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ABSTRACT
This paper considers the H∞ control problem for a hyperchaotic system with energy-bounded dis-
turbance under the delayed feedback controller. Using the quadratic system theory, an augmented
Lyapunov functional, some integral inequalities and rigorous mathematical derivations, a sufficient
condition is first established by using linear matrix inequalities under which the closed-loop sys-
tem can achieve some desirable performances including the boundedness, the H∞ performance
and the asymptotic stability. Subsequently, several convex optimization problems are formulated to
obtain the optimal performance indices. Finally, numerical simulations are presented to illustrate the
effectiveness of the obtained results.

ARTICLE HISTORY
Received 26 June 2020
Accepted 6 November 2020

KEYWORDS
H∞ control; hyperchaotic
finance system; external
disturbance; delayed
feedback controller;
quadratic system theory

1. Introduction

The economic/finance systems are the special nonlinear
systems (Cesare & Sportelli, 2005; Chen & Chen, 2007;
Chen & Ma, 2001a, 2001b; Salarieh & Alasty, 2008). It has
been recognized that the chaos often occurs in such non-
linear systems (Chen & Chen, 2007; Chen & Ma, 2001a;
Salarieh & Alasty, 2008). In fact, the financial crisis is
essentially a kind of chaotic behaviour. In the past more
than two decades, the economic/finance systems have
received wide research attention and the main topics are
the dynamic analysis, the feedback control and the syn-
chronization (Chen, 2008; Chen, Liu et al., 2014; Dadras
&Momeni, 2010; Jahanshahi et al., 2019; Son& Park, 2011;
Tacha et al., 2016; Wang et al., 2012; Xu et al., 2020;
Zhao et al., 2011). For example, in Chen (2008), the com-
plex dynamics and the chaos control have been inves-
tigated for a finance system under time-delayed feed-
backs by numerical simulations, and in Tacha et al. (2016),
the problems of dynamic analysis and adaptive control
have been addressed for a modified finance system. In
Zhao et al. (2011), several control strategies have been
employed to consider the synchronization problem for
the chaotic finance system. In particular, in our recent
work (Xu et al., 2020), the quadratic system theory has
beenutilized to control the chaos of the finance dynamics
under the time-delayed feedback controller.

On the other hand, the finance systems might inevi-
tably be affected by external disturbances stemmed from
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environmental interference (Zhao & Wang, 2014). If the
external disturbance is ignored in designing the con-
troller, the resultant closed-loop systemmight have poor
performance. In Zhao andWang (2014), the delayed feed-
back controller has been designed for a chaotic finance
system subject to external disturbance such that the
closed-loop system is asymptotically stable with a pre-
scribed H∞ performance level. In Xu et al. (2018), the
finite-time H∞ control problem has been considered for
a disturbed chaotic finance system by using the delayed
feedback controller. In Harshavarthini et al. (2020), the
finite-time resilient fault-tolerant control problem has
been studied for a nonlinear finance system.

However, it is worth mentioning that most above ref-
erences are mainly concerned with the finance models
composed of three first-order or fractional-order differ-
ential equations. In Yu et al. (2012), by adding an addi-
tional state to the model in Chen and Ma (2001a) to
represent the average profit margin, a more reasonable
finance model has been proposed. It has been shown
that such a four-dimensional system displays the more
complex hyperchaotic behaviour. In the past several
years, the synchronization and control problems have
also attracted considerable research attention for various
hyperchaotic finance systems (Cai et al., 2012; Hajipour
et al., 2018; Vargas et al., 2015; Zheng, 2016). For exam-
ple, the adaptive algorithm has been proposed in Var-
gas et al. (2015) to address the synchronization problem
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for a hyperchaotic system with unknown parameters. In
Zheng (2016), the impulsive control scheme has been
utilized to study the stabilization and synchronization of
an uncertain hyperchaotic finance system. Nevertheless,
it should be pointed out that the external disturbances
are not sufficiently incorporated in the considered hyper-
chaotic finance systems. Moreover, it is observed that the
time-delay phenomenon has been ignored in controlling
the hyperchaotic finance systems.

Motivated by the above discussions, in this paper, we
will be concerned with the H∞ control problem for a
hyperchaotic system with energy-bounded disturbance
via the delayed feedback controller. Using the quadratic
system theory (Amato et al., 2007), the augmented Lya-
punov functional and some integral inequalities, a suf-
ficient condition is first proposed in the framework of
linear matrix inequalities (LMIs) under which the closed-
loopdynamics can achieve somedesirable performances.
Then, several optimization problems are given to handle
the different performance requirements. Finally, simula-
tions results are given to illustrate the effectiveness of the
obtained results. Themain contributions of this work are as
follows: (1) the H∞ control problem is addressed, for the first
time, for a hyperchaotic finance system under the delayed
feedback controller and an LMI-based sufficient condition
is established; (2) the quadratic system theory is utilized to
investigate a hyperchaotic finance system based on which
the performances of the closed-loop dynamics are specifi-
cally characterized.

