
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tfie20

Fuzzy Information and Engineering

ISSN: 1616-8658 (Print) 1616-8666 (Online) Journal homepage: https://www.tandfonline.com/loi/tfie20

Iterative Solution Process for Multiple Objective
Stochastic Linear Programming Problems Under
Fuzzy Environment

Arindam Garai, Palash Mandal & Tapan Kumar Roy

To cite this article: Arindam Garai, Palash Mandal & Tapan Kumar Roy (2020): Iterative Solution
Process for Multiple Objective Stochastic Linear Programming Problems Under Fuzzy Environment,
Fuzzy Information and Engineering, DOI: 10.1080/16168658.2020.1750871

To link to this article:  https://doi.org/10.1080/16168658.2020.1750871

© 2020 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 05 Jun 2020.

Submit your article to this journal 

Article views: 247

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tfie20
https://www.tandfonline.com/loi/tfie20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/16168658.2020.1750871
https://doi.org/10.1080/16168658.2020.1750871
https://www.tandfonline.com/action/authorSubmission?journalCode=tfie20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tfie20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/16168658.2020.1750871
https://www.tandfonline.com/doi/mlt/10.1080/16168658.2020.1750871
http://crossmark.crossref.org/dialog/?doi=10.1080/16168658.2020.1750871&domain=pdf&date_stamp=2020-06-05
http://crossmark.crossref.org/dialog/?doi=10.1080/16168658.2020.1750871&domain=pdf&date_stamp=2020-06-05


FUZZY INFORMATION AND ENGINEERING
https://doi.org/10.1080/16168658.2020.1750871

Iterative Solution Process for Multiple Objective Stochastic
Linear Programming Problems Under Fuzzy Environment

Arindam Garai a, Palash Mandalb and Tapan Kumar Royb

aDepartment of Mathematics, Sonarpur Mahavidyalaya, Kolkata, India; bDepartment of Mathematics, IIEST,
Shibpur, India

ABSTRACT
This article presents one interactive algorithm, and thereby deter-
mines the Pareto optimal solution tomulti-objective stochastic linear
programming (MOSLP) problems in real-life oriented fuzzy environ-
ment. Among the various objective functions, there always exists one
objective function, referred to as the main objective function in this
article, to multi-objective models, whose optimal value is most vital
to decision-makers. When the optimal value tomain objective func-
tion meets the pre-determined aspiration level, and the correspond-
ing values to other objective functions are satisfactory in nature, that
Pareto optimal solution is acceptable to decision-makers. Again, in
several existing interactive fuzzy optimisation methods to MOSLP
models, all reference membership levels of expectations to objec-
tive functions are considered as a unity. However, this seems to be
less rational that the expectation of each conflicting objective func-
tion simultaneously attains the individual goal. So, the present article
proposes to employ the trade-off ratios of membership functions
to analytically determine reference membership levels in a fuzzy
environment. Numerical applications further illustrate this algorithm.
Finally, conclusions are drawn.
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1. Introduction

Multiple objective linear programming is the process of optimising simultaneously and
systematically a collection of objective functions [1]. In crisp optimisation methods to
solve multiple objective linear programming problems (MOLPP), usually, we are unable
to employ preferences of decision-maker (DM) effectively. Therefore, on the basis of
such imprecise information in real-life decision-making problems, usually, we use two
approaches: fuzzy programming and stochastic programming.

By assuming that the DM has imprecise aspiration levels for each of the objective func-
tions, mathematicians have proposed several methods in the literature for characterising
Pareto optimal solutions to MOLPP in a fuzzy environment [2–4]. In 1970, Bellman and
Zadeh introduced MOLPP in fuzzy environment for such decision-making problems [5].
In 1974, Tanaka, Okuda and Asai first formulated MOLPP with fuzzy parameters [6]. In
fact, in 2015, Luhandjula has correctly observed that Tanaka et al. have helped raise the
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intellectual respectability of fuzzy optimisation [7,8]. As pointed out by Zimmermann in
1976 and later in 1978, various kinds of impreciseness can be categorised as fuzziness and
consequently he developed one mathematical method to solve MOLPP in fuzzy environ-
ment [9]. In 1984 and 1986, interactive fuzzy optimisation method was first developed
by Sakawa et al. [10]. In their article, DM is involved in solution steps. Subsequently, in
real-life decision-making cases, interactive approaches have played an important role in
deriving best-preferred compromise solutions to MOLPP. Themain advantage of the inter-
active approach is that DM controls the search direction during the solution procedure;
consequently, such solutions can usually achieve DM’s aspiration levels.

Fuzzy optimisation methods were applied in solving real-world problems by Werners
[11], Lai and Hwang [12], Gupta et al. [13], Kahraman et al. [14], Sahoo et al. [15], Zhou et al.
[16], Wu et al. [17], Garg et al. [18], Wei et al. [19], Salehi et al. [20], Su et al. [21], Garai et al.
[22,23] and several other mathematicians. We can find extensive studies of evolutionary
computing approaches in fuzzy environment, e.g. Fernandeza et al. [24]. Fuzzy set theory
also found applications in structural models; many researchers like Wang and Wang [25],
Yeh et al. [26], Xu [27], Shih et al. [28] made distinctive implementations of fuzzy set theory.
Fuzzy set theory has been used to yield decisions in multiple objective decision-making
problems among multiple choices and multiple items by Yu et al. [29], Ebrahimnejad
and Verdegay [30], Chakraborty et al. [31], Garai et al. [2], etc. Studies involving genetic
algorithm have been studied by Martinez-Soto et al. [32], Jongsuebsuk et al. [33] and
many others in recent past. Optimal design of fuzzy tracking controllers for autonomous
mobile robots under perturbed torques has been developed by Melin et al. [34]. Emer-
gency transportation planning in disaster relief supply chain management was elaborately
discussed by Zheng and Ling [35]. A survey on nature-inspired optimisation algorithms
with fuzzy logic was performed by Valdez et al. [36]. Also study of MOLPP involving impre-
cise objective functions, interactive techniques, KKT optimality conditions, etc. have been
investigated by researchers in fuzzy environment in recent years [2]. E.g. an improved
fuzzy self-adaptive learning multiple objective particle swarm optimisation algorithm has
been developed for dynamic economic emission dispatch problem by applying interac-
tive fuzzy optimisationmethod under stochastic environment by Bahman Bahmani-Firouzi
et al. [37].

