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We study the topology of the space of metrics of positive scalar curvature

on a compact manifold. The main tool we use for constructing such metrics is the

surgery technique of Gromov and Lawson. We extend this technique to construct

families of positive scalar curvature cobordisms and concordances which are

parametrised by Morse functions and later, by generalised Morse functions. We

then use these results to study concordances of positive scalar curvature metrics on

simply connected manifolds of dimension at least five. In particular, we describe

a subspace of the space of positive scalar curvature concordances, parametrised

by generalised Morse functions. We call such concordances Gromov-Lawson

concordances. One of the main results is that positive scalar curvature metrics which

are Gromov-Lawson concordant are in fact isotopic. This work relies heavily on

contemporary Riemannian geometry as well as on differential topology, in particular

pseudo-isotopy theory. We make substantial use of the work of Eliashberg and

Mishachev on wrinkled maps and of results by Hatcher and Igusa on the space of .

generalised Morse functions.
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CHAPTER I

INTRODUCTION

1.1 Why Positive Scalar Curvature?

In the 2-dimensional setting, scalar eurvature is a fairly intuitive coneept. Round spheres

are positively curved, planes and cylinders have no curvature while a saddle surfaee displays cur-

vature whieh is negative. Geometrieally then, positive scalar curvature can be thought to make a

surface close in on itself whereas negative scalar curvature causes it to spread out. The topolog-

ieal eonsequenees of this are evident from the classical theorem of Gauss-Bonnet. This theorem

relates the scalar curvature R, of a compact oriented Riemannian 2-manifold lvI, with its Euler

characteristic X(JvJ) by the formula

~ r R=X(M).
47f .1M

It follows that a closed surface with non-positive Euler characteristic, such as a torus, does not

admit a metric of strictly positive (or negative) scalar curvature. Similarly, a surface with positive

Euler characteristic such as a sphere cannot have scalar curvature which is everywhere non-positive.

From the Uniformisation Theorem we know that every closed surface admits a metric of constant

scalar curvature. This implies the following classification result: A closed surface admits a metric

of positive, zero or negative scalar curvature if and only if its Euler characteristic is respectively

positive, zero or negative.

In higher dimensions, the relationship between curvature and topology is much more com-

plicated. The scalar curvature is one of three curvatures which are commonly studied, the others

being the Ricci and sectional curvatures. These curvatures vary greatly in the amount of geometric
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information they carry. The sectional curvature is the strongest and contains the most geometric

information. Conditions such as strict positivity or negativity of the sectional curvature impose

severe topological restrictions on the underlying manifold. The scalar curvature on the other hand,

is the weakest of these curvatures. One piece of geometric information it does carry, concerns the

volume growth of geodesic balls. In particular, the scalar curvature R at a point of a Riemannian

n-manifold X, appears as a constant in an expansion

Vol (B x (c) ) R 2
------'--------'--.:.,--1- c + ...
Vol(BJRn(c)) - 6(n + 2) ,

comparing the volume of a geodesic ball in X with the corresponding ball in Euclidean space, see

[12]. Thus, positive scalar curvature implies that small geodesic balls have less volume than their

Euclidean counterparts while for negative scalar curvature this inequality is reversed.

VVe will be interested in metrics of positive scalar curvature and in the problem of whether

or not a given manifold admits such a metric. At this point, the reader may well ask why we

focus on positivity. \iVhy not consider metrics of negative, non-negative or zero scalar curvature?

As a partial justification, we point out that there are no obstructions to the existence of metrics

of negative scalar curvature in dimensions;:::: 3, see [29]. Furthermore, any closed manifold which

admits a metric whose scalar curvature is non-negative and not identically zero, always admits

a metric of positive scalar curvature. This follows from the Trichotomy theorem of Kazdan and

Warner, see [25] and [26]. For a more thorough discussion of this matter, see section 2 of [36].

The existence problem for metrics of positive scalar curvature has been extensively stud-

ied. In the early 1960s, Lichnerowicz discovered that on a compact spin manifold, positive scalar

curvature of the metric implies that the analytic index of the Dirac operator must be zero, see

[28]. It then follows from the Atiyah-Singer Index Theorem that any compact spin manifold with

non-vanishing A-genus does not admit a metric of positive scalar curvature. In the 1970s, this fact

was generalised by Hitchin in [18], who showed that the index of the Dirac operator for a compact

spin manifold X, of dimension n, is represented by an element a(X) in the real K-theory group

KG". As a geometric consequence, Hitchin exhibits exotic spheres (starting in dimension nine)

which do not admit metrics of positive scalar curvature.

The other side of this problem concerns the construction of positive scalar curvature met-

rics when no obstructions exist. The principle tool for doing this is known as the Surgery Theorem.
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This theorem was proved in the late 1970s by Gromov and Lawson [14] and, independently, by

Schoen and Yau [38]. It provides an especially powerful device for building positive scalar curvature

metrics. Before discussing this any further, we should say a few words about surgery.

A p-surgery (or codimension q + I-surgery) on a manifold X of dimension n is a process

which involves removing an embedded product 5 P x DCJ+l and replacing it with DP+l x 5 CJ , where

p + q + 1 = n, see section II.3 for details. The result of this is a new n-dimensional manifold

X' whose topology is usually very different from that of X. Importantly, surgery preserves the

cobordism type of the original manifold. This means that if X' is obtained from X by surgery,

there exists an n + I-dimensional manifold whose boundary is a disjoint union of X and X'. In

Fig. 1.1 we show a cobordism between a sphere 52 and a torus T 2
. The torus is obtained from the

sphere by a O-surgery.

8
~---- -

'" .... -- ". . :-~ ..,- ,~ ..........
/ "r,", ,

, ;, ~ .' "/0

............ ". :_" :;.: ..~ ..... ,

- ----- --

Figure 1.1: A cobordism of the sphere 52 and the torus T 2

Given a manifold X which admits a metric of positive scalar curvature, the Surgery Theo-

rem gives a method for constructing further metrics of positive scalar curvature on every manifold

which can be obtained from X by surgery in codimension ;::: 3. Under some restrictions, this in-

cludes every manifold which is cobordant to X. The Surgery Theorem therefore led to a dramatic

increase in the number of examples of manifolds which were known to admit metrics of positive

scalar curvature, effectively moving the problem from one of individual manifolds to one of cobor-

dism classes. Since then, there has been a great deal of success in classifying which manifolds

admit positive scalar curvature metrics, see [36] for a survey of this problem. Of particular interest

to us is the case when X is a simply connected manifold of dimension;::: 5. Here, the question of

when X admits a positive scalar curvature metric is now completely answered, see [14], [36], [39].
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In particular, when X is not a spin manifold, X always admits a such a metric and in the case

when X is spin, X admits a metric of positive scalar curvature if and only if the above mentioned

obstruction a(X) vanishes.

vVe conclude this section with some words about the analogous question for positive Ricci

and sectional curvatures. Although some important progress has been made, the problem of

constructing examples of metrics with positive Ricci and, in particular, positive sectional curvature

is a very difficult one. There is no real analogue of the Surgery Theorem here as these curvatures

do not exhibit the same flexibility as the scalar curvature. Positive Ricci and sectional curvatures

do not behave well under surgery, as the following example shows.

Example 1.1. The manifold lRpn admits a metric which is locally isometric to the round metric

on sn. 'Vhen n :;;. 2, it therefore has positive sectional, Ricci and scalar curvatures. By taking a

connected sum of two copies of lRpn, we obtain a new manifold lRpn#lRpn. From the theorem

of Van Kampen we know that, unlike lRpn, this new manifold has infinite fundament<tl group.

Assuming n :;;. 3, the Surgery Theorem allows us to conclude that this manifold also admits a

metric of positive scalar curvature. Indeed, we could take as many connected sums as we wished

and still be confident that the resulting manifold admits a metric: of positive scalar curvature.

According to the theorem of Bonnet-lVleyers however, positive sectional or Ricci curvature on

a complete connected Riemannian manifold forces the fundamental group to be finite, see [34,

Chapter 6, Theorem 25]. Hence, this manifold admits no metric: of positive Ricci or sectional

curvature.

Away from the classification problem, there are many other interesting questions in the

area of positive scalar curvature where far less is known. In the next section we will discuss some

of these.

1.2 Background

Henceforth, all manifolds are assumed to be compact and connected. Furthermore, the

term positive scalar curvature will often be abbreviated as psc. Metrics of positive scalar curvature

will usually be referred to as psc-rnetTics and manifolds which admit such metrics as psc-man~folds.
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1.2.1 The space of psc-metrics

Let X be a smooth closed manifold of dimension n. We denote by Riem(X), the space

of Riemannian metrics on X, with its standard Coo topology. The set of all psc-metrics on X is

denoted Riem+(X) and is an open subset of Riem(X). In these terms, the above classification

problem can be thought of as the problem of determining for which X, the space Riem+(X) is

non-empty. In general very little is known about the topology of the space Riem+ (X). This leads

to the first problem we wish to consider.

Question 1.2. What is the topology of the space Riem+ (X)? In partic'ulaT', is this space path

connected and, if not, how many path components does it have?

Some results have been obtained about this space when X = sn. It is known that

Riem+(S2) is contractible (as is Riem+(lRp2)), see [36], and recent work by Botvinnik and Rosen­

berg indicates that this is also the case for Sa. \iVhen n ~ 4, the only known results are at the level

of path connectedness. For example, Carr shows in [4] that Riem+(S4k-1) has an infinite number

of path components when k ~ 2.

Suppose W is a smooth compact manifold and 8lV # 0. The question of whether or not

the space Riem+ (liV) , of psc-metrics on lV, is non-empty is not such an interesting question. It

turns out that, without some condition on the boundary, liV will not only always admit a metric

of positive scalar curvature, but will in fact admit a metric of positive sectional curvature! This

is a result of Gromov, see Theorem 4.5.1 of [13]. Thus, we will impose some boundary conditions

on W. We denote by Riem+(W, oW), the subspace of Riem+(W) consisting of psc-metrics which

have a product structure near 8lV. This means that if 9 E Riem+(lV, oW), g = glaw + dt 2 near

oW. Here glaw is the metric induced by the inclusion of aT-V into W.

1.2.2 Isotopy and concordance

When studying the space Riem+(X), one is immediately confronted with the notions of

isotopy and concordance. Metrics which lie in the same path component of Riem+ (X) are said to

be isotopic. Two psc-metrics go and 91 on X are said to be concordant if there is a psc-metric 9 on

the cylinder X x I (I = [0,1]), so that 9 = 90 + dt2 near X x {O} and 9 = 091 + dt 2 near X x {I}.

It is well known that isotopic metrics are concordant, see Lemma 11.2 below. It is also known that

concordant metrics need not be isotopic when dim X = 4, where the difference between isotopy
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and concordance is detected by the Seiberg-Witten invariant, see [37]. However, in the case when

dim X ::::: 5, the question of whether or not concordance implies isotopy is an open problem and

one we will attempt to shed some light on.

Before discussing this further, it is worth mentioning that the only known method for

showing that two psc-metrics on X lie in distinct path components of Riem+ (X), is to show

that these metrics are not concordant. For example, Carr's proof in [4], that Riem+ (S4k-l)

has an infinite number of path components, involves using index obstruction methods to exhibit

a countably infinite collection of distinct concordance classes on S4k:-l. This implies that the

space Riem+ (S4k:-l) has at least as many path components. See also Example 1.6 below for

the case when k = 2. In [3], the authors show that if X is a connected spin manifold with

dim X = 2k+ 1 ::::: 5 and if 'ifl (X) is non-trivial and finite, then Riem+ (X) has infinitely many path

components provided Riem+ (X) is non-empty. Again, this is done by exhibiting infinitely many

distinct concordance classes. For a general smooth manifold X, understanding 'ifo(Riem+(X)) is

contingent on answering the following open questions.

Question 1.3. Are there more concordance classes undetected by the inde:J: theory?

Question 1.4. When are concor"dant metrics isotopic?

For more on the first of these problems, the reader is referred to [40] and [36]. We will

focus our attention on the second problem.

A fundamental difficulty when approaching question 1.4 is that an arbitrary concordance

may be extraordinarily complicated. For example, let gs, s E I denote an isotopy in the space

Riem+(Sn). After an appropriate rescaling, see Lemma II.2, we may assume that the warped

product metric h = gt + dt2, on the cylinder sn x I, has positive scalar curvature and a product

structure near the boundary, i.e. is a concordance of go and gl. Now let g be any psc-metric on the

sphere sn+l (this metric may be very complicated indeed). It is possible to construct a psc-metric

g on sn x I by taking a connected sum

g = h#g,

see [14]. As this construction only alters the metric Ii on the interior of the cylinder, the resulting

metric, g, is still a concordance of go and gl, see Fig. 1.2. Unlike the concordance h however,

g could be arbitrarily complicated. In some sense, this makes g "unrecognisable" as an isotopy.
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Consequently, we will not approach this problem at the level of arbitrary concordance. Instead,

we will restrict our attention to concordances which are constructed by a particular application of

the surgery technique of Gromov and Lawson. Such concordances will be called Gromov-Lawson

concordances. Before discussing the relationship between surgery and concordance, it is worth

recalling how the surgery tcchnique alters a psc-metric.

Figure I.2: The concordance g on sn x I, formed by taking a conncected sum of metrics 1L and g.

I.2.3 Surgery and positive scalar curvatv.re

vVe begin by stating the Surgery Theorem of Grolllov-Lawson and Schoen-Yau.

Surgery Theorem.([14], [38]) Suppose X admits a psc-rnetric and X' is a manifold which is

obtained from. X by s'llrgery in codimension :::- 3. Then X' admits a psc-metric also.

In their proof, Gromov and Lawson show that apse-metric 9 on X can be replaced with a psc­

metric gstd which is standard in a tubular neighbourhood of the embedded surgery sphere. More

precisely, let dB;, denote the standard round metric on the sphere sn. \Ve denote by g[';,,. (0), the

metric on the disk Dn which, near aDn, is the Riemannian cylinder 02dB;'_1 + dr2 and which near

the centre of D n is the round metric 02dB.;'. The metric g~~,. (0) is known as a torpedo m.etric, see

section II.2 for a detailed construction. For sufficiently small 0 > 0 and provided n :::- 3, the scalar

curvature of this metric can be bounded below by an arbitrarily large positive constant. Now, let

(X,g) be a smooth n-dimensional Riemannian manifold of positive scalar curvature and let SP

denote an embedded p-sphere in X with trivial normal bundle and with p + q + 1 = nand q :::- 2.
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The metric 9 can be replaced by a psc-metric 9Btd on X which, on a tubular neighbourhood of SP,

is the standard product ds~ + 9i;;;'1 (6) for some appropriately small 6. In turn, surgery may be

performed on this standard piece to obtain a psc-metric l on XI, which on the handle DP+1 x sq
is the standard product 9fo~1 + Pds~, see Fig. 1.3.

There is an important strengthenning of this technique whereby the metric 9 is extended

over the trace of the surgery to obtain a psc-metric 9 which is a product metric near the boundary.

This is sometimes referred to as the Improved Surgery Theorem, see [10]. Suppose {TV; X o, Xl} is

a smooth compact cobordism of closed n-manifolds X o and Xl, Le. OTV = XOUXl , and f: vV ----> I

is a Morse function. All Morse functions are assumed to satisfy f-l(O) = X o, f-I(I) = Xl and

have critical points only in the interior of TV. The Morse function f gives rise to a decomposition

of W into elementary cobordisms. Let us assume that each elementary cobordism is the trace of

a codimension ::::: 3 surgery. This means that each critical point of f has index :S n - 2. Roughly

speaking, such Morse functions ,vill be called "admissible". It is now possible to extend a psc-

metric 90 on X o to a psc-metric 9 on TV which is a product near the boundary avV, see Theorem

11.23 below. In particular, the restriction 91 = glx1 is a psc-metric on Xl. Example 1.6 below

demonstrates that the metric 91 may not be concordant (and therefore not isotopic) to go, an

illustration of the power of the Surgery Theorem for generating new psc-metrics. This gives rise

to the following question.

Original metric g

Transition metric Standard metric

gP+l (E) + Pds2
tor q

Figure 1.3: The psc-metric l obtained on XI by the Gromov-Lawson construction

Question 1.5. In the case when Xo is diffeomorphic to Xl, when are the metr-ics go and 91 isotopic

or concordant?

Example 1.6. Let B = B8 be a Bott manifold, Le. an 8-dimensional closed simply connected

spin manifold with a(B) = 1, see [24] for a geometric construction of such a manifold. Here a
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is the obstruction discussed in section 1.1 and so the fact that o:(B) i= 0 means that B does not

admit a psc-metric. Let W = B \ (Do U D 1 ) denote the smooth manifold obtained by removing a

disjoint pail' of 8-dimensional disks Do and D 1 from B. The boundary of T¥ is a pair of disjoint

7-dimensional smooth spheres, which we denote 56 and 5lrespectively. It is possible, although we

do not include the details here, to equip W with an admissible Morse function. This decomposes

TIV into a union of elementary cobordisms, each the trace of a codimension 2' 3 surgery. Thus, we

can extend the standard round metric 90 = ds~ from the boundary component 5'6 to a psc metric

9 on W, which is a product metric near both boundary components. In particular, the metric 9

restricts to a psc-metric 91 on 5Y. This metric however, is not concordant (and hence not isotopic)

to 90. This is because the existence of a concordance Ii of 91 and 90 = ds?, would give rise to a

psc-metric 9B on B (see Fig. 1.4), defined by taking the union

something we know to be impossible.

/, \ / \

/ \ / I, I I I

I "<:>" I

I I I I
I I (W,g) I I
\ I \ /
\ \

(Do, 9~or) 90 + dt 2 91 + dt2 (57 X I, Ii) (D 1 ,9for)

Figure 1.4: The existence of a concordance (57 x I, Ii) between 91 and 90 = ds? would imply the
existence of a psc-metric on B, which is impossible.

1.2.4 The structur'e of the thesis

This thesis is organised into two parts. Roughly speaking, Part One contains most of the

geometric arguments and technical results about positive scalar curvature, while Part Two deals

more with the topological applications of these geometric results. In particular, it is in Part Two

that we explore the role of generalised Morse functions in this subject. We will now present the

main results of Part One. Then, after SOllle preliminary discussion, we will present the main results
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from Part Two.

1.3 Main Results of Part One

Part One begins with some important technical preliminaries, in particular, introducing a

collection of metrics on the disk Dnand the sphere sn which will be used throughout the thesis;

see section II.2. These metrics are variations of the so-called torpedo metric discussed earlier.

After proving some important results about spaces of such metrics, we proceed in II.3 to a careful

analysis of the Surgery Theorem. From there we obtain the following results.

A Family Surgery Theorem

The proof of the Surgery Theorem involves replacing a psc-metric 9 on a manifold X with

a psc-metric gstd on X which is standard near the embedded surgery sphere. After verifying that

the metrics 9 and gstd are in fact isotopic (Theorem 11.11), we show in Theorem 11.19 that this

technique can be applied continuously over a compact family of psc-metrics and with respect to a

compact family of embedded surgery spheres.

Theorem 11.19. Let X be a smooth compact manifold of dimension n, and Band C a pair of

compact spaces. Let B = {gb E Riem+(X) : bE B} be a continuous family of psc-rnetrics on X

and C = {ic E Emb(SP,X) : c E C}, a continuous family of embeddings each with trivial normal

b'undle, where with p + q + 1 = nand q ~ 2. Finally, let gp be any met'ric on SP. Then, for some

8 > 0, there is a contin'uous map

satisfying

(i) Each metric g~t~ has the form gp + g'[:/(8) on a tubular neighbourhood of ic(SP) and is the

original metr'ic gb away from this neighbourhood.

(ii) FOT each c E C, the restriction of this map to B x {i c } is homotopy equivalent to the inclusion

B'-' Riem+(X).
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Applications of the Family Surgery Theorem

The above notion of generalising to compact families is necessary if one is to have any

chance of understanding spaces of psc-metrics. Proving Theorem 11.19 requires considerable prepa­

ration in the form of the rather long and technical Theorem II.ll. Once established however, we

can prove the following theorems without too much difficulty. The first of these is actually the

main result in a paper by Chernysh; see [6].

Theorem 11.21. Let X be a smooth compact manifold of dimension n. Suppose XI is obtained

from X by S111:qery on a sphere S1' '---} X with p+q+ 1 = nand p, q ~ 2. Then the spaces Riem+(X)

and Riem+ (XI) are homotopy equivalent.

It is now possible to show that for simply connected spin manifolds of dimension ~ 5, the homotopy

type of the space of psc-metrics is a spin cobordism invariant.

Theorem 11.22. Let X o and Xl be a pair of compact simply-connected spin man~lolds of dimension

n ~ 5. Suppose also that X o is spin cobordant to Xl. Then the spaces Riem+ (Xo) and Riem+ (XI)

are homotopy eq'uivalent.

The Grornov-Lawson Cobordism Theorem

In Theorem II.23, we generalise the so-called Improved Surgery Theorem, as well as correct

an error from the proof in [10]; see Remark 11.3.4 in II.3.

Theorem 11.23. Let {VVn +1 ; X o, Xd be a smooth compact cobordisrn. Suppose go 'is a metric of

positive scalar curvature on X o and f : vV ~ I is an admissible Morse function. Then there is a

psc-metric g = g(gO, j) on W which extends go and has a product structure near the bo'undary.

We call the metric ,9 = .9(go, j), a Gromov-Lawson cobor'disrn (GL-cobordism) with respect to go

and j. Essentially, the metric g restricts on a regular level set of f to the metric obtained by

repeated application of the surgery tedmique with respect to each of the critical points below that

level set. In the case when HI is the cylinder X x I, the metric g is a concordance of the metrics

go and 091 = ,9Ixx{1}' It will be referred to as a Grornov-Lawson concordance (GL-concordance)
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with respect to go and f; see Fig. 1.5.

There are a number of obvious questions one may ask about the metric 9 = .9(090, f). In

particular, the reader may wonder to what extent the metrics 9 and 091 = glx1 depend on the

choice of admissible ]\l10rse function. Different admissible Morse functions with different numbers

of critical points will give rise to very different looking metrics. It is not hard to believe that

isotopic admissible Morse functions (those connected by a path in the space of admissible Morse

functions) should give rise to isotopic metrics. This is proven in Theorem 11.25 below. The question

of whether this holds for admissible Morse functions which are not isotopic (and containing possibly

very different collections of critical points) is more difficult and one we will not address until Part

Two.

1

------------

-------

go + dt 2

f

o

Figure 1.5: Obtaining a Gromov-Lawson concordance on the cylinder X x I with respect to a
Morse function f and a psc-metric go

Reversing a Gmmov-Lawson coboTdism

Any admissible Morse function f can be replaced by a fvlorse function denoted 1- f, which

has the gradient flow of f, but running in reverse. (Admissible Morse functions will come equipped

with gradient-like vector fields.) This function has the same critical points as f, however, each

critical point of index).. has been replaced with one of index n + 1 -)... The following theorem can

be obtained by "reversing" the construction from Theorem II.23.



13

Theorem 11.24. Let {vVn+l
; X o, Xl} be a smooth compact cobor-dism, 90 a psc-metric on X o and

f : T''V -4 I, an admissible Mor-se function. Suppose that 1- f is also an admissible Mor-se function.

Let 91 = lj(.qo, f)lxl denote the r-estr-iction of the GTOmov-Lawson cobor'dism ,9(90, f) to Xl. Let

.9(91, 1 - f) be a GTOmov-Lawson cobordism with r-espeet to 91 and 1 - f and let 96 = .9 (,q1, 1 - f) IXo

denote the Testriction of this metric to X o. Then go and 96 ar-e canonically isotopic metT'lCS in

Riem+(Xo).

A family version of the Gromov Lawson Cobordism Theorem

As shown in Theorem II.19 , the Gromov-Lawson construction can be applied continuously

over a compact family of metrics as well as a compact family of embedded surgery spheres. In

Theorem II,25, we show that the Gromov-Lawson cobordism construction of Theorem II.23 can

also be applied continuously, over a contractible compact family of admissible Morse functions to

obtain the following theorem.

Theorem 11.25. Let {VV; X o, Xl} be a smooth compact cobonlism, 5, a compact continuous

family of psc-met'rics on X o and C, a compact continv,07J,s contmctible family of admissible Mor-se

functions on TV. Then there is a contin'uo'us map

5 x C~ Riem+(W,8W)

(gb, fe) f-----* gb,e = .9(gb, fe)

so that for each pair (b, c), the metric gb,e is a Gromov-Lawson cobordism.

GTOmov-Lawson concordance implies isotopy

We now come to the main result of Part One. In section II.5 we construct an example

of a GL-concordance on the cylinder sn x I. Here go = ds~, the standard round metric and f is

an admissible Morse function with two critical points which have Morse indices p + 1 and p + 2

where p + q + 1 = nand q :::: 3. The critical point of index p + 1 corresponds to a p-surgery on sn
resulting in a manifold diffeomorphic to Sp+l x sq. This is then followed by a (p+ 1)-surgery which

restores the original manifold sn. The restriction of the metric g(ds~, f) to level sets of f below,
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between and above these critical points is denoted by go, gb and g1 respectively; see Fig. 1.6. The

metric 91 is also a psc-metric on sn, but as Fig. 1.6 suggests, looks radically different from the

original metric go. Understanding why these metrics are in fact isotopic is crucial in proving our

main result, stated below.

--'- J

Figure 1.6: Applying the Gromov-Lawson construction over a pair of cancelling surgeries of
consecutive dimension

Theorem 11.36. Let X be a closed simply connected manifold of dimension n ~ 5 and let go be

a positive scalar C'Urvature metric on X. Suppose 9 = g(go, 1) is a Grornov-Lawson concordance

with respect to go and an admissible Morse function f : X x I -~ I. Then the metrics go and

g1 = gIXX{1} are isotopic.

The proof of Theorem 11.36 takes place in 11.6 and 11.7. In II.6 we prove the theorem in the case

when f has exactly two "cancelling" critical points. This is the key geometric step and draws

heavily from some important technical observations made in II.2. The general case then follows

from Morse-Smale theory and the fact that the function f can be deformed to one whose critical

points are arranged in cancelling pairs. Along with Theorem II.24, this result provides a partial

answer to question 1.5.

1.4 An Introduction to Part Two

As mentioned earlier, one motivation behind this work is to gain information about certain

spaces of psc-metrics. In Part One, we develop a technique for building particular psc-metrics

on a compact cobordislll {TV; X o, XJJ. We call these metrics Gromov-Lawsoll cobordisms (GL-



15

cobordisms). In Part Two, we will attempt to better understand the space of GL-cobordisms, a

subspace of Riem+(W, oW). In a weak sense, Theorems II.23 and 11.25 allow us to parametrise

families of Gromov-Lawson cobordisms by admissible Morse functions. As it stands however,

Theorem 11.25 only works for compact contractible families of admissible Morse functions. This

misses some very important structure. To see this we need to say some words about the space of

Morse functions.

The space of admissible 1\10rse functions on vV is denoted M ad1?1(vV) and can be thought of

as a subspace of the space of Morse functions VV ----+ I, denoted M(W). A good deal is understood

about the topology of the space M(W), in particular; see [23]. It is clear that this space is

not path connected, as functions in the same path component must have the same number of

critical points of the same index. Thus, Theorem 11.25 allows us to parametrise families of GL­

cobordisms arising from a single path component of Madm(w). This gives a rather misleading

picture, as it is possible for appropriate pairs of Morse critical points to cancel, giving rise to a

simpler handle decomposition of W. In Theorem II.36, we describe a corresponding "geometric

cancellation" which simplifies a psc-metric associated to this lVlorse function. In order to obtain

a more complete picture of the space of GL-cobordisms, we need to incorporate this cancellation

property into our description.

Generalised Morse junctions

There is a natural setting in which to consider the cancellation of Morse critical points.

Recall that near a critical point w, a Morse function j E M(vV) is locally equivalent to the map

A critical point w of a smooth function j : lV ----+ I is said to be of birth-death type if near w, j is

equivalent to the map

( )
3 2 2 2 .2

Xo,· .. , X n f------+ Xo - xl'" - :rp +1 + X p+ 2 + ... + Xn-

A generalised Morse jllnct'ion f : W ----+ I is a smooth function satisfying f- 1(0) = X o, f-1(1) = Xl

and whose singular set is contained in the interior of Wand consists of only Morse and birth-
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death eritical points. There is a natural embedding of M(vV) into the spaee of generalised Morse

functions H(W). This allows us to connect up distinct path components of M(vV) sinee birth-

death singularities allow for the eancellation of Morse critical points of consecutive index. Before

going any further it is worth considering a couple of examples of this sort of cancellation.

Example 1.7. The function F(x, t) = x 3 + tx can be thought of as a smooth family of functions

x f------> F(x, t) parametrised by t. "Vhen t < 0, the map x f------> F(x, t) is a Morse function with 2

critical points which cancel as a degenerate singularity of the function x f------> F(x, 0). The function

x f------> F(x, 0) is an example of a generalised Morse function with a birth-death singularity at x = o.

Example 1.8. In Fig. 1.7 we sketch using selected level sets, a path fl;, t E [-1,1], in the space

H(sn x 1) whieh eonneets a Morse funetion f-l with two eritical points of consecutive Morse index

to a Morse function II which has no critical points. We will assume that the critical points of f-l

lie on the level sets f -1 = i and f -1 = ~ and that fa has only a birth-death singularity on the

1level set fa = 2'

Wrinkled maps

Our goal in Part Two will be to "extend" the notion of GL-cobordism to work for gen-

eralised Morse functions and so be able to parametrise families of GL-cobordisms over admissible

Morse funetions with varying numbers of critical points. A convenient setting in which to do this

is described by Eliashberg and :Mishachev in their work on "wrinklings" of smooth maps; see [8]

and [9]. Let E and Q be smooth compaet manifolds of dimension n + 1 + k and k respectively.

In section II1.5, we specify a particular smooth fibre bundle Jr : E -> Q, the fibre of which is the

smooth cobordism W. Let f : E -> Q x I be a smooth map so that PI 0 f = Jr, where PI is

projection on the first faetor. Roughly speaking, the map f is wrinkled if the singular set of f in

E consists of a disjoint union of folds and wrinkles. We will not define the terms fold or wrinkle

here except to say that under these conditions f restriets on fibres to a generalised Morse function

1V -> I of the type discussed earlier. Thus, a wrinkled map can be thought of as a family of

generalised Morse functions. Note also that this family may be "twisted" in the event that Jr is a

non-trivial bundle; see [11] for an example of this.
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0CSB80@V t=l

Figure 1.7: Two Morse critical points cancelling at a birth-death singularity, from the point of
view of selected level sets
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1.5 Main Results of Part Two

'Vith appropriate admissibility conditions on critical points of f, we can prove the following

theorem. This is the main technical theorem in Part two.

Theorem 111.6. Let f be an admissible wTinkled map with Tespect to the s'U,brneTsion Jr : E --> Q.

Let go : Q --> Riem+ (Xo) be a smooth rnap pammeteTising a compact family of psc-metTics on

X o. Then theTe is a metTic G on the total space E which, fOT each y E Q, TestTicts on the jibn,

Jr-l(y) to a Tegularised GTomo'U-Lawson coboTdism g'(go(y), fl7f-I(y)). In the case when the bundle

Jr : E --> Q is tTi'Uial, theTe exists a smooth map

Q~ Riem+ (W, oW)

y~ .r/(y),

wheTe each g'(y) is a TegulaTised GTOmov-Lawson coboTdism.

As one might expect, the original construction of a Gromov-Lawson cobordism needs to be altered

somewhat near cancelling critical points in order to prove such a theorem. This is the reason for the

term TegulaTised Gromov-Lawson cobordism, a slightly modified verion of the original construction.

We will not go into details here except to say that if 9 = g(go, 1) is a GL-cobordism on VV and

g' = [/(gO, 1) is its regularised analogue, then g!xI = 9'lx1 ·

This last fact about regularised GL-cobordisms allows us to address a problem we discussed

earlier. In what sense does the does the metric gl = g\x1 depend on the choice of admissible Morse

function f? Under the right conditions, it turns out that the isotopy type of gl is invariant of this

choice.

Theorem 111.9. Let {Vll; X o, Xl} be a smooth compact coboTdism wheTe Vll, X o and Xl aTe s'imply

connected and Vll has dimension 11. + 1 ~ 6. Let fo, h E MCLdm(T1l) be a pa'tT of admissible MOTse

functions. Suppose go and.91 aTe psc-metrics lying in the same path component of Riem+(Xo). If

.90 = g(go, fo) and 91 = ,9(91, h) aTe GTOmov-Lawson coboTdisms, then the psc-metTics .90,1 = golx1

and .91,1 = .911x1 aTe isotopic metT'ics in Riem+(Xd.