Notation. “T” denotes the transpose of a matrix. Rn is
the n-dimensional Euclidean space. The real matrix P>0
(P ≥ 0) denotes that P is symmetric and positive definite
(semi-definite). ‖ · ‖ is the 2-norm of a vector. λ(·)M is the
maximum eigenvalue value of a matrix. I is an identity
matrix. The symmetric terms in a symmetric matrix are
denoted by ∗. Matrices are assumed to have compatible
dimensions.

2. Problem formulation

InChenandMa (2001a, 2001b), a chaotic finance system is
proposed. Such a financemodel contains four sub-blocks
(i.e. production, money, stock and labour force) and is
formulated by the following three first-order differential
equations:

⎧⎪⎪⎨
⎪⎪⎩
ẋ1(t) = x3(t) + (x2(t) − a)x1(t),

ẋ2(t) = 1 − bx2(t) − x21(t),

ẋ3(t) = −x1(t) − cx3(t)

(1)

where the states x1(t), x2(t) and x3(t) are, respectively,
the interest rate, the investment demand and the price

index; a>0, b>0 and c>0 are, respectively, the sav-
ing amount, the cost per investment and the demand
elasticity of commercial markets.

By adding an additional state in the model (1), a more
reasonable finance model is proposed in Yu et al. (2012),
which is described as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1(t) = x3(t) + (x2(t) − a)x1(t) + x4(t),

ẋ2(t) = 1 − bx2(t) − x21(t),

ẋ3(t) = −x1(t) − cx3(t),

ẋ4(t) = −dx1(t)x2(t) − ex4(t)

(2)

where the state x4(t) denotes the average profit margin,
and d, e are positive scalars.

In Yu et al. (2012), it has been identified that themodel
(2) displays sophisticated hyperchaotic behaviour when
the system parameters are selected as a = 0.9, b = 0.2,
c = 1.5, d = 0.2 and e = 0.17. Moreover, it has been
verified that, under the assumption (abce + be + cd −
ce)/(cd − ce) � � > 0, the model (2) has three equilib-
rium points(
0,

1
b
, 0, 0

)
,

(
±

√
�,

ace + e

ce − cd
,∓

√
�

c
,

√
�(ac + 1)d
cd − ce

)
.

(3)
Moreover, it has been recognized that the finance sys-
tems are unavoidable influenced by external distur-
bances (Jahanshahi et al., 2019; Zhao & Wang, 2014).
Adding the disturbance ω(t) ∈ R

l and the control input
u(t) ∈ R

m to (2) yields that

ẋ(t) = Ax(t) + f (x(t)) + Bu(t) + Dω(t) (4)

where B and D are matrices, and x(t) = [x1(t) x2(t) x3(t)
x4(t)]T ,

A =

⎡
⎢⎢⎣

−a 0 1 1
0 −b 0 0

−1 0 −c 0
0 0 0 −e

⎤
⎥⎥⎦ ,

f (x(t)) =

⎡
⎢⎢⎣

x1(t)x2(t)
1 − x21(t)

0
−dx1(t)x2(t)

⎤
⎥⎥⎦ .

In this paper, the external disturbance ω(t) is assumed to
be energy-bounded and satisfies the condition

∫ ∞
0 ωT (t)

ω(t)dt ≤ β , where β is a positive scalar.

Remark 2.1: The finance systems are inevitably dis-
turbedbyexternal environments, such as theplagues and
the wars. For example, due to the impact of the 2019
novel coronavirus (2019-nCoV), the market confidence
will be reduced and correspondingly, the lower invest-
ment demand and the lower interest rate will occur. In
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this case, the impact of 2019-nCoV can be seen as the
external disturbance and should be added to the finance
systems to reflect the real finance dynamics. In addition, it
is worthmentioning that the external disturbancesmight
disappear within the finite time. Therefore, it is reason-
able to suppose that the external disturbance is energy-
bounded.

As in Zhao and Wang (2014), this paper adopts the
delayed feedback controller

u(t) = K1(x(t) − x∗) + K2(x(t − τ) − x∗) (5)

where K1, K2 are the controller gains, x∗ is an unstable
equilibrium point, and τ > 0 is the time delay.

