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Title: METRICS OF POSITIVE SCALAR CURVATURE AND GENERALISED
MORSE FUNCTIONS

Approved:
Dr. Boris Botvinnik

We study the topology of the space of metrics of positive scalar curvature
on a compact manifold. The main tool we use for constructing such metrics is the
surgery technique of Gromov and Lawson. We extend this technique to construct
families of positive scalar curvature cobordisms and concordances which are
parametrised by Morse functions and later, by generalised Morse functions. We
then use these results to study concordances of poéitive scalar curvature metrics on
simply connected manifolds of dimension at least five. In particular, we describe
a subspace of the space of positive scalar curvature concordances, parametrised
by generalised Morse functions. We call such concordances Gromov-Lawson
concordances. One of the main results is that positive scalar curvature metrics which
are Gromov-Lawson concordant are in fact isotopic. This work relies heavily on
contemporary Riemannian geometry as well as on differential topology, in particular
pseudo-isotopy theory. We make substantial use of the work of Eliashberg and
Mishachev on wrinkled maps and of results by Hatcher and Igusa on the space of |

generalised Morse functions.
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CHAPTER I

INTRODUCTION

I.1 Why Positive Scalar Curvature?

In the 2-dimensional setting, scalar curvature is a fairly intuitive concept. Round spheres
are positively curved, planes and cylinders have no curvature while a saddle surface displays cur-
vature which is negative. Geometrically then, positive scalar curvature can be thought to make a
surface close in on itself whereas negative scalar curvature causes it to spread out. The topolog-
ical consequences of this are evident from the classical theorem of Gauss-Bonnet. This theorem
relates the scalar curvature R, of a compact oriented Riemannian 2-manifold M, with its Euler

characteristic x(M) by the formula

1
- = +(M).
47T.MR x(M)

It follows that a closed surface with non-positive Euler characteristic, such as a torus, does not
admit a metric of strictly positive (or negative) scalar curvature. Similarly, a surface with positive
Euler characteristic such as a sphere cannot have scalar curvature which is everywhere non-positive.
From the Uniformisation Theorem we know that every closed surface admits a metric of constant
scalar curvature. This implies the following classification result: A closed surface admits a metric
of positive, zero or negative scalar curvature if and only if its Euler characteristic is respectively
positive, zero or negative.

In higher dimensions, the relationship between curvature and topology is much more com-
plicated. The scalar curvature is one of three curvatures which are commonly studied, the others

being the Ricci and sectional curvatures. These curvatures vary greatly in the amount of geometric



information they carry. The sectional curvature is the strongest and contains the most geometric
information. Conditions such as strict positivity or negativity of the sectional curvature impose
severe topological restrictions on the underlying manifold. The scalar curvature on the other hand,
is the weakest of these curvatures. One piece of geometric information it does carry, concerns the
volume growth of geodesic balls. In particular, the scalar curvature R at a point of a Riemannian

n-manifold X, appears as a constant in an expansion

Vol(Bx(e)) R

2_|_...7

Vol(Bga(e)) = 6n+2)"

comparing the volume of a geodesic ball in X with the corresponding ball in Euclidean space, see
[12]. Thus, positive scalar curvature implies that small geodesic balls have less volume than their
Euclidean counterparts while for negative scalar curvature this inequality is reversed.

We will be interested in metrics of positive scalar curvature and in the problem of whether
or not a given manifold admits such a metrie. At this point, the reader may well ask why we
focus on positivity. Why not consider metrics of negative, non-negative or zero scalar curvature?
As a partial justification, we point out that there are no obstructions to the existence of metrics
of negative scalar curvature in dimensions > 3, see [29]. Furthermore, any closed manifold which
admits a metric whose scalar curvature is non-negative and not identically zero, always admits
a metric of positive scalar curvature. This follows from the Trichotomy theorem of Kazdan and
Warner, see [25] and [26]. For a more thorough discussion of this matter, see section 2 of [36].

The existence problem for metrics of positive scalar curvature has been extensively stud-
ied. In the early 1960s, Lichnerowicz discovered that on a compact spin manifold, positive scalar
curvature of the metric implies that the analytic index of the Dirac operator must be zero, see
[28]. Tt then follows from the Atiyah-Singer Index Theorem that any compact spin manifold with
non-vanishing A-genus does not admit a metric of positive scalar curvature. In the 1970s, this fact
was generalised by Hitchin in [18], who showed that the index of the Dirac operator for a compact
spin manifold X, of dimension n, is represented by an element a(X) in the real K-theory group
KO,. As a geometric consequence, Hitchin exhibits exotic splieres (starting in dimension nine)
which do not admit metrics of positive scalar curvature.

The other side of this problem concerns the construction of positive scalar curvature met-

rics when no obstructions exist. The principle tool for doing this is known as the Surgery Theorem.



This theorem was proved in the late 1970s by Gromov and Lawson [14] and, independently, by
Schoen and Yau [38]. It provides an especially powerful device for building positive scalar curvature
metrics. Before discussing this any further, we should say a few words about surgery.

A p-surgery (or codimension ¢ + l-surgery) on a manifold X of dimension n is a process
which involves removing an embedded product SP x D7t and replacing it with DPt! x §9, where
p+q+1 = n, see section I1.3 for details. The result of this is a new n-dimensional manifold
X’ whose topology is usually very different from that of X. Importantly, surgery preserves the
cobordism type of the original manifold. This means that if X’ is obtained from X by surgery,
there exists an n + 1-dimensional manifold whose boundary is a disjoint union of X and X’. In
Fig. 1.1 we show a cobordism between a sphere $? and a torus 72. The torus is obtained from the

sphere by a 0-surgery.

Figure I.1: A cobordism of the sphere S? and the torus 72

Given a manifold X which admits a metric of positive scalar curvature, the Surgery Theo-
rem gives a method for constructing further metrics of positive scalar curvature on every manifold
which can be obtained from X by surgery in codimension > 3. Under some restrictions, this in-
cludes every manifold which is cobordant to X. The Surgery Theorem therefore led to a dramatic
increase in the number of examples of manifolds which were known to admit metrics of positive
scalar curvature, effectively moving the problem from one of individual manifolds to one of cobor-
dism classes. Since then, there has been a great deal of success in classifying which manifolds
admit positive scalar curvature metrics, see [36] for a survey of this problem. Of particular interest
to us is the case when X is a simply connected manifold of dimension > 5. Here, the question of

when X admits a positive scalar curvature metric is now completely answered, see [14], [36], [39].



In particular, when X is not a spin manifold, X always admits a such a metric and in the case
when X is spin, X admits a metric of positive scalar curvature if and only if the above mentioned
obstruction a(X) vanishes.

We conclude this section with some words about the analogous question for positive Ricei
and sectional curvatures. Although some important progress has been made, the problem of
constructing examples of metrics with positive Ricci and, in particular, positive sectional curvature
is a very difficult one. There is no real analogue of the Surgery Theorem here as these curvatures
do not exhibit the same flexibility as the scalar curvature. Positive Ricci and sectional curvatures

do not behave well under surgery, as the following example shows.

Example 1.1. The manifold RP™ admits a metric which is locally isometric to the round metric
on S™. When n > 2, it therefore has positive sectional, Ricei and scalar curvatures. By taking a
connected sum of two copies of RP™, we obtain a new manifold RP*#RP™. From the theorem
of Van Kampen we know that, unlike RP", this new manifold has infinite fundamental group.
Assuming n > 3, the Surgery Theorem allows us to conclude that this manifold also admits a
metric of positive scalar curvature. Indeed, we could take as many connected sums as we wished
and still be confident that the resulting manifold admits a metric of positive scalar curvature.
According to the theorem of Bonnet-Meyers however, positive sectional or Riccl curvature on
a complete connected Riemannian manifold forces the fundamental group to be finite, see [34,
Chapter 6, Theorem 25]. Hence, this manifold admits no metric of positive Ricci or sectional

curvature.

Away from the classification problem, there are many other interesting questions in the
area of positive scalar curvature where far less is known. In the next section we will discuss some

of these.

1.2 Background

Henceforth, all manifolds are assumed to be compact and connected. Furthermore, the
term positive scalar curvature will often be abbreviated as pse. Metrics of positive scalar curvature

will usually be referred to as psc-metrics and manifolds which admit such metrics as psc-manifolds.



1.2.1  The space of psc-metrics

Let X be a smooth closed manifold of dimension n. We denote by Riem(X), the space
of Riemannian metrics on X, with its standard C* topology. The set of all psc-metrics on X is
denoted Riem™(X) and is an open subset of Riem(X). In these terms, the above classification
problem can be thought of as the problem of determining for which X, the space Riem*(X) is
non-empty. In general very little is known about the topology of the space Riem™ (X). This leads

to the first problem we wish to consider.

Question 1.2. What is the topology of the space Riemt(X)? In particular, is this space path

connected and, if not, how many path components does it have?

Some results have been obtained about this space when X = S™. It is known that
Riem*(S?) is contractible (as is Riem™ (RP?)), see [36], and recent work by Botvinnik and Rosen-
berg indicates that this is also the case for S%. When n > 4, the only known results are at the level
of path connectedness. For example, Carr shows in [4] that Riem™*($*~!) has an infinite number
of path compouents when k£ > 2.

Suppose W is a smooth compact manifold and OW # (). The question of whether or not
the space Riem™* (W), of psc-metrics on W, is non-empty is not such an interesting question. It
turns out that, without some condition on the boundary, W will not only always admit a metric
of positive scalar curvature, but will in fact admit a metric of positive sectional curvature! This
is a result of Gromov, see Theorem 4.5.1 of [13]. Thus, we will impose some boundary conditions
on W. We denote by Riem™ (W, W), the subspace of Riem™ (W) consisting of psc-metrics which
have a product structure near OW. This means that if g € Riem™ (W,0W), g = glaw + dt* near

OW . Here glaw is the metric induced by the inclusion of W into W.

1.2.2  Isotopy and concordance

When studying the space Riem™ (X), one is immediately confronted with the notions of
isotopy and concordance. Metrics which lie in the same path component of Riem* (X) are said to
be isotopic. Two psc-metrics go and g, on X are said to be concordant if there is a psc-metric § on
the cylinder X x I (I = [0,1]), so that § = go + dt? near X x {0} and § = g, + d¢? near X x {1}.
It is well known that isotopic metrics are concordant, see Lemma 1.2 below. It is also known that

concordant metrics need not be isotopic when dim X = 4, where the difference between isotopy



and concordance is detected by the Seiberg-Witten invariant, see [37]. However, in the case when
dim X > 5, the question of whether or not concordance implies isotopy is an open problem and
one we will attempt to shed some light on.

Before discussing this further, it is worth mentioning that the only known miethod for
showing that two psc-metrics on X lie in distinct path components of Riem™ (X), is to show
that these metrics are not concordant. For example, Carr’s proof in [4], that Riem* (S%~1)
hag an infinite number of path components, involves using index obstruction methods to exhibit
a countably infinite collection of distinct concordance classes on S%*~1. This implies that the
space Riem™ (5%~1) has at least as many path components. See also Example 1.6 below for
the case when & = 2. In [3], the authors show that if X is a connected spin manifold with
dim X = 2k+1 > 5 and if m; (X) is non-trivial and finite, then Riem™ (X) has infinitely many path
components provided Riem™ (X) is non-empty. Again, this is done by exhibiting infinitely many
distinct concordance classes. For a general smooth manifold X, understanding mo(Riem™ (X)) is

contingent on answering the following open questions.
Question 1.3. Are there more concordance classes undetected by the index theory?
Question I.4. When are concordant metrics isotopic?

For more on the first of these problems, the reader is referred to [40] and [36]. We will
focus our attention on the second problem.

A fundamental difficulty when approaching question 1.4 is that an arbitrary concordance
may be extraordinarily complicated. For example, let gs, s € I denote an isotopy in the space
Riem™ (57). After an appropriate rescaling, sece Lemma 1.2, we may assume that the warped
product metric & = g; + dt?, on the cylinder S™ x I, has positive scalar curvature and a product
structure near the boundary, i.e. is a concordance of gg and g;. Now let g be any psc-metric on the
sphere S”*! (this metric may be very complicated indeed). It is possible to construct a psc-metric
g on 5™ x I by taking a connected sum

g = hitg,

see [14]. As this construction only alters the metric & on the interior of the cylinder, the resulting
metric, g, is still a concordance of gy and g;, see Fig. 1.2. Unlike the concordance h however,

g could be arbitrarily complicated. In some sense, this makes § “unrecognisable” as an isotopy.



Consequently, we will not approach this problem at the level of arbitrary concordance. Instead,
we will restrict our attention to concordances which are constructed by a particular application of
the surgery technique of Gromov and Lawson. Such concordances will be called Gromov-Lawson
concordances. Before discussing the relationship between surgery and concordance, it is worth

recalling how the surgery technique alters a psc-metric.

g1+ dt?

>

go + dt?

Figure 1.2: The concordance § on S™ x I, formed by taking a conncected sum of metrics & and g.
g g

L2.3 Surgery and positive scalar curvature

We begin by stating the Surgery Theorem of Gromov-Lawson and Schoen-Yau.

Surgery Theorem.([14], [38]) Suppose X admits a psc-metric and X' is a manifold which is

obtained from X by surgery in codimension > 3. Then X' admits a psc-metric also.

In their proof, Gromov and Lawson show that a psc-metric g on X can be replaced with a psc-
metric gqq which is standard in a tubular neighbourhood of the embedded surgery sphere. More
precisely, let ds? denote the standard round metric on the sphere S*. We denote by g2 (), the
metric on the disk D™ which, near D", is the Riemannian cylinder §2ds2_, + dr? and which near
the centre of D™ is the round metric §2ds2. The metric g (4) is known as a torpedo metric, see
section I1.2 for a detailed construction. For sufficiently small 6 > 0 and provided n > 3, the scalar
curvature of this metric can be bounded below by an arbitrarily large positive constant. Now, let
(X,9) be a smooth n-dimensional Riemannian manifold of positive scalar curvature and let S?

denote an embedded p-sphere in X with trivial normal bundle and with p +¢+ 1 =n and ¢ > 2.



The metric g can be replaced by a psc-metric g5 on X which, on a tubular neighbourhood of S?,
is the standard product ds?) + gf;;l (8) for some appropriately small 4. In turn, surgery may be
performed on this standard piece to obtain a psc-metric ¢’ on X’, which on the handle DP+! x §9
is the standard product git' + 6%ds2, see Fig. 1.3.

There is an important strengthenning of this technique whereby the metric ¢ is extended
over the trace of the surgery to obtain a psc-metric g which is a product metric near the boundary.
This is sometimes referred to as the Improved Surgery Theorem, see [10]. Suppose {W; Xo, X1} is
a smooth compact cobordism of closed n-manifolds Xg and X1, i.e. W = XgUX ,and f: W — [
is a Morse function. All Morse functions are assumed to satisfy f~1(0) = Xo, f~*(1) = X, and
have critical points only in the interior of W. The Morse function f gives rise to a decomposition
of W into elementary cobordisms. Let us assume that each elementary cobordism is the trace of
a codimension > 3 surgery. This means that each critical point of f has index < n — 2. Roughly

speaking, such Morse functions will be called “admissible”. It is now possible to extend a psc-

metric gg on Xy to a psc-metric g on W which is a product near the boundary dW, see Theorem

I1.23 below. In particular, the restriction g; = g|x, is a psc-metric on X;. Example 1.6 below
demonstrates that the metric g; may not be concordant (and therefore not isotopic) to gg, an

illustration of the power of the Surgery Theorem for generating new psc-metrics. This gives rise

to the following question.

A

Original metric g

0

Standard metric
g e) + 6%ds?

Transition metric

Figure I1.3: The psc-metric g’ obtained on X’ by the Gromov-Lawson construction

Question I.5. In the case when Xq is diffeomorphic to X1, when are the metrics go and g1 isotopic
or concordant?

Example 1.6. Let B = B® be a Bott manifold, i.c. an 8-dimensional closed simply connected

spin manifold with a(B) = 1, see [24] for a geometric construction of such a manifold. Here o



is the obstruction discussed in section I.1 and so the fact that a(B) # 0 means that B does not
admit a psc-metric. Let W = B\ (Do U D;) denote the simooth manifold obtained by removing a
disjoint pair of 8-dimensional disks Dy and D; from B. The boundary of W is a pair of disjoint
7-dimensional smooth spheres, which we denote S} and ST respectively. It is possible, although we
do not include the details here, to equip W with an admissible Morse function. This decomposes
W into a union of elementary cobordisms, each the trace of a codimension > 3 surgery. Thus, we
can extend the standard round metric go = ds2 from the boundary component Sg to a psc metric
g on W, which is a product metric near both boundary components. In particular, the metric g
restricts to a psc-metric g1 on S7. This metric however, is not concordant (and hence not isotopic)
to go. This is because the existence of a concordance h of g1 and gy = ds2, would give rise to a

psc-metric gp on B (see Fig. 1.4), defined by taking the union

(B,98) = (Do, ior) U (W,g) U (S x I, 2) U (D1, g3,

something we know to be impossible.

S P

[EL Y

[ I !

\' \ 1

\ ! )

Iy vy

" /1 \\ ;
(DOagtSo'r‘) 90+dt2 (57 X I) ]_7‘)

Figure 1.4: The existence of a concordance (S7 x I, %) between g and gg = ds? would imply the
existence of a psc-metric on B, which is impossible.

1.2.4 The structure of the thesis

This thesis is organised into two parts. Roughly speaking, Part One contains most of the
geometric arguments and technical results about positive scalar curvature, while Part Two deals
more with the topological applications of these geometric results. In particular, it is in Part Two
that we explore the role of generalised Morse functions in this subject. We will now present the

main results of Part One. Then, after some preliminary discussion, we will present the main results
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from Part Two.

1.3 Main Results of Part One

Part One begins with some important technical preliminaries, in particular, introducing a
collection of metrics on the disk D™ and the sphere S™ which will be used throughout the thesis;
see section I1.2. These metrics are variations of the so-called torpedo metric discussed earlier.
After proving some important results about spaces of such metrics, we proceed in 11.3 to a careful

analysis of the Surgery Theorem. From there we obtain the following results.

A Family Surgery Theorem,

The proof of the Surgery Theorem involves replacing a psc-metric g on a manifold X with
a psc-metric gspq on X which is standard near the embedded surgery sphere. After verifying that
the metrics g and ggq are in fact isotopic (Theorem I1.11), we show in Theorem I1.19 that this
technique can be applied continuously over a compact family of psc-metrics and with respect to a

compact family of embedded surgery spheres.

