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ABSTRACT
In this paper, the partial-nodes-based resilient filtering problem for a class of discrete time-varying
complex networks is investigated. In order to reduce the effect of imprecision of filter parameters
on estimation performance, a set of resilient filters is proposed. The measurement output from all
network nodes may not be available in the actual system, but only from a fraction of nodes. The
state estimators are designed for the time-varying complex network based on partial nodes tomake
the estimation error achieve the H∞ performance constraint over a finite horizon. By employing the
completing-the-square technique and the backward recursive Riccati difference equations, the suf-
ficient conditions for the existence of the estimator are derived. Then the gain of the estimator is
calculated. Finally, a numerical example is provided to illustrate the effectiveness of the proposed
method.

ARTICLE HISTORY
Received 3 August 2020
Accepted 13 October 2020

KEYWORDS
Time-varying complex
network; resilient filter;
partial-nodes-based
estimation; H∞ state
estimation

1. Introduction

A complex network is composed of a series of nodes
with certain dynamic performance, which are connected
with each other through a network topology. There are
many examples of complex networks in various natu-
ral and man-made systems, such as the World Wide
Web, genetic networks, power grids and social net-
works (Albert & Barabási, 2002; Boccaletti et al., 2006;
Costa et al., 2011, 2007; Khafaf & Jalili, 2019; Pagani
& Aiello, 2013). In the past several decades, the dynamic
analysis of complex networks has received extensive
attention, such as state estimation (Ding et al., 2012; H.
Li, 2013; Sheng et al., 2017; Zou et al., 2017), synchro-
nization (Adu-Gyamfi et al., 2018; Tang et al., 2014; X.
Wang et al., 2020) and stability (C. Zhang & Han, 2019).
However, owing to the enormous number of nodes and
complicated topologyof complexnetworks, it is generally
impossible to obtain the information of all nodes directly.
Hence, in order to analyse the trajectory of node state
change, it is very valuable to use the available measure-
ment output for state estimation.

For decades, filters (Ding et al., 2015; X.M. Li et al., 2020;
Liang et al., 2014; Sheng, Niu, Zou, et al., 2018; Z. Wang
et al., 2013; Zhao et al., 2018; Zou et al., 2019a, 2019b;
Zou, Wang, Hu, et al., 2020; Zou, Wang, & Zhou, 2020)
have been widely applied in control, signal processing,
target tracking and other engineering fields because they
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can utilize the available measurement output signals for
state estimation. Among the existing filters, H∞ filter can
provide a bound for the worst situation estimation error
without statistical information of noise, so it has been
a focal point in dynamic analysis. For time-varying sys-
tems, compared with moving horizon (Zou et al., 2019a;
Zou, Wang, Hu, et al., 2020; Zou, Wang, & Zhou, 2020), it
is more meaningful for on-line implementation to study
state estimation in finite horizon. In recent years, there
have been mainly two methods for finite-horizon filter-
ing, including linear matrix inequality method (X. M. Li
et al., 2020; Liang et al., 2014; Zhao et al., 2018) and Ric-
cati difference equations (RDEs)method (Dinget al., 2015;
Sheng, Niu, Zou, et al., 2018; Z. Wang et al., 2013). For
instance, a periodic neural network over multiple fading
channels was considered in X. M. Li et al. (2020) and the
parameters of the estimator were calculated by solving
the recursive linear matrix inequality (RLMI). In Sheng,
Niu, Zou, et al. (2018), a new coupled recursive Riccati
difference equations method was proposed to solve the
filteringproblemof complexnetworkswithmultiplicative
noise and random coupling strength.

In reality, the filter cannot achieve the effect accurately
in some cases. Due to some physical reasons such as digi-
tal to analog conversion, rounding error, limited precision
or internal noise (D. Zhang et al., 2014), the implemen-
tation of digital state estimator will have errors. That is,
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its actual gain may fluctuate or vary compared with the
expected gain (Yu et al., 2016). Based on this fact, desired
filter is insensitive to some gain errors, in other words, the
designed filter is resilient (or non fragile). In the past few
years, resilient filters have been widely studied in sensor
networks (Sheng, Niu, & Gao, 2018; L. Zhang et al., 2017),
complex networks (W. Li et al., 2018; F. Wang et al., 2018;
Yang et al., 2019) and neural networks (Hou et al., 2016;
Sakthivel et al., 2015). For example, in the literature (L.
Zhang et al., 2017), the problem of non-fragile H∞ filter-
ing for large-scale power systems based on sensor net-
works is studied. In Yang et al. (2019), the resilient state
estimation problem for a class of time-delay complex net-
works with stochastic communication protocol (SCP) is
discussed.

Most of the state estimationproblems for complexnet-
works mentioned above are based on the assumption
that the measurement output signals from all the net-
work nodes are available. However, in reality, because of
the harsh physical environment or limited communica-
tion resources, not all the measurement outputs of the
nodes can be accessed directly. Moreover, due to the
large scale of nodes in practical complex networks, some
nodes may have similar functions, and the information of
suchnodesmaybe redundant for state estimation. There-
fore, it is of application significance to estimate the states
by measuring outputs from certain network nodes. This
is also known as the partial-nodes-based (PNB) estima-
tion problem. Recently, Liu has done pioneering work on
the state estimation of delayed complex networks (Liu
et al., 2018, 2017). Han extended it to sensor networks
and studied the H∞ consensus filtering algorithm based
on partial nodes for time-varying sensor networks (Han
et al., 2017). Nevertheless, finite-horizonH∞ state estima-
tion of complex networks based on partial nodes has not
been fully investigated yet, which is themotivation of this
paper.

