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ABSTRACT
This paper investigates the design problem of fuzzy dynamic output feedback H∞ controller for
nonlinear networked systems via mismatched membership functions and adaptive event-triggered
(AET) mechanism. Firstly, an AET mechanism is introduced to save communication resources, which
causes the controller and the original system’s premise variables to be asynchronous. Then, consid-
ering the influence of AET and mismatched membership functions, a model of fuzzy control system
is established. In addition, utilizing the Lyapunov-Krasovskii(L-K) functional, sufficient conditions for
the global exponential stability of the closed-loop systemwithH∞ performance are derived. Besides,
the controller parameters and event-triggered (ET) weight matrix are solved by a set of linear matrix
inequalities (LMIs). Finally, an example is given to demonstrate the effectiveness of the proposed
control method.
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1. Introduction

Compared with traditional point-to-point control sys-
tems, networked control systems (NCSs) have become
a research hotspot in the field of control due to their
strong adaptability and low cost, andmany important lit-
eratures have been published (Qiu et al., 2016; X. Zhang
et al., 2016). However, the limited bandwidth makes the
NCSs inevitably have problems such as network delay
and blocked transmission when sharing communica-
tion information, and the system performance is greatly
reduced. An ET mechanism is proposed to replace the
traditional communication scheme in Tabuada (2007).
You et al. (2019) and Hua et al. (2019) study the related
issues of multi-agent systems through ET mechanisms.
Guet al. (2018) propose anAETmechanism to further save
communication resources and apply it to the comprehen-
sive problem of fuzzy networked systems. In K. Zhang
et al. (2020), Ran et al. (2018), and Liu et al. (2020), the
introduction of the ET mechanism designs dynamic out-
put feedback controller for nonlinear networked systems.
However, how todesigna fuzzydynamicoutput feedback
controller utilizing AET mechanism is worthy of further
investigation.

Thewell-knownTakagi-Sugeno (T-S) fuzzymodel (Tak-
agi & Sugeno, 1985) is a powerful tool to approximate the
nonlinear systems through linear subsystems described
by IF-THEN fuzzy rules. In Guerra and Vermeiren (2004)
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and Kim and Kim (2002), the classical linear system the-
ory is successfully extended to nonlinear systems. The
L-K functional method is used to analyze the stability of
time-varying delay systems in C. Zhang, He, Jiang, Wang,
et al. (2017), C. Zhang, He, Jiang, Wu, et al. (2017), and X.
Zhang et al. (2017). It is worth mentioning that this paper
fully considers that after the introduction of the ETmech-
anism, the membership functions of the fuzzy system
and the fuzzy controller may be different. Firstly, a fuzzy
dynamic output feedbackH∞ controller with unmatched
premise variables is designed by using AET mechanism.
Then, based on L-K functional method, the stability and
stabilization conditions of the closed-loop system with
network delays are provided. Finally, the effectiveness of
the proposed method is verified by an example.

The rest of the structure of this paper is organized as
follows: Section 2 introduces the problem under consid-
eration, AET mechanism and establishes a closed-loop
system under dynamic output feedback H∞ control. The
main results of controller design, system stability and
qualitative analysis are given in Section 3. An example is
shown in Section 4 to describe the effectiveness of the
control method. Section 5 summarizes the conclusion.

Notation: Rn denotes the n-dimensional Euclidean
space;Ndenotes non-negative integer set; I is the identity
matrix with appropriate dimension; T and −1 stand for
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Figure 1. The structure of dynamic output feedback control for
nonlinear networked system.

the matrix transpose and inverse, respectively; ∗ stands
for the transposed elements of the symmetric matrix;
He(X) denotes the expression XT + X ; diag{. . .} stands
for the the block-diagonal matrix; ‖ · ‖ stands for the
Euclidean norm; L2[0,∞) denotes the space of square
integrable vector functions.