The proof of Theorem III.g uses a number of deep results, in particular the 2-Index Theorem of

Hatcher; see Theorem 1.1, Chapter VI, section 1 of [23]. The 2-Index theorem is necessary to show
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that fo and h can be connected up by a path in the space of generalised Morse functions, each of

which satisfies the admissibility condition on the indices of its critical points.
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CHAPTER II

PART ONE: GROIVIOV-LAWSON CONCORDANCE IMPLIES ISOTOPY

ILl Foreword to Part One

In Part One we deal with the construction of Gromov-Lawson cobordisms (GL-cobordisms)

as well as prove that, in the case of closed simply connected manifolds of dimension 2: 5, metrics

which are Gromov-Lawson concordant are in fact isotopic. \Ve will organise this as follows. In II.2,

we introduce the notions of isotopy and concordance in the space of psc-metrics. We then construct

a variety of different psc-metrics on the standard sphere and disk. Among them are metrics we

will call, torpedo, double torpedo and mixed tOTpedo metrics. These metrics have some very nice

properties with regard to the notion of isotopy and will play an important role throughout our

work.

The construction of a GL-cobordism requires careful anaysis of the original surgery tech­

nique. This is done in 11.3. In it, we prove some slightly stronger results, in particular Theorem

11.11 and also the so-called Improved Surgery Theorem, Theorem II.10. In proving Theorem II.10,

we fix the mistake contained in the original proof of this Theorem by Gajer in [10]; see Remark

11.3.4. \Ve also show, in Theorem 11.19, that the surgery technique goes through for compact fam­

ilies of psc-metrics as well as compact families of embedded surgery spheres. As a consequence, we

obtain some important results about how the homotopy type of the space of psc-metrics is affected

by surgery on the underlying manifold; see Theorems 11.21 and 11.22.

In 11.4, we finally prove the Gromov-Lawson cobordism Theorem, Theorem 11.23, as well

as a stronger theorem for compact families, Theorem 11.25. This stronger theorem allows us to

construct GL-cobordisms which are parametrised continuously by contractible families of admis­

sible Morse functions. As discussed in the introduction, our goal in Part Two is to considerably

strengthen this Theorem, to allow for admissible :Morse functions with varying critical sets.
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The main result in Part One is a partial answer to the question of whether or not concor­

dant psc-metrics are isotopic. A Gromov-Lawson cobordism on the cylinder is a type of concordance

which we call a Gromov-Lawson concordance (GL-concordance). Our main result, Theorem II.36,

is that, in the case of closed simply connected manifolds of dimension ~ 5, GL-concordant metrics

are isotopic. The proof of this fact is long and technical and involves explicitly constructing an

isotopy. In II.5, we introduce the notion of a GL-concordance and provide a simple but non-trivial

example. This example illustrates a special case of GL-concordance where the underlying Morse

function has just a pair of cancelling critical points. In II.6, we prove that GL-concordance always

implies isotopy in this case; see Theorem II.34. Then, in II.?, we use Morse-Smale theory to show

that, under the right hypotheses, the more general case reduces down to finitely applications of

the special case, to prove the main result.

11.2 Definitions and Preliminary Results

lI.2.1 Isotopy and concor-dance in the space of rnetr-ics of positive scalar- cur-vatur-e

Throughout this paper, X will denote a smooth closed compact manifold of dimension

n. Later we will also require that X be simply connected and that n ~ 5. We will denote by

Riem(X), the space of all Riemannian metrics on X. The topology on this space is induced by

the standard Ck-norm on Riemannian metrics and defined Ig\k = max;.c;k sUPx \\7;g\. Here \7 is

the Levi-Civita connection for some fixed reference metric and 1\7;gl is the Euclidean tensor norm

on \7"g; see page 54 of [34] for a definition. Note that the topology on Riem(X) does not depend

on the choice of reference metric. For our purposes it is sufficient (and convenient) to assume that

k = 2.

Contained inside Riem(X), as an open subspace, is the space

niem+(X) = {g E niem(X) : Rg > o}.

Here Rg : X - JR denotes the scalar curvature of the metric g, although context permitting \ve will

sometimes denote the scalar curvature of a metric as simply R. The space Riem+ (X) is the space

of metrics on X whose scalar curvature function is strictly positive, i.e. the space of psc-metrics

on X. As mentioned in the introduction, the problem of whether or not X admits any psc-metrics
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lemma above, the metric gf(s) + ds 2 on X x [AI, A 2 ] has positive scalar curvature. This metric

can easily be pulled back to obtain the desired concordance on X x I. 0

Whether or not the converse of this corollary holds, i.e. concordant metrics are isotopic,

is a much more complicated question and one we discussed in the introduction. In particular,

when dim X ? 5, the problem of whether or not concordance implies isotopy is completely open.

Recall that a general concordance may be arbitrarily complicated. vVe will approach this problem

restricting our attention to a particular type of concordance, which we construct using the surgery

technique of Gromov and Lawson, and which we will call a Gromov-Lawson concordance. An

important part of the surgery technique concerns modification of a psc-metric on or near an

embedded sphere. For the remainder of this section we will consider a variety of psc-metrics both

on the sphere and the disk. These metrics will play an important technical role in later sections.

II. 2. 2 Warped product metrics on the sphere

vVe denote by sn, the standard n-dimensional sphere and assume that n ? 3. Vie will study

metrics on sn which take the form of warped and doubly war'ped product metrics; see description

below. All ofthe metrics we consider will have non-negative sectional and Ricci curvatures, positive

scalar curvature and will be isotopic to the standard round metric on sn. The latter fact will be

important in the proof of the main theorem, Theorem II.36.

The standard round metric of radius 1, can be induced on sn via the usual embedding

into jRn+l. Vve denote this metric ds;'. There are of course many different choices of coordinates

with which to realise this metric. For example, the embedding

(0,71") X sn-1 ------) jR x jRn

(t, B) f------+ (cos t, sin (t) . B)

gives rise to the metric dt2 + sin2(t)ds~_1 on (0,71") X sn-l. This extends uniquely to the round

metric ohadius 1 on sn. Similarly, the round metric ofradius f has the form dt2+ f2 sin2 (~)dS;_1

on (0, f7r) X S"-I. More generally, by replacing sin t with a suitable smooth function f : (0, b) -->

(0,00), we can construct other metrics on sn. The following proposition specifies necessary and

sullicent conditions on f which guarantee smoothness of the metric de + f(t)2ds~_1 on S".
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Proposition 11.3. (Chapter 1, section 3.4, [34]) Let j : (0, b) ----+ (0,00) be a smooth junction 'With

j (0) = °= j (b). Then the metric g = dt2 + j (t) 2ds;,_ 1 is a smooth metric on the sphere sn if

and only ij j(even) (0) = 0, j(O) = 1, f(even)(b) = °and j(b) =-1.

Given the uniqueness of the extension, we will regard metrics of the form de + f(t)2ds;'_1

on (0, b) x sn-1 as simply metrics on sn, provided j satisfies the conditions above. For a general

smooth function j : (0, b) ----+ (0, (0), a metric of the form dt2 + j(t)2ds;'_1 on (0, b) X sn-1 is

known as a warped pmdv.ct metric. From page 69 of [34], we obtain the following formulae for the

Ricci and scalar curvatures of such a metric. Let at, el,"" en-l be an orthonormal frame where

at is tangent to the interval (0, b) while each ei is tangent to the sphere sn-l. Then

Ric(at) = -(n --1)j,
. I-P j

R~c(ei) = (n - 2)12 -7 ,when i = 1, ... ,n-l.

Thus, the scalar curvature is

j 1- P
R = -2(n -1)7 + (n - 1)(n - 2)12' (II.2.1)

Let .1"(0, b) denote the space of all smooth functions j : (0, b) ----+ (0, (0) which satisfy the

following conditions.

j(O) = 0,

j(O) = 1,

j(even) (0) = 0,

j:::; 0,

j(b) = 0,

j(b) = -1,

j(even) (b) = 0, (II.2.2)

/(0) < 0, /(b) > 0,

j(t) < 0, when t is near but not at °and b.

Typical elements of .1"(0, b) are represented in Fig. ILL For each function j in F(O, b),

there is an associated smooth metric g = dt2 + j(t)2ds~_1 on srI,. We will denote the space of

all such metrics by W(O, b). Note that F(O, b) is assumed to have the standard Ck: function space

topology with k 2: 2; see Chapter 2 of [17] for details.



Proposition 11.4. The space W(O, b)

subspace oj Riem+(Sn).
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{dt2 + j(t)2dsn
2._ 1 j E '1:"(0 I)} . th t dJ ,) ',8 a pa ' connec.e .

Proof The first three conditions of (11.2.2) guarantee smoothness of such metrics on sn, by Propo­

sition 11.3. We will now consider the scalar curvature when 0 < t < b. Recall that /(t) :::; 0 and

that near the endpoints this inequality is strict. This meaus that when 0 < t < b, Ij(t) I < 1 and

so while the first term in (11.2.1) is at worst non-negative, the second term is strictly positive. At

the end points, several applications of I'Hospital's rule give that

d ...
limt->o+ j. = - j (0),

d ...
limt->b- -f = j (b),

. 1-P _ ...
ltmt->o+ J2 - - j (0) > 0,

. 1-P'"
ltmt-+b- f2 = j (b) > O.

Thus, W(O, b) C Riem+(Sn). Path connectedness now follows from the convexity of F(O, b) which

in turn follows from an elementary calculation. [J

o b o b

Figure ILl: Typical elements of F(O, b)

It is convenient to allow b to vary. Thus, we will define F = UbE(O,CXJ) F(D, b) and W =

UbE(O,CXJ) W(O, b). Each metric in W is defined on (0, b) X sn-1 for some b > O. In particular, the

round metric of radius E, E2ds;" is an element of W(O, En).

Proposition 11.5. The space W is a path connected s'ubspace oj Riem+(Sn).

Proof Let 9 be an element of W. Then 9 = dt2 + j(t)2ds;'_1 on (0, b) x sn-1 for some j E

F(O, b) and some b > 0. As F(O, b) is convex, there is a path connecting 9 to the metric dt2 +

(~)2sin2(bt)ds;'_1' the round metric of radius (~)2 in W(O,b). As all round metrics on sn are

isotopic by an obvious rescaling, 9 can be isotopied to any metric in the space. D
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II. 2. 3 Torpedo met'rics on the disk

A <5-torpedo met'ric on a disk nn, denoted gr~r,(<5), is an O(n) symmetric positive scalar

curvature metric which is a product with the standard n -I-sphere of radius <5 near the boundary

of nn and is the standard metric on the n-sphere of radius <5 near the centre of the disk. It is not

hard to see how such metrics can be constructed. Let 10 be a smooth function on (0,00) which

satisfies the following conditions.

(i) 1o(t) = <5sin(f) when t is near O.

(ii) 1o(t) = <5 when t ;::: <5~.

(iii) Jo(t) ::::: o.

From now on 10 will be known as a <5-torpedo junction.

Let r be the standard radial distance function on IRn . It follows from Proposition 11.3 that

the metric dr2+1o(r)2ds;'_1 on (0, (0) X sn-l extends smoothly as a metric on IRn . The resulting

metric is a torpedo metric of radius <5 on IRn . By restricting to (0, b) x sn-l for some b > <5~ we

obtain a torpedo metric on a disk nn; see Fig. II.2. From formula (11.2.1), it is clear that this

metric has positive scalar curvature and moreover, the scalar curvature can be bounded belmv by

an arbitrarily large constant by choosing <5 sufficiently small.

[
o b

c' ,
, '. . [)

Figure 11.2: A torpedo function and the resulting torpedo metric

'iVe will refer to the cylindrical part of this metric as the tube, and the remaining piece as

the cap of g~~T(<5). Notice that we can always isotopy graT(<5) to make the tube arbitrarily long.

Strictly speaking then, graT(<5) denotes a collection of isotopic metrics, each with isometric cap of

radius <5. It is convenient however, to think of graTe <5) as a fixed metric, the tube length of which

may be adjusted if necessary.
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The torpedo metric on a disk D" can be used to construct a collection of psc-metrics on

S" which will be of use to us later on. The first of these is the double torpedo metric on S".

By considering the torpedo metric as a metric on a hemisphere, we can obtain a metric on S" by

taking its double. More precisely let fo(t) be the smooth function on (0, b) which satisfies

(i) fo(t) = fo(t) on [O,~]

(ii) fo(t) = fo(b - t) on [~, b],

where ~ > 6~.

As f E F(O, b), the metric dt2 + fo(t)2ds~_1 on (0, b) x S"-l gives rise to a smooth psc­

metric on S". Such a metric will be called a do'uble torpedo metric of mdius 6 and denoted gVtol' (6);

see Fig. II.3. Then Proposition II.5 implies that gVtol'(6) is isotopic to ds~.

r
o b

Figure II.3: A double torpedo function and the resulting double torpedo metric

II. 2.4 Do'ubly warped prod'ucts and mixed torpedo met7'ics

Henceforth p and q will denote a pair of non-negative integers satisfying p + q + 1 = n.

The standard sphere S" decomposes as a union of sphere-disk products as shown belmv.

S" = 8D"+1

= 8(DP+1 X Dq+1),

= (SP x Dq+1) USJlxs q (DP+1 x sq).

Vie can utilise this decomposition to construct a new metric on S". Equip SP x Dq+l with

the product metric E2ds~ + g'/}/(6). Then equip DP+l x sq with gf~l(E) + 62ds~. These metrics

glue together smoothly along the common boundary SP x sq to form a smooth metric on S".
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Such rnetrics will be known as mi:red torpedo metrics on sn and denoted g~l~or; see Fig. 11.4. For

the remainder of this section we will show how to realise these metrics in a more computationally

useful form.

Figure II.4: sn decomposed as (SP x Dq+l) USJlxSq (DP+l x sq) and equipped with a mixed
torpedo metric g1j,;J~or

Recall that a metric of the form dt 2+ f(t)2ds~_1 on (0, b) x sn-l, where f : (0, b) ----> (0, (0)

is a smooth function, is known as a warped product metric. 'Ve have observed that the standard

round sphere metric: ds;, can be represented as the warped product metric dt 2 + sin2(t)ds~_1 Oil

(O,Jr) X sn-l. The notion of a warped product metric on (O,b) x sn-1 generalises to something

called a doubly warped product metric on (0, b) x SP x sq. Here the metric takes the form dt2 +

1l(t)2ds; + v(t)2ds~, where 1l, v: (0, b) ----> (0, (0) are smooth functions.

From page 72 of [34], we obtain the following curvature formulae. Let at, e1, ... , ep , e~, ... , e~

be an orthonormal frame where el, ... ,ep are tangent to SP and e~, ... , e~ are tangent to sq. Then

ii 'u
Ric(atl = -(p) - - (q)-,

1l V

1 - u2 ii U1J
Ric(e,,) = (p ~ 1)-2- - - - q- ,i = 1, ... ,p,

1l 1l llV

. I 1 - iJ2 7) 'uiJ
R?,c(e,,) = (q - 1)-2- - - - p- ,i = 1, ... , q.

v v Ut'

Thus, the scalar curvature is

'u, v 1 - u2 1 - iJ2 'u'/;
R = -2p- - 2q- + p(p - 1)-- + q(q - 1)-- - 2pq-.

U v ~ ~ ~
(11.2.3)

vVa observe that the round metric ds~ can be represented by a doubly warped product. Recalling
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that p -+- q -+- 1 = n, consider the map

(11.2.4)

(t, ¢, 8) f-----4 (cos (t) . ¢, sin (t) . 8)

Here SP and sq denote the standard unit spheres in JFtp+l and JFtq+l respectively. The metric

induced by this embedding is given by the formula

a doubly warped product representing the round metric on sn. rl/lore generally the round metric

of radius (; takes the form dt2 -+- (;2 cos2(!:')ds2 -+- (;2 sin2 (!:. )ds2 on (0 (;:!!..) X SP x sq.
E P E 'I '2

As before, by imposing appropriate conditions on the functions u, v : (0, b) ----> (0,00), the

metric dt 2 -+- u(t)2ds; -+- v(t)2ds~ gives rise to a smooth metric on sn. By combining propositions 1

and 2 on page 13 of [34], we obtain the following proposition which makes these conditions clear.

Proposition 11.6. (Page 13, [34]) Let u, v : (0, b) ----> (0,00) be smooth .f1~nctions 1117:th u(b) = 0 and

v(O) = O. Then the metric dt2 -+- u(t)2ds; -+- v(t)2ds~ on (0, b) x SP x S'I is a smooth metric on sn

if and only if the following conditions hold.

1L(0) > 0,

v(b) > 0,

UCoddl(O) = 0,

v Codd )(b) = 0,

7~(b) = -1,

v(O) = 1,

uCevenl(b) = O.

vCeven) (0) = O.

(II.2.5)

(11.2.6)

Let U(O, b) denote the space of all functions u : (0, b) ----> (0, (0) which satisfy (11.2.5) above

and the condition that u :s; 0 with u(t) < 0 when t is near but not at band 'u(b) > O.

Similarly V(O, b) will denote the space of all functions v : (0, b) ----> (0, (0) which satisfy

(11.2.6) and for which v :s; 0 with 'u(t) < 0 when t is near but not at 0 and 'v'(O) < O.

Each pair u, v from the space U(O, b) x V(O, b) gives rise to a metric dt2-+-'n(t)2ds;-+-v(t)2ds~

on sn. vVe denote the space of such metrics

We now obtain the following lemma.
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Lemma 11.7. Let n ~ 3 and let p and q be any pair of non-negative integer's satisfying p+q+ 1 = n.

Then the space Wp,q(O, b) is a path connected subspace ofRiem+(S").

Proof. Let g = dt2 + u(t)2ds~ + v(t)2ds~ be an element of Wp,q(O, b). Smoothness of this metric

on S" follows from Proposition 11.6. \Ve will first show that g has positive scalar curvature when

a < t < b. Recall that u and v are both concave downward, that is ii, ii < O. This means that

the first two terms in (II.2.3) are at worst non-negative. Downward concavity and the fact that

'u(O) = a and u(b) = -1 imply that -1 < 'u :s; O. A similar argument gives that 0 :s; v < 1. This

means that the fifth term in (11.2.3) is also non-negative and at least one of the third and fourth

terms in (11.2.3) is strictly positive (the other may be 0 for dimensional reasons). When t = 0 and

t = b, some elementary limit computations using l'Hospital's rule show that the scalar curvature

is positive. Thus, W(O,b)P,q C Riem+(Sn). Finally, path connectivity follows immediately from

the convexity of the space U(O, b) x V(O, b). o

As before, it is convenient to allow b to vary. Thus, we define U x V = UbE(O.CXJ) U(O, b) x

V(O b) and wp,q = U wp,q(O b) Finally we let W= U wp,q where 0 < P q < n+1, bE(O,oo)"·' p+q+l=" '- ,~ .

Proposition 11.8. Let n ~ 3. The space W is a path connected subspace of Riem+(S").

Proof. The proof that lVp,q is path connected is almost identical to that of Proposition 11.5. The

rest follows from the fact that each wp,q contains the round metric ds;, = dt2 + cos2 tds~ +

o

At the beginning of this section we demonstrated that S" could be decomposed into a

union of SP x Dq+l and DP+l x sq. This can be seen explicitly by appropriate restriction of

the embedding in (II.2.4). Thus, provided t is near 0, the metric de + u(t)2ds~ + v(t)2ds~, with

u, v E U(O, b) x V(O, b), is a metric on SP x Dq+l. When t is near b we obtain a metric on DP+l x sq.

'vVe can now construct a mixed torpedo metric on S", as follows. Let.lf and 1,5 be the torpedo

functions on (0, b) defined in section 11.2.3 with b > max{ E1T, 81T}. Then the metric

(II.2.7)

is a mixed torpedo metric on sn; see Fig. 11.5.
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Lemma 11.9. Let n :::. 3. For any non-negative integers p and q with p + q + 1 = n, the metric

g~J~or is isotopic to ds~.

Proof An elementary calculation shows that the functions f€(b ~ t) and fo(t) lie in U(O, b) and

V(O b) respectively Thus gP.q E WP·q(O b) As the standard round metric lies in wp,q(O, b), the, • . , .. lV[/'OT ' .

proof follows from Proposition II.8. o

II.2.5 Ind-ucing a mixed torpedo metric with an embedding

VVe close this section with a rather technical observation which will be of use later on. It

is of course possible to realise mixed torpedo metrics on the sphere as the induced metrics of some

embedding. Let jR11+1 = jRP+l X jRq+l where of course p + q + 1 = n. Let (p, ¢) and (r, ()) denote

standard spherical coordinates on jRP+l and jRq+l where p and r are the respective Euclidean

distance functions and ¢ E SP and e E sq. Then equip jR11+1 = jRP+l X jRq+l with the metric

h = hp,q defined

(11.2.8)

shown in Fig. 11.6, where fE) fa : (0, CXl) --) (0, CXl) are the torpedo functions defined in section

II.2.3.

We will now parametrise an embedded sphere S11 in (jR11+r, h), the induced metric on which

will be precisely the mixed torpedo metric described earlier. Let Cl and C2 be constants satisfying

Cl > E~ and C2 > 15 ~. Let a = (al' a2) denote a smooth unit speed curve in the first quadrant of

jR2 which begins at (Cl' 0) follows a vertical trajectory, bends by an angle of ~ towards the vertical

axis and continues as a horizontal line to end at (0, C2)' We will assume that the bending takes
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Figure II.6: The plane lRn +1 equipped with the metric h

place above the horizontal line through (0, 0~ ); see Fig. II.7. We also assume that olE U (0, b)

and 02 E V(0, b) for sufficiently large b > O.

We will now specify an embedding of the n-sphere into (lRn +1
, h) which induces the mixed

torpedo metric g~l~or described above. Let J be the embedding defined as follows

(t, e, ¢) f-----+ ((Ol(t), ¢), (02(t), e));

see Fig. II.8.

Provided that f and 0 are chosen sufficiently small, this embedding induces the mixed

torpedo metric g~I~or on sn. Indeed, we have

J* h = J*(dp2+ fE(P)2ds~ + d1·2+ fo(r)2ds~)

= dt2+ fE(al (t))2ds~ + fo(a2(t))2ds~

= dt2+ fE(b - t)2ds~ + fo(t)2ds~

= li:J~or'

The second equality follows from the fact that a is a unit speed curve and the third equality from

the fact that fE (s) and 10 (s) are both constant when s > max{ f ~ , 0~ }.



Figure II.7: The curve a
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Figure II.S: The map J gives a parameterisation for sn
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11.3 Revisiting the Surgery Theorem

Over the the next two sections we will provide a proof of Theorem n.23. The proof

involves the construction of a psc-metric on a compact cobordism {H7n +\ X o,Xd which extends

a psc-metric go from X o and is a product near oW. A specific case of this is Theorem n.lO (stated

below) which we prove in this section. It can be thought of as a building block for the more general

case of the proof of Theorem II.23 which will be completed in 11.4. Before stating Theorem 11.10,

it is worth briefly reviewing some basic notions about surgery and cobordism.

II. 3. 1 Sv.rge'ry and cobor-dism

A S7J.rger'y on a smooth manifold X of dimension '11, is the construction of a new '11-

dimensional manfiold X' by removing an embedded sphere of dimension p from X and replacing

it with a sphere of dimension q where p + q + I = n. J'>'1ore precisely, suppose i : SP ~ X is an

embedding. Suppose also that the normal bundle of this embedded sphere is trivial. Then we can

extend i to an embedding l : SP x Dq+ 1 ~ X. The map l is known as a framed embedding of SP.

By removing an open neighbourhood of SP, we obtain a manifold X \ l(Sp x'Dq
+

1
) with boundary

SP x sq. Here'D
q
+

1
denotes the interior of the disk Dq+l. As the handle DP+l x sq has the same

- - 0 q+l 1
boundary, we can use the map ilsPxSQ, to glue the manifolds X \ i(SP x D ) and DP+ x sq

along their common boundary and obtain the manifold

The manifold X' can be taken as being smooth (although some minor smoothing of corners is

necessary where the attachment took place). Topologically, X' is quite different from the manifold

X. It is well known that the topology of X' depends on the embedding i and the choice of framing

l; see [35] for details. In the case when i embeds a sphere of dimension p we will describe a surgery

on this sphere as either a p-S7trgery or a s'urgeTy of codimenison q + 1.

The trace of a p-surgery is a smooth '11 + I-dimensional manifold TV with boundary ()T'll =

X UX' ; see Fig. 11.9. It is formed by attaching a solid handle DP+1 x Dq+l onto the cylinder X x I,

identifying the SP x Dq+l part of the boundary of DP+l x Dq+l with the embedded SP x Dq+l

in X x {I} via the framed embedding l. The trace of a surgery is an example of a cobordism.
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In general, a cobordism between n-dimensional manifolds X o and Xl is an n + I-dimensional

manifold IV'n+l = {Wn +l ;X o, Xl} with boundary oW = X oU Xl. Cobordisms which arise as the

trace of a surgery are known as elementary cobor'disms. By taking appropriate unions of elementary

cobordisms it is clear that more general cobordisms can be construeted. An important consequenee

of Morse theory is that the converse is also true, that is any compact cobordisl11 {VVn +l ; X o,Xd

may be decomposed as a finite union of elementary cobordisms.

-

~
- - - --.... --. ',;.':: - ........

::", i _6-~:_ ,_.'-', -

Figure H.9: The trace of a p-surgery on X

11.3.2 Surgery and positive scalar curvature

The Surgery Theorem of Gromov-Lawson and Schoen-Yau can now be stated as follows.

Surgery Theorem. ([14], [38]) Let (X, g) be a Riemannian manifold of positive scalar curvature.

Let X' be a nwnifo1d whic11 1ws been obtained from X by a surgery of codimension [tt least 3.

Then X' admits a metric g' which also has positive sca1[tr curvature.

Remark 11.3.1. We will concentmte on the technique used by Gromov and Lawson, however, the

pTOof of the S117-geT'y Theorem by Schoen and Yau in (S8) is mther different and involves conformal

methods. There is in fact another appmach to the pTOblem of classifying manifolds of positive

scalar curvature which involves conformal geometry; see for example the work of Akutagawa and

Botvinnik in (1).
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Original metric 9

'Ifansition metric Standard metric

gP+ 1(E) + 82ds2tor q

Figure n.lO: The metric g', obtained by the Surgery Theorem

In their proof, Gromov and Lawson provide a technique for constructing the metric g'; see

Fig. n.lO. Their technique can be strengthened to yield the following theorem.

Theorem n.IO. Let (X, g) be a Riemannian manifold of positive scalar curvature. If TV is the

trace of a surgery on X in codimension at least 3, then we can extend the metric 9 to a metric 9

on W which has positive scalar curvature and is a product near the boundary.

In fact, the restriction of the metric 9 to X', the boundary component of VV which is the

result of the surgery, is the metric g' of the Surgery Theorem. Theorem n.lO is sometimes referred

to as the Improved Surgery Theorem and was originally proved by Gajer in [10]. We have two

reasons for providing a proof of Theorem n.lO. Firstly, there is an error in Gajer's original proof.

Secondly, this construction will be used as a "building block" for generating concordances. In turn,

it will allow us to describe a space of concordances; see section 1.4 for a discussion of this.

The proof of Theorem n.lO will dominate much of the rest of this section. vVe will first

prove a theorem which strengthens the Surgery Theorem in a slightly different way; see Fig. n.ll.

This is Theorem n.ll below, which will playa vital role throughout our work.

Theorem n.ll. Let (X, g) be an n-dimensional Riemannian manifold of pos'itive scalar' c'U.rvature

and let gp be any metric on the sphere SP. Suppose i : SP ~ X is an embedding of SP, with trivial

normal bundle. Suppose also that p + q + 1 = n and that q 2': 2. Then, fur some 8 > 0 theTe is an

isotopy of g, to a psc-metric gstd on X, which has the fOTm gp +gi;;'l (8) on a tubular neighbourhood

of the embedded SP and is the oTiginal metric 9 away from this neighbo·urhood.
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Original metric 9

Transition metric Standard metric

E
2ds~ + g'/}/ (0)

Figure 11.11: The "surgery-ready" metric obtained by Theorem 11.11

Corollary II.12. There is a metric g on X x I satisfying

(i) g has positive scalar curvature.

(ii) g restricts to 9 on X x {G}, gstd on X x {I} and is pTOd7tct near the boundar-yo

g is therefore a concordance of 9 and gstd.

PTOOf. This follows immediately from Lemma 11.2. o

Remark 11.3.2. The pTOof of Theorem II.ll is not made any simpler- by choosing a par-ticular

metr-ic for gp. Indeed, the embedded sphere SP can be replaced by any closed codimension~ 3

submanifold with tr-ivial normal bundle, and the result still holds with an essentially identical PTOOf.

That said, we are really only interested in the case of an embedded sphere and moreover, the case

when gp is the TOund metric E2ds~.

The proof of Theorem 11.11 is long and technical. Contained in it is the proof of the

original Surgery Theorem of Gromov and Lawson; see [14]. Their construction directly implies

that the metric 9 can be replaced by the psc-metric gstd described in the statement of Theorem

11.11, where in this case gp = E2ds~. Thus, Gromov and Lawson prepare the metric for surgery by

making it standard near the surgery sphere. By performing the surgery entirely on the standard

region, it is then possible to attach a handle DP+l x sq with a correponding standard metric,
o

gf;t:l(E) + o2ds~ onto X \ I(Sp x D
n

-
p

), as in Fig. lUG. Rather than attaching a handle metric,

Theorem 11.11 states that the "surgery-ready" metric gstd on X; see Fig. 11.11, is actually isotopic
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to the original metric g. Thus, the concordance 9 on X x I, which is described in Corollary n.12,

can be built. The proof of Theorem n.lO then proceeds by attaching a solid handle DP+l x Dq+l

to X x I, with an appropriate standard metric. After smoothing, this will result in a metric of

positive scalar curvature on the trace of the surgery on SP. The only remaining task in the proof

of Theorem ILlO is to show that this metric can be adjusted to also carry a product structure near

the boundary.

II. 8. 8 ()v,tline of the proof of Theorem II.ll

Although the result is known, Theorem ILll is based on a number of technical lemmas

from a variety of sources, in particular [14], [36]. For the most part, it is a reworking of Gromm'

and Lawson's proof of the Surgery Theorem. To aid the reader we relegate many of the more

technical proofs to the appendix. We begin with a brief summary.

Part 1: Using the exponential map we can specify a tubular neighbourhood N ~ SP X Dq+l, of the

embedded sphere SP. Henceforth, all of our work ,,,,ill take place in this neighbourhood. We

construct a hypersurface fi.1 in N x JR where N x JR is equipped with the metric 9 + dt2 .

Letting r denote the radial distance from SP x {O} in N, this hypersurface is obtained by

pushing out bundles of geodesic spheres of radius r in N along the t-axis with respect to some

smooth curve 'Y of the type depicted in Fig. IL12. In Lemmas IL14 and IL15, we compute

the scalar curvature of the metric g, which is induced on the hypersurface fi.1.

Part 2: "'INe recall the fact that 'Y can be chosen so that the metric g, has positive scalar curvature.

This fact was originally proved in [14] although later, in [36], an error in the original proof was

corrected. Vl!e will employ the method used by Rosenberg and Stolz in [36] to construct such

a curve T vVe will then demonstrate that 'Y can be homotopied through appropriate curves

back to the vertical axis, inducing an isotopy from the psc-metric g, back to the orginal

psc-metric g. vVe will also comment on the error in the proof of the "Improved Surgery

Theorem", Theorem 4 in [10]; see Remark IL3.4.

Part 3: We will now make a further deformation to the metric g, induced on 1\1. Here we restrict

our attention to the part of M arising from the torpedo part of I'. Lemma IL13 implies that

fi.1 can be chosen so that the metric induced on the fibre disks can be made arbitrarily dose

to the standard torpedo metric of radius o. It is therefore possible to isotopy the metric 09,
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through psc-metrics, to one which, near SP, is a Riemannian submersion with base metric

glsp and fibre metric 09£;;:/(0). Using the formulae of O'Neill (Chapter 9 of [2]), we will

show that the positivity of the curvature on the disk factor allows us to isotopy through

psc-submersion metrics near SP to obtain the desired metric gstd = gp + g£;;:/ (0).

Proof Let x n be a manifold of dimension n ~ 3 and 09 a metric of positive scalar curvature on X.

II. 3.4 Part 1 of the PTOOf: Curvat'ure formulae jor the first deformation.

Let i : SP '----+ X be an embedding with trivial normal bundle, denoted by N, and with

q ~ 2 where p + q + 1 = n. By choosing an orthonormal frame for N over i(SP), we specify a

bundle isomorphism i : SP x jRCJ+l -t N. Points in SP x jRCJ+l will be denoted (y, x). Let l' denote

the standard Euclidean distance function in jRCJ+l and let DCJ+l(r) = {x E jRCJ+l : r(x) ~ r} denote

the standard Euclidean disk of radius r in jRCJ+l. Provided r is sufficiently small, the composition

expoil spxD"J1(r), where exp denotes the exponential map with respect to the metric 09, is an

embedding. We will denote by N = N(f'), the image of this embedding and the coordinates (y, x)

will be used to denote points on N. Note that curves of the form {y} x 1, where 1is a ray in DCJ (f')

emanating from 0, are geodesics in N.

