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ABSTRACT
In this paper, we define the notion of fuzzy linear code, fuzzy cyclic
code over aGalois ringZpk , fuzzy Graymap andweuse it to construct
fuzzy Zpk -linear codes and fuzzy Zpk -cyclic codes.

KEYWORDS
Code over Galois ring; fuzzy
linear code; fuzzy cyclic code;
fuzzy generalised gray map

1. Introduction

Whenwe study a subject, we always encode its information and decode the received infor-
mation, this is what the classical code theory deals with, and the information which we
handle are certain. However, for uncertain information, the classical code theory has less
efficient methods. Since fuzzy mathematics has nice applications when dealing with fuzzi-
ness, we try to use the methods of fuzzy mathematics to conduct fuzzy information. The
notion of fuzzy subsets was first developed by Zadeh [1] in which imprecise knowledge
can be used to define an event. The importance of fuzzy sets comes from the fact that it
can deal with imprecise and inexact information. The concept of fuzzy modules was intro-
duced by Negoita and Ralescu [2] while the notion of fuzzy submodule was introduced by
Maschinchi and Zahedi [3]. Shum and De Gang [4] introduced the concept of fuzzy linear
code over finite fields.

If the data from the information channel is uncertain, then the ordinary method of
decoding can not deal with it. For instance, let c be an information of the subject that
we study. Since the data from the information channel is uncertain, we can not make sure
wether or not the subject (to the arrival) has this information again. We only can estimate
the degree of which it possesses the information c and assign a corresponding degree in
[0,1]. If for every information there is such a number corresponding to it, then we can get a
fuzzy subset A of the block code, we call it the fuzzy code.

In this paper, we mainly define the fuzzy linear code and fuzzy cyclic code over the ring
Zpk . We also use the fuzzy generalised Gray map to define Zpk -fuzzy linear codes and we
study the basic properties of all these types of codes.
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2. Preliminaries

In this section, we shall formulate the preliminary definitions and results that are required
in the sequel (for references see [2,5]).

Definition 2.1: Let S be a non-empty set.
A fuzzy subset A of S is a function of S into the closed interval [0, 1].

Definition2.2: Let Sbe anon-empty setwith an additive andmultiplicative operation, and
let A and B be two fuzzy subsets of S. Then:

• (A ∩ B)(x) = min{A(x), B(x)}, for all x ∈ S.
• (A ∪ B)(x) = max{A(x), B(x)}, for all x ∈ S.
• A = B if and only if A(x) = B(x), for all x ∈ S.
• (A + B)(x) = max{A(y) ∧ B(z) | x = y + z with y, z ∈ S}, for all x ∈ S.
• (AB)(x) = max{A(y) ∧ B(z) | x = yz with y, z ∈ S}, for all x ∈ S.
• A ⊆ B if and only if A(x) ≤ B(x), for all x ∈ S.

From now on (R,+, ·)will denote a commutative unitary ring or simply Zpk , where p is a
prime integer and k ∈ N, k �= 0.

Definition 2.3: A R-moduleM consists of an abelian group (M,⊕) and an operation ∗ : R ×
M → M (called scalar multiplication, usually just written by juxtaposition, i.e. as rx instead
of r ∗ x for r ∈ R and x ∈ M) such that for all r, s ∈ R, x, y ∈ M, we have

(a) r(x ⊕ y) = rx ⊕ ry,
(b) (r + s)x = rx ⊕ sx,
(c) (rs)x = r(sx),
(d) 1Rx = x where 1R is the multiplicative identity of the ring R.

From [6,7] we recall the following definition in the fuzzy linear space.

Definition 2.4: A fuzzy subset X of a R-moduleM is called a fuzzy submodule ofM if for all
x, y ∈ M and r ∈ R, we have.

(a) X(x ⊕ y) ≥ min{X(x), X(y)}.
(b) X(rx) ≥ X(x).

Remark 2.5: If X is a fuzzy submodule of M, then from b) in Definition 2.4 follows (∀ x ∈
M)(X(0) ≥ X(x)).

Definition2.6: LetAbe a fuzzy subset of a nonempty setM. For t ∈ [0, 1], the setsAt = {x ∈
M : A(x) ≥ t} and At = {x ∈ M : A(x) ≤ t} are called the upper t-level cut and lower t-level cut
of A, respectively.

Proposition 2.7: Let M be a R-module. A nonempty subset N of M is a submodule of M if and
only if the characteristic function of N is a fuzzy submodule.
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Proposition2.8: A isa fuzzy submoduleofaR-moduleM if andonly if for allα,β ∈ R, x, y ∈ M,
we have A(αx ⊕ βy) ≥ min{A(x),A(y)}.

Proof: The proof is similar to the one for fields in [4], just change a field by ring. �

Definition 2.9: A fuzzy subset I of a ring R is called a fuzzy ideal of R if for each x, y ∈ R:

(a) I(x − y) ≥ min{I(x), I(y)}.
(b) I(x · y) ≥ max{I(x), I(y)}.