For the given equilibrium point x∗ = [x∗
1 x

∗
2 x

∗
3 x

∗
4]

T , it is
clear that

Ax∗ + f (x∗) = 0. (6)

Denoting that r(t) � x(t) − x∗, and using (4)–(6), one
has the closed-loop system

ṙ(t) = (A + F + BK1)r(t) + BK2r(t − τ) + f̃ (r(t)) + Dω(t)
(7)

where

F =

⎡
⎢⎢⎣

x∗
2 x∗

1 0 0
−2x∗

1 0 0 0
0 0 0 0

−dx∗
2 −dx∗

1 0 0

⎤
⎥⎥⎦ ,

f̃ (r(t)) =

⎡
⎢⎢⎣

r1(t)r2(t)
−r21(t)

0
−dr1(t)r2(t)

⎤
⎥⎥⎦ .

Note that the nonlinearity f̃ (r) can be written as follows:

f̃ (r) =

⎡
⎢⎢⎣
rTG1

rTG2

rTG3

rTG4

⎤
⎥⎥⎦ r � G(r)r (8)

where G1 = diag{G̃1, 0, 0}, G2 = diag{−1, 0, 0, 0}, G3 =
04×4 and G4 = −dG1 with G̃1 =

[
0 1/2
1/2 0

]
. Using (8), the

closed-loop dynamics (7) can be further written as

ṙ(t) = A(r)r(t) + BK2r(t − τ) + Dω(t) (9)

whereA(r) = A + F + G(r) + BK1.
The initial condition associated with (9) is denoted by

r(s) = φ(s), s ∈ [−τ , 0).
Themainpurposeof our paper is to design thedelayed

feedback controller (5) such that the closed-loop dynam-
ics (9) has the following properties: (1) all state trajecto-
ries are bounded for all admissible initial conditions and

external disturbances; (2) the H∞ performance require-
ment

∫ +∞
0 rT (s)r(s)ds < γ

∫ +∞
0 ωT (s)ω(s)ds + γV(0) is

satisfied, where γ > 0 is a prespecified scalar and V(t) is
an Lyapunov functional; 3) when ω(t) = 0, the asymp-
totic stability is guaranteed for all admissible initial
conditions.

For purpose of the subsequent local analysis, we intro-
duce the following box:

R = [−r̄1, r̄1] × [−r̄2, r̄2] × [−r̄3, r̄3] × [−r̄4, r̄4] (10)

where r̄j > 0 (j = 1, 2, 3, 4) are scalars. The above box can
be represented as

R = Co{vi, 1 ≤ i ≤ 16}
= {

r : |hjr| ≤ r̄2j , j = 1, 2, 3, 4
}

(11)

where “Co” denote the convex hull and

v1 = [−r̄1 − r̄2 − r̄3 − r̄4]T , v2 = [−r̄1 − r̄2 − r̄3 r̄4]T ,

v3 = [−r̄1 − r̄2 r̄3 − r̄4]T , v4 = [−r̄1 r̄2 − r̄3 − r̄4]T ,

v5 = [r̄1 − r̄2 − r̄3 − r̄4]T , v6 = [−r̄1 − r̄2 r̄3 r̄4]T

v7 = [−r̄1 r̄2 − r̄3 r̄4]T , v8 = [r̄1 − r̄2 − r̄3 r̄4]T ,

v9 = [−r̄1 r̄2 r̄3 − r̄4]T , v10 = [r̄1 − r̄2 r̄3 − r̄4]T ,

v11 = [r̄1 r̄2 − r̄3 − r̄4]T , v12 = [r̄1 r̄2 r̄3 − r̄4]T ,

v13 = [r̄1 r̄2 − r̄3 r̄4]T , v14 = [r̄1 − r̄2 r̄3 r̄4]T ,

v15 = [−r̄1 r̄2 r̄3 r̄4]T , v16 = [r̄1 r̄2 r̄3 r̄4]T ,

h1 = [1 0 0 0], h2 = [0 1 0 0],

h3 = [0 0 1 0], h4 = [0 0 0 1].

3. Main results

In this section, we will first establish the corresponding
sufficient condition by using the following augmented
Lyapunov functional (Seuret & Gouaisbaut, 2013):

V(t) = ηT (t)Pη(t) +
∫ t

t−τ

rT (s)Qr(s)ds

+ τ

∫ 0

−τ

∫ t

t+θ

ṙT (s)Zṙ(s)dsdθ (12)

where η(t) = [rT (t)
∫ t
t−τ

rT (s)ds]T , P =
[
P11 P12
PT12 P22

]
, and

Q>0, Z>0.

