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ABSTRACT
In this paper, a bi-objective optimizationmodel is developed to inte-
grate the cell formation and inter/intra-cell layouts in continuous
space by considering fuzzy conditions to minimize the total cost of
parts relocations aswell as cells reconfigurations. The intra- and inter-
cell movements for both parts and machines using batch sizes for
transferring parts are related to the distance traveled through a rec-
tilinear distance in a fuzzy environment. To solve the proposed prob-
lem as a bi-objective mixed-integer non-linear programming model
is NP-hard, fourmeta-heuristic algorithmsbasedon amulti-objective
optimization structure are tackled to address the problem. In this
regard, not only Genetic Algorithm (GA), Keshtel Algorithm (KA) and
Red Deer Algorithm (RDA) are employed to solve the problem, but
also a novel hybrid meta-heuristic algorithm based on the benefits
of aforementioned algorithms is developed. Finally, by considering
some efficient assessment metrics of Pareto-based algorithms, the
results indicate that the proposed hybrid algorithm not only is more
appropriate than the exact solver but it also outperforms the per-
formance of individual ones particularly in medium- and large-sized
problems.
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1. Introduction and Literature Review

The facility design is a significant requirement in the field of manufacturing systems engi-
neering. Approximately, $250 billion is spent annually in the U.S for the facility designing,
planning, and re-planning [1–3]. Also, it is estimated that around 20–50% of the total cost
of manufacturing systems is attributed to material handling. The same source also reports
that effective planning can reduce such costs by over 10–30% [4–7]. Minimizing material
movementsmay be among the initial reasons for developing a Cellular Manufacturing Sys-
tem (CMS) [5–8]. In general, the CMS based on Group Technology (GT) is an approach to
apply the advantages of both flexible andmass production properties. Themain role of the
CMS is to assign a number of parts andmachines to each other to produce some cells on the
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basis of their similarities in the production process, design and geometrical characteristics
comprehensively [1,7–9].

Recent decades have seen a great deal of interest in employing different applications
of CMSs. There are numerous advantages of using the CMS included but not limited to
reduce the material transferring cost, the setup time, the delivery time, the lot size and the
amount of theWork-In-Process (WIP) inventory. Anothermain benefit is to better cause the
supervisory control and the improvement of the product quality and productivity [9–11].
These benefits can be accrued only if a cell configuration and a scheduling system of a CMS
are effectively designed. One of the crucial steps in designing a CMS is the Cell Formation
(CF) problem as a well-known work extensively studied in the literature [10–13]. Given a
definitionof aCF, it involves two fundamental tasks (i.e. part-family formation andmachine-
cell formation) tominimize someobjectives, such as the inter- and intra-cellmovements. As
indicated by these factors, the Exceptional Elements (EEs) are a common issue in a CMS of
manufacturing environments recognized as themajor obstacle in the cell formation and its
scheduling processes [12–15]. An EE can be defined generally as a product that needs to be
produced in more than one cell and causes inter-cell transfer of materials. In conclusion, a
well-knownobjective in a CFproblem is tominimize the number of EEs. There are also other
common objectives involving the minimization of the inter-cell material handling cost as
well as the materials flow.

The facility layout is also a key element in designing a CMS considering the layout of
machineswithin cells (intra-cell layout) and the layout of cells (inter-cell Layout) on the shop
floor. An efficient facility layout can reduce thematerial handling cost, work-in-process, and
throughput rate [13–17]. A competent layout not only enhances the system performance
but also minimizes around 40–50% of the production costs on average [16–19]. Although
minimizing the number of EEs or other common objectives (e.g. minimization of inter-cell
movement cost)may reduce flowsbetweencells, theydonotnecessarily lead toaminimum
of thematerial handling cost since the real parameters related to the facility layout problem
are ignored in the calculation of these objectives. Hence, incorporating the facility layout
problem in the CMS design process is of high significance. However, the layout design in a
CMS has not paid much attention since most of the relevant research only investigates the
CFP [20–24]. As stated in Alfa et al. [2], facility layout and CF decisions are interrelated and
tellingly addressing them simultaneously is important for the successful CMS design. How-
ever, each of these decisions is proven to be complex [21–25]. As a result, the simultaneous
addressing of these decisions is a difficult issue.