Based on the above discussion, the objective of this
paper is to investigate the resilient filtering problem of
time-varying complex networks based on the measure-
ment output of partial nodes. The main contributions
of this paper are as follows. (1) Considering that the
measurement output of complex networks may not be
available for all nodes, but come from partial nodes,
this can reflect the reality more closely. (2) In view of
the harmful influence caused by inaccurate filter param-
eters, a set of resilient filters is designed to eliminate
it. (3) A new parameter variable is designed to facili-
tate subsequent calculation, which includes disturbance,
filter parameter uncertainty and nonlinear uncertainty.
By means of the recursive RDEs approach, the esti-
mation error can satisfy finite-horizon H∞ performance
constraint.

R is the space of all real numbers. Rn and R
m×n rep-

resent the set of all n-dimensional vectors and the set of
allm × n real matrices, respectively. A>0 (A ≥ 0) means
that A is a real symmetric positive definite (positive semi-
definite) matrix. AT stands for the transpose of a matrix
A, and A† ∈ R

m×n respects the Moore–Penrose pseudo
inverse ofA ∈ R

n×m. Idenotes theunitmatrixwith appro-
priate dimension and diag{· · · } represents a diagonal
matrix. ⊗ is the operation of Kronecker product. ‖x‖
describes the Euclidean norm of a vector x. E{x} respects
themathematical expectation of the stochastic variable x.
For simplicity, sym{A} stands for A + AT. ‖A‖F denotes the
Frobenius norm of a matrix, i.e. ‖A‖F = (trace(ATA))

1
2 .

2. Problem formulation and preliminaries

Consider the following time-varying complex network
consisting ofM coupling nodes:

xi(k + 1) = Ai(k)xi(k) +
M∑
j=1

wij�xj(k)

+ f (k, xi(k)) + Di(k)vi(k),

zi(k) = Ei(k)xi(k), i = 1, 2, . . . ,M,

xi(0) = xi0,

(1)

where xi(k) ∈ R
n, zi(k) ∈ R

nz denote the state vector, reg-
ulated output of the ith node, respectively. vi(k) ∈ R

nv is
the disturbance input which belongs to l2([0,N],∈ R

nv ).
� = diag{λ1, λ2, . . . , λn} ≥ 0 is an inner-coupling matrix
linking the jth state variable if λj �= 0. W = [wij]M×M is
the outer coupled matrix satisfying wij ≥ 0(i �= j) and
wii(k) = −∑M

j=1,j �=i wij. xi0 is the initial state. Ai(k), Di(k),
and Ei(k) are known real matrices with appropriate
dimensions. f (·) : [0,N] × R

n → R
n is a nonlinear vector-

valued function. Suppose that the nonlinear function f (·)
satisfies the sector-bounded condition:[

f (k, x) − f (k, y) − U1(k)(x − y)
]T

× [
f (k, x) − f (k, y) − U2(k)(x − y)

] ≤ 0,

f (k, 0) = 0, ∀ x, y ∈ R
n, (2)

where U1(k) and U2(k) are real matrices with appropriate
dimensions and satisfy U1(k) ≤ U2(k) for all k.

Asmentioned in the introduction, one of the purposes
of this paper is to investigate the PNB state estimation of
the complex network (1), which themeasurement output
of the network only comes from a fraction of its nodes.
On this basis, we reorder the nodes of system (1). Con-
sidering the universality, it is assumed that we can access
the measurement output of the first l0 nodes. The known
measurement output expressions of these nodes are as
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follows:

yi(k) = Cixi(k) + Hi(k)vi(k), 1 ≤ i ≤ l0, (3)

where yi(k) ∈ R
ny (1 ≤ ny ≤ n) is the measurement out-

put of the ith node. Ci(k) and Hi(k) are known real matri-
ces with appropriate dimensions.

In order to estimate the state of complex network (1)
and consider the imprecision of filter parameters, resilient
filters of the ith node of (1) are constructed as follows:

x̂i(k + 1) = Ai(k)x̂i(k) +
M∑
j=1

wij�x̂j(k) + f (k, x̂i(k))

+ (Ki(k) + �Ki(k))
(
yi(k) − Ci(k)x̂i(k)

)
,

i = 1, 2, . . . , l0, (4a)

x̂i(k + 1) = Ai(k)x̂i(k) +
M∑
j=1

wij�x̂j(k) + f (k, x̂i(k)),

i = l0 + 1, l0 + 2, . . . ,M, (4b)

ẑi(k) = Ei(k)x̂i(k), (5)

where x̂i(k) ∈ R
n, ẑi(k) ∈ R

nz are the estimation of state
and regulated output on ith node, respectively. Ki(k) ∈
R
n×ny is the filter parameter to be designed. �Ki(k) ∈

R
n×ny represents the uncertainties of filter parameter

concerning Ki(k), and it is assumed that it can be
described as

�Ki(k) = Si(k)Li(k)Ti(k), (6)

where Si(k), Ti(k) are known real-valued matrices with
proper dimensions, and Li(k) is unknown matrix with
LTi (k)Li(k) ≤ I.