Theorem 3.1: Let the scalars τ > 0, r̄j (j = 1, 2, 3, 4) and
ε 
= 0 be given. Assume that there exist symmetric matrices

P̄ =
[
P̄11 P̄12
P̄T12 P̄22

]
, Q̄ > 0, Z̄ > 0, R̄ > 0,matrices X, Y1, Y2, and

scalars α > 0, β > 0 (α < 1/β), γ , such that the following
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LMIs hold:⎡
⎢⎢⎢⎢⎢⎢⎢⎣


vi
11 12 13 D 

vi
15 X

∗ 22 23 0 25 0
∗ ∗ −12Z̄ 0 τ P̄T12 0
∗ ∗ ∗ −I εDT 0
∗ ∗ ∗ ∗ 55 0
∗ ∗ ∗ ∗ ∗ −γ I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

i = 1, 2, . . . , 16, (13)[
�11 P̄12 − 2Z̄
∗ �22

]
≥ 0, (14)

[
α hjXT

∗ r̄2j R̄

]
≥ 0 (15)

where


vi
11 = Sym{[A + F + G(vi)]XT + BY1}

+ Sym(P̄12) + Q̄ − 4Z̄,

12 = −P̄12 + BY2 − 2Z̄, 13 = τ P̄22 + 6Z̄,


vi
15 = P̄11 − XT + εX[A + F + G(vi)]T + εYT1B

T ,

22 = −Q̄ − 4Z̄, 23 = −τ P̄22 + 6Z̄,

25 = εYT2B
T , 55 = τ 2Z̄ − εSym(X),

�11 = P̄11 + 2τ Z̄ − R̄, �22 = P̄22 + Q̄/τ + 2Z̄/τ .

Then, there exists the controller (5) with K1 = Y1X−T and
K2 = Y2X−T such that: (1)all trajectories of the dynamics (9)
are bounded for all φ(s) satisfying V(0) ≤ 1/α − β and all
non-zero ω(t) satisfying

∫ ∞
0 ωT (t)ω(t)dt ≤ β ; (2) H∞ per-

formance constraint
∫ +∞
0 rT (s)r(s)ds < γ

∫ +∞
0 ωT (s)ω(s)

ds + γV(0) can be ensured; (3)when ω(t) = 0, the asymp-
totic stability of the dynamics (9) is ensured for all φ(s)
satisfying V(0) ≤ 1/α.

Proof: Suppose the LMIs in (13) are feasible, then we
have 55 < 0, which implies that the matrix X is invert-
ible. Furthermore, one can set L � X−1 and denote⎧⎪⎪⎨

⎪⎪⎩
P � L̃P̄L̃T (L̃ � diag{L, L}),
Q � LQ̄LT , Z � LZ̄LT ,

R � LR̄LT , Ki � YiLT , i = 1, 2.

(16)

Pre- and post-multiplying the LMIs (13) by diag{L, L, L, I, L,
I} and its transpose, and using Schur complement and the
notations in (16) yield

⎡
⎢⎢⎢⎢⎣

̄
vi
11 ̄12 ̄13 LD ̄

vi
15

∗ ̄22 ̄23 0 ̄25

∗ ∗ −12Z 0 τPT12
∗ ∗ ∗ −I εDTLT

∗ ∗ ∗ ∗ ̄55

⎤
⎥⎥⎥⎥⎦ < 0,

i = 1, 2, . . . , 16, (17)

where

̄
vi
11 = Sym{L[A + F + G(vi) + BK1]}

+ Sym(P12) + Q − 4Z + I/γ ,

̄12 = LBK2 − P12 − 2Z, ̄13 = τP22 + 6Z,

̄
vi
15 = P11 − L + ε[A + F + G(vi) + BK1]TLT ,

̄22 = −Q − 4Z, ̄23 = −τP22 + 6Z,

̄25 = ε(BK2)
TLT , ̄55 = −εSym(L) + τ 2Z.

Similarly, from the LMIs (14) and (15), we can obtain the
following inequalities:

[
�̄11 P12 − 2Z
∗ �̄22

]
� �̄ ≥ 0, (18)

(1/α)hTj hj ≤ r̄2j R, j = 1, 2, 3, 4 (19)

where �̄11 = P11 + 2τZ − R and �̄22 = P22 + Q/τ

+ 2Z/τ .
Next,wewill prove that under the conditions (17)–(19),

the conclusions of theorem are ensured. By straightfor-
ward calculations, it follows from (12) that

V̇(t) ≤ 2
[
rT (t)P11 +

∫ t

t−τ

rT (s)dsPT12

]
ṙ(t)

+ 2
[
rT (t)P12 +

∫ t

t−τ

rT (s)dsP22

]