Theorem II.19. Let X be a smooth compact manifold of dimension n, and B and C a pair of
compact spaces. Let B = {g, € Riem™*(X) : b € B} be a continuous family of psc-metrics on X
and C = {i. € Emb(S?,X) : c € C}, a continuous family of embeddings each with trivial normal
bundle, where with p+q+1=mn and ¢ > 2. Finally, let g, be any metric on SP. Then, for some

& > 0, there is a continuous map

B x C — Riem™(X)

. b,
(96,7) — 9,1

satisfying

(i) Each metric ‘]ftfz has the form gy + g2 1(8) on a tubular neighbourhood of i.(SP) and is the

original metric gy away from this neighbourhood.

(ii) For each c € C, the restriction of this map to Bx {i.} is homotopy equivalent to the inclusion

B — Riem™(X).
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Applications of the Family Surgery Theorem

The above notion of generalising to compact families is necessary if one is to have any
chance of understanding spaces of psc-metrics. Proving Theorem II.19 requires considerable prepa-
ration in the form of the rather long and technical Theorem I1.11. Once established however, we
can prove the following theorems without too much difficulty. The first of these is actually the

main result in a paper by Chernysh; see [6].

Theorem I1.21. Let X be a smooth compact manifold of dimension n. Suppose X' is obtained
from X by surgery on a sphere SP — X withp+q+1=n andp,q > 2. Then the spaces Riem™(X)

and Riem™(X') are homotopy equivalent.

It is now possible to show that for simply connected spin manifolds of dimension > 5, the homotopy

type of the space of psc-metrics is a spin cobordism invariant.

Theorem 11.22. Let Xy and X, be a pair of compact simply-connected spin manifolds of dimension
n > 5. Suppose also that X is spin cobordant to X1. Then the spaces Riem™ (Xo) and Riem™(X)

are homotopy equivalent.

The Gromov-Lawson Cobordism Theorem

In Theorem I1.23, we generalise the so-called Improved Surgery Theorem, as well as correct

an error from the proof in [10]; see Remark I1.3.4 in IL.3.

Theorem I1.23. Let {W"+: Xo, X1} be a smooth compact cobordism. Suppose go is a metric of
positive scolar curvature on Xo and f : W — I is an admissible Morse function. Then there is a

psc-metric § = g(go, f) on W which extends go and has a product structure near the boundary.

We call the metric § = §(go, f), & Gromov-Lawson cobordism (GL-cobordism) with respect to go
and f. Essentially, the metric § restricts on a regular level set of f to the metric obtained by
repeated application of the surgery technique with respect to each of the critical points below that
level set. In the case when W is the cylinder X x I, the metric g is a concordance of the metrics

go and g1 = g|xx{1}- It will be referred to as a Gromov-Lawson concordance (GL-concordance)



12

with respect to go and f; see Fig. 1.5.

There are a number of obvious questions one may ask about the metric § = g(go, f). In

particular, the reader may wonder to what extent the metrics § and g1 = g|x, depend on the
choice of admissible Morse function. Different admissible Morse functions with different numbers
of critical points will give rise to very different looking metrics. It is not hard to believe that
isotopic admissible Morse functions (those connected by a path in the space of admissible Morse
functions) should give rise to isotopic metrics. This is proven in Theorem I1.25 below. The question
of whether this holds for admissible Morse functions which are not isotopic (and containing possibly

very different collections of critical points) is more difficult and one we will not address until Part

Two.

Figure [.5: Obtaining a Gromov-Lawson concordance on the cylinder X x I with respect to a
Morse function f and a psc-metric go

Reversing a Gromov-Lawson cobordism

Any admissible Morse function f can be replaced by a Morse function denoted 1— f, which
has the gradient flow of f, but running in reverse. (Admissible Morse functions will come equipped
with gradient-like vector fields.}) This function has the same critical points as f, however, each
critical point of index A has been replaced with one of index n+ 1 — A. The following theorem can

be obtained by “reversing” the construction from Theorem I1.23.
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Theorem I1.24. Let {W"*1; Xg, X1} be a smooth compact cobordism, go a psc-metric on Xy and
f W — I, an admissible Morse function. Suppose that 1— f is also an admissible Morse function.

Let g1 = g(go, f)|x, denote the restriction of the Gromou-Lawson cobordism g(go, f) to X;. Let

g
g(g1,1—f) be a Gromov-Lawson cobordism with respect to g1 and 1— f and let g§ = §{g1,1— )| x,
denote the restriction of this metric to Xo. Then go and gf are canonically isotopic metrics in

Riem*(Xp).

A family version of the Gromov Lawson Cobordism Theorem

As shown in Theorem I1.19 , the Gromov-Lawson construction can be applied continuously
over a compact family of metrics as well as a compact family of embedded surgery spheres. In
Theorem I1.25, we show that the Gromov-Lawson cobordism construction of Theorem I1.23 can
also be applied continuously, over a contractible compact family of admissible Morse functions to

obtain the following theorem.

Theorem I1.25. Let {W;Xo, X1} be a smooth compact cobordism, B, a compact continuous
Sfamily of psc-metrics on Xo and C, a compact continuous contractible family of admissible Morse

functions on W. Then there is a continuous map

B x C — Riem™t (W, W)

(gbvf(l) — Gb,e = 9{gs, fc)

so that for each pair (b, c), the metric gy, is a Gromouv-Lawson cobordism.

Gromov-Lawson concordance implies isotopy

We now come to the main result of Part One. In section IL.5 we construct an example
of a GL-concordance on the cylinder S™ x I. Here go = ds2, the standard round metric and f is
an admissible Morse function with two critical points which have Morse indices p + 1 and p + 2
where p+ ¢+ 1 =n and ¢ > 3. The critical point of index p + 1 corresponds to a p-surgery on S™
resulting in a manifold diffeomorphic to SP*! x $9. This is then followed by a (p-+ 1)-surgery which

restores the original manifold S™. The restriction of the metric g(ds2, f) to level sets of f below,
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between and above these critical points is denoted by go, ¢f and g1 respectively; see Fig. 1.6. The
metric g; is also a psc-metric on S7, but as Fig. 1.6 suggests, looks radically different from the
original metric go. Understanding why these metrics are in fact isotopic is crucial in proving our

main result, stated below.

p+2
gtor

+1
o+ 0%ds;

g0 90

Figure 1.6: Applying the Gromov-Lawson construction over a pair of cancelling surgeries of
consecutive dimension

Theorem I1.36. Let X be a closed simply connected manifold of dimension n > 5 and let g be
a positive scalar curvature metric on X. Suppose § = G(go, f) is a Gromov-Lawson concordance

with respect to gy and an admissible Morse function f + X x I — I. Then the metrics go and

g1 = Jlxx {1y are isotopic.

The proof of Theorem I1.36 takes place in I1.6 and II.7. In I1.6 we prove the theorem in the case
when f has exactly two “cancelling” critical points. This is the key geometric step and draws
heavily from somie important technical observations made in II.2. The general case then follows
from Morse-Smale theory and the fact that the function f can be deformed to one whose critical
points are arranged in cancelling pairs. Along with Theorem I1.24, this result provides a partial

answer to question L.5.

I.4 An Introduction to Part Two

As mentioned earlier, one motivation behind this work is to gain information about certain
spaces of psc-metrics. In Part One, we develop a technique for building particular psc-metrics

on a compact cobordism {W; X, X1}. We call these metrics Gromov-Lawson cobordisms ( GL-
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cobordisms). In Part Two, we will attempt to better understand the space of GL-cobordisms, a
subspace of Riem* (W, 0W). In a weak sense, Theorems I1.23 and I1.25 allow us to parametrise
families of Gromov-Lawson cobordisms by admissible Morse functions. As it stands however,
Theorem I1.25 only works for compact contractible families of admissible Morse functions. This
misses some very important structure. To see this we need to say some words about the space of
Morse functions.

The space of admissible Morse functions on W is denoted M3 (W) and can be thought of
as a subspace of the space of Morse functions W — I, denoted M(W). A good deal is understood
about the topology of the space M(W), in particular; see [23]. It is clear that this space is
not path connected, as functions in the same path component must have the same number of
critical points of the same index. Thus, Theorem II1.25 allows us to parametrise families of GL-
cobordisms arising from a single path component of AM%¥™(W). This gives a rather misleading
picture, as it is possible for appropriate pairs of Morse critical points to cancel, giving rise to a
simpler handle decomposition of W. In Theorem I1.36, we describe a corresponding “geometric
cancellation” which simplifies a psc-metric associated to this Morse function. In order to obtain
a more complete picture of the space of GL-cobordisms, we need to incorporate this cancellation

property into our description.

Generalised Morse functions
There is a natural setting in which to consider the cancellation of Morse critical points.

Recall that near a critical point w, a Morse function f € M(W) is locally equivalent to the map
: 2
(1,0 Tng1) > — T — To T+ Th

A critical point w of a smooth function f: W — [ is said to be of birth-death type if near w, f is

equivalent to the map

3 2 2 2 .2
(Toy e+ oy Tn) Fo Tg =TT+ — Ty + Tppo + o+ 2y,

A generalised Morse function f : W — I is a smooth function satisfying f~1(0) = Xo, f~1(1) = X3

and whose singular set is contained in the interior of W and consists of only Morse and birth-
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death critical points. There is a natural embedding of M(W) into the space of generalised Morse
functions H(W). This allows us to connect up distinct path components of M (W) since birth-
death singularities allow for the cancellation of Morse critical points of consecutive index. Before

going any further it is worth considering a couple of examples of this sort of cancellation.

Example 1.7. The function F(z,t) = 2% + tz can be thought of as a smooth family of functions
z — F(z,t) parametrised by ¢. When ¢ < 0, the map z — F(z,t) is a Morse function with 2
critical points which cancel as a degenerate singularity of the function z — F(z,0). The function

xz +—— F(z,0) is an example of a generalised Morse function with a birth-death singularity at z = 0.

Example L.8. In Fig. 1.7 we sketch using selected level sets, a path fi,t € [—1,1], in the space
H(S™ x I) which connects a Morse function f_; with two critical points of consecutive Morse index
to a Morse function fi which has no critical points. We will assuine that the critical points of f_,
lie on the level sets f_1 = i and f_1 = % and that fo has only a birth-death singularity on the

level set fo = 4.

Wrinkled maps

Our goal in Part Two will be to “extend” the notion of GL-cobordism to work for gen-
eralised Morse functions and so be able to parametrise families of GL-cobordisms over admissible
Morse functions with varying numbers of critical points. A convenient setting in which to do this
is described by Eliashberg and Mishachev in their work on “wrinklings” of smooth maps; see [8]
and [9]. Let E and ) be smooth compact manifolds of dimension n + 1 + k and k respectively.
In section ITL.5, we specify a particular smooth fibre bundle 7 : E — @, the fibre of which is the
smooth cobordism W. Let f : E — @ x I be a smooth map so that p; o f = m, where p; is
projection on the first factor. Roughly speaking, the map f is wrinkled if the singular set of f in
E consists of a disjoint union of folds and wrinkles. We will not define the terms fold or wrinkle
here except to say that under these conditions f restricts on fibres to a generalised Morse function
W — I of the type discussed earlier. Thus, a wrinkled map can be thought of as a family of
generalised Morse functions. Note also that this family may be “twisted” in the event that 7 is a

non-trivial bundle; see [11] for an example of this.



17

t=1

Figure 1.7: Two Morse critical poiuts cancelling at a birth-death singularity, from the point of
view of selected level sets
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1.5 Main Results of Part Two

With appropriate admissibility conditions on critical points of f, we can prove the following

theorem. This is the main technical theorem in Part two.

Theorem III.6. Let f be an admissible wrinkled map with respect to the submersion ©: E — Q).
Let go : Q — Riem™(Xy) be a smooth map parameterising a compact family of psc-metrics on
Xo. Then there is a metric G on the total space E which, for each y € Q, restricts on the fibre
7= y) to a regularised Gromov-Lawson cobordism §'(go(y), flr-1¢y)). In the case when the bundle

w: E — Q is trivial, there exists a smooth map
Q — Riem™ (W, 0W)
y+— g (y),

where each §'(y) is a regularised Gromov-Lawson cobordism.

As one might expect, the original construction of a Gromov-Lawson cobordism needs to be altered
somewhat near cancelling critical points in order to prove such a theorem. This is the reason for the
term regularised Gromov-Lawson cobordism, a slightly modified verion of the original construction.

We will not go into details here except to say that if § = g(go, f) is a GL-cobordism on W and

g = §'(go, f) is its regularised analogue, then g|x, = §'|x,-

This last fact about regularised GL-cobordisms allows us to address a problem we discussed
earlier. In what sense does the does the metric g; = g|x, depend on the choice of admissible Morse
function f? Under the right conditions, it turns out that the isotopy type of ¢ is invariant of this
choice.

Theorem II1.9. Let {W; Xg, X1} be a smooth compact cobordism where W, Xy and X1 are simply
connected and W has dimension n+1> 6. Let fo, fi € M@ (W) be a pair of admissible Morse
functions. Suppose gy and g1 are psc-metrics lying in the same path component of Riem™(Xy). If

Jo = §(go, Jo) and g1 = §{g1. f1) are Gromov-Lawson cobordisms, then the psc-metrics gy1 = Jo|x,

and g1,1 = 1|x, are isotopic metrics in Riem™ (X1).

The proof of Theorem II1.9 uses a number of deep results, in particular the 2-Index Theorem of

Hatcher; see Theorem 1.1, Chapter VI, section 1 of [23]. The 2-Index theorem is necessary to show
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that fo and f1 can be connected up by a path in the space of generalised Morse functions, each of

which satisfies the admissibility condition on the indices of its critical points.
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CHAPTER II

PART ONE: GROMOV-LAWSON CONCORDANCE IMPLIES ISOTOPY

II.1 Foreword to Part One

In Part One we deal with the construction of Gromov-Lawson cobordisms { GL-cobordisms)
as well as prove that, in the case of closed simply connected manifolds of dimension > 5, metrics
which are Gromov-Lawson concordant are in fact isotopic. We will organise this as follows. In II1.2,
we introduce the notions of isotopy and concordance in the space of psc-metrics. We then construct
a variety of different psc-metrics on the standard sphere and disk. Among them are metrics we
will call, torpedo, double torpedo and mixed torpedo metrics. These metrics have some very nice
properties with regard to the notion of isotopy and will play an important role throughout our
work.

The construction of a GL-cobordism requires careful anaysis of the original surgery tech-
nique. This is done in II.3. In it, we prove some slightly stronger results, in particular Theorem
I1.11 and also the so-called Improved Surgery Theorem, Theorem I1.10. In proving Theorem I1.10,
we fix the mistake contained in the original proof of this Theorem by Gajer in [10]; see Remark
11.3.4. We also show, in Theorem I1.19, that the surgery technique goes through for compact famn-
ilies of psc-netrics as well as compact families of embedded surgery spheres. As a consequence, we
obtain some important results about how the homotopy type of the space of psc-metrics is affected
by surgery on the underlying manifold; see Theorems I1.21 and II.22.

In I1.4, we finally prove the Gromov-Lawson cobordism Theorem, Theorem I11.23, as well
as a stronger theorem for compact families, Theorem I1.25. This stronger theorem allows us to
construct GL-cobordisms which are parametrised continuously by contractible families of admis-
sible Morse functions. As discussed in the introduction, our goal in Part Two is to considerably

strengthen this Theorem, to allow for admissible Morse functions with varying critical sets.
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The main result in Part One is a partial answer to the question of whether or not concor-
dant psc-metrics are isotopic. A Gromov-Lawson cobordism on the cylinder is a type of concordance
which we call a Gromov-Lawson concordance (GL-concordance). Our main result, Theorem II.36,
is that, in the case of closed simply connected manifolds of dimension > 5, GL-concordant metrics
are isotopic. The proof of this fact is long and technical and involves explicitly constructing an
isotopy. In IL.5, we introduce the notion of a GL-concordance and provide a simple but non-trivial
example. This example illustrates a special case of GL-concordance where the underlying Morse
function has just a pair of cancelling critical points. In I1.6, we prove that GL-concordance always
implies isotopy in this case; see Theorem 11.34. Then, in I1.7, we use Morse-Smale theory to show
that, under the right hypotheses, the more general case reduces down to finitely applications of

the special case, to prove the main result.

I1.2 Definitions and Preliminary Results

I1.2.1 Isotopy and concordance in the space of metrics of positive scalar curvature

Throughout this paper, X will denote a smooth closed compact manifold of dimension
n. Later we will also require that X be simply connected and that n > 5. We will denote by
Riem{X), the space of all Riemannian metrics on X. The topology on this space is induced by
the standard C*-norm on Riemannian metrics and defined |g|x = max;<k supy |Vig|. Here V is
the Levi-Civita connection for some fixed reference metric and |Vig| is the Euclidean tensor norm
on Vig; see page 54 of [34] for a definition. Note that the topology on Riem(X) does not depend
on the choice of reference metric. For our purposes it is sufficient (and convenient) to assume that
k=2

Contained inside Riem(X), as an open subspace, is the space

Riem™ (X) = {g € Riem(X) : R, > 0}.

Here Ry : X — R denotes the scalar curvature of the metric g, although context permitting we will
sometimes denote the scalar curvature of a metric as simply R. The space Riem™ (X) is the space
of metrics on X whose scalar curvature function is strictly positive, i.e. the space of psc-metrics

on X. As mentioned in the introduction, the problem of whether or not X admits any psc-metrics
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has been extensively studied and so unless otherwise stated, we will assume we are working with
X so that Riem™(X) # 0.

It is a straightforward exercise in linear algebra to show that Riem(X) is a convex space,
i.e. for any pair go, g1 € Riem(X), the path sgo + (1 — s)g1, where s € I, lies entirely in Riem(X).
The topology of Riem*(X) on the other hand is far less understood, even at the level of 0-
connectedness. Before discussing this any further it is necessary to define the following equivalence

relations on Riem™ (X).

Definition II.1. The metrics ¢y and g, are said to be isotopic if they lie in the same path
component of Riem™(X). A path gs,s € I in Riem*(X) connecting go and g; is known as an

180topy.

Definition II.2. If there is a metric of positive scalar curvature § on the cylinder X x I so that

for some § > 0, glxxp0,5) = 9o + ds? and J|xx[1-s1 = g1 + ds?, then go and g1 are said to be

concordant. The metric g is known as a concordance.