But in existing interactive fuzzy optimisationmethods by Sakawa et al. [38], althoughDM
may consider goals and tolerances of fuzzy objective functions, we may observe that DM
cannot effectively specify any objective function as the main objective function. In other
words, we may find that each of the objective functions is treated with equal importance
in existing interactive solution method for solving MOLPP in fuzzy environment. Although
DMcanassignweights, etc. [39] to eachof the fuzzyobjective functions, suchmethodshave
several disadvantages.

Wemay further note that DMusually prefers the optimal solution inwhich optimal value
of specified main objective function is most preferable and optimal values of other objec-
tive functions are acceptable to DM [3]. In other words, till date, mathematicians have used
fuzziness of DM’s aspirations to construct and solve optimisation models in fuzzy environ-
ment; but time is ripe to go beyond. In fuzzy environment, we need one iterative process
in which most preferable Pareto optimal solutions to MOLPP may be generated based on
specified main objective function [3].
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Further, we may find that interaction in each step of decision process may satisfy plan
of DM to actively participate in solution processes; but in long run, it may waste precious
time and money of DM. In several recent cases, we may find that DMmay not be available
at each stage of decision-making activities. In 1979, Wierzbicki correctly raised one funda-
mental issue: ‘what is more valuable: the perfection of a compromise, which is based on
a never-perfect model, or the time of a top-rank decision maker?’ [40]. If confronted with
a multitude of questions (e.g. ‘would you prefer this alternative to the other one?’) at each
and every stage of decision-making activity, DMmay simply send the analyst back towhere
he/she belongs [40]! Consequently, it may bemore rational to look forminimal yet efficient
interaction with DM [3].

Further, we may observe that concept of reference membership levels, which first
appeared in Sakawa et al. [41], can be viewed as one natural extension of the idea of ref-
erence point by Wierzbicki. In existing interactive fuzzy optimisation techniques, unity is
taken as an initial referencemembership level of each fuzzy objective function. But we bet-
ter not expect each conflicting fuzzy objective function to attain the corresponding goal
simultaneously [3]. Accordingly, we may propose that the initial reference membership
level of each fuzzy objective function need to be based on analytically derived results.

On the other hand, in most real-life situations, it seems natural to consider that impre-
ciseness should be expressed by a fusion of fuzziness and randomness rather than by either
fuzziness or randomness [42]. To effectively handle DM’s ambiguous judgements inMOLPP
aswell as the randomness of parameters involved in objective functions and/or constraints,
Sakawa and his colleagues incorporated interactive fuzzy satisfying methods associated
with deterministic problems into multiple objective stochastic programming problems
[10,41]. In last few decades, many other scientists have introduced several stochastic pro-
gramming models such as expectation optimisation, variance minimisation, probability
maximisation, fractile criterion optimisation together with chance-constrained program-
mingmethods to derive satisficing solutions for DM from a set of Pareto optimal solutions.
As Sakawa and other fellow researchers have described, in chance-constrained problems,
for random data variations, a mathematical model can be formulated so that the violation
of constraints is permitted up to specified probability levels [38].

In this article, we propose one iterative process to determine most preferable Pareto
optimal solutions based on the specified main objective function and thereby using ref-
erence membership levels obtained analytically from trade-off ratios to multiple objective
stochastic linear programing problems (MOSLPP) in fuzzy environment. If DM is not sat-
isfied with this Pareto optimal solution, he/she may alter his/her aspiration levels and/or
priority. Based on the updated information, another set of Pareto optimal solution may be
yielded to MOSLPP in fuzzy environment. The iterative process may be continued until DM
is satisfied with the latest Pareto optimal solutions. Here, for the sake of simplicity alone,
we choose expectation optimisationmodel in a stochastic environment so that readers can
easily digest the proposed theme of our manuscript without unnecessarily deviating into
other details.

The rest of the article is organised as follows. In Section 2, we introduce a mathematical
model ofMOSLPP in fuzzy environment. In Section3,wediscuss the solutionmethod to find
preferable Pareto optimal solutions toMOSLPP based on specifiedmain objective function
in fuzzy environment. Related theorems are discussed here. In Section 4, we develop one
iterative process to find preferable Pareto optimal solutions to MOSLPP based on specified
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main objective function in fuzzy environment. In Section 5, numerical examples are consid-
ered to further illustrate our proposed iterative process. Here, we compare results by the
proposed process with several other existing solution techniques. In Section 6, conclusions
are drawn and scopes for future research are given.