× [r(t) − r(t − τ)] + rT (t)Qr(t) + τ 2 ṙT (t)Zṙ(t)

− rT (t − τ)Qr(t − τ) − τ

∫ t

t−τ

ṙT (s)Zṙ(s)ds (20)

Using the Wirtinger-based inequality (Seuret & Gouais-
baut, 2013), we have

− τ

∫ t

t−τ

ṙT (s)Zṙ(s)ds

≤ −ξ T (t)

⎡
⎣ 4Z 2Z −6Z

2Z 4Z −6Z
−6Z −6Z 12Z

⎤
⎦ ξ(t) (21)

where ξ(t) = [rT (t) rT (t − τ) (1/τ)
∫ t
t−τ

rT (s)ds].
From the systemequation (9), it can be seen that (Qian,

Li, Zhao et al., 2020)

2[rT (t) + ε ṙT (t)]L[A(r)r(t) + BK2r(t − τ)

+ Dω(t) − ṙ(t)] = 0. (22)
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Adding the left side of (22) to V̇(t), and combining
with (20) and (21), one obtains

V̇(t) + (1/γ )rT (t)r(t) − ωT (t)ω(t) ≤ ζ T (t)(r)ζ(t) (23)

where ζ(t) = [ξ T (t) ωT (t) ṙT (t)]T (ξ(t) has the same
definition as in (21)) and

(r) =

⎡
⎢⎢⎢⎢⎣

̄r
11 ̄12 ̄13 LD ̄r

15
∗ ̄22 ̄23 0 ̄25

∗ ∗ −12Z 0 τPT12
∗ ∗ ∗ −I εDTLT

∗ ∗ ∗ ∗ ̄55

⎤
⎥⎥⎥⎥⎦ .

In above matrix (r), ̄12 ̄13, ̄22, ̄23, ̄25, ̄55 are
denoted in (17), and

̄r
11 = Sym{L[A + F + G(r) + BK1]}

+ Sym(P12) + Q − 4Z + I/γ ,

̄r
15 = P11 − L + ε[A + F + G(r) + BK1]TLT .

Note that G(r) is affine with respect to r1, r2, r3, r4. If the
inequalities (17) are true, then we have (r) < 0 on the
boxR. Moreover, it follows from (23) that

V̇(t) + (1/γ )rT (t)r(t) − ωT (t)ω(t) < 0, r ∈ R. (24)

Integrating both sides of (24) from 0 to t, it follows that

V(t) + 1
γ

∫ t

0
rT (s)r(s)ds

≤ V(0) +
∫ t

0
ωT (s)ω(s)ds ≤ V(0) + β , r ∈ R. (25)

Also, using Jensen inequalities (Qian, Xing et al., 2020),
one can obtain from (12) and (18) that (Chen et al., 2017;
Qian, Li, Chen et al., 2020)

V(t) ≥ ηT (t)Pη(t) +
[ ∫ t

t−τ

r(s)ds
]T

Q

[ ∫ t

t−τ

r(s)ds
]

+ 2
τ

[ ∫ 0

−τ

∫ t

t+θ

ṙ(s)dsdθ

]T
Z

[ ∫ 0

−τ

∫ t

t+θ

ṙ(s)dsdθ

]

= ηT (t)(�̄ + diag{R, 0})η(t) ≥ rT (t)Rr(t) > 0 (26)

where �̄ is denoted in (18). In addition, from the condi-
tion (19), it is seen that

(1/α)rT (t)hTj hjr(t) ≤ r̄2j r
T (t)Rr(t). (27)

For all admissible φ(s) (−τ ≤ s ≤ 0) satisfying V(0) ≤
1/α − β , using (25)–(27), it can be verified that all states
r are contained in the box R. In particular, it can be
seen from (25) and (26) that all trajectories remain
in the ellipsoid E(R, 1/α) � {r ∈ R

4 : rTRr ≤ 1/α}, which
implies that all trajectories r(t) are bounded.

