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ABSTRACT
Currently, thewidely usedmethods for direction of arrival (DOA) estimationwere constructed based
on the subspace, such as Multiple Signal Classification (MUSIC) and Estimating Signal Parameter
via Rotational Invariance Techniques (ESPRIT), which required that the number of sources is known
beforehand. In this paper, a new method based on the Vector Error Model (VEM) for estimating the
DOAswas proposed, which do not need the sources number in advance. The comparison of the per-
formance between the VEM and the MUSIC model for DOA problem was given to demonstrate the
effectiveness of our method. The algorithm ofmulti-target intermittent particle swarm optimization
(MIPSO) was adopted to solve the VEM, and the performance of the VEM-MIPSO method was anal-
ysed through simulations for a uniform linear array and an L-shaped array respectively. The results
showed that: (1) the VEM was an effective model to solve the DOA estimation without prior knowl-
edge of the sources number; (2) the MIPSO was an efficient algorithm to solve the DOA estimation
with high precision.
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1. Introduction

In the past couple of decades, the problem of direction
of arrival (DOA) estimation for narrowband sources has
been studied extensively because of its wide applica-
tion in many fields such as radar, navigation and wireless
communication (Lee et al., 2018). The subspace meth-
ods of multiple signals classification (MUSIC, proposed
in Schmidt and Schmidt (1986)) and Estimating signal
Parameter via Rotational Invariance Techniques (ESPRIT,
proposed in Yuen and Friedlander (1996)), are the most
prominent approaches for DOA estimation with high res-
olution and simple structure. The theory of the MUSIC
methods is based on the assumption of partitioning the
observation space into two orthogonal subspaces of sig-
nal subspace and noise subspace. Actually, these meth-
ods cast the DOA estimation as an optimization prob-
lem objective function which involves the empirical esti-
mate of the signal subspace projection matrix (Zhou,
Huang, et al., 2018). However, the number of sources was
assumed tobeknownor estimatedbyan information the-
oretic criterion,which couldnotbe satisfiedusually. Some
source enumeration techniques, such as the Akaike infor-
mation criterion (AIC), the minimum description length
(MDL), have been proposed to solve the problem faced
by the approaches based onMUSIC, but the performance
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degradesheavily if the signal tonoise ratios (SNR) is lowor
the number of samples (snapshots) is small (Djuric, 1996).

In another aspect, researches for quantifying perfor-
mance loss of MUSIC-based DOA estimation has been
addressed, which turn out to be a function of the num-
ber (M) of sensors, number of snapshots (N) and signal-
to-noise ratio (SNR), respectively. However, the statistical
performance is only characterized in the situation where
N tends to infinity while M remains finite. When M is
probably close to or even larger than N, strong discrep-
ancies between the sample eigenvectors and their popu-
lation counterparts will occur (Thiergart & Habets, 2013).
Therefore, a method which could finish DOA estimation
without knowing the number of sources is needed.

Some DOA estimation algorithms without source
number have been proposed in Qi et al. (2004), Jin
et al. (2008), and Zhang and Ng (2010). The method
proposed in Qi et al. (2004) works with a threshold for
pre-estimation of the number of sources, which was not
addressed. An extension of the reversible jump Markov
chain Monte Carlo method is mentioned in Jin et al.
(2008), which is very inefficient and computationally
intensive. A MUSIC-like method was introduced in Zhang
and Ng (2010), which was constructed based on the
framework of beamforming.
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In this paper, a method based on the Vector Error
Model (VEM) was adopted to solve the problem of DOA
estimation, and an algorithm named multi-target inter-
mittent particle swarm optimization (MIPSO) was used
to solve the model based on the VEM. The rest of this
paper is organized as follows: Section 2 introduces the
VEM for the DOA estimation problem and the solving
algorithm of MIPSO. Several simulations were carried out
in Section 3 to demonstrate the performance of the VEM-
MIPSO method for DOA estimation. Finally, conclusions
were drawn in Section 4.

2. Solvingmethod

In this section, the MUSIC model for the DOA estimation
was mentioned firstly. Then, the new algorithm based on
the VEM was proposed.

