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ABSTRACT

Voxel grid is widely used in point cloud segmentation due to its regularity. However, the memory
consumption caused by high resolution restricts the performance of voxel grid. This paper pro-
poses an improved voxel grid deep network (IVDN) model to represent more comprehensive point
cloud features at the same resolution, thus improving the segmentation performance of point cloud.
Firstly, the point cloud data are structured within a voxel bounding box to correspond with the
three-dimensional(3D) convolution kernel, and a fixed number of point coordinates are selected to
generate the point feature vector. Then, in order to consider the distribution characteristics, the reli-
ability coefficient is used as an equivalent descriptor of the point cloud distribution density. Finally,
a corresponding deep network is constructed to deal with the above features. Experimental results
show that the proposed IVDN model can improve the mean classification accuracy and segmenta-
tion index mloU(Mean Intersection over Union) effectively, with a 0.45% and 0.3% improvement on
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Shape net16 dataset respectively.

1. Introduction

Convolutional Neural Network is a deep learning model
framework based on multi-layer neural network forimage
classification and recognition. In recent years, a lot of
in-depth research has done in the area of image classi-
fication, segmentation, detection, etc. (Chen et al., 2018;
Krizhevsky et al., 2017; Zeng et al., 2016; Zeng et al., 2018;
Zengetal,, 2019; Zeng et al., 2020). Meanwhile, the spatial
three-dimensional(3D) point cloud data which obtained
by 3D measurement techniques such as lidar/depth
camera have been widely used in 3D reconstruction
(Mescheder et al., 2019), unmanned vehicle, real-time
positioning and mapping (SLAM) and other areas. The
application of convolutional neural network to the classi-
fication and segmentation of 3D point clouds has a broad
prospect (Yang et al., 2018).

Compared with two-dimensional(2D) images, 3D point
cloud data has the advantages of efficient data process-
ing, flexible structure and rich information description.
However, because of the unstructured nature of point
cloud (Thomas et al., 2019), deep learning method can-
not be directly applied to point cloud, it is particularly
critical to solve the unstructured problem of point cloud.
Charles R (Charles et al., 2017) first obtained a transforma-
tion matrix by using neural network, then used the matrix
to filter the point cloud to have structural characteristics
for the usage of the deep learning operator. However,

the learning process of this transformation matrix is much
complicated and lacks generality. References (Maturana &
Scherer, 2015; Zhou & Tuzel, 2018) put the pointcloud ina
fixed voxel frame by analogy with the matrix arrangement
of pixel points in a two-dimensional image. In this way,
the spatial 3D point is uniquely determined by the voxel
index within the frame. In literature (Huang & You, 2016),
the tagging of scenic spot clouds in real fields has been
realized by the combination of the voxelized point clouds
and 3D convolution operator. And it gives a good per-
formance in large-scale point cloud segmentation. How-
ever, for the high-resolution point cloud data, its long
processing time and the heavy memory consumption
are considerable. PointGrid (Le & Duan, 2018) selects the
coordinates of a fixed number of voxel internal points as
the point feature to compensate the subtle information.
This method can balance the resolution and memory con-
sumption to some extent, but the fixed number of points
lacks the ability to describe distribution characteristics.
This paper uses voxel method to structure point cloud
and describes local details of point cloud by selecting
point coordinates in voxel. A reliability coefficient is con-
structed to highlight the difference of voxel components
while describing the distribution density. The improved
voxel grid deep network (IVDN) model can describe more
complete/comprehensive point cloud features at a given
resolution.
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Our contributions are summerized as follows.

(1) The shortcomings of voxelized point cloud method
in describing point cloud features were analysed.

(2) On the basis of selecting a fixed number of point
coordinates to describe the detail information of
point cloud, the reliability coefficient is constructed
to describe the distribution information.

(3) An IVDN network model for point cloud segmenta-
tion is proposed.