The following lemma is well known and proofs of various versions of it are found in [14],

[10] and [36]. Given its importance to our work, we provide a detailed proof in appendix II1.6.3.

Lemma II.1. Let g.,r € I be a smooth path in Riem™t(X). Then there exists a constant0 < A <1
s0 that for every smooth function f: R — [0,1] with |f|, |f\ < A, the metric gresy + ds® on X xR

has positive scalar curvature.
Proof. See appendix II1.6.3. O
Corollary I1.2. Meirics which are isotopic are also concordant.

Proof. Let go and g1 be two psc-metrics, connected by the path g, in Riem™(X), where r € I.
Any continuous path in Riem*(X) may be approximated by a smooth one and so we will assume

that g, is a smooth isotopy. Let f be a smooth increasing function which is of the form

1 ifs>ke
f(s) =

0 ifsgkl

where ky < k2. The function f can be chosen with | f| and |)‘| bounded by sorme arbitrarily small

constant provided ko — k; is large enough. Now choose A;, Ay so that A; < ky < ks < Ag. By the
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lemma above, the metric 9fs) + ds? on X x [A1, A2] has positive scalar curvature. This metric

can easily be pulled back to obtain the desired concordance on X x I. 0

Whether or not the converse of this corollary holds, i.e. concordant metrics are isotopic,
is a much more complicated question and one we discussed in the introduction. In particular,
when dim X > 5, the problem of whether or not concordance implies isotopy is completely open.
Recall that a general concordance may be arbitrarily complicated. We will approach this problem
restricting our attention to a particular type of concordance, which we construct using the surgery
technique of Gromov and Lawson, and which we will call a Gromov-Lawson concordance. An
important part of the surgery technique concerns modification of a psc-metric on or near an
embedded sphere. For the remainder of this section we will consider a variety of psc-metrics both

on the sphere and the disk. These metrics will play an important technical role in later sections.

11.2.2 Warped product metrics on the sphere

We denote by S™, the standard n-dimensional sphere and assume that n > 3. We will study
metrics on S™ which take the form of warped and doubly warped product metrics; see description
below. All of the metrics we consider will have non-negative sectional and Ricci curvatures, positive
scalar curvature and will be isotopic to the standard round metric on S™. The latter fact will be
important in the proof of the main theorem, Theorem II.36.

The standard round metric of radius 1, can be induced on S™ via the usual emmbedding
into R**!. We denote this metric ds2. There are of course many different choices of coordinates

with which to realise this metric. For example, the embedding

(0,7) x S"™' —H R x R"

(t,8) — (cost,sin (t) - 6)

gives rise to the metric dt? + sin®(t)ds2_; on (0,7) x S*~!. This extends uniquely to the round

metric of radius 1 on S™. Similarly, the round metric of radius € has the form dt? 4 €2 51112( f)ds,ﬁ_l
on (0,em) x 8", More generally, by replacing sint with a suitable smooth function f : (0,) —
(0,00), we can construct other metrics on S™. The following proposition specifies necessary and

sufficent conditions on f which guarantee smoothness of the metric dt? + f(t)%ds?_, on S™.
n—1
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Proposition II.3. (Chapter 1, section 3.4, [34]) Let f : (0,b) — (0, 00) be a smooth function with
f(0) =0 = f(b). Then the metric g = dt? + f(t)%ds%_, is a smooth metric on the sphere S™ if
and only if ™ (0) = 0, £(0) =1, f**™)(b) =0 and f(b) = —1.

Given the uniqueness of the extension, we will regard metrics of the form dt? + f()%ds2 _,
on (0,b) x §*~! as simply metrics on §7, provided f satisfies the conditions above. For a general
smooth function f : (0,b) — (0,00), a metric of the form dt? + f(¢)%2ds2_; on (0,6) x S"~1 is
known as a warped product metric. From page 69 of [34], we obtain the following formulae for the

Ricei and scalar curvatures of such a metrie. Let d;,e1,...,e,—1 be an orthonormal frame where

Oy is tangent to the interval (0, b) while each e; is tangent to the sphere §™~1. Then

Ric(d;) = —(n — 1)%,
Ric(e;) = (n~2)1 ;fg ~§ ,wheni=1,...,n—1.
Thus, the scalar curvature is
R=-2(n- 1)% +(n—1)n-— 2)l;—2f2 (I1.2.1)

Let F(0,b) denote the space of all smooth functions f : (0,b) — (0, 00) which satisfy the

following conditions.

f(0) = f(b) =0,
F(0) = fo) = -1,
fleven) () = 0, fleven) by =, (11.2.2)
f<o, Fo)y<o,  Fo)>o0,
f(t) <0, when t is near but not at 0 and b.

Typical elements of F(0,b) are represented in Fig. II.1. For each function f in F(0,b),
there is an associated smooth metric g = dt? + f(t)?ds2_, on S™. We will denote the space of
all such metrics by W(0, b). Note that F(0,b) is assumed to have the standard C* function space

topology with &k > 2; see Chapter 2 of [17] for details.
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Proposition I1.4. The space W(0,b) = {dt? + f(t)%ds2_, : f € F(0,b)} is a path connected

subspace of Riem™(S™).

Proof. The first three conditions of (I1.2.2) guarantee smoothness of such metrics on S™, by Propo-
sition I1.3. We will now consider the scalar curvature when 0 < ¢ < b. Recall that f(t) < 0 and
that near the endpoints this inequality is strict. This means that when 0 < ¢ < b, |f()| < 1 and
so while the first term in (I1.2.1) is at worst non-negative, the second term is strictly positive. At

the end points, several applications of 'Hospital’s rule give that

lim; o+ :fL f( )s hmt—»0+ fz = —f( ) >
limy,_,p- —fi ), limy_p- 2= = f(b) >

Thus, W(0,b) C Riem™(S™). Path connectedness now follows from the convexity of F(0,b) which

in turn follows from an elementary calculation. O

N

0 b 0 b

Figure IL.1: Typical elements of F(0,b)

It is convenient to allow b to vary. Thus, we will define 7 = ¢ (g 00y F(0,b) and W =
UbE(O,oo) W(0,b). Each metric in W is defined on (0,b) x $"~! for some b > 0. In particular, the

round metric of radius e, e2ds?, is an element of W(0, e).
Proposition I1.5. The space W 1is a path connected subspace of Riem™*(S™).

Proof. Let g be an element of W. Then g = dt? + f(t)?ds%2_, on (0,b) x S~ for some f €
F(0,b) and some b > 0. As F(0,b) is convex, there is a path connecting g to the metric dt? +
(£)?sin®(Z)ds2_ ), the round metric of radius (£)? in W(0,b). As all round metrics on S" are

isotopic by an obvious rescaling, ¢ can be isotopied to any metric in the space. O



26

11.2.8  Torpedo metrics on the disk

A é-torpedo metric on a disk D™, denoted g7, (6), is an O(n) symmetric positive scalar
curvature metric which is a product with the standard n — 1-sphere of radius § near the boundary
of D™ and is the standard metric on the n-sphere of radius § near the centre of the disk. It is not
hard to see how such metrics can be constructed. Let f5 be a smooth function on (0, 0c) which

satisfies the following conditions.
(i) f5(t) = ésin(%) when ¢ is near 0.
(ii) f5(t) =6 whent > 6%.

(iii) fs(t) <0.

From now on fs will be known as a §-torpedo function.

Let r be the standard radial distance function on R"™. It follows from Proposition I1.3 that
the metric dr? + f5(r)2ds2_, on (0, 00) x S~ ! extends smoothly as a metric on R™. The resulting
metric is a torpedo metric of radius § on R™. By restricting to (0,6) x S™7! for some b > §% we
obtain a torpedo metric on a disk D™; see Fig. II.2. From formula (I[.2.1), it is clear that this
metric has positive scalar curvature and moreover, the scalar curvature can be bounded below by

an arbitrarily large constant by choosing § sufficiently small.

-~

0 b

Figure I1.2: A torpedo function and the resulting torpedo metric

We will refer to the cylindrical part of this metric as the tube, and the remaining piece as
the cap of g3.(8). Notice that we can always isotopy ¢3%,.(8) to make the tube arbitrarily long.
Strictly speaking then, g2,.(d) denotes a collection of isotopic metrics, each with isometric cap of

radins 4. It is convenient however, to think of g7 () as a fixed metric, the tube length of which

may be adjusted if necessary.
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The torpedo metric on a disk D™ can be used to construct a collection of psc-metrics on
S™ which will be of use to us later on. The first of these is the double torpedo metric on S™.
By considering the torpedo metric as a metric on a hemisphere, we can obtain a metric on S™ by

taking its double. More precisely let f5(t) be the smooth function on (0,b) which satisfies
(i) fs(t) = f5(t) on [0, 3]
(ii) fs(t) = fs(b—1t) on [3,0],

b
where § > 7.
As f € F(0,b), the metric dt? + fs(t)2ds2_; on (0,b) x S?~! gives rise to a smooth psc-
metric on S™. Such a metric will be called a double torpedo metric of radius § and denoted g3,,,.(6);

see Fig. I1.3. Then Proposition I1.5 implies that g7, .(8) is isotopic to ds2.

[ A

0 b

Figure I1.3: A double torpedo function and the resulting double torpedo metric

I1.2.4  Doubly warped products and mized torpedo melrics
Henceforth p and ¢ will denote a pair of non-negative integers satisfying p + ¢ + 1 = n.

The standard sphere S™ decomposes as a union of sphere-disk products as shown below.

§n = @Dl
— §(DPHL x DIy,
= (87 x DI1) Ugny ga (DPFT x 59).

We can utilise this decomposition to construct a new metric on S™. Equip SP x D¢+ with
the product metric €2ds2 + g{t'(5). Then equip DP*' x S with gif! (¢) + 6%ds2. These metrics

glue together smoothly along the common boundary S? x S? to form a smooth metric on S™.
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Such metrics will be known as mized torpedo metrics on S™ and denoted g¢hy;,,; see Fig. IL4. For

the remainder of this section we will show how to realise these metrics in a more computationally

useful form.

Figure I1.4: S™ decomposed as (SP x D9T1) Ugnxge (DPTL x S9) and equipped with a mixed
torpedo metric ghy]

Recall that a metric of the form dt?+ f(¢)2ds2_; on (0,b) x S™~1 where £ : (0,b) — (0, o00)
is a smooth function, is known as a warped product metric. We have observed that the standard
round sphere metric: ds2, can be represented as the warped product metric d¢? + sin?(t)ds2_, on
(0,7) x S"~1. The notion of a warped product metric on (0,b) x S™~! generalises to something
called a doubly warped product metric on (0,b) x SP x §¢. Here the metric takes the form dt? 4

u(t)?*ds? + v(t)*ds?, where u,v : (0,b) — (0,00) are smooth functions.

From page 72 of [34], we obtain the following curvature formulae. Let 0y, e1,...,¢p, €}, ..., ¢
be an orthonormal frame where eq, . .., ep are tangent to S? and €/, . .. ,e; are tangent to S?. Then
Ric(6,) = —(p)— — (g)—,
ic(0;) (p)u (Q)v
1—a2 @ 40
Ric(e;) = (p— 1 = —g— i=1,...,
icled) =(p— N3 =~ —a - i »
1—02 @ U
Ricle!) = (g —1 —Z—p— ,i=1,...,q
iele) = (a— 1) —5—— - —p_- 1 q
Thus, the scalar curvature is
n i 1 — 42 1— o2 U
R=-2p~ —2g—+pp—1 +q(g—1 — 2pg—. I.2.3
pe =20, +pp— 1) —— +tala—1)—3 pg— (I1.2.3)

We observe that the round metric ds2 can be represented by a doubly warped product. Recalling
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that p 4+ ¢ + 1 = n, consider the map

(0,2) x SP x §9 > RPH! x Re+
2 (IL.2.4)

(t,8,0) —— (cos (t) - ¢, sin (t) - 6)
Here SP and S¢ denote the standard unit spheres in RPt! and Rt respectively. The metric
induced by this embedding is given by the formula

dt® + cos?(t)ds? + sin®(t)ds?

q?

a doubly warped product representing the round metric on S™. More generally the round metric
: t : 201 .
of radius € takes the form dt? 4 €2 cos?(%)ds2 + e? sin®(£)ds2 on (0,€5) x SP x 9.
As before, by imposing appropriate conditions on the functions u,v : (0,b) — (0, oc), the
metric dt® + u(t)2ds + v(t)*ds? gives rise to a smooth metric on S™. By combining propositions 1

and 2 on page 13 of [34], we obtain the following proposition which makes these conditions clear.

Proposition I1.6. (Page 13, [34]) Let u,v : (0,b) — (0, 00) be smooth functions with w(b) = 0 and
v(0) = 0. Then the metric dt® + u(t)*ds? + v(t)?ds2 on (0,b) x SP x S is a smooth metric on S

if and only if the following conditions hold.

uw(0) >0, wlddO)y=0, ab)=-1,  ulr(d) =0. (I1.2.5)

v(b) > 0, plodd) () = 0, 0(0) =1, vleven) (0) = 0. (11.2.6)

Let 14/(0,b) denote the space of all functions u : (0,b) — (0, co) which satisfy (11.2.5) above
and the condition that % < 0 with 4(t) < 0 when ¢ is near but not at b and % (b) > 0.

Similarly V(0,b) will denote the space of all functions v : (0,b) — (0, 00) which satisfy
(I1.2.6) and for which ¢ < 0 with #(¢) < 0 when ¢ is near but not at 0 and ¥'(0) < 0.
5

Each pair u, v from the space U(0, b) x V(0, b) gives rise to a metric dt*+u(t)2ds2 +v(t)*ds?

on S™. We denote the space of such metrics
WP(0,b) = {dt? + u(t)2ds? + v(t)2ds? : (u,v) € U(0,b) x V(0,b)}.

We now obtain the following lemima.
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Lemma II.7. Letn > 3 and let p and g be any pair of non-negative integers satisfying p+q+1 = n.

Then the space VAVP"I(O, b) is @ path eonnected subspace of Riem™(S™).

Proof. Let g = dt? + u(t)ds? + v(t)?ds? be an element of WP?(0,b). Smoothness of this metric
on S™ follows from Proposition 11.6. We will first show that g has positive scalar curvature when
0 <t < b. Recall that u and v are both concave downward, that is @,7 < 0. This means that
the first two terms in (I1.2.3) are at worst non-negative. Downward concavity and the fact that
4(0) = 0 and u(b) = —1 imply that —1 < & < 0. A similar argument gives that 0 < ¢ < 1. This
means that the fifth term in (I1.2.3) is also non-negative and at least one of the third and fourth
terms in (I1.2.3) is strictly positive (the other may be 0 for dimensional reasons). When ¢ = 0 and
t = b, some elementary limit computations using I’'Hospital’s rule show that the scalar curvature
is positive. Thus, W(0,b)»¢ C Riem™ ($%). Finally, path connectivity follows immediately from

the convexity of the space U(0,b) x V(0,b). |

As before, it is convenient to allow b to vary. Thus, we define i x ¥V = Ube(O.oo) U(0,b) x

V(0,b) and WPa = Ube(o,oo) Wp’q(O, b). Finally we let W = Up+q+1:n WP where 0 < p,q < n+1.
Proposition IL.8. Let n > 3. The space W is a path connected subspace of Riem™ (S™).

Proof. The proof that W4 is path connected is almost identical to that of Proposition IL.5. The
rest follows from the fact that each WP¢ contains the round metric ds? = dt? + cos? tds? +

sin? tdsg. O

At the beginning of this section we demonstrated that S™ could be decomposed into a
union of SP x D91 and DPt! x $¢. This can be seen explicitly by appropriate restriction of
the embedding in (I1.2.4). Thus, provided ¢ is near 0, the metric dt* + u(t)2ds2 + v(t)?ds2, with
u,v € U(0,b) x V(0,b), is a metric on SP x D9T1. When ¢ is near b we obtain a metric on DP+! x S,
We can now construct a mixed torpedo metric on S™, as follows. Let f. and fs be the torpedo

functions on (0,b) defined in section I1.2.3 with b > max{en, dn}. Then the metric
Iifror = dt* + fo(b—t)2ds2 + f5(t)*ds2 (IL.2.7)

is a mixed torpedo metric on S"; see Fig. IL.5.
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............................

Figure IL.5: The mixed torpedo metrics gh? ~and ghf 4™

Lemma I1.9, Let n > 3. For any non-negative tntegers p and q with p +q + 1 = n, the metric

Pa e ; 2
Grror 18 180topic to ds;.

Proof. An elementary calculation shows that the functions fe(b —t) and fs(t) lie in ¢/(0,b) and
V(0,b) respectively. Thus, g/} € Wr4(0,b). As the standard round metric lies in W?4(0,b), the

proof follows from Proposition IL.8. 0O

11.2.5 Inducing a mized torpedo metric with an embedding

We close this section with a rather technical observation which will be of use later on. It
is of course possible to realise mixed torpedo metrics on the sphere as the induced metrics of some
embedding. Let R = RPT! x R?T! where of course p+ g+ 1 =n. Let (p,$) and (r,0) denote
standard spherical coordinates on RPT! and R9*! where p and r are the respective Euclidean
distance functions and ¢ € SP and 8 € S9. Then equip R*™* = RPT! x R+ with the metric
h = hP9 defined

WP = dp® + f(p)?ds? + dr? + fs(r)2ds2, (I1.2.8)

shown in Fig. I1.6, where f., fs : (0,00) — (0,00) are the torpedo functions defined in section
11.2.3.

We will now parametrise an embedded sphere S™ in (R?*!, h), the induced metric on which
will be precisely the mixed torpedo metric described earlier. Let ¢; and ¢y be constants satisfying
c1 > €% and ¢y > 0%. Let a = (a, a2) denote a smooth unit speed curve in the first quadrant of
R? which begins at (c1, 0) follows a vertical trajectory, bends by an angle of % towards the vertical

axis and continues as a horizontal line to end at (0,c2). We will assume that the bending takes
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Ra+!

Figure I1.6: The plane R"*! equipped with the metric A

place above the horizontal line through (0,67%); see Fig. I1.7. We also assume that a; € U(0,b)
and ag € V(0,b) for sufficiently large b > 0.
We will now specify an embedding of the n-sphere into (R™*!, h) which induces the mixed

torpedo metric g8y described above. Let J be the embedding defined as follows
Mtor =3

J:(0,b) x 8P x 89 — RPT x RI+L,

(ta 97 d)) — ((al (t)’ ¢)* (a2(t)v 9)):

see Fig. 11.8.

