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ABSTRACT
Pythagorean fuzzy set (PFS) is one of the prosperous extensions
of the intuitionistic fuzzy set (IFS) for handling the fuzziness and
uncertainties in the data. Under this environment, in this paper, we
introduce the notion of two generalised Einstein hybrid operators
namely, generalised Pythagorean fuzzy Einstein hybrid averaging
(in short GPFEHA) operator and generalised Pythagorean fuzzy Ein-
stein hybrid geometric (in short GPFEHG) operator along with their
desirable properties, such as idempotency, boundedness andmono-
tonicity. The main benefit of the proposed operators is that these
operators deliver more general, more correct and precise results as
compared to their existing methods. Generalised Einstein operators
combine Einstein operators with some generalised operators using
Pythagorean fuzzy values. Therefore these methods play a vital role
in real world problems. Finally, the proposed operators have been
applied to decision-making problems to show the validity, practical-
ity and effectiveness of the new attitude.
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1. Introduction

Multi-criteria group decision-making problems have importance in most kinds of fields
such as economics, engineering andmanagement. Generally, it has been assumed that the
information which accesses the alternatives in term of criteria and weight are expressed
in real numbers. But due to the complexity of the system day-by-day, it is difficult for the
decision-makers to make a perfect decision, as most of the preferred value during the
decision-making process imbued with uncertainty. In order to handle the uncertainties
and fuzziness, intuitionistic fuzzy set [1] theory is one of the prosperous extensions of the
fuzzy set theory [2], which is characterised by the degree of membership and degree of
non-membership has been presented. Xu [3] developed some basic arithmetic operators,
including the IFWA operator, the IFOWA operator, and the IFHA operator. Xu and Yager [4]
defined some basic geometric operators, such as the IFWG operator, the IFOWG operator,
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and the IFHG operator. Wang and Liu [5,6] introduced the notion of some Einstein opera-
tors, such as the IFEWG operator, the IFEOWG operator, the IFEWA operator, the IFEOWA
operator, and applied them to group decision-making. In [7–18], many scholars worked in
the field of intuitionistic fuzzy sets and introduced several operators and their applications.

But there are several cases where the decision-maker may provide the degree of mem-
bership and nonmembership of a particular attribute in such away that their sum is greater
than one. For example, suppose a man expresses his preferences towards the alternative
in such a way that degree of their satisfaction is 0.6 and degree of rejection is 0.8. Clearly,
its sum is greater than one. Therefore, Yager [19] introduced the concept of another set
called Pythagorean fuzzy set. Pythagorean fuzzy set is more powerful tool to solve uncer-
tain problems. Like intuitionistic fuzzy operators, Pythagorean fuzzy operators also become
an interesting and important area for research, after the advent of Pythagorean fuzzy sets
theory. In 2013, Yager and Abbasov [20] introduced the notion of two new operators using
the PFVs, such as the PFWA operator and the PFOWA operator. Rahman et al. [21–24] intro-
duced the notion of PFWG operator, PFOWG operator and PFHG operator and applied
themongroupdecision-makingproblems. Rahmanet al. [25–30] introduced the conceptof
many operators using PFNs and also applied them to group decision-making. Rahman et al.
[31,32] introduced the idea of Einstein hybrid aggregation operators using Pythagorean
fuzzy numbers and also applied them on group decision-making. Garg [33,34] introduced
the notion of several Einstein averaging operators, and Einstein geometric operators such
as, PFEWA operator, PFEOWA operator, GPFEWA operator, GPFEOWA operator, PFEWG
operator, PFEOWG operator, GPFEWG operator and GPFEOWA operator and applied them
to group decision-making. Garg [35] introduced the idea of confidence level and develop
some aggregation operators using Pythagorean fuzzy numbers. Garg [36] introduced the
idea of logarithmic aggregation operators and their application. Garg [37–43] developed
many aggregation operators and applied them on group decision-making. Akram [44]
introduced the concept of ELECTRE I Method using Pythagorean fuzzy information. Zang
and Xu [45] introduced the notion of TOPSIS for multiple attribute decision-making based
on Pythagorean fuzzy information.

This motivation comes from [33,34], in which the author introduced the concept of sev-
eral Einstein averaging operators, and Einstein geometric operators such as, PFEWA oper-
ator, PFEOWA operator, GPFEWA operator, GPFEOWA operator, PFEWG operator, PFEOWG
operator, GPFEWG operator and GPFEOWA operator and applied them to group decision-
making. Actually, GPFEWA operator and GPFEWG operator weigh only the Pythagorean
fuzzy arguments,whileGPFEOWAoperator andGPFEOWGoperatorweighonly theordered
positions of the Pythagorean fuzzy arguments instead of weighing the Pythagorean
fuzzy arguments themselves. To overcome these limitations, we introduce the concept of
GPFEHA operator and GPFEHG operator which weigh both the given Pythagorean fuzzy
value and its ordered position. Thus the proposed operators are the generalisation of the
existingmethods. Thereforewe can say that the proposedoperators providemore accurate
and precise results as compare to the existing methods, because the proposed operators
are the generalisation of existing operators. Of course, cursorily, it is more complicated in
calculation. However, in real life problems, we need assign the specific parameter ∂ , firstly.

The remainder of this paper is arranged as follows. In Section 2, we give some basic defi-
nitions which will be used in our later sections. In Section 3, we introduce the notion of the
GPFEHAoperator, and theGPFEHGoperator. In Section 4, we apply the proposed operators
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to MAGDM using PFNs. In Section 5, we construct numerical example. In Section 6, we
compare the proposed operators to others operators. In Section 7, we have conclusion.

2. Preliminaries

Definition 2.1: [19] LetD be a universal set, then Pythagorean fuzzy set can be defined as:

P = {〈d,ΩP(d),�P(d)〉 |d ∈ D}, (1)

where ΩP(d) : D → [0, 1] and �P(d) : D → [0, 1] with condition 0 ≤ Ω2
P (d) + �

2
P(d) ≤ 1

are called the membership and non-membership function respectively. Let πP(d) =√
1 − (Ω2

P (d) + �
2
P(d)) then it is called the degree of indeterminacy. And also 0 ≤ πP(d) ≤

1, ∀d ∈ D.

Definition 2.2: [45] Let κ = 〈Ωκ ,�κ 〉 be a PFN, then score and accuracy function can be
defined as: s(κ) = Ω2

κ − �
2
κ and h(κ) = Ω2

κ + �
2
κ respectively.