2.1. Musicmodel for DOA estimation (Zhou, Hu,
et al., 2018)

Consider the situation as shown in Figure 1 (a), where the
ith source impinging from the far-field at an angle of θi

onto a Uniform Linear Array (ULA) of M identical omnidi-
rectional equidistant sensors with an inter-sensor space
of d. The received signal at themth sensor is a superposi-
tion of time-shifted versions of all the sources corrupted
with noise as following

zm(t) =
K∑
i=1

si(t − (m − 1)
d

c0
sin θi) + nm(t)

=
K∑
i=1

si(t)e
−jω(m−1) d

c0
sin θi + nm(t) (1)

where c0 is the speed of propagation, K is the number of
the sources, t is the sampling point for the time. Rewriting
(1) in vector format we get

Z(t) = A(θ)S(t) + N(t) (2)

where Z(t) = [z1(t), z2(t), . . . zM(t)]T with the superscript
(·)T denoting the transpose is a complex matrix required
by the sensors; S(t) = [s1(t), s2(t), . . . sK(t)]T with the
sources number of K contains all the narrow-band
far-field source signals; A(θ) = [a(θ1), a(θ2), . . . a(θK)] is
the steering matrix with a(θi) = [1, a1θi , . . . a

M−1
θi

]T , aθi =
e−j2πd/λ sin(θi); λ is the wavelength of the source; and
N(t) = [n1(t),n2(t), . . . ,nM(t)]T is an unknown noise
matrix.

The aim of DOA estimation is to calculate all the θ̂i, i =
1, 2, . . . , K̂ based on (2), where the top mark of ∧ repre-
sents the estimated value. Generally, {θi}Ki=1 is considered

Figure 1. The ith source impinging on the sensor-array at angle
θi . (a) The situation for the ULA. (b) The situation for the L-shaped
arrays.

as a fixed sampling grid that uniformly covers the DOA
range [−π/2,π/2].

An L-shaped array, as shown in Figure 1 (b), consists of
twoorthogonal (M+N)-elementULAs (denotedbyx-ULA
and y-ULA, respectively) in the xy plane, the narrow-band
far-filed uncorrelated signals impinge on the array from
the distinct directions with elevation and azimuth angles
{(θi,φi)}. Different from (2), the steering matrix for the L-
shaped array has the form shown in (3).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A({θ ,φ}) = [Ax({θ ,φ});Ay({θ ,φ})]
Ax({θ ,φ})

=

⎡
⎢⎢⎢⎣

1 1
e−j2πd cosφ1 sin θ1/λ e−j2πd cosφ2 sin θ2/λ

...
...

e−j2πd(M−1) cosφ1 sin θ1/λ e−j2πd(M−1) cosφ2 sin θ2/λ

· · · 1
· · · e−j2πd cosφK sin θK/λ

. . .
...

· · · e−j2πd(M−1) cosφK sin θK/λ

⎤
⎥⎥⎥⎦

Ay({θ ,φ})

=

⎡
⎢⎢⎢⎣

1 1
e−j2πdsinφ1 sin θ1/λ e−j2πd sinφ2 sin θ2/λ

...
...

e−j2πd(N−1) sinφ1 sin θ1/λ e−j2πd(N−1) sinφ2 sin θ2/λ

· · · 1
· · · e−j2πd sinφK sin θK/λ

. . .
...

· · · e−j2πd(N−1) sinφK sin θK/λ

⎤
⎥⎥⎥⎦

(3)
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2.2. DOA estimationmodel based on VEM

In order to avoid the calculation for the complex, we
redefine (2) as follow

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D(t) = BC(θ) + V(t)
D(t) = [Zr(t)]T = [real(Z(t))]T

B(t) = [S(t)]T

C(θ) = [Ar(θ)]T = [real(A(θ))]T

V(t) = [Nr(t)]T = [real(N(t))]T

(4)

whereD(t) = [d1(t),d2(t), . . .dM(t)] is the real part of the
complex signal matrix from M sensors’ array without the
superscript of (·)T ; real(·) represents the real part of a
complex value; B(t) = [s1(t), s2(t), . . . sK(t)] is the trans-
pose of S(t); C(θ) = [c(θ1), c(θ2), . . . c(θK)]T is the trans-
pose of the real part of the steering matrix A(θ); and V(t)
is the transpose of the real part of the noise matrix N(t).