2. Problem formulation

2.1. System description

Consider a nonlinear networked system represented by
the T-S fuzzy model, in which the entire structure of
dynamic output feedback controller is shown in Figure 1.
The system is described as follows:

Plant Rule i: IF f1(x(t)) isMi
1 and . . . fp(x(t)) isMi

p THEN

ẋ(t) = Aix(t) + Biu(t) + Bωiω(t)

z(t) = Cix(t) + Dωiω(t)

y(t) = Eix(t)

(1)

where x(t) ∈ Rn, z(t) ∈ Rn1 , y(t)∈ Rn2 , u(t)∈ Rm1 and w(t)
∈ Rm2 stand for the state vector, control output, mea-
surement output, control input and the noise distur-
bance input which belongs to L2 ∈ [0,∞), respectively.
Ai, Bi, Bωi, Ci,Dωi, Ei are constant matrices with appropri-
ate dimensions. fj(x(t)) denotes the premise variable,
Mi

j (i = 1, 2, . . . , r, j = 1, 2, . . . , p) represents the fuzzy set,
r and p are the number of the IF-THEN rules and the
prerequisite variables, respectively. For simplicity, fj(x(t))
is represented by fj(x) and f (x) = [f1(x), f2(x), . . . , fp(x)]T .
By using central average defuzzifier and single-case
fuzzer to generate fuzzy inference, system (1) can be
rewritten as

ẋ(t) =
r∑

i=1

ϕi(f (x)) [Aix(t) + Biu(t) + Bωiω(t)]

z(t) =
r∑

i=1

ϕi(f (x)) [Cix(t) + Dωiω(t)] (2)

y(t) =
r∑

i=1

ϕi(f (x))Eix(t)

where�i(f (x)) = ∏p
j=1M

i
j(fj(x)) denotes the normalized

membership function, Mi
j(fj(x)) represents the member-

ship of fj(x) inMi
j, and satisfies

ϕi(f (x)) = �i(f (x))∑r
i=1 �i(f (x))

≥ 0, (i = 1, 2, . . . , r),
r∑

i=1

ϕi(f (x)) = 1

For subsequent development, the following assumptions
are required.

Assumptions2.1 (Pengetal., 2017): The samplermain-
tains a constant sampling period h. The zero-order-hold
(ZOH) is used to hold the sampled measurement output
signal until a new sampledmeasurement output appears.

Assumptions 2.2 (Peng et al., 2017): The sum of all
delays in the communication network is τk , which repre-
sents the communication delay at the transmission time
tkh, and τm ≤ τk ≤ τM, where τm and τM denote the min-
imum and maximum values of the transmission delay,
respectively.

2.2. Event-triggeredmechanism

As seen in Figure 1, considering the bandwidth limitation
of the communication network, an ET device is intro-
duced between the sensor and the controller to deter-
mine whether the sampling output is transmitted instan-
taneously, in order to save communication resources.
Inspired by W. Li et al. (2020), define the error between
the latest released data y(tkh) and the current sampling
data y(tkh + ch) as follows:

ey(t) = y(tkh + ch) − y(tkh) (3)

Then the next transmission instant through the AET
mechanism can be expressed as

tk+1h = tkh + min
n∈N

{ch | eTy (t)�ey(t)

≥ α(t)yT (tkh)�y(tkh)

+ β(t)yT (tkh + ch)�y(tkh + ch)} (4)

where h is the sampling period, y(tkh) and y(tkh + ch)
denote the latest released signal and the current sam-
pled signal, respectively;� > 0 is theweightmatrix to be
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designed; α(t) and β(t) are two independent ET thresh-
olds, which are two adaptive functions and satisfy the
following constrains

α̇(t) = 1
α(t)

[
1

α(t)
− μ1

] [
eTy (t)�ey(t)

− κ1y
T (tkh + ch)�y(tkh + ch)

+ κ1y
T (tkh)�y(tkh)

]
(5)

β̇(t) = 1
β(t)

[
1

β(t)
− μ2

] [
eTy (t)�ey(t)

− κ2y
T (tkh + ch)�y(tkh + ch)

+ κ2y
T (tkh)�y(tkh)

]
(6)

where α̇(t) and β̇(t) are adaptive law, μ1,μ2, κ1, κ2 are
given constants greater than zero, (5) and (6) are given to
ensure that α(t) and β(t) satisfy the following formula :

1
μ1

≤ α(t) ≤ κ2,
1
μ2

≤ β(t) ≤ κ1 (7)

Remark 2.1: It is worth noting that through using AET
mechanism, which can further improve transmission effi-
ciency and save communication resources compared
with Ran et al. (2018) and K. Zhang et al. (2020). And ET
thresholds α(t) and β(t) are no longer a constant that is
related to error ey(t), the latest released data y(tkh) and
the current sampling data y(tkh + ch).