The remainder of this paper is organized as follows.
Section 2 summarizes the relevant literature and high-
lights the relevant issues. Section 3 details the input layer
of the IVDN model and the reliability coefficient. Section
4 introduces the network structure of the model. Section
5 discusses the evaluation results of the model, and com-
pares them with the existing network structure. Section
6 presents the conclusions and discusses possibilities for
future work.

2. Problem statement

Point cloud data describes three-dimensional objects
in the form of spatial coordinate sets. For point cloud
data containing, B(xp, ¥p,2p) and C(xc, Y, Zc), it can be
described as the following matrix.

Xa Ya Za
Xo Yo Zb (1)
Xe Yo Zc

M =

The elementary row transformation of matrix M corre-
sponds to different point cloud storage order. According
to the elementary transformation property of the matrix,
the transformed matrix is equivalent to the original matrix
M. However, for the convolution operator, the same input
corresponds to different output values. Therefore, point
cloud data needs to be structured so that each point
corresponds to its features, indexes, and coordinates.

For structuring point cloud methods, VoxNet (Matu-
rana & Scherer, 2015) and its variants (Brock et al., 2016;
Li et al,, 2016; Mutz et al,, 2016; Qi et al.,, 2016; Wang
et al,, 2017; Wang & Posner, 2015; Xiao et al,, 2017) are
the most direct way to convert 3D models into occu-
pied voxel grids. Although this approach addresses the
unstructured problem of point clouds, the main disad-
vantages of this method are the loss of too much 3D
information. Figure 1 shows the descriptive performance
of voxelized point cloud to the target. It can be seen from
Figure 1 that the delicacy of voxel grid’s description of the
target depends on the resolution of the grid. In order to
obtain more 3D information, the most intuitive method
is to improve the resolution of the grid. But for three-

voxel grid

Figure 1. Voxelization description of 3D point cloud target.

dimensional point clouds, a small increase in resolution
creates an exponentially growing amount of data. In addi-
tion, there must be a large number of empty voxels in
regular voxel frames, which consume a large amount of
unnecessary computing power.

In this paper, a fixed number of points in voxels are
selected to describe the target details more accurately at
the same resolution. In addition, the reliability coefficient
highlighting voxel difference is added to the point feature
vector to increase the descriptive ability of the target. The
section Il — input layer will introduce the pretreatment
method in detail.

3. Input layer of IVDN
3.1. Generation of the point feature vector

Using voxel grid to structure point cloud data, the map-
ping relationship of ‘point - voxel - index’ is established.
The index V; to which point /(x;y;,z;) belongs to the cor-
responding voxel can be described by the following for-
mula.

Vi=(Nxx) x N>+ (Nxy) x N+ (Nxz) (2

In A(Xa, Ya, Za) the formula (2), V; € [0, N3 — 1], N-N-N
are the voxel resolutions along the X-Y-Z axis respectively.
The points of the same index are allocated to the same
voxel unit, and the number of points within the voxel can
be obtained by counting the number of the same index
points.

On the basis of voxelazation point cloud, the point
coordinates within voxel are selected to be extended into
feature vectors to better reflect the target contour details.
Figure 2 shows the descriptive performance of the point
information. Using placeholder filling method, the num-
ber of points in the voxel selected by the design is K. If
the number of points contained in voxel is greater than
or equal to K, K points are randomly selected. If the num-
ber of points in the precursor element is less than K, the
insufficient points are filled with (0,0,0). If the voxel does
not contain any true points, K zeros (0,0,0) are used to fill
it. This method selects K points whose coordinates span
vector K x 3 to represent each voxel.
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point information

Figure 2. Point information description of the point cloud target.

The method above selects a fixed number of points,
but each voxel is different. In order to highlight the differ-
ences between voxels and enhance the descriptive ability
of the model, the corresponding quantization parameters
are constructed in this paper.