If κ1 = 〈Ωκ1 ,�κ1

〉
and κ2 = 〈Ωκ2 ,�κ2

〉
, then we having the following some conditions:

(1) If s(κ1) ≺ s(κ2), then κ1 ≺ κ2

(2) If s(κ1) = s(κ2), then there are two cases:
(i) If h(κ1) = h(κ2), then κ1 = κ2

(ii) If h(κ1) ≺ h(κ2), then κ1 ≺ κ2

Definition 2.3: [33] Let κt = 〈Ωκt ,�κt

〉
(t = 1, 2) and ∂ 	 0 be any real number, then

κ1⊕εκ2 =
〈 √

Ω2
κ1

+ Ω2
κ2√

1 + Ω2
κ1

·εΩ2
κ2

,
�κ1 ·ε�κ2√

1 + (1 − �2
κ1

)·ε(1 − �2
κ2

)

〉
, (2)

κ1⊗εκ2 =
〈

Ωκ1 ·εΩκ2√
1 + (1 − Ω2

κ1
)·ε(1 − Ω2

κ2
)
,

√
�2

κ1
+ �2

κ2√
1 + �2

κ1
·ε�2

κ2

〉
, (3)

κ∧ε∂ =
〈 √

2Ω2∂
κ√

(2 − Ω2
κ )

∂ + Ω2∂
κ

,

√
(1 + �2

κ)
∂ − (1 − �2

κ)
∂√

(1 + �2
κ)

∂ + (1 − �2
κ)

∂

〉
, (4)

∂·εκ =
〈√

(1 + Ω2
κ )

∂ − (1 − Ω2
κ )

∂√
(1 + Ω2

κ )
∂ + (1 − Ω2

κ )
∂
,

√
2�2∂

κ√
(2 − �2

κ)
∂ + (�2

κ)
∂

〉
, (5)

Definition 2.4: [31] PFEHA operator can be defined as:

PFEHAλ̄,�(κ1, κ2, . . . , κn) =
〈√ n∏

t=1
(1+Ω2

κ̇
(t)
)
�t−

n∏
t=1

(1−Ω2
κ̇
(t)

)
�t

√
n∏

t=1
(1+Ω2

κ̇
(t)
)
�t+

n∏
t=1

(1−Ω2
κ̇
(t)

)
�t

,

√
2

n∏
t=1

�
2�t
κ̇
(t)√

n∏
t=1

(2−�2
κ̇
(t)

)
�t+

n∏
t=1

�
2�t
κ̇
(t)

〉
,

(6)
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where κ̇
(t) is the largest of the WPFVs κ̇t(κ̇t = n�tκt , t = 1, 2, . . . , n). � = (�1, �2, . . . , �n)T

and λ̄ = (λ̄1, λ̄2, . . . , λ̄n)T be the associated and weighted vector, respectively, and both
have the same condition, such as both belong to the closed interval and their sum is equal
to 1.

Definition 2.5: [32] PFEHG operator can be defined as:

PFEHGλ̄,�(κ1, κ2, . . . , κn) =
〈 √

2
n∏

t=1
Ω

2�t
κ̇
(t)√

n∏
t=1

(2−Ω2
κ̇
(t)

)
�t+

n∏
t=1

Ω
2�t
κ̇
(t)

,

√
n∏

t=1
(1+�2

κ̇
(t)
)
�t−

n∏
t=1

(1−�2
κ̇
(t)

)
�t

√
n∏

t=1
(1+�2

κ̇
(t)
)
�t+

n∏
t=1

(1−�2
κ̇
(t)

)
�t

〉
,

(7)

where κ̇
(t) is the largest of the WPFVs κ̇t(κ̇t = κ
n�t
t , t = 1, 2, . . . , n). � = (�1, �2, . . . , �n)T

and λ̄ = (λ̄1, λ̄2, . . . , λ̄n)T be the associated and weighted vector respectively, and both
have the same condition, such as both belong to the closed interval and their sum is equal
to 1.

3. Some Generalised Pythagorean Fuzzy Einstein Hybrid Operators

In this section, we investigate the generalised Einstein operators such as, generalised
Pythagorean fuzzy Einstein hybrid averaging operator and generalised Pythagorean fuzzy
Einstein hybrid geometric operator

Definition 3.1: GPFEHG operator can be defined as:

GPFEHGλ̄,�(κ1, κ2, . . . , κn)

=
〈

√√√√√√√√√√√√√√√√

( n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂+3(1−Ω2

κ̇
(t)
)
∂ }�t+3

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂−(1−Ω2

κ̇
(t)
)
∂ }�t

) 1
∂

−
( n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂+3(1−Ω2

κ̇
(t)
)
∂ }�t−

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂−(1−Ω2

κ̇
(t)
)
∂ }�t

) 1
∂

( n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂+3(1−Ω2

κ̇
(t)
)
∂ }�t+3

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂−(1−Ω2

κ̇
(t)
)
∂ }�t

) 1
∂

+
( n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂+3(1−Ω2

κ̇
(t)
)
∂ }�t−

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂−(1−Ω2

κ̇
(t)
)
∂ }�t

) 1
∂

,

√√√√√2

{
n∏

t=1
{(2−�2

κ̇
(t)
)
∂+3(�2

κ̇
(t)
)
∂ }

�t
−

n∏
t=1

{(2−�2
κ̇
(t)

)
∂−(�2

κ̇
(t)
)
∂ }�t

} 1
∂

√√√√√√√√√√√√

(
n∏

t=1
{(2−�2

κ̇
(t)
)
∂+3(�2

κ̇
(t)
)
∂ }

�t
+3

n∏
t=1

{(2−�2
κ̇
(t)

)
∂−(�2

κ̇
(t)
)
∂ }�t

) 1
∂

+
(

n∏
t=1

{(2−�2
κ̇
(t)

)
∂+3(�2

κ̇
(t)
)
∂ }

�t
−

n∏
t=1

{(2−�2
κ̇
(t)

)
∂−(�2

κ̇
(t)
)
∂ }�t

) 1
∂

〉
, (8)

where κ̇
(t) is the largest of the WPFVs κ̇t(κ̇t = κ
nλ̄t
t , t = 1, 2, . . . , n). � = (�1, �2, . . . , �n)T

and λ̄ = (λ̄1, λ̄2, . . . , λ̄n)T be the associated and weighted vector, respectively, and both
have the same condition, such as both belong to the closed interval and their sum is equal
to 1. And the positive number n is called the balancing coefficient, the parameter ∂ is ∂ 	 0.
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Theorem 3.1: Let κt = 〈Ωκt ,�κt

〉
be a family PFVs, then the following conditions hold:

(i) κ1⊕εκ2 = κ2⊕εκ1

(ii) κ1⊗εκ2 = κ2⊗εκ1

(iii) (κ1⊕εκ2)⊕εκ3 = κ1⊕ε(κ2⊕εκ3)

(iv) (κ1⊗εκ2)⊗εκ3 = κ1⊗ε(κ2⊗εκ3)

(v) κc
1⊕εκ

c
2 = (κ1⊗εκ2)

c

(vi) κc
1⊗εκ

c
2 = (κ1⊕εκ2)

c

Proof: Straightforward. �

Theorem 3.2: Let κt = 〈Ωκt ,�κt

〉
be a family PFVs, then the following conditions hold:

(i) (κ1 ∪ κ2)⊕ε(κ1 ∩ κ2) = κ1⊕εκ2

(ii) (κ1 ∪ κ2)⊗ε(κ1 ∩ κ2) = κ1⊗εκ2

(iii) (κ1 ∪ κ2)⊕ε(κ1 ∩ κ2) = κ1⊕εκ2

(iv) (κ1 ∪ κ2) ∩ κ3 = (κ1 ∩ κ3) ∪ (κ2 ∩ κ3)

(v) (κ1 ∩ κ2) ∪ κ3 = (κ1 ∪ κ3) ∩ (κ2 ∪ κ3)

(vi) (κ1 ∪ κ2)⊕εκ3 = (κ1⊕εκ3) ∪ (κ2⊕εκ3)

(vii) (κ1 ∩ κ2)⊕εκ3 = (κ1⊕εκ3) ∩ κ(κ2⊕εκ3)

(viii) (κ1 ∩ κ2)⊗εκ3 = (κ1⊗εκ3) ∩ (κ2⊗εκ3)

(ix) (κ1 ∪ κ2)⊕εκ3 = (κ1⊕εκ3) ∪ (κ2⊕εκ3)

Proof: Straightforward. �
Theorem 3.3: Let κt = (Ωκt ,�κt )(t = 1, 2, . . . , n) be a group of PFVs, by using GPFEHG oper-
ator then their resulting value is also PFV, and

GPFEHGλ̄,�(κ1, κ2, . . . , κn)

=
〈

√√√√√√√√√√√√√√√√√

(
n∏

t=1
{(1+Ω2

κ̇
(t)
)
∂+3(1−Ω2

κ̇
(t)
)
∂ }�t+3

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂−(1−Ω2

κ̇
(t)
)
∂ }�t

) 1
∂

−
(

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂+3(1−Ω2

κ̇
(t)
)
∂ }�t−

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂−(1−Ω2

κ̇
(t)
)
∂ }�t

) 1
∂

(
n∏

t=1
{(1+Ω2

κ̇
(t)
)
∂+3(1−Ω2

κ̇
(t)
)
∂ }�t+3

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂−(1−Ω2

κ̇
(t)
)
∂ }�t

) 1
∂

+
(

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂+3(1−Ω2

κ̇
(t)
)
∂ }�t−

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂−(1−Ω2

κ̇
(t)
)
∂ }�t

) 1
∂

,

√√√√
2
{

n∏
t=1

{(2−�
2
κ̇
(t)

)
∂+3(�2

κ̇
(t)
)
∂ }

�t −
n∏

t=1
{(2−�

2
κ̇
(t)

)
∂−(�2

κ̇
(t)
)
∂ }�t

} 1
∂

√√√√√√√√√√

(
n∏

t=1
{(2−�

2
κ̇
(t)

)
∂+3(�2

κ̇
(t)
)
∂ }

�t +3
n∏

t=1
{(2−�

2
κ̇
(t)

)
∂−(�2

κ̇
(t)
)
∂ }�t

) 1
∂

+
(

n∏
t=1

{(2−�
2
κ̇
(t)

)
∂+3(�2

κ̇
(t)
)
∂ }

�t −
n∏

t=1
{(2−�

2
κ̇
(t)

)
∂−(�2

κ̇
(t)
)
∂ }�t

) 1
∂

〉
, (9)

Proof: Since

∂·εκ̇ =
〈√

(1 + Ω2
κ̇ )

∂ − (1 − Ω2
κ̇ )

∂√
(1 + Ω2

κ̇ )
∂ + (1 − Ω2

κ̇ )
∂
,

√
2�

2∂
κ̇√

(2 − �
2
κ̇ )

∂ + �
2∂
κ̇

〉
�
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Then
(

n⊗
t=1

∂t·ε(κ̇
(t))

)�t

=
〈

√
2

n∏
t=1

⎛
⎝
√

(1+Ω2
κ̇
(t)

)
∂−(1−Ω2

κ̇
(t)
)
∂√

(1+Ω2
κ̇
(t)

)
∂+(1−Ω2

κ̇
(t)
)
∂

⎞
⎠

�t

√√√√√ n∏
t=1

⎛
⎝2− (1+Ω2

κ̇
(t)
)
∂−(1−Ω2

κ̇
(t)
)
∂

(1+Ω2
κ̇
(t)

)
∂+(1−Ω2

κ̇
(t)
)
∂

⎞
⎠

�t

+
n∏

t=1

⎛
⎝ (1+Ω2

κ̇
(t)
)
∂−(1−Ω2

κ̇
(t)
)
∂

(1+Ω2
κ̇
(t)

)
∂+(1−Ω2

κ̇
(t)
)
∂

⎞
⎠

�t
,

√√√√√√√√√
n∏

t=1

⎛
⎝1+ 2(�2

κ̇
(t)
)
∂

(2−�
2
κ̇
(t)

)
∂+(�2

κ̇
(t)
)
∂

⎞
⎠

�t

−
n∏

t=1

⎛
⎝1− 2(�2

κ̇
(t)
)
∂

(2−�
2
κ̇
(t)

)
∂+(�2

κ̇
(t)
)
∂

⎞
⎠

�t

n∏
t=1

⎛
⎝1+ 2(�2

κ̇
(t)
)
∂

(2−�
2
κ̇
(t)

)
∂+(�2

κ̇
(t)
)
∂

⎞
⎠

�t

+
n∏

t=1

⎛
⎝1− 2(�2

κ̇
(t)
)
∂

(2−�
2
κ̇
(t)

)
∂+(�2

κ̇
(t)
)
∂

⎞
⎠

�t

〉

=
〈

⎛
⎜⎜⎝

√
2

n∏
t=1

(√
(1+Ω2

κ̇
(t)
)
∂−(1−Ω2

κ̇
(t)
)
∂
)�t

n∏
t=1

(√
(1+Ω2

κ̇
(t)
)
∂+(1−Ω2

κ̇
(t)
)
∂
)�t

⎞
⎟⎟⎠

√√√√√√√ n∏
t=1

⎛
⎝ 2((1+Ω2

κ̇
(t)
)
∂+(1−Ω2

κ̇
(t)
)
∂
)−(1+Ω2

κ̇
(t)
)
∂+(1−Ω2

κ̇
(t)
)
∂

(1+Ω2
κ̇
(t)

)
∂+(1−Ω2

κ̇
(t)
)
∂

⎞
⎠

�t

+

⎛
⎜⎜⎝

n∏
t=1

((1+Ω2
κ̇
(t)

)
∂−(1−Ω2

κ̇
(t)
)
∂
)
�t

n∏
t=1

((1+Ω2
κ̇
(t)