Letting t → +∞ and noting V(t) ≥ 0, it follows
from (25) that the H∞ performance constraint

∫ t
0 r

T (s)r(s)

ds ≤ γ
∫ t
0 ωT (s)ω(s)ds + γV(0) can be guaranteed in

E(R, 1/α).
When ω(t) = 0, for all φ(s) (−τ ≤ s ≤ 0) satisfying

V(0) ≤ 1/α, using (25)–(27), we can prove that all states
r are still contained in the set E(R, 1/α) ⊂ R. Moreover, it
is seen from (24) that the relation V̇(t) < 0 (r ∈ R) holds,
whichmeans that the closed-loop dynamics (9) is asymp-
totically stable. The proof is completed. �

Remark 3.1: Recently, theH∞ control problem has been
addressed in Xu et al. (2018) for a chaotic finance system
with external disturbance in the framework of finite time.
However, it is noted that the results in Xu et al. (2018)
are based on the linearized model and one cannot per-
form the accurate analysis and design. Very recently,
the quadratic system theory has been adopted in Xu
et al. (2020) to stabilize the finance system (1). How-
ever, the disturbance is ignored in Xu et al. (2020). In
fact, when the external disturbance is considered, one
has to first determine the admissible initial conditions
and disturbances to ensure the boundedness of the
state trajectories and then discuss the corresponding H∞
performance. Therefore, the proposed Theorem 3.1 in
this paper is not the simple extension of the result in
Xu et al. (2020).

Remark 3.2: In Chenet al. (2013); de Souza andCoutinho
(2014), the local stabilization/control problem has been
studied for nonlinear quadratic time-delay systems. How-
ever, the systems addressed in Chen et al. (2013); de
Souza and Coutinho (2014) contain the state delay but
not the input delay. Therefore, the results proposed in
Chen et al. (2013); de Souza and Coutinho (2014) cannot
applicable for the hyperchaotic finance system subject to
the delayed feedback controller. Moreover, it should be
pointed out the external disturbance is not considered in
de Souza and Coutinho (2014) and the boundedness of
system trajectories is not discussed.

For the case of non-delayed feedback, the controller
can be denoted as

u(t) = K(x(t) − x∗) (28)

Correspondingly, the closed-loop system can be written
as

ṙ(t) = [A + F + G(r) + BK]r(t)

+ Dω(t), r(0) = r0. (29)

Using the Lyapunov function V̂(t) = xT (t)X−1x(t), where
X >0, the following result can be readily established.
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Corollary 3.2: Let the scalars r̄j (j = 1, 2, 3, 4) be given.
Assume that there existmatrices X>0, Y, and scalarsα > 0,
β > 0 (α < 1/β), γ , such that the LMIs⎡

⎣�(vi) D X
∗ −I 0
∗ ∗ −γ I

⎤
⎦ < 0,

i = 1, 2, . . . , 16, (30)[
α hjXT

∗ r̄2j X

]
≥ 0 (31)

are satisfied, where �(vi) = Sym{[A + F + G(vi)]XT + BY}.
Then, there exists the controller (28) with K = YX−T such
that: (1) all state trajectories of the dynamics (29) are
bounded for all r0 satisfying V̂(0) ≤ 1/α − β and all non-
zero ω(t) satisfying

∫ ∞
0 ωT (t)ω(t)dt ≤ β ; (2) H∞ perfor-

mance constraint can be guaranteed; (3) when ω(t) = 0,
thedynamics (29) is asymptotically stable for all r0 satisfying
V̂(0) ≤ 1/α.

Finally, we will be concerned with the optimization
problems involved in our main results. Before consider-
ing theH∞ control problem, it is necessary tomeasure the
disturbance tolerance level β . Without loss of generality,
it is assumed that φ(s) = 0 (−τ ≤ s ≤ 0). In this case, the
scalarα in LMIs (15) and (31) shouldbe substitutedby1/β .
Correspondingly, the optimization problems concerning
the largest disturbance tolerance levels in Theorem 1 and
Corollary 2 can be, respectively, described as follows:

Prob.1. max
P̄,Q̄,Z̄,R̄,X ,Y1,Y2,β ,γ

β , s.t.,

LMIs (13)−(15)hold,

Prob.1′. max
X ,Y ,β ,γ

β , s.t.,

LMIs (30) and (31) hold.

By solving Prob.1 or Prob.1’, we can obtain the largest dis-
turbance tolerance level βM. For a given scalar β ≤ βM,
the optimization problems concerning the minimum H∞
performance level γ in Theorem 1 and Corollary 2 can be
given as follows:

Prob.2. max
P̄,Q̄,Z̄,R̄,X ,Y1,Y2,γ

γ , s.t.,

LMIs (13) − (15) hold,

Prob.2′. max
X ,Y ,γ

γ , s.t.,

LMIs (30) and (31) hold.

When the external disturbance ω(t) does not exist, one
can maximize the admissible initial condition set in
designing the feedback controller (5) or (28). For this case,

the rows and columns related to ω(t) in the LMIs (13)
and (30) should be deleted. Also, without loss of gener-
ality, one can set α = 1 in the LMIs (15) and (31).