Let G be a group and R a ring. We denote by RG the set of all formal linear combinations
of the formα = ∑

g∈G agg (where ag ∈ R and ag = 0 almost everywhere, that is only a finite
number of coefficients are different from zero in each of these sums).

Let α = ∑
g∈G agg and β = ∑

g∈G bgg in RG. We define their sum in RG componentwise
by: α + β = ∑

g∈G(ag + bg)g and their product by: αβ = ∑
g,h∈G agbhgh.

With the operations above, RG is a unitary ring, with 1 = ∑
g∈G uggwhere the coefficient

corresponding to the unit element of the group is equal to 1 and ug = 0 for every other
element g ∈ G.

We can also define a product of elements in RG by elements λ ∈ R as λ(
∑

g∈G agg) =∑
g∈G(λag)g.

Definition 2.10: The set RGwith the operations defined above is called the group ring of G
over R, if R is commutative, then RG is called the group algebra of G over R.

Definition 2.11: Let A be a fuzzy subset of the group ring (RG) which is the group algebra
of 〈x〉 over the ring Zpk , note that x is an invertible element of Zpk . If for all α,β ∈ RG,

(a) A(α.β) ≥ max{A(α),A(β)};
(b) A(α − β) ≥ min{A(α),A(β)},

then A is call a fuzzy ideal of RG.

Proposition 2.12: A is a fuzzy ideal of RG if and only if for all t ∈ [0, 1], if At �= ∅, then At is an
ideal of RG.

Proof: The proof follows from the transfer principle in [8]. �

Definition 2.13: Let n be an integer. A linear code of length n over Zpk is a submodule of
Z
n
pk
.

In contrast to vector spaces, modules do not admit a basis in general. However modules
possess a generating family and therefore a generating matrix, but the decomposition of
the elements with respect to this family is not necessarily unique.

Definition 2.14: A generating matrix of some linear code over Zpk is a matrix in M(Zpk ),
where the lines are the minimal generating family of code.
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Definition 2.15: Let Cpk and C′
pk

be two linear codes over Zpk with generating matrices G

andG′ respectively. The codesCpk andC′
pk
are equivalent if there exists a permutationmatrix

P, such that G′ = GP (the product of the two matrices G and P).

Definition2.16: LetCpk bea linear codeof lengthnoverZpk , thedualof the codeCpk which
we denote by C⊥

pk
is the submodule of Z

n
pk

defined by: C⊥
pk

= {a| for all b ∈ Cpk , 〈a, b〉 = 0},
where 〈, 〉 is the inner product.

Remark 2.17: C⊥
pk
is also a linear code over Zpk .

Definition 2.18: A linear code Cpk of length n over Zpk is cyclic if it is invariant by the shift
map s, define by s((a0, . . . , an−1)) = (an−1, a0, . . . , an−2). i.e. if (a0, . . . , an−1) ∈ Cpk , then
s((a0, . . . , an−1)) ∈ Cpk .

3. Fuzzy Linear Code Over Zpk

In this section aredefinedand studied fuzzy linear linear codeover theGalois ringZpk . There
are also characterised by using the transfer principle [8].

Definition 3.1: Let M = Z
n
pk

be a Zpk -module. A fuzzy submodule A of M is called a fuzzy

linear code of length n over Zpk .

Example 3.2: Let Z4 be a ring, then Z4 is a Z4-module.
LetA : Z4 → [0, 1] be themap such thatA(0) = A(1) = A(2) = A(3) = t (t ∈ [0, 1]), then

A is a fuzzy subset ofZ4. It is obvious thatA is a fuzzyZ4-module. ThereforeA is a fuzzy linear
code over Z4.

Proposition 3.3: Let A be a fuzzy subset ofZn
pk
.

A is a fuzzy linear code of length n over Zpk if and only if for any t ∈ [0, 1], if At �= ∅, then At
is a linear code of length n overZpk .

Proof: Use the transfer principle in [8]. �

Corollary 3.4: Let C be a subset ofZn
pk
.

C is a linear codeof lengthnoverZpk if andonly if the characteristic functionχC of C is a fuzzy
linear code overZpk .

Proposition 3.5: Let A be a fuzzy subset ofZn
pk
.

A is a fuzzy linear code of length n over Zpk if and only if the characteristic function of any
upper t-level cut At �= ∅ for t ∈ [0, 1] is a fuzzy linear code of length n overZpk .

Proof: Uses Proposition 3.3 and Corollary 3.4. �

Remark 3.6: We remark the following:

(i) In the Example 3.2, At = Z4 (for all t ∈ [0, 1]) which is a linear code over Z4.
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(ii) If M is a module over the ring Zpk and A a fuzzy linear code A on M such that ∀ x ∈ M,
A(x) = t (where t ∈ [0, 1]), then A is called the trivial fuzzy linear code over Zpk .

Example 3.7: Consider a fuzzy subset A of Z4 as follows:

A : Z4 → [0, 1], x �→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if x = 0;

1
3

if x = 1;

1
3

if x = 2;

1
3

if x = 3.