There are some new trends (e.g. the reliability of CMS) in recent studies. Most of them
either investigate some of these decisions or handle all of them, but in a sequential fashion
[24–28]. On the other hand, a majority of approaches in the area of facility layout and CF
problems to ease ofmakingmathematical formulation usually consider theminimization of
the number of inter- or intra-cell movements or both [26–29]. Accordingly, tominimize the
material handling cost, the exact information about the facility layout design in addition to
the notion of distance must be considered. Moreover, those approaches that aim at mini-
mizing the material handling cost usually apply unrealistic assumptions, such as the fixed
cells andmachines locations in the layout problem. Based on this drawback, the layoutmay
be inefficient. As such, for locating the machines in the manufacturing cell space, the line
formed locations are the only consideration and the machines are assigned to these posi-
tions in the majority of previous studies. As it may be evident, if assigning the number of
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machines to a cell cannot be a line formed, it turns into a U-form imposing additional costs
to the system [29–35].

Considering different real-life constraints and practical assumptions make the model
difficult to solve. Due to decisions of the proposed system as a type of tactical and oper-
ational levels, the computational cost is very important for the decision-makers of a CMS to
be less. Therefore, efficient solution algorithms are needed to address this dilemma. Meta-
heuristics are the popular feasible alternatives to solve this complicated problem form the
literature [33–39]. As one of the NP-hard problems, this chance even with low possibil-
ity always exists for a new meta-heuristic algorithm to better solve such a complicated
model to get a near-optimal solution in less time [35–40]. This reason motivates several
researchers to employ different types of meta-heuristics in this research area [37–43]. To
cover the limitations of several meta-heuristics employed in the literature, this study not
only uses Genetic Algorithm (GA) [27] as a well-known in the field and two recent meta-
heuristics, namely, Red Deer Algorithm (RDA) [18] and Keshtel Algorithm (KA) [29] but also
develops a newhybridmeta-heuristic algorithm to consider the benefits of these individual
algorithms.

Given a general view of other sections of this paper, its remaining is structured as fol-
lows. Problem definition and formulation is discussed in Section 2. The proposed solution
approaches including GA, RDA, KA and the developed hybrid meta-heuristic algorithm
are given in Section 3. Computational results and analyses of the algorithms are explored
in Section 4. Finally, concluding remarks and future research directions are provided in
Section 5.

2. ProposedModel

The aim of this model is to determine concurrently the formation of cells, the layout of
machines inside cells and the layout of cells on the shop floor indynamic conditions in away
that the total transportation cost of parts and reconfiguration cost of cells and the number
of EES are minimized. The proposed mixed-integer non-linear programming model with a
number of assumptions, parameters, and decision variables are discussed below.

2.1. Assumptions

• The flow between machines in each period is determined. This number is obtained
from the parts demand and parts operational paths as well as the batch size of parts
transportation.

• The parts are movedwithin the batches, in which the largeness of the batches per prod-
uct is known and constant for all periods. In addition, the size of the part batches is
assumed the same for both inter and intra-cell relocations.

• Thematerial handling cost is calculated according to center-to-center distance between
machines through a rectilinear distance.

• The material handling cost of inter and intra-cell movements for both parts and
machines is related to the distance traveled.

• The unit cost of inter and intra-cell movements for each part type is predetermined and
remain the same planning horizon.

• Theunit cost ofmachine relocationduring theperiods is constant andpredetermined for
each machine type. This cost includes opening, transferring, and resetting the machine.
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• The number of cells to be formed in each period is determined in advance. This predeter-
mined number of cells in the system is on the basis of the expectedworkload in each cell.
However, the shape of the cells is not predetermined and cells are flexibly configured
during the planning horizon.

• There is only one number of each machine type.
• The maximum capacity of cells is known and remains the same planning horizon.
• Machines are considered as squares of equal area and hence supposed to have a unit

dimension. It is examined that the proposed considerations provide a suitable approxi-
mation to the real-world conditions wheremachines are not exact squares or rectangles
[41–47]. The cells are considered in a rectangular shape.

• There is no excess inventory between the periods, delayed orders are not allowed and
demands per period must be supplied in that period.

• The efficiency of machines and production is assumed to be 100%.

In the following section, the sets, parameters and decision variables of the proposed
model are presented. It should be noted that the tilde sign (∼ ) is utilized for fuzzy
parameters as one of the main innovations of this study in this field.