Before proceeding any further we state a lemma concerning the metric induced on a

geodesic sphere of a Riemannian manifold. Fix z E X and let D be a normal coordinate ball

of radius r around z. Recall, this means first choosing an orthonormal basis {el," ., en} for TzX.

This determines an isomorphism E : (Xl, ... , xn) f---7 xlel + ... + xnen from jRn to TzX. The com­

position E- l
0 exp-l is a coordinate map provided we restrict it to an appropriate neighbourhood

of z. Thus, we identify D = {x E jRn : Ixl ~ r}. The quantity r(x) = Ixl is the radial distance

from the point z, and sn-l(E) = {x E jRn : Ixl = E} will denote the geodesic sphere of radius E

around z.

Lemma 11.13. (Lemma 1, [14])

(a) The principal curvatures of the hype1'surjaces sn-1(E) in D aTe each of the form -/ + O(E)

for E small.

(b) Furthe1'more, let go be the ind-uced metric on sn-1 (E) and let 090.( be the standa1'd E'uclidean

metric of C'U7'Vat'ure ek. Then as E -t 0, -f.sgE -t ekgO,E = 090,1 in the C 2 -topology.
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Remark 11.3.3. We use the following notation. A junction f(r) is 0(1') as l' ----> 0 if .f~) ---->

constant as l' ----> o.

Proof. See appendix II1.6.3. o

This lemma was originally proved in [14]. In the appendix, we provide a complete proof,

which includes details suppressed in the original; see Theorem ?? In order to deform the metric

on N we will construct a hypersurface in N x lR. Let l' denote the radial distance from SP x {O} on

Nand t the coordinate on lR. Let I be a 0 2 curve in the t - l' plane which satisfies the following

conditions; see Fig. 11.12.

1. For some f> 0, I lies entirely inside the rectangle [0, r] x [O,~, beginning at the point (0, n
and ending at the point (f,O). There are points (O,rl),(t~,rD,(to,ro)and (toc,roo ) on the

interior of I with 0 < roc < 1'0 < 3 < r~ < 1'1 < rand 0 < til < to < too < f. V\Te will

assume that f - too is much larger than roo.

2. \i\Then l' E [1'0, r], I is the graph of a function fa with domain on the r-axis satisfying:

fo(r) = 0 when l' E [1'1, of], fo(r) = t~ - tan80 Cr - o{'~) for some 80 E (O'~) when l' E [1'0, r~]

and with ./0 ::; 0 and .fa ::;,. o.

3. V\Then l' E [0, roo], I is the graph of a function f 00 defined over the interval [too, ~ of the t-axis.

The function foo is given by the formula foo(t) = froo(f - t) where fr oo is an Too-torpedo

function of the type described at the beginning of section 11.2.3.

4. Inside the rectangle [to, too] x [1'00,1'0], I is the graph of a 0 2 function f with f(to) = 1'0,

f(t oo ) = roo, ./ ::; 0 and .f::;" O.

The curve I specifies a hypersurface in N x JR in the following way. Equip N x JR with the

product metric 9 + dt2 . Define Ai = IvI'Y to be the hypersurface, shown in Fig. II.13 and defined

IvL( = {(y, x, t) ESP x Dq+l(r) x JR : (r(x), t) E I}'

'vVe will denote by g'Y' the metric induced on the hypersurface 11'1. The fact that I is a vertical line

near the point (0, r) means that g'Y = g, near aN. Thus, I specifies a metric on X which is the

orginal metric 9 outside of N and then transitions smoothly to the metric 9"1' Later we will show
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ro
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ti to

Figure 11.12: The curve /

that such a curve can be constructed so that g, has positive scalar curvature. In the meantime,

we will derive an expression for the scalar curvature of g", by computing principal curvatures for

IvI with respect to the outward unit normal vector field and then utilising the Gauss curvature

equation; see Lemmas 11.14 and 11.15. Details of these computations can be found in appendix

111.6.3.

Lemma 11.14. The principal c'ur-vat7Lres to iVI with respect to the outward 7mit nOTmal vector- field

have the for"m

k if j = 1

)..-j= (-~+O(r))sinB if2~j~q+1 (11.3.1)

0(1) sinB if q + 2 ~ j ~ n.

Here k is the curvat'Ur-e of /, B is the angle between the outward nor-mal vector 7] and the horizontal

(or the 07dwar-d normal to the curve / and the t-axis) and the corresponding principal directions

e.i are tangent to the curve / when j = 1, the fibre sphere sq when 2 ~ j ~ q + 1 and SP when

q + 2 ~ j ~ n.

PT'Ooj. See appendix 111.6.3. o
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Figure II.13: The hypersurface AI in N x JR., the sphere SP is represented schematically as a pair
of points
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Lemma 11.15. The scalar C'urvature of the metric induced on IvI is given by

M N . 2 sineR·· =R +sm e·0(1)-2k·q-
r

sin2 e .+ 2q(q - 1)-2- + k· qO(r) sm e.
r

Proof. See appendix III.6.3.

II.8.5 Part 2 of the proof: A continuous bending argument

In this section we will prove the following lemma.

(11.3.2)

o

Lemma 11.16. The curve I can be chosen so that the induced metric 9"1' on the hypers'uTface

IvI = 11,1"1' has positive scalaT curvature and is isotopic to the original metTic g.

Before proving this lemma, it is worth simplifying some of our formulae. From formula

(11.3.2) we see that to keep RJ'vI > 0 we must choose I' so that

k [2qsi~ (} + qO(r) sin eJ < R N + sin2 e· 0(1) + 2q(q - 1) Si~: IJ.

This inequality can be simplified to

k[Si~IJ + O(r) sin e] < Ro + sin2 e.0(1) + (q - 1) Si~~ IJ

where

and infN(RN ) is the infimum of the function RN on the neighbourhood N. Simplifying further,

we obtain

k[l + O(r)r] < Rosi~IJ + rsin e· 0(1) + (q - 1) Si~~IJ.

Replace O(r) with Clr for some constant C I > 0 and replace 0(1) with -C where C > 0, assuming

the worst case scenario that 0(1) is negative. Now we have

k[l + C l r2 ] < R +- + (q - 1) sin IJ - Crsin e.0smIJ r
(II.3.3)
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The proof of Lemma II.16 is quite complicated and so it is worth giving an overview. ,Ve

denote by ,0, the curve which in the t - 1'-plane runs vertically down the T-axis, beginning at (0, r)

and finishing at (0,0). Now consider the curve ,°0 , shown in Fig. II. 14. This curve begins as ·l,

before smoothly bending upwards over some small angle fJo E (0, ~) to proceed as a straight line

segment before finally bending downwards to intersect the t-axis vertically. The corresponding

hypersurface in N x JR, constructed exactly as before, will be denoted by ALyea and the induced

metric by g,eo. The strict positivity of the scalar curvature of g means that provided we choose fJo

to be sufficiently small, the scalar curvature of the metric g,eo will be strictly positive. It will then

be a relatively straightforward exercise to construct a homotopy of ,00 back to ,0 which induces

an isotopy of the metrics g,eo and g.

To obtain the curve " we must perform one final upward bending on ,,00 • This will take

place on the straight line piece below the first upward bend. This time we will bend the curve right

around by an angle of ~ - fJo to proceed as a horizontal line segment, before bending downwards to

intersect the t-axis vertically; see Fig. II.12. We must ensure throughout that inequality (II.3.3) is

satisfied. In this regard, we point out that the downward bending, provided we maintain downward

concavity, causes us no difficulty as here k ~ O. The difficulty lies in performing an upward bending,

where this inequality is reversed.

Having constructed " our final task will be to demonstrate that it is possible to homotopy

, back to ,00 in such a way as to induce an isotopy between the metrics g, and g,oo' This,

combined with the previously constructed isotopy of g, and g, will complete the proof.

Proof. The initial bending: For some fJo > 0, ,°0 will denote the curve depicted in Fig. II.14,

parametrised by the arc length parameter s. Beginning at (0, f), the curve ,,00 runs downward

along the vertical axis to the point (0,1'1), for some fixed °< 1'1 < f. It then bends upwards by

an angle of fJo, proceeding as a straight line segment with slope 1710 = t -10 • before finally bending
an 0'

downwards and with downward concavity to intersect the t-axis vertically. The curvature of ,°0 at

the point ,00 (s) is denoted by k(s) and fJ = fJ( s) will denote the angle made by the normal vector

to ,00 and the t-axis, at the point ,°0 (s).

The bending itself will be obtained by choosing a very small bump function for k, with

support on an interval of length rl; see Fig. II.15. This will ensure that the entire upward bending

takes place over some interval [1'i, 1'Il which is contained entirely in [3, 1'Il. The downward bending
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Figure II.14: The curve 'Y0o resulting from the initial bend

will then begin at r = roo, for some roo E (0, 3)'

We will first show that the parameters eo E (0, ~) and rl E (0, r) can be chosen so

that inequality (II.3.3) holds for all e E [0, eo] and all r E (0, rd. Begin by choosing some eo E

(0, arcsin j!ii). This guarantees that the right hand side of (II.3.3) remains positive for all e E

[0, eo]. For now, the variable e is assumed to lie in [O,eo]. Provided e is close to zero, the term

Rosi~° is positively large and dominates. When e= °the right hand side of (II.3.3) is positively

infinite. Once e becomes greater than zero, the term (q - 1) si~ 0 can be made positively large by

choosing 7' small, and so can be made to dominate. Recall here that q :::;. 2 by the assumption that

the original surgery sphere had codimension at lea..<;t three. It is therefore possible to choose rl > °
so that inequality (II.3.3) holds for all e E [0, eo] and for all r E (0, rl]' Note also that without

the assumption that the scalar curvature of the original metric g is strictly positive, this argument

fails.

We will now bend 'Yo to 'Yoo , smoothly increasing e from 0 to eo. We do this by specifying

a bump function k: which describes the curvature along ,,00 ; see Fig. II.15. This gives
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Figure II.15: The bump function k

This approximation can be made as close to equality as we wish. If necessary re-choose eo so that

eo < ~Tl . kmax ' Note that 1'1 has been chosen to make inequality (11.3.3) hold for all e E [0, eo]

and so rechoosing a smaller eo does not affect the choice of 1'1. \Ve need to show that krrwx > a
can be found so that

k [1 + CIT 2] < R ---'f:L- + (q _l)sinli - CT sinemax 1 0 8111 11 Tl 1.,

for all e E [0, eo]. From the earlier argument, 1'1 and eo have been chosen so that the right-hand

side of this inequality is positive for all eE [0, eo]. So some such kmax > a exists. This completes

the initial upward bending.

The curve ,lio then proceeds as a straight line before bending downwards, with downward

concavity, to vertically intersect the t-axis. This downward concavity ensures that k :s: a and so

inequality (II.3.3) is easily satisfied, completing the construction of ,lio.

The initial isotopy:

Next we will show that ,lio can be homotopied back to ,0 in such a way as to induce an

isotopy between the metrics g,eo and g. Tl'eating ,lio as the graph of a smooth function 10 over

the interval [0, r], we can compute the curvature k, this time in terms of 1', as

fo
k = -----'--.--=2,.--3

(1+10 )2
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By replacing 10 with Ala where A E [0,1], we obtain a homotopy from '''lo back to ,,0. To ensure

that the induced metric has positive scalar curvature at each stage in this homotopy, it is enough

to show that on the interval [r2
1 ,'I'd, kA ::; k for all A E [0,1], where kA is the curvature of Ala. Note

that away from this interval, downward concavity means that kA ::; a for all A and so inequality

(11.3.3) is easily satisfied.

We wish to show that for all A E [0,1],

Aj~ < fa
(1 + A2 Jo 2) ~ - (1 + Jo2) ~ .

A slight rearrangement of this inequality gives

fa < fa
((A4)(1+A2J02))~ - (1+J02)~'

and hence, it is enough to show that

for all A E [0,1].

Replacing A~ with Mand .102
with b we obtain the following inequality.

(11.3.4)

The left hand side of this inequality is zero when Ii = 1 or when Ii = -b±~. A simple

computation then shows that, provided eo has been chosen sufficiently small, the left hand side of

(11.3.4) is non-zero when M(and thus A) is in [0,1], and so the inequality holds.

The final bending:

We will now construct the curve, so that the induced metric 9'Y has positive scalar

curvature. From the description of, given in Part 1, we see that it is useful to regard, as consisting

of three pieces. Vlhen 'I' > '1'0, , is just the curve ,°0 constructed above and when I' E [0, roc]' ')' is

the graph of the concave downward function 100' In both of these cases, inequality (II.3.3) is easily

satisfied. The third piece is where the difficulty lies. In the rectangle [to, too] x [TClQ,ro], we must

specify a curve which connects the previous two pieces to form a C2 curve, and satisfies inequality
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(11.3.3). This will be done by constructing an appropriate C 2 function f: [to,tooJ -----+ [r.oo ,7'o].

Before discussing the construction of f we observe that inequality (11.3.3) can be simplified even

further.

Choose ro E (0, If) so that 0 < 1'0 < min{k, &}. Now, when r E (O,ro] and e 2: eo,

we have

(q _1)Si~O - Crsine 2: sine[q~l - Cr]

2: si~ 0 [1 - Cr2 ].

vVhen l' < _1_ 7'2 < --.L So Cr2 < 1.1 and 1 - C1' 2 > '"4'3. Thus.,AG' 40' ,

(q _ 1) sin 0 _ Crsin e> ~ sin 6.
T - 4 T

Also r < a. So r 2 < 2b, giving that 2C'r2 < 1. Thus, 1 + C'r2 < ~. Hence from inequality

(II.3.3) we get
2 3 sin e sin e

k<-.--=-.
3 4 r 2r

So, if we begin the second bend when r E [0, ro], it suffices to maintain

sine
k<-.

27'
(11.3.5)

It should be pointed out that inequality (11.3.5) only holds when e > eo > 0 and

does not hold for only e> 0, no matter how small l' is chosen. The following argument

demonstrates this. Assuming e is close to zero and using the fact that k(B) = ~~, we can assume

(II.3.5) is
de e
-<-.
dB 2r

But this is
dlog(e) 1
_...=....:......:... < -.

dB 2r'

the left hand side of which is unbounded as e approaches O. It is for this reason that the initial

bend and henco, the strict positivity of the scalar curvature of g, is so important.

Remark 11.3.4. FTOm the above one can see that the inequality on page 190 of flO} breaks down

when e is near' O. In this case the bending arg717nent aims at maintaining non-negative mean



C7J,rvat'ure. Since aprioN the mean c'urvature is not strictly positive, an analogous initial bend to

move e aVlay 1mm 0 is not possible,

'vVe will now restrict our attention entirely to the rectangle [to, too] x [7"00' TO], Here we

regard I as the graph of a function 1. Thus, we obtain

1
sine= -----;===VI +j2

and

.- jk - . 3'

(1 + j2)"2

Hence, (II.3.5) gives rise to the following differential inequality

j 1 1
---;--0<-----;===
(l+j2)~ Vl+j22!"

This simplifies to
.. 1 + j2
1<21' (II.3.6)

Of course to ensure that I is a c 2 curve we must insist that as well as satisfying (11.3.6), f must

also satisf}r conditions (11.3,7), (II.3.8) and (11.3.9) below.

f(to) = ro, f(too) > 0,

j(to) = 'Ino, j(too ) = 0,

j(to) = 0, j(too) = 0,

(II.3.7)

(II.3.8)

(II.3.9)

where rna = ta~~o' The fact that such a function can be constructed is the subject of the following

lemma. Having constructed such a function, roo will then be set equal to f(t oo ) and the construction

of I will be complete.

Lemma 11.17. For some too> to, there 'is a C2 function f : [to, too] -----> [0.1'0] which satisfies

ineq'uality (II.8.6) as well as conditions (II. 8. 7), (II. 8. 8) and (II. 3. 9).
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Proof. The following formula describes a family of functions, all of which satisfy inequality (11.3.6).

where G1 , G2 > 0 and c E (0, c~,).

Such a function j has first and second derivatives

. C .. C
j = -;f(t - G2 ) and j = -;f.

vVe will shortly see that G1 and G2 can be chosen so that on the interval [to, G2 ], j(to) = TO,

j(to) = rna, j(G2 ) = 0 and .I(G2 ) = c > O. The choice of G1 needs to be very large which makes .i

a large positive constant. Thus, some adjustment is required near the end points if such a function

is to satisfy the requirements of the lemma. Vve will achieve this by restricting the function to

some proper subinterval [t~, t:x,] C [to, G2 ] and pasting in appropriate transition functions on the

intervals [to,t[)] and [t:x"t=] (where too is close to G2 ).

More precisely, let t~ - to = 150 , t= - t:x, = 1500 and G2 - t:x, = or. We will now show that

for appropriate choices of G1 , G2 , 150 and 1500 , the following function satisfies the conditions of the

lemma. To aid the reader, we include the graph of the second derivative of this function; see Fig.

lU6.

TO + mo(t - to) + S8
0

(t - to)3, if t E [to, t~]

C'J 2 C, (t t )3c - 48 ex; - 120= - 00 ,

if t E [t~, t:x,]

if t E [t:x" too].

(11.3.10)

A simple check shows that j(to) = TO, /(to) = mo and .i(to) = O. Now we must show that G1 can

be chosen so that this function is G2 at t~. 'iVe begin by solving, for t~, the equation

This results in the following formula for t~,

Equating the first derivatives of the first two components of (II1.4.3) at t~ and replacing t[) with
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Figure II.16: The second derivative of f

the expression above, results in the following equation.

(II.3.11 )

The second derivatives of the first two components of (III.4.3) agree at tb and so provided

C j and 60 are chosen to satisfy (II.3.11), f is C2 at to. It remains to show that 60 can be chosen

so that f satisfies inequality (II.3.6) on [to, tb]' The parameter C j varies continuously with respect

to 00. Denoting by C\, the solution to the equation C\ (ro - c) - m6 = 0, it follows from equation

(II.3.11), that for small 60, C1 is given by a formula C j (60) = C\ + t(60) for some continuous

parameter t with t(O) = 0 and t(60) > 0 when 60 > O. \Vhen 60 = 0, we obtain the strict

inequality

- 1 +m6C j < ---.
ro

Thus, there exists some sufficiently small 00, so that for all 8 E [0,1]'

1 + ( + C', <5 )2
C - C- (5: ) rno 4 0 8

1 - 1 + t VO < ,
ro

while at the same time,
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Hence,

(II.3.12)

holds for all s E [0,1]. Replacing s with t8~Q in (11.3.12) yields inequality (II.3.6) for t E [to, t~]

and so f satisfies (II.3.6) at least on [to, t~].

Given TO, the only choice we have made so far in the construction of f, is the choice of

00. This choice determines uniquely the choices of C1 and C2 . Strictly speaking we need to choose

some c in (0, d, ) but we can always regard this as given by the choice of C1 , by setting c = 22'1 say.

There is one final choice to be made and that is the choice of 000 , Some elementary calculations

show that f is C 2 at t~. The choice of 000 is completely independent of any of the choices we

have made so far and so can be made arbitrarily small. Thus, an almost identical argument to the

one made when choosing 00 shows that for a sufficiently small choice of 000 , inequality (II.3.6) is

satisfied when t E [t~, too]. Also, the independence of 00 and C1 means that f(too) = c - ~.~ 0;'

can be kept strictly positive by ensuring 000 is sufficiently small. The remaining conditions of the

lemma are then trivial to verify.

The final isotopy:

D

The final task in the proof of Lemma II.16, is the construction of a homotopy between,

and ,en which induces an isotopy between the metrics g...,. and g,80' 'iVe will begin by making a very

slight adj ustment to,. Recall that the function f has as its second derivative: a bump function

with support on the interval [to, too]; see Fig. II.16. By altering this bump function on the region

[t~, too], we make adjustments to f. In particular, we will replace f with the C 2 function which

agrees with f on [to, t~] but whose second derivative is the bump function shown in Fig. II.17,

with support on [to, t:::O], where t:::O E [C2,too]. We ""ill denote this new function foo.

'\Then t:::O = too, no change has been made and foo = f. When t:::O < too, the derivative

of .too on the interval [t:::O, toe] is a negative constant, causing the formerly horizontal straight line

piece of , to tilt downwards with negative slope. Thus, by continuously decreasing t:::O from too

by some sufficiently small amount, we can homotopy,' to a curve of the type shown in Fig. II.18,

where the second straight line piece now has small negative slope, before bending downwards to

intersect the t-axis vertically at l. Note that the rectangle [to, too] x [Too, TO] is now replaced by

the rectangle [to, t:::O] x [T:::O, TO], where .tOO(t:::O) = T:::O. It is easy to see how, on [t~,~, , can be
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Figure 11.17: The second derivative of the function ]=

homotopied through curves each of which is the graph of a C 2 function with non-positive second

derivative, thus satisfying inequality (11.3.6). We do need to verify however, that on [t'ox" t~], this

inequality is valid. Recall, this means showing that

. 2
.. 1 +]=

]= < 2]00

When t~ = too, ]00 = ] and so this inequality is already strict on the interval [t~, t~].

Now suppose t~ is slightly less than too' Then, on [t~, t~], /bo :s .f, while the 2-jets of] and l=

agree at t'oc. This means that /00 :s j and ]00 :S ] on [t'oc, t~]. But j < 0 on this interval and

so (/00)2 ;::: p. Also, provided t~ is sufficiently close to too, we can keep ]00 > 0 and sufficiently

large on this interval so that the curve I can continue as the graph of a decreasing non-negative

concave downward function all the way to the point t. Thus, the inequality in (11.3.6) actually

grows as t~ decreases.

It remains to show that this slightly altered I can be homotopied back to ~l() in such a

way as to induce an isotopy of metrics. To ease the burden of notation we will refer to the function

]= as simply] and the rectangle [to,t~] x [1'~,1'o] as simply [to,toc ] x [1'00,1'0], It is important

to remember that ] differs from the function constructed in Lemma II .17 in that rna :S j < 0 on

[to, too]' vVe wish to continuously deform the graph of ] to obtain the straight line of slope rna

intersecting the point (to, TO), We will denote this straight line segment by I, given by the formula

1(1') = 1'0 + rno(t - to). We will now construct a homotopy by considering the functions which
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TO

t~ to t~ t

Figure 11.18: The effect of such an alteration on the curve,

are inverse to f and l; see Fig. IU9. Consider the linear homotopy h-;1 = (1 - S)f-1 + SZ-l,

where s E [0,1]. Let h8 denote the corresponding homotopy from f to l, where for each s, h" is

inverse to h-;l. Note that the domain of h8 is [to, (1 - s)too + Sl-l(Too )]. For each l' E [1'00,1'0],
. 1 . . .

h; (1') :s: f-1(T). This meaus that for any s E [0,:1] and any l' E [Too, TO], hs(ts) :::: f(t), "\There

hs(ts) = f(t) = T. As the second derivative of h8 is bounded by j, this means that inequality

(11.3.6) is satisfied throughout the homotopy.

TO

f

'\' ,
, '
, '
, '
, '
, '

Too ~,

to too
Z-l

TO

Figure II.19: The graphs of the functions f and 1 and their inverses

This homotopy extends easily to the part of"y on the region where t :::: (l-s )too +SZ-l(Too ),

which can easily be homotopied through curves, each the graph of a concave downward decreasing

non-negative function. The result is a homtopy between, and ,Bo , through curves which satisfy
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inequality (II.3.3) at every stage. This, combined with the initial isotopy, induces an isotopy

through metrics of positive scalar curvature between g and g" completing the proof of Lemma

II.16. o

II. 3. 6 Part 3 of the proof: Isotopying to a standard product

Having constructed the psc-metric g, and having demonstrated that g, is isotopic to the

original metric g, one final task remains. We must show that the metric g, can be isotopied to a

psc-metric which, near the embedded sphere SP, is the product gp +gt/;1 (8). Composing this with

the isotopy from Part 2 yields the desired isotopy from g to gstd and proves Theorem II.ll.

"We denote by 7r : N ----+ SP, the normal bundle to the embedded SP in X. The Levi-Civita

connection on X, with respect to the metric g" gives rise to a normal connection on the total

space of this normal bundle. This gives rise to a horizontal distribution 'H on the total space of

N. Equip the fibres of the bundle N with the metric gi/;1(8). Equip SP with the metric g,lsp, the

induced metric on SP. The projection 7r: (N,{;) ----+ (SP,/j) is now a Riemannian submersion with

base metric 9 = g,lsp and fibre metric 9 = gi:/(8). The metric 9 denotes the unique submersion

metric arising from g, 9 and 'H. See Chapter 9 of [2] for details about Riemannian submersions.

Our focus will mostly be on the restriction of this Riemannian submersion to the disk

bundle, 7r : DN(E) ----+ S1'. 'Ale will retain .9, 9 and 9 to denote the relevant restrictions. Before

saying anything more specific about this disk bundle, it is worth introducing some useful notation.

For some tL E (teo, f - reo), we define the following submanifolds of },!f (see Fig. II.20),

M(tL,f) = {(y,x,t) E SP x Dq+l(r) x JR.: (r(x),t) E"f and t:::: td.

and

M(tCXOl tL) = {(y, x, t) E SP x Dq+l(r) x JR. : (r(x), t) E"f and too ::; t ::; td.

Note that M(tL, f) is, for appropriately small E, the disk bundle DN(E) and M(t oo , tL) is a cylin­

drical region (diffeOluorphic to SP x sq x [too, tLJ) which connects this disk bundle with the rest

of lvI. We will make our primary adjustments on the disk bundle DN(E), where we will construct

an isotopy from the metric g, to a metric which is a product. The cylindrical piece will be then
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Figure II.20: The shaded piece denotes the region M(tL, f)

be used as a transition region.

On DN(f) we can use the exponential map to compare the metrics g'"/ and g. Replacing

the term reo with 0, we observe the following convergence.

Lemma 11.18. There is C 2 convergence of the metrics g'"/ and 9 as 0 ----> O.

Proof. Treating g'"/ as a submersion metric (or at least the metric obtained by pulling back 9, via

the exponentialll1ap), it suffices to show convergence of the fibre metrics. In the case of 91' the

metric on each fibre Dq+l(f)y, where y ESP, is of the form

Here t E [tL, (0] and recall that sq(ffJ([ - t))y is the geodesic fibre sphere of radius 10([ - t) at the

point y E SP. In the same coordinates, the fibre metric for g is

We know from Lemma II.I3 that as r ----> 0,
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in the C2 topology. Now, 0 < f8CE - t) s: 8 and so as 8 ----> 0, we get that

o

Hence, we can isotopy g" through submersion metrics, to one which pulls back on SP x

Dq+l (E) to the submersion metric g. In fact, we can do this with arbitrarily small curvature effects

and so maintain positive scalar curvature. Furthermore, the fact that there is C 2 convergence of

g,ls'J(.f(t-t))x to f(f - t)2ds~ means that we can ensure a smooth transition along the cylinder

Ivl (tcxn t L), although this may necessitate making the cylindrical piece very long.

Now, by the formulae of O'Neill, we get that the scalar curvature of 9 is

where R" Rand R are the scalar curvatures of g,!J and g respectively. For full definitions and

formulae for A, T, nand 8; see chapter 9 of [2]. Briefly, the terms T and A are the first and second

tensorial invariants of the submersion. Here T is the obstruction to the bundle having totally

geodesic fibres and so by construction T = 0, while A is the obstruction to the integrability of the

distribution. The n term is also 0 as n is the mean curvature vector and vanishes when T vanishes.

We are left with

- - , 2
R = R 0 11: + R -IAI . (11.3.13)

vVe wish to deform 9 through Riemannian submersions to one which has base metric

gp, preserving positive scalar curvature throughout the deformation. vVe can make R arbitrarily

positively large by choosing small 8. As the deformation takes place over a compact interval,

curvature arising from the base metric is bounded. vVe must ensure, however, as we shrink the

fibre metric, that IAI 2 is not affected in a significant way.

Letting T = f - t, the metric on the fibre is

q+1 (8)gtor = dT2+ fo(T)2ds~

= 82d(i)2 + 82h(i)2ds~

= 82q+1 (1)gtor .
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The canonical variation formula, Chapter 9 of [2], now gives that

Thus, far from the IAI 2 term becoming more significant as we shrink 6, it actually diminishes.

Having isotopied g through positive scalar curvature Riemannian submersions to obtain a

submersion metric 'with base metric 9 = 9p and fibre metric 9 = 97:/(6), we finish by isotopying

through Riemannian submersions to the product metric YP +9'/::/(6). This involves a linear homo­

topy of the distribution to one which is flat Le. where A vanishes. As IAI 2 is bounded throughout,

we can again shrink 6 if necessary to ensure positivity of the scalar curvature.

At this point we have constructed an isotopy between ?j = 9stdIDN(f) and Yp + y'/::/(6).

In the original Gromov-Lawson construction, this isotopy is performed only on the sphere bundle

SN(E) and so the resulting metric is the product 9p + Pds~ (in this case Yp = ds~). In fact,

the restriction of the above isotopy to the boundary of the disk bundle DN(E) is precisely this

Gromov-Lawson isotopy. Thus, as the metric on DN(E) is being isotopied from 9"( to gp +y7::/(6),

we can continuously transition along the cylinder lv[(too , td from this metric to the orginal metric

gT Again, this may require a considerable lengthenning of the cylindrical piece. This completes

the proof of Theorem n.ll.

II. 3. 7 The Fa.mily Surgery Theorem

o

Before proceeding with the proof of Theorem n.10 we make an important observation.

Theorem 11.11 can be extended to work for a compact family of positive scalar curvature metries

on X as well as a compact family of embedded surgery spheres. A compact family of psc-metrics

on X will be specified with a continuous map from some compact indexing space B into the space

Riem+(X). In the case of a compact family of embedded surgery spheres, we need to introduce

some notation. The set of smooth maps Coo (lV, Y) between the compact manifolds Tiff and Yean

be equipped with a standard Coo topology; see Chapter 2 of [17]. Note that as TV is compact there

is no difference between the so called "weak" and "strong" topologies on this space. Contained

in Coo (liF, Y), as an open subspace, is the space Emb(TiV, Y) of smooth embeddings. We can now

specify a compact family of embedded surgery spheres on a compact manifold X, with a continuous

map from some compact indexing space C into Emb(SP,X).
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Theorem 11.19. Let X be a smooth compact manifold of dimension n, and Band C a pair of

compact spaces. Let B = {gb E Riem+ (X) : b E B} be a continuous family of psc-metrics on X

and C = {ie E Emb(S1', X) : c E C}, a contin'uous family of embeddings each 'with trivial nomurl

bundle, where p +q + 1 = nand q 2: 2. Finally, let g1' be any metric on S1'. Then, for some 0 > 0,

there is a continuous map

satisfying

(i) Each metric g~;,~ has the form g1' + g'[;;/(o) on a tubular neighbo'urhood of ic(S1') and is the

original metric gb away from this neighbonrhood.

(ii) For each c E C, the restrict'ion of this map to B x {i c} is homotopy equivalent to the inclusion

B'----+ Riem+(X).

Proof. For each pair b, c, the exponential map eXPb of the metric gb can be used to specify a

tubular neighbourhood Nb.e(r') of the embedded sphere ie(S1'), exactly as in Part 1 of Theorem

lI.ll. Compactness gives that the infimum of injectivity radii over all metrics gb on X is some

positive constant and so a single choice f > 0 can be found, giving rise to a continuous family of

such tubular neighbourhoods {Nb,e = Nb,c(f) : b, c E B x C}. Each metric gb may be adjusted in

Nb,c by specifying a hypersurface J'vf~'c C Nb,c x IR constructed with respect to a curve "~I, exactly

as described in the proof of Theorem lI.ll. Equipping each Nb,e X IR with the metric gb!Nb,e + dt2

induces a continuous family of metrics g~,e on the respective hypersurfaces jl;f~,e.

vVe will first show that a single curve I can be chosen so that the resulting metrics g~'C

have positive scalar curvature for all band c. The homotopy of I to the vertical line segment in

Part 2 of the proof Theorem lI.ll can be applied exactly as before, inducing an isotopy between

g~,e and gb which varies continuously with respect to band c. Finally, Part 3 of Theorem lI.ll

can be generalised to give rise to an isotopy between g~,e and g~t~, which again varies continuously

with respect to band c. Recall from the proof of Theorem 11.11 that for any curve I, the scalar
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curvature on the hypersurface l\![ = M, is given by:

R M = R N + sin2 e.O(l) _ 2k. qsj~ 0

+2q(q - 1) sj~~ 0 + k· qO(r) sin e.