)
∂+(1−Ω2

κ̇
(t)
)
∂
)
�t

⎞
⎟⎟⎠
,

√√√√√√√√√
n∏

t=1

⎛
⎝ (2−�

2
κ̇
(t)

)
∂+(�2

κ̇
(t)
)
∂+2(�2

κ̇
(t)
)
∂

(2−�
2
κ̇
(t)

)
∂+(�2

κ̇
(t)
)
∂

⎞
⎠

�t

−
n∏

t=1

⎛
⎝ (2−�

2
κ̇
(t)

)
∂+(�2

κ̇
(t)
)
∂−2(�2

κ̇
(t)
)
∂

(2−�
2
κ̇
(t)

)
∂+(�2

κ̇
(t)
)
∂

⎞
⎠

�t

n∏
t=1

⎛
⎝ (2−�

2
κ̇
(t)

)
∂+(�2

κ̇
(t)
)
∂+2(�2

κ̇
(t)
)
∂

(2−�
2
κ̇
(t)

)
∂+(�2

κ̇
(t)
)
∂

⎞
⎠

�t

+
n∏

t=1

⎛
⎝ (2−�

2
κ̇
(t)

)
∂+(�2

κ̇
(t)
)
∂−2(�2

κ̇
(t)
)
∂

(2−�
2
κ̇
(t)

)
∂+(�2

κ̇
(t)
)
∂

⎞
⎠

�t

〉

=
〈

⎛
⎜⎜⎝

√
2

n∏
t=1

(√
(1+Ω2

κ̇
(t)
)
∂−(1−Ω2

κ̇
(t)
)
∂
)�t

n∏
t=1

(√
(1+Ω2

κ̇
(t)
)
∂+(1−Ω2

κ̇
(t)
)
∂
)�t

⎞
⎟⎟⎠

√√√√√√√√√√√√√√

n∏
t=1

⎛
⎝ 2(1+Ω2

κ̇
(t)
)
∂+2(1−Ω2

κ̇
(t)
)
∂−(1+Ω2

κ̇
(t)
)
∂+(1−Ω2

κ̇
(t)
)
∂

(1+Ω2
κ̇
(t)

)
∂+(1−Ω2

κ̇
(t)
)
∂

⎞
⎠

�t

+

⎛
⎜⎜⎝

n∏
t=1

((1+Ω2
κ̇
(t)

)
∂−(1−Ω2

κ̇
(t)
)
∂
)
�t

n∏
t=1

((1+Ω2
κ̇
(t)

)
∂+(1−Ω2

κ̇
(t)
)
∂
)
�t

⎞
⎟⎟⎠

,

√√√√√√√√√
n∏

t=1

⎛
⎝ (2−�

2
κ̇
(t)

)
∂+3(�2

κ̇
(t)
)
∂

(2−�
2
κ̇
(t)

)
∂+(�2

κ̇
(t)
)
∂

⎞
⎠

�t

−
n∏

t=1

⎛
⎝ (2−�

2
κ̇
(t)

)
∂−(�2

κ̇
(t)
)
∂

(2−�
2
κ̇
(t)

)
∂+(�2

κ̇
(t)
)
∂

⎞
⎠

�t

n∏
t=1

⎛
⎝ (2−�

2
κ̇
(t)

)
∂+3(�2

κ̇
(t)
)
∂

(2−�
2
κ̇
(t)

)
∂+(�2

κ̇
(t)
)
∂

⎞
⎠

�t

+
n∏

t=1

⎛
⎝ (2−�

2
κ̇
(t)

)
∂−(�2

κ̇
(t)
)
∂

(2−�
2
κ̇
(t)

)
∂+(�2

κ̇
(t)
)
∂

⎞
⎠

�t

〉

=
〈

⎛
⎜⎜⎜⎜⎜⎝

√
2

(√
n∏

t=1
((1+Ω2

κ̇
(t)
)
∂−(1−Ω2

κ̇
(t)
)
∂
)

)�t

(√
n∏

t=1
((1+Ω2

κ̇
(t)
)
∂+(1−Ω2

κ̇
(t)
)
∂
)

)�t

⎞
⎟⎟⎟⎟⎟⎠

√√√√√√√
⎛
⎜⎜⎝

n∏
t=1

((1+Ω2
κ̇
(t)

)
∂+3(1−Ω2

κ̇
(t)
)
∂
)
�t

n∏
t=1

((1+Ω2
κ̇
(t)

)
∂+(1−Ω2

κ̇
(t)
)
∂
)
�t

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

n∏
t=1

((1+Ω2
κ̇
(t)

)
∂−(1−Ω2

κ̇
(t)
)
∂
)
�t

n∏
t=1

((1+Ω2
κ̇
(t)

)
∂+(1−Ω2

κ̇
(t)
)
∂
)
�t

⎞
⎟⎟⎠
,

√√√√√√√√√
n∏

t=1

⎛
⎝ (2−�

2
κ̇
(t)

)
∂+3(�2

κ̇
(t)
)
∂

(2−�
2
κ̇
(t)

)
∂+(�2

κ̇
(t)
)
∂

⎞
⎠

�t

−
n∏

t=1

⎛
⎝ (2−�

2
κ̇
(t)

)
∂−(�2

κ̇
(t)
)
∂

(2−�
2
κ̇
(t)

)
∂+(�2

κ̇
(t)
)
∂

⎞
⎠

�t

n∏
t=1

⎛
⎝ (2−�

2
κ̇
(t)

)
∂+3(�2

κ̇
(t)
)
∂

(2−�
2
κ̇
(t)

)
∂+(�2

κ̇
(t)
)
∂

⎞
⎠

�t

+
n∏

t=1

⎛
⎝ (2−�

2
κ̇
(t)

)
∂−(�2

κ̇
(t)
)
∂

(2−�
2
κ̇
(t)

)
∂+(�2

κ̇
(t)
)
∂

⎞
⎠

�t

〉



FUZZY INFORMATION AND ENGINEERING 7

Hence

1
∂

(
n⊗

t=1
∂·ε(κ̇
(t))

�t

)

=
〈

√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

⎛
⎝1 +

2
n∏

t=1
{(1+Ω2

κ̇
(t)
)
∂−(1−Ω2

κ̇
(t)
)
∂ }�t

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂+3(1−Ω2

κ̇
(t)
)
∂ }�t+

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂−(1−Ω2

κ̇
(t)
)
∂ }�t

⎞
⎠

1
∂

−
⎛
⎝1 −

2
n∏

t=1
{(1+Ω2

κ̇
(t)
)
∂−(1−Ω2

κ̇
(t)
)
∂ }�t

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂+3(1−Ω2

κ̇
(t)
)
∂ }�t+

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂−(1−Ω2

κ̇
(t)
)
∂ }�t

⎞
⎠

1
∂

⎛
⎝1 +

2
n∏

t=1
{(1+Ω2

κ̇
(t)
)
∂−(1−Ω2

κ̇
(t)
)
∂ }�t

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂+3(1−Ω2

κ̇
(t)
)
∂ }�t+

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂−(1−Ω2

κ̇
(t)
)
∂ }�t

⎞
⎠

1
∂

+
⎛
⎝1 −

2
n∏

t=1
{(1+Ω2

κ̇
(t)
)
∂−(1−Ω2

κ̇
(t)
)
∂ }�t

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂+3(1−Ω2

κ̇
(t)
)
∂ }�t+

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂−(1−Ω2

κ̇
(t)
)
∂ }�t

⎞
⎠

1
∂

,

√√√√√√√√√√√√√√√√√√√√√√

2

⎛
⎜⎜⎝

n∏
t=1

{(2−�
2
κ̇
(t)