Remark 2.2: When β(t) = 0 and κ1 = 0, the AETmecha-
nism (4)will degenerate to the form inGu et al. (2018) and
Ning et al. (2018), as follows

tk+1h = tkh + min
n∈N

{ch | eTy (t)�ey(t)

≥ α(t)yT (tkh)�y(tkh)} (8)

where α̇(t) = 1/α(t)[1/α(t) − μ][eTy (t)�ey(t)]. In addi-
tion, if β(t) = 0, κ1 = 0 and α(t) is a constant, then adap-
tive law α̇(t) = 0 and AET mechanism (4) will reduce to
the traditional ET mechanism (Hu & Yue, 2012).

tk+1h = tkh + min
n∈N

{ch | eTy (t)�ey(t)

≥ ᾱ(t)yT (tkh)�y(tkh)} (9)

where ᾱ(t) ∈ (0, 1) is a predefined constant. In other
words, AET (4) in this paper contains more possibilities.

2.3. Networked dynamic output feedback controller
designwith asynchronous premise variables

Suppose λk = min{l | tkh + τk + lh ≥ tk+1h + τk+1}.
Define the following subintervals on the time interval

[tkh + τk , tk+1h + τk+1):

�1 = [tkh + τk , tkh + τk + h)

�2 = [tkh + τk + h, tkh + τk + 2h)

...

�λk = [tkh + τk + (λk − 1)h, tk+1h + τk+1)

(10)

Define

τ(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t − tkh, t ∈ �1

t − tkh − h, t ∈ �2
...

t − tkh − (λk − 1)h, t ∈ �λk

(11)

and

ey(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, t ∈ �1

y(tkh + h) − y(tkh), t ∈ �2
...

y(t − kh + (λk − 1)h) − y(tkh), t ∈ �λk

(12)
Then, according to (10)–(12), the actual input ŷ(t) of the
dynamic output feedback controller can be given by

ŷ(t) = y(tkh) = y(t − τ(t)) − ey(t),

t ∈ [tkh + τk , tk+1h + τk+1), k = 1, 2, 3 . . . (13)

where τ1 = τ̄m ≤ τ(t) ≤ h + τ̄M = τ2, τ̄m = min{τk}, τ̄M =
max{τk}, k = 1, 2, . . .

There is an AET mechanism between the sensor and
the controller, which makes the premise variables of the
controller and the systemmodel asynchronous, so the IF-
THEN rules of the controller are designed as

Control Rule j: IF g1(xc(t)) is N
j
1 and . . . gq(xc(t)) is N

j
q

THEN

ẋc(t) = Acjxc(t) + Bcjŷ(t)

u(t) = Ccjxc(t)
(14)

where Nj
d(j = 1, 2, . . . , r, d = 1, 2, . . . , q) represents the

fuzzy set. xc(t) ∈ Rn is the state vector of the con-
troller, ŷ(t) denotes measured output through the event-
triggered communication network, Acj, Bcj, Ccj are the
controller matrices to be designed.

By using central average defuzzifier and single-case
fuzzer to generate fuzzy inference, system (12) can be
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rewritten as

ẋc(t) =
r∑

j=1

ψj (g (xc))
[
Acjxc(t) + Bcjŷ(t)

]

u(t) =
r∑

j=1

ψj (g (xc))Ccjxc(t), j = 1, 2, . . . , r

(15)

where

ψj(g(xc)) = ϑj(g(xc))∑r
j=1 ϑj(g(xc))

≥ 0,
r∑

j=1

ψj(g(xc)) = 1

Remark 2.3: It is worth mentioning that the member-
ship functions of the controller are different from the
original system, in other words, ϕi(f (x)) are not necessar-
ily the same as ψj(g(xc)). In addition, unlike (Ning et al.,
2018), asynchronous constraints are embodied in themis-
matched premise variables in this paper. If ϕi(f (x)) =
ψj(g(xc)), the method presented in this paper can be
reduced to the case in Z. Zhang et al. (2015), the controller
and the system use membership functions of the same
structure, then by using the PDCmethod, the parameters
of the fuzzy controller can be obtained.

For simplicity, denote ϕi(f (x))
�= ϕi(x),ψj(g(xc))

�= ψj

(xc). From (2), (13) and (15), the closed-loop fuzzy system
is constructed as follows:

ξ̇ (t) =
r∑

i=1

r∑
j=1

ϕi(x)ψj (xc)
[
Āijξ(t) + B̄1ijξ(t − τ(t))

+B̄2ijey(t) + B̄ωijω(t)
]

z(t) =
r∑

i=1

r∑
j=1

ϕi(x)ψj (xc)
[
C̄iξ(t) + D̄ωiω(t)

]
(16)

where

ξ(t) = [xT (t) xTc (t)]
T , Āij =

[
Ai BiCcj
0 Acj

]
,

B̄1ij =
[

0 0
BcjEi 0

]
,

B̄2ij =
[

0
−Bcj

]
, B̄ωij =

[
Bωi
0

]
,

C̄i = [Ci 0], D̄ωi = Dωi.