Provided that e and § are chosen sufficiently small, this embedding induces the mixed

torpedo metric g4;3  on S™. Indeed, we have

J*h = J(dp? + fe(p)?ds? + dr? + fs(r)?ds2)
= dt? + felon (t))QdSZ + fs{az (t))2d83
= dt? + fe(b—1)%ds2 + f5(t)2ds?

— P4
= 9ntor-

The second equality follows from the fact that o is a unit speed curve and the third equality from

the fact that fc(s) and fs(s) are both constant when s > max{eZ,d%}.
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Figure IL.7: The curve

Figure I1.8: The map J gives a parameterisation for 5"
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II.3 Revisiting the Surgery Theorem

Over the the next two sections we will provide a proof of Theorem II.23. The proof
involves the construction of a psc-metric on a compact cobordism {W"™1; X4, X} which extends
a psc-metric go from X and is a product near 8W. A specific case of this is Theorem I1.10 (stated
below) which we prove in this section. It can be thought of as a building block for the more general
case of the proof of Theorem I1.23 which will be completed in II.4. Before stating Theorem I1.10,

it is worth briefly reviewing some basic notions about surgery and cobordism.

I1.3.1  Surgery and cobordism

A surgery on a smooth manifold X of dimension n, is the construction of a new n-
dimensional manfiold X’ by removing an embedded sphere of dimension p from X and replacing
it with a sphere of dimension ¢ where p + g + 1 = n. More precisely, suppose 7 : S? — X is an
embedding. Suppose also that the normal bundle of this embedded sphere is trivial. Then we can
extend ¢ to an embedding 7 : S x D! «— X. The map ¢ is known as a framed embedding of SP.
By removing an open neighbourhood of SP, we obtain a manifold X \ #(S? quH ) with boundary
SP x 5%, Here ﬁq“ denotes the interior of the disk D971, As the handle DP*! x §¢ has the same
boundary, we can use the map 7|gsxse, to glue the manifolds X \ 7(SP x Bq+l) and DPHl x g7

along their common boundary and obtain the manifold
X' = (X \#S? x D)) Us (DP*! x 59).

The manifold X’ can be taken as being smooth (although some minor smoothing of corners is
necessary where the attachment took place). Topologically, X’ is quite different from the manifold
X. Tt is well known that the topology of X’ depends on the embedding 7 and the choice of framing
1; see [35] for details. In the case when ¢ embeds a sphere of dimension p we will describe a surgery
on this sphere as either a p-surgery or a surgery of codirmenison q + 1.

The trace of a p-surgery is a smooth n + 1-dimensional manifold W with boundary OW =
XUX'; see Fig. 11.9. It is formed by attaching a solid handle DP+! x D91 onto the cylinder X x I,
identifying the S? x D%t part of the boundary of DPT! x D9*! with the embedded SP x DIt!

in X x {1} via the framed embedding 7. The trace of a surgery is an example of a cobordism.
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In general, a cobordism between n-dimensional manifolds Xy and X; is an n + 1-dimensional
manifold W7+t = {Wn+1: X, X1} with boundary W = XLl X;. Cobordisms which arise as the
trace of a surgery are known as elementary cobordisms. By taking appropriate unions of elementary
cobordisms it is clear that more general cobordisms can be constructed. An important consequence
of Morse theory is that the eonverse is also true, that is any compact cobordism {VV'”‘“; Xo, X1}

may be decomposed as a finite union of elementary cobordisms.

Figure I1.9: The trace of a p-surgery on X

I1.8.2  Surgery and positive scalar curvature

The Surgery Theorem of Gromov-Lawson and Schoen-Yau can now be stated as follows.

Surgery Theorem. ([14], [38]) Let (X, ¢) be a Riemannian manifold of positive scalar curvature.
Let X' be a manifold which has been obtained from X by a surgery of codimension at least 3.

Then X' admits a metric g’ which also has positive scalar curvature.

' Remark I1.3.1. We will concentrate on the technigque used by Gromov and Lawson, however, the
proof of the Surgery Theorem by Schoen and Yau in [38] is rather different and involves conformal
methods. There is in fact another approach to the problem of classifying manifolds of positive
scalar curvature which involves conformal geometry, see for example the work of Akutagawa and

Botvinnik in [1].
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Figure II.10: The metric g’, obtained by the Surgery Theorem

In their proof, Gromov and Lawson provide a technique for constructing the metric ¢'; see

Fig. I1.10. Their technique can be strengthened to yield the following theorem.

Theorem I1.10. Let (X, g) be a Riemannian manifold of positive scalar curvature. If W is the
trace of a surgery on X in codimension at least 3, then we can extend the metric g to a metric §

on W which has positive scalar curvature and is a product near the boundary.

In fact, the restriction of the metric g to X', the boundary component of W which is the
result of the surgery, is the metric ¢’ of the Surgery Theorem. Theorem I1.10 is sometimes referred
to as the Improved Surgery Theorem and was originally proved by Gajer in [10]. We have two
reasons for providing a proof of Theorem I1.10. Firstly, there is an error in Gajer’s original proof.
Secondly, this construction will be used as a “building block” for generating concordances. In turn,
it will allow us to describe a space of concordances; see section 1.4 for a discussion of this.

The proof of Theorem II.10 will dominate much of the rest of this section. We will first
prove a theorem which strengthens the Surgery Theorem in a slightly different way; see Fig. 11.11.

This is Theorem I1.11 below, which will play a vital role throughout our work.

Theorem II.11. Let (X, g) be an n-dimensional Riemannian manifold of positive scalar curvature
and let g, be any metric on the sphere SP. Suppose i : S — X is an embedding of SP, with trivial
normal bundle. Suppose also that p+q+ 1 =mn and that ¢ > 2. Then, for some § > 0 there is an
isotopy of g, to a psc-metric gga on X, which has the form gp+ g?;;l (6) on a tubular neighbourhood

of the embedded SP and is the original metric g away from this neighbourhood.
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0] D

g

Original metric g

0 )

Transition metric Standard metric

e2ds? + g (6)

Figure I1.11: The “surgery-ready” metric obtained by Theorem II1.11

Corollary 11.12. There is a metric § on X x I satisfying
(1) § has positive scalar curvature.
(i) § restricts to g on X x {0}, gsta on X x {1} and is product near the boundary.

g is therefore a concordance of g and gstd.
Proof. This follows immediately from Lemma I1.2. J

Remark I1.3.2. The proof of Theorem II.11 is not made any simpler by choosing a particular
metric for gp. Indeed, the embedded sphere SP can be replaced by any closed codimension> 3
submanifold with trivial normal bundle, and the result still holds with an essentially identical proof.
That said, we are really only interested in the case of an embedded sphere and moreover, the case

when gy is the round metric e2ds2.

The proof of Theorem II.11 is long and technical. Contained in it is the proof of the
original Surgery Theorem of Gromov and Lawson; see [14]. Their construction directly implies
that the metric g can be replaced by the psc-metric gs:q described in the statement of Theorem
I1.11, where in this case g, = eQdSZZ,. Thus, Gromov and Lawson prepare the metric for surgery by
making it standard near the surgery sphere. By performing the surgery entirely on the standard
region, it is then possible to attach a handle DP*! x 87 with a correponding standard metric,
ghrH(€) + 62ds? onto X \ 9(S? x D" ), as in Fig. 11.10. Rather than attaching a handle metric,

Theorem I1.11 states that the “surgery-ready” metric gs;q on X; see Fig. 11.11, is actually isotopie
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to the original metric g. Thus, the concordance § on X x I, which is described in Corollary II.12,
can be built. The proof of Theorem II.10 then proceeds by attaching a solid handle DP*+! x Dat!
to X x I, with an appropriate standard metric. After smoothing, this will result in a metric of
positive scalar curvature on the trace of the surgery on SP. The only remaining task in the proof
of Theorem I1.10 is to show that this metric can be adjusted to also carry a product structure near

the boundary.

I1.3.8  Outline of the proof of Theorem II.11

Although the result is known, Theorem II.11 is based on a number of technical lemmas
from a variety of sources, in particular [14], [36]. For the most part, it is a reworking of Gromov
and Lawson’s proof of the Surgery Theorem. To aid the reader we relegate many of the more

technical proofs to the appendix. We begin with a brief summary.

Part 1: Using the exponential map we can specify a tubular neighbourhood N =2 87 x DYt of the
embedded sphere SP. Henceforth, all of our work will take place in this neighbourhood. We
construct a hypersurface M in N x R where N x R is equipped with the metric g + dt°.
Letting r denote the radial distance from SP x {0} in N, this hypersurface is obtained by
pushing out bundles of geodesic spheres of radius r in N along the t-axis with respect to some
smooth curve v of the type depicted in Fig. I1.12. In Lemmas II.14 and II.15, we compute

the scalar curvature of the metric g, which is induced on the hypersurface M.

Part 2: We recall the fact that v can be chosen so that the metric g, has positive scalar curvature.
This fact was originally proved in [14] although later, in [36], an error in the original proof was
corrected. We will employ the method used by Rosenberg and Stolz in [36] to construct such
a curve y. We will then demonstrate that v can be homotopied through appropriate curves
back to the vertical axis, inducing an isotopy from the psc-metric g, back to the orginal
psc-metric g. We will also comment on the error in the proof of the “Improved Surgery

Theorem”, Theorem 4 in [10]; see Remark I11.3.4.

Part 3: We will now make a further deformation to the metric g, induced on M. Here we restrict
our attention to the part of M arising from the torpedo part of y. Lemma II.13 implies that
M can be chosen so that the metric induced on the fibre disks can be made arbitrarily close

to the standard torpedo metric of radius ¢. It is therefore possible to isotopy the metric g,
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through psc-metrics, to one which, near S?, is a Riemannian submersion with base metric
gls» and fibre metric git"(5). Using the formulae of O'Neill (Chapter 9 of [2]), we will

show that the positivity of the curvature on the disk factor allows us to isotopy through

. . . . . 1
psc-submersion metrics near SP to obtain the desired metric gog = g, + g.tqj; (8).

Proof. Let X™ be a manifold of dimension n > 3 and g a metric of positive scalar curvature on X.

I1.8.4 Part 1 of the proof: Curvature formulae for the first deformation.

Let 7 : S? — X be an embedding with trivial normal bundle, denoted by N, and with
g > 2 where p+ ¢+ 1 = n. By choosing an orthonormal frame for A/ over ¢(S?), we specify a
bundle isomorphism 7 : P x R?*! — A/, Points in SP x R%*! will be denoted (y, z). Let 7 denote
the standard Euclidean distance function in R?"! and let DI} (7) = {z € RI™! : r(z) < 7} denote
the standard Euclidean disk of radius # in R?H!. Provided # is sufficiently small, the composition
exp og| spx Da+1(7), Where exp denotes the exponential map with respect to the metric g, is an
embedding. We will denote by N = N(7), the image of this embedding and the coordinates (y, x)
will be used to denote points on N. Note that curves of the form {y} x I, where [ is a ray in D4(7)
emanating from 0, are geodesics in V.

Before proceeding any further we state a lemma concerning the metric induced on a
geodesic sphere of a Riemannian manifold. Fix z € X and let D be a normal coordinate ball
of radius 7 around z. Recall, this means first choosing an orthonormal basis {e1,...,e,} for T, X.
This determines an isomorphism E : (x1,...,2,) — zye1 + - + Tpey, from R™ to T, X. The com-
position E~!oexp~! is a coordinate map provided we restrict it to an appropriate neighbourhood
of z. Thus, we identify D = {& € R™ : |z| < 7}. The quantity r(z) = |z| is the radial distance
from the point z, and S"71(e) = {z € R" : |z| = ¢} will denote the geodesic sphere of radius ¢

around z.
Lemma I1.13. (Lemma 1, [14])

(a) The principal curvatures of the hypersurfaces S™~1(¢) in D are each of the form. _Tl + O(e)

for € small.

(b) Furthermore, let g be the induced metric on S~ 1(¢) and let go . be the standard Euclidean

metric of curvature c% Then as € — 0, E‘%ge — c_%go,6 = go,1 n the C?-topology.
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Remark 11.3.3. We use the following notation. A function f(r) is O(r) esr — 0 if L(TT—) —

constant as r — 0.
Proof. See appendix I11.6.3. Ol

This lemma was originally proved in [14]. In the appendix, we provide a complete proof,
which includes details suppressed in the original; see Theorem 77. In order to deform the inetric
on N we will construct a hypersurface in N x R. Let r denote the radial distance from S? x {0} on
N and t the coordinate on R. Let v be a C? curve in the t — r plane which satisfies the following

conditions; see Fig. 11.12.

1. For some t > 0, +y lies entirely inside the rectangle [0, 7] x [0, ], beginning at the point (0, F)
and ending at the point (,0). There are points (0,71), (t],71), (to,70) and (fec,Tec) on the
interior of v with 0 < 7roe <7p < B < 7] <rp <Tand 0 <) <ty < oo <t We will

assume that ¢ — t, is much larger than 7.

2. When r € [ro,7], v is the graph of a function fo with domain on the r-axis satislying:
Jo(r) = 0 when r € [r1,7], fo(r) =t} —tanfo(r — 1) for some 0y € (0, ) when r € [ro,r}]

and with fo < 0 and fo > 0.

3. Whenr € [0, 7], v is the graph of a function fy, defined over the interval [tu, ] of the t-axis.
The function fo, is given by the formula fo(t) = fr. (! —t) where fr_ is an ro,-torpedo

function of the type described at the beginning of section 11.2.3.

4. Inside the rectangle [to,teo] X [Foo,70], ¥ is the graph of a C? function f with f(tg) = ro,

Ftoo) = Too, f < 0and f > 0.
The curve v specifies a hypersurface in N x R in the following way. Equip N x R with the
product metric g + dt?. Define M = M, to be the hypersurface, shown in Fig. I1.13 and defined

M, = {(4,2,1) € S” x DT\ (7) x R : (r(2),1) € 7).

We will denote by g, the metric induced on the hypersurface M. The fact that v is a vertical line
near the point (0,7) means that g, = g, near ON. Thus, v specifies a metric on X which is the

orginal metric ¢ outside of N and then transitions smoothly to the metric g,. Later we will show
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Figure I1.12: The curve -y

that such a curve can be constructed so that g, has positive scalar curvature. In the meantime,
we will derive an expression for the scalar curvature of g,, by computing principal curvatures for
M with respect to the outward unit normal vector field and then utilising the Gauss curvature
equation; see Lemmas I1.14 and II.15. Details of these computations can be found in appendix

I11.6.3.

Lemma I1.14. The principal curvatures to M with respect to the outward unit normal vector field

have the form

k ifj=1
Aj = (—++0(r)sind if2<j<q+1 (I.3.1)
O(1)siné ifg+2<j<n.

Here k is the curvature of v, 8 is the angle between the outward normal vector 1 and the horizontal
(or the outward normal to the curve -y and the t-axis) and the corresponding principal directions
e; are tangent to the curve v when § = 1, the fibre sphere 87 when 2 < j < q+1 and S” when

g+2<7i<n.

Proof. See appendix I11.6.3. O
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NxR

Figure I1.13: The hypersurface M in N x R, the sphere S? is represented schematically as a pair
of points
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Lemma I11.15. The scalar curvature of the metric induced on M is given by

RM = BY 4sin?0. O(1) — 2k - 520
i ’ (11.3.2)
sin” 6 )
+2¢(g —1) e k- qO(r)sind.
Proof. See appendix I111.6.3. .

I1.3.5 Part 2 of the proof: A continuous bending argument

In this section we will prove the following lemma.

Lemma I1.16. The curve v can be chosen so that the induced metric g, on the hypersurface

M = M, has positive scolar curvature and is isotopic to the original metric g.

Before proving this lemma, it is worth simplifying some of our formulae. From formula

(I1.3.2) we see that to keep R™ > 0 we must choose v so that
k [2¢822 1 qO(r)sin§] < RN +sin® 0 - O(1) + 2q(q — 1)8250.
This inequality can be simplified to

k[E22 1 O(r)sin 6] < Ro +sin?6 - O(1) + (¢ — 1)152

72

where

Ry = Qiq[ian(RN)]

and infy(R") is the infimum of the function RY on the neighbourhood N. Simplifying further,
we obtain
E[1 +O(r)r] < Rogly +rsinf - O(1) + (¢ — 1)22L,

sin 8

Replace O(r) with C’r for some constant C’ > 0 and replace O(1) with —C where C > 0, assuming

the worst case scenario that O(1) is negative. Now we have

E[l+ C'r? < Ry Ly + (g — 1) — Crsin 6. (I1.3.3)
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The proof of Lemma 11.16 is quite complicated and so it is worth giving an overview. We
denote by 7, the curve which in the ¢ —r-plane runs vertically down the r-axis, beginning at (0, 7)
and finishing at (0,0). Now consider the curve ¥%, shown in Fig. 11.14. This curve begins as 7°,
before smoothly bending upwards over some small angle 8y € (0, 5) to proceed as a straight line
segment before finally bending downwards to intersect the t-axis vertically. The corresponding
hypersurface in NV x R, constructed exactly as before, will be denoted by M.;s, and the induced
metric by g,e,. The strict positivity of the scalar curvature of g means that provided we choose 6o
to be sufficiently small, the scalar curvature of the metric g o, will be strictly positive. It will then
be a relatively straightforward exercise to construct a homotopy of 4% back to ¥° which induces
an isotopy of the metrics g6, and g.

To obtain the curve v, we must perform one final upward bending on v%. This will take
place on the straight line piece below the first upward bend. This time we will bend the curve right
around by an angle of § — 6y to proceed as a horizontal line segment, before bending downwards to
intersect the t-axis vertically; see Fig. 11.12. We must ensure throughout that inequality (11.3.3) is
satisfied. In this regard, we point out that the downward bending, provided we maintain downward
concavity, causes us no difficulty as here k < 0. The difficulty lies in performing an upward bending,
where this inequality is reversed.

Having constructed -, our final task will be to demonstrate that it is possible to homotopy
v back to 4% in such a way as to induce an isotopy between the metrics gy and g.s,. This,

combined with the previously constructed isotopy of g, and g, will complete the proof.

Proof. The initial bending: For some 6y > 0, v% will denote the curve depicted in Fig. 11.14,
parametrised by the arc length parameter s. Beginning at (0,7), the curve y% runs downward
along the vertical axis to the point (0,7), for some fixed 0 < r; < 7. It then bends upwards by
an angle of 6y, proceeding as a straight line segment with slope my = ﬁ, before finally bending
downwards and with downward concavity to intersect the t-axis vertically. The curvature of % at
the point % (s) is denoted by k(s) and 6 = 6(s) will denote the angle made by the normal vector
to 7% and the t-axis, at the point % (s).