3.2. The reliability coefficient

Define the reliability coefficient of voxel data:
C=P/K 3)

where P is the number of real points in voxel, and K is the
number of selected points in voxel.

When P = 0, the reliability coefficient is 0. That is, the
K points used in the design are filled with placeholders
instead of real points.

When 0 < P < K, then 0 < C < 1. And the k-p points
are placeholders.

When P > K, the credibility coefficient C > 1 and K
points are all true and credible points. The reliability

Point information

—

Reliability coefficient

Figure 3. The feature composition of the input layer.

coefficient C represents how dense the number of true
points P in voxel is relative to the number K selected.

At the same resolution, the voxel detail information
varies linearly with the selected points. The reliability
coefficient is not only a measurement index of data relia-
bility, but also defined by it. After the parameter is linearly
amplified by K times, the distribution density information
of point cloud can be just represented. In other words,
the higher the density, the higher the reliability. There-
fore, the amplified confidence parameter is used as the
density to introduce the feature vector of voxel to make
the voxel descriptors into the network more complete.
Figure 3 shows the feature composition of the input layer.

Deep network has great advantages in feature extrac-
tion. The purpose of structured point cloud is to make
point cloud data suitable for deep network. The main
work of this paper is to improve the ability of feature
descriptors to describe local details on the basis of struc-
tured point cloud and construct the credibility coeffi-
cient to supplement the distribution information. There-
fore, any deep network that can handle structured point
clouds is applicable to the method in this paper.

4, The network structure of IVDN

For point clouds with structural information, 3D convolu-
tion operator can be used for feature extraction. The net-
work structure of the IVDN used is shown in Figure 4. The
forward network is adopted to extract point cloud fea-
tures at different levels through convolution and pooling
operation (Max pooling). Finally, classification prediction
is completed through full connection.

The output of 3D convolution operation in the / layer
is described as follows.

f—1f=17f=1
Xyz _ ik (x+i)(y+j) (z+k)
Vim =bm+ D20 DD WingVi i @
g i=0 j=0 k=0

' 9\\\\1\7\1 )

Point cloud

prediction

I [ Segmentation

A
| -- Input -- Conv

Figure 4. The network structure of [VDN.

-- Deconv m -- Pooling \—— classification % -~ FC
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where v%*

'm represents the m-th sub-block of the output
feature map of layer | with the starting position of (x, y, z)
and size of f x f x f. by is the threshold deviation of
the corresponding sub-feature block. véfj’géy“)(”k) is the
traversal of the convolution output feature map of the

layer [ — 1. WZ:q is the weight of the g-th kernel at (i, j, k)
Xyz

iNViZ1g f is the size of the feature map

fiia—F
s

fi = +1 (5)

where f; is the size of the feature map at layer j, F is the size
of the convolution kernel, and the stride is s.
The pooling output of layer I-th is

Xyz (gx+i)(gy+j)(gz+k)
= a (6)
Pim ijkelon,..g—1" d=Hm
(gx+i)(gy+j)(gz+k)

where Pi-1ym donates the parameter value
traversal of the m-th feature map subblock at position
(x,¥,2). The size of the pooling layer kernel is g x g x g
and p)*is the maximum output.

Each convolutional layer in the IVDN includes a 3 x
3 x 3 convolution kernel with stride 1, a batch normaliza-
tion and a rectified linear unit. The first block use 32-filter
convolutions and they are doubled in each successive
block. IVDN has two fully connected layers, each of which
contain a RelLU activation and a Dropout layer. The last
fully connected layer followed by a softmax to regress to
the probability of each category. The number of data set
categories determines the number of nodes in this layer.

Forward network through training can get the weights
and deviations of each convolution layer and the result of
classification. Backward segmentation network relies on
the classification prediction results of Forward network.
And in turn, the forward features are connected to the
segmentation network. Then the point cloud segmenta-
tion is realized by deconvolution operation. The deconvo-
lution operation can be realized by reversing the positive
and negative traversal of the convolution. For single label
point cloud in the model, it only needs forward network
to complete classification and segmentation, while for
multi-label point cloud, it needs backward network to
predict point-by-point label.

