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ABSTRACT
The consensus problem of multi-agent systems with general second-order dynamics is studied. A
distributed event-triggering strategy is proposed to reduce the communication frequency of agents
and the update frequency of event-triggering controller. Under the fixed topology, a consensus
protocol and event-triggering function are designed for each agent. The sufficient conditions of con-
sensus are obtained by the stability theory, and the theoretical proof of excluding Zeno behaviour is
presented. Finally, a simulation example is given to illustrate the effectiveness of theobtained results.
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1. Introduction

In recent years, the cooperative control of multi-agent
systems has become the research focus of many schol-
ars (Ji et al., 2020; Ji & Yu, 2017; Lou et al., 2020; Qin
& Yu, 2013; Qu et al., 2020; Zou et al., 2019, 2020). As
an important basis of cooperative control, consensus is
widely used in robot formation control, UAV task assign-
ment, smart grid and so on. Therefore, great achieve-
ments have been obtained in the study of consensus
problem (Liu et al., 2017; Richert &Cortés, 2013; Sakurama
& Ahn, 2019; Sun et al., 2020, 2019; Zhang et al., 2019).

In the early research, in order to achieve consen-
sus of multi-agent systems, it is usually assumed that
agents exchange information continuously with their
neighbours through the local network. However, in real-
ity, the reserve energy of agents and the bandwidth of
the network are limited. In order to ensure the stability
of system performance and reduce the consumption of
resources, a new control method needs to be designed.
After leading into the event-triggered control strategy,
the agent transmits information after completing spe-
cific tasks for the controller to update the received infor-
mation, which effectively avoids continuous information
exchange. Based on the event-triggered control, a cen-
tralized control strategy was proposed after the first-
order multi-agent system was studied in Dimarogonas
and Johansson (2009), and all agents share a triggering
function. In Dimarogonas et al. (2012), a distributed con-
trol strategywasproposed todesign a triggering function
for each agent. ComparedwithDimarogonas and Johans-
son (2009), the distributed control can reduce the com-
munication frequencymore effectively. In Xie et al. (2015),
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the consensus problem of the second-order multi-agent
system under the directed graph is studied. The cen-
tralized and distributed control strategies were given
respectively, and a new control protocol was designed.
In Li et al. (2015), the consensus of second-order track-
ing control was studied under directed fixed topology
and switching topology, and a new distributed event-
triggered sampling schemewasproposed. Theconsensus
problem of tracking control for two order multi-agent
systems with nonlinear dynamics was studied in Zhao
et al. (2018). In Cao et al. (2015), the consensus prob-
lem of second-order multi-agent systems was discussed
by using sampling control and edge event driven control
strategies. The mixed control strategy of periodic sam-
pling and event driven was given in Liu and Ji (2017)
and Cao et al. (2016). A fast convergence method for
achieving consensus was studied in Qu et al. (2018).
In Liang et al. (2019), the consensus problem of gen-
eral linear systems based on the information of event-
triggered state andevent-triggeredobserverwas studied.
Hou et al. (2017) discussed the consensus conditions of
general second-order multi-agent systems with commu-
nication delay.

According to the above work, at present, the research
on the consensus problems of second-order systems is
mostly focused on second-order integrators, while the
results about general second-order systems are rela-
tively few. And in the study of event-triggered control
results, continuous communication still exists in event-
triggered detection. Therefore, we further study the
event-triggered consensus problems of general second-
order systems, and propose a new event-triggered
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control scheme. The triggering conditions in the scheme
only use the information received at the event-triggering
instant, and Zeno behaviour is excluded. The sufficient
conditions for the system state to achieve consensus are
obtained.

The paper is organized as follows: Section 2 gives
the definitions that will be used in this paper. Section 3
discusses the consensus conditions based on event-
triggered control. The simulation example in Section 4
verifies the validity of the theoretical derivation. Finally,
Section 5 presents the conclusion of this paper.

Notations: In this paper, the symbol R
n represents

the n dimensional real vectors space. The symbol R
m×n

represents the sets of m × n dimensional real matrix. IN
denotes the N dimensional identity matrix. 1 indicates an
appropriate dimensional column vector composed of 1.