Setting ei(k) = xi(k) − x̂i(k) and z̃i(k) = zi(k) − ẑi(k),
the dynamic estimation error can be derived from (1)
and (4) as follows:

ei(k + 1) = [Ai(k) − (Ki(k) + �Ki(k))Ci(k)]ei(k)

+
M∑
j=1

wij�ej(k) + f̃ (k, xi(k), x̂i(k))

+ [Di(k) − (Ki(k) + �Ki(k))Hi(k)]vi(k),

i = 1, 2, . . . , l0, (7a)

ei(k + 1) = Ai(k)ei(k) +
M∑
j=1

wij�ej(k) + f̃ (k, xi(k), x̂i(k))

+ Di(k)vi(k), i = l0 + 1, l0 + 2, . . . ,M,
(7b)

z̃i(k) = Ei(k)ei(k), (8)

where f̃ (k, xi(k), x̂i(k)) = f (k, xi(k)) − f (k, x̂i(k)).

From (2), we have,[
f̃ (k, xi(k), x̂i(k)) − U1(k)ei(k)

]T
×

[
f̃ (k, xi(k), x̂i(k)) − U2(k)ei(k)

]
≤ 0, (9)

which can be rewritten as[
f̃ (k, xi(k), x̂i(k))

−
(
U1(k) + U2(k)

2
+ U1(k) − U2(k)

2

)
ei(k)

]T
×

[
f̃ (k, xi(k), x̂i(k))

−
(
U1(k) + U2(k)

2
− U1(k) − U2(k)

2

)
ei(k)

]
≤ 0.

Denoting Q(k) = (U1(k) + U2(k))/2, N(k) = (U1(k) −
U2(k))/2, and �(f̃ (k, xi(k), x̂i(k))) = f̃ (k, xi(k), x̂i(k)) − Q
(k)ei(k), we have

�T (f̃ (k, xi(k), x̂i(k)))�(f̃ (k, xi(k), x̂i(k)))

≤ eTi (k)N
T (k)N(k)ei(k). (10)

It can be inferred that there exists at least a function
Y(k, ei(k)) satisfying �(f̃ (k, xi(k), x̂i(k))) = Y(k, ei(k))ei(k)
and YT (k, ei(k))Y(k, ei(k)) ≤ NT (k)N(k). Therefore, the
sector-bound condition can be converted to the sector-
bound uncertainties expressed as

f̃ (k, xi(k), x̂i(k)) = Q(k)ei(k) + �(k, ei(k))N(k)ei(k), (11)

with �(k, ei(k)) := Y(k, ei(k))N−1(k) satisfying �T (k, ei(k))
�(k, ei(k)) ≤ I.

Similarly,

f (k, xi(k)) = Q(k)xi(k) + �(k, xi(k))N(k)xi(k). (12)

By denoting ηi(k) = [xTi (k) eTi (k)]
T and considering (11)

and (12), the combination of (1) and (7) generates the
following augmented system:

ηi(k + 1) = [Ãi(k) + ĨK̃i(k)C̃i(k)]ηi(k) +
M∑
j=1

wij�̃ηj(k)

+ Ĩ�K̃i(k)C̃i(k)ηi(k) + �(k)

+ [D̃i(k) + ĨK̃i(k)H̃i(k)]vi(k)

+ Ĩ�K̃i(k)H̃i(k)vi(k)

= [Ãi(k) + ĨK̃i(k)C̃i(k)]ηi(k) +
M∑
j=1

wij�̃ηj(k)

+ Bi(k)ωi(k), i = 1, 2, . . . , l0, (13a)
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ηi(k + 1) = Ãi(k)ηi(k) +
M∑
j=1

wij�̃ηj(k)

+ �(k) + D̃i(k)vi(k)

= Ãi(k)ηi(k) +
M∑
j=1

wij�̃ηj(k) + Bi(k)ωi(k),

i = l0 + 1, l0 + 2, . . . ,M, (13b)

z̃i(k) = Ẽi(k)ηi(k), (14)

where

Ãi(k) = diag {Ai(k) + Q(k),Ai(k) + Q(k)} ,
K̃i(k) = diag {0, Ki(k)} , �K̃i(k) = diag {0,�Ki(k)} ,
Ĩ = diag {0,−In} , �̃i(k) = diag {�(k, xi(k)),�(k, ei(k))} ,
Ñ(k) = diag {N(k),N(k)} ,
T̃i(k) = diag {0, Ti(k)} , �̃ = diag {�,�} ,
C̃i(k) = diag {0,Ci(k)} , L̃i(k) = diag {0, Li(k)} ,

�(k) =
[
�(f̃ (k, xi(k))) �(f̃ (k, xi(k), x̂i(k)))

]T
,

H̃i(k) = [
0 HT

i (k)
]T

, D̃i(k) = [
DT
i (k) DT

i (k)
]T

,

Ẽi(k) = [
0 Ei(k)

]
,

Bi,,i∈[1,l0](k) =
[
D̃i(k) + ĨK̃i(k)H̃i(k) ε−1

1 (k)ĨS̃i(k)

ε−1
1 (k)ĨS̃i(k) ε−1

2 (k)I
]
,

Bi,i∈[l0+1,M](k) =
[
D̃i(k) 0 0 ε−1

2 (k)I
]
,

ωi,i∈[1,l0](k) =

⎡⎢⎢⎣
vi(k)

ε1(k)L̃i(k)T̃i(k)H̃i(k)vi(k)
ε1(k)L̃i(k)T̃i(k)C̃i(k)ηi(k)

ε2(k)�̃i(k)Ñ(k)ηi(k)

⎤⎥⎥⎦ ,

ωi,i∈[l0+1,M](k) =

⎡⎢⎢⎣
vi(k)
0
0

ε2(k)�̃i(k)Ñ(k)ηi(k)

⎤⎥⎥⎦ .