According to (4), the task of DOA estimation become a
problem to judge whether a curve c(θ̂) with the parame-
ter of θ̂ exists in thematrixC(θ) as a rowvector only based
on the measured data D(t). In order to obtain this c(θ̂),
a matrixW is introduced so that

Y =

⎡
⎢⎢⎢⎢⎢⎣

yT1
yT2
...

yTK

⎤
⎥⎥⎥⎥⎥⎦ = W × D =

⎡
⎢⎢⎢⎢⎢⎣

wT
1

wT
2

...

wT
K

⎤
⎥⎥⎥⎥⎥⎦ × D → C(θ) =

⎡
⎢⎢⎢⎢⎢⎣

cT (θ1)

cT (θ2)
...

cT (θK)

⎤
⎥⎥⎥⎥⎥⎦
(5)

where the note of → represents that the Y approximates
the C(θ). Therefore the objective function is given as

min{ε} = min{||yTi − cT (θi)||22},∀i (6)

where || · ||22 is the 2-norm of a vector; ∀i means for all
parameters. Solving (6), a model named Vector Gener-
ated Model (VGM) described in (7) is obtained, which
could generate a vector yTi according to the knownvector
cT (θi). Equation (6) is called VEM,which calculated out the
error between the known vector cT (θi) and the generated
vector yTi .

yTi = cT (θi) ×
(
1
M

× D̃
∗T × D̃

∗
)

(7)

where D̃
∗
is a matrix generated from the matrix D. Please

refer to references Cui, Poon, et al. (2014), Cui, Ling et al.
(2014), Cui et al. (2015) or Appendix 1 to find the calcula-
tion process from (6) to (7). According to the definition of
VEM in (6), if the known vector cT (θi) exists in the matrix
C(θ), the generated vectoryTi will equal to the knownvec-
tor cT (θi). The known vector of cT (θi) is constructed as

follow ⎧⎪⎨
⎪⎩
cT (θi) = real(a(θi))

a(θi) = [1, a1θi , . . . a
M−1
θi

]T

aθi = e−j2πd/λ sin(θi)

(8)

where real(·) represents the real part of a complex value.
Similarly, we define the VEM shown in (9) for the L-shaped
array.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D(t) = BC({θ ,φ}) + V(t)
D(t) = [Zr(t)]T = [real(Z(t))]T

B(t) = [S(t)]T

C(θ) = [Ar({θ ,φ})]T = [real(A({θ ,φ}))]T
V(t) = [Nr(t)]T = [real(N(t))]T

(9)

Then, Equations (6), (7) and (8) are rewritten as (10), (11)
and (12).

min{||yTi − cT ({θi,φi})||22},∀i (10)

yTi = cT ({θi,φi}) × (
1
t

× D̃
∗T × D̃

∗
) (11)⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cT ({θi,φi}) = real(a({θi,φi}))
a({θi,φi}) = [1, a1{θi ,φi}, . . . a

M−1
{θi ,φi}, 1, b

1
{θi ,φi}, . . . b

N−1
{θi ,φi}]

T

a{θi ,φi} = e−j2πd cosφi sin θi/λ

b{θi ,φi} = e−j2πdsinφi sin θi/λ

(12)

2.3. Solving algorithm

First, let us consider the problem described in (6), then
(10) will be solved similarly. There are many algorithms
to find the optimal solution for (6). However, there
should be more than one solution for (6) needing to be
obtained, and the number of the solution is unknown
which corresponds to the number of the signal S(t) =
[s1(t), s2(t), . . . sK(t)]T . Here the multi-target intermit-
tent particle swarm optimization (MIPSO) algorithm is
adopted to calculate the optimal parameters {θi}Ki=1 for all
the signals. The MIPSO algorithm is designed as⎧⎨