Then A is a fuzzy submodule of the Z4-module Z4, hence A is a fuzzy linear code over Z4.

Remark 3.8: Let A be a fuzzy linear code of length n over Zpk . Since Z
n
pk

is a finite set, the

image Im(A) = {A(x) | x ∈ Z
n
pk

} is finite as well. Assume that all elements in Im(A) satisfy:

t1 > t2 > · · · > tm (where ti ∈ [0, 1]) i.e. Im(A) hasm elements. SinceAti is a linear code over
Zpk , letGti be its generatormatrix. Thus A can be determined bymmatrixesGt1 ,Gt2 , . . . ,Gtm
(see Theorem 4.7 ).

Definition 3.9: Let S be a non-empty set.
Let xt : S → [0, 1] be a fuzzy subset of S, (where x ∈ S, t ∈ [0, 1]) defined by:

xt(y) =
{
t if x = y;

0 if x �= y.
, for all y ∈ S.

xt is called a fuzzy singleton or fuzzy point of S.

Definition 3.10: Let A1 and A2 be two fuzzy linear codes over Zpk of the same length n.
The residual quotient of A1 and A2 denoted by (A1 : A2) is the fuzzy subset of Zpk defined
by: (A1 : A2)(r) = sup{t ∈ [0, 1] | rtA2 ⊆ A1} for all r ∈ Zpk .

That is (A1 : A2) = {rt | rtA2 ⊆ A1, rt is fuzzy singleton of Zpk }.

Theorem 3.11 ([2]): Let A1 and A2 be two fuzzy linear codes of length n over Zpk , then the
residual quotient (A1 : A2) of A1 and A2 is a fuzzy ideal ofZpk .

Definition 3.12: Let A and B be two fuzzy submodules of a moduleM = Z
n
pk
over the ring

Zpk .We say thatA isorthogonal toB if Im(B) = {1 − c | c ∈ Im(A)} and for all t ∈ [0, 1],B1−t =
(At)⊥ = {y ∈ M | 〈x, y〉 = 0, for all x ∈ At}, where 〈, 〉 is the inner product onM

Let A and B be two fuzzy submodules of a module M. We denote A orthogonal to B by
A ⊥ B.
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Example 3.13: Consider the fuzzy submodules A and B of Z4 defined as follows:

A : Z4 → [0, 1], x �→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

if x = 0;

1
4

if x = 1;

1
3

if x = 2;

1
4

if x = 3.

and B : Z4 → [0, 1], x �→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
4

if x = 0;

1
2

if x = 1;

2
3

if x = 2;

1
2

if x = 3.

We have:

A1/2 = {0} and B1/2 = Z4,

A1/4 = Z4 and B3/4 = {0},
A1/3 = {0, 2} and B2/3 = {0, 2}.

Therefore A ⊥ B.

Remark 3.14: Let A be a fuzzy submodule of a moduleM such that for all x ∈ M, A(x) = γ

(with γ ∈ [0, 1]), then it does not exist a fuzzy subset B ofM such that A ⊥ B.

The Remark 3.14 shows that the orthogonal of some fuzzy submodule does not always
exist, so it is important to see under which conditions the orthogonal of a fuzzy submod-
ule exists. The following theorem shows the existence of the orthogonal of some fuzzy
submodule.

Theorem 3.15: Let A be a fuzzy submodule of a finite module M = Z
n
pk
. Then there exists a

fuzzy submodule B of M such that A ⊥ B if and only if |Im(A)| > 1 and for any γ ∈ Im(A) there
exist ε ∈ Im(A) such that Aγ = (Aε)⊥.

Proof: Let A be a fuzzy submodule of M. Assume that |Im(A)| = m > 1 and for any γ ∈
Im(A) there exists ε ∈ Im(A) such that Aγ = (Aε)⊥.

Assume that Im(A) = {t1 > t2 > · · · > tm}. Define the sets Mi = {x ∈ M |A(x) = ti}, for
i = 1, . . . ,m. These sets form a partition ofM.

We define a fuzzy set B as follows: B : M → [0, 1], x �→ 1 − tm−i+1, if x ∈ Mi.
Since Im(A) = {t1 > t2 > · · · > tm}, wehaveAt1 ⊆ At2 ⊆ · · · ⊆ Atm . As for any γ ∈ Im(A)

there exists ε ∈ Im(A) such that Aγ = (Aε)⊥, with the properties that we know about the
orthogonal over the finite module, we conclude that Ati = (Atm−i+1)

⊥. Thus B1−tm−i+1 =
{x ∈ M | B(x) ≥ 1 − tm−i+1} = Mi ∪ Mi−1 ∪ · · · ∪ M1 = Ati = (Atm−i+1)

⊥. Thus B is the fuzzy
submodule we need.

Conversely if there exists a fuzzy submodule B of M such that A ⊥ B, then by
Definition 3.12, |Im(A)| > 1. Since ∀ t ∈ [0, 1], B1−t = (At)⊥, then ∀γ ∈ Im(A), there exist
ε ∈ Im(A), such that Aγ = (Aε)⊥, because Im(B) = {1 − t | t ∈ Im(A)}. �

The following result shows the uniqueness of the orthogonal of some fuzzy submodule.