Denoting η(k) = [ηT1(k) ηT2(k) · · · ηTM(k)]T , z̄(k) =
[z̃T1(k) z̃T2(k) · · · z̃TM(k)]T , and ω(k) = [ωT

1(k) ωT
2(k) · · ·

ωT
M(k)]T , (13)–(14) can be written as following forms:

η(k + 1) = [
Ā(k) + ĪK̄(k)C̄(k)

]
η(k) + B̄(k)ω(k),

z̄(k) = E(k)η(k),
(15)

where

Ā(k) = diag
{
Ã1(k), . . . , ÃM(k)

}
M

+ W ⊗ �̃,

K̄(k) = diag
{
K̃1(k), . . . , K̃l0(k), 0, . . . , 0

}
M
,

Ī = diag
{
Ĩ, . . . , Ĩ, 0, . . . , 0

}
M
,

C̄(k) = diag
{
C̃1(k), . . . , C̃l0(k), 0, . . . , 0

}
M
,

B̄(k) = diag
{
B1(k), . . . , Bl0(k), Bl0+1(k), . . . , BM(k)

}
M ,

Ē(k) = diag
{
Ẽ1(k), . . . , ẼM(k)

}
M
.

Our objective of this paper is to find the sequence of
filter parameter matrices Ki(k), such that the estimation
error output z̄(k) satisfies the following H∞ performance
requirement. The main objective is to obtain the filter
parameter matrix K̄(k) so that output estimation error
z̄(k) can satisfy theH∞ performance constraint over finite
horizon. Given the disturbance attenuation level γ >

0 and positive definite matrix 
 > 0. If the following
inequality holds, then the system satisfies the H∞ perfor-
mance requirement,

J = E

{
N∑

k=0

(‖z̄(k)‖2 − γ 2‖v(k)‖2)}
− γ 2ηT (0)
η(0) < 0. (16)

RedefiningH∞ performance requirement for system (15),

J̄ = E

{
N∑

k=0

(‖z̄(k)‖2 − γ 2‖ω(k)‖2)
+γ 2 (‖ε1(k)T̄(k)H̄(k)v(k)‖2 + ‖ε1(k)T̄(k)C̄(k)η(k)‖2

+‖ε2(k)N̄(k)η(k)‖2) }
− γ 2ηT (0)
η(0) < 0, (17)

where

T̄(k) = diag
{
T̃1(k), . . . , T̃l0(k), 0, . . . , 0

}
M
,

H̄(k) = diag
{
H̃1(k), . . . , H̃l0(k), 0, . . . , 0

}
M
,

N̄(k) = diag
{
Ñ1(k), . . . , ÑM(k)

}
M
.

Lemma2.1: Considering the performance requirements of
(16) and (17), it can be inferred that J ≤ J̄.

Proof: By subtracting (17) from (16), we can get

J − J̄ = E

{
N∑

k=0

γ 2 (‖ω(k)‖2 − ‖v(k)‖2

−‖ε1(k)T̄(k)H̄(k)v(k)‖2 − ‖ε1(k)T̄(k)C̄(k)η(k)‖2

−‖ε2(k)N̄(k)η(k)‖2) }

= E

{
N∑

k=0

γ 2 (‖ε1(k)L̄(k)T̄(k)H̄v(k)‖2
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+‖ε1(k)L̄(k)T̄(k)C̄(k)η(k)‖2

+‖ε2(k)�̄(k)N̄(k)η(k)‖2

−‖ε1(k)T̄(k)H̄(k)v(k)‖2 − ‖ε1(k)T̄ C̄η(k)‖2

−‖ε2(k)N̄(k)η(k)‖2) }

= −E

{
N∑

k=0

γ 2
(
‖ε1(k)(I − L̄T (k)L̄(k))

1
2 T̄(k)H̄v(k)‖2

+‖ε1(k)(I − L̄T (k)L̄(k))
1
2 T̄(k)C̄(k)η(k)‖2

+‖ε2(k)(I − �̄T (k)�̄(k))
1
2 N̄(k)η(k)‖2

) }
≤ 0,

(18)

where

L̄(k) = diag
{
L̃1(k), . . . , L̃l0(k), 0, . . . , 0

}
M
,

�̄(k) = diag
{
�̃1(k), . . . , �̃l0(k), 0, . . . , 0

}
M
.

Based on L̄T (k)L̄(k)) ≤ I, �̄T (k)�̄(k) ≤ I, we have J − J̄ ≤
0, which means that J ≤ J̄. In this sense, performance
index (17) canbeused insteadof (16) to find the estimator
gain. �

3. Main results

In this section, by utilizing the stochastic analysis method
and the complete square approach, the sufficient con-
ditions for system (15) to satisfy the H∞ performance
constraint are obtained, and the estimator gain Ki(k) is
solved.

Theorem 3.1: For the complex network (1) with the esti-
mator (4), given a disturbance attenuation level γ > 0, two
positive scalarsε1(k) > 0, andε2(k) > 0, andapositivedef-
initematrix
 > 0. The augmented system (15) satisfies the
H∞ performance constraint defined in (17) over a finite-
horizon [0,N], if there exists a solution (P(k), K̄(k)) to the
following backward RDE:

P(k) = (Ā(k) + ĪK̄(k)C̄(k))TG(k + 1)(Ā(k)

+ ĪK̄(k)C̄(k)) + ĒT (k)Ē(k),

+ γ 2ε21(k)C̄
T (k)T̄T (k)T̄(k)C̄(k)

+ γ 2ε22(k)N̄
T (k)N̄(k),

P(N + 1) = 0, (19)

subject to

�(k + 1) = −B̄T (k)P(k + 1)B̄(k)