Sets:

i, i′ = {1, 2, . . . ,m} Index set of machines
j = {1, 2, . . . , n} Index of parts
l, k, k′ = {1, 2, . . . , c} Index set of cells
h = {1, 2, . . . , ,H} Index set for time periods

Parameters:

D̃jh Demand for part type j in period h
Bj Largeness of batch for the transportation of part type j
˜Cjintra Intra-cell material handling cost for transporting part j per unit distance ($/unit)
˜Cjinter Inter-cell material handling cost for transporting part j per unit distance ($/unit)
C̃i Relocation cost of machine i($/unit)
Rij Operation number done on part j using machine i
E Horizontal length of the shop floor (i.e. length of the shop floor)
F Vertical length of the job shop (the width of the shop floor)
SP Setofpairs (i, j) such thataij ≥ 1 (the set of non-zeroelementsof apart-machine

matrix)
NM Maximum number of machines relocated in each cell per period.
N Appropriate large positive number
Akl , Bkl Zero and one random variables
Aii′h, Bii′h Zero and one random variables
f jii′h Number of trips for moving part type j between machines i and i′ in period h

f jii′h =
{
[D̃jh/Bj] if Ri′j − Rij = 1

0 if Ri′j − Rij �= 1
(1)
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Decision variables:

Xikh =
{
1
0

If machine i is assigned to cell k in period h

Otherwise

Yjkh =
{
1
0
If part j is assigned to cell k in period h

Otherwise

Zih =
{
1
0
If machine i relocates during periods h and (h+ 1)

Otherwise

Uijkh =
{
1
0
If Yjkh = 0 and Xikh = 1

Otherwise

Vijkh =
{
1
0
If Yjkh = 1 and Xikh = 0

Otherwise

xih Horizontal coordinate of the center of machine i in period h
yih Vertical coordinate of the center of machine i in period h
p1kh Horizontal coordinate of the left side of cell k in period h
p2kh Horizontal coordinate of the right side of cell k in period h
q1kh Vertical coordinate of the bottom side of cell k in period h
q2kh Vertical coordinate of the top side of cell k in period h

Therefore, the relocation cost of part j between machines i and i′ in period h, regarding
inter-cell or intra-cell movement can be determined below:

If Xikh, Xi′kh > 0, this cost equals to Equation (2) as follows:

C̃jii′h = (|xih − xi′h| + |yih − yi′h|)˜Cjintra (2)

If Xikh.Xi′kh = 0 andXikh.Xi′k′h > 0, this cost equals to Equation (3) as follows:

C̃jii′h = (|xih − xi′h| + |yih − yi′h|)˜Cjinter (3)

2.2. Mathematical Formulation

With respect to input parameters and variables, the presented nonlinear model for this
problem is as follows:

Min
H∑

h=1

n∑
j=1

m∑
i=1

m∑
i′=1

f jii′hC̃
j
ii′h +

H∑
h=2

m∑
i=1

C̃iZih (4)
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Min
H∑

h=1

C∑
k=1

∑
(i,j)∈sp

(Uijk + Vijk)

2
(5)

s.t.
C∑

k=1

Xikh = 1, i = 1, 2, . . . ,m, ∀h (6)

C∑
k=1

Yjkh = 1, j = 1, 2, . . . , n,∀h (7)

1 ≤
m∑
i=1

Xikh ≤ NM, k = 1, 2, . . . ,C, ∀h (8)

NZih ≥ |xih − xi(h+1)| + |yih − yi(h+1)|∀i, h < H. (9)

|xih − xi′h| + |yih − yi′h| ≥ 1 (10)⎧⎪⎪⎨⎪⎪⎩
xih ≥ p1kh − N(1 − Xikh)
xih ≤ p2kh + N(1 − Xikh)
yih ≥ q1kh − N(1 − Xikh)
yih ≤ q2kh + N(1 − Xikh)

∀i, k, h (11)

⎧⎪⎪⎨⎪⎪⎩
p1kh ≥ 0
q1kh ≥ 0
p2kh ≤ E
q2kh ≤ F

∀k, h (12)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p1kh − p2lh + NAkl + NBkl ≥ 0

p2kh − p1lh − NAkl − N(1 − Bkl) ≤ 0
q1kh − q2lh + N(1 − Akl) + NBkl ≥ 0

q2kh − q1lh − N(1 − Akl) − N(1 − Bkl) ≤ 0
0 ≤ k < l ≤ C

(13)