Theorem 3.16: Let A, B and C be three fuzzy submodules of amodule M, such that A ⊥ B and
A ⊥ C, then B = C.
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Proof: Assume that A ⊥ B and B ⊥ C. Let t ∈ [0, 1], and y ∈ B1−t . Then 〈x, y〉 = 0, for all x ∈
At . Thus y ∈ C1−t andB1−t ⊆ C1−t . ThereforeCt ⊆ Bt . In the sameway,we show thatBt ⊆ Ct .

Therefore B = C. �

Corollary 3.17: Let A be a fuzzy submodule of a finite module M such that there exists a fuzzy
set B onM orthogonal to A, then B is a fuzzy submodule of M.

Corollary 3.18: Let A be a fuzzy submodule of M. If A⊥ exists, then (A⊥)⊥ = A.

Definition3.19: LetA and Bbe two fuzzy linear codes overZpk .A and B are equivalent fuzzy
linear codes over Zpk if for all t ∈ [0, 1], the linear codes At and Bt are equivalent.

Example 3.20: (1) All fuzzy linear code are equivalent to itself.
(2) Let CG1 and CG2 be two equivalent linear codes of length n over Zpk . We define two

equivalent fuzzy linear codes as follows:

A : Zn
pk → [0, 1], x �→

{
1 if x ∈ CG1 ;

0 otherwise.

and

B : Zn
pk → [0, 1], x �→

{
1 if x ∈ CG2 ;

0 otherwise.

Thus A1 = CG1 and B1 = CG2 , A0 = Z
n
pk
and B0 = Z

n
pk
.

Remark 3.21: Let A and B be two equivalent fuzzy linear codes over Zpk , then Im(A) =
Im(B).

Let’s draw the communication channel as follows:

Assume that Fk = Z
2
2 and Fn = Z

3
2, that means that k = 2 and n = 3. Let C ⊆ F3 be a

linear code over F, in the classical case, whenwe send a codeword c = (101) ∈ C through a
communication channel, the signal receive can be read as c′ = (0.98, 0.03, 0.49) and mod-
ulate to c′′ = (100). Thus to know if c′′ belong to the code C, we use syndrome calculation
[9]. Since themodulation have gave awrongword, we can consider that c′ havemore infor-
mation than c′′, in the sense that we can estimate a level to which a word 0 is modulate to
1, and a word 1 is modulate to 0. Therefore it is possible to use the idea of fuzzy logic to
recover the transmit codeword.

Let a linear code C ⊆ Z
3
2. To each c ∈ C, we find t ∈ [0, 1] such that t estimate the degree

of which the element of R
3, obtain from c through the transmission channel belong to the

codeC. Thus inZ
3
2 the information thatwehandle are certain,whereas inR

3 there areuncer-
tain. When we associate to all elements of Z

3
2 the degree of which its correspond element

obtain through the transmission channel belong to Z
3
2, then we obtain a fuzzy code. If the

fuzzy code are fuzzy linear code, then we can recover the code C just by using the upper
t-level cut. Thus we deal directly with the uncertain information to obtain the code C.
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The following example illustrate this reconstruction of the code by using uncertain
information in the case of fuzzy linear code.

Example3.22: LetZ3
2 = {000, 001, 010, 100, 110, 101, 011, 111}andC = {000, 001, 110, 111}

be a linear code over Z2.
Assume that after the transmission we obtain respectively {000; 0.01, 01; 1.01, 10; 1.001,

1, 0.999}. Let

A : Z3
2 → [0, 1] such that x �→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{1} if x = 000;

{0.99} if x = 001;

{0.9} if x = 010;

{0.9} if x = 100;

{0.99} if x = 110;

{0.9} if x = 101;

{0.9} if x = 011;

{0.99} if x = 111.

Then by finding a t ∈ [0, 1] such that At = {x ∈ Z
3
2 |A(x) ≥ t} = C, we obtain t>0.9. Thus,

for t = 0.99, we are sure that the receive codeword is in C.

4. Fuzzy Cyclic Codes Over Zpk

In this section, we will study the case where the integers n and p are coprime.

Definition 4.1: A fuzzy submodule A of the module Z
n
pk

is called a fuzzy cyclic code

of length n over Zpk if for all (a0, a1, . . . , an−1) ∈ Z
n
pk
, we have A((an−1, a0, . . . , an−2)) ≥

A((a0, a1, . . . , an−1)).

Proposition 4.2: Let A be a fuzzy submodule A of the module Z
n
pk
. A is a fuzzy cyclic code on

Z
n
pk
if and only if for all t ∈ [0, 1], if At �= ∅, then At is a cyclic code onZ

n
pk
.

Proof: The proof uses the transfer principle from [8]. �

As well as the Proposition 3.5 in the linear case, we have the following result in the cyclic
case.

Proposition 4.3: Let A be a fuzzymodule A on themoduleZ
n
pk
.