The segmentation task.is completed by mapping the
predicted point tag to all points in the point cloud model.
The mapping method corresponds to the point feature
construction. If the number of fixed points selected is K,
the number of output channels of the segmentation net-
work is K+1. K channels correspond to the point label
prediction of K points; The other channel is the total label
of voxel. And the label with the most votes among K
points determined by voting.

K points are selected from the voxel to span the eigen-
vectors. And Correspondingly, the decoding prediction

results are mapped to each point when the segmentation
task is completed. For empty voxels, the label is empty;
For the number of points is less than or equal to K of vox-
els, each point corresponds to the predicted point label.
And if the number of points is greater than K, K points
correspond to K channel prediction tags. Finally, all other
points are covered with voxel total tags to complete the
tag prediction of all points.

5. Evaluation

The Model net40 (Wu et al., 2015) dataset and Shape
net16 (Yi et al., 2016) dataset are used to verify the effec-
tiveness of the proposed algorithm.

The Model net40 dataset is a point cloud deep learning
dataset provided by Stanford university, mainly for verify-
ing the classification of point clouds. This dataset contains
point clouds of 40 categories of objects, with a total of
12,311 CAD models. Virtual scanner is used to obtain sur-
face point cloud data, and each point cloud model is fixed
with 10,000 points. The Shape net16 dataset is a subset
of the Shape net model which contains point cloud data
and point-by-point labels. There are 16,881 point cloud
models including 16 kinds of objects, which are divided
into 50 parts. And each model is divided into 2-6 parts.
In this dataset, the gaussian function with mean value
of zero and standard deviation of 0.02 is used to con-
struct the rotation matrix, and the random jitter point
cloud is enhanced. This paper uses the enhanced point
cloud dataset and randomly selects 80% of the models for
training and 20% for testing.

The experimental system comprised a Nvidia1080ti
graphic processing unit, and a software environment
of ubuntu16.04, cuda9.0, and cuDNN7.05. The deep
learning framework was tensorflow1.8. The structured
grid resolution of point cloud is 16 x 16 x 16, and
select a fixed number of points K = 4. The convolu-
tion layer is composed of 5x5x5,3x3x3,1x1x
1 convolution kernel, batch normalization and linear
rectifying function (RELU). And the convolution kernel
step size is 1. The parameter settings were as follows:
batch-size = 32, momentum = 0.5, clipping = 0.99, ini-
tial learning rate = 1 x 1074,

MloU (Mean Intersection over Union) was used to eval-
uate the segmentation effect, which is described below.

k

1 pii
MloU =
k1 go: Y0P + X0 i — Pi

(7)

where pj; is the number of points that belong to class i
but are predicted to be class j. In the same way, pj; is the
number of points that belong to class j but are predicted
to be class i. Pj; is the number of correct points predicted.
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Table 1. Mean classification accuracy on the model net40
dataset.

Method Mean classification accuracy
PointGrid 0.852632
Ours 0.857085

After 200 iterations, the forward training model of seg-
mentation network was obtained. In the test under this
Model, the average classification accuracy of Model net40
dataset is 85.7% while the mean classification accuracy of
Shape net16 dataset is 98.6%, and the MloU is 77.3%.

In order to compare the performance of the IVDN
algorithm in this paper, the PointGrid algorithm was used
to classify and segment on the Model net40 and Shape
net16 dataset. Table 1 shows the comparison results of
two methods with the mean classification accuracy of
Model net40 dataset. As the results show, the average
classification accuracy of IVDN is 0.45% higher than that
of PointGrid on single label M40 dataset compared with
PointGrid.