⎩
�θ+

i = ω × �θi + c1 × r1 × (bi − θi)

+c2 × r2 × (ti − θi)

θ+
i = θi + �θ+

i

(13)

where θi is the current position (value) of the ith particle
(parameter), θ+

i is the next position of the ith particle,�θi
is the current velocity (increment) of the ith particle,�θ+

i
is thenext velocity of the ithparticle,bi is thebest position
of the ith particle, ti is a particle around the ith parti-
cle within a small scope δ, and ε(ti) is the smallest value
in this scope δ. ω is the inertia coefficient, c1 and c2 are
two accelerated factors which are always set as 2, r1 and
r2 are two random constants whose value are between
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Figure 2. Calculation process based on VEM and MIPSO.

0 and 1. Here, ti replaces the global best particle in the
traditional PSO algorithm. During the calculation, every
particle will find it’s ti and will approach this ti dynami-
cally. If the number of these {ti}Li=1 and their fitness ε(ti)
do not change during a certain step, or if the maximum
step is reached, the calculation iterationwill stop. In order
to keep the ability of exploitation for all the particles to
find their ti, these ti are searched intermittently (every
20 steps). After the iteration stops, all the particles will
converge around several ti. The final solution {θ∗

i }Ni=1 are
picked out from these {ti}Li=1, where N ≤ L, according to
two criteria: (1) whether the ε(ti) is smaller than a thresh-
old and (2) whether the values of the ti locate within the
definition domain. Please refer to reference (Cui et al.,
2015) for detailed information.

For objective function for the L-shaped array shown in
(10), the MIPSO algorithm is designed as

⎧⎨
⎩

�(θi,φi)
+ = ω × �(θi,φi) + c1 × r1 × (bi − (θi,φi))

+ c2 × r2 × (ti − (θi,φi))

(θi,φi)
+ = (θi,φi) + �(θi,φi)

+
(14)

where the parameter of θi is replaced by (θi,φi).

2.4. The VEM-MIPSOmethod

Figure 2 gives the process of the calculation based on
VEM and MIPSO. In order to explain it simply, we use the
parameter θi for the ULA in Figure 1(a). Please replace
the parameter of θi by the parameter of (θi,φi) for the
L-shaped array.

Firstly, the angle parameters θi were initialized ran-
domlywith the number of P. Then, reference curves cT (θi)
were generated according to the θi. Input the cT (θi) to
VGM, yTi were calculated. The errors ε(θi)were generated
according to cT (θi) and yTi . Finally, the parameters θi were
adjusted based on the errors ε(θi) until all the parame-
ters θi converged around several ones {ti}Li=1. The criteria
mentioned above is used here to pick the final solutions

{θ∗
i }Ki=1, where K is the number of the sources, and much

smaller than P.
For calculation convenience, the errors between yTi

and cT (θi) are defined as⎧⎪⎨
⎪⎩

ε(θ) = [ε(θ1), ε(θ2), . . . , ε(θP)]T

ε(θi) = ||yTi − cT (θi)||22
||cT (θi)||22

(15)

where the subscript of P is the number of the parame-
ters calculated by the MIPSO algorithm simultaneously.
According to the definition in formula (14), the ε(θi) will
decrease when the cT (θi) and yTi approach the same
shape.

3. Simulation and analysis

In this section, simulations to investigate theperformance
of the VEM-MIPSO method proposed in this paper are
conducted. Theprogram for theDOAestimationwaswrit-
ten by Matlab R2014b, which could be obtained through
the email of clzh0308@126.com. We consider ULAs with
50 sensors, and inter-sensor spacing of d = λ/2. Three
echo signals with DOA of θ1 = 10◦, θ2 = 30◦ and θ3 =
60◦, respectively, were generated by program. For the L-
shaped array, 50 sensors are used for both x- and y-axis
respectively. The pairs of elevation angle and azimuth
angle are set as (θ1,φ1) = (10◦, 15◦), (θ2,φ2) = (30◦, 25◦)
and (θ3,φ3) = (60◦, 35◦). The snapshot for both arrays
was set as 10. All the experiments are carried out in Mat-
lab R2014b on a PC with Intel E33-1231 v3 CPU and 16GB
of RAM.