A is a fuzzy cyclic code onZ
n
pk
if and only if the characteristic of any upper t-level cut At �= ∅

for t ∈ [0, 1] is a fuzzy cyclic code onZ
n
pk
.

Proposition 4.4: A is a fuzzy cyclic code on Z
n
pk

if and only if for all (a0, a1, . . . , an−1) ∈ Z
n
pk
,

then A((a0, a1, . . . , an−1)) = A((an−1, a0, . . . , an−2)) = · · · = A((a1, a2, . . . , an−1, a0)).
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Proof: Assume that A is a fuzzy cyclic code on Z
n
pk
. Then

A((a0, a1, . . . , an−1)) ≤ A((an−1, a0, . . . , an−2)) ≤ · · · ≤ A((a1, a2, . . . , an−1, a0))

≤ A((a0, a1, . . . , an−1)).

Therefore

A((a0, a1, . . . , an−1)) = A((an−1, a0, . . . , an−2)) = · · · = A((a1, a2, . . . , an−1, a0)).

The converse is straightforward by Definition 4.1. �

Proposition 4.5: A is a fuzzy cyclic code of length n over Zpk if and only if for all t ∈ [0, 1], if
At �= ∅, then At is an ideal of the factor ringZpk [X]/(X

n − 1).

Proof: Let φ be a mapping defined in [5] as follows, φ : Zn
pk

→ Zpk [X]/(X
n − 1), such that

c = (c0, . . . , cn−1) �→ φ(c) = ∑n−1
i=0 ciXi. φ is an isomorphism ofZpk -module, which sends a

cyclic code over Zpk onto the ideals of the factor ring Zpk [X]/(X
n − 1).

Let A be a fuzzy subset of Z
n
pk
. Assume that A is a fuzzy cyclic code over Zpk .

Let t ∈ [0, 1] such that At �= ∅, then At is a cyclic code over Zpk . Therefore, ∀ t ∈ [0, 1], At
is an ideal of Zpk [X]/(X

n − 1).
Conversely, assume that for all t ∈ [0, 1] such that At �= ∅, At is an ideal of factor ring

Zpk [X]/(X
n − 1). Since At is an ideal of factor ring Zpk [X]/(X

n − 1), then At is a submodule
of Zpk -module Z

n
pk
. Hence At �= ∅, is a linear code over Zpk , then A is a fuzzy linear code.

Such as φ is define, At is a cyclic code over Zpk , for all t ∈ [0, 1]. Hence A is a fuzzy cyclic
code over Zpk . �

Proposition 4.6: A is a cyclic fuzzy code of length n if and only if A is a fuzzy ideal of the group
algebra RG, which is the group algebra of 〈x〉 over the finite ringZpk .

Proof: LetAbe a fuzzy cyclic code. For anyα,β ∈ RG,we haveA(α − β) ≥ min{A(α),A(β)}
since A is a fuzzy Zpk -module on Z

n
pk
.

If α ∈ RG, then A(xα) ≥ A(α), A(x2α) ≥ A(α), ··· , A(xn−1α) ≥ A(α). So for β ∈ RG,
with β = ∑n−1

i=0 lixi, (li ∈ Zpk ) we conclude A(α.β) = A(l0α + l1xα + · · · + ln−1xn−1α) ≥
min{A(l0α), . . . ,A(ln−1xn−1α)} ≥ A(α). Similarly we can also show that A(α.β) ≥ A(β).
Hence A(α.β) ≥ max{A(α),A(β)}.

Conversely, assume that A is a fuzzy ideal of the group algebra RG. (Note that RG is a
module that has G = 〈x〉 as base).

Since A is a fuzzy ideal of RG, also A is a fuzzy submodule of RG.
For any (a0, . . . , an−1) ∈ Z

n
pk

we associate α = (a0 + a1x + · · · + an−1xn−1). Then

A(an−1 + a0x + · · · + an−2xn−1) = A(x(a0 + a1x + · · · + an−1xn−1)) ≥ max{A(x),A(a0 +
a1x + · · · + an−1xn−1)} ≥ A(a0 + a1x + · · · + an−1xn−1). ThereforeA((an−1, a0, . . . , an−2))

≥ A((a0, . . . , an−1)). Hence A is a fuzzy cyclic code. �

Since Zpk is a finite ring, also Im(A) = {A(x) ∈ [0, 1]|x ∈ Z
n
pk

} is finite. Let Im(A) = {t1 >
t2 > · · · > tm}, then At1 ⊆ At2 ⊆ · · · ⊆ Atm−1 ⊆ Atm = Z

n
pk
. Let g(k)i (X) ∈ Zpk [X] be the gen-

erator polynomial of Ati . Note that g(k)i (X) is the Hensel lift of order k of some polynomial
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gi(X) ∈ Zp[X] which divides Xn − 1. The cyclic code 〈g(k)i (X)〉 ⊂ Zpk [X]/(X
n − 1) is called

the lift codeof the cyclic code 〈gi(X)〉 ⊂ Zp[X]/(Xn − 1). Formore information about Hensel
lifting see [5].