The bending itself will be obtained by choosing a very small bump function for k, with

support on an interval of length %-; see Fig. I1.15. This will ensure that the entire upward bending

takes place over some interval [r], 7] which is contained entirely in [%,7;]. The downward bending
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Figure II.14: The curve v% resulting from the initial bend

will then begin at r = r, for some o € (0, ).
We will first show that the parameters 6y € (0,%) and 71 € (0,7) can be chosen so

that inequality (11.3.3) holds for all 8 € [0,6y] and all » € (0,71]. Begin by choosing some 8y €

(0, arcsin 4/ Ig") This guarantees that the right hand side of (11.3.3) remains positive for all § €
[0,65]. For now, the variable @ is assumed to lie in [0,6o]. Provided € is close to zero, the term

Ry is positively large and dominates. When 6 = 0 the right hand side of (I1.3.3) is positively

s
infinite. Once @ becomes greater than zero, the term (g — 1)# can be made positively large by
choosing » small, and so can be made to dominate. Recall here that ¢ > 2 by the assumption that
the original surgery sphere had codimension at least three. It is therefore possible to choose 71 > 0
so that inequality (I1.3.3) holds for all 8 € [0,6y] and for all » € (0,r;]. Note also that without
the assumption that the scalar curvature of the original metric g is strictly positive, this argument
fails.

We will now bend v° to y%, smoothly increasing 6 from 0 to 8. We do this by specifying

a bump function k which describes the curvature along v%; see Fig. I1.15. This gives

Af = [kds = iry - kmao-



kmaz """"""""""""

g
2

Figure II.15: The bump function &

This approximation can be made as close to equality as we wish. If necessary re-choose 8y so that
Oy < %7‘1 - kmaz. Note that r; has been chosen to make inequality (I1.3.3) hold for all 8 € [0, 6]
and so rechoosing a smaller #y does not affect the choice of 7;. We need to show that Ajee > 0

can be found so that

sin @

kmam[l + CITIQ] < RO L + (q - 1)% - CT]_Sin 9,

for all § € [0, 6p]. From the earlier argument, 71 and 8y have been chosen so that the right-hand
side of this inequality is positive for all 8 € [0, fy]. So some such kpq, > 0 exists. This completes
the initial upward bending.

The curve v% then proceeds as a straight line before bending downwards, with downward
concavity, to vertically intersect the ¢-axis. This downward concavity ensures that & < 0 and so

inequality (I1.3.3) is easily satisfied, completing the construction of v%.

The initial isotopy:

Next we will show that v% can be homotopied back to 4° in such a way as to induce an
isotopy between the metrics g,e, and g. Treating v% as the graph of a smooth function f; over
the interval [0, 7], we can compute the curvature k, this time in terms of r, as

fo

k= ———0u8n—,
(1+f02)%
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% back to °. To ensure

By replacing fo with Afo where A € [0,1], we obtain a homotopy from
that the induced metric has positive scalar curvature at each stage in this homotopy, it is enough
to show that on the interval [, r)], k* <k forall X € [0, 1], where k* is the curvature of Afy. Note
that away from this interval, downward concavity means that &* < 0 for all A and so inequality

(I1.3.3) is easily satisfied.

We wish to show that for all A € [0,1],

Mok
(1220~ 1+ A3

A slight rearrangement of this inequality gives

Jo b
(VDA F2f N~ (1+fo)E

and hence, it is enough to show that

1+>\2f02
.2
1+ fo

oo

> A for all A € [0,1].

Replacing M with w and f02 with b we obtain the following inequality.
w3 —pb—p+1>0. (11.3.4)

The left hand side of this inequality is zero when p = 1 or when p = =bEv/b2+db V2(l;2+4b. A siniple
computation then shows that, provided 8y has been chosen sufficiently small, the left hand side of

(I1.3.4) is non-zero when u (and thus A) is in [0, 1], and so the inequality holds.

The final bending:

We will now construct the curve  so that the induced metric g, has positive scalar
curvature. From the description of v given in Part 1, we see that it is useful to regard «y as consisting
of three pieces. When 7 > 7, v is just the curve ¥% constructed above and when r € (0,74, v is
the graph of the concave downward function foo. In both of these cases, inequality (11.3.3) is easily
satisfied. The third piece is where the difficulty lies. In the rectangle [to, o] X [Foo, 0], We must

specify a curve which connects the previous two pieces to form a C? curve, and satisfies inequality
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(I1.3.3). This will be done by constructing an appropriate C? function f : [to, teo] — [Too,70]-
Before discussing the construetion of f we observe that inequality (I1.3.3) can be simplified even
further.

Choose 7o € (0, ) so that 0 <7 < min{\/—/l;zc1 \/2;—6,} Now, when 7 € (0,70] and 8 > 6y,

we have
sin 0 . y 1
(¢ —1)== —Crsind > sinf[7= — Cr]

> M1~ Cr?).
T

Then 7 < —L_ 92 « 1 2 -1 24 3
V\henfr<\/@,7 < g5+ S0 Cr* < 7 and 1 - Cr? > 5. Thus,

(g — 1)% —Crsinf > %Si;’g.

Also 7 < {/587. Sor? < 2]C" giving that 2C’r? < 1. Thus, 14+ C'r? < 2. Hence from inequality

(I1.3.3) we get
sinff  sin@

23
< 20800 _ sinb
<3177 o7

So, if we begin the second bend when r € [0, o], it suffices to maintain

sin 6
2

k< (I1.3.5)

It should be pointed out that inequality (II.3.5) only holds when 6 > 6 > 0 and

does not hold for only 6 > 0, no matter how small 7 is chosen. The following argument

demonstrates this. Assuming 8 is close to zero and using the fact that k(s) = %g, we can assuine
(IL.3.5) is

dé - 6

ds ~2r
But this is

dlog (8 1
g(f) _ 1
ds 2r

the left hand side of which is unbounded as 6 approaches 0. It is for this reason that the initial

bend and hence, the strict positivity of the scalar curvature of g, is so important.

Remark 11.3.4. From the above one can see that the inequality on page 190 of [10] breaks down

when 8 is near 0. In this case the bending argument aims at maintaining non-negative mean
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curvature. Since apriori the mean curvature is not strictly positive, an analogous initial bend to

move 0 away from 0 is not possible.

We will now restrict our attention entirely to the rectangle [to,fs] X [roo,70]. Here we

regard -y as the graph of a function f. Thus, we obtain

sinf = #
1+ 72
and )
he I
i+ /%

Hence, (I1.3.5) gives rise to the following differential inequality

f 1 1
— < = .
(1+f2)2 /1+f22f
This simplifies to
. 14 f2
. 11.3.6
f< 2F (IL.3.6)

Of course to ensure that v is a C? curve we must insist that as well as satisfying (I1.3.6), f must

also satisfy conditions (I1.3.7), (I1.3.8) and (I1.3.9) below.

f(to) = ro, fteo) > 0, (I1.3.7)
Flto) =mo,  flteo) =0, (I1.3.8)
Flto) =0,  flteo) =0, (11.3.9)

where mg = . The fact that such a function can be constructed is the subject of the following

=1
tan g
lemma. Having constructed such a function, r.. will then be set equal to f(ts) and the construction

of v will be complete.

Lemma II.17. For some to > to, there is a C? function f : [to,tec] — [0,70] which satisfies

inequality (I1.5.6) as well as conditions (11.3.7), (I1.3.8) and (11.8.9).
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Proof. The following formula describes a family of functions, all of which satisfy inequality (I1.3.6).

ft) =c+ St — )2 where C1,Cz >0 and c € (0, &-).

Such a function f has first and second derivatives

f= %(t~(]2) and f =<

We will shortly see that C, and Cy can be chosen so that on the interval [to, Cs], f(to) = 7o,
f(to) = mag, f(Cz) =0 and f(Cy) = ¢ > 0. The choice of C) needs to be very large which makes f
a large positive constant. Thus, some adjustinent is required near the end points if such a function
is to satisfy the requirements of the lemma. We will achieve this by restricting the function to
some proper subinterval [t),tL.] C [to, C2] and pasting in appropriate transition functions on the
intervals [to, ] and [t,,te] (Where to is close to Co).

More precisely, let t, —to = do, toc —t, = doo and Cy — 1, = %&. We will now show that
for appropriate choices of Cy, Cs, §p and §.,, the following function satisfies the conditions of the
lemma. To aid the reader, we include the graph of the second derivative of this function; see Fig.

11.16.
70 + mo(t - to) + S—go(t - to)a, ifte [t(),té]

Ft) = e+ Gt - C2)?, iftefth il (I1.3.10)
0= D60 — 1St too)®, i€ [thy teo).

A simple check shows that f(to) = ro, f (to) = mo and f (to) = 0. Now we must show that C can

be chosen so that this function is C? at ¢. We begin by solving, for ¢}, the equation
CLth — C2)? =10+ mo(th — to) + 1oLty — to)®
c+ (o 2)° =10+ mo(ty '0)+1250(0 t0)°.

This results in the following formula for t{,

th = Co — \/C%(v‘o + moadg + %58 —¢).

Equating the first derivatives of the first two components of (I111.4.3) at t and replacing ¢}, with
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Figure I1.16: The second derivative of f
the expression above, results in the following equation.
2
C’1(7’0 - C) — mg = —%507110 — %63 (11.3.1])

The second derivatives of the first two components of (I111.4.3) agree at ¢} and so provided
Cy and &g are chosen to satisfy (I1.3.11), f is C? at ty. It remains to show that dg can be chosen
so that f satisfies inequality (IL.3.6) on [to,t(]. The parameter C; varies continuously with respect
to dg. Denoting by C), the solution to the equation C(rg — ¢) —m2 = 0, it follows from equation
(I1.3.11), that for small &y, C; is given by a formula C;(6) = C; + €(dp) for some continuous
parameter ¢ with €(0) = 0 and €(dy) > 0 when dg > 0. When &y = 0, we obtain the strict
inequality
Ci < 1+—m‘2’

To

Thus, there exists some sufficiently small dg, so that for all s € [0,1],

_ 1 (mo+ C15ps)?
70

Cy = C_l + 6((50)

3

while at the same time,

—1rg < Mgdps + %(5883 <0.
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Hence,
1+ (n Qé 2
o < LT lmot OS) (I1.3.12)
rg + medps + —1-(5

holds for all s € [0,1]. Replacing s with %Q in (11.3.12) yields inequality (I1.3.6) for ¢t € [¢o, ¢
and so f satisfles (I1.3.6) at least on [to,tL].

Given rg, the only choice we have made so far in the construction of f, is the choice of
dp. This choice determines uniquely the choices of C; and C3. Strictly speaking we need to choose
some ¢ in (0, C%) but we can always regard this as given by the choice of Cy, by setting ¢ = Tll say.
There is one final choice to be made and that is the choice of d. Some elementary calculations
show that f is C2 at t/ . The choice of §o is completely independent of any of the choices we
have made so far and so can be made arbitrarily small. Thus, an almost identical argument to the
one made when choosing dy shows that for a sufficiently small choice of d,,, inequality (I1.3.6) is
satisfied when ¢ € [tL,,to0]. Also, the independence of §o and C) means that f(tw) = ¢ — $362,
can be kept strictly positive by ensuring §., is sufficiently small. The remaining conditions of the

lemma are then trivial to verify. O

The final isotopy:

The final task in the proof of Lemma I1.186, is the construction of a homotopy between
and v% which induces an isotopy between the metrics ¢, and G400 - We will begin by making a very
slight adjustment to . Recall that the function f has as its second derivative: a bump function
with support on the interval [to, too]; see Fig. 11.16. By altering this bump function on the region
[th,, too], we make adjustments to f. In particular, we will replace f with the C? function which
agrees with f on [to,t/ ] but whose second derivative is the bump function shown in Fig. II.17,

o], where tll, € [Ca,to]. We will denote this new function f°°.

with support on [tg, ¢

When t7, = to, no change has been made and f*° = f. When tJ < t, the derivative
of f°° on the interval [t/ ,t.] is a negative constant, causing the formerly horizontal straight line
piece of v to tilt downwards with negative slope. Thus, by continuously decreasing ¢ from t.,
by some sufficiently small amount, we can homotopy v to a curve of the type shown in Fig. I1.18,
where the second straight line piece now has small negative slope, before bending downwards to
intersect the t-axis vertically at ¢. Note that the rectangle [to, teo] X [Foc, 0] is now replaced by

the rectangle [to, 0] x [rl, 0], where f*(tL.) = rll. It is easy to see how, on [t ], v can be
g o oC o0 o0 y
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tO t6 téo tgotoo
Figure I1.17: The second derivative of the function f°°

homotopied through curves each of which is the graph of a C? function with non-positive second
derivative, thus satisfying inequality (I11.3.6). We do need to verify however, that on [t ,¢7 ], this
inequality is valid. Recall, this means showing that

14 o

fo < 7=

When tL, = te, f® = f and so this inequality is already strict on the interval [¢_, 7 ].
Now suppose # is slightly less than to. Then, on [t._, 7], foo < §, while the 2-jets of f and >
agree at t/,. This means that f < f and f* < f on [t.,,t"]. But f < 0 on this interval and
50 ( f'°<>)2 > 2. Also, provided tl is sufficiently close to too, we can keep f°° > 0 and sufficiently
large on this interval so that the curve 7y can continue as the graph of a decreasing non-negative
concave downward function all the way to the point . Thus, the inequality in (I1.3.6) actually
grows as t/, decreases.

It remains to show that this slightly altered v can be homotopied back to ¥% in such a
way as to induce an isotopy of metrics. To ease the burden of notation we will refer to the function
% as simply f and the rectangle [to,t0,] X [r, 0] as simply [to, o] X [Foo,To]. It is important
to remember that f differs from the function constructed in Lemma I1.17 in that mg < f<0on
(to,too]. We wish to continuously deform the graph of f to obtain the straight line of slope mo
intersecting the point (tg,70). We will denote this straight line segiment by [, given by the formula

I(r) = ro + mo(t — t9). We will now construct a homotopy by considering the functions which
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t) to [ t
Figlllr(-) I1.18: The effect of such an alteration on the curve v
are inverse to f and I; see Fig. I1.19. Consider the linear homotopy h;! = (1 — &)f~' + si71,
where s € [0,1]. Let hs denote the corresponding homotopy from f to I, where for each s, hy is
inverse to h7!. Note that the domain of hy is [to, (1 — 8)tee + 8171 (ras)]. For each 7 € [reo, 7o),
hs;l(r) < f=1(r). This means that for any s € [0,1] and any 7 € [reo,70], hs(ts) > f(t), where
hs(ts) = f(t) = r. As the second derivative of hy is bounded by f, this means that inequality

(11.3.6) is satisfied throughout the homotopy.

Figure I1.19: The graphs of the functions f and [ and their inverses

This homotopy extends easily to the part of y on the region where ¢ > (1—8)too+51 71 (700 ),
which can easily be homotopied through curves, each the graph of a concave downward decreasing

non-negative function. The result is a homtopy between v and 7%, through curves which satisfy
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inequality (11.3.3) at every stage. This, combined with the initial isotopy, induces an isotopy
through metrics of positive scalar curvature between ¢ and g., completing the proof of Lemma

I1.16. O

11.8.6 Part 8 of the proof: Isotopying to a standard product

Having constructed the psc-metric g, and having demonstrated that g, is isotopic to the
original metric g, one final task remains. We must show that the metric g, can be isotopied to a
psc-metric which, near the embedded sphere S?, is the product g, + ggotl(é). Composing this with
the isotopy from Part 2 yields the desired isotopy froﬁ g to gstq and proves Theorem II.11.

We denote by 7 : N — SP, the normal bundle to the embedded S? in X. The Levi-Civita
connection on X, with respect to the metric g, gives rise to a normal connection on the total
space of this normal bundle . This gives rise to a horizontal distribution H on the total space of
N. Equip the fibres of the bundle A with the metric gi:t' (). Equip SP with the metric g,|s», the
induced metric on SP. The projection 7 : (N, §) — (S?, §) is now a Riemannian submersion with
base metric j = g|s» and fibre metric § = g&t'(8). The metric § denotes the unique submersion
metric arising from g, § and H. See Chapter 9 of [2] for details about Riemannian submersions.

Our focus will mostly be on the restriction of this Riemannian submersion to the disk
bundle, 7 : DN(e) — SP. We will retain §, § and § to denote the relevant restrictions. Before
saying anything more specific about this disk bundle, it is worth introducing some useful notation.

For some t7, € (oo, — Too), We define the following submanifolds of M (see Fig. 11.20),
M(tp,t) = {(y,z,t) € S? x DI (F) x R : (r(z),t) € v and t >t }.

and

M(too,tr) = {(y,z,t) € SP x DITY(F) X R: (r(z),t) € v and to <t <tp}.

Note that M (tr,%) is, for appropriately small €, the disk bundle DN (¢) and M (tx,%1) is a cylin-
drical region (diffeomorphic to SP x S? X [te,tr]) which connects this disk bundle with the rest
of M. We will make our primary adjustments on the disk bundle DA (€), where we will construct

an isotopy from the metric g, to a metric which is a product. The cylindrical piece will be then
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Figure II.20: The shaded piece denotes the region M (¢z,, 1)

be used as a transition region.

On DN (e) we can use the exponential map to compare the metrics g, and §. Replacing

the term 7o, with &, we observe the following convergence.
Lemma I1.18. There is C? convergence of the metrics g, and § as § — 0.

Proof. Treating g, as a submersion metric (or at least the metric obtained by pulling back g, via
the exponential map), it suffices to show convergence of the fibre metrics. In the case of g, the

metric on each fibre D91 (e),, where y € SP, is of the formn

Gr = dt® + glsa(gs-),-

Here ¢ € [t (£)] and recall that S9(f5(t —t)), is the geodesic fibre sphere of radius f5(¢ —t) at the

point y € SP. In the same coordinates, the fibre metric for g is
g =dt* + f5(f —t)%ds2.
We know from Lemma II.13 that as » — 0,

g|S‘1(T‘)y —_— T‘stg



o7

in the C? topology. Now, 0 < fs(f —t) < & and so as § — 0, we get that

9lsass—ty, — fs(t—t)%ds.

|

Hence, we can isotopy g, through submersion metrics, to one which pulls back on S x
D%t () to the submersion metric §. In fact, we can do this with arbitrarily small curvature effects
and so maintain positive scalar curvature. Furthermore, the fact that there is C? convergence of
9] sa(fE-t)), O f (t — t)gdsg means that we can ensure a smooth transition along the c¢ylinder
M (oo, tr), although this may necessitate making the cylindrical piece very long.

