > e (t)Ze(t), (34)

which shows that the L-K functional V(t) is positive defi-
nite.
In addition, it can be inferred from (26) that

e(Z,1) C x. (35)

For all initial state e(s) € X, satisfying V(0) < 1, itis seen
from (32) and (34) that all trajectories e(t) are contained
in the set 8(2, 1). Noting (31) and (35), it is concluded
that the system (22) is asymptotically stable for all e(s)
satisfying V(0) < 1. This completes the proof.

Remark 4.2: Because of the difficulties in tackling the
varying time-delays, in above proof, we use some sim-
ple inequalities to obtain the results. In (28), we use (1) in
Lemma in place of (2) in lemma 3.1. In (33), we use Jensen
inequalities in place of Wirtinger inequalities.

Now, we will consider the estimate of RA of the posi-
tive equilibrium the region of asymptotic. In this end, we
introduce the following inequalities:

P < diag{Ao, A1, -+, Ao, AJ2, -, A22, Aqy,
e 11_\221[_\::%/' o II_\§$}I

=< qyl, Ry < ryl, i,j=1,2,

kI Kkl Akl Akl kI kI kI
Ay = piile Ay < Pyl Q< gjil, Ry

<l ijok, I =1,2and 10i +j < 10k + 1.

where
Ao >0,A;>0,Af >0, Aj >0,
]\f-](-/ > 0,po > 0,pjj > O,pf-](-l > 0, pjj
> 0,p} > 0,g5 > 0,rj > 0,qf >0, > 0.
Using (36) and the Jensen inequalities, one can obtain

V(0) < a1 max_|le(s)]|? + A2 max_|le(s)]|?
se[—1,0] se[—1,0]
<1 max_|le(®)|> + iy max_[les)|?  (37)
se[—1,0] se[—1,0]

where

2
A =Am(Ap) + Z TilTAm (Aj)
ij=1

+ (1 /M (M) + Am(Qp] +

2 2
> 2 Tlm(A)

ij=1k/=1

+ (@ + 70)* (D (AL + Am(@,

2
M=) (5} /2Ry

ij=1
2 2
+ Y Y W@ + ) /2DmRD),
ij=1kl=1
2
*=po+ Z TilTipi + 0.25‘C,~j3ﬁjj + qjl
ij=1

2 2
£33 bl oo+ 4l
ij=1k,I=1

2 2 2
=) 05zrp+ Y Y 050t (T + Ty
ij=1 ij=1k,I=1
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Then, the maximization of the estimate of the region
of asymptotic stability in Theorem 4.1 can be formulated
as

OP. 1 min

: | pkl KA Ak Koo okl Kl ki Mt
P,Qij,Rij,Ql,-} ,R,j ,Z,Ao.Aij,A,-j ANiji i PPy Py Py i iy o

sit. LMIs (8) — (10) and (36) hold.

By solving the optimization problem OP.1, one can
obtain the scalars A1 and A,. Recalling that all initial con-
dition e(s) satisfy V(0) < 1, from (37), we can require that
the initial condition e(s) satisfy the following relationship:

a max [|g(9)|]> + 12 max |lg(s)]> < 1. (38)
,0] se[—1,0]

se[—t

5. Numerical simulations

In this section, we will consider the numerical example
given in Zhen and Ma (2002), Park (2005), Sun and Meng
(2007) and Dong et al. (2019) toillustrate the effectiveness
and the sharpness of our results. In Zhen and Ma (2002),
Park (2005) and Sun and Meng (2007), by = by = a1 =
ax = 1 and ay; = a1 = 0.5. It is easy to verify that the
system (1) has one positive equilibrium point (2/3, 2/3).

When 7 = 1, the upper bounds t for local asymp-
totic stability obtained by the existing results and the
Theorem 4.1 in this paper are listed in Table 1.

Table 1 shows that the result in this paper can propose
larger delay bound than those in Zhen and Ma (2002),
Park (2005), Sun and Meng (2007) and Dong et al. (2019).

For the equilibrium point (0, 0) of the system (4),
by solving the optimization problem OP.1 with 7; =
06(,j=1,2), eg = 0.66, e; = 0.57, we can obtaini; =
5.669, 1, = 0.8017. Then, we obtain the local stability
condition of system (4) is the initial function e(s) should
satisfy the following relationship as shown in Figure 1:

5.669||e(s)||2 + 0.8017]|e(s)||> < 1. (39)

Forexample, if e(s) is constant, then we estimate the RA of
the equilibrium point (0, 0) of system (4) should satisfy

$3(s) + p3(s) < 0.176. (40)

Choosing the initial condition (¢1’(s), 2 (s))"=(0.5 cos t,
O.4)T, we obtain the state responses of system (1) as
Figure 2.

Table 1. Maximum admissible ranges of the time delay t.

Sun and
Zhen and Park Meng Donget al.
Ma (2002) (2005) (2007) (2019) Theorem 4.1

0<7<034 0<7<088 0<7<14307 0<7<15674 0<71 < 15804

157

——
~—

lleCs)ll

OL | 1 li 1 L |
0 01 02 03 04 05 06 07 08 09 1

e(s)l

Figure 1. . The boundary of RA of the L-V system (4).

Time t

Figure 2. . The trajectories with initial states in the RA.

6. Conclusions

In this paper, local stability analyses and the estimate of
the RA of the L-V competitive system with time-delays
are conducted firstly based on quadratic system theory.
Some less conservative stability conditions have been
obtained by constructing an appropriate L-K functional
and choosing less conservative inequalities. On the other
hand, the boundary of the RA of the system is plot-
ted and maximized by solving the optimization problem
OP.1 in the framework of LMIs. Finally, simulation results
have been given to demonstrate the effectiveness of the
obtained conditions. However, wirtinger-based inequal-
ities are not the most effective, and simulations show
that the boundary of the RA estimation in this paper is
conservative. This is our future research.
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