2. ExpectationModel of Multiple Objective Chance-Constrained
Programming in Fuzzy Environment

2.1. Formation ofMOSLPP

Assuming that the coefficients in the objective functions and right-hand side constants of
the constraints are random variables, we may formulate one general MOSLPP as follows:

minimize (z1(x) . . . zk(x))
T

subject to the constraints

Ax ≤ b̄,

x ≥ 0,

(1)

Here x is an n-dimensional column vector of decision variables, A is an m × n coefficient
matrix, zi(x), i = 1 . . . k are k conflicting objective functions with zi(x) = c̄ix, ∀i = 1 . . . k,
c̄i, ∀i = 1 . . . k are n-dimensional random variable row vectors with finite means E(c̄i) and
n × n positive definite variance covariance matrices Vi = [vijh] = [Cov{cij, cih}],∀i = 1 . . . k

and b̄ is n-dimensional column vector whose elements are mutually independent random
variables.

Since coefficients of model (1) are taken as random variables; we have to apply
solution methods appropriate for stochastic events. Consequently, to deal with con-
straints associated with model (1), we may employ chance-constrained conditions that
permit constraint violations up to specified probability limits. Suppose that aq is the
qth row vector of A and b̄q is the qth element of b̄. Here we assume that each ran-
dom variable b̄q has a continuous probability distribution function Fq(r) = P(b̄q ≤ r).
Hence ∀q = 1 . . .m, P(aqx ≤ b̄q) ≥ βq implies that aqx ≤ F−1

q (1 − βq). If we denote X(β)

asX(β) = {x|aqx ≤ Fq−1(1 − βq), q = 1 . . .m, x ≥ 0} and replace constraints in model (1)
with chance-constrained conditions with satisfying probability levels βi, ∀i = 1 . . . k, we
may reformulate model (1) as chance-constrained problem as follows:

minimize (z1(x) . . . zk(x))
T

subject to the constraints

x ∈ X(β)

(2)

2.2. ExpectationModel forMOSLPP

In expectation model, DM wishes to minimise expected values of objective functions
subject to constraints inhis/her attempt todealwithMOSLPP. Thereforeby replacingobjec-
tive functions zi(x) = c̄ix, ∀i = 1 . . . k with corresponding expectations, MOSLPP may be
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reformulated as follows:

minimize (zE1(x) . . . zEk(x))
T

subject to the constraints

x ∈ X(β)

(3)

where zEi (x) = E[zi(x)] = E[c̄i]x denotes expectation of zi(x) = c̄ix, ∀i = 1 . . . k.

2.3. MOSLPP in Fuzzy Environment and Corresponding Existing Solution
Techniques, Including Interactive Technique

It is well known that fundamental toMOSLPP (3) is the concept of Pareto optimal solutions.
Considering the imprecise nature inherent in our judgements in MOSLPP (3), linguistic
statements can be quantified by generating membership functions μi(ziE(x)), i = 1 . . . k
from goals and tolerances (supplied by DM) for expectations ziE(x), i = 1 . . . k of corre-
sponding fuzzy objective functions [38,43]. Consequently, in fuzzy environment, MOSLPP
may be converted into optimisation problems havingmembership functionsμi(ziE(x)), i =
1 . . . k as follows:

maxmin{μi(zi
E(x)), i = 1 . . . k}

subject to

x ∈ X(β)

(4)

We may note that the approach to model (4) is preferable only when fuzzy decision by
Bellman and Zadeh [43] is a proper representation of fuzzy preferences of DM. However as
Sakawa and other researchers have described several times, such situations seem to occur
rarely in practice [38].

Consequently in existing interactive fuzzy optimisation techniques, initially, DM speci-
fies aspiration levels of achievements formembership functions (i.e. referencemembership
levels μ̂1, μ̂2 . . . μ̂k) of expectations ziE(x), i = 1 . . . k of fuzzy objective functions zi(x), i =
1 . . . k. Next for DM’s reference membership levels μ̂ = (μ̂1, μ̂2 . . . μ̂k)

T, corresponding M-
Pareto optimal solutions nearest to μ̂ = (μ̂1, μ̂2 . . . μ̂k)

T in minimax sense or even better
than that, if attainable at all, maybe obtained by solving following minimax problem:

min max
i=1...k

(μ̂i − μi(zi
E(x)))

subject to the constraints

x ∈ X(β).

(5)

Or equivalently if v = max
i=1...k

(μ̂i − μi(ziE(x))), we have:

minimize v

subject to the constraints

μ̂i − μi(zi
E(x)) ≤ v, i = 1 . . . k, x ∈ X(β).

(6)
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3. Finding Pareto Optimal Solutions toMOSLPP in Fuzzy Environment Based
on SpecifiedMain Objective Function

Wemayobserve in real-life decision-makingproblems thatDMmay like to suggest one spe-
cific objective function as a main objective function. And in the existing decision-making
process, especially in the interactive process, DM’s focus may lie essentially in the opti-
mal value of the main objective function. And DM may get satisfaction only if the optimal
value of the specifiedmain objective functionmeets the aspiration level and values of other
objective functions are satisfactory. But we may find that in existing interactive fuzzy opti-
misation methods to solve MOSLPP, each objective function is equally treated. As a result,
DM cannot effectively specify any one objective function as a main objective function in
existing interactive fuzzy optimisation methods to solve MOSLPP. Consequently, DM may
not be able to find optimal values as per his/her specifications. In this article, we have taken
these issues under consideration and have developed one iterative process, in which spec-
ified main objective function is prioritised over other objective functions to solve MOSLPP
in fuzzy environment.