3.1. Analysis of themodel

The performance of the VEM model for DOA estimation
was firstly analysed in this section. Figure 3 gives the com-
parison of the performance between the VEMmodel and
MUSIC method under different level of noise jamming
for ULA. Table 1 lists the errors calculated by VEM model
under different level of SNR. From Figure 3 and Table 1,
the following comments could be given.

(1) Similar to MUSIC method, the VEM could give fea-
tured values at the direction of arrival. The difference
is that the VEM gives local minimum errors at the tar-
get angles, while theMUSICmethod gives local max-
imum values in the spatial spectra at these angles.

(2) The accuracy of the VEM is higher when the noise
level becomes severe. In Figure 3(b), there is a devia-
tion at the angle of 60o when the SNR equals to 1 dB,
while the VEM gives all the local minimum value at
correct angles. Particularly, calculation error occurs
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Figure 3. Comparison of the model’s performance for ULA. (a)
Error calculated based on the VEM. (b) Spatial spectra of MUSIC
method.

Table 1. Errors for the VEM under different SNR.

SNR 10° 30° 60°

No noise 8.4e10−32 1.3e10−31 3.0e10−31

9 0.04 0.02 0.03
5 0.10 0.06 0.07
1 0.15 0.19 0.13

Table 2. Errors for the VGM under different SNR.

(
,�)

SNR (10°, 15°) (30°, 25°) (60°, 35°) Time (s) Time* (s)

No noise 1.8e10−31 1.2e10−31 1.8e10−31 0.06 0.1
9 0.05 0.03 0.03 0.06 0.1
5 0.1 0.05 0.1 0.06 0.1
1 0.1 0.2 0.2 0.06 0.1

during the calculation process for theMUSIC because
of the size of the snapshots. Table 1 lists all the errors
for the angles under different level of noise. From
Table 1, we can see the minimum values at certain
angles remain small level under 0.2. Therefore, the
value of 0.2 was selected as the threshold during the
calculation of MIPSO algorithm.

Figure 3 gives the comparison of the performance
between the VEM and MUSIC method under different
level of noise jamming for L-shaped array. Table 2 lists the
errors calculated by VEM model under different level of
SNR. From Figure 2 and Table 1, the following comments
could be given.

(1) Both of the two methods could give featured val-
ues at the direction of arrival. The difference is that
the VEM gives local minimum errors at the solutions,

Figure 4. Comparison of the model’s performance for L-shaped
array. (a) Error calculated based on the VEM. (b) Spatial spectra of
MUSIC method.

while theMUSICmethodgives localmaximumvalues
in the spatial spectra at these angles.

(2) The resolution of the MUSIC method for L-shaped
array is higher than that of the VEMmodel. From the
Figure 4 (b), we can see that only the target coordi-
nates have a local maximum value, and the others
points own little values without severe fluctuation.
While the errors calculated by VEM model, as shown
in Figure 4 (a), have a bigger fluctuation among the
points.

(3) Themodel based on the VEM has quicker speed (0.06
s), to draw the whole error map than the MUSIC
method (0.1 s).

(4) From Table 2, we can see theminimum values at cer-
tain angles remain small level under 0.3. Therefore,
the value of 0.3 was selected as the threshold during
the calculation of MIPSO algorithm.

3.2. Analysis of calculated results

The performance was evaluated by the root mean square
error (RMSE), which is calculated by formula (16).

RMSE = 2

√∑K
i=1 (θi − θ∗

i )2

K
(16)
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Figure 5. RMSE comparison for ULA. (a) RMSE comparison under
different SNR. (b) RMSE comparison under different sensors’ num-
ber. (c) RMSE comparison under different snapshots.

For the ULA, the comparison is carried out between
VEM-MIPSO method and the root-MUSIC method. The
RMSE comparisons for ULA under different SNR, sensors’
number and snapshots are list in Figure 5 (a–c), respec-
tively.