− γ 2(ε21(k)Ǐ
T H̄T (k)T̄T (k)T̄(k)H̄(k)Ǐ − I) > 0, (20)

P(0) < γ 2
 , (21)

where

G(k + 1) = P(k + 1) + P(k + 1)

B̄(k)�−1(k + 1)B̄T (k)P(k + 1), (22)

Î = [Inv 0 0 0], Ǐ = diag
{̂
I, . . . ,̂ I

}
M , (23)

Proof: Define J1(k) = ηT (k + 1)P(k + 1)η(k + 1) − ηT

(k)P(k)η(k). Refer to the expression of augmented sys-
tem (15) and take themathematical expectation, we have

E {J1(k)}
= E

{
ηT (k + 1)P(k + 1)η(k + 1) − ηT (k)P(k)η(k)

}
= E

{[
ηT (k)

(
Ā(k) + ĪK̄(k)C̄(k)

)T + ωT (k)B̄T (k)
]

P(k + 1)
[(
Ā(k) + ĪK̄(k)C̄(k)

)
η(k) + B̄(k)ω(k)

]
−ηT (k)P(k)η(k)

}
= E

{
ηT (k)

[(
Ā(k) + ĪK̄(k)C̄(k)

)T
P(k + 1)

(
Ā(k) + ĪK̄(k)C̄(k)

) − P(k)
]
η(k)

+2ηT (k)
(
Ā(k) + ĪK̄(k)C̄(k)

)T
P(k + 1)B̄(k)ω(k) + ωT (k)B̄T (k)P(k + 1)B̄(k)ω(k)

}
.

(24)

To get the desired conclusion, adding the zero term

E
{‖z̄(k)‖2 − γ 2‖ω(k)‖2 + γ 2‖ε1(k)T̄(k)H̄(k)v(k)‖2

+γ 2‖ε1(k)T̄(k)C̄(k)η(k)‖2 + γ 2‖ε2(k)N̄(k)η(k)‖2

− (‖z̄(k)‖2 − γ 2‖ω(k)‖2 + γ 2‖ε1(k)T̄(k)H̄(k)v(k)‖2

+γ 2‖ε1(k)T̄(k)C̄(k)η(k)‖2 + γ 2‖ε2(k)N̄(k)η(k)‖2)} ,
to the right side of (24) and considering (15), we obtain

E {J1(k)}
= E

{
ηT (k)

[(
Ā(k) + ĪK̄(k)C̄(k)

)T
P(k + 1)

(
Ā(k) + ĪK̄(k)C̄(k)

) + ĒT (k)Ē(k)

+γ 2ε21(k)C̄
T (k)T̄T (k)T̄(k)C̄(k)

+γ 2ε22(k)N̄
T (k)N̄(k) − P(k)

]
η(k)

+2ηT (k)
(
Ā(k) + ĪK̄(k)C̄(k)

)T
P(k + 1)B̄(k)ω(k)

+ωT (k)
[
B̄T (k)P(k + 1)B̄(k)

+γ 2
(
ε21(k)Ǐ

T H̄T (k)T̄T (k)T̄(k)H̄(k)Ǐ − I
)]

ω(k)

− [‖z̄(k)‖2 − γ 2 (‖ω(k)‖2
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−‖ε1(k)T̄(k)H̄(k)v(k)‖2 − ‖ε1(k)T̄(k)C̄(k)η(k)‖2

−‖ε2(k)N̄(k)η(k)‖2)]} . (25)

Drawing support from the completing-the-square tech-
nique, we have

2ηT (k)
(
Ā(k) + ĪK̄(k)C̄(k)

)T
P(k + 1)B̄(k)ω(k)

+ ωT (k)
[
B̄T (k)P(k + 1)B̄(k)

+γ 2
(
ε21(k)Ǐ

T H̄T (k)T̄T (k)T̄(k)H̄(k)Ǐ − I
)]

ω(k)

= − (
ω(k) − ω∗(k)

)T
�(k + 1)

(
ω(k) − ω∗(k)

)
+ (

ω∗(k)
)T

�(k + 1)ω∗(k), (26)

where �(k + 1) is defined in (20) and

ω∗(k)

= �−1(k + 1)B̄T (k)P(k + 1)
(
Ā(k) + ĪK̄(k)C̄(k)

)
η(k).

(27)

Substituting (26) into (25) yields

E {J1(k)}
= E

{
ηT (k)

[(
Ā(k) + ĪK̄(k)C̄(k)

)T
P(k + 1)

(
Ā(k) + ĪK̄(k)C̄(k)

) + ĒT (k)Ē(k)

+γ 2ε21(k)C̄
T (k)T̄T (k)T̄(k)C̄(k)

+γ 2ε22(k)N̄
T (k)N̄(k) − P(k)

]
η(k)

− (
ω(k) − ω∗(k)

)T
�(k + 1)

(
ω(k) − ω∗(k)

)
+ (

ω∗(k)
)T

�(k + 1)ω∗(k)

− [‖z̄(k)‖2 − γ 2 (‖ω(k)‖2 − ‖ε1(k)T̄(k)H̄(k)v(k)‖2

−‖ε1(k)T̄(k)C̄(k)η(k)‖2 − ‖ε2(k)N̄(k)η(k)‖2)] }
.