2. Preliminaries

The information exchange topology network among n
agents can be depicted by an undirected graph G =
{V , E} with N nodes. V = {1, 2, . . . ,N} and E ⊆ V × V is
the set of nodes and the set of edges, respectively. εi,j ∈ E
means that nodes i and j are neighbours of each other,
and node i can receive information from node j. If there
is a path between a point and all other points, then
the undirected graph is connected. The associated adja-
cency matrixA = [aij] ∈ R

N×N is defined as aii = 0, aij =
1, if εi,j ∈ E , and aij = 0 otherwise. The in-degree of node
i is called di =

∑N
j=1 aij, and the degree matrix is D =

diag{d1, . . . , dN}. The Laplacianmatrix LofG is L = D − A.
In this paper, we consider a multi-agent system com-

posed ofN agents, each agent with general second-order
linear dynamics is described as{

ẋi(t) = vi(t)

v̇i(t) = axi(t) + bvi(t) + ui(t)
(1)

where xi(t) ∈ R, vi(t) ∈ R and ui(t) ∈ R represent the
position, velocity and control input of the ith agent,
respectively. a and b denote any real numbers. This paper
will discuss the consensus problem of system (1), i.e.
limt→∞ |xi − xj| = 0, limt→∞ |vi − vj| = 0, i, j = 1, . . . ,N,
so that the system (1) can achieve consensus under event-
triggered control mechanism and avoid Zeno behaviour.

Assumption 2.1: The undirected topology G is connected.

3. Main results

3.1. Event-triggered control

In this section, we propose a distributed event-triggered
control strategy. tik denotes the kth event-triggering

instant of agent i. The measurement error of agent i
is defined as exi(t) = x̃i(t) − xi(t), evi(t) = ṽi(t) − vi(t),
where x̃i = xi(tik), ṽi = vi(tik), t ∈ [tik , t

i
k+1). The consensus

protocol designed for each agent is

ui(t) = −k1

N∑
j=1

aij(x̃i(t) − x̃j(t)) − k2

N∑
j=1

aij(ṽi(t) − ṽj(t))

(2)
where k1 and k2 are nonnegative real numbers. Event-
triggering instant sequence {tik} of agent i is defined as:

tik+1 = inf{t > tik|fi(t) ≥ 0}
{tik} is determined by the following inequality:

fi(t) = e2xi(t) + e2vi(t) − η

μ

N∑
j=1

aij
di

((x̃i(t) − x̃j(t))
2

+ (ṽi(t) − ṽj(t))
2) − e−νt

di
≥ 0 (3)

That is, fi(t) is the trigger function,whereη = min{ k156 , k256 },
μ = max{k1, k2} and ν are positive real number.

Remark 3.1: The event-triggering condition (4) in this
article utilizes the latest event-triggered state values.
The introduction of exponential term can exclude Zeno
behaviour. However, the event-triggering conditions in
the existing references generally utilized the real-time
state values of each agent and its neighbours. Therefore,
the event-triggering condition (3) effectively reduces the
communication frequency.

To facilitate analysis, define z = [zTx , z
T
v ]

T , zx = [zTx1, z
T
x2,

. . . , zTxN]
T , zv = [zTv1, z

T
v2, . . . , z

T
vN]

T , zxi = xi − 1
N

∑N
j=1 xj, zvi

= vi − 1
N

∑N
j=1 vj. The compact form of z is z = (I2 ⊗

M)y, where M = IN − 1
N11

T , x = [xT1 , x
T
2 , . . . , x

T
N]

T , v =
[vT1 , v

T
2 , . . . , v

T
N]

T , y = [xT , vT ]T , We know that z = 0 if and
only if x1 = x2 = . . . = xN, v1 = v2 = . . . = vN. Therefore,
we can call vector z the consensus error vector. Let ỹ =
[x̃T , ṽT ]T , x̃ = [x̃T1 , x̃

T
2 , . . . , x̃

T
N]

T , ṽ = [ṽT1 , ṽ
T
2 , . . . , ṽ

T
N]

T .
From (1) and (2), we can get the error vector z satisfying
the following dynamics:

ż(t) =
[

Mv(t)
M(ax(t) + bv(t) − k1Lx̃(t) − k2ṽ(t))

]

=
[
0 IN
aIN bIN

]
z(t) −

[
0 0
k1L k2L

]
ỹ(t) (4)

Lemma 3.1 (Olfati-Saber &Murray, 2004): For an undi-
rected graph G0 is an eigenvalue of L if and only if G is
connected and the minimum non-zero eigenvalue λ2(L) of
L is

λ2(L) = min
x �=0,1T x=0

xTLx

xTx
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Lemma 3.2 (Nowzari & Cortes, 2016): Given any x, y ∈
R and ε ∈ R,xy ≤ x2