)
∂+3(�2

κ̇
(t)
)
∂ }�t−

n∏
t=1

{(2−�
2
κ̇
(t)

)
∂−(�2

κ̇
(t)
)
∂ }�t

n∏
t=1

{(2−�
2
κ̇
(t)

)
∂+3(�2

κ̇
(t)
)
∂ }�t+

n∏
t=1

{(2−�
2
κ̇
(t)

)
∂−(�2

κ̇
(t)
)
∂ }�t

⎞
⎟⎟⎠
1
∂

⎛
⎝2 −

n∏
t=1

{(2−�
2
κ̇
(t)

)
∂+3(�2

κ̇
(t)
)
∂ }�t−

n∏
t=1

{(2−�
2
κ̇
(t)

)
∂−(�2

κ̇
(t)
)
∂ }�t

n∏
t=1

{(2−�
2
κ̇
(t)

)
∂+3(�2

κ̇
(t)
)
∂ }�t+

n∏
t=1

{(2−�
2
κ̇
(t)

)
∂−(�2

κ̇
(t)
)
∂ }�t

⎞
⎠

1
∂

+
⎛
⎝

n∏
t=1

{(2−�
2
κ̇
(t)

)
∂+3(�2

κ̇
(t)
)
∂ }�t−

n∏
t=1

{(2−�
2
κ̇
(t)

)
∂−(�2

κ̇
(t)
)
∂ }�t

n∏
t=1

{(2−�
2
κ̇
(t)

)
∂+3(�2

κ̇
(t)
)
∂ }�t+

n∏
t=1

{(2−�
2
κ̇
(t)

)
∂−(�2

κ̇
(t)
)
∂ }�t

⎞
⎠

1
∂

〉

Thus

GPFEHGλ̄,�(κ1, κ2, . . . , κn)

=
〈

√√√√√√√√√√√√√√√√

( n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂+3(1−Ω2

κ̇
(t)
)
∂ }�t+3

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂−(1−Ω2

κ̇
(t)
)
∂ }�t

) 1
∂

−
( n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂+3(1−Ω2

κ̇
(t)
)
∂ }�t−

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂−(1−Ω2

κ̇
(t)
)
∂ }�t

) 1
∂

( n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂+3(1−Ω2

κ̇
(t)
)
∂ }�t+3

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂−(1−Ω2

κ̇
(t)
)
∂ }�t

) 1
∂

+
(

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂+3(1−Ω2

κ̇
(t)
)
∂ }�t−

n∏
t=1

{(1+Ω2
κ̇
(t)

)
∂−(1−Ω2

κ̇
(t)
)
∂ }�t

) 1
∂

,

√√√√√2

{
n∏

t=1
{(2−�2

κ̇
(t)
)
∂+3(�2

κ̇
(t)
)
∂ }

�t
−

n∏
t=1

{(2−�2
κ̇
(t)

)
∂−(�2

κ̇
(t)
)
∂ }�t

} 1
∂

√√√√√√√√√√√√

(
n∏

t=1
{(2−�2

κ̇
(t)
)
∂+3(�2

κ̇
(t)
)
∂ }

�t
+3

n∏
t=1

{(2−�2
κ̇
(t)

)
∂−(�2

κ̇
(t)
)
∂ }�t

) 1
∂

+
(

n∏
t=1

{(2−�2
κ̇
(t)

)
∂+3(�2

κ̇
(t)
)
∂ }

�t
−

n∏
t=1

{(2−�2
κ̇
(t)

)
∂−(�2

κ̇
(t)
)
∂ }�t

) 1
∂

〉
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Theorem 3.4: Let κt = 〈Ωκt ,�κt

〉
be a group of PFVs, then the following properties hold:

(i) Idempotency: If κ̇
(t) = κ̇ , then

GPFEHGλ̄,�(κ1, κ2, . . . , κn) = κ̇ , (10)

(ii) Boundedness:

κ̇min ≤ GPFEHGλ̄,�(κ1, κ2, . . . , κn) ≤ κ̇max, (11)

where κ̇min =
(

Ωκ̇
(t)

min
t

,
�κ̇
(t)
max

t

)
and κ̇max =

(
Ωκ̇
(t)
max

t
,
�κ̇
(t)

min
t

)
, which show the minimum and

maximum value respectively.

(iii) Monotonicity: Let κt
∗ = 〈Ωκt∗ ,�κt∗

〉
(t = 1, 2, . . . , n) be a family of PFVs with condition,

such asΩκt ≤ Ω∗
κt
and�κt ≥ �

∗
κt
for all j, then

GPFEHGλ̄,�(κ1, κ2, . . . , κn) ≤ GPFEHGλ̄,�(κ∗
1 , κ

∗
2 , . . . , κ

∗
n ), (12)

Proof: (i) Idempotency: Since κ̇
(t) = κ̇ , then

GPFEHGλ̄,�(κ1, κ2, . . . , κn) = 1
∂

(
n⊗

t=1
(∂ .εκ̇
(t))

�t

)
= 1

∂

(
n⊗

t=1
(∂ .εκ̇)�t

)

= 1
∂

⎛
⎝(∂ .εκ̇)

n∑
t=1

�t

⎞
⎠ = κ̇

(ii) Boundedness:We know that κ̇min =
(

Ωκ̇
(t)

min
t

,
�κ̇
(t)
max

t

)
and κ̇max =

(
Ωκ̇
(t)
max

t
,
�κ̇
(t)

min
t

)
.

Let GPFEHG = κ̇ = (Ωκ̇ ,�κ̇ ), then by definition (2), we have (Ωmin,�max) ≤ (Ωκ̇ ,�κ̇ )

and similarly (Ωmax,�min) ≥ (Ωκ̇ ,�κ̇ ). Hence s(κ̇min) ≤ s(GPFEHG) and s(κ̇max) ≥
s(GPFEHG). Thus we have κ̇min ≤ GPFEHGλ̄,�(κ1, κ2, . . . , κn) ≤ κ̇max.