As inXuet al. (2020),weassume thatφ(s) (−τ ≤ s ≤ 0)
belongs to the set

Xρ �
{
φ(s) : max

θ∈[−τ ,0]
‖φ(s)‖ ≤ ρ} (32)

where ρ is a positive scalar. Let us introduce the following
LMI (Chen et al., 2017):

P̄ ≤ diag{P̄1, P̄2} (33)

where P̄1 > 0 and P̄2 > 0. Using (33) and Jensen inequal-
ities, we have

V(0) ≤ δ1 max
s∈[−τ ,0]

‖φ(s)‖2 + δ2 max
s∈[−τ ,0]

‖φ̇(s)‖2 (34)

where

δ1 = λM(X−1P̄1X
−T ) + τ 2λM(X−1P̄2X

−T )

+ τλM(X−1Q̄X−T ),

δ2 = (τ 3/2)λM(X−1Z̄X−T ).

Moreover, let us set the following matrix inequalities:

X−1P̄1X
−T ≤ p1I, (35)

X−1P̄2X
−T ≤ p2I, (36)

X−1Q̄X−T ≤ qI, (37)

X−1Z̄X−T ≤ zI (38)

where p1 > 0, p2 > 0, q>0 and z>0. Note that the
inequalities (35)–(38) can be, respectively, ensured by the
following LMIs (Chen, Fei et al., 2014):[

p1I I
I X + XT − P̄1

]
≥ 0, (39)

[
p2I I
I X + XT − P̄2

]
≥ 0, (40)

[
qI I
I X + XT − Q̄

]
≥ 0, (41)

[
zI I
I X + XT − Z̄

]
≥ 0 (42)

To obtain a larger set Xρ , we can first solve the optimiza-
tion problem

Prob.3. min
P̄,P̄1,P̄2,Q̄,Z̄,R̄,X ,Y1,Y2,x,p1,p2,q,z

σ , s.t.,

LMIs (13)−(15), (33), (39)−(42) hold

where σ = p1 + τ 2p2 + τq + (τ 3/2)κz (κ > 0 is a adjust-
ing scalar)
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By solving Prob.3, one can obtain the scalars δ1 and δ2.
Note that the initial condition φ(s) satisfies the relation
V(0) ≤ 1, which can be ensured by the inequality

δ1 max
s∈[−τ ,0]

‖φ(s)‖2 + δ2 max
s∈[−τ ,0]

‖φ̇(s)‖2 ≤ 1. (43)

From (43), it is seen that ‖φ(s)‖ ≤ √
1/δ1, s ∈ [−τ , 0]. As in

Xu et al. (2020), we select the scalars r̂1, r̂2, r̂3 and r̂4 such
that the ball B(1/δ1) � {φ ∈ R

4 : ‖φ‖2 ≤ 1/δ1} is con-
tained in the box R̂ � [−r̂1, r̂1] × [−r̂2, r̂2] × [−r̂3, r̂3] ×
[−r̂4, r̂4]. Note that the initial condition φ(s) (s ∈ [−τ , 0])
satisfies the equation φ̇(s) = Â(φ)φ(s), where Â(φ) =
A + F + G(φ). Then, we can choose a scalar μ > 0 such
that the inequality ÂT (φ)Â(φ) ≤ μI holds on R̂, which is
guaranteed by the following LMIs:[−μI [A + F + G(v̂i)]T

∗ −I

]
≤ 0,

i = 1, 2, . . . , 16 (44)

where v̂i (i = 1, 2, . . . , 16) are vertices of the box R̂. Cor-
responding, the scalar ρ involved in the initial condition
setXρ can be computed by ρ = √

1/(δ1 + μδ2).
For the non-delayed case, the ellipsoid E(X−1, 1) �

{r ∈ R
4 : rTX−1r ≤ 1} can be seen as the estimate of the

domain of attraction. The maximization of the ellipsoid
E(X−1, 1) can be obtained by solving the optimization
problem

Prob.3′. min
X ,Y ,x

x, s.t.,

LMIs (30), (31) and
[
xI I
I X

]
≥ 0 hold.

Remark 3.3: The main results of the paper are based on
the LMIs. Due to the use of the quadratic system the-
ory, more LMIs are introduced in our obtained results,
which will lead to longer computation time in solving
optimization problems. The LMIs and decision variables
in aboveoptimizationproblems canbe readily calculated.
For example, 35 LMIs and 106 + 8m scalar variables are
involved in solving Prob.3.