Now, by the formulae of O’Neill, we get that the scalar curvature of § is
R=Ror+R—|AP —|T]> - |a|* — 25(n).

where R, R and R are the scalar curvatures of G, and g respectively. For full definitions and
formulae for A, T, 7 and §; see chapter 9 of [2]. Briefly, the terms T and A are the first and second
tensorial invariants of the submersion. Here 7' is the obstruction to the bundle having totally
geodesic fibres and so by construction 7' = 0, while A is the obstruction to the integrability of the
distribution. The 7 term is also 0 as 7 is the mean curvature vector and vanishes when T" vanishes.
We are left with

R=Ron+R—|A]% (I1.3.13)

We wish to deform § through Riemannian submersions to one which has base metric
Up, Preserving positive scalar curvature throughout the deformation. We can make R arbitrarily
positively large by choosing small §. As the deformation takes place over a compact interval,
curvature arising from the base metric is bounded. We must ensure, however, as we shrink the
fibre metric, that |A|? is not affected in a significant way.

Letting 7 = — ¢, the metric on the fibre is

gixl () =dr* + f5(r)2ds?
= 62d(5)? + 62 f1(5)%ds?
= 6%glo. ().
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The canonical variation formula, Chapter 9 of [2], now gives that
R=Rs = %R+ Rom— 3§24

Thus, far from the |A|? term becoming more significant as we shrink §, it actually diminishes.

Having isotopied § through positive scalar curvature Riemannian submersions to obtain a
submersion metric with base metric § = g, and fibre metric § = gfotj’(é), we finish by isotopying
through Riemannian submersions to the product metric g, + g.?;.l (6). This involves a linear homo-
topy of the distribution to one which is flat i.e. where A vanishes. As |4|? is bounded throughout,
we can again shrink § if necessary to ensure positivity of the scalar curvature.

At this point we have constructed an isotopy between § = gstalppr(e) and gp + g;’;t.l (8).
In the original Gromov-Lawson construction, this isotopy is performed only on the sphere bundle
SN{(e) and so the resulting metric is the product g, + 6%ds2 (in this case g, = dsg). In fact,
the restriction of the above isotopy to the boundary of the disk bundle DN (€) is precisely this
Gromov-Lawson isotopy. Thus, as the metric on DA/ () is being isotopied from g, to g, + g2t (6),
we can continuously transition along the cylinder M (ts,t) from this metric to the orginal metric

gv. Again, this may require a considerable lengthenning of the cylindrical piece. This completes

the proof of Theorem II.11. O

11.3.7 The Family Surgery Theorem

Before proceeding with the proof of Theorem II1.10 we make an important observation.
Theorem I1.11 can be extended to work for a compact family of positive scalar curvature metrics
on X as well as a compact family of embedded surgery spheres. A compact family of psc-metrics
on X will be specified with a continuous map from some compact indexing space B into the space
Riem*(X). In the case of a compact family of embedded surgery spheres, we need to introduce
some notation. The set of smooth maps C*®°(W,Y) between the compact manifolds W and Y can
be equipped with a standard C* topology; see Chapter 2 of [17]. Note that as W is compact there
is no difference between the so called “weak” and “strong” topologies on this space. Contained
in C*(W,Y), as an open subspace, is the space Emb(W,Y) of smooth embeddings. We can now
specify a compact family of embedded surgery spheres on a compact manifold X, with a continuous

map from some compact indexing space C into Emb(S?, X).
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Theorem I11.19. Let X be a smooth compact manifold of dimension n, and B and C o pair of
compact spaces. Let B = {gy € Riem™*(X) : b € B} be a continuous family of psc-metrics on X
and C = {i. € Emb(SP, X) : c € C}, a continuous family of embeddings each with trivial normal
bundle, where p+qg+1=mn and g > 2. Finally, let g, be any metric on SP. Then, for some § > 0,

there is a continuous map

B x C — Riem™ (X)

. b
(gbsic) = Ggrg
satisfying

(i) Each metric g% has the form g, + g2t} (8) on a tubular neighbourhood of i.(SP) and is the

original metric gy away from this neighbourhood.

(i) For each ¢ € C, the restriction of this map to Bx {i.} is homotopy equivalent to the inclusion

B — Riem*(X).

Proof. For each pair b, ¢, the exponential map exp, of the metric g, can be used to specify a
tubular neighbourhood Ny ((7) of the embedded sphere i.(SF), exactly as in Part 1 of Theorem
I1.11. Compactness gives that the infimum of injectivity radii over all metrics g, on X is some
positive constant and so a single choice ¥ > 0 can be found, giving rise to a continuous family of
such tubular neighbourhoods {Ny,. = Ny .(7) : b,c € B x C}. Each metric g, may be adjusted in
Ny, by specifying a hypersurface ]\/IS'C C N, x R constructed with respect to a curve -, exactly
as described in the proof of Theorem IL.11. Equipping each Ny x R with the metric go|ns,c + dt?
induces a continuous family of metrics gf;c on the respective hypersurfaces J\Jfﬁ.

We will first show that a single curve <y can be chosen so that the resulting metrics ggﬁ‘:
have positive scalar curvature for all b and ¢. The homotopy of v to the vertical line segment in
Part 2 of the proof Theorem II.11 can be applied exactly as before, inducing an isotopy between
gg’c and g, which varies continuously with respect to b and ¢. Finally, Part 3 of Theorem II.11
can be generalised to give rise to an isotopy between gﬁ;c and 9:-237 which again varies continuously

with respect to b and ¢. Recall from the proof of Theorem II.11 that for any curve =y, the scalar



60

curvature on the hypersurface M = M,, is given by:

RM =RV +5in®0.0(1) — 2k - ginf
+29(q — 1)M +k-qO(r)sing.

r2

The O(1) term comes from the principal curvatures on the embedded surgery sphere SP and
the Ricci curvature on N, both of which are bounded. Over a compact family of psc-metrics
g, b € B and and a compact family of embeddings i.,c € C, these curvatures remain bounded
and so the O(1) term is unchanged. Here, the tubular neighbourhood N is replaced with the
continuous family of tubular neighbourhoods Ny, . described above. Recall that we can specify
all of these neighbourhoods with a single choice of radial distance 7. The O(r) term comes from
the principal curvatures on the geodesic spheres S9~1(r), which were computed in Lemma II.13.
This computation works exactly the saine for a compact family of metrics and so this O(r) term

is unchanged. The expression now becomes

RMve = RNve 4 5in® 0.0(1) — 2k - g2

+2q¢(q — l)%‘?—g + k- qO(r)sin 8.

Inequality (I1.3.3) can be obtained as before as

k[l +C'r?) < Roztg + (g — 1)22€ — Crsin 6,

sin

where in this case Ry = %[inf(RN"»“)], taken over all pairs b,c. The important thing is that
Ry is still positive. The construction of a curve v which satisfies this inequality then proceeds
exactly as in Part 2 of Theorem II.11. The resulting curve v specifies a family of hypersurfaces
]\/[,IY”C C N x R. For each (b, c), the induced metric on Mfy"c has positive scalar curvature. The
curve vy can then be homotopied back to the vertical line, exactly as in Part 2 of Theorem I1.11,
inducing a continuous deformation of the family {gg’c} to the family {gs}.

Part 3 of Theorem II1.11, can be applied almost exactly as before. The bundle N and
distribution H are now replaced with continuous families Nb,c and Hj,, giving rise to a continuous
family of Riemannian submersions 7y, : (NMb.c, Gb,c) — (5c(SP), Gb,c) Where the base metric g, =

gbli,(s»y, the fibre metric is ¢ = gg;;l(é) as before and gy is the respective submersion metric.
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By compactness, a single choice of € gives rise to a family of disk bundles DN, .(¢) all specifying
appropriate submanifolds M%[teo,tz] and M5¢[t, ] of MY (see Part 3 of Theorem IL11 for
details). Lemma II.18 easily generalises to show that as § — 0 there is uniform C? convergence
gg*c — §p,e. Thus, there is a continuously varying family of isotopies over b and ¢, through psc-
submersion metrics, deforming each gf’f into gp,e.

Formula I1.3.13 now generalises to give the following formula for the scalar curvature of

Jb,c, varying continuously over b and c.

R;z,c = R;z,c o Tp,e + ﬁ - |Ab,c|2- (11314)

Here RZ,‘C, R;,,c and R denote the scalar curvatures of Jv.c, Gb,c annd g respectively. The term Ay .
satisfies all of the properties of A in formula (I1.3.13), namely |A4p. | is bounded and in fact dimin-
ishes uniformly as ¢ decreases. Thus, there is a sufficiently small § > 0, so that the family {3 .}
can be isotopied through families of psc-submersion metrics to the desired family { gs;fl}, as in the

proof of Theorem II.11. O

Remark 11.3.5. Note that Theorem I1.19 claims only the existence of such a map. To write down
a well-defined function of this type means incorporating the various parameter choices made in the

construction of Theorem IL11. For our current purposes, in this paper, that is not necessary.

11.3.8 Applications of the Family Surgery Theorem
There are a number of important applications to Theorem II.19. The first is a rather

obvious corollary which will be of use to us later on.

Corollary I11.20. Let g and h be isotopic psc-metrics on X. Let g’ and R’ be respectively, the
psc-metrics obtained by application of the Surgery Theorem on a codimension > 3 surgery. Then

g and h' are isotopic.
Proof. This is just Theorem II.19 where B = I and C is a point. m

A more interesting application is Theorem I1.21 below. This theorem is actually the main

result in a paper by Chernysh; see [6].
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Theorem 11.21. Let X be a smooth compact manifold of dimension n. Suppose X' is obtained
from X by surgery on a sphere S — X with p+q+1 =n andp,q > 2. Then the spaces Riem™ (X)

and Riem™ (X') are homotopy equivalent.

Proof. We will first prove weak homotopy equivalence. Let ¢ : SP x DIt! < X be a framed
embedding of the sphere SP. We will assume that p,q > 2, where as always p + ¢+ 1 = n. Denote
by X', the manifold obtained by surgery on S? with respect to this embedding. Recall that X' is
defined as

X' = (X \3(S? x D)) u; DPFY x §9.

This surgery can be canonically reversed by performing a surgery on the embedded S? of the
attached handle. As p,q > 3, both surgeries are in codimension > 3.

Let Y = X \ (i(S? x D9*1)) and let Riem?,,(Y") denote the space of all psc-metrics on Y’
which, near the boundary Y, have the form dt? +62d$%+52d3(2] for some €, > 0. Note that € and §
are allowed to vary. Let g5 denote such a metric in Riem}, (X \ (i(S? x D%F1))). This metric can
be canonically extended to a metric on X by attaching (S? x D%, e2ds2 -+ gi*1(5)) with respect to
the isometry i|g»xge. This gives rise to a map j : Riem:t 4(Y) — Riem* (X). Similarly g.s can be

canonically extended to a metric on X’ by an analogous attachment of (DP+!x §9, gPt1 (€)+62ds2).

We will denote by 5/ the corresponding map Riem[,,(Y) — Riem*(X’).

fom T
Riem],

¥)

Riem™*(X) Riem*(X')

It will now be enough to show that the groups m(j) and mx(j'), in the homotopy long
exact sequences of j and 7', are trivial for all k. Recall that an element o of m (), is an equivalence
class of pairs of maps (¢, %) which form the commutative diagram shown in Fig. II.21.

Let (¢,4) be a representative pair of some element o € 7(4). Then 4 : DF — Riem™(X)
parametrises a compact family of psc-metrics on X. By Theorem I1.19, this family can be contin-
uously deformed into a family of psc-metrics which are standard near the embedded sphere S?. It

is of course important that the metrics parametrised by the boundary 8 DF remain in Riem; JY).
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Sk—l ¢ - Dk

Riem},(Y) ——= Riem*(X)

Figure I1.21: An element o of 74 (j)

This is almost immediate. Although the initial ”bending” part of the Gromov-Lawson construction
does alter the standard torpdedo metric on the fibres somewhat, this alteration is very minor. The
problem is easily solved by extending Riem:td(Y) to include these altered metrics. The resulting
space is homotopy equivalent to Riem:t 4(Y) via a deformation retract obtained by reversing the
bending construction on fibres near the embedded surgery sphere.

Thus, ¢ is homotopic to a map 1sq : D*¥ — Riem™*(X), with 9)s.q(D¥) contained in the
image of j, and so & = 0. Hence, 7x(j) = 0. An analogous argument can be performed on any
o € m(§'). In this ease, Theorem I11.19 is used to standardise a compact family of metrics near the
embedded $¢. Again, & is shown to be 0, completing the proof for weak homotopy equivalence.

It follows from the work of Palais in [33] that the spaces Riem,,(Y), Riem™(X) and
Riem™ (Xy) are all dominated by CW-complexes. Thus, by the theorem of Whitehead, we obtain

the desired homotopy equivalence. O

Interestingly, when X is a simply connected spin manifold of dimension > 5, the homotopy
type of the space Riem™ (X) is an invariant of spin cobordism. This fact is proved by the following

theorem.

Theorem 11.22. Let Xy and X be a pair of compact simply-connected spin manifolds of dimension
n > 5. Suppose also that Xy is spin cobordant to Xy. Then the spaces Riem™ (Xy) and Riem™ (X,)

are homotopy equivalent.

Proof. Let W be a spin eobordism of Xy and X;. Then, by Morse-Smale theory, W can be decom-
posed into a union of elementary cobordisins; see [30]. Each elementary cobordism corresponds to
surgery on a sphere SP. To apply Theorem I1.21, we must ensure that p, g > 2, where p+¢+1 = n.
Each elementary cobordism in the decomposition of W gives rise to an element in H, (W, Xq), or,

viewed from the other direction, an element of H, (W, X;). To satisfy the relevant conditions on p
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and ¢, we must show that W can be altered by surgery to make Hy (W, Xo) = Ho(W, Xp) = 0 and
H,_y (W, Xg) = Hy(W, Xy) = 0.

Consider the long exact sequence in homology, of the pair (W, Xp).
e HQ(W) — HQ(W/,X()) — H](Xo) — Hl(W) — Hl(W,X()) -0

By the theorem of Hurewicz, H;(Xp) = 0 and so it is clear that to kill generators in H; (W, X) and
Hy(W, Xy), it is enough to kill generators in Hy (W) and Ho(W). Let o € m1(W). It follows from
a theorem of Whitney, Theorem 2 of [41], that o can be represented by an embedding S' — W.
As W is orientable, i.e. the first Stiefel Whitney class w; (W) = 0, this embedding can be extended
to a framed embedding S x D™ — W and the generator killed by surgery. This can be repeated
to kill all generators in m (W) and, hence, all generators in Hy{(W).

As (W) = Hi(W) = 0, the Hurewicz theorem now tells us that mo(W) 2 Hy(W). We
now consider a generator 5 € wo(W). Again, Whitney’s theorem tells us that 8 can be represented
by an embedding S? — W. The fact that W is spin, i.e. wz(W) = 0, means that this embedding
can be extended to a framed embedding S? x D"~ and the generator killed by surgery. This can
be done for all such generators to give Hi (W, Xo) = Ha(W, Xo) = 0. It now follows from duality
and the Universal Coefficient Theorem, that H,,_1(W, Xo) = H, (W, Xo) = 0 also, completing the

proof. O

I1.3.9  The proof of Theorem IL.10{The Improved Surgery Theorem)

Proof. Recall that g denotes a positive scalar curvature metric on the closed manifold X7, i :
SP < X denotes an embedding of the sphere SP with trivial normal bundle and that p+¢+1=n
with ¢ > 2. Let W denote the trace of a surgery on X with respect to this embedded sphere. We
wish to extend g over W to obtain a psc-metric which is product near the boundary.

Corollary I1.12 implies the existence of a psc-metric § on the cylinder X x I so that near
Xx{0}, =9+ ds? and near X x {1}, § = gsta + ds®> where ggq is the metric obtained in
Theorem I1.11. Thus, by choosing g, = ezdsg, near S? the metric gsq has the form egdsf) + gt 1(5)
for some sufficiently small § > 0. Using the exponential map for gee we can specify a tubular

neighbourhood of SP , N = S§P x D9T1(F), so that the restriction of g, on N is precisely the metric
g y

e*ds? + g2+1(5). As before, N is equipped with the coordinates (y,z) where y € §?, & € DIt (7)

tor
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and DIT1(7) is the Euclidean disk of radius 7. The quantity r will denote the Euclidean radial
distance on D9F1(7). Moreover, we may assume that § is arbitrarily small and that the tube part
of gf;l(é) is arbitrarily long, thus the quantity 7 — § can be made as large as we like.

We will now attach a handle DP*1 x D9%! to the cylinder X x I. Recall that in section II.2,
we equipped the plane R?t1 — RPH! x ReH! with a metric h = g2 (e) 4 271 (6). By equipping

RP*! and R9*! with standard spherical coordinates (p, ¢) and (r,6), we realised the metric h as

h=dp® + f(p)?ds} + dr® + f5(r)*ds;,

where f, f5 : (0,00) — (0, 00) are the torpedo curves defined in section I1.2. The restriction of h
to the disk product DP*(p) x D?H1(7) is the desired handle metric, where j is as large as we like.

We can then glue the boundary component d(DPF1(p)) x D?*!(7) to N with the isometry

SP x DY) — N

(y, ) > (i(y), Ly(x)),

where L, € O(qg + 1) for all y € SP. Different choices of map y - L, € O(q + 1) give rise to
different framings of the embedded surgery sphere SP in X. The resulting manifold (which is not
yet smooth) is represented in Fig. 11.22. Recall that p and 7 are radial distances with respect to
the Euclidean metric on RP*! and R9*! respectively. By choosing € and § sufficiently small and
the corresponding tubes long enough, we can ensure that Se < p and §§ < 7.

Two tasks remain. Firstly, we need to make this attaching smooth near the corners. This
will be done in the obvious way by specifying a smooth hypersurface inside DP*1(p) x DIF1(7)
which meets N smoothly near its boundary, as shown by the dashed curve in Fig. 11.22. This is
similar to the hypersurface M constructed in the original Gromov-Lawson construction. Again we
must ensure that the metric induced on this hypersurface has positive scalar curvature. This is
considerably easier than in the case of M, given the ambient metric we are now working with. We
will in fact show that the metric induced on this hypersurface is precisely the metric obtained by
the Gromov-Lawson construction. The second task is to show that this metric can be adjusted to
have a product structure near the boundary.