The goal of this paper is to design a dynamic feedback
output controller for a fuzzy networked system based on
an AET mechanism, such that:

(1) Under the condition ω = 0, the closed-loop
system (16) is exponentially stable;

(2) Under zero initial condition, the closed-loop system
satisfies ‖z(t)‖2 ≤ γ ‖ω(t)‖2 for any nonzero ω(t) ∈
L2[0,∞), where γ > 0 is H∞ performance target.

In order to obtain the main results, a useful lemma is
first given.

Lemma 2.1 (Puangmalai et al., 2020): For any positive
definite matrix W, any differentiable function x : [a, b] →
R
n. the following inequality holds:

−
∫ b

a
ẋT (s)Wx(s)ds

≤ − 1
6(b − a)

ηT (t)

⎡
⎣22W 10W −32W

∗ 16W −26W
∗ ∗ 58W

⎤
⎦ η(t)

where η(t) = [xT (b) xT (a) 1
b−a

∫ b
a xT (s)ds]T

3. Main results

3.1. H∞ performance analysis

In this section, sufficient conditions for the asymptotic
stability of the closed-loop system (16) with H∞ perfor-
mance are proposed.

Theorem 3.1: For given positive scalars τ1, τ2, μ1, μ2,
κ1, κ2 and γ , the membership functions satisfyingψj(xc) −
ρjϕj(xc) ≥ 0(0 < ρj < 1), the closed-loop system (16) is
exponentially stable and meets the H∞ performance target
if there exist matrices P> 0, Q1 > 0, Q2 > 0, R1 > 0, R2 >

0,� > 0, Acj, Bcj, Ccj and �i = �T
i with suitable dimen-

sions such that the following matrix inequities hold with
i, j = 1, 2, . . . , r

�ij − �i < 0 (17)

ρi�ii − ρi�i + �i < 0 (18)

ρj�ij + ρi�ji − ρi�j − ρj�i + �i + �j < 0, i < j (19)

where

�ij =
[

�11
ij �12

ij
∗ �22

ij

]
,

�11
ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 �12 �13 0 �15

∗ �22 �23 0 �25

∗ ∗ �33 �34 0
∗ ∗ ∗ �44 0
∗ ∗ ∗ ∗ �55

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
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0 0 �18 �19

�26 0 0 0
�36 �37 �38 0
0 �47 0 0
0 0 0 0

�66 0 0 0
∗ �77 0 0
∗ ∗ �88 0
∗ ∗ ∗ −γ 2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

�11 = He(PĀij) + Q1 − 11R1/3,

�22 = −Q1 + Q2 − 8R1/3 − 11R2/3,

�33 = −19R2/3 + (2 + μ1δ1 + μ2δ2)H
TETi �EiH,

�38 = −(1 + μ2δ2)H
TETi � ,

�88 = (1 + μ2δ2 − μ1 − μ2)� ,

�12 = PB̄2ij, �13 = PB̄1ij,
�15 = 16R1/3,
�25 = 13R1/3, �19 = PB̄ωij,
�23 = −5R2/3,
�36 = 13R2/3, �26 = 16R2/3,
�34 = −5R2/3,
�47 = 13R2/3, �37 = 16R2/3,
�44 = −Q2 − 8R2/3,
�77 = −29R2/3, �55 = −29R1/3,
�66 = −29R2/3,

�12
ij = [τ1F1ij (τ2 − τ1)F

1
ij F2ij ],

�22
ij = diag{−PR−1

1 P,−PR−1
2 P, I},

F1ij = [PĀij 0 PB̄1ij 0 0 0 0 PB̄2ij PB̄ωij],

F2ij = [C̄i 0 0 0 0 0 0 0 D̄i].