Furthermore, the comparison results of the mean clas-
sification accuracy and MloU of the two methods in the
dataset of Shape net16 are shown in Table 2. And Table 3
shows the comparison results of classification accuracy
and lou of each category of the two methods in Shape
Net16 dataset.

According to Tables 2 and 3, the mean classification
accuracy of IVDN on Shape net16 dataset is improved by

Table 2. Mean classification accuracy and Mlou on Shape net16
dataset.

Method Mean classification accuracy MioU
PointGrid 0.981148 0.770092
Ours 0.985650 0.773123

Table 3. Each category classification accuracy and loU of Shape
net16 dataset.

Class Classification accuracy loU
PointGrid Ours PointGrid Ours

Airplane 0.990706 0.998141 0.715490 0.712007
Bag 0.875000 0.875000 0.674935 0.668899
Cap 0.800000 0.800000 0.705827 0.705620
Car 0.997253 0.997253 0.687558 0.673497
Chair 0.994638 0.994638 0.854608 0.850345
Earphone 0.600000 0.800000 0.434958 0.438768
Guitar 0.993631 0.993631 0.855467 0.864712
Knife 0.846154 0.974359 0.648448 0.793500
Lamp 0.977346 0.951456 0.734876 0.727419
Laptop 0.988764 0.988764 0.921619 0.932248
Motorbike 1.000000 0.975000 0.515085 0.516928
Mug 0.944444 0.944444 0.850096 0.865511
Pistol 1.000000 1.000000 0.790120 0.806478
Rocket 0.846154 0.846154 0.408658 0.395426
Skateboard 0.966667 0.966667 0.638374 0.643128
Table 0.981956 0.988604 0.782993 0.790648

0.45%, and the MloU is improved by 0.3%. Moreover, the
improvement of the two types of Earphone and Knife is
especially obvious when the average accuracy and MloU
are improved. For Earphone, the classification accuracy
increased by 20%, and the /loU increased by 0.38%. For
Knife, the classification accuracy increased by 12.8%, and
the loU increased by 14.5%.

The comparison of the segmentation results of the
two methods after visual rendering is shown in Figure 5.
Figure 5(a-d) respectively shows the original Point cloud,
ground truth, the segmentation effect of PointGrid and
the segmentation effect of IVDN in this paper. The dif-
ferent colours in Figure 5 are only used to distinguish
different parts. The segmentation of point clouds can be
understood as the point-by-point classification of point
clouds, so the loU’s promotion indicates that there are
a number of points that predict the right label. The loU
of guitar in PointGrid is 0.855467 and that of guitar in
IVDN is 0.864712. Figure 5 gives a rendering of the guitar

L)

©

Figure 5. Contrast of segmentation effect.
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under the above segmentation effect, it can be seen
that the two methods have little difference in the seg-
mentation effect of the head part of the guitar, while
there are obvious differences in the neck and body part
of the guitar. The loU of knife in PointGrid is 0.648448
and that of guitar in IVDN is 0.793500, it can be seen
that the middle point segmentation difference is greater.
For earphones with three parts, the loU in PointGrid is
0.434958 and that in IVDN is 0.438768, there are obvious
differences in headphone, body and machine wire. The
above is the visualization result of segmentation effect
sampling. The detailed segmentation effect is shown in
Table 3.

6. Conclusion

This paper selects a fixed number of points in voxel to
achieve a more accurate description of the target details.
In addition, the reliability coefficient highlighting voxel
difference is added to the point feature vector to increase
the descriptive ability of the target. Based on the voxel
descriptor, an improved volumetric grid deep network
model for point cloud segmentation was constructed to
complete the point cloud segmentation task. According
to the experimental results, the IVDN model can improve
the classification accuracy and MloU, and significantly
improve the two categories of Earphone and Knife in
Shape net16 dataset.

The proposed IVDN can provide more abundant infor-
mation description at a certain resolution and construct
a complete depth network with feature description.
Other network optimization algorithms can be directly
applied.
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