(iii)Monotonicity: As

GPFEHGλ̄,�(κ1, κ2, . . . , κn) = 1
∂

(
n⊗

t=1
(∂ .εκ̇t)�t

)
, (13)

and

GPFEHGλ̄,�(κ1
∗, κ2∗, . . . , κn∗) = 1

∂

(
n⊗

t=1
(∂ .εκ̇∗

t )
�t

)
, (14)

Since Ωκt ≤ Ω∗
κt

and �κt ≥ �
∗
κt
, this means that κt ≤ κt

∗. Thus 1
∂

(
n⊗

t=1
(∂ .εκt)�t

)
≤

1
∂

(
n⊗

t=1
(∂ .εκ∗

t )�t

)
The proof is completed. �
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Definition 3.2: GPFEHA operator can be defined as:

GPFEHAλ̄,�(κ1, κ2, . . . , κn)

=
〈

√√√√√√√2

⎧⎪⎨
⎪⎩

n∏
t=1

{(
2 − �2

κ̇
(t)

)∂ + 3
(
�2

κ̇
(t)

)∂
}�t

−
n∏

t=1

{(
2 − �2

κ̇
(t)

)∂ −
(
�2

κ̇
(t)

)∂
}�t

⎫⎪⎬
⎪⎭

1
∂

√√√√√√√√√√√√√√

(
n∏

t=1

{(
2 − �2

κ̇
(t)

)∂ + 3
(
�2

κ̇
(t)

)∂
}�t

+ 3
n∏

t=1

{(
2 − �2

κ̇
(t)

)∂ −
(
�2

κ̇
(t)

)∂
}�t
) 1

∂

+
(

n∏
t=1

{(
2 − �2

κ̇
(t)

)∂ + 3
(
�2

κ̇
(t)

)∂
}�t

−
n∏

t=1

{(
2 − �2

κ̇
(t)

)∂ −
(
�2

κ̇
(t)

)∂
}�t
) 1

∂

,

√√√√√√√√√√√√√√√√√√√√√√

(
n∏

t=1

{(
1 + �

2
κ̇
(t)

)∂ + 3
(
1 − �

2
κ̇
(t)

)∂
}�t

+ 3
n∏

t=1

{(
1 + �

2
κ̇
(t)

)∂ −
(
1 − �

2
κ̇
(t)

)∂
}�t
) 1

∂

−
(

n∏
t=1

{(
1 + �

2
κ̇
(t)

)∂ + 3
(
1 − �

2
κ̇
(t)

)∂
}�t

−
n∏

t=1

{(
1 + �

2
κ̇
(t)

)∂ −
(
1 − �

2
κ̇
(t)

)∂
}�t
) 1

∂

(
n∏

t=1

{(
1 + �

2
κ̇
(t)

)∂ + 3
(
1 − �

2
κ̇
(t)

)∂
}�t

+ 3
n∏

t=1

{(
1 + �

2
κ̇
(t)

)∂ −
(
1 − �

2
κ̇
(t)

)∂
}�t
) 1

∂

+
(

n∏
t=1

{(
1 + �

2
κ̇
(t)

)∂ + 3
(
1 − �

2
κ̇
(t)

)∂
}�t

−
n∏

t=1

{(
1 + �

2
κ̇
(t)

)∂ −
(
1 − �

2
κ̇
(t)

)∂
}�t
) 1

∂

〉
,

(15)

where κ̇
(t) is the largest of the WPFVs κ̇t(κ̇t = nλ̄tκt , t = 1, 2, . . . , n). � = (�1, �2, . . . , �n)T

and λ̄ = (λ̄1, λ̄2, . . . , λ̄n)T be the associated and weighted vector respectively, and both
have the same condition, such as both belong to the closed interval and their sum is equal
to 1 and n is the balancing coefficient, and the parameter ∂ and is ∂ 	 0.

Theorem 3.5: Let κt = (Ωκt ,�κt )(t = 1, 2, . . . , n) be a group of PFVs, by using GPFEHA oper-
ator then their resulting value is also PFV.

Proof: For proof see Theorem 3. �

Theorem 3.6: Let κt = (Ωκt ,�κt ) be a family of PFVs, then the following properties hold:

(i) Idempotency: If κ̇
(t) = κ̇ , then

GPFEHAλ̄,�(κ1, κ2, . . . , κn) = κ̇ , (16)

(ii) Boundedness:

κ̇min ≤ GPFEHAλ̄,�(κ1, κ2, . . . , κn) ≤ κ̇max, (17)

where κ̇min =
(

Ωκ̇
(t)

min
t

,
�κ̇
(t)
max

t

)
and κ̇max =

(
Ωκ̇
(t)
max

t
,
�κ̇
(t)

min
t

)
, which show the minimum and

maximum value respectively.
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(iii) Monotonicity: Letκt∗ = 〈Ωκt∗ ,�κt∗
〉
bea family of PFVswith condition, suchasΩκt ≤ Ω∗

κt

and�κt ≥ �
∗
κt
for all j, then

GPFEHAλ̄,�(κ1, κ2, . . . , κn) ≤ GPFEHAλ̄,�(κ∗
1 , κ

∗
2 , . . . , κ

∗
n ), (18)

Proof: For proof see Theorem 4. �

4. An Application of the Proposed Aggregation Operators

This section deals with multiattribute decision-making (MADM) problems based on the
above-mentioned operators using PFNs. To show the superiority and practicality of the
above-mentioned operators in daily life problems an example is also given.

Let A = {A1,A2, . . . ,Am} be a set ofm options, C = {C1, C2, . . . , Cn} be a set of n qualities,
and D = {D1,D2, . . . ,Dk} be a set of k specialists. Let � = (�1, �2, . . . , �m)T be the associ-
ated vector of At(t = 1, 2, . . . ,m) and 	 = (	1,	2, . . . ,	k)

T be the weighted vector of
Ds(s = 1, 2, . . . , k) both have the same conditions belong to the closed interval and their
sum is equal to 1. Let D = (κit) = (Ωit ,�it), where Ωit shows the degree satisfaction and
�it shows the degree of non-satisfaction with condition 0 ≤ (Ωit)

2 + (�it)
2 ≤ 1.

Step 1: Construct Ds = [κ(s)
it ]m×n(s = 1, 2, . . . , k) for decision.

Step 2: If the criteria have two types, such as benefit criteria and cost criteria, then
Ds = [κ(s)

it ]m×n can be converted into the normalised decisionmatrices, Rs = [κ(s)
it ]m×n

where

rsit =
{

κs
it , for benefit criteria Ct ,

(κc
it)

s, for cost criteria Ct ,

(
t = 1, 2, . . . , n
i = 1, 2, . . . ,m

)
and (κc

it)
s is the complement of κs

it .

Step 3: Utilise the proposed operators to aggregate Rs = [r(s)it ]m×n into R = [rit]m×n.
Step 4: Utilise the κ̇it = nλ̄tκit .
Step 5: Utilise the proposed operators to derive the overall preference values.
Step 6: Calculate the scores of all values.
Step 7: Select that option which has the highest score function.