The 0(1) term comes from the principal curvatures on the embedded surgery sphere SP and

the Ricci curvature on N, both of which are bounded. Over a compact family of psc-1l1etrics

gb, b E B and and a compact family of embeddings ie' C E C, these curvatures remain bounded

and so the 0(1) term is unchanged. Here, the tubular neighbourhood N is replaced with the

continuous family of tubular neighbourhoods Nb,e described above. Recall that we can specify

all of these neighbourhoods with a single choice of radial distance f. The OC,.) term comes from

the principal curvatures on the geodesic spheres Sq-1 (r), which were computed in Lemma II.13.

This computation works exactly the same for a compact family of metrics and so this O(r) term

is unchanged. The expression now becomes

Rlvh,c = RNb,c + sin2 e.O(l) - 2k. qSi~O

+2q(q - 1) si~~ 0 + k· qO(r) sin e.

Inequality (11.3.3) can be obtained as befOl'e as

k[l + C1r2 ] < R ,.2:.- + (q - 1) sin 0 - Crsin eosm 0 r '

where in this case Ro = ,Jq [inf(RNIJ.c)], taken over all pairs b, c. The important thing is that

Ro is still positive. The construction of a curve I which satisfies this inequality then proceeds

exactly as in Part 2 of Theorem II.ll. The resulting curve I specifies a family of hypersurfaces

JvI~,e c Nb,e X R For each (b, c), the induced metric on M~,e has positive scalar curvature. The

curve I can then be homotopied back to the vertical line, exactly as in Part 2 of Theorem II.ll,

inducing a continuous deformation of the family {o9~,e} to the family {o9b}'

Part 3 of Theorem II.11, can be applied almost exactly as before. The bundle Nand

distribution Ji are now replaced with continuous families Nb,e and Jib.e, giving rise to a continuous

family of Riemannian submersions 1fb,c : (Ni"c,[lb,e) --* (ie(SP), g/"c) where the base metric gb.c =

.9bIi,,(Sl') , the fibre metric is ,Ij = o9't:/(8) as before and !lb.e is the respective submersion metric.
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By compactness, a single choice of E gives rise to a family of disk bundles DNb,c(E) all specifying

appropriate submanifolds M~,e[too, tLl and M~,C[tL'~ of M~'c (see Part 3 of Theorem lUI for

details). Lemma 11.18 easily generalises to show that as rS ----t 0 there is uniform C 2 convergence

g~,e ----t 9b,e. Thus, there is a continuously varying family of isotopies over band c, through psc­

submersion metrics, deforming each g~'C into 9b,e'

Formula II.3.13 now generalises to give the following formula for the scalar curvature of

9b,e, varying continuously over band c.

(IUU4)

Here R~,e, R~,e and if denote the scalar curvatures of 9b,el .lIb,e and 9 respectively. The term Ab,c

satisfies all of the properties of A in formula (11.3.13), namely IAb,el is bounded and in fact dimin­

ishes uniformly as rS decreases. Thus, there is a sufficiently small rS > 0, so that the family {.rib,e}

can be isotopied through families of psc-submersion metrics to the desired family {g,~;'~l}, as in the

proof of Theorem II.ll. D

Remark 11.3.5. Note that Theorem Il.19 claims only the existence of such a map. To 'write down

a well-defined function of this type means incorpomting the var'ious parameter choices made in the

const'ruction of Theorem Il.II. For our current pnrposes, in this paper, that is not necessary.

11.3.8 Applications of the Family Surgery Theorem

There are a number of important applications to Theorem 11.19. The first is a rather

obvious corollary which will be of use to us later on.

Corollary 11.20. Let 9 and h be isotopic psc-metrics on X. Let g' and hi be respectively, the

psc-metrics obtained by application of the Surgery Theorem on a codimension ::::: 3 surgery. Then

09' and hi are isotopic.

Proof. This is just Theorem IU9 where B = I and C is a point. D

A more interesting application is Theorem II.21 below. This theorem is actually the main

result in a paper by Chernysh; see [6].
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Theorem II.210 Let X be a .smooth compact manifold of dimen.sion n. S'llppo.se x' i.s obtained

from X by .surgenJ on a .sphere S1' '----' X with p+q+ 1 = nand p, q ;:::: 2. Then the .space.s Riern+ (X)

and Riern+ (XI) are homotopy equivalent.

Proof. 'Ve will first prove weak homotopy equivalence. Let 2 : S1' x Dq+1 '----' X be a framed

embedding of the sphere S1'. 'Ve will assume that p, q ;:::: 2, where as always p + q + 1 = n. Denote

by XI, the manifold obtained by surgery on S1' with respect to this embedding. Recall that XI is

defined as

This surgery can be canonically reversed by performing a surgery on the embedded sq of the

attached handle. As p, q ;:::: 3, both surgeries are in codimension ;:::: 3.

Let Y = X \ (2(S1' x Dq+1)) and let Riem~d(Y) denote the space of all psc-metrics on Y

which, near the boundary BY, have the form dt2+E2d8~ +02ds~ for some E, 0 > O. Note that E (tnd 0

are allowed to vary. Let g<,Q denote such a metric in Riemt;d(X\ (2(S1' x Dq+1))). This metric can

be canonically extended to a metric on X by attaching (S1' x Dq+1, E
2ds;, +l/:/ (0)) with respect to

the isometry 2[Sl'xs q • This gives rise to a map j : Riem;td(Y) ----> Riem+(X). Similarly 9d can be

canonically extended to a metric on XI by an analogous attachment of (D1'+l x sq, g[;;;'l (E) +02ds~).

We will denote by j' the corresponding map Riem;td(Y) ----> Riem+(XI).

Riem+(X) Riem+(X I
)

It will now be enough to show that the groups 7fj,(j) and 7rk(jI), in the homotopy long

exact sequences of j and j', are trivial for all k. Recall that an element 0: of 7rdj) , is an equivalence

class of pairs of maps (¢, 'IjJ) which form the commutative diagram shown in Fig. II.21.

Let (¢, 'II') be a representative pair of some element 0: E 7rk(j). Then'VJ : D k ----> Riem+(X)

parametrises a compact family of psc-metrics on X. By Theorem II.19, this family can be contin-

uously deformed into a family of psc-metrics which are standard near the embedded sphere S1'. It

is of course important that the metrics parametrised by the boundary BDk remain in Riem~d(Y)'
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Riem+(X)

Figure II.21: An element 0: of 7fk(j)

This is almost immediate. Although the initial "bending" part of the Gromov-Lawson construction

does alter the standard torpdedo metric on the fibres somewhat, this alteration is very minor. The

problem is easily solved by extending Riemttd(Y) to include these altered metrics. The resulting

space is homotopy equivalent to Riemttd(Y) via a deformation retract obtained by reversing the

bending construction on fibres near the embedded surgery sphere.

Thus, 'VJ is homotopic to a map 'VJstd : Dk
----7 Riern+(X), with 'l/Jstd(Dk) contained in the

image of j, and so 0: = O. Hence, 7fk(j) = O. An analogous argument can be performed on any

0:' E 7fk (j'). In this case, Theorem II.19 is used to standardise a compact family of rnetrics near the

embedded SlJ. Again, 0:' is shown to be 0, completing the proof for weak homotopy equivalence.

It follows from the work of Palais in [33] that the spaces Riemttd(Y)' Riern+(X) and

Riem+(Xo) are all dominated by OW-complexes. Thus, by the theorem of ~Whitehead, we obtain

the desired homotopy equivalence. o

Interestingly, when X is a simply connected spin manifold of dimension:::: 5, the homotopy

type of the space Riem+ (X) is an invariant of spin cobordism. This fact is proved by the following

theorem.

Theorem 11.22. Let X o and Xl be a pair of compact simply-connected spin manifolds of dimension

n :::: 5. Sv,ppose also that X o is spin cobordant to Xl. Then the spaces Riem+(Xo) and Riem+(Xd

are homotopy equivalent.

Proof. Let W be a spin cobordism of Xu and Xl. Then, by Morse-Smale theory, ltV can be decom-

posed into a union of elementary cobordisms; see [30]. Each elementary cobordism corresponds to

surgery on a sphere SP. To apply Theorem II.21, we must ensure that p, q :::: 2, where p+q+ 1 = n.

Each elementary cobordism in the decomposition of TV gives rise to an element in H. (TV, Xu), or,

viewed from the other direction, an element of H.(TV,Xd. To satisfy the relevant conditions on p
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and q, we must show that VV can be altered by surgery to make HI (W, X o) = H 2 (W, Xo) = 0 and

Hn- 1(TiV, Xo) = Hn(W, Xo) = O.

Consider the long exact sequence in homology, of the pair (W, X o).

By the theorem of Hurewicz, HI (Xo) = 0 and so it is dear that to kill generators in HI (W, X o) alJd

H2 (W,XO), it is enough to kill generators in H1(W) and H2(W). Let ex E 7TJ(VV). It follows from

a theorem of vVhitney, Theorem 2 of [41], that ex can be represented by an embedding Sl ---4 T,V.

As W is orientable, i.e. the first Stiefel Whitney dass WI (H1) = 0, this embedding can be extended

to a framed embedding Sl X D n
---4 vV and the generator killed by surgery. This can be repeated

to kill all generators in 7Tl (vV) and, hence, all generators in HI (TV).

As 7Tl(W) = H1(W) = 0, the Hurewiez theorem now tells us that 7T2(W) ~ H2(W). We

now consider a generator (3 E 7T2(W), Again, Whitney's theorem tells us that (3 can be represented

by an embedding S2 ---4 W. The fact that W is spin, Le. W2(W) = 0, means that this embedding

can be extended to a framed embedding S2 X Dn-l and the generator killed by surgery. This can

be done for all such generators to give HI (W, X o) = H2(W, X o) = o. It now follows from duality

and the Universal Coefficient Theorem, that Hn- 1(W, X o) = Hn(W, X o) = 0 also, completing the

proof. D

II.3.9 The proof of Theorem II.l0(The Improved Surgery Theorem)

Pmof Recall that 9 denotes a positive scalar curvature metric on the closed manifold X n ,

SP '--' X denotes an embedding of the sphere SP with trivial normal bundle and that p +q+ 1 = n

with q 2: 2. Let W denote the trace of a surgery on X with respect to this embedded sphere. \Ve

wish to extend 9 over TiV to obtain a psc-metric which is product near the boundary.

Corollary I1.12 implies the existence of a psc-metric 9 on the cylinder X x I so that near

X x {O}, 9 = 9 + ds2 and near X x {1}, 9 = g8td + ds2 where g8td is the metric obtained in

Theorem II.ll. Thus, by choosing gp = E2ds~, near SP the metric g8td has the form E2ds~+ l[;;/ (0)

for some sufficiently small <5 > O. Using the exponential map for g8td we can specify a tubular

neighbourhood of SP , N = SP X Dq+l(F), so that the restriction of gstd on N is precisely the metric

E2ds~ + g£,tJ(J). As before, N is equipped with the coordinates (y,x) where y ESP, x E Dq+l(F)
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and Dq+l ('F) is the Euclidean disk of radius 'F. The quantity r will denote the Euclidean radial

distance on Dq+l('F). Moreover, we may assume that 0 is arbitrarily small and that the tube part

of g't:/ (0) is arbitrarily long, thus the quantity 'F - 0 can be made as large as we like.

We will now attach a handle DP+l x Dq+l to the cylinder X x I. Recall that in section 11.2,

we equipped the plane JRn+l = JRr+1 x JRq+l with a metric h = gr~l(t) + g'l:/(o). By equipping

JRr+1 and JRq+l with standard spherical coordinates (p, ¢) and (r, ()), we realised the metric h as

where ft' fo : (0,00) ----* (0,00) are the torpedo curves defined in section 11.2. The restriction of h

to the disk product DP+l(15) x Dq+l('F) is the desired handle metric, where 15 is as large as we like.

vVe can then glue the boundary component 8(Dp+l(15)) x DHl('F) to N with the isometry

SP X Dq+l ('F) ------> N

(y, x) f---> (i(y), Ly(;x;)),

where L y E O(q + 1) for all y E sr. Different choices of map y ~ L y E O(q + 1) give rise to

different framings of the embedded surgery sphere SP in X. The resulting manifold (which is not

yet smooth) is represented in Fig. II.22. Recall that 15 and 'F are radial distances with respect to

the Euclidean metric on JRP+l and JRq+l respectively. By choosing t and <5 sufficiently small and

the corresponding tubes long enough, we can ensure that ~t < 15 and ~o < 'F.

Two tasks remain. Firstly, we need to make this attaching smooth near the corners. This

will be done in the obvious way by specifying a smooth hypersurface inside DP+l (15) x Dq+I (7')

which meets N smoothly near its boundary, as shown by the dashed curve in Fig. II.22. This is

similar to the hypersurface IV1 constructed in the original Gromov-Lawson construction. Again we

must ensure that the metric induced on this hypersurface has positive scalar curvature. This is

considerably easier than in the case of A,f, given the ambient metric we are now working with. \iVe

will in fact show that the metric induced on this hypersurface is precisely the metric obtained by

the Gromov-Lawson construction. The second task is to show that this metric can be adjusted to

have a product structure near the boundary.

The spherical coordinates (p, ¢, r, ()) on the handle DP+I (15) x Dq+I (7') can be extended to

overlap with X x Ion N('F) x [1 - tI, 1], where tl is chosen so that lllxx[I- t l,lj = gstd + dt 2
. We
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Figure II.22: The metric (X x I,g) U (DP+l(15) x Dq+l(r), h) and the smooth handle represented
by the dashed curve

denote this region DP+l(15) x Dq+l(f). Let E be the embedding

E : [0, El] x [0,(0) ------> IR: x IR:

(8, t) f--; (al(S, t), a2(8, t))
(11.3.15)

shown in Fig. 11.23. The map E will satisfy the following conditions.

(1) For each So E [0, tll, E(so, t) is the curve (t, C2(SO)) when t E [0, ";l, and ends as the unit

speed vertical line (Cl(SO),t). Here Cl and C2 are functions on [O,El] defined as follows. For

each s, Cl(S) = 15 + sand C2(S) = C2(0) - s, where Cl(O) - El > ~E and C2(8) > ~8.

(2) For each to E [0, 00 ), the path E (s, to) runs orthogonally to the levels E (so, t) for each

So E [0, El]. That is, for each (so, to), ~~ (soJa) . ~~ (so, to) = O.

Provided El is chosen sufficiently small, the map
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Figure II.23: The embedding E

parametrises a region in DP+l(p + Ed x Dq+l(f). Consider the hypersurface parametrised by the

restriction of Z to {O} x (0, (0) x sp x sq. The metric induced on the region bounded by this

hypersurface extends 9 as a psc-metric over the trace of the surgery. Now we need to show that this

metric can be deformed to one which is a product near the boundary while maintaining positive

scalar curvature.

We begin by computing the metric near the boundary with respect to the parameterisation

Z. Letting

y: _ aal 2 + aa2 2
s - as as and y, _ ~2 + aa22

t - at at'

Z*(dp2 + fE(P)2ds~ + d.,.2 + f8('r)2ds~) = da12 + .fE(al)2ds~ + da22 + fo(a2)2ds~

= Ys(s, t)ds2 + yt(s, t)dt2 + fE(al)2ds~ + fo(a2)2ds~.

On the straight pieces of our neighbourhood, it is clear that Ys = 1 and yt = 1. Thus, on the

straight region running parallel to the horizontal axis, the metric is

ds2+ dt2+ fE(al)2ds; + fo(a2)2ds~ = ds2+ dt2+ fE(t)2ds~ + fo(C2(S))2ds~

= ds2+ dt 2+ fE(t)2ds~ + <52ds~, since C2 > ~<5.
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On the straight region running parallel to the vertical axis, the metric is

ds2 + dt2 + fc( al )2ds~ + h(a2 )2ds~ = ds2 + dt2 + fE( Cl (s) )2ds~ + h(t)2ds~

= ds2 + dt2 + E2ds~ + 82ds~,

= ds 2 + dt2 + fE(t)2ds~ + 82ds~.

The second equality holds because Cl > ~E and t > ~8. The last equality follows from the fact

that t > Cl > ~E and t > ~8. As we do not have unit speed curves in sand t, the best we can say

about the remaining "bending" region is that the metric is of the form

The graphs of Ys and It are surfaces, shown schematically in Fig. 11.24. Outside of a

compact region, Ys = 1 and It = 1. We can replace Ys and It with smooth functions y: and Y/,

so that on [E2' El] x (0,00), y, = Y; and It = Y;;' and so that on [0, E3] x (0,00), Y; = Yf = 1 for

some El > E2 > E:3 > 0. Moreover, this can be done so that y, - y: and It - Y;;' have support in a

compact region.

2ang;w!
17\

Y; = Yf = 1

Figure 11.24: Adjusting Yq and Yi.

Any curvature resulting from these changes is bounded and completely independent of the

metric on the sphere factors. Thus, we can always choose 8 sufficiently small to guarantee the

positive scalar curvature of the resulting metric
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which, when s E [0, E3], is the metric

This is of course the desired product metric ds 2 +gf~l(E) +b2d8~, completing the proof of Theorem

II.lO. 0

II.4 Constructing Gromov-Lawson Cobordisms

In section II.3 we showed that a psc-metric 09 on X can be extended over the trace of a

codimension ~ 3 surgery to a psc-metric with product structure near the boundary. Our goal in

section II.4 is to generalise this result in the form of Theorem II.23. Here {Tlj:rn + l
; Xo, Xd denotes

a smooth compact cobordism and go is a psc-metric on X o. If Mr can be decomposed into a union

of elementary cobordisms, each the trace of a codimension ~ 3 surgery, then we should be able

to extend go to a psc-metric on Mr, which is product near the boundary, by repeated application

of Theorem 11.10. Two questions now arise. Assuming Ml admits such a decomposition, how do

we realise it? Secondly, how many such decompositions can we realise? In order to answer these

questions, it is worth briefly reviewing some basic Morse Theory. For a more thorough account of

this, see [30] and [16].

II.4.1 MOTse TheoTy and admissible MOTse functions

Let F = F(W) denote the space of smooth functions f : vV ---- I on the cobordisl11

{W;Xo,Xd with the property that f- 1(0) = Xo and f-1(1) = Xl, and having no critical points

near mv. The space F is a subspace of the space of smooth functions on vV with its standard

COO topology; see Chapter 2 of [17] for the full definition. A function f E F is a Morse function

if, whenever w is a critical point of f, det(D2f(w)) -:f O. Here D2f(w) denotes the Hessian of f

at 'W. The Morse index of the critical point 'W is the number of negative eigenvalues of D 2 f(w).

The well known Morse Lemma, Lemma 2.2 of [30], then says that there is a coordinate chart

{x = (X1,:l:2,'" ,:l:n+d} near 'W, with 'W identified with (0, ... ,0), so that in these coordinates,

f( ) - 2 2. 2 2. X - C - Xl - ... - Xp+1 + Xp+2 + ... + Xn+l ' (II.4.1 )
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where c = f (w). Here P+ 1 is the 1vIorse index of wand this coordinate chart is known as a MOTse

COOTdinate chart.

Inside of this coordinate chart it is clear that level sets below the critical level are diffeo­

morphic to SP x Dq+1 and that level sets above the critical level are diffeomorphic to DP+1 x sq

where P + q + 1 = n; see Fig. 11.25. In the case where f has exactly one critical point w of index

P + 1, the cobordism HT is diffeomorphic to the trace of a p-surgery on X o. If TtV admits a Morse

function f with no critical points then by theorem 3.4 of [30], TtV is diffeomorphic to the cylinder

X o x I (and consequently X o is diffeomorphic to Xl)'

f=c

Figure 11.25: Morse coordinates around a critical point

The critical points of a Morse function are isolated and as W is compact, f will have only

finitely many. Denote the critical points of f as wo, WI, ... ,Wk where each Wi has Morse index

Pi + 1. We will assume that 0 < f(wo) = co::; f(wI) = C1 :::; ... f(Wk) = C" < 1.

Definition 11.3. The Morse function f is well-indexed if critical points on the same level set have

the same index and for all i, Pi ::; Pi+ 1 .

In the case when the above inequalities are all strict, f decomposes W into a union of

elementary cobordisms COUC1 U·· ,UCk. Here each C; = f- 1
([Ci-1 +7, Ci+7]) when 0 < i < k, and
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Co = f- l ([0, Co + T]) and Ck = f- l ([Ck-l + T, 1]), for some appropriately small T > O. Each Ci is

the trace of a Pi-surgery. 'When these inequalities are not strict, in other words f has level sets with

more than one critical point, then VV is decomposed into a union of cobordisms Cb U Ci u ... UC{

where I < k. A cobordism C~ which is not elementary, is the trace of several distinct surgeries. It

is of course possible, with a minor adjustment of f, to make the above inequalities strict.

By equipping vV with a Riemannian metric m, we can define grad71J the gradient vector

field for f. This metric is called a background metric for f and has no relation to any of the

other metrics mentioned here. In particular, no assumptions are made about its curvature. More

generally, we define gradient-like vector fields on W with respect to f and Tn, as follows.

Definition 11.4. A gradient-like vector field with respect to f and Tn is a vector field V on W

satisfying the following properties.

(1) dfx(Vx) > 0 for all x in W which are not critical points of f.

(2) Each critical point w of f, lies in a neighbouhood U so that for all x E U, Vx = gradnJ(J.').

We point out that the space of background metrics for a particular Morse function f :

W ~ I is a convex space. So too, is the space of gradient-like vector fields associated with any

particular pair (f, m); see Chapter 2, section 2 of [16]. We can now define an admissible Morse

function on W.

Definition 11.5. An admissible Morse Junction f on a compact cobordism {W; Xo, Xl} is a triple

f = (f, m, V) where f : W ~ I is a Morse function, m is a background metric for f, V is a

gradient like vector field with respect to f and m, and finally, any critical point of f has Morse

index less than or equal to n - 2

Remark 11.4.1. We emphasise the fact that an admissible Morse function is actually a triple

consisting of a Morse function, a Riemannian metric and a gradient-like vector' field. However, to

ease the burden of notation, an admissible Morse Junction (f, m, V) will be denoted as simply .f.

Associated to each critical point w of index p + 1, is a pair of trajectory spheres S~(-w)

and S~ (w), respectively converging towards and emerging from w; see Fig. II.26. As usual

p + q + 1 = n. Let us assume for simplicity that f has exactly one critical point wand that w has

Morse index p + 1. Then associated to w is an embedded sphere SP = S~ (w) in X 0 which follmvs
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Figure I1.26: Trajectory spheres for a critica.l point 'U) on an elementary cobordism

a trajectory towards 11J. The trajectory itself consists of the union of segments of integral curves of

the gradient vector field beginning at the embedded SP C X o and ending at w. It is topologically

a (p + I)-dimensional disk DP+l. We denote it Kl'+l(w). Similarly, there is an embedded sphere

sq = S~ C Xl which bounds a trajectory K~(w) (homeomorphic to a disk Dq) emerging from w.

Both spheres are embedded with trivial normal bundle and the elementary cobordism Hl is ill fact

diffeomorphic to the trace of a surgery on X o with respect to SP.

We are now in a position to prove Theorem I1.23. This is the construction, given a

positive scalar curvature metric go on X o and an admissible Morse function f on ~V, of a psc­

metric !J = !J(go, 1) on W which extends go and is a product near the boundary. As pointed out

in the introduction, the metric !J is known as a Gmmov-Lawson cobordism with respect to go and

f. The resulting metric induced on Xl, gl = !Jlxll is said to be Gromov-Lawson cobordant to go.

Theorem 11.23. Let {Wn +l ;Xo, Xd be a smooth compact cobordism. Snppose go is a metric of

positive scalar c'urvat'ure on Xo and f : W --t I is an admissible Morse junction. Then there is a

psc-metric g = !J(gO, 1) on W which extends go and has a prod'uct stmct'ure near the bo'undary.

Proof. Let f be an admissible Morse function on W. Let Tn be the background metric on TV, as

described above. Around each critical point 11h of f we choose mutually disjoint Morse coordinate

balls B(Wi) = Bm(Wi' f) where f > a is some sufficiently small constant. In each case we will

assume that the background metric Tn agrees with the metric obtained by pulling back the standard

Euclidean metric via the Morse coordinate diffeomorphism. This is reasonable since the metric Tn

can always be adjusted via a linear homotopy to obtain such a metric. Fbr the moment, we may
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assume that f has only one critical point w of Morse index p + 1 where as usual p + q + 1 = nand

q 2': 2. Let c = f(w) E (0,1). Associated to ware the trajectory spheres SP = S~('UJ) and S~(w),

defined earlier in this section. Let N = STl X Dq+1 (r) c X o denote the tubular neighbourhood

defined in the proof of Theorem 11.11, constructed using the exponential map for the metric go.

The normalised gradient-like flow of f (obtained by replacing V with mcty) away ii'om critical

points and smoothing with an appropriate bump function) gives rise to a diffeomorphism from

f-I([O,EO]) to f-I([O,c - T]) where °< EO < c - T < c. In particular, normalisation means that

it maps f-I([O, EO]) diffeomorphically onto f- I([c - T - EO, C - T]). For sufficiently small f, EO and

T, the level set f-I(C - T) may be chosen to intersect with B(w) so as to contain the image of

N x [0, EO] under this diffeomorphism; see Fig. 11.27.

w

~-+-.-~~i~fC~ f-I([C - T - EO,C- T])

B(w)C): :

Figure 11.27: The action of the gradient-like flow on N x [0, EO]

'vVe may use the normalised gradient-like flow to construct a diffeomorphism between

X o x [0, C - T] and f-I( [0, C - T]) which for each s E [0, C - T], maps X x {s} diffeomorphically

onto f-I(s). Corollary 11.12 then allows us to extend the metric go from X o as a psc-metric over

f- I ([0, C - T]) which is product near the boundary. Moreover, this extension can be constructed so

that the resulting metric .90, is the product go + dt2 outside of B(w) and on f- I ([c - T - EO, C - T])

is the metric (gO)std + dt2 where (gO)std is the metric constructed in Theorem 11.11 with respect
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to N. Recall that on X o, the metric (gO)std is the original metric go outside of N but that

near SP, (gO)std = E2ds~ + g'1;;:/(o). Choose TO E (0,7'), so that on the neighbourhood N(TO) =

SP x Dq+l(ro) eN, (90)std = E2ds~+gi;;;'1(8). Observe that the trajectories beginning at X o\N(TO)

do not pass any critical points. Thus, it is possible to extend 90 as (go)"td+dt2 along this trajectory

up to the level set f-1(C + T). To extend this metric over the rest of f- 1([0, C + T]), we use a

diffeomorphism of the type described in Fig. 11.28 to adjust coordinates near w. Thus, away from

the origin, the level sets and flow lines of f are the vertical and horizontal lines of the standard

Cartesian plane. Also, the extension along the trajectory of Xo \ N(TO) is assumed to take place

on this region; see Fig. 11.29. Over the rest of f- 1 (c+T), the metric 90 can be extended extended

as the metric constructed in Theorem 11.10.

Figure 11.28: A diffeomorphism on the handle.

At this stage we have constructed a psc-metric on f-1(C + T), which extends the original

metric 90 on X o and is product near the boundary. As f-1([c + T, 1]) is diffeomorphic to the

cylinder Xl x [c + T, 1], this metric can then be extended as a product metric over the rest of W.

This construction is easily generalised to the case where f has more than one critical point on the

level set f-1(C). In the case where f has more than one critical level, and thus decomposes 1;f/ into

cobordisms Cb U C~ U ... U C[ as described above, repeated application of this construction over

each cobordisrn results in the desired metric 9(90, I). o
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\AIX;
~~

Figure I1.29: Extending rio along the trajectory of X o \ N(ro) to the level set 1-1(c+ T).

11.4.2 A reverse Grornov-La'Wson cobordisrn

Given a Morse triple 1 = (1, Tn, V) on a smooth compact cobordism {HT; X o,Xd, with

1-1(0) = X o and 1-1(1) = Xl, we denote by 1- 1, the Morse triple (1- 1, m, -V) which has the

gradient-like flow of 1, but running in the opposite direction. In particular, (1- 1)-1(0) = Xl and

(1 - 1)-1(1) = Xo and so it is easier to think of this as simply "turning the cobordism W upside

down". Although 1 - 1 has the same critical points as 1, there is a change in the indices. Each

critical point of 1 with index p + 1 is a critical point of 1 - 1 with index q + 1, where p + q + 1 = 17,

and dim lV = 17, + 1. Just as 1 describes a sequence of surgeries which turns X o into Xl, 1 - 1

describes a sequence of complementary surgeries which reverses this process and turns Xl back

into X o.

Given an admissible Morse function 1 on a cobordism {W; X o, Xd, Theorem II.23 allows

us to construct, from a psc-metric 90 on X o, a new psc-metric 91 on Xl. Suppose now that 1 - 1

is also an admissible Morse function. The following theorem describes what happens if we reapply

the construction of Theorem II.23 on the metric 91 with respect to the function 1 - 1.
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Theorem 11.24. Let {TtVn +1 ; X o, Xd be a smooth compact coboTdism, go a psc-metTic on X o and

f : W ~ I, an admissible MOTse function. Suppose that 1- f is also an adm'issible MOTse junction,

Let gl = g(go, f) IXl denote the Testnction of the Gmrnov-Lawson coboTdism g(go, f) to Xl, Let

.Q(gl, 1- f) be a GTOmov-Lawson coboTdism with Tespect to gl and 1 - f and let g6 = g(gl' 1 - f) Ixo

denote the restTiction of this metTic to X o. Then go and g6 aTe canonically isotopic metT'i.cs in

Riem+(Xo).

PTOof It is enough to consider the case where f has a single critical point w of index p + 1. The

metric gl is the restriction of the metric g(go, f), constructed in Theorem II.23, to X 1. In con­

structing the metric g6 we apply the Gromov-Lawson construction to this metric with respect to

surgery on an embedded sphere sq. The admissible 1\10rse function 1 - f determines a neighbour­

hood sq x DP+1 on which this surgery takes place. Recall that, by construction, the metric 91 is

already the standard metric 02ds~ + gfo~l (f) near this embedded sphere. Thus, gel is precisely the

metric obtained by applying the Gromov-Lawson construction on this standard piece. Removing a

tubular neighbourhood of sq in this standard region results in a metric on Xl \ sq X DP+I, which

is the standard product 02ds~ + f2ds~. The construction is completed by attaching the product

Dq+1 x S1' with the standard metric g'/.;;/(o) + f 2ds;'. In Fig. II.30 we represent this, using a

dashed curve, as a hypersurface of the standard region. The resulting metric is isotopic to the

metric (gO)std, the metric obtained from go in Theorem 11.11, by a continuous rescaling of the tube

length of the torpedo factor. In turn (gO)std can then be isotopied back to go by Theorem II.ll.

D

11.4.3 Continuous families of MOTse junctions

The construction of Theorem 11.23 easily generalises to the case of a compact contractible

family of admissible Morse functions. Before doing this we should briefly discuss the space M =

M(W) of Morse functions in F = F(W). It is well known that M is an open dense subspace

of F; see theorem 2.7 of [30]. Let j: denote the space of triples (j, m, V) so that f E F, m is a

backgound metric for f and V is a gradient-like vector field with respect to f and 'lTL The space

j: is then homotopy equivalent to the space F. In fact, by equipping W with a fixed background

metric m, the inclusion map

f f-------> (j, m, gradmf) (11.4.2)
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standard metric

Figure 11.30: The metric induced by .9(,91, - 1) on a level set below the critical level

forms part of a deformation retract of:t down to F; see Chapter 2, section 2 of [16] for details.

Denote by M = M(W), the subspace of :t, oftriples (f, rn, V) where f is a Morse function.

Elements of M will be known as Morse tr'iples. The above deformation retra.ct then restricts to a

deformation retract of M to M. The subspace of M consisting of admissible Morse functions will

be denoted Modm = M odm (H7). To economise in notation we will shorten (f, rn, V) to simply f.

Let fa, II EM.

Definition 11.6. The Morse triples fa and II are isotopic if they lie in the same path component

of M. A path ft, tEl connecting fa and II is called an isotopy of 1\,10rse triples.

Remark 11.4.2. Th'is dnal1tse of the wOr'd isotopy is 1tnfort11.nate, however', it sho'uld be clear from

conte;rt which meaning 'We wish to employ.

In order for two Morse triples fa and II to lie in the same path component of M, it is necessary

that both have the same number of index p critical points for each p E {O, 1, ... n + I}. Thus, if

fa and II are both admissible Morse functions, an isotopy of Morse triples connecting fa to II is

contained entirely in Modm. We now prove Theorem II.25.
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Theorem 11.25. Let {lV, X o, X d be a smooth compact cobordism and let B a compact space. Let

E = {gIl E Riem+(Xo) : b E B} be a continuous family of psc-metrics on X o and let C = {fe E

MUd7n(W) : c E D k} be a smooth family of admissible Morse fnnctions on Hi, pammetrised by a

k-dimensional disk D k . Then there is a continuous map

E x C -----+ Riem+(W)

(gb' fe) f----> lib,e = ,g(gb' fe)

so that for each pair (b, c), the metric th,e is a Gromov-Lawson cobordism.