(1) As shown in Figure 5(a), the experiment for both the
two methods under different SNR situation is exe-
cuted while setting the sensors’ number as 50 and
the snapshot as 10. Both of the errors generated by
the VEM-MIPSOmethod and the root-MUSICmethod
could remain at a low level, even when the noise
existing in the data is severe. But the time used by the
VEM-MIPSO (with average of 0.98 s) is much shorter
than that used by the root-MUSICmethod (with aver-
age of 2.2 s).

(2) Figure 5(b) gives the experimental results when
increasing the sensors’ number from 20 to 60 by the
step of 2 under the fixing snapshots of 10 and SNR
as 20. From the trend of the RMSE, the accuracy from

Figure 6. RMSE comparison for L-shaped array under different
SNR. (a) The method based on the VEM. (b) The method of MEMP.

both of the root-MUSIC method and the VEM-MIPSO
method are affected with the same trendency.

(3) At last, the snapshot involved in the calculation was
adjusted from 10 to 30 by the step of 1 under the fix-
ing sensor’s number of 50 and the SNR as 20. And the
results are shown in Figure 5(c), from which we can
see that the snapshots’ number has little effect for
the root-MUSIC method, while the RMSE for the VEM
increases significantly when the snapshot goes up to
a certain value.

For the L-shaped array, the comparisons between the
MEMP method and the VEM were illustrated in the Fig-
ures 6–8.

(1) The RMSE comparison for L-shaped array with differ-
ent noise levels when setting the sensors’ number as
50 and the snapshot as 10 is given in Figure 6, from
whichwe can see that although the time used for the
VEM-MIPSO method is longer (with average of 1.2 s)
than that for theMEMPmethod (with average of 0.45
s), the RMSE of VEM-MIPSOmodel is much lesser.

(2) In Figure 7, we changed the sensors’ number of the
array from 40 to 60 by step of 1 while fixing the
snapshot as 10 and the SNR as 20. Different from
the situation for ULA in Figure 5(b), the sensors’
number adopted in the array has little effect for the
MEMP method, while the RMSE for the VEM-MIPSO
method become unstable when the sensors’ number
decreases down to a certain value.

(3) Finally, the snapshots of the datawere adjustedwhile
fixing the sensors’ number as 50 and SNR as 20. The
RMSE comparison is described in Figure 8. Similar to
the situation for ULA in Figure 5(c), the snapshots
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Figure 7. RMSE for L-shaped array under different sensors’ num-
ber. (a) The method based on the VEM. (b) The method of MEMP.

Figure 8. RMSE for L-shaped array under different snapshots. (a)
The method based on the VEM. (b) The method of MEMP.

involved in the calculation has little effect for the
MEMPmethod,while the RMSE for themethodbased
on VEM increases significantly when the snapshot
goes up to a certain value under a fixed sensors’ num-
ber. So it is better to set a suitable ratio between the
sensors’ number and the snapshot before using the
VEM-MIPSOmethod.

4. Conclusion

This paper proposed a newmethod to estimate the DOAs
based on the VEM, which had a totally different view
for the previous ones. An algorithm named MIPSO was
adopted to solve themodelwithout knowing thenumber
of the signal sources. And several simulations with deep

analysis were given to illustrate the efficiency and advan-
tages of the proposed method. Following conclusions
were drawn:

4.1. Efficiencies

Themethod based on the VEMmaps the solution domain
of the DOA to an error space, which is totally different
from the current methods mapping the solutions to a
spatial spectra space. In this error space, only several solu-
tion parameters have the local minimum values which
are much lesser than the values around them. This fea-
ture of the error space provided the possibility that the
minimum value could be calculated by warm intelligent
optimization algorithm. Considering the fact that multi-
target (multi-angle) need to be found, an algorithm of
MIPSOwas adopted to find all the targets simultaneously.

4.2. Advantages

For the ULA, the method based on VEM and MIPSO
algorithm could find the solutions with similar accuracy
as the root-MUSIC method but much lesser time. For
the L-shaped array, the proposed method could calcu-
late the solutionswithmuch smaller RMSE than theMEMP
method.