5. Numerical Example

Suppose, in Hazara University department of mathematics needs to hire a doctor for
department.

For this resolution, the university constructs a committee of four decision-makers,
whose weight vector is 	 = (0.10, 0.20, 0.30, 0.40)T . After the first selection five doctors,
At(t = 1, 2, 3, 4, 5)are consider for more process. Committee must take a decision accord-
ing to the following four attributes: C1: experience and subject knowledge, C2: teaching
skill, C3: salary and other facilities, C4: research skill and publications, where C1, C3 are
cost type criteria and C2, C4 are benefiting type criteria, whose weighted vector is � =
(0.40, 0.30, 0.20, 0.10)T .

Step 1: Construct the decision matrices (Tables 1–4)
Step 2: Construct the normalised decision matrices (Tables 5–8)
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Table 1. Pythagorean fuzzy decision matrix of D1.

C1 C2 C3 C4

A1 (0.80,0.50) (0.70,0.40) (0.70,0.40) (0.70,0.50)
A2 (0.80,0.40) (0.70,0.50) (0.80,0.50) (0.80,0.30)
A3 (0.50,0.60) (0.60,0.50) (0.70,0.50) (0.80,0.30)
A4 (0.60,0.50) (0.60,0.40) (0.60,0.40) (0.80,0.40)
A5 (0.60,0.80) (0.60,0.60) (0.70,0.30) (0.60,0.50)

Table 2. Pythagorean fuzzy decision matrix of D2.

C1 C2 C3 C4

A1 (0.60,0.50) (0.80,0.40) (0.60,0.40) (0.60,0.50)
A2 (0.70,0.30) (0.80,0.40) (0.70,0.50) (0.70,0.40)
A3 (0.60,0.60) (0.60,0.50) (0.60,0.60) (0.70,0.40)
A4 (0.70,0.50) (0.60,0.60) (0.70,0.40) (0.80,0.50)
A5 (0.60,0.40) (0.70,0.20) (0.80,0.40) (0.80,0.40)

Table 3. Pythagorean fuzzy decision matrix of D3.

C1 C2 C3 C4

A1 (0.70,0.50) (0.70,0.40) (0.60,0.50) (0.60,0.50)
A2 (0.80,0.30) (0.70,0.30) (0.80,0.30) (0.90,0.20)
A3 (0.60,0.50) (0.60,0.60) (0.70,0.40) (0.80,0.30)
A4 (0.70,0.50) (0.80,0.50) (0.90,0.10) (0.60,0.50)
A5 (0.70,0.50) (0.80,0.20) (0.80,0.20) (0.70,0.30)

Table 4. Pythagorean Fuzzy Decision Matrix of D4

C1 C2 C3 C4

A1 (0.80,0.30) (0.80,0.40) (0.70,0.40) (0.70,0.50)
A2 (0.80,0.30) (0.80,0.30) (0.80,0.30) (0.80,0.20)
A3 (0.60,0.60) (0.70,0.60) (0.70,0.40) (0.80,0.30)
A4 (0.70,0.40) (0.80,0.60) (0.80,0.20) (0.70,0.50)
A5 (0.60,0.60) (0.80,0.20) (0.80,0.20) (0.80,0.30)

Table 5. Normalised decision matrix R1.

C1 C2 C3 C4

A1 (0.50,0.80) (0.70,0.40) (0.40,0.70) (0.70,0.50)
A2 (0.40,0.80) (0.70,0.50) (0.50,0.80) (0.80,0.30)
A3 (0.60,0.50) (0.60,0.50) (0.50,0.70) (0.80,0.30)
A4 (0.50,0.60) (0.60,0.40) (0.40,0.60) (0.80,0.40)
A5 (0.80,0.60) (0.60,0.60) (0.30,0.70) (0.60,0.50)

Step 3: Utilise the PFEWA operator, where 	 = (0.10, 0.20, 0.30, 0.40)T , then (Table 9)
Step 4: Utilise κ̇it = nλ̄tκt , where λ̄ = (0.40, 0.30, 0.20, 0.10)T , and then we have

κ̇11 = (0.542, 0.572); κ̇12 = (0.815, 0.318); κ̇13 = (0.387, 0.718); κ̇14 = (0.424, 0.793)

κ̇41 = (0.578, 0.518); κ̇42 = (0.805, 0.470); κ̇43 = (0.232, 0.830); κ̇44 = (0.453, 0.787)

κ̇51 = (0.700, 0.439); κ̇52 = (0.818, 0.156); κ̇53 = (0.249, 0.832); κ̇54 = (0.505, 0.699)
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Table 6. Normalised decision matrix R2.

C1 C2 C3 C4

A1 (0.50,0.60) (0.80,0.40) (0.40,0.60) (0.60,0.50)
A2 (0.30,0.70) (0.80,0.40) (0.50,0.70) (0.70,0.40)
A3 (0.60,0.60) (0.60,0.50) (0.60,0.60) (0.70,0.40)
A4 (0.50,0.70) (0.60,0.60) (0.40,0.70) (0.80,0.50)
A5 (0.40,0.60) (0.70,0.20) (0.40,0.80) (0.80,0.40)

Table 7. Normalised decision matrix R3.

C1 C2 C3 C4

A1 (0.50,0.70) (0.70,0.40) (0.50,0.60) (0.60,0.50)
A2 (0.30,0.80) (0.70,0.30) (0.30,0.80) (0.90,0.20)
A3 (0.50,0.60) (0.60,0.60) (0.40,0.70) (0.80,0.30)
A4 (0.50,0.70) (0.80,0.50) (0.10,0.90) (0.60,0.50)
A5 (0.50,0.70) (0.80,0.20) (0.20,0.80) (0.70,0.30)

Table 8. Normalised decision matrix R4.

C1 C2 C3 C4

A1 (0.30,0.80) (0.80,0.40) (0.40,0.70) (0.70,0.50)
A2 (0.30,0.80) (0.80,0.30) (0.30,0.80) (0.80,0.20)
A3 (0.60,0.60) (0.70,0.60) (0.40,0.70) (0.80,0.30)
A4 (0.40,0.70) (0.80,0.60) (0.20,0.80) (0.70,0.50)
A5 (0.60,0.60) (0.80,0.20) (0.20,0.80) (0.80,0.30)

Table 9. Collective normalised decision matrix R.

C1 C2 C3 C4

A1 (0.432,0.728) (0.764,0.400) (0.432,0.649) (0.653,0.500)
A2 (0.311,0.779) (0.764,0.335) (0.372,0.779) (0.653,0.500)
A3 (0.572,0.589) (0.643,0.568) (0.459,0.679) (0.782,0.317)
A4 (0.572,0.589) (0.753,0.546) (0.259,0.789) (0.684,0.489)
A5 (0.568,0.629) (0.767,0.224) (0.263,0.789) (0.757,0.335)

Table 10. Pythagorean fuzzy hybrid decision matrix R.