Froof For each c E D k , Ie will have the same number of critical points of the same index. There

is therefore a smooth rearrangement of the critical points WI (c), ... ,VII (c) as c varies over Dk. In

turn this means a smooth rearrangement of embedded surgery spheres. The proof then follows

almost directly from Lemma II.19. There is however, a compatability issue to address. In order

to carry out the construction of Theorem II.23 on fe with respect to any psc-metric gb E E, we

must specify disjoint Morse coordinate neighbourhoods U(Wi(C)) around each critical point of fe.

As c varies over D k we must be sure that we can vary these coordinate neighbourhoods. The

fact that the parameterising space is a disk means that this is certainly possible and follows from

Theorem 1.4 in the appendix of [23]. For each critical point 'IlJ.;(c) E fe, this theorem guarantees

the existence of a smoothly varying family of embeddings 'I/)c : lRn+l ----7 vV so that 'I/)e(O) = Wi(C)

and the composition feo'ljJe(x) = f(wi(c)) - I:~~i x;+ I:]~~+2 x], where Wi(C) has indexp+1. 0

Corollary 11.26. Let ft, tEl be an isotopy in the space admissible Morse functions, MUdrn(1V).

Then there is a continuous family of psc-metrics 9t on H/ so that for each t, 9t = 9(090, ft) is a

Gromov-Lawson cobordism of the type constructed in Theorem II. 23. In particular, .ihlx1 , tEl is

an isotopy of psc-met'ri.cs on XI.

Definition 11.7. A Morse triple (f, m, V) is well indexed if the Morse function .f is well indexed.

Theorem 11.27. {3D} Let IE M. Then there is a well-indexed Morse triple J which lies in the

same path component of M.

This is basically theorem 4.8 of [30], which proves this fact for IvIorse functions. We only

add that it holds for Morse triples also.
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Proof. It is sufficient to consider the case where f has exactly two critical points 'wand Wi \vith

o < f(w) = c < ~ < f(w l
) = d < 1. The proof of the more general case is exactly the same.

Now suppose that w has index p + 1, w' has index pi + 1 and p;:::: p'. Denote by [{w, the union of

trajectories [{~+l (Vi) and [{~+1 (w) associated with w. As always, p +q+1 = n. Similarly K IV , will

denote the union of trajectories K~'+1 (Wi) and Kt +1 (7111) associated with Wi where pi +q' + 1 = n.

vVe begin with the simpler case when K w and K w ' do not intersect; see Fig. II.31. For

any 0 < a' < a < 1, Theorem 4.1 of [30] provides a construction for a well-indexed function .r
with critical points 711 and 7111 but with f(w l

) = al and f(w) = a. The construction can be applied

continuously and so replacing 0 < a' < a < 1 with a pair of continuous functions 0 < a~ < at < 1,

with ab = c, ao = cl
, a~ = ai, a1 = a and t E:: I results in the desired isotopy.

Xo

Figure 11.31: Non-intersecting trajectories K w and K""

In general, the trajectory spheres of two distinct Morse critical points may well intersect:

see Fig. 11.32. However, provided certain dimension restrictions are satisfied, it is possible to

continuously move one trajectory sphere out of the way of the other trajectory sphere. This is

theorem 4.4 of [30]. Vve will not reprove it here, except to say that the main technical tool required

in the proof is lemma 4.6 of [30], which we state below.

Lemma 11.28. [30} Suppose 111 and N ar-e two submanifolds of dimension m and n in a man~rold

V of dimension 'U. fr M has a product neighbour-hood in V, and m + n < v, then theTe exists a

diffeomorphism h of V onto itself which is smoothly isotopic to the identity, such that h(1\1) is

disjoint from N.
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Figure II.32: Intersecting trajectories

The following observation then makes theorem 4.4 of [30] possible. Let st and s~ denote

the respective intersections of I-l(~) with Kt+1(1IJ) and K~+1(1IJ'). Adding up dimensions, we

see that

q + pi = n - p - 1 + pi

S; n - pi + 1 + pi

S;n-l.

We can now isotopy I to have disjoint K w and Kw" before proceeding as before. o

Corollary 11.29. Any GTOmo'U-Lawson cobordism g(gO'.f) can be isotopied to a Gromo'U-Lawson

cobordism .q(,qo, /) which is obtained ITOm a well-inde:r:ed admissible Morse junction .f.

Proof This follows immediately from Theorem II.27 above and Corollary II.26.

11.5 Constructing Gromov-Lawson Concordances

o

Replacing Xo with X and the metric go with g, we now turn our attention to the case when

the cobordism {HI; X o,XI} is the cylinder X x I. By equipping X x I with an admissible Morse

function I, we can use Theorem 11.23 to extend the psc-metric 9 over X x I as a Gromov-Lawson

cobordism ,9 = ,9(9,.f)· The resulting metric is known as a Gromo'U-La1lJson concordance or more
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specifically, a Gromov-La'Wson concordance of 9 'With respect to f and the metrics go := glxx{o}

and 91 = gIXX{l} are said to be Gromov-La'Wson concordant.

II. 5. 1 Applying the Gromov-La'Wson techniq1Le over a pair of cancelling s1lrgeries

In this section, we will construct a Gromov-Lawson concordance on the cylinder sn x 1. It

is possible to decompose this cylinder into the union of two elementary cobordisms, one the trace

of a p-surgery, the other the trace of a (p + 1)-surgery. The second surgery therefore undoes the

topological effects of the first surgery. Later in the section, we will show how such a decomposition

of the cylinder can be realised by a Morse function with two "cancelling" critical points. Assuming

that n - p :::: 4, the standard round metric ds;, can be extended over the union of these cobordisms

by the technique of Theorem II.23, resulting in a Gromov-Lawson concordance. To understand this

concordance we need to analyse the geometric effects of applying the Gromov-Lawson construction

over the two cancelling surgeries.

Example 11.30. Let sn represent the standard smooth n-sphere equipped with the round metric

g = ds~. Vle will perform two surgeries, the first a p-surgery on sn and the second, a p + I-surgery

on the resulting manifold. The second surgery will have the effect of undoing the topological

change made by the first surgery and restoring the original topology of sn. Later we will see that

the union of the resulting traces will in fact form a cylinder sn x 1.

In section II.2 we saw that sn can be decomposed as a union of sphere-disk products.

Assuming that p + q + 1 = n we obtain,

Sri = 8Dn +1
,

Here we are are assuming that q :::: 3. Let S1' x [/+1 '---4 sn be the embedding obtained by the

inclusion

We will now perform a surgery on this embedded p-sphere. This involves first removing the

. 0 q+ 1 . \ ( 0 q+ 1 p+ 1 • 1'+ 1 )embedded S1' x D to obtam sn S1' x D ) = D _ x S'l, and then attachmg (D+ x S'l
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along the common boundary SP x sq. The attaching map here is given by restriction of the orginal

embedding to the boundary. The resulting manifold is of course the sphere product 8 P+1 x sq

where the disks D~+l and D~+l are hemispheres of the Sp+1 factor.

By performing a surgery on an embedded p-sphere in sn we have obtained a manifold

which is diffeomorphic to Sp+1 x 8 q. By applying the Gromov-Lawson construction to the metric:

9 we obtain a positive scalar curvature metric g' on 8 P+1 x 8 q
; see Fig. 11.33. This metric: is the

original round metric on an 8 n \ (SP X Dq+ 1) piece and is g[;;;'l (E) X 52 ds~ on a DP+ 1 X sq piece for

some small 5 > O. There is also a piece diffeomorphic to SP x sq x I where the metric smoothly

transitions between the two forms, the construction of which took up much section II.3.

Original metric 0 ~
ds;' <= ----...----- J Standard metric

o gP+1(E) + 52ds2
tor q

Transition metric

Figure II.33: The geometric effect of the first surgery

We will now perform a second surgery, this time on the manifold (SP+1 x sq,g'). 'iVe

wish to obtain a manifold which is diffeomorphic to the orginal 8 n , that is, we wish to undo the

p-surgery we have just performed. Consider the following decomposition of 8 P+1 x sq.

8 P+ 1
X 8 q = 8 p+l x (D~ U D~)

= (SP+1 X D~) U (8P+1
X D~).

o
Again, the inclusion map gives us an embedding of Sp+1 x D~. Removing Sp+1 xD~ and attaching

DP+2 x 8 q - 1 along the boundary gives

= 8 n
.
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Standard metric

gP+2([,) + 8,2ds2
tor q-l

Transition metric

Original metric

ds~

.~ . .. . . . . . . . . . . . . . . . . . . . . . . .. .",.. .

······························0:; /

Formerly standard metric

Figure 11.34: The geometric effect of the second surgery: a different metric on sn

Applying the Gromov-Lawson construction to the metric g' with respect to this second

surgery produces a metric which looks very different to the orginal round metric on sn; see Fig.

II.34. Roughly speaking, gil can be thought of as consisting of four pieces: the original piece

where gil = g and which is diffeomorphic to a disk D n , the new standard piece where gil =

which is diffeomorphic to Dp+2 x Sq-l, the old standard piece where

this time only on a region diffeomorphic to DP+l x Dq and finally, a

transition metric which connects these pieces. Later on we will need to describe this metric in

more detail.

II. 5.2 Cancelling Morse critical points: The weak and strong cancellation theorems

vVe will now show that the cylinder sn x I can be decomposed into a union of two ele-

mentary cobordisms which are the traces of the surgeries described above. This decomposition is

obtained from a rVlorse function f : sn x I ...... I which satisfies certain properties. The following

theorem, known as the 7JJeak cancellation theor'e'm is proved in Chapter 5 of [30]. It is also discussed,
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in much greater generality, in Chapter 5, Section 1 of [16].

Theorem 11.31. [30] Let {TFn+1
; X o, Xd be a smooth compact cobordism and f : ltV ----+ I be a

Morse triple on W. Letting p + q + 1 = n, suppose that f satisfies the following conditions.

(aJ The function f has exactly 2 critical points wand z and 0 < f(w) < c < f(z) < 1.

(bJ The points wand z have Morse index p + 1 and p + 2 respectively.

(cJ On f- 1 (c), the trajectory spheres S~ (w) and S~ (z), respectively emer:qing .from the critical

point wand converging toward the critical point z, intersect transversely as a single point.

Then the critical points wand z cancel and ltV is diffeomorphic to X o x I.

The proof of 11.31 in [30] is attributed to Morse. The fact that S~ (tv) and S~ (z) intersect

transversely as a point means that there is a single trajectory arc connecting Vi and z. It is possible

to alter the vector field V on an arbitrarily small neighbourhood of this are to obtain a nowhere

zero gradient-like vector field VI which agrees with V outside of this neighbourhood. This in turn

gives rise to a Ivlorse function .II with gradient-like vector field VI, which agrees with f outside

this neighbourhood and has no critical points; see Fig. 11.35. The desired decomposition of sn xl

Figure 11.35: Altering the gradient-like vector field along the trajectory arc

can now be realised by a lVlorse function f : sn x 1 ----+ 1 whieh satisfies (a), (b) and (c) above as

well as the condition that n - p ~ 4. Application of Theorem II.23 with respect to an admissible

Morse function f which satisfies (a), (b) and (c) will result in a Gromov-Lawson concordance on
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Srt X I between g = ds;, and the metric g" described above. Equivalently, one can think of this as

obtained by two applications of Theorem n.lO, one for each of the elementary cobordisms specified

by f.

II.5.3 A strengthening of Theorem II.31

There is a strengthening of theorem n.31 in the case where W, X o and Xl are simply con­

nected and of dimension::: 5. Before stating it, we should recall what is meant by the intersection

number of two manifolds. Let AI and !VI' be two smooth submanifolds of dimensions T and s in a

smooth manifold N of dimension r + s and suppose that AI and M' intersect transversely as the

set of points {n,], n2", " nl} in N, Suppose also that !VI is oriented and that the normal bundle

N(!VI') of A1' in N is oriented. At ni, choose a positively oriented r-frame VI, . , , ,Vr of linearly

independent vectors which span the tangent space Tni A1. Since the intersection at ni is transverse,

this frame is a basis for the normal fibre NnjA;J').

Definition 11.8. The intersection number of A;J and A;J' at ni is defined to be +1 or -1 according

as the vectors VI, ' , , , Vr represent a positively or negatively oriented basis for the fibre N"'i (i\;f') ,

The intersection number f..;J' . f..;J of A1 and f..;J' is the sum of intersection numbers over all ni'

Remark 11.5.1. In the expression f..;J'.AI, we adopt the convention that the man~fold with oriented

normal bundle is written fir-st.

vVe now state the str-ong cancellation theor-em, This is theorem 6.4 of [30].

Theorem 11.32. (3D) Let {vV; X o,Xd be a smooth compact cobor-dism wher-e VV, X o and Xl ar-e

simply connected manifolds and W has dimension n + 1 ::: 6. Let f : W ---> I be a Mor-se tr-iple on

W. Letting p + q + 1 = n, suppose that f sati,~fies the following conditions.

(a') The junction f has exactly 2 critical points wand z and 0 < f (w) < c < f (z) < 1.

(b') The po'ints wand z have Mor-se index p + 1 and p + 2 respect'ively and 1 :::; p :::; n - 4.

(c') On f- l (c), the tmjectory spher-es S~ (w) and S~ (z) have inter-section numbeT 8~ (w) .S~ (z) =

1 or- --1.

Then the critical points 11) and z cancel and W is difJeomoTphic to X o x I. In fact, f can be

alteTed near- .r- l (c) 80 that the tmjectory spheTes inter-sect tmnsver-sely at a single point and the

conclusions of theorem II.31 then apply.
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Simple connectivity plays an important role in the proof. It of course guarantees the

orientability conditions we need but more importantly it is used to simplifY the intersection of

the trajectory spheres. Roughly speaking, if n1 and n2 are two intersection points with opposite

intersection, there are arcs connecting these points in each of the trajectory spheres, whose union

forms a loop contractible in f-1(C) which misses all other intersection points. An isotopy can be

constructed (which involves contracting this loop) to move the trajectory spheres to a position

where the intersection set contains no new elements but now excludes n1 and n2.

Remark 11.5.2. The hypothesis that critical points of f have 'index at least 2 is necessary, as the

presence of index 1 critical points would spoil the assumption of simple connectivity.

II. 5.4 Standardising the embedding of the second surgery sphere

In Example 11.30, the second surgery sphere Sp+1 was regarded as the union of two hemi­

spheres D~+l and D~+l, the latter hemisphere coming from the handle attachment. It was assumed

in the construction of the metric g", that the disk D~+l was embedded so that the metric induced

by g' was precisely the gf;;:l(E) factor of the handle metric. Now let f be an admissible Morse

function on X x I which satisfies conditions (a), (b) and (c) above. This specifies two trajectory

spheres Sr:... and Sr:...+ 1 corresponding to the critical points wand z respectively. On the level set

f-1(C), the spheres S~ and S~+l intersect transversely at a single point a. Suppose we extend

a psc-metric g on X over f- 1([0,c]) in the manner of Theorem II.23, denoting by g' the induced

metric on f-1(C). In general, the metric induced by g' on S~+l near a will not be gf;;:l(E). We

will now show that such a metric can be obtained with a minor adjustment of the ]\l101'se function

f.
Let IR1!+l = IRP+1 X IRq+1 denote the Morse coordinate neighbourhood near UI. Here

IRP+1 and IRq+1 denote the respective inward and outward trajectories at w. Let IR denote the

I-dimensiona.l subspace of IRq+1 spanned by the vector based at zero and ending at a. Finally,

let DP+1 denote the intersection of f- 1(c) with the plane IR x IRP+\ see Fig. II.36. The metric

induced by g' on DP+1 is precisely the gf;;:l(E) factor of the handle metric.

Lemma 11.33. It is possible to isotopy the trajectory sphere Sr:...+ 1(z), so that on f-1(C) it agrees,

near' G', with the disk DP+1.

Proof Choose a coordinate chart IRn in f-1(C) around a, where a is identified with 0 and IRI1
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. -l(C)

Figure II.36: Isotopying S~+l near a to coincide with DP+l.

decomposes as ~p+] x ~q. The intersection of S~+1 (z) with this chart is a (p + 1)-dimensional

disk in ~n which intersects with ~q transversely at the orgin. Thus, near the orgin, S~+l(Z) is the

graph of a function over ~p+l and so we can isotopy it to an embedding which is the plane ~p+l

on some neighbourhood of 0, and the original S~+l(z) away from this neighbourhood. o

Thus, the IvIorse function f can be isotopied to a 1\1orse function where the standard part

of the metric l induces the gf;,l (c) factor of the handle metric on S~+l (a); see Fig. II.37.

S~+l(Z)

~-:::~~~'.'.:====:::=:~ Standmd md,le

~ ~ gP+l(c) + 82ds 2
/ tor q

Transition metric

Original metric 9

Figure II.37: The embedded sphere S::'+l(z) after adjustment
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II.6 Gromov-Lawson Concordance Implies Isotopy for Cancelling Surgeries

liVe continue to employ the notation of the previous section in stating the following theorem.

Theorem 11.34. Let f : X x I ----> I be an admissible Morse junction 'Which satisfies conditions

(a),(b) and (c) of Theorem II. 31 above. Let 09 be a metric of positivc scalar' C'u,rvatu,rc on X and

.9 = g(g, 1), a Grorno'U-La'Wson concordance 'With respcct to f and 09 on X x I. Then the metric

gil = gIXX{l} on X is isotopic to the original metric g.

vVe will postpone the proof of Theorem II.34 for now. Later we will show that this theorem

contains the main geometric argument needed to prove that any metrics which are Gromov-Lawson

concordant are actually isotopic. Before doing this, we need to introduce some more terminology.

II. 6.1 Connected S'ums of psc-metrics

Suppose (X, gx) and (Y, gy) are Riemannian manifolds of positive scalar curvature with

dimX = dimY ;::: 3. A psc-metric connected sum of gx and gy is a positive scalar curvature metric

on the connected sum X #Y, obtained using the Gromov-Lawson technique for connected sums

on gx and gy. Recall that on X, the Gromov-Lawson technique involves modifying the metric on

a disk D = Dn around some point w EX, by pushing out geodesic spheres around 'UJ to form a

tube. It is possible to construct this tube so that the metric on it has positive scalar curvature and

so that it ends as a Riemannian cylinder sn-l X I. Furthermore the metric induced on the sn-l

factor can be chosen to be arbitrarily close to the standard round metric and so we can isotopy

this metric to the round one. By Lemma ILl, we obtain a metric on X \ D n which has positive

scalar curvature and which near the boundary is the standard product 62ds~_1 + dt2 for some

(possibly very small) 6. Repeating this procedure on Y allows us to form a psc-metric connected

sum of (X, gx) and (Y, gy) which we denote

(X, gx )#(Y, gy).

II.6.2 An analysis of the metric gil obtained from the second surgery

Recall that f specifies a pair of cancelling surgeries. The first surgery is on an embedded

sphere S1' and we denote the resulting surgery manifold by XI. Applying the Gromov-Lawson

construction results in a metric g' on X', which is the orginal metric 09 away from S1' and transitions



89

on a region diffeomorphic to SP x sq x I to a metric which is the standard product gr~l(f) x o2d8~

on the handle DP+ 1 X sq. The second surgery sphere, embedded in X I, is denoted SP+ 1. In section

II.5.4, we showed that it is reasonable to assume that on the standard region, the restriction of l

to the sphere SP+1 is precisely the gr~l (f) factor of the standard metric gro~1(f) + o2d8~; see Fig.

11.37. Applying the Gromov-Lawson construction to l with respect to this second surgery, results

in a metric gIl on X (see Fig. II.38) which is concordant to g.

Standard metric

Old standard metric

Easy transition metric

d 2 p+l ( ) + .Il2d 2,8 + 9Dtor f u ,8q_l

ld transition metric

-------------- - ~

/~ ~..~.~~~ ~:~:~ ~:~ ~:~~ ~:~i ::::::: ~'.'." :~
~----------, I

I
I
I
I

) / '\ :..: ;.~ .
/: \ I I ,I I

\ ;-,; .. - /..: _.' .
I , ' \
\ '~················,'··i·····_···

, \ J

Original metric! ,

New transitio metric

X\D D

Figure II.38: The metric II

In Fig. II.38, we describe a metric which is obtained from II by a only a very minor

adjustment. We will discuss the actual adjustment a little later but, as it can be obtained through

an isotopy, to ease the burden of notation we will still denote the metric by gil. This metric agrees

with 9 outside of an n-dimensional disk D; see Fig. 11.38. The restriction of II to this disk can
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be thought of as consisting of several regions. Near the boundary of the disk, and represented

schematically by two dashed curves, is a cylindrical region which is diffeomorphic to sn-l X I.

This cylindrical region will be known as the connecting cylinder~ see Fig. II.39. 'Ve will identify

the sphere which bounds X \ D with sn-l X {I}. This sphere is contained in a region where 09" = 09

and so we know very little about the induced metric on this sphere.

dt2 + ds 2+ f2 ds 2 + J/2ds2_1.................. P q

l'
+1 2 2' ~--------..'1'

ds 2 + gfor (f) + JI dSq_~ ~
;--. _., 'I

'\

: sn-1 X {-!}
, ~,---- -....=-----~--I "

New t,w"ition met", i\ \:~~~y{{{~~t~b~~
". \:.::: ::. - - - +,. - 7 - - - - -

.... . _ .

Old transition metric

t

Figure 11.39: The connecting cylinder sn-l X I

The region sn-1 X [~, 1] is where most of the transitioning happens from the old metric

09 to the standard form. This transition metric consists in part of the old transition metric from

the first surgery and the new transition metric from the second surgery. The old transition metric

is on a region whieh is diffeomorphic to SP x Dq x a, 1] (schematically this is the region below

the horizontal dashed lines near the bottom of Fig. 11.39) while the new transition metric is on a

region which is diffeomorphic to DP+l x Sq-l X [~, 1.]. On the second cylindrical piece sn-l X [0, ~],

the metric 09" is much closer to being standard.

T\lrning our attention away from the connecting cylinder for a moment, it is clear that

the metric 09" agrees with the standard part of the metric 09' on a region which is diffeomorphic

to DP+l x Dq; see Fig. 11.38. Here 09" is the metric gfo~l(f) + J2ds~ID'l and we call this piece the

old standar'd metric. The old standard metric transitions through an easy transition metric on a
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region diffeomorphic to I x DP+ 1 X sq to take the form ds2 + gf~1 (E ' ) + 0,2
dS~_l. This particular

transition is known as the easy tmnsition metric as it is far simpler than the previous transitions.

Returning now to the second cylindrical piece of the connecting cylinder, we see that there

is a neighbourhood of sn-1 X [O,~], containing both the old standard and easy transition regions

where the metric gil takes the form of a product E2ds~ + dt2 + gq, where the metric gq is a metric

on the disk Dq; see Fig. IrAO. Shortly, we will write represent gq more explicitly.

t \

........... ""

I ~

Figure IrAO: A neighbourhood of sn-1 X [0, ~] on which gil has a product structure (left) and the
metric resulting from an isotopy on this neighbourhood (right)

Returning once more to the metric gil on D, we observe that outside of sn-l X I and

away from the old standard and easy transition regions, the metric is almost completely standard.

The only difference between this metric and the metric gil constructed in Example rI.:JO, is the

fact that the metric on the second surgery sphere Sp+l is first isotopied to the double torpedo

metric g};i"~T(E), before finally transitioning to the round metric E2ds~+1. This gives a concordance

between the metric g};i";r + 0'2ds~_1 and E2ds~+1 + 0'2ds~_1 which is capped off on the remaining

DP+2 x Sq-l by the new standard metric gf~2(E) + 0'2ds~_1. This completes our initial analysis

of gil.

II.6.S The pTOof of TheoTem II.S4

We now proceed with the proof of Theorem Ir.34.

PToof We will perform a sequence of adjustments on each of the metrics g and gil. Beginning vvith

the metric gil, we will construct g~ and g~ each of which is isotopic to the previous one. Similarly,
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we will make sequence adjustments to the metric g, resulting in isotopic metrics gl, g2 and g3. The

metrics g3 and g~ will then be demonstrably isotopic.

The initial adj1Lstment of gil .

We will begin by making some minor adjustments to the metric gil to obtain the metric

g~. Recall that on the part of the connecting cylinder identified with S"-1 x [O,~], the metric gil

is somewhat standard. We observed that on a particular region of 5'"-1 x [0, ~], gil takes the form

(2ds; + gq + dt2. Here gq can be written more explicitly as

where T is the radial distance cordinate and F is a function of the type shown in Fig. IIAL A

°sin i

0-0

'

° oZ!:
2

Figure II.41: The function F, with f 0' shown as the dashed curve

linear homotopy of F to the torpedo function 10, induces an isotopy from the metric gq to the

metric gior(o'). Vlith an appropriate rescaling, it is possible to isotopy the metric (2ds; + gq + dt2

to one which is unchanged near sn-l X H} but near S"-1 x {O}, is the standard product (2ds; +

g'lor (0') + de. This isotopy then easily extends to an isotopy of gil resulting in a metric which, on

the old standard and easy transition regions, is now gfo~I(() + g'tor(o') away from S"-1 x H}: see

Fig. 11.42.

The embedding .7.

For sufficiently small ..\, the cylindrical portion sn-1 X [0,..\] of the connecting cylinder

sn-l X I is contained entirely in a region where gil = gfo~1(() + gior(O'); see Fig. II.43. Recall

that in section II.2.5, we equipped the plane jRn = jRP+1 X jRq with this metric, then denoted by

h = gf~\() + gior(O')' In standard spherical coordinates (p, ¢), (r, e) for jRP+1 and jRq respectively,



New standard metric

P+2() J:/2 d 2
9tor f + U Sq_l

)
riginal metric ".

Old transition metric

d 2 p+l () J:/2 d 2
S +9Dtorf +u Sq_l

93

Figure 11.42: The metric 9~' resulting from the initial adjustment
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we can represent this metric with the explicit formula

(II.6.1)

where fE' fli' are the standard f and 6-torpedo functions defined on (0, (0). The restriction of gil

to the region sn-1 X [0, A] is now isometric to an annular region of (JR.", h) shown in Fig. II.44.

For a more geometrically accurate schematic of (JR.n , h); see Fig. 11.6 in section II.2.

sn-1 X 1
2

Figure 11.43: The collar neighbourhood S"-1 x [0, A]

There is an isometric embedding J of the cylindrical portion sn-1 X [0, A] of the connecting

cylinder S,,-1 x I into (JR.", h). Let Ii denote an embedding

Ii : [0, A] x [0, b] ----+ JR. x JR.

(t1,t2) I-> (a1(t 1,t2),a2(t1,t2))

which satisfies the following properties.

(1) For each t 1 E [0, A], the restriction of Ii to {t1} X [0, b] is a smooth curve in the first quadrant

of JR.2 which begins at (C1 +t1, 0), follows a vertical trajectory, bends by an angle of ~ towards

the vertical axis in the form of a circular arc and continues as a horizontal line to end at

(0, C1 + tI). We will assume that C1 > maxHf, ~6'} and that the bending takes place above

the horizontal line through line (0,6~) as in Fig. 11.7.
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JRq

~<5'

~E JRp+1

Figure II.44: The image of J

(2) At each point (t 1, t2), the products ~~:. ~~; and ~~:. ~~; are both zero.

For some such a, there is a map J defined

J: [0, A] x [0, b] x SP X Sq-1 ~ JRP+1 X JRq

(t1,t2,¢,e) f----.> (a1(t1,t2),¢,a2(t 1,t2),e)

which isometrically embeds the cylindrical piece (sn-1 x [0, A], g"Jsn- l x [O,AJ) into (JR7l, h); see Fig.

II.44. Furthermore, assumption (2) above means that the metric g"Jsn-l x [O,AJ can be foliated as

dtr + g~: where g~: is the metric induced on the restriction of J to {t1} X [0, A] x SP x sq. For

each t1 E [0, A], the metric g~: is a mixed torpedo metric gr;;I~~r1. These metrics are of course not

isometric, but differ only in that the tube lengths of the various torpedo parts vary.

Isotopying the metTic on S7l-1 x [0, A] to the "connected sum" metTic g~.

Given two copies of the plane JR7l, each equipped with the metric h, we can apply the

Gromov-Lawsoll technique to construct a connected sum (JR7l,h)#(JR7l,h). This technique de­

termines a psc-metric by removing a disk around each origin and gluing the resulting manifolds
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together with an appropriate psc-metric on the cylinder sn-1 X I. In this section, we will isotopy

the metric gills" -1 x [o.>'J to obtain precisely this cylinder metric; see Fig. II.45. Importantly, this

isotopy will fix the metric near the ends of the cylinder and so will extend easily to an isotopy of

g{ on all of X to result in the metric g~.

sn-1 X {a}

"

"

", .

sn-1 X {A}

Figure II.45: The metric obtained by isotopying g"lsn-' x [O,>.J to the cylinder metric of Gromov­
Lawson "connected sum" construction

Let at, denote the curve which is the image of the map a restricted to {t1} X [0, b] and ]t1

will denote the embedded sphere in lRn which is the image of the map] on {t1} x [0, b] x SP X Sq-1.

Vve define the map KT as

KT : [0, ~T] X SP X Sq-1 -----> IFtP+l X JRq

(t,¢,B) I-'> (Tcos(~),¢,Tsin(~),B)

For each T > 0, the image of KT in (1Ft'>, h) is a geodesic sphere of radius T. Now consider the
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region, shown in Fig. II.47, bounded by the embedded spheres J~ and K" where 7 is assumed to

be very small. Let c" denote the circular arc given by c" (t) = (7 cos( ~), 7 sin( ~), for t E [0, ~7]. It

is easy to construct a smooth homotopy between a~ and c" through curves (xu,yu), 1/ E I where

c" = (:1:0, Yo) and a~ = (Xl, YI). For example, this can be done by smoothly shrinking the straight

edge pieces of cd to obtain a piece which is within arbitrarily small smoothing adjustments of

being a circular arc, the radius of which can then be smoothly shrunk as required; see Fig. II.46.

-~

1----------. Q, 2

c"

"'

Xu Yu

>.
Figure II.46: Homotopying the curve a2" to c"

By smoothly varying the length of domain intervals of Xu and Yu with respect to 1/, we can

ensure that the curve (xu, Yu) is unit speed for all 1/. The above homotopy gives rise to a foliation

of the region contained between J~ and K"; see Fig. 11.47, and a corresponding foliation of the

metric h on this region. Letting l E [0,1] denote the coordinate running orthogonal to the curves

given by the above homotopy, we can write the metric h = dl 2 + hi. IVloreover, the metric hi can

be computed explicitly as

where X = Xu and y = Yu for some 1/. An elementary calculation shows that -1 ::; :iu ::; 0,

°::; Yu .::; 1, x~ ::; °and :Ij~ ::; 0. A further elementary calculation now shows that the functions

fE(X(t)) and hdy(t)) belong to the spaces U and V defined in section II.2. Thus, by Lemma 11.7,

the metric hi has positive sca.lar curvature and so the decomposition of h into dl 2 + hi induces an

isotopy between the metric hI = g~ a.nd the metric ho induced by h on the geodesic sphere of
2

radius 7.
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~J~

~(
K~~

-A
Figure II.47: The region bounded by J'2 and KT

Recall that the restriction of the metric gil to sn-1 X [0, ~], isometrically embeds into

(lR", h) as the region between the curves JO and J~. Using the foliation h = dl 2 +- hi, this metric

can now be continuously extended as the metric h over the rest of the region between JO and KT;

see Fig. II.48. As the curve KT is a geodesic sphere with respect to h, this metric can then be

continuously extended as the metric obtained by the Gromov-Lawson construction, to finish as a

round cylinder metric. The metric gil ISn-1 X [0, ~ ) has now been isotopied to one half of the metric

depicted in Fig. 11.45 without making any adjustment near 5"-1 x {O}.

An analogous construction can be performed on glllsn-1x[~,A]' this time making no alter­

ation to the metric near 5"-1 x {.A}. Both constructions can be combined to form the desired

isotopy by making a minor modifcation to ensure that at each stage, the metric neal' 5"-1 x {~}

is a psc-Riemannian cylinder. Such a modification is possible because of the fact that the above

foliation decomposes h into an isotopy of psc-metrics.
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-).

V J2
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Figure 11.48: Isotopying the metric gIl18n-lx[0,~J to the metric h on the region bounded by JO
and KT
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Isotopying the rnetTie g.