(28)

Substituting (27) into (28) and considering (22) yield

E {J1(k)}
= E

{
ηT (k)

[(
Ā(k) + ĪK̄(k)C̄(k)

)T
G(k + 1)(

Ā(k) + ĪK̄(k)C̄(k)
) + ĒT (k)Ē(k)

+γ 2ε21(k)C̄
T (k)T̄T (k)T̄(k)C̄(k)

+γ 2ε22(k)N̄
T (k)N̄(k) − P(k)

]
η(k)

− (
ω(k) − ω∗(k)

)T
�(k + 1)

(
ω(k) − ω∗(k)

)
− [‖z̄(k)‖2 − γ 2 (‖ω(k)‖2

−‖ε1(k)T̄(k)H̄(k)v(k)‖2

−‖ε1(k)T̄(k)C̄(k)η(k)‖2 − ‖ε2(k)N̄(k)η(k)‖2)]} .
(29)

Notice that J1(k) = ηT (k + 1)P(k + 1)η(k + 1) − ηT (k)
P(k)η(k). Taking the sum on both sides of (29) from 0 toN
and taking (19) into account, we obtain that

E
{
ηT (N + 1)P(N + 1)η(N + 1) − ηT (0)P(0)η(0)

}
= E

{
−

N∑
k=0

(
ω(k) − ω∗(k)

)T
�(k + 1)

(
ω(k) − ω∗(k)

)

−
N∑

k=0

[‖z̄(k)‖2 − γ 2 (‖ω(k)‖2

−‖ε1(k)T̄(k)H̄(k)v(k)‖2 − ‖ε1(k)T̄(k)C̄(k)η(k)‖2

−‖ε2(k)N̄(k)η(k)‖2)] }
. (30)

Combined with�(k + 1) > 0, P(0) < γ 2
 , and P(N + 1)
= 0, one has

E

{
N∑

k=0

[‖z̄(k)‖2 − γ 2 (‖ω(k)‖2 − ‖ε1(k)T̄(k)H̄(k)v(k)‖2

−‖ε1(k)T̄(k)C̄(k)η(k)‖2 − ‖ε2(k)N̄(k)η(k)‖2)] }
− γ 2ηT (0)
η(0)

< E

{
−

N∑
k=0

(
ω(k) − ω∗(k)

)T
�(k + 1)

(
ω(k) − ω∗(k)

) }
≤ 0. (31)

The proof of this theorem is complete. �

Next, the parameter Ki(k) is calculated in the worst
situation. Suppose the worst situation is

ω(k) = ω∗(k) = �−1(k + 1)B̄T (k)P(k + 1)(
Ā(k) + ĪK̄(k)C̄(k)

)
η(k). (32)

At this point, the augmented system (15) can be rewritten
as

η(k + 1) = (
Ā(k) + �(k)Ā(k)

)
η(k) + ((�(k) + I) Īρ(k),

z̃(k) = E(k)η(k),
(33)

where

�(k) = B̄(k)�−1(k + 1)B̄T (k)P(k + 1),

ρ(k) = K̄(k)C̄(k)η(k).
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Moreover, a cost functional is constructed as follows for
the sake of the estimator gain:

H(K̄(k),ω∗(k)) � E

{
N∑

k=0

‖z̄(k)‖2 +
N∑

k=0

‖ρ(k)‖2
}
. (34)

Theorem 3.2: For the complex network (1) with the esti-
mator (4), given a disturbance attenuation level γ > 0, two
positive scalarsε1(k) > 0, andε2(k) > 0, andapositivedef-
initematrix
 > 0. The augmented system (15) satisfies the
H∞ performance constraint defined in (17) over a finite-
horizon [0,N], if there exists a solution (P(k), R(k), K̄(k)) to
the following coupled backward RDEs:

P(k) = [(Ā(k) + ĪK̄(k)C̄(k))TG(k + 1)(Ā(k)

+ ĪK̄(k)C̄(k)) + ĒT (k)Ē(k)

+ γ 2ε21(k)C̄
T (k)T̄T (k)T̄(k)C̄(k)

+ γ 2ε22(k)N̄
T (k)N̄(k),

P(N + 1) = 0, (35)

R(k) = [(Ā(k) + �(k)Ā(k))TR(k + 1)(Ā(k)

+ �(k)Ā(k)) + ĒT (k)Ē(k)

× sym
{
ĀT (k)�T (k)R(k + 1)(�(k) + I)ĪK̄(k)C̄(k)

}
− ĀT (k)R(k + 1)(�(k) + I)Ī�−1

(k + 1)ĪT (�(k) + I)TR(k + 1)Ā(k),

R(N + 1) = 0, (36)

subject to

�(k + 1) = −B̄T (k)P(k + 1)B̄(k)

− γ 2(ε21(k)Ĭ
T H̄T (k)T̄T (k)T̄(k)H̄(k)Ĭ − I) > 0,

(37)

�(k + 1) = ĪT (�(k) + I)TR(k + 1)(�(k) + I)Ī + I, (38)

P(0) < γ 2
 , (39)

K̄∗(k) = argmin
K̄(k)

‖K̄(k)C̄(k)

+ �−1(k + 1)ĪT (�(k) + I)TR(k + 1)Ā(k)‖F .
(40)

Proof: On the basis of Theorem 3.1, define J2(k) =
ηT (k + 1)R(k + 1)η(k + 1) − ηT (k)R(k)η(k), we obtain

E {J2(k)}
= E

{
ηT (k + 1)R(k + 1)η(k + 1) − ηT (k)R(k)η(k)

}
= E

{
ηT (k)

(
Ā(k) + �(k)Ā(k)

)T
R(k + 1)(

Ā(k) + �(k)Ā(k)
)
η(k)

+2ηT (k)
(
Ā(k) + �(k)Ā(k)

)T
R(k + 1)(�(k) + I)T Īρ(k)

+ρT (k)ĪT (�(k) + I)TR(k + 1)