The spherical coordinates (p, ¢, 7, 6) on the handle DPT1(p) x D+ () can be extended to

overlap with X x I on N(7) x [1 — e1,1], where €; is chosen so that §|xx[1—¢;.1) = gsea + dt*. We
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Figure I1.22: The metric (X x I,3) U (DP+1(p) x DIT1(F), h) and the smooth handle represented
by the dashed curve

denote this region DP*1(p) x D4TL(7). Let E be the embedding

E:[0,61] x [0,00) — R xR
(IL3.15)

(3, t) — (al(s, t), &2(8, t))

shown in Fig. 11.23. The map F will satisfy the following conditions.

(1) For each so € [0,€1], E(so,t) is the curve (t,ca(so)) when t € [0, ], and ends as the unit
speed vertical line (c1(sg),t). Here ¢; and ¢ are functions on [0, €;] defined as follows. For

each s, ¢1(s) = p+ s and ca(s) = c2(0) — s, where ¢1(0) — €1 > Fe and ca(s) > 5.

(2) For each tyg € [0,00), the path E(s,to) runs orthogonally to the levels E(sg,t) for each

s0 € [0, €1]. That is, for each (sg, o), %—f(so,to) - 98 (50,t0) = 0.

Provided €1 is chosen sufficiently small, the map

Z [0, e1] x (0,00) x §7 x §9 — DP*1(p+ 1) x DIFH(7)

(s,t,0,0) — (a1(s,t), P, a2(s,t),0)
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m
L]
]|

Figure 11.23: The embedding F

parametrises a region in DPT!(p + €1) x D4TY(7). Consider the hypersurface parametrised by the
restriction of Z to {0} x (0,00) x SP x 8¢ The metric induced on the region bounded by this
hypersurface extends g as a psc-metric over the trace of the surgery. Now we need to show that this
metric can be deformed to one which is a product near the boundary while maintaining positive
scalar curvature.

We begin by computing the metric near the boundary with respect to the parameterisation

Z. Letting
_ dm? | Bap? _ 8a1? | Bay?
Ys = %5 + % and Yi=% +%

Z*(dp* + fe(p)’ds) + dr? + f5(r)%ds2) =dai? + f(a1)?ds] + das® + fs(az)*ds?
=Y,(s,t)ds® + Yi(s, t)dt* + fe(a1)?ds? + f5(az)?ds?.
On the straight pieces of our neighbourhood, it is clear that Yy = 1 and ¥; = 1. Thus, on the

straight region running parallel to the horizontal axis, the metric is

ds® + dt? + fo(a1)?ds? + fs(az)?ds? = ds? -+ dt? + fe(t)?ds? + fs(ca(s))?ds?
= ds® +dt® + fo(t)?ds? + 6°dsZ,  since ¢ > L4
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On the straight region running parallel to the vertical axis, the metric is

ds® + dt? + fe(a1)?ds? + f5(an)?ds} = ds® + di? + fe(e1(s))ds2 + f5(t)%ds?
=ds® + dt* + 2 ds], + 6%dsZ,
=ds? + dt* + fc(t)?ds? 4 62ds2.

The second equality holds because ¢; > Fe and t > 74. The last equality follows from the fact
that t > ¢; > e and £ > 56. As we do not have unit speed curves in s and ¢, the best we can say

about the remaining “bending” region is that the metric is of the form
Y.ds® + Yidt? + ezdsf, -+ 62dsg.

The graphs of Y, and Y; are surfaces, shown schematically in Fig. II.24. Outside of a
compact region, Yy, =1 and Y; = 1. We can replace Y and Y; with smooth functions ¥, and Yy,
so that on [ea, €1] % (0,00), Y5 = Y] and ¥; = Y} and so that on [0, €3] X (0,00), Y/ =Y/ =1 for
some €) > e > €3 > 0. Moreover, this can be done so that Y — Y] and ¥; — Y/ have support in a

compact region.

Figure II.24: Adjusting Y; and Y

Any eurvature resulting from these changes is bounded and completely independent of the
metric on the sphere factors. Thus, we can always choose § sufficiently small to guarantee the

positive scalar curvature of the resulting metric

Y{ds? + Y] dt? + [.(t)%ds2 + §%ds?
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which, when s € [0, €3], is the metric

ds? 4 di? + f(t)2ds? + §%ds2.

This is of course the desired product metric ds?+ g2 () +62ds2, completing the proof of Theorem

11.10. 0

I1.4 Constructing Gromov-Lawson Cobordisms

In section II.3 we showed that a psc-metric g on X can be extended over the trace of a
codimension > 3 surgery to a psc-metric with product structure near the boundary. Our goal in
section I1.4 is to generalise this result in the form of Theorem I1.23. Here {W™!; X, X} denotes
a smooth compact cobordism and gq is a psc-metric on Xg. If W can be decomposed into a union
of elementary cobordisms, each the trace of a codimension > 3 surgery, then we should be able
to extend gg to a psc-metric on W, which is product near the boundary, by repeated application
of Theorem I1.10. T'wo questions now arise. Assuming W admits such a decomposition, how do
we realise it?7 Secondly, how many such decompositions can we realise? In order to answer these
questions, it is worth briefly reviewing some basic Morse Theory. For a more thorough account of

this, see [30] and [16].

11.4.1 Morse Theory and admissible Morse functions

Let F = F(W) denote the space of smooth functions f : W — I on the cobordism
{W; Xy, X, } with the property that f~(0) = Xo and f~!(1) = X, and having no critical points
near W. The space F is a subspace of the space of smooth functions on W with its standard
C* topology; see Chapter 2 of [17] for the full definition. A function f € F is a Morse function
if, whenever w is a critical point of f, det(D?f(w)) # 0. Here D?f(w) denotes the Hessian of f
at w. The Morse index of the critical point w is the number of negative eigenvalues of D?f(w).
The well known Morse Lemma, Lemma 2.2 of [30], then says that there is a coordinate chart

{z = (z1,22,...,Tns1)} near w, with w identified with (0,...,0), so that in these coordinates,

Flo) = c—af = —ay £yt by, (a.)
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where ¢ = f(w). Here p-+1 is the Morse index of w and this coordinate chart is known as a Morse
coordinate chart.

Inside of this coordinate chart it is clear that level sets below the critical level are diffeo-
morphic to SP x D?T! and that level sets above the critical level are diffeomorphic to DPT! x 59
where p -+ ¢q + 1 = n; see Fig. I1.25. In the case where f has exactly one critical point w of index
p -+ 1, the cobordism W is diffeomorphic to the trace of a p-surgery on X,. If W admits a Morse
function f with no critical points then by theorem 3.4 of [30], W is diffeomorphic to the cylinder

Xo x I (and consequently Xy is diffeomorphic to X1).

Rp+1

Rat!

Figure II1.25: Morse coordinates around a critical point

The critical points of a Morse function are isolated and as W is compact, f will have only
finitely many. Denote the critical points of f as wg,ws,...,wr where each w; has Morse index

i -+ 1. We will assume that 0 < f{wg) =co < fun) =1 < -+ flwg) = ¢ < 1.

Definition I1.3. The Morse function f is well-indexed if critical points on the same level set have

the same index and for all 4, p; < Ps41.

In the case when the above inequalities are all strict, f decomposes W into a union of

elementary cobordisms CoUC, U- - -UCk. Here each C; = f~([ci—1+7,¢;-+7]) when 0 < 4 < k, and
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Co = f~Y([0,c0 + 7]) and Cx = f~([ex—1 + 7,1]), for some appropriately small 7 > 0. Each C; is
the trace of a p;-surgery. When these inequalities are not strict, in other words f has level sets with
more than one critical point, then W is decomposed into a union of cobordisms C;UC] U---UCY
where | < k. A cobordism C] which is not elementary, is the trace of several distinet surgeries. Tt
is of course possible, with a minor adjustment of f, to make the above inequalities strict.

By equipping W with a Riemannian metric m, we can define grad,, f the gradient vector
field for f. This metric is called a background metric for f and has no relation to any of the
other metrics mentioned here. In particular, no assumptions are made about its curvature. More

generally, we define gradient-like vector fields on W with respect to f and m, as follows.

Definition II.4. A gradient-like vector field with respect to f and m is a vector field V on W

satisfying the following properties.
(1) dfz(Va) > 0 for all z in W which are not critical points of f.
(2) Each critical point w of f, lies in a neighbouhood U so that for all x € U, V,, = grad,,, f(z).

We point out that the space of background metrics for a particular Morse function f :
W — I is a convex space. So too, is the space of gradient-like vector fields associated with any
particular pair (f,m); see Chapter 2, section 2 of [16]. We can now define an admissible Morse

function on W.

Definition IL.5. An admissible Morse function f on a compact cobordism {W; Xy, X1} is a triple
f=(mV) where f : W — I is a Morse function, m is a background metric for f, V is a
gradient like vector field with respect to f and m, and finally, any critical point of f has Morse

index less than or equal to n — 2

Remark I1.4.1. We emphasise the fact that an admissible Morse function is actually o triple
consisting of a Morse function, o Riemannian metric and a gradient-like vector field. However, to

ease the burden of notation, an edmissible Morse function (f,m, V) will be denoted as simply f.

Associated to each critical point w of index p + 1, is a pair of trajectory spheres S (w)
and S%(w), respectively converging towards and emerging from w; see Fig. I11.26. As usual
p+q+1=mn. Let us assume for simplicity that f has exactly one critical point w and that w has

Morse index p + 1. Then associated to w is an embedded sphere S? = S? (w) in X, which follows



72

Figure II1.26: Trajectory spheres for a critical point w on an elementary cobordism

a trajectory towards w. The trajectory itself consists of the union of segments of integral curves of
the gradient vector field beginning at the embedded S? ¢ Xy and ending at w. It is topologically
a (p + 1)-dimensional disk DP*!. We denote it K?*"(w). Similarly, there is an embedded sphere
S% =89 ¢ X; which bounds a trajectory K{(w) (homeomorphic to a disk D?) emerging from w.
Both spheres are embedded with trivial normal bundle and the elementary cobordism W is in fact
diffeomorphic to the trace of a surgery on X, with respect to S”.

We are now in a position to prove Theorem II1.23. This is the construction, given a
positive scalar curvature metric go on Xy and an admissible Morse function f on W, of a psc-
metric § = g(go, f) on W which extends go and is a product near the boundary. As pointed out

in the introduction, the metric g is known as a Gromov-Lawson cobordism with respect to go and

f. The resulting metric induced on Xy, g1 = g|x,, is said to be Gromov-Lawson cobordant to gq.

Theorem I1.23. Let {W™*L; Xo, X1} be a smooth compact cobordism. Suppose go is a metric of
positive scalar curvature on Xo and f: W — I is an admissible Morse function. Then there is a

psc-metric § = G(go, f) on W which extends go and has a product structure near the boundary.

Proof. Tet f be an admissible Morse function on W. Let m be the background metric on W, as
described above. Around each critical point w; of f we choose mutually disjoint Morse coordinate
balls B(w;) = B (w;, &) where € > 0 is some sufficiently small constant. In each case we will
assume that the background metric m agrees with the metric obtained by pulling back the standard
Euclidean metric via the Morse coordinate diffeomorphism. This is reasonable since the metric m

can always be adjusted via a linear homotopy to obtain such a metric. For the moment, we may
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assumne that f has only one critical point w of Morse index p 4 1 where as usual p+¢q+1 = n and
g >2. Let ¢ = f(w) € (0,1). Associated to w are the trajectory spheres S¥ = S* (w) and S%(w),
defined earlier in this section. Let N = SP x D91(¥) C X, denote the tubular neighbourhood
defined in the proof of Theorem II.11, constructed using the exponential map for the metric go.
The normalised gradient-like flow of f (obtained by replacing V' with % away from critical
points and smoothing with an appropriate bump function) gives rise to a diffeomorphism from
7710, €)) to f71([0,c — 7]) where 0 < €9 < ¢ — T < ¢. In particular, normalisation means that
it maps f~1([0, ¢g]) diffeomorphically onto f~!([c — T — €9, ¢ — 7]). For sufficiently small 7, €y and

7, the level set f~!(c — 7) may be chosen to intersect with B(w) so as to contain the image of

N x [0, €] under this diffeomorphism; see Fig. I1.27.

X x [0, 60]

Figure I1.27: The action of the gradient-like flow on N X [0, €]

We may use the normalised gradient-like flow to construct a diffeomorphism between
Xo % [0,¢ — 7] and f~1([0,c — 7]) which for each s € [0,¢ — 7], maps X x {s} diffeomorphically
onto f~1(s). Corollary T1.12 then allows us to extend the metric g from Xg as a psc-metric over
F71([0,¢—7]) which is product near the boundary. Moreover, this extension can be constructed so
that the resulting metric go, is the product go + dt? outside of B(w) and on f~!([c—7 —€p,c— 7])

is the metric (go)ssa -+ dt? where (go)sia is the metric constructed in Theorem II.11 with respect
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to N. Recall that on Xg, the metric (go)stq is the original metric gy outside of N but that
near S?, (go)sta = €2ds2 + git!(8). Choose ro € (0,7), so that on the neighbourhood N (o) =

tor
SPx DI+ (rg) C N, (go)sia = €2ds2+gi, (8). Observe that the trajectories beginning at Xo\N (o)
do not pass any critical points. Thus, it is possible to extend go as (go)stq +dt? along this trajectory
up to the level set f~(c + 7). To extend this metric over the rest of f=1(|0,c+ 7]), we use a
diffeomorphism of the type described in Fig. I1.28 to adjust coordinates near w. Thus, away from
the origin, the level sets and flow lines of f are the vertical and horizontal lines of the standard
Cartesian plane. Also, the extension along the trajectory of Xo \ N(rg) is assumed to take place

on this region; see Fig. 11.29. Over the rest of f~!(c+ 7), the metric g can be extended extended

as the metric constructed in Theorem I1.10.

Figure II1.28: A diffeomorphism on the handle.

At this stage we have constructed a psc-metric on f~1(c+ 7), which extends the original
metric go on Xo and is product near the boundary. As f~!([c + 7,1]) is diffeomorphic to the
cylinder Xy x [¢+ 7, 1], this metric can then be extended as a product metric over the rest of .
This construction is easily generalised to the case where f has more than one critical point on the
level set f~1(c). In the case where f has more than one critical level, and thus decomposes W into
cobordisms C§ U C] U ---U (] as described above, repeated application of this construction over

each cobordism results in the desired metric g{go, f). O
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Figure 11.29: Extending go along the trajectory of Xo \ N(ro) to the level set f~(c+ 7).

11.4.2 A reverse Gromov-Lawson cobordism

Given a Morse triple f = (f,m, V) on a smooth compact cobordism {W; Xy, Xy}, with
f710) = X and f~*(1) = X1, we denote by 1 — f, the Morse triple (1 — f,m, —V) which has the
gradient-like low of f, but running in the opposite direction. In particular, (1 — f)~1(0) = Xy and
(1 — £)71(1) = Xo and so it is easier to think of this as simply “turning the cobordism W upside
down”. Although 1 — f has the same critical points as f, there is a change in the indices. Kach
critical point of f with index p+ 1 is a critical point of 1 — f with index ¢+ 1, where p+¢+1=mn
and dimW = n + 1. Just as f describes a sequence of surgeries which turns Xy into X;, 1 — f
describes a sequence of complementary surgeries which reverses this process and turns X; back
into Xp.

Given an admissible Morse function f on a cobordism {W; X;, X}, Theorem 11.23 allows
us to construct, from a psc-metric go on Xg, a new psc-metric g; on X7. Suppose now that 1 — f
is also an admissible Morse function. The following theorem describes what happens if we reapply

the construction of Theorem I11.23 on the metric g1 with respect to the function 1 — f.
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Theorem 11.24. Let {W"+: Xo, X1} be a smooth compact cobordism, go a psc-metric on Xy and
f W — I, an admissible Morse function. Suppose that 1 — f is also an admissible Morse function.
Let g1 = glgo, [)lx, denote the restriction of the Gromov-Lawson cobordism §(go, f) to X1. Let
glg1,1—f) be a Gromov-Lawson cobordism with respect to g1 and 1 — f and let g§ = §lg1,1— f)|x,

denote the restriction of this metric to Xo. Then go and g} are cononically isotopic metrics in

Riem™ (Xo).

Proof. 1t is enough to consider the case where f has a single critical point w of index p + 1. The
metric ¢; is the restriction of the metric g(go, f), constructed in Theorem II1.23, to X;. In con-
structing the metric g} we apply the Gromov-Lawson construction to this metric with respect to
surgery on an embedded sphere S9. The admissible Morse function 1 — f determines a neighbour-
hood §9 x DP*! on which this surgery takes place. Recall that, by construction, the metric ¢; is
already the standard metric (52dsg + g.fotl (€) near this embedded sphere. Thus, gj is precisely the
metric obtained by applying the Gromov-Lawson construction on this standard piece. Removing a
tubular neighbourhood of S in this standard region results in a metric on X; \ $¢ x DP*! which
is the standard product §°dsZ + e2ds?. The construction is completed by attaching the product
Do+l x SP with the standard metric gf,'(5) + e*ds2. In Fig. 11.30 we represent this, using a
dashed curve, as a hypersurface of the standard region. The resulting metric is isotopic to the
metric (go)std, the metric obtained from go in Theorem IL.11, by a continuous rescaling of the tube

length of the torpedo factor. In turn (go)stq can then be isotopied back to go by Theorem II.11.
O

I1.4.3 Continuous families of Morse functions

The construction of Theorem I1.23 easily generalises to the case of a compact contractible
family of admissible Morse functions. Before doing this we should briefly discuss the space M =
M(W) of Morse functions in F = F(W). It is well known that M is an open dense subspace
of F; see theorem 2.7 of [30]. Let F denote the space of triples (f,m, V) so that f € F, m is a
backgound metric for f and V is a gradient-like vector field with respect to f and m. The space
F is then homotopy equivalent to the space F. In fact, by equipping W with a fixed background

metric m, the inclusion map

fr— (f,m, grad;f) (11.4.2)
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Figure 11.30: The metric induced by g(g1, —f) on a level set below the critical level

forms part of a deformation retract of F down to F; see Chapter 2, section 2 of [16] for details.
Denote by M = M(W), the subspace of F, of triples ( f,m, V) where f is a Morse functior.
Elements of M will be known as Morse triples. The above deformation retract then restricts to a
deformation retract of M to M. The subspace of M consisting of admissible Morse functions will
be denoted M4 = A*@™ (7). To economise in notation we will shorten (f,m, V) to simply f.