Xikh, Yjkh, Zih,Uijkh, Vijkh = 0 or 1 (14)

xih, yih, p
1
kh, p

2
kh, q

1
kh, q

2
kh ≥ 0 and Integer (15)

The first objective function represents the intra- and inter-cellular material transferring
costs. The following term denotes the cells reconfiguration cost that may vary from period
to period. The second objective function correlates with minimizing the number of excep-
tional parts. The coefficient of 1\2 in this relationship is due to the double calculation of
decision variables when there are equal to 1. Constraint (6) guarantees that each machine
allocated to only one cell. Constraint (7) shows that each part is allocated to a part family.
Thenumber ofmachines in a single cell is limitedbyConstraint (8). Constraint (9) shows that
by relocatingmachine type i during periods h and (h + 1), variable Zih equals 1. Constraint
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(10) according to the machine dimension is assumed to be 1×1, causes the machines do
not overlap. Constraint (11) makes that each machine will be inside its corresponding cell
space. Constraint (12) shows that the cells are placed inside the job shop space. Constraint
(13) shows that the cells do not overlap. Constraints (14) and (15) determine the type of
problem variables.

2.3. Proposed Fuzzy Circumstances

In this section, themathematicalmodel presented in this paper is amixed-integer program-
ming model. Since an inevitable factor is inevitable in the real world of uncertainty, most
of the parameters used are considered triangular fuzzy numbers because of their uncertain
nature. In general, the fuzzy programming problem must first be transformed into a defi-
nite equivalent problem and then solvedwith standardmethods and the optimal answer is
obtained. As a result, the final solution to the problem is obtained with respect to the fuzzy
structure of the problem.

In the following section, a two-step approach is used to solve themodel. In the first step,
the proposed model with fuzzy parameters is transformed into a certain auxiliary model
by a method proposed by Khimens et al. [48]. In the second stage, we solve the multi-
objective certain model by using the Torabi-Hosseini method [49], which was obtained in
the first stage. Khimens et al. [48] presented a method for ranking fuzzy numbers. In this
method, defining the fuzzy parameters of the objective functions is calculated based on
the concepts of the expected distance and the expected value for triangular fuzzy numbers
C̃ = (Cp, Cm, Co) based on the following relations.

EI(C̃) = [Ec1, E
c
1] =

[
1
∫
0
f−1
c (x)dx ,

1
∫
0
g−1
c (x)dx

]
=
[
1
∫
0
(x(cm − cp) + cp)dx

]
=
[
1
∫
0
(x(co − cm) + co)dx

]
=
[
1
2
(cp + cm),

1
2
(cm + co)

]
(16)

EV(C̃) = Ec1 + Ec1
2

= cp + 2cm + co

4
(17)

Based on Khaminz’s method, we consider Equation (19) for Constraint (ãiX ≥ b̃i; i =
1, 2, . . . , I).(

α
aoi + ami

2
+ (1 − α).

api + ami
2

)
X ≥

(
α
boi + bmi

2
+ (1 − α).

bpi + bmi
2

)
(18)

For equal constraints (ãiX = b̃i; i = 1, 2, . . . , I), we convert into the certain equivalent con-
straints as represented by:(

α

2
.
aoi + ami

2
+
(
1 − α

2

)
.
api + ami

2

)
X ≥

(
α

2
.
boi + bmi

2
+
(
1 − α

2

)
.
bpi + bmi

2

)
(19)

((
1 − α

2

)
.
aoi + ami

2
+ α

2
.
api + ami

2

)
X ≥

((
1 − α

2

)
.
boi + bmi

2
+ α

2
.
bpi + bmi

2

)
(20)
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After defuzzifying by the help of Equation (17), the membership function for the minimiza-
tion objective function is obtained using Torabi-Hessian’s method of Equation (21).

μF =

⎧⎪⎪⎨⎪⎪⎩
1 if Z < Zα−PIS

Zα−NIS − Z

Zα−NIS − Zα−PIS
if Zα−PIS < Z < Zα−NIS

0 if Z > Zα−NIS

(21)

Then, the membership function for the maximization objective function is obtained by:

μF =

⎧⎪⎪⎨⎪⎪⎩
1 if Z > Zα−PIS

Zα−NIS − Z

Zα−PIS − Zα−NIS
if Zα−NIS ≤ Z ≤ Zα−PIS

0 if Z > Zα−NIS

(22)

where the positive ideal solution (α − PIS) and the negative ideal solution (α − NIS) for
each objective function and at the level of feasibility (α). In the following section, we aim
to present the proposed solution algorithms for solving the developed model.