Another problem is to determine reference membership levels μ̂1, μ̂2 . . . μ̂k of expecta-
tions (ziE(x), i = 1 . . . k) of fuzzy objective functions.Wemay note that DMusually specifies
these reference membership levels μ̂1, μ̂2 . . . μ̂k of expectations of fuzzy objective func-
tions from past experiences, intuition, etc. In existing interactive fuzzy optimisation meth-
ods to solve MOSLPP, initial referencemembership levels are taken as unity. But we should
not always expect that each of such conflicting objective functions shall attain respective
goals simultaneously. Hence in this article, we may propose to compute initial reference
membership levels of expectations of fuzzy objective functions analytically from trade-off
ratios.

Consequently, we may choose expectation of any one objective function, say ztE(x), t ∈
{1 . . . k} arbitrarily. Next using the chain rule, we may compute trade-off ratios πtj between
membership function μt(ztE(x)) of ztE(x) and membership functions μj(zjE(x)), j =
1 . . . k, j �= t of expectations of other objective functions zjE(x), j = 1 . . . k, j �= t, one by one,
as follows [10,41,42]:

π tj = −∂μt(ztE(x))

∂μj(zjE(x))
= −∂μt(ztE(x))

∂ztE(x)

∂ztE(x)

∂zjE(x)

(
∂μj(zjE(x))

∂zjE(x)

)−1

, j = 1 . . . k, j �= t

Next, we may derive a set of numbers μ̄1 . . . μ̄k by using the following formula [38]:

μ̄j =
∣∣∣∣∣
(

−∂μt(ztE(x))

∂μj(zjE(x))

)−1
∣∣∣∣∣ μ̄t , j = 1 . . . k, j �= t

Next, we may take μ̄t = ξ , any positive non-zero real number and μ̂ = max{μ̄1 . . . μ̄k}.
Clearly μ̂ �= 0.

Finally, the initial referencemembership level μ̂(0)
i , i = 1 . . . k of expectation of ith objec-

tive function may be determined by the following formula [38]:

μ̂
(0)
i = μ̄i/μ̂, ∀i = 1 . . . k(∵ μ̂ �= 0) (7)

Finally, we may employ these reference membership levels of expectations of fuzzy objec-
tive functions to determine M-Pareto optimal solutions to generalised MOSLPP (2).
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The relationship between M-Pareto optimal solution to model (6) and Pareto optimal
solution to MOSLPP (1 maybe characterised by the following theorems)

Theorem 3.1: If x′ ∈ X is a unique optimal solution to model (6), x′ is Pareto optimal solution
toMOSLPP (1).

Proof: Let x′ ∈ X is a unique optimal solution to minimax problem (6) and v′ be the corre-
sponding optimal value of v.Without loss of generality, wemay assume that all constraints
of model (6) are active constraints. Therefore, we have

v′ = min{|μ̂i − μi(zi
E(x′))|, μ̂α − μα(zα

E(x′))} or |μ̂i − μi(zi(x
′))| = v′ = μ̂α − μα(zα(x′))

If possible, suppose x′ is not Pareto optimal solution to MOSLPP (1). Then ∃ at least
one x ∈ X such that zmE(x)) ≤ zmE(x′),∀m = 1 . . . k,m �= n and znE(x) < znE(x′) for some
n. Since ∀i = 1 . . . k, μi(ziE(x)) is a strictly monotonic decreasing function for the
expectation of minimising type of objective function ziE(x), we have: μm(zmE(x′)) ≤
μm(zmE(x)) ∀m = 1 . . . k, m �= n and μn(znE(x′)) < μn(znE(x)). Hence ∀j, we have: μ̂j −
μj(zjE(x)) ≤ μ̂j − μj(zjE(x′)) = v′ (since all constraints are active). Consequently, we may
get: min{|μ̂i − μi(ziE(x))|, μ̂α − μα(zαE(x))} ≤ v′, which is the desired contradiction to
the fact that x′ is a unique optimal solution to the minimax problem (6). Therefore, our
assumption is wrong. Hence x′ is Pareto optimal solution to MOSLPP (1) �

Theorem3.2: If x′ ∈ X is a Pareto optimal solution of theMOSLPP (1), x′ is an optimal solution
tomodel (6) for some μ̂i , i= 1 . . . k.

Proof: Let x′ ∈ X be Pareto optimal solution to MOSLPP (1); also assume that ∀i =
1 . . . kziE(x′) is the corresponding optimal value of expectation of objective function zi(x).
Next, ∀i = 1 . . . k, we may construct a membership function μi(ziE(x)) of expectation
(ziE(x)) of fuzzy objective function zi(x). Therefore ∀i = 1 . . . k, we may choose refer-
ence membership levels μ̂i such that μ̂i − μi(ziE(x′)) = v′ and v′ ≥ 0. Consequently, all
constraints of MOSLPP (1) become active constraints for x′ ∈ X .

Since x′ ∈ X is Pareto optimal solution to MOSLPP (1),

∃ no y ∈ X such that ∀i = 1 . . . k, i �= j, ziE(y) ≤ zi
E(x′) and zj

E(y) < zj
E(x′), for some j

i.e. ∀i = 1 . . . k, i �= j,μi(zi
E(y)) ≥ μi(zi

E(x′)) and μj(zj
E(y)) > μj(zj

E(x′)), for some j

[∵ ∀i = 1 . . . k,μi is monotonically decreasing function]

i.e. ∀i = 1 . . . k, i �= j, μ̂i − μi(zi
E(y)) ≤ μ̂i − μi(zi

E(x′)) and

μ̂j − μj(zj
E(y)) < μ̂j − μj(zj

E(x′)), for some j

i.e. ∀i = 1 . . . k, μ̂i − μi(zi
E(y)) ≤ μ̂i − μi(zi

E(x′))

i.e. ∀y ∈ X , ∃ at least one α ∈ {1 . . . k} such that μ̂α − μα(zα
E(y)) > μ̂α − μα(zα

E(x′)) = v′

Hence it implies that x′ is optimal solution to single objective optimisation model (6) for
some μ̂i, i= 1 . . . k. Hence the result is proved.