4.3. Limitation and further work

The ratio between the sensors’ number and the snap-
shot should be set at a suitable value to guarantee the
efficiency of the VEM-MIPSO method. According to the
simulations in this paper, the good accuracy could be
obtained with sensors’ number of 47 and the snapshot of
10.

For the L-shaped array, the VEM-MIPSO method need
more time to finish the calculation than the MEMP
method, which was caused by the process of the MIPSO.
This limitation could be solved by improving the MIPSO
algorithm to accelerate the speed of the convergence of
the particles.

In this paper, the situations of the ULA and the L-
shaped array are analysed. And only the far-field narrow-
band signals are concerned. Further experiments could
be tried for different types of sensors’ array and signals.

The resolution of the VEM-MIPSO method among dif-
ferent DOAs could be refined by adjusting the parameter
δ in the future work.
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Appendices

Appendix 1

Considering (5), Equation (6) is rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{||yTi − cT (θi)||22
= ||wT

i × D̄ + wT
i × M−1 × D̃ − cT (θi)||22}

D = D̄ + D̂ =

⎡
⎢⎢⎢⎢⎢⎢⎣

d̄
T
r1

d̄
T
r2

...

d̄
T
rt

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

d̂
T
r1

d̂
T
r2

...

d̂
T
rt

⎤
⎥⎥⎥⎥⎥⎥⎦

D̃ = [d̃c1, d̃c2, · · · , d̃cM] = M × D̂ = M × [d̂c1, d̂c2, · · · , d̂cM]
(A1)

where d̄
T
ri , (i = 1, 2, · · · , t) are row vectors whose elements are

themean ofdTri , (i = 1, 2, · · · , t); d̂Tri , (i = 1, 2, · · · , t) are row vec-

tors removed d̄
T
ri from dTri . The transformation from D̂ to D̃ is a

linear one so that the columnvectors of d̃ci are uncorrelated and
their variances equal unity. Inotherwords, the covariancematrix
of d̃ci equals the identifymatrix as shown in (A2). The calculation
of matrixM is given Appendix 2.

E{d̃ci × d̃
T
ci} = It×t (A2)
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If we set {
di = wT

i × D̄
bTi = wT

i × M−1 (A3)

where di is a constant for a specific wT
i . So (A1) can be trans-

formed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
b̄
T
i

{||b̄Ti × D̃
∗ − c(θi)||22}

b̄
T
i = [bTi , di]

D̃
∗ =

[
D̃
1

]
=

[
d̃c1
1
, d̃c2
1
, · · · , d̃cM

1

]
= [d̃

∗
c1, d̃

∗
c2, · · · , d̃

∗
cM]

E{D̃∗ × D̃
∗T } = M × I(t+1)×(t+1)

(A4)
The reason why E{D̃∗ × D̃

∗T } = M × I(t+1)×(t+1) will be
explained in Appendix 3. According to the Karush-Kuhn-Tucker
(KKT) conditions (Boyd et al., 2006), the solution of (A4) can be
obtained at points satisfying

F(b̄
T
i ) =

M∑
j=1

2 × d̃
∗T
j × (b̄

T
i × d̃

∗
j − c(j; θi)) = 0 (A5)

where c(j; θi) is the value of jth element under parameter θi .
Newton’s method is used to solve (A6). The Jacobian matrix of
(A5) is

JF(b̄
T
i ) =

M∑
j=1

2 × d̃
∗
j × d̃

∗T
j (A6)

Therefore, the following approximative Newton iteration
(Luenberger 1997) is obtained as

b̄+
i = b̄i −

∑M
j=1 2d̃

∗
j (b̄

T
i d̃

∗
j − c(j; θi))∑M

j=1 2d̃
∗
j × d̃

∗T
j

=
∑M

j=1 d̃
∗
j × ri(j; θ)

M × I
= 1

M
× D̃

∗ × c(j; θi) (A7)

The curve of yTi can be calculated by

yTi = b̄
T
i × D̃

∗ = cT (θi) ×
(
1
M

× D̃
∗T × D̃

∗
)

(A8)

where M is the number of the column in D̃
∗
. Equation (A8) is

called VGM.