(�(k) + I)Īρ(k) − ηT (k)R(k)η(k)
}
. (41)

Adding the zero term

E
{‖z̄(k)‖2 + ‖ρ(k)‖2 − ‖z̄(k)‖2 − ‖ρ(k)‖2}

to the right side of (41), one has

E {J2(k)}
= E

{
ηT (k)

[(
Ā(k) + �(k)Ā(k)

)T
R(k + 1)(

Ā(k) + �(k)Ā(k)
) + ĒT (k)Ē(k)

+sym
{
ĀT (k)�T (k)R(k + 1)(�(k) + I)ĪK̄(k)C̄(k)

}
−R(k)

]
ηT (k)

+2ηT (k)
(
Ā(k) + �(k)Ā(k)

)T
R(k + 1)(�(k) + I)T Īρ(k)

+ρT (k)
[
ĪT (�(k) + I)TR(k + 1)(�(k) + I)Ī + I

]
ρ(k)

−‖z̄(k)‖2 − ‖ρ(k)‖2} . (42)

Applying the completing-the-square technique, we have

2ηT (k)ĀT (k)R(k + 1)(�(k) + I)Īρ(k)

+ ρT (k)
[
ĪT (�(k) + I)TR(k + 1)(�(k) + I)Ī + I

]
ρ(k)

= (
ρ(k) + ρ∗(k)

)T
�(k + 1)

(
ρ(k) + ρ∗(k)

)
− (

ρ∗(k)
)
�(k + 1)ρ∗(k), (43)

where

ρ∗(k) = �−1(k + 1)ĪT (�(k) + I)TR(k + 1)Ā(k)η(k).

Furthermore, it can be deduced that

E {J2(k)}
= E

{
ηT (k)

[(
Ā(k) + �(k)Ā(k)

)T
R(k + 1)(

Ā(k) + �(k)Ā(k)
) + ĒT (k)Ē(k)

+sym
{
ĀT (k)�T (k)R(k + 1)(�(k) + I)ĪK̄(k)C̄(k)

}
−ĀT (k)R(k + 1)(�(k) + I)Ī�−1(k + 1)ĪT

(�(k) + I)TR(k + 1)Ā(k) − R(k)
]
η(k)

+ (
ρ(k) + ρ∗(k)

)T
�(k + 1)

(
ρ(k) + ρ∗(k)

)
−‖z̄(k)‖2 − ‖ρ(k)‖2} . (44)

In the light of condition (36), one obtains

H(K̄(k),ω∗(k))

= E

{
N∑

k=0

‖z̄(k)‖2 +
N∑

k=0

‖ρ(k)‖2
}
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= E

{
N∑

k=0

(
ρ(k) + ρ∗(k)

)T
�(k + 1)

(
ρ(k) + ρ∗(k)

)}
+ ηT (0)R(0)η(0)

≤ E

{
N∑

k=0

‖K̄(k)C̄(k) + �−1(k + 1)ĪT

(�(k) + I)TR(k + 1)Ā(k)‖2F

×‖�(k + 1)‖F‖η(k)‖2
}

+ ηT (0)R(0)η(0). (45)

If the matrix K̄(k) satisfies Equation (40), then the cost of
H(K̄(k),ω∗(k)) can be minimized, which completes the
proof. �

Finally, according to (40), we will determine the esti-
mator parameter Ki(k), i = 1, 2, . . . , l0.

K̄∗(k)

= argmin
K̄(k)

‖K̄(k)C̄(k)

+ �−1(k + 1)ĪT (�(k) + I)TR(k + 1)Ā(k)‖F
= argmin

K̄(k)
‖K̄(k)C̄(k) − u(k)‖F

= argmin
K̃(k)∥∥∥diag {

K̃i(k)C̃1(k), . . . , K̃l0(k)C̃l0(k), 0, . . . , 0
}

−
[
(u1(k))T , . . . , (ulo(k))T , 0, . . . , 0

]T∥∥∥∥
F

= argmin
K̃(k)

∥∥∥∥[(
K̃1(k)[C̃1(k) 0 · · · 0] − u1(k)

)T · · ·

(
K̃l0(k)[0 0 · · · C̃l0(k)] − ul0(k)

)T]T∥∥∥∥∥
F

, (46)

where

u(k) = −�−1(k + 1)ĪT (�(k) + I)TR(k + 1)Ā(k)

=
[
(u1(k))T (u2(k))T · · · (ul0(k))T

(ul0+1(k))T · · · (uM(k))T
]T

. (47)

It can be inferred from the above formula that

K̃1(k) = u1(k)[C̃1(k) 0 · · · 0]†,

K̃2(k) = u2(k)[0 C̃2(k) 0 · · · 0]†,

...

K̃l0(k) = ul0(k)[0 · · · 0 C̃l0(k) 0 · · · 0]†. (48)

As a result, Ki(k) is the block matrix from row n+ 1 to 2n
in the block diagonal matrix K̃i(k),

Ki(k) = [
0n×n In×n

]
K̃i(k)

[
0ny×ny
Iny×ny

]
. (49)

On the basis of Theorems 3.1 and 3.2, themethod of solv-
ing state estimator gain is summarized as Algorithm 1.
In this way, online state estimation can be realized by
software.