2ε + εy2

2

Lemma3.3 (Boyd et al., 1991): For linearmatrix inequal-
ities: [

R1(x) E(x)
ET (x) R2(x)

]
≥ 0

where R1(x) = RT1(x), R2(x) = RT2(x), The above inequality
satisfies the following equivalent conditions:

(1)R2(x) > 0, R1(x) − ET (x)R−1
2 (x)E(x) ≥ 0

(2)R1(x) > 0, R2(x) − E(x)R−1
1 (x)ET (x) ≥ 0

Lemma 3.4 (Li & Duan, 2014): Consider a differential
equation du

dt = f (t, u), u(t0) = u0, t ≥ t0, where f (t, u) is
continuous and satisfies the local Lipschitz condition in u.
Let [t0, T) be themaximum existence interval of the solution
u(t), where T can be infinite. If, for any t ∈ [t0, T), v = v(t)
satisfies

ds
dt

≤ f (t, s), s(t0) ≤ u0

then v(t) ≤ u(t), t ∈ [t0, T).

Theorem3.1: Consensusprotocol (2)andevent-triggering
condition (3) enable multi-agent system (1) to achieve con-
sensus if Assumption 2.1 holds and parameters a, b, k1 and
k2 satisfy

b ≤
(
1
4
k2 − 1

8
k1

)
λ2(L) − 1 (5)

a ≤
(
1
4
k1 − 1

8
k2

)
λ2(L) − (1 + a + b)2(

k2 − 1
2k1

)
λ2(L) − 4 − 4b

(6)

1
2

≤ k1
k2

≤ 2 (7)

Proof: Consider a Lyapunov functions constructed as fol-
lows:

V(t) = 1
2
zT (t)

[
δL + IN IN

IN IN

]
z(t) (8)

where δ = k1 + k2, and because of IN > 0, δL + IN − IN ≥
0, according to Lemma 3.3 , V(t) ≥ 0. The derivative of V1
along the trajectory of (4) is

V̇ = zT
[
δL + IN IN

IN IN

]
ż

= [
zTx + δzTx L + zTv zTx + zTv

]
×

([
zv

azx + bzv

]
−

[
0

k1Lx̃ + k2Lṽ

])

= zTx + δzTx Lzv + zTv zx + azTx zv + bzTv zx + bzTv zv

− k1z
T
x Lx̃ − k2z

T
x Lṽ − k1z

T
v Lx̃ − k2z

T
v Lṽ (9)

From aij = aji, zxi − zxj = xi − xj = x̃i − x̃j − exi + exj and
Lemma 3.2, −zTx Lx̃ and zTx Lṽ in (6) can be amplified and
transformed respectively.

− zTx Lx̃

= −1
2

N∑
i=1

N∑
j=1

aij(xi − xj)(x̃i − x̃j)

= −1
2

N∑
i=1

N∑
j=1

aij(x̃i − x̃j)(x̃i − x̃j)

+ 1
2

N∑
i=1

N∑
j=1

aij(exi − exj)(x̃i − x̃j)

≤ −1
2

N∑
i=1

N∑
j=1

aij(x̃i − x̃j)(x̃i − x̃j)

+ 1
8

N∑
i=1

N∑
j=1

aij(x̃i − x̃j)(x̃i − x̃j)

+ 1
2

N∑
i=1

N∑
j=1

aij(exi − exj)(exi − exj)

≤ −3
8

N∑
i=1

N∑
j=1

aij(x̃i − x̃j)(x̃i − x̃j) + 2
N∑
i=1

N∑
j=1

aije
2
xi

= −1
8

N∑
i=1

N∑
j=1

aij(x̃i − x̃j)(x̃i − x̃j) + 2
N∑
i=1

N∑
j=1

aije
2
xi

− 1
4

N∑
i=1

N∑
j=1

aij(zxi − zxj)(zxi − zxj)

− 1
2

N∑
i=1

N∑
j=1

aij(zxi − zxj)(exi − exj)

− 1
4

N∑
i=1

N∑
j=1

aij(exi − exj)(exi − exj)

≤ −1
8

N∑
i=1

N∑
j=1

aij(x̃i − x̃j)(x̃i − x̃j) + 2
N∑
i=1

N∑
j=1

aije
2
xi

− 1
4

N∑
i=1

N∑
j=1

aij(zxi − zxj)(zxi − zxj)

+ 1
8

N∑
i=1

N∑
j=1

aij(zxi − zxj)(zxi − zxj)

+ 1
4

N∑
i=1

N∑
j=1

aij(exi − exj)(exi − exj)
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= −1
8