Proof: Consider the following Lyapunov-Krasovskii
functional

V(t) = V1(t) + V2(t)

where

V1(t) = ξ T (t)Pξ(t) +
∫ t

t−τ1

ξ T (s)Q1ξ(s)ds

+
∫ t−τ1

t−τ2

ξ T (s)Q2ξ(s)ds

+ τ1

∫ 0

−τ1

∫ t

t+θ

ξ̇ T (s)R1ξ̇ (s)dsdθ

+ (τ2 − τ1)

∫ −τ1

−τ2

∫ t

t+θ

ξ̇ T (s)R2ξ̇ (s)dsdθ

V2(t) = 1
2
α2(t) + 1

2
β2(t)

Then, seeking the time derivative of V(t)with respect to t
gets

V̇1(t) = 2ξ T (t)Pξ̇ (t) + ξ T (t)Q1ξ(t)

− ξ T (t − τ1)Q1ξ(t − τ1) + ξ T (t − τ1)Q2ξ(t − τ1)

− ξ T (t − τ2)Q2ξ(t − τ2) + τ 21 ξ̇
T (t)R1ξ̇ (t)

+ (τ2 − τ1)
2ξ̇ T (t)R2ξ̇ (t) + α(t)α̇(t)

+ β(t)β̇(t) − τ1

∫ t

t−τ1

ξ̇ T (s)R1ξ̇ (s)ds

− (τ2 − τ1)

∫ t−τ1

t−τ2

ξ̇ T (s)R2ξ̇ (s)ds (20)

V̇2(t) = α(t)α̇(t) + β(t)β̇(t) ≤ yT (tkh)(1 + μ2δ2)�y(tkh)

+ yT (tkh + ch)(1 + μ1δ1)�y(tkh + ch)

− eTy (t)(μ1 + μ2)�ey(t)

= ϒT
4

[
(2 + μ1δ1 + μ2δ2)�

∗
−(1 + μ2δ2)�

(1 + μ2δ2 − μ1 − μ2)�

]
ϒ4 (21)

By use of Lemma 2.1, we obtain

−
∫ t

t−τ1

ξ̇ T (s)R1ξ̇ (s)ds ≤ −ϒT
1 R̂1ϒ1 (22)

−
∫ t−τ1

t−τ2

ξ̇ T (s)R2ξ̇ (s)ds

≤ −
∫ t−τ1

t−τ(t)
ξ̇ T (s)R2ξ̇ (s)ds −

∫ t−τ(t)

t−τ2

ξ̇ T (s)R2ξ̇ (s)ds

≤ −ϒT
2 R̂2ϒ2 − ϒT

3 R̂2ϒ3 (23)

where

υ1 = 1
τ1

∫ t

t−τ1

ξ(s)ds, υ2 = 1
τ(t) − τ1

∫ t−τ1

t−τ(t)
ξ(s)ds,

υ3 = 1
τ2 − τ(t)

∫ t−τ(t)

t−τ2

ξ(s)ds

ϒ1 =
⎡
⎣ ξ(t)

ξ(t − τ1)

υ1

⎤
⎦ , ϒ2 =

⎡
⎣ ξ(t − τ1)

ξ(t − τ(t))
υ2

⎤
⎦ ,

ϒ3 =
⎡
⎣ ξ(t − τ(t))

ξ(t − τ2)

υ3

⎤
⎦ , ϒ4 =

[
ξ(t − τ(t))

ey(t)

]
,

R̂1 =
⎡
⎣ 11R1/3 5R1/3 −16R1/3

∗ 8R1/3 −13R1/3
∗ ∗ 29R1/3

⎤
⎦ ,

R̂2 =
⎡
⎣ 11R2/3 5R2/3 −16R2/3

∗ 8R2/3 −13R2/3
∗ ∗ 29R2/3

⎤
⎦ .
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Define,

ζ T (t) = [
ξ T (t) ξ T (t − τ1) ξ T (t − τ(t)) ξ T (t − τ2)

υT
1 υT

2 υT
3 eTy (t) ωT (t)

]
.

Combining (20) to (23), one has

V̇(t) + zT (t)z(t) − γ 2ωT (t)ω(t)

≤
r∑

i=1

r∑
j=1

ϕi(x)ψj(xc)ζ
T (t)�ijζ(t).