3. Proposed Solution Algorithm

As stated in [36], the CMS schedulingmodels are non-polynomial timehard (NP-hard) prob-
lems that are difficult to solve using different types of exact methods. In addition to its
natural complexity, considering dynamic conditions increase its difficulty and combinato-
rial nature. Hence, meta-heuristic approaches should be employed to obtain a satisfying
solution in a reasonable time. Several algorithms have been applied in the context of the
DCMS design. One of themost popular algorithms is the Genetic Algorithm (GA). Thismoti-
vates us to use the GA in this study based on the previous studies in the literature [50–55].
Due to aNo Free Lunch theory, this chance for a newmeta-heuristic algorithm always exists
to reveal a better output in comparisonwithother existing algorithms [23]. In regards to this
theory, this study employs two recent nature-inspired meta-heuristics including Keshtel
Algorithm (KA) andRedDeerAlgorithm (RDA) [56, 57]. At last but not least, themain innova-
tion of this study is to propose a novel hybridmetaheuristic based on the advantages of the
aforementioned algorithms. Here, first of all, due to the proposed multi-objective model,
the structure of multi-objective optimization to be used in all algorithms is described. The
next is the encoding plan of meta-heuristics and after that, the procedures of the pro-
posed hybrid meta-heuristic algorithm are addressed in the following sub-sections. Note
that since there is no innovation in the procedures of the GA, KA and RDA, individually,
more explanation anddetails about these three algorithmsare referred to theirmainpapers
[53–55,58–61].

3.1. Multi-objective Optimization

The proposed problem requires a trade-off between the objectives. In this case, the answer
is a set of solutions, called Pareto-optimal solutions set. This set includes Pareto-optimal
solutions, which explains the best trade-offs between the objectives. A solution dominates
the other solution when it had better than in all objective functions [59–65]. Furthermore,
the selection of the best solution in the first front of solutions is considered by calculating
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Figure 1. General view of the solution representation.

Figure 2. Detailed view of solution representation in the first step.

the crowding distance between solutions. To get the Pareto-optimal solutions, we set a
normal constraint method presented by [21].

3.2. Solution Representation

To show that how the constraints of the model will be handled by the presented solution
algorithms, an encoding procedure is used to consider the solution representation in the
format of a string-based presentation [64–66]. The solution can be a set of binary and inte-
ger numbers, matrices, or the combination of characters [67–69]. These ways are viewed to
determine how a problem is formulated in the form of an algorithm and what operators of
meta-heuristics are applied.

The first step of the proposed encoding procedure includes a matrix with H rows andM
columns, which can be divided into the following sub-matrices.

• Sub-matrix of Z is related to the assignment of machines for manufacturing cells. This
sub-matrix consists of H (i.e. the number of periods) rows and M (i.e. the number of
machines) columns. Each element of this matrix is a number between 1 and C (i.e. the
number of cells) and element Zih represents the number of cells includingmachine type
i in period h.

• Sub-matrix X is related to the horizontal component of themachines’ location. This sub-
matrix also consists of H rows andM columns. With respect to the machines’ dimension
(1×1), one integer is sufficient to represent per horizontal and vertical components of
themachines. Each element of thismatrix is a number between 1 and E (i.e. the length of
the job shop) and element xih represents the horizontal component of location involving
machine i in period h.

• Sub-matrix Y is related to the vertical component of the machines’ location. This sub-
matrix also consists of H rows and M columns. Each element of this matrix is a number
between 1 and F (i.e. the width of the job shop) and element yihrepresents the vertical
component of location involving machine i in period h.

Figures 1 and 2 illustrate the general and detailed views of the solution presentation of
the algorithms related to themachines alignment for themanufacturing cells, respectively.
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Figure 3. Detailed view of the solution representation in the second step

Theconsidered solution for the second stepof this problem includes amatrixwithH rows
and N columns. Its detailed structure related to parts alignment to part families is shown in
Figure 3.

3.3. Proposed Novel HybridMeta-heuristic Algorithm (H-RDKGA)

As indicated from literature, the KA is very good at doing the exploitation action [56,70].
It seems that the swirling process can be done instead of two processes including roaring
and fighting in RDA. Accordingly, for each male, the closest neighbor is specified and the
swirling action is done. Due to the mating process, the GAmechanism is considered in this
regard. Having a brief illustration, the KA is chosen as the intensification properties as well
as the GA is measured the diversification phase. This opinion is employed to examine the
proposed method with their individual methods and also other feasible alternatives for
combinations. Givenmoredetails of proposedH-RDKGA, apseudo-code is providedas seen
in Figure 4.