For generating Pareto optimal solution using theorems 3.1 and 3.2, we have to verify
uniqueness of this M-Pareto optimal solution. This can be performed by considering Pareto
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optimality test problem with decision variables x = (x1, x2, . . . , xn)T, ε = (ε1, ε2 . . . εk)
T as

follows [38,42]:

maximize
k∑

i=1
εi

subject to the constraints
for minimizing type of objective functions: ziE(x′) − εi ≥ ziE(x), i = 1 . . . k,
(for maximizing type of objective functions: ziE(x) − εi ≥ ziE(x′), i = 1 . . . k)
x ∈ X(β).

(8)

�

Theorem 3.3: Let x̄ and ε̄ are optimal solutions tomodel (8). Then:

(1) If ε̄i = 0, i = 1 . . . k, x’ is Pareto optimal solution toMOSLPP (1).
(2) If at least one ε̄i > 0, x’ is not Paretooptimal solutionofMOSLPP (1). Insteadof x’, x̄ is Pareto

optimal solution toMOSLPP (1).

Wemay skip its proof as proof of the analogous theorem is already recorded in the literature.

4. Proposed Iterative Process to Find Pareto Optimal Solutions to Given
MOSLPP in Fuzzy Environment

The above ideas can be further integrated into a general framework and an algorithmmay
be developed to find preferable Pareto optimal solutions toMOSLPP (1) based on specified
main objective function in fuzzy environment. The steps of our proposed algorithmmay be
synthesised as follows

Step 1: Request DM to specify satisficing probability levels (βq, q = 1 . . .m) for each
constraint. Compute individual maximum and minimum of expectation of each objec-
tive function (zi(x), i = 1 . . . k) under given constraints. If unbounded solution(s) is (are)
found for expectations of objective function(s), we may assign suitable large number(s) as
extremum(s). Based on the information, elicit goals and tolerances for the expectation of
each fuzzy objective functions from DM.

Step 2:Using these goals and tolerances, construct membership functionsμi(ziE(x)), i =
1 . . . k of expectations (ziE(x), i = 1 . . . k) of fuzzy objective functions (zi(x), i = 1 . . . k). If
DM is not available or DM is unable to specify goal(s) and/or tolerance(s) for expecta-
tion(s) of fuzzy objective function(s), corresponding individual minimum and/or maximum
value(s) or any suitable value(s) may be employed.

Step3:Next,wehave todetermine initial referencemembership levels μ̂
(0)
i , i = 1 . . . k for

expectationsof fuzzyobjective functions analytically. First, expectation (ztE(x), t ∈ {1 . . . k})
of any one objective function may be chosen arbitrarily. Using chain rule, we may com-
pute trade-off ratios πtj between membership function μt(ztE(x)) of ztE(x) and member-
ship functions μj(zjE(x)), j = 1 . . . k, j �= t of expectations (zjE(x), j = 1 . . . k, j �= t) of other
objective functions one by one as follows [10,38,41,42]:

πtj = −∂μt(ztE(x))

∂μj(zjE(x))
= −∂μt(ztE(x))

∂ztE(x)

∂ztE(x)

∂zjE(x)

(
∂μj(zjE(x))

∂zjE(x)

)−1

, j = 1 . . . k, j �= t
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Step4:Next,wemayderive a set of numbers μ̄1, μ̄2 . . . μ̄k byusing the formula [10,38,41,42]

μ̄j =
∣∣∣∣∣
(

−∂μt(ztE(x))

∂μj(zjE(x))

)−1
∣∣∣∣∣ μ̄t , j = 1 . . . k, j �= t

Here, wemay choose μ̄t = ξ (any positive non-zero real number) and suppose that μ̄t = ξ

μ̂ = max{μ̄1, μ̄2 . . . μ̄k} (so, μ̂ �= 0). Finally, in fuzzy environment, initial referencemember-
ship levels μ̂

(0)
i , i = 1 . . . k of expectations of objective functionsmay be determined by the

formula: μ̂(0)
i = μ̄i/̂μ, ∀i = 1 . . . k (∵ μ̂ �= 0).

Step5:Nowwemay request DM to specify themain objective function. Suppose that DM
chooses zα(x), for some α ∈ {1 . . . k}, as themain objective function. Next in fuzzy environ-
ment, by using initial reference membership levels of expectations of objective functions,
following optimisation model may be solved.

minimize v

subject to the constraints

μ̂(0)
α − μα(zα

E(x)) ≤ v,

|μ̂(0)
i − μi(zi

E(x))| ≤ v, ∀i = 1 . . . k, i �= α

v ≥ 0, x ∈ X .

Let x(1), v(1) are optimal values of x and v to the above model after the first iter-
ation; also suppose that ziE(x(1)),μi(ziE(x(1))) are corresponding optimal values of
ziE(x),μi(ziE(x)),∀i = 1 . . . k, respectively. This completes the first iteration.

Step 6: Next, to determine the updated reference membership levels of expectations of
objective functions after n iterations (n being natural number) in fuzzy environment, we
may apply the method of bisection as follows [10,42]

∀i = 1 . . . k, μ̂(n)
i =

{
(μi(zi

E(x(n))) + μ̂
(n−1)
i )/2, if μi(zi

E(x(n))) < μ̂
(n−1)
i

(1 + μi(zi
E(x(n))))/2, otherwise

(9)

Step 7: Finally, employing these updated reference membership levels μ̂
(n)
i , we may solve

the following optimisation model

minimize v

subject to the constraints

μ̂(n)
α − μα(zα

E(x)) ≤ v,

|μ̂(n)
i − μi(zi

E(x))| ≤ v, ∀i = 1 . . . k, i �= α

v ≥ 0, x ∈ X .