Introduce a relaxation matrix �i = �T
i and consider∑r

i=1
∑r

j=1 ϕi(x)[ϕj(xc)−ψj(xc)]�i = 0, thenwe canhave

r∑
i=1

r∑
j=1

ϕi(x)ψj(xc)�ij

=
r∑

i=1

ϕi(x)ϕi(xc)(ρi�ii − ρi�i + �i)

+
r∑

i=1

r∑
j=1

ϕi(x)(ψj(xc) − ρjϕj(xc))(�ij − �i)

+
r−1∑
i=1

r∑
j=i+1

ϕi(x)ϕj(xc)(ρj�ij

+ ρi�ji − ρj�i − ρi�j + �i + �j)

Under ψj(xc) − ρjϕj(xc) ≥ 0 for any j, according to the
conditions (17)–(19), it yields that

V̇(t) + zT (t)z(t) − γ 2ωT (t)ω(t) < 0 (24)

When the initial condition is zero, integrating the left and
right sides of (22) from 0 to ∞ gives∫ ∞

0
‖z(t)‖2 dt ≤ γ 2

∫ ∞

0
‖ω(t)‖2 dt (25)

Therefore, the closed-loop system (16) is asymptotically
stable with the H∞ performance index. In addition, it can
be seen from (17)–(19) that V̇(t) < 0 is satisfiedwhenω =
0. This completes the proof. �

Remark 3.1: Theorem 3.1 is obtained by the combina-
tion of Wirtinger inequality and relaxation matrix. Dif-
ferent from some existing works (H. Li et al., 2014; Z.
Zhang et al., 2015), this paper fully considers the effects
of network-induceddelay andAET, themembership func-
tions of the system (2) and the controller (15) are asyn-
chronous and make use of the membership function
information with designing the controller.

3.2. Fuzzy H∞ controller design

On the basis of Theorem 3.1, the following Theorem 3.2 is
given to obtain the ET weight matrix and fuzzy controller
parameters by matrix decomposition.

Theorem 3.2: For given positive scalars τ1, τ2, μ1, μ2, κ1,
κ2, γ and σ , the membership functions satisfying ψj(xc) −
ρjϕj(xc) ≥ 0(0 < ρj < 1), the closed-loop system (16) is
exponentially stable and meets the H∞ performance target
if there exist matrices P> 0, Q1 > 0, Q2 > 0, R1 > 0, R2 >

0,�̃ > 0, Ãcj, B̃cj, C̃cj and �̃i = �̃T
i with suitable dimensions

such that the following matrix inequities hold with i, j =
1, 2, . . . , r

�̃ij − �̃i < 0 (26)

ρi�̃ii − ρi�̃i + �̃i < 0 (27)

ρj�̃ij + ρi�̃ji − ρj�̃i − ρi�̃j + �̃i + �̃j < 0, i < j (28)

where

�̃ij =
[

�̃11
ij �̃12

ij

∗ �̃22
ij

]
, �̃11

ij =

⎡
⎢⎣ �̃11 �̃12 �̃13

∗ �̃22 �̃23

∗ ∗ �̃33

⎤
⎥⎦ ,

�̃11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�̃11 �̃12 −5R11/3 −5R12/3

∗ �̃22 −5RT12/3 −5R13/3

∗ ∗ �̃33 �̃34

∗ ∗ ∗ �̃44

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

0 0
B̃cjEi 0

−5R21/3 −5R22/3
−5RT22/3 −5R23/3

�̃55 −19R22/3
∗ �̃66

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

�̃12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 16R11/3 16R12/3 0
0 0 16RT12/3 16R13/3 0
0 0 13R11/3 13R12/3 16R21/3
0 0 13RT12/3 13R13/3 16RT22/3

−5R21/3 −5R22/3 0 0 13R21/3
−5RT22/3 −5R23/3 0 0 13RT22/3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

�̃13 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 �̃116

0 0 0 −B̃cj 0
16R22/3 0 0 0 0
16R23/3 0 0 0 0
13R22/3 16R21/3 16R22/3 �̃515 0
13R23/3 16RT22/3 16R23/3 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,
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�̃22 =