Algorithm 1 The estimator design algorithm.

step 1. Set k = N. Then one has P(k + 1) = 0 and R(k +
1) = 0.

step 2. According to (??), compute �(k + 1) with known
R(k + 1). If�(k + 1) > 0, the estimator gainmatri-
ces K̄(k) can be derived by (??) and go to the next
procedure, else jump to Step 6.

step 3. According to (??), compute �(k + 1) with known
P(k + 1) and K̄(k), respectively. If�(k + 1) > 0, go
to the next step, else jump to Step 6.

step 4. Solve the backward RDEs (??) and (??) to calculate
P(k) and R(k), respectively.

step 5. If k �= 0, let k = k − 1 and jump to Step 2, else go to
the next step.

step 6. If not all conditions �(k + 1) > 0, �(k + 1) > 0
andP(0) < γ 2
 are fulfilled, this algorithm is infea-
sible, Stop.

4. Numerical example

In this section, a numerical example is presented to illus-
trate the effectiveness of the proposedmethod. Consider
the complex network (1) with 4 nodes, and the parame-
ters are given as follows:

A1(k) =
[
0.42 0.35 + 0.2 cos(1.2k)

−0.21 −0.2

]
,

A2(k) =
[
0.42 + 0.2 sin(k) 0.35

−0.22 −0.2 + 0.1 cos(k)

]
,

A3(k) =
[
0.4 − 0.15 cos(k) 0.34

−0.22 −0.2 + 0.05 cos(k)

]
,

A4(k) =
[
0.43 0.3
−0.2 −0.2 + 0.1 cos(k)

]
,

W =

⎡⎢⎢⎣
−0.3 0.1 0.1 0.1
0.1 −0.3 0.1 0.1
0.1 0.1 −0.3 0.1
0.1 0.1 0.1 −0.3

⎤⎥⎥⎦ , � =
[
0.3 0
0 0.4

]
,
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Table 1. Estimator parameters Ki(k), i = 1, 2.

k 0 1 2 ··· 48 49 50

K1(k)

[
0.0541
0.0593

] [
0.0478
0.0383

] [
0.0297
0.0198

]
···

[
0.0634
0.0489

] [
0.0354
0.0327

] [
0
0

]
K2(k)

[
0.0852
0.0570

] [
0.0856
0.0516

] [
0.0854
0.0480

]
···

[
0.0805
0.0462

] [
0.0571
0.0326

] [
0
0

]

D1(k) =
[
0.16 + 0.05 cos(0.3k)

0.18

]
,

D2(k) =
[
0.1
0.2

]
, D3(k) =

[
0.1

0.2 + 0.2 sin(0.3k)

]
,

D4(k) =
[
0.2 + 0.1 cos(0.3k)

0.18

]
,

E1(k) =
[
0.22
0.2

]
, E2(k) =

[
0.2
0.12

]
, E3(k) =

[
0.21
0.1

]
,

E4(k) =
[
0.2
0.12

]
.

The nonlinear function is selected as

f (k, xi(k)) =
[
0.4xi1(k) − tanh(0.2xi1(k))
0.3xi2(k) − tanh(0.2xi2(k))

]
,

which implies that

U1(k) =
[
0.4 0
0 0.3

]
, U2(k) =

[
0.2 0
0 0.1

]
.

Thus, it can be concluded that

Q(k) =
[
0.3 0
0 0.2

]
, N(k) =

[
0.1 0
0 0.1

]
.

The disturbance input vi(k) obeys uniform distribution
over [−0.2 0.2]. It is assumed that the measured output
of two nodes is known, i.e. l0 = 2. Other parameters are
shown below (Table 1)

Figure 1. The state evolution x11(k) and its estimate x̂11(k).

C1(k) = [
0.3 0.62 + 0.35 cos(0.3k)

]
,

C2(k) = [
0.4 0.2 + 0.3 cos(0.3k)

]
,

H1(k) = 0.9, H2(k) = 0.85.

Concerning the resilient filter, suppose that

S(k) =
[
0.1 0
0 0.1

]
, T(k) =

[
0.6
0.5

]
.

In this example, set theH∞ performance level γ = 1.3,
parameter ε1 = 0.4, ε2 = 0.6. The initial value of the state

Figure 2. The state evolution x12(k) and its estimate x̂12(k).

Figure 3. The state evolution x21(k) and its estimate x̂21(k).
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is

x1(0) =
[
0.4
0.2

]
, x2(0) =

[
0.2
0.2

]
, x3(0) =

[
0.2
0.4

]
,

x4(0) =
[
0.3
0.3

]
.

The simulation results are shown in Figures 1–5.
Figures 1–4 depict the curves of two states of node

1 and node 2 and their estimations. Figure 5 shows the
variation curves of estimation errors, which indicate that
the state estimator designedby this algorithm is effective.

Figure 4. The state evolution x22(k) and its estimate x̂22(k).

From (16), the H∞ performance constraint can be calcu-
lated from (E{∑N

k=0 ‖z̄(k)‖2}) 1
2 /(E{∑N

k=0 ‖v(k)‖2 + ηT

(0)
η(0)}) 1
2 = 0.1801 < γ = 1.3.

5. Conclusion

The problem of H∞ state estimation for time-varying
complex networks over finite horizon has been inves-
tigated. Because of the possible physical environment,
the measurement output may not be measured from all
nodes. Thus the measurement outputs for state tracking
in this paper come frompartial nodes. Moreover, because
of the inaccuracy of the parameters in practical appli-
cation, the estimator parameters may deviate from the
expected results, so resilient filters have been designed
to eliminate its adverse effects. By using the stochastic
analysis method and the complete square method, the
sufficient conditions for the estimation error to satisfy the
H∞ performance constraint have been obtained. Then,
the filter gain has been calculated by solving backward
RDEs. Finally, a numerical simulation example has been
given to demonstrate the effectiveness of the proposed
state estimation method.
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