Let x(n+1), v(n+1) are optimal values of x and v to the above model after (n + 1) iter-
ations; also suppose ziE(x(n+1)),μi(ziE(x(n+1))) are corresponding optimal values of
ziE(x),μi(ziE(x)),∀i = 1 . . . k, respectively, after (n + 1) iterations.

Step 8: Proceeding in this way, we may stop when the iterative process converges or
the main objective function zα(x) has attained its goal. Suppose that the iteration stops



10 A. GARAI ET AL.

after m steps and x(m), zjE(x(m)),μj(zjE(x(m))) are corresponding M-Pareto optimal values
of x, zjE(x),μj(zjE(x)), j = 1 . . . k, respectively. To test uniqueness of the M-Pareto optimal
solution, we may solve the following model [38,42]:

maximize
k∑

i=1

εi

subject to the constraints

for minimizing type of objective functions: ziE(x(m)) − εi ≥ zi
E(x), i = 1 . . . k,

(for maximizing type of objective functions: ziE(x) − εi ≥ zi
E(x(m)), i = 1 . . . k,)

εi ≥ 0, i = 1 . . . k, x ∈ X .

Let ∀i = 1 . . . k, ε̄i and x̄ are optimal values of εiand x, respectively. If ε̄i = 0,∀i = 1 . . . k,
solution after m iterations, i.e. the solution x(m) is Pareto optimal solution to the given
MOSLPP. Otherwise, the solution x̄ to the above model is Pareto optimal solution to given
MOSLPP.

Step 9: If the DM is satisfied with the Pareto optimal values, stop. Otherwise request DM
to update goal(s) or tolerance(s) or even main objective function and go to Step 2.

Finally, the iterative process is complete.

5. Numerical Examples

To illustrate our proposed iterative process further, we may modify the production plan-
ning problem, as given in the book titled Linear and Multi-objective Programming with
Fuzzy Stochastic Extensions by Sakawa et al. [38] and consider the following three-objective
stochastic linear programming problem in fuzzy environment.

fuzzy maximize z1(x) = 5̄x1 + 5̄x2

fuzzy minimize z2(x) = 5̄x1 + 1̄x2

fuzzy maximize z3(x) = 3̄x1 − 8̄x2

subject to the constraints

5x1 + 7x2 ≤ 16.2, 9x1 + x2 ≤ 12.525,−5x1 + 3x2 ≤ 3.85,

x1 ≥ 0, x2 ≥ 0.

(10)

In this problem, we may consider that the coefficients of objective functions are repre-
sentedas randomvariableswith associatedmeans as E(5̄) = 5; E(1̄) = 1; E(3̄) = 3; E(−8̄) =
−8 and right-hand side constants of constraints are represented by normal random vari-
ables defined by 16.2 ∼ N(16.2, 52); 12.525 ∼ N(12.525, 32), 3.85 ∼ N(3.85, 12). Also, sup-
pose that DM specifies the satisficing probability levels as 0.8 for each constraint. Next, we
may apply the proposed iterative process on the above model to yield preferable Pareto
optimal solutions based on specified main objective function in fuzzy environment.

First, we may compute individual maximum values and individual minimum values of
expectations (ziE(x), i = 1, 2, 3) of objective functions under given constraints, as given in
Table 1. Based on these individual maximum and minimum values, DM may be asked to
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Table 1. Individual maximum and minimum values of expectations of objective functions.

Expectations ofobjective functions Individual maximum values Individual minimum values

z1E(x) 10 0
z2E(x) 6 0
z3E(x) 3.3 −11.1

Table 2. Goals and tolerances to objective functions.

Expectations ofobjective functions Goals Tolerances

z1E(x) 5 1.5
z2E(x) 4 1
z3E(x) −2 2

specify goals and tolerances of expectations (ziE(x), i = 1, 2, 3) of objective functions in
fuzzy environment, as given in Table 2.

Using these goals and tolerances of expectations of objective functions in fuzzy envi-
ronment, we may construct corresponding membership functions μi(ziE(x)), i = 1, 2, 3 of
expectations of objective functions in fuzzy environment as follows.

μ1(z1
E(x)) =

⎧⎪⎪⎨
⎪⎪⎩
1, if z1E(x) ≥ 5
z1E(x)−3.5

1.5 , if 3.5 ≤ z1E(x) ≤ 5

0, if z1E(x) ≤ 3.5

μ2(z2
E(x)) =

⎧⎪⎪⎨
⎪⎪⎩
1, if z2E(x) ≤ 4
5−z2E(x)

1 , if 4 ≤ z2E(x) ≤ 5

0, if z2E(x) ≥ 5

μ3(z3
E(x)) =

⎧⎪⎪⎨
⎪⎪⎩
1, if z3E(x) ≥ −2
z3E(x)+4

2 , if − 4 ≤ z3E(x) ≤ −2

0, if z3E(x) ≤ −4

Next, we may choose expectation of any one objective function, say z1E(x), arbitrarily.
By using chain rule, we may compute trade-off ratios between membership function
μ1(z1E(x)) of expectation of (z1E(x)) and membership functions μj(zjE(x)), j = 2, 3 of
expectations of other objective functions (zjE(x), j = 2, 3)one by one as follows:

−∂μ1(z1E(x))

∂μ2(z2E(x))
= −∂μ1(z1E(x))

∂z1E(x)

∂z1E(x)

∂z2E(x)

(
∂μ2(z2E(x))

∂z2E(x)

)−1

= 110
129

;

−∂μ1(z1E(x))

∂μ3(z3E(x))
= −∂μ1(z1E(x))

∂z1E(x)

∂z1E(x)

∂z3E(x)

(
∂μ3(z3E(x))

∂z3E(x)

)−1

= 80
129

In order to determine initial reference membership levels μ̂
(0)
i , i = 1, 2, 3 of expectations

of objective functions zi(x), i = 1, 2, 3 in fuzzy environment, we may set μ̄1 = 1. Thus,
we may obtain: μ̄2 = 1.173 and μ̄3 = 1.612. And we may have μ̂ = 1.612. Finally, using
the formula: μ̂(0)

i = μ̄i/μ̂, i = 1, 2, 3, initial reference membership levels of expectations
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of objective functions in fuzzy environment may be obtained as: μ̂
(0)
1 = 0.6202, μ̂

(0)
2 =

0.7273 and μ̂
(0)
3 = 1.

Next suppose that DM specifies z2(x) as the main objective function. Proceeding as per
our proposed iterative process, as discussed in Section 4, we may find M-Pareto optimal
solution and consequently Pareto optimal solution to given MOSLPP as follows (̄ denotes
Pareto optimality):

x̄1 = 0.4623, x̄2 = 0.4235, z1(x̄) = 4.43, z2(x̄) = 2.73, z3(x̄) = −2.

Herewemay observe that optimal value of expectation of themain objective function z2(x)
is more preferable than corresponding aspiration level of DM and optimal values of expec-
tations of all other objective functions zi(x), i = 1, 3 in a proposed iterative process in fuzzy
environment, are acceptable to DM (since each of them attained respective goals).

Comparison of Results

We may compare among optimal values obtained by the proposed iterative process and
those obtained by other existing fuzzy optimisationmethods in Table 3. Advantages of the
proposed iterative process over several other existing solution methods are evident from
Table 3. Here we may note that no two different Pareto optimal solutions can be similar or
one Pareto optimal solution cannot be better over another. It is upon the DM to find out
most preferable optimal solutions to MOSLPP in fuzzy environment. Moreover, completely
different philosophies are ingrained in some of those existing techniques. Hence it may not
be justifiable to compare elaborately.

Now, we may primarily focus on advantages of proposed iterative process over goal
programming techniques. The goal programming method has weakness in at least three
ways: 1. Because of the insistence on lexicographic optimality, some models may com-
pletely ignore lower priority objectives; 2. Some models disallow trade-off of small losses
in high priority objectives for large gains in low priority objectives; 3. Some goal program-
ming models ignore the non-constancy of the rates at which benefits from the objective
attainments increase and they ignore non-constancy of the rates at which DM may trade-
off attainments, etc. [44]. In our case, if we apply goal programming method having z2 as
the main objective function, corresponding optimal solution, as given in Table 3, shows
that optimal expected values of z1 and z3 are very poor since optimal membership values
of expectations are zero in both z1 and z3. Hence itmaybe reasonable to confess that such a
solutionmaybenot acceptable toDM. Further, in thegoal programming technique, usually,
all objective functions are to be arranged in some order. Although we may consider only
the main objective function as objective function and others as constraints, it may defeat
the very purpose of goal programming. Moreover, in case of a large number of conflicting
objective functions, it may not be feasible to rank all objective functions. But in a proposed
iterative process, at one hand, we intrinsically employ trade-off rates among membership
functions of expectations of fuzzy objective functions and on other hand, only one main
objective function is necessary to run the process. It is said that goal programming’s great
virtue is that DM understand it easily; also, many of the alternate approaches are difficult
to understand. This may be true in some instances, but should not be a guiding principle in
the evolution of this field.



FU
ZZY

IN
FO

RM
A
TIO

N
A
N
D
EN

G
IN
EERIN

G
13

Table 3. Comparison of results.

Pareto optimal solutions in

Existing techniques

Zimmermann’s
technique

(Max-min operator)
Max-product
operator

Sakawa’s
technique

Wu et al.
technique

[17]

Weighted
sum

approach
Goal pro-
gramming

Proposed
iterative process

Optimal values,¯
denotes optimality

x̄1 = 0.5455,
x̄2 = 0.4545,
z1(x̄) = 5,
z2(x̄) = 3.18,
z3(x̄) = −2.

x̄1 = 0.94,
x̄2 = 1.04,
z1(x̄) = 9.92,
z2(x̄) = 5.76,
z3(x̄) = −5.49.

x̄1 = 0.6583,
x̄2 = 0.4263,
z1(x̄) = 5.42,
z2(x̄) = 3.72,
z3(x̄) = −1.44.

x̄1 = 0.6583,
x̄2 = 0.4263,
z1(x̄) = 5.42,
z2(x̄) = 3.72,
z3(x̄) = −1.44.

x̄1 = 0.145,
x̄2 = 0.555,
z1(x̄) = 3.5,
z2(x̄) = 1.28,
z3(x̄) = −4.

x̄1 = 0.4623,
x̄2 = 0.4235,
z1(x̄) = 4.43,
z2(x̄) = 2.73,
z3(x̄) = −2.

Weights:
0.25,0.5,0.25.
x̄1 = 0,
x̄2 = 0,
z1(x̄) = 0,
z2(x̄) = 0,
z3(x̄) = 0.