⎡
⎢⎢⎢⎢⎢⎣

�̃77 �̃78 0 0 0
∗ �̃88 0 0 0
∗ ∗ �̃99 �̃910 0
∗ ∗ ∗ �̃1010 0
∗ ∗ ∗ ∗ �̃1111

⎤
⎥⎥⎥⎥⎥⎦ ,

�̃23 =

⎡
⎢⎢⎢⎢⎢⎣

0 13R21/3 13R22/3 0 0

0 13RT22/3 13R23/3 0 0

0 0 0 0 0
0 0 0 0 0

�̃1112 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ ,

�̃33 =

⎡
⎢⎢⎢⎢⎢⎢⎣

�̃1212 0 0 0 0

∗ �̃1313 �̃1314 0 0

∗ ∗ �̃1414 0 0

∗ ∗ ∗ �̃1515 0

∗ ∗ ∗ ∗ −γ 2

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

�̃22
ij =

⎡
⎢⎢⎢⎢⎢⎣

�̃11
ij σ 2R12 0 0 0
∗ �̃22

ij 0 0 0
∗ ∗ �̃33

ij σ 2R22 0
∗ ∗ ∗ �̃44

ij 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎦ ,

�̃11 = He(P11Ai) + Q11 − 11R11/3,

�̃12 = C̃cj + Q12 − 11R12/3,

�̃13 = He(Ãcj) + Q13 − 11R13/3,

�̃33 = −Q11 + Q21 − 8R11/3 − 11R21/3,

�̃34 = −Q12 + Q22 − 8R12/3 − 11R22/3,

�̃44 = −Q13 + Q23 − 8R13/3 − 11R23/3,

�̃55 = −19R21/3 + (2 + μ1δ1 + μ2δ2)E
T
i �̃Ei,

�̃515 = −(1 + μ2δ2)E
T
i �̃ ,

�̃66 = −19R23/3,

�̃77 = −Q21 − 8R21/3,

�̃88 = −Q23 − 8R23/3,

�̃99 = −29R11/3,

�̃910 = −29R12/3,

�̃1010 = −29R13/3,

�̃1111 = −29R21/3,

�̃1112 = −29R22/3,

�̃1212 = −29R23/3,

�̃1313 = −29R21/3,

�̃1314 = −29R22/3,

�̃1414 = −29R23/3,

�̃1515 = (1 + μ2δ2 − μ1 − μ2)� ,

�̃116 = P11Bωi,

�̃11
ij = −2σ 2P11 + σ 2R11,

�̃22
ij = −2σP12 + σ 2R13,

�̃33
ij = −2σP11 + σ 2R21,

�̃44
ij = −2σP11 + σ 2R23,

�̃12
ij = [τ1(F̄11ij )

T
τ1(F̃

12
ij )

T
(τ2 − τ1)(F̃

11
ij )

T

(τ2 − τ1)(F̃
12
ij )

T
(F̃2ij )

T
],

F̃11ij = [P11Ai C̃cj 0 0 0 0 · · · 0︸ ︷︷ ︸
9

0 P11Bωi],

F̃12ij = [0 Ãcj 0 0 B̃cjEi 0 · · · 0︸ ︷︷ ︸
9

−B̃cj 0],

F̃2ij = [Ci 0 · · · 0︸ ︷︷ ︸
14

Dωi].

In this case, dynamic output feedback controller
parameters in (15) are solved by

Acj = P−1
12 Ãcj, Bcj = P−1

12 B̃cj, Ccj = (BTi Bi)
−1BTi P

−1
11 C̃cj.

(29)

Proof: Assumption (17)–(19) holds, then thepositivedef-
inite symmetric matrix P, Q1, Q2, R1, R2 is defined as

P =
[

P11 0
0 P12

]
, Q1 =

[
Q11 Q12

∗ Q13

]
,

Q2 =
[

Q21 Q22

∗ Q23

]
,

R1 =
[

R11 R12
∗ R13

]
, R2 =

[
R21 R22
∗ R23

]
,

(30)

and define

Ãcj = P12Acj, B̃cj = P12Bcj, C̃cj = P11BiCcj. (31)

Obviously, there are non-linear terms−PR−1
1 P and−PR−1

2
P in (26), therefore, the feasible solution of the matrix
inequality cannot be directly obtained through MAT-
LAB LMI Toolbox. Inspired by B. Zhang et al. (2007), the
inequality−PR−1P ≤ −2σP + σ 2R is used to linearize the
nonlinear terms. Substituting (30), (31) into (17)–(19), we
get (26)–(28). This completes the proof. �

Then, the parameters of the dynamic output feedback
controller, the ET weight matrix, and the performance
target can be obtained by the following algorithm.
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Figure 2. Tunnel diode circuit.

Algorithm3.1: The solution of Theorem 3.2 is converted
to the optimization problem as follows

min γ

s.t. (26), (27) and (28), hold for i, j = 1, 2, . . . , r.
(32)

Remark 3.2: Notice that the major differences between
the present paper and Ran et al. (2018) are as follows: (1)
A more general adaptive event-triggered mechanism is
adopted, which saves communication resources; (2) By
constructing a slightly different L-K functional and using
the improved Wirtinger inequality, the results and the
performance target have been improved, which will be
illustrated by subsequent examples.