4. Computational Results

A comparative study is presented in this section. First of all, to enhance the performance
of employed metaheuristics and having a fair comparison, a full factorial design method
is applied to tune the algorithms’ parameters properly. After that, an extensive com-
parison among meta-heuristics based on different criteria is presented in the following
sub-sections.

4.1. Tuning theMeta-heuristics

For tuning the parameters of the meta-heuristics, we use the Design of Experiment (DOE)
method discussed in Montgomery [46]. The reason why we use this method compared to
more efficient calibration techniques is that themethod is simple and coarse [51–55,58,59]
andhence, the direct impact of the algorithms on the problem solutions can be understood
without the presence of a good calibration technique.

As given in the solution algorithm, the main parameters under consideration for the GA
are the population size, maximum number of iterations, mutation and crossover rates. In
the proposed KA, the population size,maximumnumber of iterations, the percentage ofN1
andN2,maximumnumber of swirling are the key parameters. As such, themain parameters
of the RDA are the population size, maximum number of iterations, number of males, and
the rate of alpha, beta and gamma. At the last, the proposed parameters of the H-RDKGA
are only the population size, maximum number of iterations, the number of males and the
maximum number of swirling. We use the full factorial design to evaluate the different sets
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Figure 4. Pseudo-code of the H-RDKGA.

of values considered for conducting the DOE (given in Table 1). These ranges of values are
decided based on the parameter settings provided in the literature [59–69].

4.2. Comparison among EmployedMetaheuristics

This sub-section aims to probe the effectiveness and efficiency of the presented algorithms.
Due to it, each meta-heuristic algorithm is performed in all the test problems for 30 times
runs. In this case, the behavior of the algorithms in the two objective functions during 30
run times is considered. The behavior of the algorithms in terms of computational time
is presented in Figure 5. As shown in this figure, the behavior of the algorithms is as the
same overall. The proposed hybrid algorithm and KA show competitive results in this item.
In general, the best algorithm in this criterion is KA. However, the worst behavior can be
concluded from the RDA in most of the testes.

Finally, the average of outputs is saved and utilized to be evaluated by the assessment
metrics of Prato-basedalgorithms. In this regard,DiversificationMetric (DM), SpreadofNon-
dominance Solutions (SNS), Data Evolvement Analysis (DEA) and Percentage of Dominance
(POD) are utilized. In all of them, a higher value brings a better capability of algorithms. The
details about the evaluationmetrics can be referred to some recent studies such as [65–69]
Based on the calculation of these metrics, the outputs of the algorithms for test problems
in medium and large sizes are noted in Table 2.
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Table 1. Tuning the meta-heuristics.

Meta-heuristics Parameters Levels Tuned value

GA Population size 100 150 200 200
Maximum No. of iterations 300 500 700 500
Rate of mutation 0.05 0.15 0.25 0.15
Rate of crossover 0.6 0.7 0.8 0.8

KA Population size 100 150 200 100
Maximum No. of iterations 300 500 700 300
Percentage of N1 0.1 0.2 0.3 0.1
Percentage of N2 0.4 0.5 0.6 0.6
Maximum No. of swirling 5 10 15 10

RDA Population size 100 150 200 150
Maximum No. of iterations 300 500 700 700
No. of males 15 25 30 25
Alpha 0.5 0.6 0.7 0.6
Beta 0.7 0.8 0.9 0.7
Gamma 0.8 0.9 1 0.8

H-RDKGA Population size 100 150 200 150
Maximum number of iterations 300 500 700 500
Number of males 15 25 30 30
Maximum number of swirling 5 10 15 15

Figure 5. Behavior of algorithms in terms of computational time.

Later, the obtained results for each problem are converted to the Relative Percentage
Deviation (RPD) computed by:

RPD = |Algsol − Bestsol|
Bestsol

(23)

where Algsol is the output of algorithm and Bestsol is the best value ever found in the
problem size. It should be noted that the lower value for the RPD is preferred.
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Table 2. Evaluation metrics (i.e. DM, SNS, DEA and POD) to the performance of the algorithms.