C1 C2 C3 C4

A1 (0.815,0.318) (0.542,0.572) (0.387,0.718) (0.424,0.793)
A2 (0.815,0.318) (0.564,0.627) (0.393,0.648) (0.333,0.824)
A3 (0.704,0.390) (0.695,0.485) (0.527,0.687) (0.411,0.793)
A4 (0.704,0.390) (0.578,0.518) (0.453,0.787) (0.232,0.830)
A5 (0.818,0.156) (0.700,0.439) (0.505,0.699) (0.249,0.832)

Now using definition 2, and calculating the score functions, we have (Tables 10 and 11)

s(κ̇53) = (0.249, 0.832) = −0.630; s(κ̇54) = (0.505, 0.699) = −0.233

6. Compare with the Other Methods

To show the practicality and effectiveness of the proposed methods and operators, we
can compare the proposed methods with some existing methods. First, we compare the
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Table 11. Ranking of the alternative at different values of ∂ .

∂ Operators Score function Ranking

∂ → 1 PFEHAPFEHGGPFEHAGPFEHG

s(r5) 	 s(r1) 	 s(r2) 	 s(r3) 	 s(r4)
s(r5) 	 s(r1) 	 s(r2) 	 s(r3) 	 s(r4)
s(r5) 	 s(r1) 	 s(r2) 	 s(r3) 	 s(r4)
s(r5) 	 s(r1) 	 s(r2) 	 s(r3) 	 s(r4)

(5, 1, 2, 3, 4)
(5, 1, 2, 3, 4)
(5, 1, 2, 3, 4)
(5, 1, 2, 3, 4)

∂ → 2 PFEHAPFEHGGPFEHAGPFEHG

s(r5) 	 s(r1) 	 s(r2) 	 s(r3) 	 s(r4)
s(r5) 	 s(r1) 	 s(r2) 	 s(r3) 	 s(r4)
s(r5) 	 s(r1) 	 s(r4) 	 s(r3) 	 s(r2)
s(r5) 	 s(r1) 	 s(r4) 	 s(r3) 	 s(r2)

(5, 1, 2, 3, 4)
(5, 1, 2, 3, 4)
(5, 1, 4, 3, 2)
(5, 1, 4, 3, 2)

∂ → 5 PFEHAPFEHGGPFEHAGPFEHG

s(r5) 	 s(r1) 	 s(r2) 	 s(r3) 	 s(r4)
s(r5) 	 s(r1) 	 s(r2) 	 s(r3) 	 s(r4)
s(r5) 	 s(r1) 	 s(r3) 	 s(r4) 	 s(r2)
s(r5) 	 s(r1) 	 s(r3) 	 s(r4) 	 s(r2)

(5, 1, 2, 3, 4)
(5, 1, 2, 3, 4)
(5, 1, 3, 4, 2)
(5, 1, 3, 4, 2)

∂ → 10 PFEHAPFEHGGPFEHAGPFEHG

s(r5) 	 s(r1) 	 s(r2) 	 s(r3) 	 s(r4)
s(r5) 	 s(r1) 	 s(r2) 	 s(r3) 	 s(r4)
s(r5) 	 s(r1) 	 s(r4) 	 s(r3) 	 s(r2)
s(r5) 	 s(r1) 	 s(r4) 	 s(r3) 	 s(r2)

(5, 1, 2, 3, 4)
(5, 1, 2, 3, 4)
(5, 1, 4, 3, 2)
(5, 1, 4, 3, 2)

proposemethods withmethods, such as Pythagorean fuzzy hybrid geometric aggregation
operator and Pythagorean fuzzy hybrid averaging aggregation operator proposed by Rah-
man et al. [24,26], are based on algebraic operations, and those in this paper are based
on the generalised Einstein operations. Because the generalised Einstein operations for
Pythagorean fuzzy numbers are with parameter ∂ , the methods proposed in this paper are
more general and more flexible. Secondly, we can compare with Einstein operators, such
as Pythagorean fuzzy Einstein hybrid averaging aggregation operator and Pythagorean
fuzzy Einstein hybrid geometric aggregation operator proposed by Rahman et al. [31,32],
they are only the special cases of the proposed operators in this paper. The proposed
methods can be comparing the methods proposed by Garg [33,34], in which the author
introduced several operators such as GPFEWAoperator, GPFEWGoperator GPFEOWAoper-
ator and GPFEOWG operator. Actually, GPFEWA operator and GPFEWG operator weigh
only the Pythagorean fuzzy arguments, while GPFEOWA operator and GPFEOWG operator
weigh only the ordered positions of the Pythagorean fuzzy arguments instead of weighing
the Pythagorean fuzzy arguments themselves. To overcome these limitations, we intro-
duce the concept of GPFEHA operator and GPFEHG operator which weigh both the given
Pythagorean fuzzy value and its ordered position. Thus the proposed operators are the
generalisation of the existing methods.

6.1. Benefit of the Proposed Operators

Generalised Einstein operators combine Einstein operators with some generalised oper-
ators using Pythagorean fuzzy values. The main benefit of the proposed operators is that
these operators delivermore general, more correct and precise results as compared to their
existing methods. Therefore these methods play a vital role in real world problems.

7. Conclusion

The objective of this paper is to investigate the generalised Einstein hybrid operators based
on PFNs and their application for daily life problems. Firstly, we have investigated two gen-
eralisedEinsteinoperators alongwith their properties, namely thegeneralisedPythagorean
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fuzzy Einstein hybrid averaging operator and the generalised Pythagorean fuzzy Einstein
hybrid geometric operator by combining the parameter of the decision-making ∂ during
the calculation process. Furthermore, we have industrialised a technique for multi-criteria
decision-making based on these operators, and the operational procedures have proved in
detail. The suggested methodology can be used for any type of selection problem involv-
ing any number of selection attributes. We ended the paper with an application of the new
approach in a decision-making problem. Garg [33,34] introduced the notion of GPFEWA
operator, GPFEOWA operator, GPFEWG operator, GPFEOWG operator. Actually, GPFEWA
operator and GPFEWG operator weigh only the Pythagorean fuzzy arguments, GPFEOWA
operator and GPFEOWG operator weigh only the ordered positions of the Pythagorean
fuzzy arguments instead of weighing the Pythagorean fuzzy arguments themselves. To
overcome these limitations, we introduce the concept of GPFEHA operator and GPFEHG
operator which weigh both the given Pythagorean fuzzy value and its ordered position.
Thus the proposed operators are the generalisation of the existing methods.

In the future, we will extend the proposed approach to the different environment
and then will apply to the fields of the pattern recognition, Symmetric operator, Induc-
ing variable, Logarithmic operator, Power operator, Hamacher operator, Dombi operator,
Linguistic terms, Confidence levels, Interval valued etc.
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