In this step we will perform three successive adjustments on the metric g, resulting in

successive positive scalar curvature metrics g1, g2 and g3. Each adjustment will result in a metric

which is isotopic to the previous one and thus to g.

In adjusting the metric g, we wish to mimic, as closely as possible, the Gromov-Lawson

technique applied in the construction of gil. The main difficulty is that we are prevented from

making any topological change to the manifold X. Thus, the first adjustment is one we have seen

before. The metric g1 is precisely the metric g"td constructed in Theorem 11.11, this being the

closest we can get to the original Gromov-Lawson construction without changing the topology of

X; see Fig. 11.49. The metric g1 is the original metric 9 outside of a tubular neighbourhood of the

embedded SP. It then transitions to a standard form so that near SP it is f2ds~ +gi;;/ (0) for some

suitably small 0 > O. \iVe will refer to this region as the standaTd Tegion throughout this proof:

see Fig. 11.49. From Theorem 11.11, we know that g1 is isotopic to the original g. We make two

important observations.

(i) All of the data regarding the effects of the Gromov-Lawson construction on (X, g), is con-

tained in the metric g1.

(ii) The embedded disk D~+1 agrees entirely with the non-standard part of the embedded sphere

SP+1.

Standard metric

f2ds~ + g£or(o)

D~::::::--;~A ••:.•. :::g
/'

Transition metric

Original metric 9

Figure 11.49: The metric g1 on X, made standard near the embedded SP

The aim of the next adjustment is to mimic as closely as possible the metric effects of the
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second surgery. The boundary of Dr:..+ 1 lies at the end of the standard region of (X, .91). Application

of Theorem 11.11 allows us adjust the metric near D~+l exactly as in the construction of gil. Near

the boundary of D~+l, the induced metric is standard and so we can transition (possibly very

slowly) back to the metric .91; see Fig. 11.50. The connecting cylinder sn-1 X I can be specified

exactly as before and it is immediately obvious that the metric .92 agrees with gil on this region.

The metric g3 is now obtained by making precisely the adjustments made to the metric gil in the

region of sn-1 X [0, n

New standard metric

gf;;,l(E) + g'lor(O')

~;::::::::::::::\'I, [

New transition metric ,: - - - - - - - - - - - [ [
.-----------, I I

[ [ [

[ [ I
[ [ [

[ [ [

d f'/-·:'~.·.· [.: L~ \ -'
[ I

\ , I \

Original metJ'lc '\; . . . I ""-~-----"----'--------------------,/
Old transition metric Old standard metric

r::~------------
. '; \ -"\ Easy transition metric

X\D D

Figure 11.50: Adjusting the metric .rJ1 on a neighbourhood of the embedded disk D~+l: Notice
how no change is made near the boundary of this disk.
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Cornpa7'ing the metr'ics g~ and g3.

At this stage we have constructed two metrics g~ and g3 on X which agree on (X \ D) U

(sn-l x [~, A]). Near sn-l X {~}, both metries have the form of a standard round cylinder. The

remaining region of X is an n-dimensional disk which we denote D 1
• Here the metrics g~ and g3

are quite different. Henceforth g~ and g3 will denote the restriction of these metrics to the disk

D 1
• As g~ and g3 agree near the boundary of D 1

, to complete the proof it is enough to show that

there is an isotopy from g~ to g3 which fixes the metric near the boundary.

Both g~ and g3 are obtained from metrics on the sphere sn by removing a point and

pushing out a tube in the manner of the Gromov-Lawson connected sum construction. In both

cases, the point itself is the origin of a region which is isometrically identified with a neighbourhood

of the origin in (JRn , h). We will denote by g~ and !13, the respective sphere metrics which give rise

to g~ and g3 in this way; see Fig. 11.51 and Fig. 11.52.

p+2() .r2d 2gtor E + U Sq_l

Figure 11.51: The metric g~
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to······ ...

................ ~--------------------_.~

. . .\' • to •••••• to. to to ••• • \ ~

~---------

p+l()+q ('9tor E 9Dtor (j)

Figure II.52: The rnetric .ch
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The metrics tJ~ and fh isotopy easily to the respective mixed torpedo metrics gfo~l ,q-1

and gr~~ on sn (Fig. 11.53), and are thus isotopic to each other by the results of section 11.2, in

particular Lemma 11.9. The proof of Theorem 11.34 then follows from Theorem 11.19, where we

showed that the Gromov-Lawson construction goes through for a compact family of psc-metrics.

o

................. . :... ".': .. ;,.

Figure 11.53: The mixed torl)edo rnetrics gP,q and gp+1.
q
-1, . M tor IV[tor

II.7 Gromov-Lawson Concordance Implies Isotopy in the General Case

Theorem 11.34 is the main tool needed in the proof of Theorem 11.36. The rest of the

proof follows from lVlorse-Smale theory and all of the results needed to complete it are to be found

in [30]. Before we proceed with the proof of Theorem 11.36, it is worth discussing some of these

results.

II. 7.1 A weaker version of TheOTem II.36

Throughout, {Wn +1 , X O, XI} is a smooth compact cobordism where X o and X j are closed

manifolds of dimension n. Later on we will also need to assume that X o,Xl and 117 are simply

connected and that n ::::: 5, although that is not necessary yet. Let f denote a Morse triple on H7,

as defined in section 11.4. Recall this means that f : W ---> I is a Morse function which comes with

extra data, a Riemannian metric 'In on Wand a gradient-like vector field V with respect to f and

'In. Now by Theorem 11.27, f can be isotopied to a Morse triple which is well-indexed. \\Fe will

retain the name f for this well-indexed lVlorse triple. As discussed in section 11.4, f decomposes

117 into a union of cobordisms Co U C1 U ... U Cn +1 where each Ck contains at most one critical
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level (contained in its interior) and all critical points of .f on this level have index k. For each

o :S k :S n + 1, we denote by Wk, the union Co U C1 U ... U Ck. By setting vV_ 1 = X o, we obtain

the following sequence of indusions

X o = U'-1 C Wo C WI C ... C Wn+1 = W,

describing this decomposition.

Suppose that f has l critical points of index k. Then for some a, b, c with a < c < b, the

cobordism Ck = f-I[a, b], where c is the only critical value between a and b. The level set f-l(c)

has l critical points 101, ... ,101, each of index k. Associated to these critical points are trajectory

disks K~(wr), ... K~(Wl) where each K~(Wi) has its boundary sphere S~-l(Wi) embedded in

f-l(a). These trajectory disks determine a basis, by theorem 3.15 of [30], for the relative integral

homology group Hk(Wk, Wk-r) which is isomorphic to Z ffi Z ill··· ffi Z (l summands).

Vve can now construct a chain complex C* = {Ck,8}, where Ck = HdTiVk, l:Vk-r) and

8 : Ck -> Ck-l is the boundary homomorphism of the long exact sequence of the triple Hlk_2 C

Wk-l C Wk. The fact that 82 = 0 is proved in theorem 7.4 of [30]. Furthermore. thb theorem

Theorem 11.35. Let X be a closed simply connected manifold with dimension n ;::: 5 and let go be

a positive scalar curvature metric on X. Let f be an admissible Morse function on X x I with no

critical points of index 0 or 1. Let 9 = g(go, 1) be a Gromov-Lawson concordance on X x I. Then

the metrics go and gl = glxx{1} are isotopic.

Proof. By Corollary 11.29, we may assume that f is well indexed. Using the notation above, .f

gives rise to a decomposition X x I = C2 U C3 U ... U Cn - 2 which in turn gives rise to a chain

complex

where each Ck is a free abelian group. (Recall that all critical points of an admissible Morse

function have index which is less than or equal to n - 2.) Since H*(X x I, X) = 0, it follows that

the above sequence is exact. Thus, for each Ck+1 we may choose elements Z~+I, ... ,zt~~~ E Ck+l and

bk+1 bk+l C ,tl t "'(bk+1 ) - k £ . - 1 l Th k+l .k+1 bk+1 bk+1
1 , ... , lk E k+l so 1a U i - Zi or z - , ... , k· en ZI , ... ,Zlk+l' 1 , ... , lk

is a basis for Ck+l.
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We will now restrict our attention to the cobordism CkUCk+l . Let W~+l , w~+l, ... , W~k~~ +lh'

denote the critical points of f inside of CHI and w}, w~, ... , wt.+lh'_' denote the critical points

of f inside of C k . As 2 :s: k < k + 1 :s: n - 2, it follows from theorem 7.6 of [30], that f can be

perturbed so that the trajectory disks K_ (W~+l), ... IC(wtk~~+IJ and K_ (w}), ... Ie (wfk+l/,_l)

represent the chosen bases for CHI and Ck respectively.

Denote by w}, w~', ... ,wf
k

, those critical points on Ck which correspond to the elements

k k k fC' h kIf'" C C D t b k+l k+2 k+l 1 .. 1zl , z2 ... , zlk 0 k, I.e. t e erne 0 0: k --+ k-l. eno e y wI , w 2 , ... , w 1k ,t lose cntlca

points in CHI which correspond to the elements b~+I, ... , b~k+l E CHI. A slight perturbation of

f replaces Ck: U CHI with the decomposition CL U CI: U q:+1 U Ck+I ; see Fig. 11.54. Here q, U C;:

is diffeomorphic to Ck, however, the critical points wi, w~, ... ,wf
k

have been moved to a level set

above their orginallevel, resulting in a pair of cobordisms each with one critical level. Similarly,

we can move the critical points W~+I, W~+2, ... , W~k+l down to a level set below their original level

to replace Ck+l with CI:+1 U q,+I'

Figure 11.54: Replacing Ck U CHI with CkU C;: U CI:+I U Ck+l

We now consider the the cobordism C;: U C;:+l' For some a < Ck < C < Ck+l < b,

CI: U CI:+ 1 = f- 1 [a, b], where f- 1 (Ck) contains all of the critical points of index k and f- 1 (ck+d

contains all of the critical points of index k + 1. Each critical point w.7 of index k: is associated

with a critical point W~+1 of index k + 1. Using Van Kampen's theorem, we ean show tlmt

f-l([a,b]),f-l(a) and f-l(b) are all simply connected; see remark 1 on page 70 of [30].
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Since a(b7+ 1
) = z[, each pair of trajectory spheres has intersection 1 or -1. The strong

cancellation theorem, Theorem 11.32, now gives that f can be perturbed so that each pair of trajec­

tory spheres intersects transversely on f- 1 (c) at a single point and that .i-I ([a, b]) is diffeomorphic

to f-l(a) x [a, b].

Consider the restriction of the metric 9 = .g(yo,j) to f-l([a,b]). Let Ya and Yb denote

the induced metrics on f- 1 (a) and f- 1
( b) respectively. The trajectories connecting the critical

points of the first critical level with trajectory spheres in f-l(a) are mutually disjoint, as are those

connecting critical points on the second critical level with the trajectory spheres on f-l(b). In

turn, pairs of cancelling critical points can be connected by mutually disjoint arcs where each arc is

the union of intersection points of the corresponding trajectory spheres. The metric Yb is therefore

obtained from Ya by finitely many independent applications of the construction in Theorem 11.34

and so ga and gb are isotopic. By repeating this argument as often as necessary we show that Yo

is isotopic to gl. D

II. 7.2 The proof of the main theorem of Part One

We can now complete the proof of Theorem 11.36. To do this, we must extend Theorem

11.35 to deal with the case of index 0 and index 1 critical points.

Theorem 11.36. Let X be a closed simply connected manifold 'With dimX = n ;:: 5 and let go be

a positive scalar curvature metric on X. Suppose 9 = g(yo, j) is a Gromov-La'wson concordance

'With respect to Yo and an admissible Morse junction f : X x I ----> I. Then the metrics Yo and

gl = g!xx{1} are isotopic.

Proof YVe will assume that f is a well-indexed admissible Morse function on Tif!. Using the notation

of the previous theorem, f decomposes W into a union of cobordisms Co U C1 U ... U Cn - 2 . In

the case where f has index 0 critical points, f can be perturbed so that for some E> 0, f- 1 ([0, E])

contains all index 0 critical points along with au equal number of index 1 critical points. These

critical points are arranged so that all index 0 critical points are on the level f-l(cO) and all

index 1 critical points are on the level set f- 1(C1), where 0 < Co < C < C1 < E. In theorem 8.1

of [30], it is proved that these critical points can be arranged into pairs of index 0 and index 1

critical points where each pair is connected by mutually disjoint arcs and each pair satisfies the

conditions of theorem 11.31. Thus, Theorem 11.34 gives that the metric Yo is isotopic to the metric
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go = 9(go, nlj-I(t)'

If f has no other critical points of index 1, then Theorem 11.35 gives that .9, is isotopic

to 91, completing the proof. We thus turn our attention to the case where f has excess index 1

critical points which do not cancel with critical points of index O. Each of these critical points

is asscociated with a critical point of index 2 and the intersection number of the corresponding

trajectory spheres is 1 or -1. Unfortunately, theorem II.32 does not apply here as the presence of'

index 1 critical points means the upper boundary component of vVl is not simply connected. In

turn, this prevents us from applying Theorem II.34.

There is however, another way to deal with these excess index 1 critical points which we

will now summarise. It is possible to add in auxiliary pairs of index 2 and index 3 critical points.

This can be done so that the newly added pairs have trajectory spheres which intersect transversely

at a point and so satisfy the conditions of theorem II.31. Furthermore, for each excess index 1

critical point, such a pair of auxiliary critical points may be added so that the newly added index

2 critical point has an incoming trajectory sphere which intersects transversely at a single point

with the outgoing trajectory sphere of the index 1 critical point. This allows us to use theorem

11.31 and hence Theorem 11.34 with respect to these index 1, index 2 pairs. The old index 2 critical

points now all have index 3 critical points with which to cancel and so we can apply Theorem II.35

to complete the proof. In effect, the excess index 1 critical points are replaced by an equal number

of index 3 critical points. The details of this construction are to be found in the proof of theorem

8.1 of' [30] and so we will provide only a rough outline. The key result which makes this possible

is a theorem by Whitney, which we state below.

Theorem 11.37. [41} If two smooth embeddings of a smooth man~fold M of dimension minto

a smooth manifold N of dimension n are homotopic, then they are smoothly isotopic provided

n;::: 2m + 2.

Choose 0 > 0 so that the metric 9 is a product metric on X x [1 - 0, 1]. Thus, f has no

critical points here either. On any open neighbourhood U contained inside f- l ([1 - 0,1]), it is

possible to replace the function f with a new function h, so that outside U, h = f, but inside U,

f has a pair of critical points, y and z with respective indices 2 and 3 and so that on the cylinder

f-1([1 - 0, 1]), h satisfies the conditions of Theorem 11.31. For a detailed proof of this fact; see

lemma 8.2 of [30].
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Remark II.7.1. The M or'se functions f and h are certainly not isotopic, as they have d~fferent

numbers of critical points. However, this is not a pTOblem as the following comment makes clear.

Recall that the metric .iJIXX{1-8} = gl and that our goal is to show that gl is isotopic to

go. By Theorem 11.34, the metric ,iJIXX{1-0} is isotopic to g(go,fdlxx{l} and so it is enough to

show that go is isotopic to g(go, fdlxx{l} for some such ,h.

For simplicity, we will assume that f has no index 0 critical points. "Ve will assume that

all of the critical points of index 1 are on the level f = C1. Choose points a < Cl < b so that

f-l([a, b]) contains no other critical levels except f-1(C1)' Let w be an index 1 critical point of

f. Emerging from w is an outward trajectory whose intersection with the level set f-l(b) is an

'11. - I-dimensional sphere 5~-1(z). The following lemma is lemma 8.3 of [30].

Lemma II.38. There exists an embedded I-sphere 5 = 51 in f- 1(b) which intersects transversely

'With 5~-1 (z) at a single point and meets no other outward trajectory sphere.

Replace f with the function h above. By Theorem 11.27, the function h can be isotopied

through admissible ~'1orse functions to a well-indexed one 11. Consequently, the metric g(go, h)

can be isotopied to a Gromov-Lawson concordance g(gO' 11). The critical points y and z have now

been moved so that y is on the same level as all of the other index 2 critical points. There is a

trajectory sphere 5~(y), which is converging to y, embedded in f-1(b). Theorem 11.37 implies

that 11 can be isotopied so as to move 5~(y) onto the embedded sphere 5 of Lemma 11.38. The

resulting well-indexed admissible Ivlorse function has the property that the outward trajectory

spheres of index 1 critical points intersect the inward trajectory spheres of their corresponding

index 2 critical points transversely at a point.

We can make an arbitrarily small adjustment to 11 so that the index 2 critical points which

correspond to the kernel of the map 8: C3 -> C2 , are on a level set just above the level containing

the remaining index 2 critical points. Let f-1(C) denote a level set between these critical levels.

Then f- 1([0, c]) is diffeomorphic to X x [0, c] and, by Theorem 11.34, the metric 90 is isotopic to the

metric g(90, 11)lt-1(e)' Furthermore, the cobordism f-l([C, 1]) is diffeomorphic to X x [c,l] and

the restriction of 11 satisfies all ofthe conditions of Theorem 11.35. This means that g(go, Id If- 1 (e)

is isotopic to g(go,!dlt-1(l), completing the proof. 0



110

CHAPTER III

PART TWO: FAMILIES OF GROMOV-LAWSON COBORDISMS

111.1 Foreword to Part Two

Our main goal in Part Two is to develop tools for parameterising families of Gromov­

Lawson cobordisms by admissible Morse functions. This was done to an extent in Theorem II.2.S

of Part One. This theorem allows for the parametrisation of a family of GL-cobordisms by a

compact contractible family of admissible Morse functions. Unfortunately, all admissible Morse

functions in this family must have the same number of critical points of the same index. As it is

possible for certain pairs of Morse critical points to cancel in the form of birth-death singularities,

this theorem gives us a rather limited picture.

In order to connect up admissible Morse functions which have different critical sets, we

must allow for this cancellation. This means working ill the space of admissible ge'neralised Morse

functions. A generalised Morse function has Morse and birth-death singularities; see below for a

definition. By utilising the "geometric cancellation" described in the proof of Theorem II.::W, we

will describe a regularised Gromov-Lawson cobordism; see Theorem III.2 and Corollary III.abelow.

This is a type of GL-cobordism which has been adapted to vary continuously over a cancellation

of JVlorse critical points.

A convenient setting for describing families of admissible generalised Morse functions arises

from the work of Eliashberg and Mishachev on wrinklings of smooth maps in [8] and [9]. Roughly

speaking, a wrinkled map gives rise to a particular smooth bundle of admissible generalised Morse

functions, In our main result, Theorem III.6, we perform a construction on the total space of this

bundle, which restricts on each fibre to a regularised Gromov-Lawson cobordism.

The final result of Part Two provides a partial answer to a question we posed in the

introduction. Namely, how does the choice of admissible Morse function affect the isotopy type
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of a Gromov-Lawson cobordism? In Theorem III.9, we show that when the cobordism and its

boundary components are simply connected and of dimension ;::- 5, the isotopy type of the metric

is unaffected by the choice of admissible Morse function.

111.2 A Review of Part One

vVe begin by very briefly reviewing some notions from Part One which will be of use to

us in Part Two. In particular, we review what we mean by an admissible :Morse function, before

reexamining the structure of a Gromov-Lawson cobol'dism. This will be especially useful when it

comes to proving Theorem III.2.

III. 2. 1 Admissible Morse functions

In this section we review what we mean by an admissible Morse function. \Ve begin with

an important piece of terminology. Let M and N be smooth manifolds of dimensions m and n

respectively. Let f : IvI ----7 N be a smooth map and let w E JyI. We say that f is locally eq'uivalent

near w to a smooth map l' : JRm ----7 JRrl, if there exist neighbourhoods U C 10.1, 1/ c N with 'IV E U

and f(w) E 1/, along with diffeomorphisms '1/)1 : JRm ----7 U, 'l/J2 : JRn ----7 1/ with '~h(O) = 1J) and

'l/J2(0) = f(w), for which the following diagram commutes.

f
U ... 1/

~, 1 1~,
JRm ... JRn

l'

Let (ToVn+1;Xo,XI) be a smooth compact cobordism. Recall that we let F = F(Hl)

denote the space of smooth functions f : W ----7 I satisfying f- 1 (0) = X o and f-1(1) = Xl, and

having no critical points near aToV. The space F is a subspace of the space of smooth functions

on W with its standard C= topology; see Chapter 2 of [17] for the full definition. A critical point

W E W of a smooth function f : W ----7 I is a Morse critical point if, near w, the map f is locally
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equivalent to the map

p+1 n+1

x I----' - L Xi
2 + L Xi

2

i=l i=p+2

The integer p+ 1 is called the jV[oTse index of wand is an invariant of the critical point. A function

f E F is a MOTse function if every critical point of f is a Morse critical point. By equipping Hi

with a Riemannian metric m, we can define gradmf, the gradient vector field for .f with respect to

m. More generally, we define gmdient-like vector fields on Hi with respect to f and Tn, as follows.

Definition 111.1. A gmdient-like vector field with respect to f and Tn is a vector field V on lV

satisfying the following properties.

(1) dfx(V,,;) > 0 when x is not a critical point of f.

(2) Each critical point w of f lies in a neighbourhood U so that for all x E U, V'l' = gradmf(x).

Definition 111.2. An admissible MOTse junction f on a compact cobordism {W; X o, XI} is a

triple f = (1, m, V) where f : Hi ---4 I is a Morse function, Tn is a background metric for t, V is

a gradient like vector field with respect to f and Tn, and finally, any critical point of.f has J'vlorse

index less than or equal to n ~ 2.

We emphasise the fact that an admissible Morse function is actually a triple consisting

of a Morse function, a Riemannian metric and a gradient-like vector field. However, to ease the

burden of notation, an admissible Morse function (1, m, V) will be denoted simply by f.

We conclude with some comments on the space of Morse functions M = M(VV) c F.

Recall that this an open dense subspace of F; see theorem 2.7 of [30]. \Ve let j: denote the space

of triples (1, Tn, V) so that f E F, m is a backgound metric for f and V is a gradient-like vector

field with respect to f and m. Recall that the space j: is homotopy equivalent to the space :F. In

fact, by equipping W with a fixed background metric m, the inclusion map

f I----' (1, Th, gradmJ) (lII.2.1 )

forms part of a deformation retract of j: down to F; see Chapter 2, section 2 of [16] for details.
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We denote by M = M(W), the subspace of F, consisting of triples (1, m, V) where f

is a Morse function. Elements of M are known as .Mor-se triples. The subspace of M consisting

of admissible Morse functions is denoted Madm = Madm(ltV). Successive restrictions of the

deformation retract above give rise to respective deformation retracts of M onto M and j\lladm

onto Madm. Here Madm is the space of Morse functions with all critical points having index

:::; n-2.

III.2.2 A br-ief r-eview of the Gmmov-Lawson cobor-dism Theor-em

Let (ltV; X o, Xl) be as before and let go be a psc-metric on X o. In Part One we discuss

the problem of extending the metric go to a psc-metric 9 on W which has a product structure near

oW. In particular we have proved the following theorem.

Theorem 11.23. Let {VVn+I;Xo,XI} be a smooth compact cobor-dism. Suppose go is a metric of

positive scalar- C7Lr-vatur-e on Xo and f : TV ----; I is an admissible Mor-se function. Then theTe is a

psc-metric .fJ = 9(90,.f) on VV which extends go and has a pmduct str"uctuTe near- the bo'undaTy,

vVe call the metric 9 a GmTnov-Lawson cobor-dism with respect to 90 and .f. It is worth

briefly reviewing the structure of this metric.

Vve begin with a few topological observations. For simplicity, let us assume for now that

f has only a single critical point w of index p + 1. Intersecting transversely at ware a pair of

trajectory disks K~+l and Kt+ 1
; see Fig. III.l. The lower disk K~+l is a p + I-dimensional disk

which is bounded by an embedded p-sphere S~ C X o. It consists of the union of segments of

integral curves of the gradient-like vector field beginning at the bounding sphere and ending at w.

Similarly, Kt+ l is a q + I-dimensional disk bounded by an embedded q + I-sphere st C Xl. The

bounding spheres S~ and st are known as trajectory spheres.

Let N denote a small tubular neighbourhood of s~, defined with respect to the metric

m/xo. Consider the region X o \ N. For each point x E Xo \ N, there is a unique maximal integral

curve of the vector field V, 'IPx : [0,1] ----; W satisfying f O'I/Jx(t) = t; see section 3 of [30] for details,



114

S~(w)
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Xo
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N

Figure IILl: Trajectory disks of the critical point w contained inside a disk U

This gives rise to an embedding

'1/) : (Xo \ N) x I ~ Hi

We denote by U, the complement of this embedding in lV, and observe that U is a neighbourhood

of K!:,+l UK~+l; see Fig. IIL1. Indeed, a continuous shrinking of the radius of N down to a induces

a deformation retract of U onto K~+l U K~+l.

vVe now define the metric .9 on the region W \ U to be simply gOIX\N + dt 2 where the t

coordinate comes from the embedding '1/' above. Of course, the real challenge lies in extending this

metric over the region U. Notice that the boundary of U decomposes as

The SP x Dq+l part of this decomposition is of course the tubular neighbourhood N while the

Dr+ l x sq piece is a tubular neighbourhood of the outward trajectory sphere S~ C Xl. Without

loss of generality, assume that j(w) = ~. Let Co and Cl be constants satisfying a < Co < ~ <

Cl < 1. The level sets j = Co and j = Cl divide U into three regions: Uo = j-l([O, Cll) n U,
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Uw = j-l([CO,Cl]) n U and U l = j-l([Cl, 1]) n U.

The region Uo can be diffeomorphically identified with N x [0, Cl] in exactly the way we

identified W \ U with X o \ N x I. Thus, on Uo, we define .9 as simply the product golN + dt2
•

Indeed we can extend this metric golN + dt 2 near the SP x sq x I part of the boundary also

where, again, t is the trajectory coordinate. Inside the region Uw , which is identified with the disk

product DP+l x Dq+l, the metric smoothly transitions to a standard product gf~l(E) + g'l~l(O)

for some appropriately chosen E,O > O. This is done so that the induced metric on the level

set j-l(Cl), denoted gl, is precisely the metric obtained by application of the Gromov-Lawson

construction on go. Furthermore, near j-l(Cl), !J = 09] + dt2. Finally, on Ul , which is identified

with DP+l x sq x leI, 1] in the usual manner, the metric!J is simply the product 091 +de. See Fig.

III.2 for an illustration.

_~tj
transition

go + dt 2

transition

j = Co

standard

091 + dt 2

transition

transition

j = Co

Figure III.2: The metric !J on the disk U

We should point out that this construction can be carried out for a tubular neighbourhood

N of arbitrarily small radius and for Co and Cl chosen arbitrarily close to ~. Thus, the region Uw ,

on whieh the metric !J is not simply a product and is undergoing some kind of transition, can be

made arbitrarily small with respect to the background metric m. As critical points of a Morse

function are isolated, it follows that this construction generalises easily to Morse functions with

more than one critical point.
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III.2.3 Continuous families of Gromov-Lawson cobordisms

A careful analysis of the Gromov-Lawson construction shows that it can be applied contin­

uouslyover a compact family of metrics as well as a compact family of embedded surgery spheres;

see Theorem 11.19 in section 11.3. It then follows that the construction of Theorem 11.23 can be

applied continuously over certain compact families of admissible :Morse functions to obtain The­

orem 11.25. Before stating it we introduce some notation. Let 13 = {gb E Riem+ (Xo) : b E B}

be a compact continuous family of psc-metrics on X o, parametrised by a compact space B. Let

C = {fc E Madm(w) : c E D k} be a smooth compact family of admissible :Morse functions on 1'17,

parametrised by the disk D k •

Theorem 11.25. There is a continu011s map

13 x C .--, Riem+ (VI!)

(Yb, fc) f-----> gb,c = g(9b' fe)

so that for each pair (b, c), the metric 9b,c 'is a Gromov-Lawson cobordism.

III. 2.4 A brief review of Gmmov-Lawson concordance

vVe now consider the case when TV is the cylinder X x I for some closed smooth manifold

X. If go is a psc-metric on X and f : W -+ I is an admissible Morse function, then the metric

9 = 9(go, 1) obtained by application of Theorem 11.23, is a concordance. V'le call this metric a

Grornov-Lawson concordance with respect to go and f. The main result of Part One can now be

stated as follows.

Theorem 11.36. Let X be a closed simply connected manifold of dimension n :;:. 5. Let go be

a positive scalar cv.rvature metric on X. Suppose 9 = g(gO'.f) is a Grornov-Lawson concordance

with respect to go and an admissible Morse fu.nction f : X x I -+ I. Then the metrics go and

gl = .iJIXX{l} are isotopic.

The key geometric fact used in the proof of Theorem 11.36 is Theorem 11.34 below.
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Theorem II.34. Let j : W ----; I be an admissible Morse junction which satisfies conditions (a), (b)

and (c) below.

(a) The junction j has exactly 2 critical points wand z and 0 < j(w) < j(z) < 1.

(b) The critical points wand z have Morse index p + 1 and p + 2 respectively.

(e) For each t E: (f(w), j(z)), the trajectory spheres Si.+(w) and Sr~l(z) on the level set r1(t),

respectively erner'ging jrom the critical point wand converging towa'T'd the critical point z.

inte'T'sect transversely as a single point.

Let 9 be a metric oj positive scalar curvat'ure on X and let ,rJ = .rj(g,1) be a Gromov-Lawson

cobordism with respect to j and 9 on W. Then g is a concordance and the rnetric 09" = .illxx{l}

on X is isotopic to the original rnet'T'ic g.

The fact that g is a concordance follows immediately from Theorem 5.4 of [30] as conditions (a), (b)

and (c) force VV to be diffeomorphic to the cylinder X o x I. The rest of the proof of Theorem 11.34

is long and technical and involves explicitly constructing an isotopy between the metrics 9 and g".

Roughly speaking, simple connectivity and the fact that n :2 5 mean that the proof of Theorem

II.36 can be reduced down to finitely many applications of the case considered in Theorem 11.34.

IlL3 Folds, Cusps and Wrinkles

In this section we review some basic singularity theory. For the most part this section

summarises a discussion by Eliashberg and Mishachev in [8]. We will employ much of the same

notation.

III. 3. 1 Bi'T'th-death singularities

Let A1 be a smooth manifold of dimension nand j : A1 ----; lEt a smooth function. The

singular set of j is the set 2:;j = {w E: Ai : dj,v = O} and a point w E: 2:;j is said to be a non­

degenerate singularity if det d2 j,v I- 0 and a degenerate singularity otherwise. Non-degenerate

singularities of are of course just the Morse singularities discussed earlier. This is proved in a

lemma of Morse; see Lemma 2.2 of [31]. Degenerate singularities on the other hand may be much

more complicated. We will restrict our attention mostly to one type of degenerate singularity, the



118

so-called birth-death singularity. A critical point w E 2:.f is said to be birth-death of index s + ~

if, near w, f is locally equivalent to the map

8 n-1

(z, x) f---+ z:, - L Xi
2 + L

i=l i=8+1

X 2
I

The assignment of a non-integer index to w conveys the fact that at a birth-death critical point,

regular Morse critical points of index sand s + 1 may cancel.

Definition 111.3. The smooth function f : Iv! --'> JR is said to be a gcncmh9cd Morse janet'ion if

all of its degenerate singularities are of birth-death type.

Later, we will insist that Iv! is a smooth cobordism {W, X o,XI} of the type discussed

earlier and that f : TV --'> 1 with f- 1(0) = X o and f-1(1) = Xl, but for now the more general

definition will suffice.

111.8.2 Fold singularities

Let NI and Q be smooth manifolds of dimension nand k respectively. Let f : 111 --'> Q be

a smooth map. The singular set 2:.f is the set {w E IvI : rank d!", < k}.

Definition 111.4. A point w E 2:.f is called a fold type singularity of index s if, near 'UJ, the map

f is locally equivalent to

(

8 n-k+1)
(y, x) f---+ y, - L Xi

2 + L Xi
2

.

,=1 '=8+1

Definition 111.5. A fold of f is a connected component of 2:..f which contains only fold-type

singularities.

In the case when Q = JR, a fold singularity is just a Morse singularity of index sand

is thus non-degenerate, i.e. det d2 fw i= O. \Vhen k :::0: 2, this is a degenerate singularity with

dim(kerd2 fw) = k - 1. In this case, it is often useful to regard .f locally as a constant k - 1-
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parameter family of Morse functions

8 n-k+l
~ 2 ~ 2

X ~ - L...t Xi + L...t Xi, ,

i=1 i=8+1

over jRk-I,

III. 3, 3 Cusp singularities

In defining a cusp singularity we will assume that k > 1. See Fig. III.3 for the case when

k = 2.

z

y

X

s+I

s

y

Figure III.3: A cusp singularity and its image where k = 2.