Since At1 ⊆ At2 ⊆ · · · ⊆ Atm−1 ⊆ Atm = Z
n
pk
, it follows that g(k)i+1(X)|g(k)i (X), i = 1, . . . ,

m − 1.
We can define the polynomial h(k)i (X) = (Xn − 1)/g(k)i (X) which is called the check

polynomial of the cyclic code Ati = 〈g(k)i (X)〉, i = 1, . . . ,m.

Theorem 4.7: Let G = {g(k)1 (X), g(k)2 (X), . . . , g(k)m (X)} be a set of polynomials in Zpk [X],

such that gi(X) divide Xn − 1, i = 1, . . . ,m. If g(k)i+1(X) | g(k)i (X) for i = 1, 2, . . . ,m − 1 and

〈g(k)m (X)〉 = Z
n
pk
, then the setG determines a fuzzy cyclic code A and {〈g(k)i (X)〉 | i = 1, . . . ,m} is

the family of upper level cut cyclic subcodes of A.

Proof: Since g(k)i+1(X) | g(k)i (X), we have 〈g(k)i (X)〉 ⊆ 〈g(k)i+1(X)〉 for i = 1, 2, . . . ,m − 1. Choose
ti ∈ [0, 1] such that t1 > t2 > · · · > tm.

Let Ati = 〈g(k)i (X)〉 for i = 1, 2, . . . ,m − 1. We define A as follows.

A(c) =
{
t1, if c ∈ 〈g(k)1 (X)〉;
ti, if c ∈ 〈g(k)i (X)〉 \ 〈g(k)i−1(X)〉, i = 2, . . . ,m.

where φ : Zn
pk

→ Zpk [X]/(X
n − 1), c = (c0, . . . , cn−1) �→ φ(c) = ∑n−1

i=0 ciXi is an isomor-

phism of Zpk -module.

Since for all ti ∈ [0, 1], Ati = 〈g(k)i (X)〉 is a cyclic code as it is an ideal of the principal ring

Zp[X]/(Xn − 1), i = 1, . . . ,m, also A is a fuzzy cyclic code and {〈g(k)i (X)〉 | i = 1, . . . ,m} is the
family of upper level cut cyclic subcodes of A. �

Corollary 4.8: With the same notations and hypothesis as in Theorem 4.7, if 〈g(k)m (X)〉 �= Z
n
pk
,

then the setG determinesa fuzzy cyclic codeAand {〈g(k)i (X)〉 | i = 1, . . . ,m} ∪ Zpk [X]/(X
n − 1)

is the family of upper level cut cyclic subcodes of A.

Proof: Take

A(c) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
t1, if c ∈ 〈g(k)1 (X)〉;
ti, if c ∈ 〈g(k)i (X)〉 \ 〈g(k)i−1(X)〉, i = 2, . . . ,m;

0, if c ∈ Zpk [X]

(Xn − 1)
\ 〈g(k)m (X)〉.

�

Proposition 4.9: Let A be the fuzzy cyclic code of length n overZpk that can be determined by

the set of polynomial G = {g(k)i (X) | i = 1, . . . ,m} as in Theorem 4.7. If for all g(k)i (X) ∈ G there

exists g(k)j (X) ∈ G such that g(k)i (X).g(k)j (X) = Xn − 1, then the set of polynomials {h(k)i (X) =
(Xn − 1)/g(k)i (X) | i = 1, . . . ,m} determines the orthogonal of A.
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Proof: Under the conditions of Theorem 4.7 we define A⊥ as follows.

A⊥(c) =
{
1 − t1, if c ∈ 〈h(l)m (X)〉;
1 − ti, if c ∈ 〈h(l)i−1(X)〉 \ 〈h(l)i (X)〉, i = 2, . . . ,m.

Since the upper level set (A⊥)t is a linear code, A⊥ is the orthogonal of A. �

Theorem 4.10: Let A1 and A2 be two fuzzy cyclic codes onZ
n
pk
, then:

(i) A1 ∩ A2 is a fuzzy cyclic code,
(ii) A1 + A2 is a fuzzy cyclic code,
(iii) A1A2 is a fuzzy cyclic code.

Proof: Let A1 and A2 be two fuzzy cyclic codes of the Zpk -module Z
n
pk
.

(i) Let (a0, a1, . . . , an−1) ∈ Z
n
pk
.

A1 ∩ A2((an−1, a0, . . . , an−2))

= min{A1((an−1, a0, . . . , an−2),A2((an−1, a0, . . . , an−2))}
≥ min{A1(a0, a1, . . . , an−1),A2((a0, a1, . . . , an−1))}
= A1((a0, a1, . . . , an−1)) ∩ A2((a0, a1, . . . , an−1)).

Since the intersection of two fuzzy modules is a fuzzy module, we obtain that A1 ∩ A2
is a fuzzy cyclic code over Zpk .