Results

In the proposed iterative process, DMmay effectively specify the main objective function; whereas in existing stochastic
optimisation techniques under fuzzy environment, no such facility is available. And the optimal value of the main objective
function z2(x) is more preferable to DM in the proposed iterative process than other existing techniques; moreover optimal
values of other objective functions are also acceptable to DM (in our example, each objective function has attained its goal in
the proposed iterative process).

Remarks

Under fuzzy environment, the more effective and appropriate solution to MOSLPPmay be obtained by applying our proposed
iterative process than other existing fuzzy optimisation techniques. Ability to specify one main objective function may make
the proposed iterative process more worthy as well as satisfactory to DM.
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Table 4. Pareto optimal solution to MOSLP model corresponding to the specified main objective func-
tions.

Specified main
objective functions Pareto optimal solutions Remarks

z1E(x)
x̄1 = 0.7485, x̄2 = 0.5305,
z1E(x̄) = 6.39, z2E(x̄) = 4.27, z3E(x̄) = −2.

More preferable optimal value for expectation
of main objective function z1(x) than
corresponding goal.

z2E(x)
x̄1 = 0.4623, x̄2 = 0.4235,
z1E(x̄) = 4.43, z2E(x̄) = 2.73, z3E(x̄) = −2.

More preferable optimal value for expectation
of main objective function z2(x) than
corresponding goal.

z3E(x)
x̄1 = 0.8467, x̄2 = 0.0394,
z1E(x̄) = 4.43, z2E(x̄) = 4.27, z3E(x̄) = 2.23.

More preferable optimal value for expectation
of main objective function z3(x) than
corresponding goal.

Again, suppose that DM specifies z1(x) as the main objective function. Applying the
proposed iterative process with same goals and tolerances of expectations of objective
functions, we may find Pareto optimal solutions to MOSLPP (10) in fuzzy environment as
given in Table 4. Here, we may observe that optimal value of expectation (z1E(x)) of the
main objective function is more preferable than the corresponding goal; and optimal val-
ues of other objective functions are also acceptable to DM in a proposed iterative process
(since both of these objective functions zi(x), i = 2, 3 attain their respective goals).

Again, suppose that DM specifies z3(x) as main objective function. Applying the pro-
posed iterative process with same goals and tolerances of expectations of objective func-
tions,wemay findParetooptimal solutions toMOSLPP (10) in fuzzy environment as given in
Table 4. Here we may observe that optimal value of expectation (z3E(x)) of main objective
function ismore preferable than corresponding goal; and optimal values of other objective
functions are also acceptable to DM in the proposed iterative process (since both of these
objective functions zi(x), i = 1, 2 attain their respective goals).

On the other hand, if the DMdoes not specify (or unable to specify) main objective func-
tion or DM is not available at all, we may generate Pareto optimal solutions by considering
each objective function as main objective function one by one; it may help in finding most
suitable Pareto optimal solution to given MOSLPP in fuzzy environment.

Conclusions

In this article, one general iterative process is developed to obtain preferable Pareto opti-
mal solutions toMOSLPP based on specifiedmain objective function in fuzzy environment.
In several existing crisp and/or fuzzy optimisation methods to solve MOSLPP, no objective
function can be effectively specified as the main objective function. Even if one can assign
weights, goals, priorities, utility functions etc. to objective functions, those methods have
major disadvantages (aswere discussed in Section 5). But, in our proposed iterative process,
we may obtain preferable Pareto optimal solutions corresponding to the specified main
objective function. Moreover, we show through numerical examples in Section 5 that the
optimal solutionsobtainedbyourproposed iterativeprocess are always Paretooptimal and
maybemorepreferable toDM in comparisonwith solutionsobtainedby several other exist-
ing optimisationmethods in fuzzy stochastic environment. Also, if DMaltersmain objective
function, other sets of Pareto optimal solutions to MOSLPP may be quickly yielded based
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on the newmain objective function. Further, the proposed iterative process may be appli-
cable even if DM is unable to choose the main objective function or no DM is available
at all.

Further, in existing fuzzy optimisationmethods to solve MOSLPP, initial referencemem-
bership levels are arbitrarily set at unity. But we do not find it realistic to expect that
expectations of each of the conflicting objective functions shall attain their respective goals
simultaneously. Here, we have noted that trade-off rates among membership functions
play one main role; consequently, in the proposed iterative process, we determine initial
reference membership levels analytically by making use of trade-off ratios of membership
functions of expectations of objective functions in fuzzy environment.

Future Research Directions

There are ample scopes for research involving proposed iterative process in future. We
may extend it to other stochastic programming models. We may also employ various lin-
ear programmingmethods to solve final models obtainedwithin this process. In future, we
have scope to develop analogous iterative processes that can be applied to solve multiple
objective stochastic non-linear optimisation models in fuzzy environment as well.

As Wierzbicki [40] said, we may note that real-life decision-making exercises may be
looked upon as tools to handle complex problems of modern society. And such tools must
be checked against real-life problems always. If there are complaints about efficiency of
tools, an analyst must re-examine and redesign the model. When a new tool is found, ana-
lyst should be satisfied, but not to the extent of forgetting that he/she is constructing tools,
which must again be checked in practice and further developed [40]. And proposed itera-
tive process that is also interactive in naturemay be one such optimal tool for DM to handle
complex real-life problems under uncertainty.

This is especially important for us not to be influenced by only past successes and fail-
ures in explaining multi-objective methods to DM. If we bring into the classroom only
what comes out of the boardroom, then the limitations of today’s DM’s will be imposed
on tomorrow’s.
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