N∑
i=1

N∑
j=1

aij(x̃i − x̃j)
2 + 3

N∑
i=1

N∑
j=1

aije
2
xi

− 1
8

N∑
i=1

N∑
j=1

aij(zxi − zxj)
2 (10)

−zTx Lṽ is transformed as follows:

−zTx Lṽ = −zTx Lzv − zTx Lev

≤ zTx Lzv + 1
8
zTx Lzx + 2eTv Lev

≤ zTx Lzv + 1
8
zTx Lzx + 4

N∑
i=1

N∑
j=1

aije
2
vi (11)

Similarly, according to aij = aji,zvi − zvj = vi − vj = ṽi −
ṽj − evi + exi and Lemma 3.2, we can obtain

−zTv Lṽ ≤ −1
8

N∑
i=1

N∑
j=1

aij(ṽi − ṽj)
2 + 3

N∑
i=1

N∑
j=1

aije
2
vi

− 1
8

N∑
i=1

N∑
j=1

aij(zvi − zvj)
2 (12)

−zTv Lx̃ ≤ −zTv Lzx + 1
8
zTv Lzv + 4

N∑
i=1

N∑
j=1

aije
2
xi (13)

Substitute (10)–(13) into (9) to get

V̇ ≤ zTx

(
aIN −

(
1
4
k1 − 1

8
k2

)
L

)
zx

+ zTx ((1 + a + b)IN − (k2 + k1 − δ)L)zv

+ zTv

(
(1 + b)IN −

(
1
4
k2 − 1

8
k1

)
L

)
zv

+ 7k1
N∑
i=1

N∑
j=1

aije
2
xi + 7k2

N∑
i=1

N∑
j=1

aije
2
vi

− 1
8
k1

N∑
i=1

N∑
j=1

aij(x̃i − x̃j)
2 − 1

8
k2

N∑
i=1

N∑
j=1

aij(ṽi − ṽj)
2

(14)

Choose 1
2 ≤ k1

k2
≤ 2. On the basis of Lemma 3.1, we can

get that

V̇ ≤
(
a −

(
1
4
k1 − 1

8
k2

)
λ2(L)

)
zTx zx + (1 + a + b)zTx zv

−
(
1 + b −

(
1
4
k2 − 1

8
k1

)
λ2(L)

)
zTv zv

− 7μ
N∑
i=1

(

N∑
j=1

aij(e
2
xi + e2vi)

− η

μ

N∑
j=1

aij((x̃i − x̃j)
2 + (ṽi − ṽj)

2))

≤ −1
2
zT

[(( 1
2k1 − 1

4k2
)
λ2(L) − 2a

)
IN

−((1 + a + b)IN

−(1 + a + b)IN
( 12k2 − 1

4k1)λ2(L) − 2 − 2b)IN

]
z − Nμeνt (15)

Let ⎡
⎣

((
1
2
k1 − 1

4k2

)
λ2(L) − 2a

)
IN

− ((1 + a + b)IN

−(1 + a + b)IN(
1
2
k2 − 1

4k1

)
λ2(L) − 2 − 2b

)
IN

⎤
⎦ ≥ 0

According to Lemma 3.3, if the above conditions are
established, the conditions should be satisfied as follows:

b ≤
(
1
4
k2 − 1

8
k1

)
λ2(L) − 1, a ≤

(
1
4
k1 − 1

8
k2

)
λ2(L)

− (1 + a + b)2(
k2 − 1

2k1
)
λ2(L) − 4 − 4b

Obviously, under the conditions of (5)–(7), V̇(t) ≤ 0. The
error system (4) is asymptotically stable, and the consen-
sus of multi-agent system (1) can be achieved. �

3.2. Event interval analysis

Next, the theorem of excluding Zeno behaviour is pro-
posed.

Theorem 3.2: The multi-agent system (1) does not exhibit
Zeno behaviour under the consensus protocol (2) and the
event-triggering condition (3).