DM SNS DEA POD

Instances GA KA RDA H-RDKGA GA KA RDA H-RDKGA GA KA RDA H-RDKGA GA KA RDA H-RDKGA

3*5 14,962 14,389 16,452 16,765 2498 2267 1748 2699 0.18 0.16 0.12 0.15 0.16 0.22 0.14 0.22
4*6 17,641 17,275 19,743 18,746 6122 7210 5426 7495 0.20 0.12 0.18 0.12 0.18 0.18 0.19 0.21
5*8 8124 6833 7491 8945 7445 7296 6948 8155 0.24 0.22 0.26 0.18 0.22 0.20 0.10 0.18
6*9 34,685 29,164 34,112 35,647 3485 3105 2915 4039 0.28 0.14 0.22 0.14 0.15 0.14 0.11 0.16
7*11 13,418 12,742 13,671 14,289 2143 1834 7501 2867 0.16 0.26 0.18 0.16 0.17 0.18 0.16 0.12
8*13 24,914 25,199 23,749 28,763 1077 1282 675 2049 0.24 0.12 0.12 0.19 0.19 0.14 0.12 0.18
10*12 26,493 22,102 25,761 26,714 5482 4912 4466 4288 0.18 0.14 0.20 0.22 0.22 0.16 0.14 0.12
11*13 31,749 31,054 32,144 33,849 6388 5187 5514 6382 0.26 0.18 0.14 0.18 0.22 0.18 0.14 0.16
12*15 4784 7401 6195 7225 6237 5853 6432 7528 0.14 0.22 0.20 0.35 0.20 0.16 0.08 0.22
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Figure 6. Means plot and LSD intervals to specify the RPD for the evaluationmetrics (i.e. DM(a), SNS(b),
DEA(c) and POD(d)).to compare the algorithms.
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In the end, to verify the statistical validity of the results, we perform an analysis of
variance (ANOVA) method to accurately analyze the results (as seen in Table 2 based on
the RPD). The results demonstrate that there is a clear statistically significant difference
between the performances of the algorithms. Themeans plot and LSD intervals (at the 95%
confidence level) for all methods are shown in Figure 6. The results show the superiority of
the proposed hybrid algorithm in all assessment metrics in this study.

5. Conclusion

The dynamic cell formation decision-making seeks to optimize the layouts of machines
and the right allocations of products flow using a simplified objective function to formu-
late themanufacturing system. In many contexts, however, and perhaps most especially in
developing countries such as Iran where the management of manufacturing system is of
particular concern, such a simplified approach to dynamic cell formation is failing to deliver
satisfactory all outcomes under the recent advances of the supply chain and manufactur-
ing technologies. To this end, a practical cell formation decision-making model in a fuzzy
environment was introduced by this study. More practicality and efficiency need capable
algorithms for this complicated optimization problem, which are robust and computation-
ally manageable. Hence, a novel hybrid meta-heuristic algorithm based on the advantages
of GA, KA and RDA simultaneously, is proposed to compare with the general ones.

In this paper, a newbi-objectivemixed-integer non-linear programmingmodel was pre-
sented to consider the dynamic cell formation and inter/intra-cell layouts in the continuous
space simultaneously. The purpose of themodel was to determine concurrently the forma-
tion of cells and the intra- and inter-cellular layouts in a way that the total transportation
cost of parts, the reconfiguration cost of cells, and the number of exceptional elements
(EEs) wereminimized. One of themain contributions of the presentedmodel was the fuzzy
conditions related to some parameters. In this regard, a Khimens’ method was utilized to
de-fuzzify the uncertain parameters. As a complicated optimization problem with several
real-life constraints and operational decisions that should be taken in less time, four dif-
ferent meta-heuristics were employed to tackle the problem. Another innovation of this
study was to propose a novel hybrid meta-heuristic algorithm based on the advantages of
GA, KA and RDA simultaneously. The results showed that the proposed hybrid algorithm,
called H-RDKGA, showed a better performance in comparisonwith itsmain individual algo-
rithms. There are several recommendations for future directions of this study. For example,
it is interesting to integrate the proposed model with a scheduling problem. The other
approach is to use a two-stage ormulti-stage stochastic programmingmethod to tackle the
uncertainty. From the aspect of the novel proposed hybrid algorithm, more in-depth anal-
yses by other large-scale optimization problems may be considered. At last but not least,
newmeta-heuristics can be suggested to compare the results of the proposed algorithms.
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