(ii) For all (a0, . . . , an−1) ∈ Z
n
pk
, we have:

(A1 + A2)((an−1, a0, . . . , an−2))

= max{A1((bn−1, b0, . . . , bn−2)) ∧ A2((cn−1, c0, . . . , cn−2)) | bi
+ ci = ai, i = 0, . . . , n − 1}

≥ max{A1((b0, b1, . . . , bn−1)) ∧ A2((c0, c1, . . . , cn−2))|bi + ci = ai, i = 0, . . . , n − 1}
= (A1 + A2)((a0, a1, . . . , an−1)).

Since A1 + A2 is a fuzzy module, we conclude as above that A1 + A2 is a fuzzy cyclic
code.

(iii) It is similar to A1 + A2. �

5. Fuzzy Zpk -linear Codes

After having studied thenotionof fuzzy linear codeover the ringZpk in theprevious section,
we are now going to construct fuzzy Zpk -linear codes explicitly.

5.1. Fuzzy GrayMap

Initially, the code of Gray is an order on the binary sequences of a fixed length n, permitting
to enumerate all these sequences while modifying only one bit in order to pass from one
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sequence to the next one. The case that is going to interest us directly is the one of the
sequence of length two, for which one has the following Gray code:

0 �→ 00

1 �→ 01

2 �→ 11

3 �→ 10.

Let ψ : Z22 → Z
2
2 the Gray map. We are going to define the fuzzy Gray map between two

fuzzy spaces by the extension principle [10].

Definition 5.1: Let ψ : Z22 → Z
2
2 be the Gray map, and let F(Z22), F(Z2

2) be the set of
all fuzzy subsets of Z22 and Z

2
2 respectively. The fuzzy Gray map is the map ψ̂ : F(Z22) →

F(Z2
2), such that for any A ∈ F(Z22), ψ̂(A)(y) = sup{A(x) | y = ψ(x)}.

Example 5.2: Let

A : Z4 → [0, 1], x �→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if x = 0;

1
3

if x = 1;

1
3

if x = 2;

1
3

if x = 3.

with the Gray mapψ(0) = 00,ψ(1) = 01,ψ(2) = 11,ψ(3) = 10.
By the fuzzyGraymapwehave ψ̂(A)(00) = 1, ψ̂(A)(01) = 1

3 , ψ̂(A)(11) = 1
3 , ψ̂(A)(10) =

1
3 , hence ψ̂(A) is a fuzzy linear code.

Theorem 5.3: The fuzzy Graymap ψ̂ is a bijection.

Proof: This follows from the fact that ψ is a one to one function. �

As in crisp case, we have the following proposition.

Proposition 5.4: If A is a fuzzy linear code over Z22 and ψ the Gray map, then ψ̂(A) is not
always a fuzzy linear code over the fieldZ2

The Gray map allows to construct nonlinear codes as binary images of the linear codes,
that is the case of Kerdock, Preparata, and Goethals codes. For a good understanding, we
suggest the reader to examine [11,12]. In fact if C is a linear code of length n over Z4, then
C = ψ(C) is a nonlinear code of length 2n over Z2 in general [11]. In that way we construct
a fuzzy Kerdock code in the following example.



FUZZY INFORMATION AND ENGINEERING 13

Example 5.5: Let C be a linear code of length 8 over Z4 with the generator matrix

G =

⎛⎜⎜⎝
1 0 0 0 2 1 1 1
0 1 0 0 1 2 1 3
0 0 1 0 1 3 2 1
0 0 0 1 1 1 3 2

⎞⎟⎟⎠ ,

then its image under the Gray mapψ gives a Kerdock code C (see construction in [9]).
Let

A : Z8
4 → [0, 1], x �→

{
1, if x ∈ C;
0, otherwise.

Then A is a fuzzy linear code over Z4.
Sinceψ is a bijection, we construct

ψ̂(A) : Z16
2 → [0, 1], y �→

{
1, y ∈ E;

0, otherwise,

where E = {y ∈ Z
16
2 | y = ψ(x) and x ∈ C}

Since E is not a linear code over Z2, we conclude that ψ̂(A) is a fuzzy Z2-linear code but
not a fuzzy linear code Z2. Consequently, ψ̂(A) is a fuzzy Kerdock code of length 16.

Remark 5.6: A fuzzy Z4-linear code is not in general a fuzzy linear code over Z2

If we define the fuzzy binary relation Rψ on Z22 × Z
2
2 by

Rψ(x, y) =
{
1, if y = ψ(x);

0, otherwise.

It is easy to see [13] that ψ̂(A)(y) = sup{A(x) | y = ψ(x)} can be represented by ψ̂(A)(y) =
sup{min{A(x), Rψ(x, y)} | x ∈ Z

2
2}.

As in [5], let
 : Zpk → Z
pk−1

p be the generalised Gray map.

Definition 5.7: We call the map 
̂ : F(Zpk ) → F(Zpk−1

p ), such that for any A ∈ F(Zpk ),


̂(A)(y) =
{
sup{A(x) | y = 
(x)}, if a such x exists;

0, otherwise.

The fuzzy generalised graymap.