Definition 111.6. A point W E l:.f is called a c'usp type singularity of index s + ~ if near w, the

map f is locally equivalent to

As before, it is often useful to regard f as a k - I-parameter family of functions, although

unlike the fold case this family is not constant. In the above coordinates, the singular set of f is

l:.f = {(V, z, x) : Z2 + YI = 0, x = O},

Thus, when Yl > 0, the function f is locally a k - I-parameter family of Morse functions with no



120

critical points, parametrised by y E (0, (0) X JRk-2. At Yl = 0, the function .f is a k - 2-parmneter

family of generalised Morse functions each with exactly one birth-death critical point occurring

at (z = O,.r = 0). \iVhen Yl < 0, .f is a k - I-parameter family of Morse functions each with

exactly two critical points, paramctrised by y E (-00,0) X JRk-2. Each Morse function in this

family has a critical point of index s at (z = V-1}I,;r = 0) and a critical point of index s + 1 at

(z = -V-Yl,;r = 0). Thus, as Yl ----7 0-, these pairs of Morse critical points converge and cancel

as a k - 2-parameter family of birth-death singularities. The case when k = 2 is illustrated in

Figures IlI.3 and IlIA.

This is the standard unfolding of a birth-death singularity and is best thought of as a

I-parameter family of functions

8 11.-2

(z, :r) f----C> z3 + 3yz - L x;2 + L
;=1 'i=s+1

parametrised by y ERIn these coordinates, the singular set 'L;.f is the curve z2 + Y = 0 on the

plane x = 0, shown in Fig. III.3. The topologieal effects of the unfolding are illustrated in Fig.

IlIA by selected level sets qy = qy( yIC, 0) - f, qy = 0 and qy = qy(-ylC, 0) + f for y = -c,O and c,

where c and f are both positive constants. The critical points of index 8 and s + 1 occur Itt z =ve
and z =-yIC respectively for the function q-c. The birth-death singularity occurs on the level set

qo = 0 shown in the centre of this figure while the function qc has no critical points.

III. 3.4 Wrinkles and wrinkled maps

Let w denote the map

Here Iyl is the stltndard Euclidean norm on JRk-l. The singular set 'L;w, shown with its image in

Fig. IlI.5, is the standard k - I-dimensional sphere
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The equator of this sphere is the k - 2-dimensional sphere

{x = O,z = 0, lyl2 = I} C lRn - k x lR X lRk -
1

consisting of cusp points of index 8 + ~. The upper hemisphere ~w n {z > O} consists of folds of

index 8 and the lower hemisphere consists of folds of index s + 1. Alternatively, the map w can be

regarded as a smooth k - I-parameter family of smooth functions

W y : lR x lRn - k ---+ lR

n-k

(z,x)f------7z3 +3(lyI2-I)z- Lx;2+ L
;=1 ;=8+1

X
2. ,

When Iyl < 1, wy has a pair of non-degenerate critical points of index sand s + 1. When Iyl = 1,

the function wy has a single birth-death singularity of index s + ~ and when Iyl > 1, wy has no

critical points. Let D denote the disk {x = 0, z2 + lyI2 :::; I} C IRn-k x lR X lRk - 1 bounded by ~W.

z

8+1

x

y
s

y

Figure III.5: The singular set ~w and its image in the case when k = 2.

Let U be an open neighbourhood of jl/[.

Definition III. 7. A map f : U ----+ Q is called a wrinkle of index s + ~ if f is equivalent to the

restriction of the map W on some open neighbourhood V, so that D C V.

When it is not confusing the term wrinkle will also be used to denote the singular set

of f. More generally, a map f : IH ----+ Q is called a wTinkled map if there exists disjoint open

neighbourhoods U1 •.. , U1 C M so that fIM\U(U = U~=l Ui ) is a submersion and for each i =

1, ... , l, the restriction f IUi is a wrinkle.
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III. 3. 5 RegulaTising a wTinkled map

In this section we describe a procedure for replacing a wrinkled map f with a submersion

F. 'Ve describe it here in the form of Lemma III. I. The submersion l' constructed in this lemma

is known as the TegulaTisation of the wrinkled map f.

Lemma 111.1. Let f : A1 ----+ Q be a wTinkled map. Let U1 ... , U/ c IvI be a collection of open

neighbouThoods so that each flu, is a wr'inkle and 2.:;f c U = U;=l Ui. Then there is a smooth

submersion l' : M ----+ Q which agrees with f on M \ U.

y

\ ---------- t- -
~

)- -----------

-----/--)
y

Figure III.6: The graphs of the term 3(z2 + lyI 2 "- 1) and its replacement T(y, z, x) when x = 0

PTOO.f. As wrinkles of f are isolated, it is enough to consider the case when f is the function w

defined above. Consider the differential, dw : T(lRn ) ----+ T(lRq ). This map is degenerate when the

element 3(z2 + lyl2 - 1) of the Jacobian matrix is O. The differential dw can be regularised by

replacing this term with one which agrees with 3(z2 + lyl2 - 1) outside of a neighbourhood of

D, but which is never zero; see Fig. III. 6. Let 0: : IRn - k ----+ [0,1] and (i : IR x IR k - 1 ----+ [0,:xJ)

Ii

J\
o x

y

Figure III. 7: The bump functions 0: and Ii

be bump functions of the type shown in Fig. III.7. In particular, 0:(0) = 1, o:(x) = (-J(z, y) = 0
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when Ixl > f, fez, y)1 > 1 + f, for some small constant f > 0, and (3(z, y) > 13(Z2 + lyl2 - 1)1 when

z2 + y2 :::; 1. Define the function T : JRk-1 x JR x JRn-k -> JR by the formula

T(y, z, x) = 3(z2 + lyl2 - 1) + a(x)(3(z, y).

The function T(Y, z, x) > 0 for all (y, z, x) and agrees with 3(z2 + lyl2 - 1) outside of BiRn-A (0, f) X

BlRk (0,1 + t). Replacing the term 3(z2 + lyl2 -1) with T(y, z, x) in the Jacobian matrix, results in

the desired "regularised" differential R(dw).

We can now define a new map Wi so that Wi = w outside BJi!!.n~k (0, f) X BTJ{k (0,1 + f) and

L:wl = 0. This map is defined

Wi : JRk-1 x JR x JRn-k ----+ JRk-1 X JR

(

s n-k)
(y, Z, x) f--'> y, T(y, z, x) - 2.:.: x;2 + 2.:.: :1;;2 ,

;=1 ;=8+1

where the term T(y, z, x) is given by the formula

T(y, z, x) = l z

(3(t 2 + lyl2 - 1) + a(x)(3(t, y))dt.

This completes the proof.

III.4 Regularising a Gromov-Lawson Cobordism

D

In this section we discuss a notion of regularisation for admissible Morse functions as

well as a geometric analogue which applies to Gromov-Lawson cobordisms. In particular, we will

prove a slightly stronger version of Theorem II.34. Vve begin by discussing some of the topological

implications of conditions (a), (b) and (c) of that theorem.

III. 4. 1 Regularisation of admissible Morse functions

Let f : tv -> I be an admissible Morse function satisfying conditions (a), (b) and (c) of

Theorem 11.34. Recall these conditions are as follows.

(a) The function f has exactly 2 critical points wand z and 0 < few) < fez) < 1.
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(b) The points wand z have Morse index p + 1 and p + 2 respectively.

(c) For each t E (f(w), j (z)), the trajectory spheres Si,+ (w) and Sf,~l (z) on the level set j-l (t),

respectively emerging from the critical point wand cOllverging toward the critical point z,

intersect transversely as a single point.

Let K~+l (w) C j-I ([0, j(w)]) denote the inward trajectory disks of w. This disk is bounded by a

trajectory sphere which we denote S~ C X o. Let t E (f(w), j(z)). Emerging from w is an outward

trajectory disk Ki,tl (w) c j-l ([f(w), t]) which is bounded by an outward trajectory sphere S'1,+ C

j-I (t). Similarly, associated to z is an inward trajectory disk Kf,~2 (w) C j-l ([t, j(z)]) bounded by

an inward trajectory sphere Sf,~1 C rl(t) and an outward trajectory disk K+(z) C j-l([j(Z), 1])

bounded by an outward trajectory sphere Sr 1 C X I. ,Ve define a smooth trajectory arc ') :

[j(w), j(z)] --+ W by the formula

w, when t = j(w)

ry(t) = Si,+ n Sf.~I, when t E (f(w), j(z))

z, when t = j(z).

Condition (c) means that for each t E (f(w), j(z)), the intersection Si,+ n sel is a single point

and so this formula makes sense.

The embedded sphere S~ in X x {a} bounds a particular embedded disk which we denote

D~+I. This disk is determined as follows. Let t E (f(w), j(z)). Each point in Sf.~l \ ,(t) C j-l(t)

is the end point of an integral curve of V beginning in X o. Thus, applying in reverse the trajectory

flow generated by V, to Sf,~1 \ ,(t), specifies a diffeomorphism

Sf.~l \ ,(t) ----> D~+l C X o.

The boundary of this disk is of course the inward trajectory sphere S~ which collapses to a point

at 'W.

Let N w and N z denote respective tubular neighbourhoods in X o of the sphere S~ and the

disk D~+l with respect to the background metric m. We will assume that N w C N z . Note that N z

is topologically a disk and the radii of these neighbourhoods can be chosen to be arbitrarily small.

Each point x E X o \ Nz is the starting point of a maximal integral curve 1/Jx : [0,1] ---+ VV of V,
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which ends in Xl. As before, this gives rise to an embedding 'ljJ : (Xo \ N z ) x I --> HI. ,""le denote

by U, the complement in W of the image of this embedding. The region U contains both critical

points 'Wand z, the trajectory disks K~+l ('W) and K'f_ (z) as well as the trajectory arc /; see Fig.

IlL8. It is immediately clear that U is diffeomorphic to N z x I, however, the gradient-like vector

field V has zeroes in U and so we cannot use its trajectory to construct an explicit diffeomorphism

here in the way we can outside of U. It is possible regularise the admissible Morse function f,

.'.'

----- U

Xo

------

K~+ll'W) / ~'f-_(z) ,
------ ------------------- ----~

t

Figure IlL8: The neighbourhood U, diffeomorphic to the cylinder N z x I

replacing it with an admissible Morse function f' which agrees with f on VV \ U and near X o and

Xl, but which has no critical points. This is Theorem 5.4 of [30]. The key point, which requires

much work to show, is that there is a coordinate neighbourhood U' C U, containing the trajectory

arc /, on which flu' takes the form

n-2

(z,x)f------+ z·'+3yz-L x i
2 + L Xi

2
,

i=l -i=8+1

for some constant y < O. This function can then be regularised as in the previous section. The

effect of this regularisation on the gradient-like vector field V, replacing it with a non-vanishing
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vector field VI which agrees with V on W \ U and near X o and Xl, is shown schematically in

Fig. III.9. The map 'IjJ can now be extended to a diffeomorphism -if; : X x I ---> TV, satisfying

Figure III.9: The gradient-like vector fields V and V'

l' 0 'V)(x, t) = t and providing a foliation of U with leaves which are diffeomorphic to N z . vVe now

turn our attention to an important geometric analogue of regularisation.

III.4.2 A geometric analog-ue of regularisation

vVe retain the notation of the previous section. As before, f : VV ---> I is an admissible

Morse function which satisfies conditions (a), (b) and (c) of Theorem II.34. Furthermore -V), U, 1', V'

and 'Vi are as defined above.

Let 9 E R.iem+(Xo) and let ii = g(g, J) be a Gromov-Lawson cobordism on W. This

metric is constructed so that on W \ U, glw\U = gOIXo\Nz +de, the t coordinate corning from the

identification '1/) : (Xo \ N z ) x I ---> W \ U. Also, near Xo and Xl, the metric has respectively the

product structure 9 + dt2 and gil + dt2 , where gil is obtained by two applications of the Gromov­

Lawson construction to g. Inside U, and away from aw, the metric 9 has a more complicated

structure. Later on we will wish to describe certain families of these metrics. It will then be useful

that our metrics have a more regular structure in this region. This is the goal of Theorem III.2.

Here we replace 9 with a "regularised" metrie g'. This metric agrees with 9 on TV \ U and also

near aw, but takes the form of a particular warped product metric.
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Theorem III.2. Let 9 E Riem+(Xo) and let f : W ----7 I be a smooth rnap sati.sfying condition.s

(a), (b) and (c) of Theorem II. 34. Let 9 = .q(g, f) be a Gromov-Lawson cobordisrn with respect to 09

and f. Finally, let Co and Cl be constants satisfying °< Co < f (w) < f (z) < Cl < 1. There exi.st.s

a diffeornorphi.srn 't/J : X o x I ----7 f;V and a psc-metric .9' on f;V satisfying the following conditions.

(i) On (W \ U) U (f-l([O, co])) U (f-l([Cl' 1])), the composition f 0 1/) sati.sfies f 0 'If'(x, t) = t.

(ii) On (W \ U) U (f-l([O, co])) U (f-l(h, 1])), the metric g' satisfies g' = g.

(iii) There exi.sts a smooth family of psc-metrics ht , for tEl in Riem+ (X0) and a smooth function

0; : [0,1] ----7 [1, 00), so that 1/)* (g') = ht + 0;(t)2dt2 .

Proof The diffeomorphism 1/) is precisely the one described in the previous section. As explained

above, the first critical point of f, VJ, determines a p-dimensional embedded surgery sphere S~ in

X x {a} bounding a disk D~+l which is determined by the second critical point z. More precisely,

as we follow the trajectory with respect to V, of D~+l, the effect of passing the first critical point

'W is to collapse the boundary of this disk. This in turn gives rise to the inward trajectory sphere

SJ~tl c f-l(t), with t E (f(w), f(z», of the second critical point z. Recall that N,v and N z denote

respective tubular neighbourhoods of S~ and D~+l in X o, with N w c N z .

The restriction of the metric 9 = g(g, f) to the level sets f = 0, f = c and f = 1, ""here

f(w) < C< f(z), is shown schematically in Fig. lILlO. The induced metrics are denoted 09,09' and

09" respectively. The constant C can always be chosen so that the metric 09' is the metric obtained

by a single application of the Gromov-Lawson construction with respect to the sphere SP. Thus,

outside of the neighbourhood N,v the metric 09' is precisely the original metric gIXo\Nw ' Finally,

the metric 09" is obtained by application of the Gromov-Lawson construction to the metric 09' with

respect to the trajectory sphere S~+l. The restriction g"IX\Nz = gIX\Nz •

In Theorem lI.34, we construct a smooth isotopy gs, s E [co, Cll, in the space Riem+(X),

which connects the metrics 09 and 09"· That is, geo = 9 and gel = 09". Moreover, this isotopy fixes

the metric 09 on X \ N z , i.e. g81(x\Nz ) = gl(X\Nz )' for all S E I. By Lemma II.1, there exists

a smooth bump function II : [0, b] ----7 [0,1] of the type shown in Fig. IlI.ll so that the metric

09,-,(1) + dl 2 is a psc-metric on X x [0, b]. In particular, II = a on [0, kl ] and II = 1 on [k2 , b]. The

metric gv(l) + dl 2 pulls back to a psc-metric ht + fi.(t)2dt 2 on X x [co, ell, where 11 : [co, cd ----7 [0, b]

is the smooth map shown in Fig. lII.ll and ht = gV(M(t)). The function /l call be chosen so that
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Figure IlL 11: The functions ZJ and p,
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it = 1 when u is near Co and C1, and so this metric is a product near the boundary. Thus, it

extends smoothly over X x I, giving rise to the the metric Ii, defined

g + dt 2
, on X x [0, co]

Ii = ht + f-i,(t)2dt 2, on X x [co, cd

gil + dt 2 , on X x [C1, 1].

The metric Ii can now be pulled back onto ll1 via the diffeomorphism 'l/J-1, to obtain the desired

metric g'. [J

It is not difficult to generalise this notion of regularisation to a Gromov-Lawson cobordisrn

arising from an admissible Morse function with many critical points. Two critical points 'Wand z

of f are said to be in cancelling position if they satisfy conditions (a), (b) and (c) of Theorem II.34.

We descibe as a cancelling pair, any two critical points of f which can be moved into cancelling

position by a smooth isotopy of f in the space of admissible Morse functions. Now suppose f is an

admissible Morse function so that every cancelling pair of critical points is in cancelling position.

Denote these cancelling pairs {(Wi, zi)}i=1 and denote by /,;, the trajectory arc connecting 'W; to

Zi. Let '1/); : D" x [a;, bi] ----t W denote a family of embeddings which satisfy the following.

(i) The images of the maps 'l/Ji are disjoint.

(ii) Each trajectory arc /; is contained inside the image of '1/);.

(iii) The constants ai and b'i are chosen so that 0 < a; < f(w;) < fez;) < b; < 1 and so that

f-l([ai, f(Wi))) and f- 1 (f(Zi), bi] contain no critical points.

(iv) Near (D" x {ai}) U (D" X {b;}) U (aD" x 1), the composition f 0 'l/J; is projection onto [a;, b;].

Corollary III.3. Let y(go, f) be a Gromov-Lawson cobordism with respect to an admissible Morse

function f and a psc-metric go on X o. Suppose also that all cancelling puirs of critical points of

f are in cancelling position. Then there is a psc-metric y' = .()' (gO, f) on VV and a collection of

embeddings 'l/Ji : pl x [ai, b;] ----t W satisfying conditions (i), (ii) , (iii) and (iv) above so that:

(1) The metrics 9 and g' agree on W \ Ui 'l/Ji(D" x [a;, bi])

(2) The metric 'l/JiCiJ'I7/J,(Dnx[ai.biJ)) is a warped prod'uct hI+ai(t)2dt2 11Jhere each hI E Riem+(D")

and Ct; : [ai, b;] ----t [1, (0) is the constant function 1 near a; and bi .
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Proof By Theorem 5.4 of [30], the embeddings 'i/Ji may be chosen to allow for a regularisation of

the function 1. In other words, the admissible Morse function 1 can be replaced by an admissible

Morse function I' which satisfies the following conditions.

(ii) For each i, the composition l' a 'l/Ji is projection onto [ai, bi ] C I.

The proof then follows by application of Theorem III.2 inside each neighbourhood 'ljJi(D" x [ai, bi ]).

o

The metric g' constructed in this corollary will be called a reg'ularised GTOmov-Lawson coboTilism

with respect to go and f.

III.4.3 Arc-length dependent regularisation

We will now describe a slight variation of the construction from Corollary III.3 which will

be of use when we come to prove our main theorem. Let 1 : TV ----+ I be an admissible Morse function

satisfying conditions (a), (b) and (c) of Theorem II.34. Let L denote the length of the trajectory

arc 'Y connecting the critical points wand z, with respect to the reference metric m. Now consider

the metric !I' obtained by Theorem III.2 with respect to 1 and a psc-metric go E Riem+(Xo). On

1-1([co,c1]) n U, this metric takes the form

where t E [co, C1] is the coordinate coming from the regularised trajectory flow and 1/ and J1 are the

functions defined in the proof of Theorem III.2 and shown in Fig. IILll. Let ~ : [0, (0) ----+ [0,1]

be a standard cut-off function so that for some interval [co, c1], ~(s) = 0 when s ::::: co and ~(s) = 1

when s ~ Cl. Let h(L) denote the metric defined

go + dt2
, on X x [0, co]

h(L) = 9((L)v(,!(t)) + jJ.(t)2dt2, on X x [co, e1]

9((L)Cl + dt2
, on X x [e1, 1].
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This metric can be pulled back to a psc-metric on TV by the regularised trajectory diffeomorphism

'IjJ' : X o x I --'> W as in Theorem III.2, We denote the resulting metric g'(L),

Lemma IlIA. The metric g' (L) has positive scalar- cur-vat'ure,

Proof By construction, the metric gll(/-l(t)) + JL(t)2 dt2 has positive scalar curvature, although it is

worth recalling that the positivity of the scalar curvature depends upon the fact that the function

v: [0, b] --'> [co, C1] has been chosen so that Ivl and liil are small. It is therefore enongh to ensure

that for each L, Ift(~(L)v)1 < Iftvi and It(~(L)v)1 < Itvl. This follows from the fact that

0< Co < ~(L) < C1 < 1. o

Thus, when L is very small, the metric ,q'(L) is just the standard product go +dt2
, As the

length L varies from EO to E1, we get a smooth transition through positive scalar curvature metrics

back to the metric ,qt. It is important to realise however, that the replacement of the metric ,q'

with the metric ,q'(L) changes the metric on f-1([C1, 1]). This is unlike the construction of ,q' from

,q, where the metric was only altered locally; see Fig, III.12.

go + dt~

Co

Xo

Figure III.12: The metrics g' and g'(L) with the shaded region representing U and the darkly
shaded region denoting where these metrics differ
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111.5 Families of Regularised Gromov-Lawson Cobordisms

In this section we will prove our main technical theorem.

III. 5.1 Admissible wrinkled maps

Let W n+1 be as before and let En+k+l and Qk be a pair of smooth compact manifolds of

dimension n +1+ k and k respectively. The manifolds E and Q form part of a smooth fibre bundle

with fibre IV, arising from a submersion 7l" : E ----+ Q. \,ye will assume also that the boundary of

E, BE, contains a pair of disjoint smooth submanifolds Eo and E 1 . The restriction of 7l" to these

submanifolds is denoted 7l"o and 7l"1 respectively. These maps are still submersions onto Q and

give rise to a pair of smooth subbundles of 7l" with n~spective fibres X o, X I C "\Ill. These form the

commmutative diagram represented in Fig. IIL13.

7l"1

w '------~>~ E -------o>~Q

Figure IIL13: The smooth fibre bundle 7l" and subbundles 7l"i where i = 0,1.

The union of tangent bundles to T(7l"-I(y)) over y E Q forms a smooth subbundle of TE,

the tangent bundle to E. This subbundle is denoted Vert.

Definition 111.8. A smooth map f : E ----+ Q x I is said to be modemte if it satisfies the following

conditions.

(i) The diagram shown in Fig. IIL14 commutes, where PI is projection on the first factor.

(ii) The pre-images f-I(Q x {O}) and f-I(Q x {I}) are the snbmanifolds Eo and E I respectively.

(iii) The singular set Ef is contained entirely in E\ (Eo UEd and is a union offolds and wrinkles.
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Figure III.14: The moderate map 1

(iv) For each y E Q, the restriction 11?r-'(Y) is a generalised Morse function whose critical points

have index:::; n - 2.

Let V be a vector field on E. We say that V is gradient-like with respect to 1 and Tn if

for each y E Q, the restriction 171?r-'(y) is gradient-like with respect to fl?r-1(y) and ml?r-'(Y)'

Definition 111.9. An admissible wrinkled map is a triple f = (j, m, 17) where 1 is a moderate

map with respect to the submersion 1r : E -+ Q, m is a Riemannian metric on E and 17 is a

gradient-like vector field on E with respect to 1 and m.

Example 111.5. Let T : T 8 4 -+ S4 denote the tangent bundle to the sphere S4. Equipping 8 4 with

a Riemannian metric allows us to define an annular bundle E = D I (TS'4) \ Do (T5'1) -+ S4, where

Do(TS4) C D I (TS4) are disk bundles. The total space E can now be thought of as a product of

sphere bundles 8o(T84) x I and we may define a function 1 on this space as 1(x, t) = (T(X), t). In

this case, 2:,1 = 0. On any local trivialiation, T- I (D4) ~ D 4 X S4 X I where D 4 C S4, it is easy to

replace the function 1 with one which contains a wrinkle inside T-
I (D4

) and which agrees with 1

outside of this neighbourhood.

For a more interesting example, where 1 has only fold singuarities, see section 5.a of [11].

A minor modification to the example there results in a non-trivial sn x I bundle E over a sphere

Q = Sk with 1 restricting on each fibre as a Morse function with a pair of cancelling critical points.

III. 5.2 The main theoTern 01 Part Two

'vVe are now in a position to state our main theorem. This will allow us to describe a family

of regularised Gromov-Lawson cobordisms arising from admissible Morse functions with varying

numbers of critical points.
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Theorem III.6. Let f be an o,dmissible wrinkled map with respect to the submersion Jr : E --; Q.

Let go : Q --; Riem+(Xo) be a smooth map parameterising a compact family of psc-metTics on

X o. Then theT(~ is a metTic G on the total space E which, fOT each y E Q, TestTicts on the .fibTe

Jr-l(y) to a TegulaTised Gmmov-Lawson coboTdism. g'(go(y), fIIT-I(y)). In the case when the bundle

Jr : E --; Q is tTivial, theTe exists a smooth map

Q -----> Riem+ (lV, 8W)

Y f---> .g'(y),

wheTe each g'(y) is a TegulaTised Gr'OTnov-Lawson coboTdism..

The metric G will be constructed in a method which is quite similar to that employed in

the proof of Theorem II.23. We begin by equipping the boundary component Eo with a particular

Riemannian metric Go. Using the trajectory flow of the gradient-like vector field V, we extend Go

as a product metric away from critical points of f. Near critical points of f, some modification

must be made. Roughly speaking however, the entire construction goes through in such a way

that the restriction to any fibre, is the construction of Corollary IIL3.

Before beginning the proof, we need to make some observations about '£j. The singular

set '£f forms a smooth k-dimensional submanifold of E, with possibly many path components;

see Fig. IILI5. These path components are either folds or wrinkles of f. The condition that

fIIT-ol(y) is a generalised IvIorse function, for all y E Q, puts some further restrictions on the types

of singularities that can occur. Near any fold singularity, f is equivalent to the map

(
s n-k+l)

(y, x) f----; y, - 8 :r.;2 + iLl :r;2 ,

(III.5.1)

for some s E {O, 1, ... , n - 2}. The index s will be consistent throughout any particular fold of f

and so such a fold may be regarded as an s-fold. Each wrinkle is contained in a neighbourhood in
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which 1 is equivalent to the map

where in this case s E {a, 1, ... , n - 3}. In both cases, regions parametrised by the JRk factor are

mapped diffeomorphically onto their images in Q, by n.

Figure III. 15: The singular set 2'.1

The background Riemannian metric m on E gives a reduction of the structure group on

Vert to SO (n + 1). There is a further reduction of this structure group on folds of 1. Suppose

F C 2'.1 is a fold of 1. In other words, near any point in F, 1 is locally equivalent to the

map (III.5.1). The fold F is thus a smooth k-dimensional submanifold of E, and each point

w E F is an index s Morse singularity of the function 111r-1(1r(w))' In keeping with our earlier

notation, we will assume that s = p + 1 and that p + q + 1 = n. Associated to each tangent space

Vert", = Twn-1(n(w)) of w E F is an orthogonal splitting (with respect to m) of the tangent

space into positive and negative eigenspaces of the Hessian d21w. vVe denote these spaces Vertt

and Vert:;:. They have respective dimensions p + 1 and q + 1 and give the restriction of Vert to
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the fold F the structure of an SO(p + 1) x SO(q + I)-bundle.

III.5.S The proof of the main Them'em

We now proceed with the proof of Theorem III.6.

Proof. Let Jrll denote the restriction of Jr to Ell = f-l(Q X {O}). Recall this is a subbundle of

E with fibre X il . Let H be an integrable horizontal distribution for the submersion Jr : E ----7 Q.

The restriction of H to Eo is an integrable horizontal distribution for the submersion Jrll, which

we denote H il . 'iVe begin by giving the bundle Jrll, the structure of a Riemannian submersion

Jro : (Eo, Go) ----7 (Q,rnQ). Here Gil is the unique submersion metric with respect to mQ, the

distribution H il and the smooth family of fibre metrics specified by the map go: Q ----7 Riem+(Xo);

see chaper 9 of [2] for details. Since H il is an integrable distribution, we get that Gil is (locally at

least) isometric to mQ + gll(Y); see section 9.26 of [2].

Now consider integral curves of the gradient-like vector field V starting at Eo. As '[,f is

contained entirely in the interior of E, all of these integral curves run for some time and so we

may specify a diffeomorphism

¢Il : Eo x [0, Oil] ------> f- 1(Q x [0, Oil])

(w, t) f---+ (hw(t)),

for some 00 E (0,1), where hw is the integral curve beginning at w. In particular, fO¢1l is projection

onto [0, Oil]. Each fibre metric gll(Y) on Jr0
1(y) can now be extended fibrewise as a product metric

gll(Y) + dt2 along Jr-l(y) n f-l(Q x [0, Oil]), in the manner of the proof of Theorem II.23. The

restriction of H to f-l(Q X [0, Oil]) allows us to glue these fibre metrics together and so extend Gil

as a submersion metric over f-l(Q x [0, Oil])' We may continue extending Gil over E in this way

until we encounter elements of 2:;f and can no longer extend some of our integral curves. At this

stage we must adapt our construction. There are two cases to consider here, either we run into a

fold of.f or we encounter a wrinkle.

III. 5.4 Case 1: E:Etending the metric past a fold of f

Suppose that for some c E (0,1), the level set f-l(Q x {c}) contains a fold F. It could

contain more than one fold or even a cusp, but as folds and wrinkles are disjoint, it is enough to
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consider the case when this level set contains a single fold. Let oe be chosen sufficiently small so

that j-1 (Q x ([e - oe, e) U (e, c + be])) contains no critical points. We will assume inductively that

we have extended the metric Go to a metric Ge-/ic on j-1([0, c - oeD so that for each y E Q, thc

metric induced by Ge-/ic on Jr- 1 (y) n j-1 (Q x [0, e - beD is a psc-metric and is a product near

Jr-1(y) n f-1(Q x {e - be})' Our goal is to construct a metrie Ge+/ic on j-I(Q x [0, C + deD, so

that on each fibre Jr-1(y) n f-1(Q x [O,e + bcD, the induced metric has positive scalar curvature

and is a product near the boundary.

Fibrewise, this is precisely the situation dealt with in Theorem 11.23. Thus, on any fibre we

can choose a :Morse coordinate neighbourhood of the critical point 1LI and perform a parametrised

version of the Gromov-Lawson construcion on this neighbourhood to extend the metric past the

critical point, exactly as we did in Theorem 11.23. This works perfectly well for a single Morse

critical point. For a family of Morse critical points however, we must ensure compatibility of our

construction over the entire family.

It is important to point out that the construction of Theorem 11.23 depends specifically

on an orthogonal decomposition of the plane jRn+1 into jRP+1 x jRq+l and a diffeomorphism of

jRn+1 onto a neighbourhood of the critical point so that jRP+1 and jRq+l parametrise the respective

inward and outward trajectory disks near 'W. The construction itself is SO(p + 1) x SO(q + 1)

symmetric with respect to this decomposition. Thus, to perform this construction fibrewise over

all critical points in the fold F we must establish a canonical way of assigning a smoothly varying

diffeomorphism of the type just described for each 'W E F. This will be done with the aid of the

exponential map (with respct to rn) near F.

Denote by Vert(F), the restriction of the vertical bundle Vert to the fold F. For some

Ee > 0, let D(Vert(F)) C Ve'rt denote the disk bundle of radius Ee with respect to the background

metric rn. Provided Ee is small enough, the exponential map eXPm embeds DVert(F) into E. Vve

denote by N the tubular neighbourhood of F that is the image of this embedding. Let ow E F and

let N w = eXPm (Dw (Vert)) C Jr- 1 (Jr('W)). Vve will now make some adj ustments to the metric m

and the function f inside this tubular neighbourhood. These adjustments should be thought of as

standardising rn and j near the fold.

The decomposition of Vertw into negative and positive eigenspaces of the Hessian: Vert;;,
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and Vertt, as w varies over F can be thought of as a smooth map

SO(n + 1)
Q~ SO(p+ 1) x SO(q+ 1)

For a definition of this map, see [23]. In turn this gives a smooth family of isomorphisms Tw HT
--+

JRn+l ~ JRP+l X JRq+l, which identify each V ert~ with jRP+1 and each Vertt with jRq+I, as w varies

over F. Pulling back the Euclidean metric on jRn+1 results in a smooth family of Euclidean metrics

on the fibres Vertw , for which the subspaces V ert~ and Vertt are orthogonal. The distribution

H (along with the base metric rnlF) allows us to glue these fibre metrics together to construct a

submersion metric on the total space Vert(F). Using the exponential map with respect to the

original metric rn on the disk bundle DVert(F), we can pull this metric back to the tubular

neighbourhood N. By way of a partition of unity, this metric can then be extended over the rest

of E as the original metric 711 (with analogous constructions taking place near other folds of F).

Abusing notation, we will retain the name rn for this standardised background metric.

Let w E F. Contained in N w are a pair oftrajectory disks D~+l and D7,-:I arising from the

vector field VI7f-1(7f(w)) and intersecting orthogonally at w. vVe may assume that oe is sufficiently

small that f-l(C - oe) is contained entirely in the interior of N. Thus, on each neighbourhood

N w , the psc-metric induced by Ge- oc is a product metric defined on a region (diffeomorphic to

Sp+I x Dq+I) below the critical level exactly as in Theorem ll.23; see Fig. IILI6.