4. Simulation example

Consider a tunnel diode circuit system as shown in
Figure 2, which is modelled as follows:

iD(t) = 0.002vD(t) + 0.01v3D(t).

Letting x1(t) = vc(t) and x2(t) = iL(t), the circuit sys-
tem can be expressed by the following differential state
equation

Cẋ1(t) = −0.002x1(t) − 0.01x31(t) + x2(t),

Lẋ2(t) = −x1(t) − Rx2(t) + ω(t),

z(t) = x1(t) + ω(t),

y(t) = x1(t),

where y(t) is the measurement output, z(t) is the
controlled output, ω(t) is the disturbance input. Given
L = 1H,C = 20mF, R = 10�, the above can be rewritten
as

ẋ1(t) = −0.1x1(t) − (
0.5x21(t)

) · x1(t) + 50x2(t),

ẋ2(t) = −x1(t) − 10x2(t) + ω(t),

z(t) = x1(t) + ω(t),

y(t) = x1(t).

Under the assumption |x1(t)| < 3, the circuit system can
be modeled by the following T-S fuzzy systems

ẋ(t) =
2∑

i=1

ϕi(x(t)) [Aix(t) + Biu(t) + Bωiω(t)]

z(t) =
2∑

i=1

ϕi(x(t)) [Cix(t) + Dωiω(t)]

y(t) =
2∑

i=1

ϕi(x(t))Eix(t)

where

A1 =
[ −0.1 50

−1 −10

]
, A2 =

[ −4.6 50
−1 −10

]
,

B1 = B2 =
[

0
1

]
,

Bω1 = Bω2 =
[

0
1

]
, C1 = C2 = [1 0] ,

D1 = D2 = 1, E1 = E2 = [1 0] .

Define the membership functions of the system as

ϕ1(x(t)) =
(
1 − 1

1 + e−3(x(t)+0.5π)

)

×
(

1

1 + e−3(x(t)+0.5π)

)
,

ϕ2(x(t)) = 1 − ϕ1(x(t)).

The controller’s membership functions are chosen as

ψ1(xc(t)) = 0.79 e
−(xc(t))2
3×1.5 , ψ2(xc(t)) = 1 − ψ1(xc(t)).

Letting τ1 = 0.03 s, τ1 = 0.24 s, ρ1 = 0.65, ρ2 = 0.50,
α(t) = β(t) = 0.2 and ε = 0.2 (ET threshold in Ran et al.,
2018), the minimum value of γ is given in Table 1 under
different methods. It is easy to see from Table 1 that
the smaller γ are obtained by using improved Wirtinger
inequality or Theorem 3.2.

Setting sampling periodic h = 0.05 s, τ1 = 0.03 s, τ1 =
0.24 s, μ1 = μ2 = 5, κ1 = κ2 = 0.2 and σ = 2, ρ1 = 0.65,
ρ2 = 0.50 which ensure that ψj(xc) − ρjϕj(xc) ≥ 0. By
solving (31), the minimum value of γ = 1.9807 and the
weight matrix � = 0.035 are obtained. In addition, the
parameters of the controller are given by

Ac1 =
[ −3.6003 −0.0025

−0.0048 −3.6003

]
,
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Table 1. The minimum value of γ is compared under different
methods.

Methods ε 0.2

(Ran et al., 2018) γ 3.9219
Improved Wirtinger inequality γ 1.9813
Theorem 3.2 γ 1.9807

Note: ε = 0.2 is embodied in Theorem 3.2 as α(t) = 0.2 and β(t) = 0.2.

Ac2 =
[ −3.6926 −0.0001

−0.0006 −3.6926

]
,

Bc1 = 10−2 ×
[ −0.0164

0.0433

]
,

Bc2 = 10−2 ×
[ −0.0050

0.0241

]
,

Cc1 = [0.0009 −0.0146] , Cc2 = [0.0011 −0.0052] .

5. Conclusion

This paper has investigated the problem of dynamic out-
put feedback H∞ controller design for networked T-S
fuzzy system under AET mechanism. The membership
function of the designed controller and the original sys-
tem is asynchronous. BasedonL-K functionalmethod, the
stability and stabilization conditions of the control sys-
tem are obtained. Finally, an example is used to verify the
feasibility of the designmethod. Future research includes
extending the method to static output feedback control.
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