Since 
 : Zpk → Z
pk−1

p cannot give more than one image for one element, then
Definition 5.7 can be simply write


̂(A)(y) =
{
A(x), if y = 
(x);

0, otherwise.

Remark 5.8: Let B ∈ F(Zpk−1

p ) such that B(y) = t �= 0 for any y ∈ Z
pk−1

p . There does not
exist a fuzzy subset A ∈ F(Zpk ) such that 
̂(A) = B. Thus 
̂ is not a bijection map.



14 S. ATAMEWOUE TSAFACK ET AL.

5.2. FuzzyZpk -linear Codes

In the following, we will denote by 
̂ the map from F(Zn
pk
) onto F(Zn.pk−1

p ) which spreads

the fuzzy generalised Gray map.

Definition 5.9: A fuzzy code A over Zp is a fuzzy Zpk -linear code if it is an image under the
fuzzy generalised Gray map of a fuzzy linear code over the ring Zpk .

Definition 5.10: A fuzzy code A is a fuzzyZpk -cyclic code if it is a fuzzyZpk -linear code and
if it is the image under the generalised Gray map of a cyclic code over the ring Zpk .

Remark 5.11: A fuzzy Zpk -linear code is a fuzzy code over the field Zp.

Example 5.12: (1) Let

B : Z6
2 → [0, 1], w = (a, b, c, d, e, f ) �→

{
1, if e = f = 0;

0, otherwise.

B is a fuzzy linear code of length 6 over Z2.Let

A : Z3
4 → [0, 1], v = (x, y, z) �→

{
1, if z = 0;

0, otherwise.

A is a fuzzy linear code of length 3 over Z4.
Moreover, if B = ψ̂(A), then B is a fuzzy Z4-linear code.

(2) Let B : Z9
3 → [0, 1],

v = (a, b, c, d, e, f , g, h, i) �→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
3
, if d = e = f = g = h = i = 0 and abc ∈

{000, 012, 021, 111, 120, 102, 222, 201, 210};
1
3
, if g = h = i = 0, abc ∈ {000, 012, 021, 111,

120, 102, 222, 201, 210} and def ∈ {012, 021,
111, 120, 102, 222, 201, 210};

0, otherwise.

B is a fuzzy linear code over Z3 and B is a fuzzy Z32 -linear code.

It is easy to show the next proposition, whose Example 5.5 is a perfect illustration of it.

Proposition 5.13: Let B be a fuzzy Zpk -linear code, then B is not always a fuzzy linear code
over the fieldZp.

Since the fuzzy generalised Gray map image of fuzzy linear code is a fuzzy codes over
the field Zp, we can also construct fuzzy Zpk -linear codes using the following diagram:
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Example 5.14: (1) Let A : Zn
pk

→ [0, 1] be a linear code such that A has three upper t-

level cuts At3 ⊆ At2 ⊆ At1 . Let A
′
t3 = 
(At3), A

′
t2 = 
(At2) and A′

t1 = 
(At1), we have A
′
t3 =


(At3) ⊆ A′
t2 = 
(At2) ⊆ A′

t1 = 
(At1). We construct A′ = 
̂(A) as follow.

A′ : Zn.pk−1

p → [0, 1], y �→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t3, if y ∈ A′
t3 ;

t2, if y ∈ A′
t2 ;

t1, if y ∈ A′
t1 ;

0, otherwise.

(2) Let

A : Z4 → [0, 1], x �→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2

if x = 0;
1
3

if x = 2;
1
4

if x = 1, 3,

be a fuzzy linear code over Z4. Then A1/2 = {0}, A1/3 = {0, 2} and A1/4 = Z4.
We construct A′

1/2 = {00}, A′
1/3 = {00, 11} and A′

1/4 = Z
2
2, the Gray map image of A1/2,

A1/3 and A1/4 respectively, we define

A′ : Z2
2 → [0, 1], y �→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2

if x ∈ A1/2, y = ψ(x);

1
3

if x ∈ A1/3 \ A1/2, y = ψ(x);

1
4

if x ∈ A1/4 \ A1/3, y = ψ(x).

Remark 5.15: A′ and ψ̂(A) are the same codes.

Proposition 5.16: If for all t ∈ [0, 1], A′
t = 
(At) (when At �= 0) is a linear code overZp, then

these two constructions of fuzzyZp-linear codes above give the equivalent fuzzy codes.

Proof: This follows directly from the definition of the fuzzy generalised Gray map and the
fact that the image under the generalised Gray map of a linear code is not a linear code in
general. �
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6. Conclusion

In this paper where we study fuzzy coding, we define fuzzy linear codes over the finite ring
Zpk , fuzzy generalised Gray map and fuzzy Zpk -linear codes. We also investigate some of
their properties and remark that many of them are similar to the classical form. The codes
of Kerdock are permit us to show that fuzzy Zpk -linear codes is not a fuzzy linear code.

This work allows us to reinforce the hypothesis of Von Kaenel [14], that the theory of
fuzzy sets is a natural setting for this study.
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