For agent i, the event-triggering function (3) shows
that the event interval is the time of e2xi + e2vi from 0 to
the threshold. From the definition of exi, evi, (1) and (3),
we can get that the derivative of e2xi + e2vi with respect to
t ∈ [tik , t

i
k+1) is as follows:

d(e2xi(t) + e2vi(t))

dt

= 2exi(t)ėxi(t) + 2evi(t)ėvi(t)

= 2exi(t)(evi(t) − ṽi(t)) + 2evi(t)(aexi(t)

+ bevi(t) − ui(t) − ax̃i(t) − bṽi(t))

≤ (2 + a)e2xi(t) + (2 + a + b)e2vi(t) + ṽ2i (t)

+ (ui(t) − aṽi(t) − bṽi(t))
2

≤ (2 + a + b)(e2xi(t) + e2vi(t)) + ṽ2i (t) + (ui(t)
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− aṽi(t) − bṽi(t))
2 (16)

Let c = 2 + a + b,ωi = ṽ2i + (ui(t) − aṽi(t) − bṽi(t))2. It
is known that c, wi are bounded positive real numbers.
According to the above formula, we can get

d(e2xi(t) + e2vi(t))

dt
≤ c(e2xi(t) + e2vi(t)) + ωi

Consider a nonnegative function ϕ : [0,∞) → R≥0,
which satisfies the following relation

ϕ̇ = cϕ = wi, ϕ(0) = e2xi(t
i
k) + e2vi(t

i
k) = 0 (17)

The solution of the above differential equation is ϕ(t) =
ωi
c (ect − 1). According to Lemma 3.4, we can obtain
e2xi(t) + e2vi(t) ≤ ϕ(t − tik). It can be seen from the trigger
function that if

e2xi(t) + e2vi(t) ≤ e−νt

di
(18)

Then fi(t) ≤ 0. Therefore, the lower bound of the interval
between event-triggering times tik and tik+1 of agent i can
be determined by the timewhen ϕ(t − tik) increases from

0 to e−νt

di
. The lower bound τ ik = tik+1 − tik can be obtained

by the following equation:

ωi

c
(ecτ

i
k − 1) = e−ν(tik+τ ik)

di
(19)

The solution of the above equation is

τ ik = 1
c
ln

(
1 + c

widi
e−ν(tik+τ ik)

)
(20)

Figure 1. communication topology G .

Assuming that Zeno behaviour occurs, there is a positive
constant t∗ satisfying limk→∞ tik = t∗. Let δ = 1

c ln(1 +
c

widi
e−νt∗), then τ ik ≥ δ. According to limk→∞ tik = t∗,

there exist a positive integer N∗ for ∀k ≥ N∗ to make
t∗ − δ < tik ≤ t∗. Thus, t∗ < tik + τ ik ≤ tik+1 when k ≥ N0.
This is contradictory to tik+1 ≤ t∗, k ≥ N0. Therefore, Zeno
behaviour is strictly excluded.

4. Simulation

In this section, the results are verifiedby simulation exper-
iments. A multi-agent system consisting of 5 agents is
considered. Its topologyG is shown in Figure 1. The Lapla-
cian matrix is

L =

⎡
⎢⎢⎢⎢⎣

2 −1 0 0 −1
−1 3 −1 0 −1
0 −1 2 −1 0
0 0 −1 2 −1

−1 −1 0 −1 3

⎤
⎥⎥⎥⎥⎦

A multi-agent system (1), (2) based on event triggered
control (3) is considered. Choose the parameters k1 = 7,
k2 = 8, a = 0.15, b = 0.1. The initial state of the system is
x = [0.4, 0.2, 0.6, 0.1, 0.3]T , v = [0.3, 0.1, 0.1, 0.1, 0.2, 0.1]T .
Figures 2 and 3 show the simulation results based
on event-triggering condition (3) and event-triggering
conditions utilizing real-time state, respectively. In con-
trast, the communication frequency of Figure 2 is
lower.

It can be seen from Figure 2 that under the event-
triggered control, the position and velocity of each agent
achieve consensus. And event-triggering time instants
of each agent under the event-triggering condition (3)
show that the proposed control strategy effectively
reduces the communication frequency between agents
and reduces the communication consumption of the
system.

Figure 2. simulation results with event-triggering conditions (3). (a) Position trajectory. (b) Velocity trajectory. (c) Event-triggering time
instants.
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Figure 3. Simulation results of event-triggering conditions based on real-time state. (a) Position trajectory. (b) Velocity trajectory. (c)
Event-triggering time instants.

5. Conclusions

In this paper, the consensus problem of general second-
order multi-agent systems is considered. In order to
reduce the communication consumption, the event trig-
ger control protocol is designed so that each agent does
not need to update the control input at any time, and
its trigger condition update does not need to commu-
nicate with each neighbour at any time. Through theo-
retical analysis, it is proved that the system can achieve
consistency under this control protocol. And the Zeno
behaviour is strictly excluded. The correctness of theo-
retical analysis is verified by simulation examples. In the
future work, we will focus on extending the results to
unknown inputs problems and time-delay systems.
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