Appendix 2

In this appendix, we will introduce the method to transform
d̂ci/D̂ to d̃ci/D̃ using the Eigen-value decomposition (EVD)

of the covariance matrix E{D̃ × D̃
T } = E�ET , where E is the

orthogonal matrix of eigenvectors of E{D̃ × D̃
T } and � =

diag(λ1, λ2, · · · , λm) is the diagonal matrix of its eigenvalues.
Whitening can be done by

D̃ = �−1/2ET D̂ = MD̂ (A9)

where �−1/2 = diag(λ
−1/2

1 , λ
−1/2

2 , · · · , λ−1/2

m ). The number of the
eigenvalue kept in � is always determined by a threshold, i.e.
m is always less than t. However, two insufficiencies exist: (1)
small signals will be missed; (2) it is difficult to fix the threshold
especially when severe noises exist. In order to overcome these
insufficiencies,we setm equal to t in (A9) to keepall information.
Following, the procedure of transformation from D̂ to D̃ will be
given step by step:

Step 1: calculate the covariance matrix of D̂ as

C = D̂ × D̂
T

(A10)

Step 2: obtain the eigenvalues and eigenvectors of C by
using the eigenvalue decomposition.

[E,�] = EVD(C) (A11)

where E is the orthogonal matrix of eigenvectors of C, and � is
the diagonal matrix of its eigenvalues.

Step 3: calculate whiten matrix by

Mt×t = inv[sqrt(�)] × ET (A12)

Step 4: calculate whitening data set by

D̃ = Mt×t × D̂ (A13)

whereMt×t is an invertible matrix, whose inverse matrix is

M−1
t×t = E × sqrt(�) (A14)

Appendix 3

In this appendix, we will explain why

E{D̃∗ × D̃
∗T } = M × I(t+1)×(t+1) (A15)

From the definition in (A4), we have

D̃
∗ =

[
D̃
1

]
=

[
d̃c1
1
, d̃c2
1
, · · · , d̃cM

1

]
(A16)

whereM is column number of the matrix D̃, d̃
T
ci(i = 1, 2, · · · ,M)

are the column vectors in D̃. Then, we have

D̃
∗ × D̃

∗T =
[
d̃c1
1
, d̃c2
1
,
· · ·
· · ·,

d̃cM
1

]
×

⎡
⎢⎢⎢⎢⎢⎢⎣

d̃
T
c1 1

d̃
T
c2 1

...
...

d̃
T
cM 1

⎤
⎥⎥⎥⎥⎥⎥⎦

=
M∑
i=1

[
d̃ci
1

]
×

[
d̃
T
ci 1

]

=
M∑
i=1

⎡
⎣d̃ci × d̃

T
ci d̃ci

d̃
T
ci 1

⎤
⎦

=

⎡
⎢⎢⎢⎢⎣

M∑
i=1

d̃ci × d̃
T
ci

M∑
i=1

d̃ci

M∑
i=1

d̃
T
ci

M∑
i=1

1

⎤
⎥⎥⎥⎥⎦ (A17)

Because (A2), we have
M∑
i=1

d̃ci × d̃
T
ci = M × It×t (A18)

Because the transformation from x̂ci to x̃ci didnot change the
original amplitude, so we have⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

M∑
i=1

d̃ci = 0t×1

M∑
i=1

d̃
T
ci = 01×t

(A19)

Substitute (A18) and (A19) in (A17), we have (A15).


	1. Introduction
	2. Solving method
	2.1. Music model for DOA estimation (Zhou, Hu, et al., [-5pt][-5pt][]pdfmark=/DEST,linktype=anchor,View=/XYZ H.V,DestAnchor=RefCIT0014[2018]CIT0014)
	2.2. DOA estimation model based on VEM
	2.3. Solving algorithm
	2.4. The VEM-MIPSO method

	3. Simulation and analysis
	3.1. Analysis of the model
	3.2. Analysis of calculated results

	4. Conclusion
	4.1. Efficiencies
	4.2. Advantages
	4.3. Limitation and further work

	Acknowledgements
	Disclosure statement
	Funding
	References