Induced metric on Uw n f- I ([0, c - OeD is a product here

Figure IlLIG: The neighbourhood U.W C 1r- 1(1r(w)) containing the Morse singularity 'W of

fl7f- 1(7f(w))

Using the exponential map, we pull back the metric Ge- oc on N n f- I [0, c - co] to the



140

bundle D (Vert (Fp+1)). We will now work entirely inside D(Vert (Fp+1) ). The inverse exponential

map embeds Dfv+l and Div+l into Dw(VeT·t(Fp+d). Abusing notation, we will retain the names

Dfv+l and DYu+ 1 for the image disks. Contained inside the vertical tangent disk Dw(Vert(F)) are

a pair of eigen-disks of the Hessian d2!w, DVert:;;, = Vert:;;, n D(Vertw(Fp+1 )) and DVert;t =

Vert;t n D(Ve1'tw (Fp+1))' These are restrictions of the negative and positive eigenspaces of d2!,,,.

We will now compare DVert;t and DVert:;;, with Dfv+l and DYv+ 1 near W; see Fig. III.17 and Fig.

IIU8.

DVert;t

DVert:;;,

Figure III.17: The images of the trajectory disks Df,,+l and Dy/l in D wVert(F) after application
of the inverse exponential map

For each w E F, the trajectory disks Dfv+l and Div+ 1 intersect orthogonally at the origin.

Furthermore, (Dfv+l) intersects tangentially with DVert:;;" as does (Dfv+l) with DVert;t. Thus,

provided Ec is chosen sufficiently small, inside D wVert (F) and for all w E F, Df,,+ 1 and Df,;+- 1 are

the graphs of smooth functions on Vert:;;, and Vert;t repectively. The function! can novv be easily

perturbed near F so that inside the disk bundle DVert(F), the eigen-disks DVeTt: and DVert;t

agree with the respective trajectory disks Dfv+l and D'j}l, for all W E F; see Fig. IIU9.

This gives to each W E F, the desired association of disk neighbourhoods D wVert(F),

each with an orthogonal splitting Dw Vert(F) = DVert:;;, x DVert;t, var;ling smoothly over w.
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DVert(F)

Figure IlU8: Comparing the trajectory disks with the eigen-disks (heavy) in DwVert(F) as 'W

varies over F

...
I
I
I
I
I

_____ .1

I
I
L _ ,,

I
I
I

I

'f
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I
I
I
I,
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- - - --/

I
I
I
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'f

Figure IlLIg: The shaded region denotes the region of the fibre D1/} VeTt(F) on which the induced
metric is defined.
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Extending the metric fibrewise in the manner of Theorem II.23 and pulling back via the exponential

map, gives a smooth family of fibre metrics, which, with respect to the distribution H and the

base metric mQ, give the desired submersion metric on 1-1 (Q x [0, C + Oe]).

III. 5. 5 Case 2: Extending the metr'ic past a wrinkle of 1

We will assume that Co E (0,1) is so that all wrinkles of 1 lie outside of 1-1 (Q x [0, co])

and so that 1-1 (Q x {co}) contains no critical points. From Case 1, we can construct a metric Geo

on 1-1 (Q x [O,co]) so that the metric induced on fibres has positive scalar curvature and product

structure near the boundary. Suppose P is a wrinkle of 1 which is contained in the interior of

1-1 (Q X [co, Cl]) for some C1 E (co, I). We wish to extend Geo to a metric Gel on 1- 1(Q x [co, Cl])

so that the once again, the induced metric on fibres has positive scalar curvature and is a product

near the boundary. Away from the wrinkle, we can extend this metric as a standard product in

the usual way. '''Ie will focus our attention therefore, on extending this metric near P.

Recall that a wrinkle is a path component P c 2',1 which satisfies the following property.

There is a pair of embeddings 1/Jl : jRk x jR x jR" --'> E and '~)2 : jRk x jR --'> Q x 1 so that P is

contained in the image of '¢1 and so that the composition 1/J:;1 01 01/Jl is the map w defined

In these coordinates, the wrinkle P is the k-dimensional sphere given by {z2 + 1;y12 = 1,:Y; = O} and

the function 1 is locally a k-parameter family of generalised Morse functions.

We will now regularise the wrinkle P in the manner of Theorem IILL Let BJtk+1 (0,1)

denote the closed ball in jRk x]R X {O} which is bounded by this sphere. Theorem III.l now gives

that the map w can be replaced by a map Wi which for some f > 0 agrees with w outside of

BIRk(O, 1 +f) X [-I-f, 1 +f] X B]Rn(O, f) and which has no critical points. Let D" denote the closed

ball BjRk (0, 2) in the plane ]Rk. It follows from the regularisation of w that there is an embedding

r/J: D k x [co, cd x D" --'> jRk X jRn+l so that the composition P2 0 1o'ljJ] 0 r/J is projection onto [co, Cl];

see Fig. IIL20. Here P2 is projection onto the second factor.

Now, for each y E Dk, with Iyl < 1, the function 1 restricts to a Morse function with two
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critical points in cancelling position and connected by a trajectory arc IV given by the formula

IV: [-V1 -lyI2, V1 -lyI2] --> E

t I-------> 'l/J1(Y, t, 0).

Let ~ denote the cut-off function described in section III.4.3 with respect to constants to and t1

and let L(/v) denote the length, with respect to 'In, of the trajectory arc IV' \Ve may assume that

0< fO < f1 < 4where L = SUPDk(L(/y)).

Equip D k X Dn x {co} with the metric obtained by pulling back Gco If -, (Qx {co}) via 1/)1 0 ~6.

On fibres {y} x D n x {co}, the induced metric is a psc-metric denoted hv' On each vertical

slice {y} x Dr/, x [CO,C1], we extend the metric hv as the metric l~'//(L), defined in section III.4.3.

When L < fO, this metric is just a standard product and so this construction transitions smoothly

fibrewise over all of D k . Near aDk , the metric on the fibres pulls back to precisely the one obtained

by standard product extension of the metric Geo away from the wrinkle. As Iyl decreases, the fibre

metric smoothly transitions into the regularised Gromov-Lawson cobordism obtained in Theorem

III.2. This is indicated by the smaller darker rectangle in the bottom left drawing of Fig. III.20.

Outside of this rectangle the metric extends fibreswise as the product hy + dt 2
. Inside of this

rectangle, the fihre metric is smoothly altered as Iyl ----? fO. Pulling back this smooth family of

metrics via 'l/J1 0 rj! results, via Hand rnQ in the desired submersion metric Gc,. This completes

the proof of Theorem III.6.

111.6 Gromov-Lawson Cobordism and Isotopy

[J

In this section we will consider the psc-metrics obtained on Xl via application of the

technique of Theorem II.23 with respect to a psc-metric 90 E Riem+ (lV) and an admissible Morse

function f. Recall that Theorem II.23 allows us to construct a psc-metric 9 = 9(90' 1) on vV' which

has a product structure near the boundary. In particular, the metric 91 = Y1x, is a psc-metric

on Xl. It is worth considering to what extent the metric 91 depends on the admissible Morse

function f. In other words, if fa and fb are two distinct admissible ]\1orse functions (with possibly

different nlllnbers of critical points), what can we say about the metrics 91 (a) = 9(90, fa) Ix, and

91 (b) = 9(90' fb)? In particular are these metrics concordant or even isotopic? We have already

answered this question in the case when W is a cylinder X x I and X is simply connected vvith
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n 2': 5; see Theorem II.36. In that case gl (a) and 091 (b) are always isotopic. In this section we will

show that this result holds for more general VV.

In section III.2.1 we reviewed the notion of an admissible Morse function and described

the space of snch functions on TV. Recall that F = F(lV) denotes the space of smooth functions

Hl--> I, so that if f E:F, I',f is contained in the interior ofTV' and f-l(O) = Xo and f-l(l) = Xl.

Furthermore, P denoted the space of triples (.f, Tn, V) where f E F, Tn E Riem(lV) and V is a

gradient-like vector field on TV with respect to f and Tn. Contained in F as as open dense subspace

is the space M of Morse functions. The subspace of M consisting of Morse functions all of whose

critical points have index <:; n - 2 is denoted M udm . The space of admissible Morse functions,

denoted Mudm = MUdrn(W) is the space of triples {(.f, Tn, V) E P : f E Mudrn}. Finally, recall

that MG,dm is homotopy equivalent to Mudm.

IT!. 6.1 The space of generalised Morse functions

Throughout this section, TV, X o and Xl are simply connected and of dimension 2': 5. The

space M is of course not path connected as functions lying in the same path component of iVJ must

have the same number of critical points of the same index. There is however, a natural setting in

which to consider the cancellation of Morse critical points. Let H = H(W) denote the subspace of

F which consists of all generalised Morse functions. Recall that the singular set of a generalised

Morse function consists of both Morse and birth-death singularities and so M c H. It follows

from Theorem 4.6.3 of [19], that any two Morse functions in M can be connected by a path in H.

Furthermore, all but finitely many points on this path are Morse functions. Note that a great deal

of work has been done in understanding the homotopy type of the space H; see for example [7],

[21] and [23].

\Ve will be particularly interested in generalised Morse functions whose critical points

satisfy certain index requirements. Let Hi,} denote the subspace of H consisting of all generalised

Morse functions with only critical points of index between i and j inclusively. Of special interest

to us is the space Hudrn = HO,n-2. Furthermore, let H,;,} = {(.f, Tn, V) E P : f E Hi,,}}. As

before, iI,;,.i is homotopy equivalent to the space H'i"j. The space of admissible generalised Morse

junctions, denoted H udm , is the space HO,n-2'
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111.6.2 Hatcher"s 2-Index Theorem

It will be important for us to be able to connect up an arbitrary pair of admissible JVlorse

functions with a path through admissible generalised :Morse functions. To do this we will need the

following corollary of Hatcher's 2-Index Theorem; see Theorem 1.1, Chapter VI, Section 1 of [23].

Theorem 111.7. (Corollary 1.4, Chapter VI, [23]) Under the following conditions the inclusion

map Hi,:i-l -----+ Hi,j is k-connected.

(a) (W,Xd is (n-j + I)-connected.

(b) j ~ i + 2.

(c) n - j + 1 ::; n - k - 1 - min(j - 1, k - 1).

(d) n - j + 1 ::; n - k - 3.

We can now prove the following lemma.

Lemma 111.8. Let {VV; Xa, XI} be a smooth compact cobordism where 1¥, X a and Xl are simply

connected and 1¥ has dimension n + 1 ~ 6. Let fa, h E M adm = Madrn(w). Then ther'e is a path

oS f---' fs, for s E I, in ]-{adm = ]-{adrn(l¥) which connects fa and h and which lies in Madrn for all

b'ut finitely many points so, ... , oSl E (0,1).

Proof. The existence of such a path in ]-{ which connects fa and h is given to us by Theorem 4.6.;1

of [19]. We need to show that such a path can be deformed to one which lies entirely inside ]-{adrn.

A careful analysis of the statement of Theorem III.7 gives that the inclusions

]-{adm = ]-{a,n-2 -----+ ]-{a,n-l -----+ ]-{a,n -----+ ]-{a,n+l = ]-{

are 0, 1 and 2-connected respectively. Note that condition (a) of Theorem III.7 is satisfied by the

existence of fa and h on H/. This gives that any path in ]-{, connecting fa and h, can be deformed

into one which lies entirely in ]-{adm. 0

111.6.3 An application of Hatcher's 2-Index Theorem

vVe will now prove a theorem concerning the problem of how the choice of admissible

Morse function affects the isotopy type of a Gromov-Lawson cobordism.
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Theorem 111.9. Let {VV; X o, XI} be a smooth compact cobordism where vl!, X o and Xl are simply

connected and ltV has dimension n ?: 5. Let fo, h E iiJUdm (W). Suppose go and 091 are psc-metrics

ly'ing in the same path component of Riem+ (Xo). If 90 = 9(090, fo) and 91 = 9(091, h) are Gromov-

La.wson cobordisms, then the psc-rnetrics 090,1 = 90lx1 and 091,1 = 911x1 are isotopic metrics in

Riem+(X1).

Proof. Let gs, 8 E I denote a path in Riem+(Xo) connecting the metrics go and 091. Recall that

i{adm is homotopy equivalent to H adrn . Thus, by lemma II1.8, there is a smooth path fs in i{adrn,

with 8 E I, connecting fo and h. It will be useful to regard the family Is as a smooth map f,

defined by

f:WxI--.7IxI

(W,8) --.7 (8, fs(W)).

Recall that the path fs lies in ;Ctadrn for all but finitely many points SO, .. ,81 E (0,1).

Choose E > 0 sufficiently small so that for all i E {0,1 ... , I}, the intervals (Si - E, Si + E) are

disjoint subintervals of (0,1). On [0, So - E], fs is a family of admissible Morse functions. Thus, by

Theorem 11.25, we can extend the Gromov-Lawson cobordism go = 9(090, fo) as a compact family of

Gromov-Lawson cobordisrns 9s = ,?j(gs, fs). Similarly, we can do this for all 8 E 1\ UJSi - f, Si +E).

This gives a disjoint collection of paths gs,l = .9slx1 in Riem+(XI). It remains to show

that these paths can be connected along the intervals (Si - E, Si + E). Without loss of generality

we may assume that 1=0 and that gs,1 is defined for all S except on (so - E, 80 + E). Furthermore

we may assume that fso has only one birth-death singularity at the point (W,80) E ltV x I. This

is possible since singularities of a generalised :Morse function are isolated. Provided E is chosen

sufficiently small, Lemma 3.5 of [23] gives that there is a coordinate map

'l/J: (-E, E) XJR x JRrl ------- W x I

(8,Z,X) f---; ('l/Js(z,x),s),

so that the composition fs 0 ~0s is given by the rule

p+1 rl

3 ""' 2 ""' 2fs 0 'Ij)s(Z, x) = z ± sz - ~ Xi +~ Xi'
o p+2
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Thus, the point (w, so) is a cusp singularity of f. The ±sz term in the equation above is

determined by the cancellation direction. Without loss of generality we will take it as +sz. Thus,

the admissible Morse function fSO-E contains a pair of cancelling critical points, in cancelling

position and connected by a trajectory arc ISo-E' These critical points cancel at (w, so). Replace

the Gromov-Lawson cobordism .9so-< with the regularised arc-length dependent Gromov-Lawson

cobordism .9~0-AL(so-E)) constructed in section III.4.3. Here L80 -< is the length of the trajectory

arc ISo-E' We will assume that the cut-off function~, associated with this metric, has been chosen

with constants EO and El satisfying 0 < EO < El < L(so - E). This will ensure that the metrics

9~0-E(L) and 9S0-E agree near Xl x {so}. Similarly, replace 98o+E with 9~O+E(L(so+ E)). Using

the technique of Theorem III.6, we may now extend the regularised arc-length dependent Gromov­

Lawson cobordism g~o (L) to obtain a smooth family of regularised Grol1lov-Lawson cobordisms

9~(L(s)) over W x [so - E, So + E]. The restriction ofthis family to Xl x [so - E, So + E] provides an

isotopy connecting 9 so-E,1 to 9"0+E,1. This completes the proof. o
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APPENDIX A

ISOTOPY IMPLIES CONCORDANCE

V<,Te will prove the following lemma from section 11.2, an easy corollary of which is that

isotopic psc-metrics on a smooth compact manifold X are necessarily concordant.

Lemma ILL Let gr, rEI be a smooth path in Riem+(X). Then theTe e:r;ists a constant a < A ::; 1

so that for every smooth function f : R. ----+ [0,1] with Ih IfI ::; A, the metric G = g.f(t) + dt 2 on

X x R. has positive scalar curvat'uTe.

Proof. Choose a point (xo,to) E X x R.. Denote by (x6, ... ,xO,x~+1 = t), coordinates around

(xo,to), where X6,""Xo are normal coordinates on X with respect to the metric g.f(to)' The

respective coordinate vector fields will be denoted fh, ... ,an, On+ 1 = at. Let 'V' denote the Levi­

Civita connection of the metric G on X x R. and let \7 denote the Levi-Civita connection of the

metric g.f(to) on X x {to}. All of our calculations will take place at the point (xo, to).

We need to compute the scalar curvature of G in terms of the scalar curvature of the

metric g.f(to) , and the first and second derivatives of the function f. We begin by computing the

Christoffel symbols fif,j of the connection 'V'. Recall that these are given in terms of the metric G

by the formula

When i,j, k ::; n, it is clear that fitj = f7,j' We now turn our attention to the remaining cases.

Suppose i, j ::; nand k = n + 1. Then

fi,:,+l = ~Gn+l,n+l(o + a- aG(x t))
t,) 2 t CTt) 0, 0

-1 .
= Targr('ij) (xo, f(to))·f(to).
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When i ::; nand j, k = n + 1,

r n+l = ~Gn+l,n+l(o + 0 - 0)
',n+l 2

= O.

In the case when 'i, k ::; nand j = n + 1, we obtain

Finally, when k ::; nand i, j = n + 1

- k 1 kt
f n+l,n+l ="2,c (0 + 0 - 0)

= O.

-n+l -k. " -n+l _ ~ -k -"
Thus, f ij and f i ,n+l ale both 0(111), whIle f i ,n+l - 0 - f n + 1,n+l' Let K ij and liij denote the

respective sectional curvatures for the metrics G and g.f(to)' Viewing X x {to} as a hypersurface

of X x JR, the Gauss curvature equation gives us the following formula for K;j, when i, j ::; n,

where II denotes the second fundamental form on X x {to}. In this case,

Hence,

In the case when i ::; nand j = n + 1, we use the following formula, derived in Proposition A.l

below, for the sectional curvature.

n+l

Ki .n+l = 8-ir~+l,n+l - 8n+1rtn+l + L (r~+1,n+lr1k - r;:n+J r ;,+1,/,,)
k=l
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As the expression

we obtain

K i ,n+1 = O(VI) + O(IJI).

Finally, let R denote the the scalar curvature of the metric G, while R denotes the scalar curvature

of gf(to)' It now follows that, at the point (xo, to),

R = R + 0(111) + 0(111 2
) + O(IJI)·

This completes the proof. o

Proposition A.I. Let (1\1f,g) be a Riemannian n-manifold. Let (XI, ... ,:];n) denote a normal

coordinate neighbo'ur'hood abo'ut a point p. The sectional curvature Ki.i of the metric 9 at p ,is g'iven

by the formula
n

K;j(p) = Oir;j - Ojr~j +L (r.7j r l/c - rtqk) .
k=l

Proof In these coordinates,

where n is the lliemannian curvature tensor for the metric g. At p this simplifies to

= g(\1Oi \1OJ OJ - \1 OJ \1 Oi OJ, Oi)

= g(\1Oi (rJjOk) - \1OJ (rtok), 8J

= g(rJjrikOZ + Oi(r;jok) - rtr;'kOZ - OJ (r7j Ok), Oi)

'" r i '" r i r k r i r kr';=(/i jj-Vj ij+ jj ik- ij jk'

o
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APPENDIX B

CURVATURE CALCULATIONS FOR THE SURGERY THEOREM

Below we provide detailed proofs of Lemmas used in the proof of Theorem n.ll from

section n.3. In particular, Lemma n.13 is exactly Lemma 1 from [14]. The proof below is due to

Gromov and Lawson although we include details which are suppressed in the original. Lemmas

n.14 and IL15 are curvature calculations. The resulting formulae arise in Gromov and Lawson's

original proof of the Surgery Theorem; see [14] or [36].

Let (X, g) be a Riemannian manifold. Fix a point z E X and let D be a norlIlal coordinate

ball of radius if around z. Recall, this means first choosing an orthonormal basis {e1,"" en}

for TzX. This determines an isomorphism E : (Xl,"" X n) f---+ :[;le1 + .. , + xnen from ]R;n to

TzX. The composition E-1 0 exp-1 is a coordinate map provided we restrict it to an appropriate

neighbourhood of z. Thus, we identify D = {x E ]R;n : Ixl :s: n. The quantity r(x) = 1:1:1 is the

radial distance from the point z, and sn-1(E) = {x E]R;n : Ixl = E} will denote the geodesic sphere

of radius E around z.

Lemma 11.13. (Lemrna 1, [14])

(a) The principal curvatures of the hypers'U,rfaces sn-1(E) in D are each of the form ~l + O(f)

for E small.

(b) FurtheTrnore, let 09, be the induced metric on sn-1 (E) and let go., be the standard Euclidean

metric of CUT7.)O.ture c\-. Then as f ----+ 0, c\-g, ----+ c\-go., = gO.l 'in the C2-topology.

Below we use the following notation. A function f(r) is O(r) as T ----+ 0 if f~) ----+ constant as

r ----+ O.
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Proof. We begin with the proof of (a). On D, in coordinates Xl, . .. , X n , the metric 9 has the form

(B.1)

This follows from the Taylor series expansion of gij(X) around 0 and the fact that in a normal

coordinate neighbourhood of p = 0, % (0) = 6ij and r'~i (0) = O.

Next we will show that the Christoffel symbols of the corresponding Levi-Civita connection

have the form

Recall that the Christoffel symbols are given by the formula

r k = 1 """" gkl (g 'I ' + 9 'I ' - g'" I)'J 2 L-I " ,J J ,', 7.),,·

Differentiating (B.1), gives

Hence,

gil,j + gjl,i - gij,1 = O(lxl)·

We must now deal with the gkl terms. Let (9kl) = 1+ Y where the I is the identity matrix and Y

is the matrix (a~lxi:rj + O(lxI 3 )). Recall the following elementary fact.

(1 + a)-l = 1 - a + a2 - a3 + ...

Thus we can write

(gkl) = I _ Y + y 2 _ y 3 + ...

Each component of this matrix has the form
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Finally we obtain

vVe will now compute the scalar second fundamental form on tangent vectors to the

geodesic sphere sn-1(f). Consider the smooth curve a on sn-1(f) given by

a(s) = (f cos~' f sin~, 0, ... ,0).

Velocity vectors of this curve are tangent vectors to sn-1(f) and have the form

6:(s) = (-sin~,cos~,O, ... ,O).

Letting ~ denote the exterior unit normal vector field to sn-1 (f), we have

~(a(O)) = ,~i~l, = (1,0, ... ,0) = (;1·

and

6:(0) = (0,1,0, ... ,0) = (;2.

vVe will now proceed to compute the scalar second fundamental form at a(O). We denote by

the scalar second fundamental form and by

the shape operator, for the hypersurface sn-1(f) cD. Recall that,

where X, Yare tangent vector fields on sn-l(E), and that A only depends on X and Y at p. We
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now compute

A(o:(O), 0:(0)) = g(3(0:(0)), 0:)

= g( - \7 Q~' 0:)0:(0)

= -o:[g(~, o:)](a(O)) + g(\7aO:, 00:(0)

= 0 + g(\76:0:, el)

= &(1)(0) + '\', ,a1o,(i)o:U)(0)
LJ',J 'J ' .

The components of the velocity vector are

while

Thus,

0:(1) = - sin fl.,
E

0:(2) = cos "-,
E

O:U) = 0, j 2: 3,

Hence,

We now have that A(o:(O), (1:(0)) = -~ + O(c). Finally we need to normalise the vector (i(O). We

can write

A(0:(0), (1:(0)) = 10:(0) 1
2A(V, v)

h · . h . 1 'h . a(O)w ele v IS t e 11l1lt engt vectOl la(O)I'

100(OW = g(o:(O), 0:(0))

= g(e2' e2)(E,0, ... ,0)

= g22(c, 0, ... ,0)

= 622 + (Lk.l a~~XkXI + O(lxI 3 ))(c, 0, ... ,0)

= 1 + a§§c2 + O(lxI 3
)

= 1 + O(c2
).
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We now have that

A(a(O), a(O)) = (1 + O(E2 ))A(v, v).

That is

-~ + O(E) = (1 + O(E2 ))A(v,v).

This means that

By an orthogonal change of coordinates (another choice of orthonormal basis {e1, .... en}), this

computation is valid for any unit vector. In particular, it holds if v is a principal direction. Hence,

the principal curvatures have the desired form. This proves part (a).

The secol1d part of the lemma is more straightforward. \Ve can compare the induced

metrics ge on sn-1(E) for decreasing values of E by pulling back onto sn-1(1) via the map

X f------7 EX

Then at a point X where Ix! = 1, we have

1 *E2 ff (ge)(X) = Li,j gij(EX)dxidXj

= Li,j(Oij + E2 Li,j a7jxkXI)dxidXj + E
3 (higher order terms).

In the C 2-topology (that is, in the zeroth, first and second order terms of the Taylor series expan­

sion), -}zfe*(ge) converges to the standard Euclidean metric in some neighbourhood of sn-1(1) as

E ---> O. As fe is a diffeomorphism, the metric -}z (ge) is isometric to -}z f: (g() and converges (in C2
)

to the standard metric in some neighbourhood of sn-l(E). This proves part (b) and completes the

proof of Lemma n.l3. o

Recall, in the proof of Theorem n.ll, we deform a psc-metric 9 on a smooth manifold X

inside a tubular neighbourhood N = SP x Dq+l of an embedded sphere SP. Here q :::: 2. We do

this by specifying a hypersurface IvI inside N x JR, shown in Fig. B.2 and inducing a metric from
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the ambient metric g + dt 2 . The hypersurface NI is defined as

M, = {(y,x, t) E 81' x Dq+l(f) x IR: (r(x), t) E 'Y}.

where 'Y is the curve shown in Fig. B.l and l' denotes radial distance from SP on N. The induced

metric is denoted g,. The fact that 'Y is a vertical line near the point (0, F) means that 09, = g,

near aN. Thus 'Y specifies a metric on X which is the orginal metric 09 outside of N and then

transitions smoothly to the metric 09,. For a more detailed description; see section II.3. In the

following lemmas we compute the scalar curvature of 09,.

1'1

1" 1

1'0

roo

Figure B.1. The curve 'Y

Lemma 11.14. The principal C7trvatures to M with respect to the outward unit normal vector field

have the form

k if j = 1

Aj = (-~ + 0(1')) sin e if 2 ~ j ~ q + 1

0(1) sin e if q + 2 ~ j ~ n.

Here k is the curvat'ure of,'! e is the angle between the outward normal vector'TJ and the horizontal

(or the o'utward normal to the curve 'Y and the t -axis) and the corresponding principal direct'ions

ej are tangent to the c'urve 'Y when j = 1, the fibre sphere 8 q 70hen 2 ~ j ~ q + 1 and 81' when

q + 2 ~ j ~ n.
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Figure B.2. The hypersurface 1111 in N x JR

Proof. Let w = (y, x, t) E SP X Dq+l X JR be a point on 1"\1. Let I be the geodesic ray emanating

from y x {a} in N through the point (y, x). The surface I x JR in N x R can be thought of as an

embedding of [0, f) x JR, given by the map (r, t) 1-+ (lr, t) where lr is the point on I of length r from

y x {a}. We will denote by 1'1, the curve 1'.1 n I x R This can be parametrised by composing the

parameterisation of I' with the above embedding. We will denote by il w ' the velocity vector of

this curve at w. Finally we denote by TJ, the outward pointing unit normal vector field to AI.

vVe now make a couple of observations.

(a) The surface I x JR is a totally geodesic surface in N x R This can be seen from the fact that

any geodesic in I x JR projects onto geodesics in I and R But D x JR is a Riemannian product

and so such a curve is therefore a geodesic in D x R

(b) The vector TJ is tangential to I x R This can be seen by decomposing TJ into orthogonal

components

71 = 71N + '(fIR·

Here TJN is tangent to Nand 7pIf. is tangent to R Now TJN is orthogonal to the geodesic sphere

Sq(r)y, centered at y x {a} with radius r = Ixl. By Gauss's Lemma, we know that I runs
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orthogonally through Sq(T)y and so rJN is tangent to l. Hence, rJ is tangent to l x R

We will now show that i'l is a principal curve in lvI. Let SM denote the shape operator for "~J in

N x JR and Sl/ , the shape operator for "II in l x R Both shape operators are defined with respect

to r7.

SM(')- _\7Nxffi."II - i/ rJ

= (-\7~xJII!.rJf + (_\7~XIR''7)l-

= - \71·xJII!.rJ + 0
II

The third equality is a direct consequence of the fact that l x JR is a totally geodesic surface in

N x R Now as T"II, the tangent bundle of the curve "II, is a one-dimensional bundle, ilw must be

an eigenvector of SM. Hence, "II is a principal curve. The corresponding principal curvature is of

course the curvature of "I, which we denote by k.

At w, we denote the principal direction il w byel' The other principal directions we denote

by e2, ... , en, where e2, ... , eq+l are tangent to the Sq(T) factor and eq+2, ... , en are tangent to

S11. Recall that the set {el,"" en} forms an orthonormal basis for TwIll. The corresponding

principal curvatures will be denoted )\1 = k, A2, ... ,An. Our uext task is to compute these principal

curvatures.

Let A denote the second fundamental form for IvI in N x JR with respect to the outward

normal vector rJ. Let AN denote the secoud fundamental form for S11 x sq(r-) in N, again with

respect to rJ, and A.f the corresponding principal curvatures. 'When 2 ~ j ~ n,

Aj = A(ej, ej)

= _g(\7NXlRn e·)
eJ 'n J

= _g(\7~XIF!.(coSeat +sinear),ej)

= -g(\7~xJII!.cos eat, ej) - g(\7~ xJIl!.sin ear, ej).

where at and a,. are the coordinate vector fields for the t and T coordinates respectively. Now,

= cos e.0 + 0 . at

= O.
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However,

V~xlRsin ear = sin eV~XLII.Or + OJ (sin e) . Or'

=sineVNxIRo +0'0ej r r

Hence,

Aj = - sin e.g(V~xlROr, ej)

=sine.AN(ej,ej)

=sine.Af.

We know from Lemma II.13 that when 2 ::; j ::; q + 1, Af = -~ + 0(1'). When q + 2 ::; j ::; n,

A.f = 0(1) as here the curvature is bounded. Hence, the principal curvatures to AI are

k if j = 1

Aj= (-~+O(r))sine if2::;j::;q+1

O(l)sine if q + 2 ::; j ::; n.

o

Lemma 11.15. The scalar' cu1'vatur'e of the metric induced on ~M is given by

sine
R M = R N + sin2e.0(1) - 2k . q-­

l'

sin2e+ 2q(q - 1)-2~ + k· qO(1') sin e.
r

Pmof. The Gauss Curvature Equation gives that

where K NxIR denotes sectional curvature on N x R Before we continue we should examine KNxP..

When 2 ::; i, j ::; n,



When 2 ::; j ::; n,

= RmNxlIJi.( - cos (Jar + sin (JOt, ej, e.j, - cos (Jar + sin (JOt)

= cos2 (J , RmN xlIJ!.(or, ej, ej, or) + sin2 (J , R:lnNX!R(at, ej, e.j, at)

= cos2 (J, RmNXWi'(ar , ej, ej, Or) + sin2 (J, 0

= COS
2 (J, RmN (Or, ej, ej, Or)

- ('OS2 (J , K N
- , orj'

Now,

1 RM '\' (}(NxlIJ!. \ \ )'2 = LJi<j ij + AiAj

'\' KNxlIJi. '\' KNxffii. '\' A A
= LJj9 1j + LJl=ji<j ij + LJi<j i j'

Vve know from earlier that

'\' KNxlIJi. _ (1 ,,2 (J) '\' K N
LJj~2 1j - - sm LJj~2 orj'

Hence,

'\' KNxlIJi. '\' KNxlIJ!. 1RN '2(J R' N(a a)
LJ.i~2 1j + LJ1=ji<j ij = '2 - sm ':IC '1', r .

Next we deal with ~i<j AiAj'

= k ' q( - ~ + O(r)) sin (J + kO(l) sin (J

+q(q - 1)(-~ + 0(r))2 sin2 (J

+q(-~ +0(r))0(1)sin2
(J

+0(1) sin2 (J,

161



Thus,

~RlvI = ~RN - sin2 a· RicN (Or', Or)

-q k s~n 0 + k . qO (r) sin e+ k . 0 (1) sin a
+q(q - 1)(/2 + 0(1)) sin2 a
-'f. sin2 a· 0(1) + q sin2 e· 0(1')

+ sin2 a.0(1)

= ~RN - sin2 a· [RicN (Or" Or) + q(q - 1)0(1) + 0(1) + qO(1')]

-k· qsi~fi + q(q - l)Si~~fi + k· qO(1') sina

+k . 0 (1) sin a- 'f. sin2 a.0 (1)

= ~RN + sin2 a.0 (1) - [k . q si~ fi - k . 0 (1) sin a]

+lq(q - l)Si~'~ fi - 'f. sin2 a· 0(1)]

+k . qO(r) sin e.

'When r is small, this reduces to

R lvI = R N + sin2 e. 0(1) - 2k . qsi~ fi

+2q(q - 1) si~~ fi + k· qO(1') sin e.
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