4. Numerical simulation

In the simulation, we choose a = 0.9, b = 0.2, c = 1.5,
d = 0.2, e = 0.17, τ = 0.5, B = [0.2 0.2 0.2]T and D = I.
By direct calculations, it is found that the model (2) with
above parameters has three unstable equilibrium points,
i.e. (0, 5, 0, 0) and

(ϑ1,ϑ2,−ϑ3,ϑ4), (−ϑ1,ϑ2,ϑ3,ϑ4)

whereϑ1 = 1.6660,ϑ2 = −8.8778,ϑ3 = 1.1107andϑ4 =
17.4004.

First of all, wewill consider the local stabilization prob-
lem under the delayed controller u(t) = K2(x(t − τ) −
x∗) (i.e. K1 = 0), where x∗ = (ϑ1,ϑ2,−ϑ3,ϑ4)

T . By solving
Problem 3 with r̄1 = 11, r̄2 = 17, r̄3 = r̄4 = 15, ε = 0.02,
κ = 1000 and Y1 = 0, we have the scalars δ1 = 0.0124,
δ2 = 2.9869 ∗ 10−5 and the controller gain

K2 =

⎡
⎢⎢⎣

0.0034 −0.1096 0.0354 −0.0108
0.0084 −0.1011 0.0413 0.0120
0.0503 0.0447 −0.0232 0.3358

−0.0526 0.0584 −0.0528 −0.3115

⎤
⎥⎥⎦ .

Let us select r̂1 = r̂2 = r̂3 = r̂4 = 9.0 satisfying B(1/δ1) ⊂
R̂, then one can obtain theminimumμ = 387.9917 such
that the LMIs (45) are feasible. Furthermore, we obtain
the scalar ρ = 6.4550 involved in the set Xρ . In Figure 1,
the state responses of the error dynamics (7) is plotted in
the absence of disturbance, whereφ(s) = [5 3 2 1]T ∈ Xρ ,
s ∈ [−τ , 0]. From Figure 1, it is seen that our designed
delayed controller behaves well.

Next, we will consider the H∞ control problem under
the delayed controller u(t) = K2(x(t − τ) − x∗). To this
end, we have to estimate the largest disturbance tol-
erance level βM. By solving Problem 1 with r̄1 = 0.9,
r̄2 = 2.1, r̄3 = 3, r̄4 = 5, ε = 4.3 and Y1 = 0, we have
βM = 2.0336 ∗ 103. Letting β = 1.8 ∗ 103 < βM and solv-
ing Problem 2with the same choosing of the scalars r̄1, r̄2,
r̄3, r̄4 and ε as above, one obtains the minimum H∞ per-
formance level γm = 0.1467 and the following controller
gain:

K2 =

⎡
⎢⎢⎣

−0.0855 −0.3864 −0.2265 −0.3552
−0.4268 −1.0146 −0.0480 0.0046
−0.0728 −0.0302 −1.4135 0.0544
−0.0498 −1.0410 −0.1823 −1.4954

⎤
⎥⎥⎦ .

Using the above controller gain, the state responses
and the truncated H∞ performance level γt of the error

Figure 1. State responses of the error dynamics (7).
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Figure 2. State responses of the error dynamics (7).

Figure 3. Truncated H∞ performance level γt .

dynamics (7) are, respectively, plotted in Figures 2 and 3,
where γt = (

∫ t
0 r

T (s)r(s)ds)/(
∫ t
0 ωT (s)ω(s)dt). In the sim-

ulation, the external disturbance is selected as ω(t) =
13.4 ∗ e−0.05t to ensure that

∫ ∞
0 ωT (t)ω(t)dt ≤ β = 1.8 ∗

103. From Figure 2, it is seen that the stability of the error
dynamics (7) can be guaranteed when the disturbance
ω(t) disappears under the proposed control scheme.
Moreover, it is clear from Figure 3 that the truncated H∞
performance level γt is less than γm = 0.1467.

5. Conclusions

Based on the quadratic system theory, an augmented
Lyapunov functional and some integral inequalities, an
LMI-based sufficient condition has been obtained in this
paper for a hyperchaotic system with energy-bounded
disturbance under the delayed feedback controller,
which can guarantee that the closed-loop dynamics has

some desirable performances including the bounded-
ness, the H∞ performance and the asymptotic stability.
Then, several convex optimization problems have been
given to handle different system performance require-
ments. Finally, numerical simulations have been pre-
sented to demonstrate the effectiveness of our proposed
results.

The existence of the chaotic behaviour in finance sys-
tems will result in inherent indefinitenes of the macroe-
conomic operation. Therefore, it is imperative to propose
some effective control schemes to stabilize the chaotic
finance dynamics. This paper has attempted to control a
hyperchaotic finance systemwith external disturbance in
a more accurate local framework. Our proposed control
schemecanbe seenas analternative for thegovernments
in formulating measures to revive the economy.
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