Let fo, f1 € M.

Definition I1.6. The Morse triples fo and fi are isotopic if they lie in the same path component

of M. A path f,t € I connecting fo and fi is called an satopy of Morse triples.

Remark 11.4.2. This dual use of the word isotopy is unfortunate, however, it should be clear from

context which meaning we wish to employ.

In order for two Morse triples fo and fi to lie in the same path component of M, it is necessary
that both have the same number of index p critical points for each p € {0,1,...n 4+ 1}. Thus, if
fo and f) are both admissible Morse functions, an isotopy of Morse triples connecting fq to fi is

contained entirely in M%™_ We now prove Theorem I11.25.
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Theorem I1.25. Let {W, Xy, X1} be a smooth compact cobordism and let B a compact space. Let
B = {g» € Riem™(Xy) : b € B} be a continuous family of psc-metrics on Xo and let C = {f. €
MU (WY 2 ¢ € DR} be a smooth family of admissible Morse functions on W, parametrised by a

k-dimensional disk D*. Then there is a continuous map

B x C — Riem* (W)

(9bs fe) = Gb,c = T(gp fe)
so that for each pair (b, c), the metric gy is a Gromov-Lawson cobordism.

Proof. For each ¢ € D¥*, f, will have the same number of critical points of the same index. There
is therefore a smooth rearrangement of the critical points w;(c),...,wi(c) as ¢ varies over D¥. In
turn this means a smooth rearrangement of embedded surgery spheres. The proof then follows
almost directly from Lemma II.19. There is however, a compatability issue to address. In order
to carry out the construction of Theorem I1.23 on f. with respect to any psc-metric g, € B, we
must specify disjoint Morse coordinate neighbourhoods U (w;(c)) around each critical poiut of f..
As ¢ varies over D* we must be sure that we can vary these coordinate neighbourhoods. The
fact that the parameterising space is a disk means that this is certainly possible and follows from
Theorem 1.4 in the appendix of [23]. For each critical point w;(¢) € fc, this theorem guarantees
the existence of a smoothly varying family of embeddings 9. : R**1 — W so that 1.(0) = w;(c)

and the composition f.ov.(z) = f(wi(e))— Ei’i% ’C? +E;l:;+2 :L‘f, where w;(¢) has index p+1. [
Corollary I1.26. Let f;,t € I be an isotopy in the space admissible Morse functions, /\;l"'dm(W').
Then there is a continuous family of psc-metrics g, on W so that for each t, g = glgo, f1) s a

Gromov-Lawson cobordism of the type constructed in Theorem I1.23. In particular, gi|x,,t € I is

an isotopy of psc-metrics on X,.
Definition I1.7. A Morse triple (f,m, V) is well indezed if the Morse function f is well indexed.

Theorem I1.27. [30] Let f € M. Then there is a well-indezed Morse triple f which lies in the

same path component of M.

This is basically theorem 4.8 of [30], which proves this fact for Morse functions. We only

add that it holds for Morse triples also.
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Proof. Tt is sufficient to consider the case where f has exactly two critical points w and w’ with
0 < flw)=c< % < f(w') = ¢ < 1. The proof of the more general case is exactly the same.
Now suppose that w has index p + 1, w’ has index p’ + 1 and p > p’. Denote by K., the union of
trajectories KP*! (w) and K i‘H (w) assoclated with w. As always, p+¢+1 = n. Similarly K, will
denote the union of trajectories K7 ** (w') and K i’“ (w') associated with w’ where p’' +¢'+1 = n.

We begin with the simpler case when K., and K, do not intersect; see Fig. 11.31. For
any 0 < o’ < a < 1, Theorem 4.1 of [30] provides a construction for a well-indexed function f
with critical points w and w’ but with f(w') =a’ and f(w) = a. The construction can be applied

continuously and so replacing 0 < &’ < @ < 1 with a pair of continuous functions 0 < a} < a; < 1,

with af = ¢, ag = ¢, 0] = a’, a1 = a and t € I results in the desired isotopy.

X1

Xo

Figure 11.31: Non-intersecting trajectories K,, and K,

In general, the trajectory spheres of two distinct Morse critical points may well intersect;
see Fig. I[.32. However, provided certain dimension restrictions are satisfied, it is possible to
continuously move one trajectory sphere out of the way of the other trajectory sphere. This is
theorem 4.4 of [30]. We will not reprove it here, except to say that the main technical tool required

in the proof is lemma 4.6 of [30], which we state below.

Lemma I1.28. [30] Suppose M and N are two submanifolds of dimension m and n in a manifold
V' of dimension v. If M has a product neighbourhood in V, and m + n < v, then there exists a
diffeomorphism h of V' onto itself which is smoothly isotopic to the identity, such that h(M) is

disjoint from N.
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Figure I11.32: Intersecting trajectories

The following observation then makes theorem 4.4 of [30] possible. Let S and S " denote

the respective intersections of f~}(3) with K{"'(w) and K P+1(w'). Adding up dimensions, we

see that
g+p' =n—p-1+yp
<n—p' +1+p
<n-—1.
We can now isotopy [ to have disjoint K., and K, before proceeding as before. O

Corollary I1.29. Any Gromov-Lawson cobordism g(go, f) can be isotopied to a Gromov-Lawson

cobordism §(go, f) which is obtained from a well-indexed admissible Morse function f.

Proof. This follows immediately from Theorem 11.27 above and Corollary 11.26. O

II.5 Constructing Gromov-Lawson Concordances

Replacing X with X and the metric gp with g, we now turn our attention to the case when
the cobordism {W; Xo, X1} is the cylinder X x I. By equipping X x I with an admissible Morse
function f, we can use Theorem I1.23 to extend the psc-metric g over X x I as a Gromov-Lawson

cobordism g = g(g, f). The resulting metric is known as a Gromov-Lawson concordance or more
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specifically, a Gromouv-Lawson concordance of g with respect to f and the metrics go = glxx{0)

and g1 = glx x{1} are said to be Gromov-Lawson concordant.

11.5.1 Applying the Gromov-Lawson technique over a pair of cancelling surgeries

In this section, we will construct a Gromov-Lawson concordance on the cylinder S™ x [. It
is possible to decompose this cylinder into the union of two elementary cobordisms, one the trace
of a p-surgery, the other the trace of a (p + 1)-surgery. The second surgery therefore undoes the
topological effects of the first surgery. Later in the section, we will show how such a decomposition
of the cylinder can be realised by a Morse function with two “cancelling” critical points. Assuming
that n —p > 4, the standard round metric ds2 can be extended over the union of these cobordisms
by the technique of Theorem I1.23, resulting in a Gromov-Lawson concordance. To understand this
concordance we need to analyse the geometric effects of applying the Gromov-Lawson construction

over the two cancelling surgeries.

Example I1.30. Let S™ represent the standard smooth n-sphere equipped with the round metric
g = ds2. We will perform two surgeries, the first a p-surgery on S™ and the second, a p+ 1-surgery
on the resulting manifold. The second surgery will have the effect of undoing the topological
change made by the first surgery and restoring the original topology of S”. Later we will see that
the union of the resulting traces will in fact form a cylinder S™ x 1.

In section I1.2 we saw that S™ can be decomposed as a union of sphere-disk products.

Assuming that p + ¢ + 1 = n we obtain,

S'n. — 6Dn+l,
— J(DPH! x DI,

= 57 x Dq+1 Ugrxse DP-H' x S9.

o]
Here we are are assuming that ¢ > 3. Let SP x D" <, 8" be the embedding obtained by the

inclusion

g+1

o] y
SP x D' s 8P x DIt Ugp, go DPT x 59,

We will now perform a surgery on this embedded p-sphere. This involves first removing the

O g+1

embedded SP x D™ to obtain S™ \ (87 x D" ) = D*! x S9, and then attaching (DTI x 59)
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along the common boundary S” x S9. The attaching map here is given by restriction of the orginal
embedding to the boundary. The resulting manifold is of course the sphere product SP+! x §9
where the disks D”*! and DTI are hemispheres of the SPT! factor.

By performing a surgery on an embedded p-sphere in S™ we have obtained a manifold
which is diffeormorphic to P! x S9. By applying the Gromov-Lawson construction to the metric
g we obtain a positive scalar curvature metric ¢’ on SP*T! x S9; see Fig. 11.33. This metric is the
original round metric on an S\ (SP x DI*) piece and is gl (¢) x 62ds? on a DP** x S piece for

some small § > 0. There is also a piece diffeomorphic to SP x §9 x I where the metric smoothly

transitions between the two forms, the construction of which took up much section II.3.

0

Original metric
ds?

n

2 ] Standard metric
U Gror (€) +8%ds]

Transition metric

Figure I1.33: The geometric effect of the first surgery

We will now perform a second surgery, this time on the manifold (SP*! x 57, ¢'). W
wish to obtain a manifold which is diffeomorphic to the orginal S, that is, we wish to undo the

p-surgery we have just performed. Consider the following decomposition of SP+! x S9,

SPHL x 87 = §Pt x (DT U DY)

= (SP*! x DY)uU (SPT! x D).

[e]
Again, the inclusion map gives us an embedding of SP*! x DZ. Removing SP*! xD? and attachin
g g g g g

DPt2? x 5971 along the boundary gives

(DP+2 x STy u (SPH! x DL) = §(DP*? x D)
= 9(D" )

= S".
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Standard metric

Gior (¢/) + 67ds}_y

© Transition metric

Original metric

2
dsz,

Formerly standard metric
Figure I1.34: The geometric effect of the second surgery: a different metric on S”

Applying the Gromov-Lawson construction to the metric g’ with respect to this second
surgery produces a metric which looks very different to the orginal round metric on S"; see Fig.
11.34. Roughly speaking, ¢’ can be thought of as consisting of four pieces: the original piece
where ¢’ = g and which is diffeomorphic to a disk D™, the new standard piece where ¢” =
90F?(e) + 6°ds?_; and which is diffeomorphic to DP*? x S971, the old standard piece where
g" = ") + §2ds2, this time only on a region diffeomorphic to DPT! x DY and finally, a

transition metric which connects these pieces. Later on we will need to describe this metric in

more detail.

11.5.2  Cancelling Morse critical points: The weak and strong cancellation theorems

We will now show that the cylinder S™ x I can be decomposed into a union of two ele-
mentary cobordisms which are the traces of the surgeries described above. This decomposition is
obtained from a Morse function f: S™ x I -— I which satisfies certain properties. The following

theorem, known as the weak cancellation theorem is proved in Chapter 5 of [30]. It is also discussed,
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in much greater generality, in Chapter 5, Section 1 of [16].

Theorem I1.31. [30] Let {W™*1; Xo, X1} be a smooth compact cobordism and f : W — I be a

Morse triple on W. Letting p+ q + 1 = n, suppose that f satisfies the following conditions.
(a) The function f has exactly 2 critical points w and z and 0 < f(w) < c < f(z) < 1.
(b) The points w and z have Morse index p + 1 and p + 2 respectively.

(c) On f~1(c), the trajectory spheres S (w) and SY(z), respectively emerging from the critical

point w and converging toward the critical point z, intersect transversely as a single point.
Then the critical points w and z cancel and W is diffeomorphic to Xo x I.

The proof of I1.31 in [30] is attributed to Morse. The fact that S% («) and S? (z) intersect
transversely as a point means that there is a single trajectory arc connecting w and z. It is possible
to alter the vector field V' on an arbitrarily small neighbourhood of this arc to obtain a nowhere
zero gradient-like vector field V’ which agrees with V outside of this neighbourhood. This in turn
gives rise to a Morse function f’ with gradient-like vector field V’, which agrees with f outside

this neighbourhood and has no critical points; see Fig. I1.35. The desired decomposition of S™ x [

Ll
Crrrr

Figure I1.35: Altering the gradient-like vector field along the trajectory arc

can now be realised by a Morse function f : §™ x I — I which satisfies (a), (b) and (¢) above as
well as the condition that n —p > 4. Application of Theorem I1.23 with respect to an admissible

Morse function f which satisfies (a), (b) and (c) will result in a Gromov-Lawson concordance on
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5™ x I between g = ds2 and the metric g" described above. Equivalently, one can think of this as

obtained by two applications of Theorem I1.10, one for each of the elementary cobordisms specified

by f.

11.5.8 A strengthening of Theorem II.§1

There is a strengthening of theorem I1.31 in the case where W, Xy and X are simply con-
nected and of dimension > 5. Before stating it, we should recall what is meant by the intersection
number of two manifolds. Let M and M’ be two smooth submanifolds of dimensions r and s in a
smooth manifold N of dimension r 4+ s and suppose that M and M’ intersect transversely as the
set of points {n1,ne,...,7n;} in N. Suppose also that M is oriented and that the normal bundle
N(M') of M’ in N is oriented. At n;, choose a positively oriented r-frame vy, ..., v, of linearly
independent vectors which span the tangent space T,,, M. Since the intersection at n; is transverse,

this frame is a basis for the normal fibre N, (M").

Definition I1.8. The intersection number of M and M’ at n; is defined to be +1 or —1 according
as the vectors v1,. .., v, represent a positively or negatively oriented basis for the fibre A, (M).

The intersection number M’ - M of M and M’ is the sum of intersection numbers over all ;.

Remark I1.5.1. In the expression M'.M, we adopt the convention that the manifold with oriented

normal bundle is written first.
We now state the strong cancellation theorem. This is theorem 6.4 of [30].

Theorem 11.32. [80] Let {W; Xo, X1} be a smooth compact cobordism where W, Xo and X, are
simply connected manifolds and W has dimensionn +1> 6. Let f: W — I be a Morse triple on

W. Letting p+ g+ 1 = n, suppose that f satisfies the following conditions.
(a') The function f has exactly 2 critical points w and z and 0 < f(w) < ¢ < f(z) < 1.
(V') The points w and z have Morse index p+ 1 and p+ 2 respectively and 1 <p <n —4.
(c¢) On f~Y(c), the trajectory spheres S (w) and S (z) have intersection number S (w).S% (z) =
1 or —1.

Then the critical points w and z cancel and W is diffeomorphic to Xo x I. In fact, f can be
altered near f=1(c) so that the trajectory spheres intersect transversely at a single point and the

conclusions of theorem I1.81 then apply.
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Simple connectivity plays an important role in the proof. It of course guarantees the
orientability conditions we need but more importantly it is used to simplify the intersection of
the trajectory spheres. Roughly speaking, if n; and ne are two intersection points with opposite
intersection, there are arcs connecting these points in each of the trajectory spheres, whose union
forms a loop contractible in f~!(c) which misses all other intersection points. An isotopy can be
constructed (which involves contracting this loop) to move the trajectory spheres to a position

where the intersection set contains no new elements but now excludes n; and no.

Remark I1.5.2. The hypothesis that critical points of f have indez at least 2 is necessary, as the

presence of index 1 critical points would spoil the assumption of simple connectivity.

I1.5.4 Standardising the embedding of the second surgery sphere

In Example I1.30, the second surgery sphere SP*! was regarded as the union of two hemi-
spheres DP*! and fo“, the latter hemisphere coming from the handle attachment. It was assumed
in the construction of the metric ¢”, that the disk Di’H was embedded so that the metric induced
by ¢’ was precisely the gfotl(e) factor of the handle metric. Now let f be an admissible Morse
function on X x I which satisfies conditions (a}, (b) and (c¢) above. This specifies two trajectory
spheres S? and S¥*! corresponding to the critical points w and z respectively. On the level set
f~(c), the spheres S and S? *1 intersect transversely at a single point «. Suppose we extend
a psc-metric g on X over f71([0,¢]) in the manner of Theorem I1.23, denoting by ¢’ the induced
metric on f~'(¢). In general, the metric induced by ¢’ on S near o will not be g% (e). We
will now show that such a metric can be obtained with a minor adjustment of the Morse function
I

Let R*T1 = RPFT! x RI*! denote the Morse coordinate neighbourhood near w. Here
RPHL and RH! denote the respective inward and outward trajectories at w. Let R denote the
1-dimensional subspace of R?T! spanned by the vector based at zero and ending at «. Finally,
let DP*! denote the intersection of f~1(c) with the plane R x RP*!; see Fig. I1.36. The metric

induced by ¢’ on DP*! is precisely the g2 () factor of the handle metric.

Lemma I1.33. It is possible to isotopy the trajectory sphere Sf“(z), so that on f~1(c) it agrees,

near o, with the disk DPtL.

Proof. Choose a coordinate chart R™ in f~!(¢) around @, where « is identified with 0 and R”
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Figure IL.36: Isotopying S**' near a to coincide with DP*1,

decomposes as RP*! x RY, The intersection of SP*!(z) with this chart is a (p + 1)-dimensional
disk in R™ which intersects with R? transversely at the orgin. Thus, near the orgin, Sf“‘(z) is the
graph of a function over RP*! and so we can isotopy it to an embedding which is the plane RP+!

on some neighbourhood of 0, and the original S** (z) away from this neighbourhood. ]

Thus, the Morse function f can be isotopied to a Morse function where the standard part

of the metric ¢’ induces the gZt'(e) factor of the handle metric on S?*'(a); see Fig. T1.37.

2 ) Standard metric

g (e) + §%ds?

Transition metric

Original metric g

Figure I1.37: The embedded sphere SP71(z) after adjustment
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I1.6 Gromov-Lawson Concordance Implies Isotopy for Cancelling Surgeries

We continue to employ the notation of the previous section in stating the following theorem.

Theorem 11.34. Let f : X x I — I be an admissible Morse function which satisfies conditions
(a),(b) and (c) of Theorem II.31 above. Let g be a metric of positive scalar curvature on X and
g = g(g,f), a Gromouv-Lawson concordance with respect to f and g on X x I. Then the metric

9" = glxxq1y on X is isotopic to the original metric g.

We will postpone the proof of Theorem II.34 for now. Later we will show that this theorem
contains the main geometric argument needed to prove that any metrics which are Gromov-Lawson

concordant are actually isotopic. Before doing this, we need to introduce some more terminology.

I1.6.1 Connected sums of psc-metrics

Suppose (X, gx) and (Y, gy) are Riemannian manifolds of positive scalar curvature with
dimX = dimY > 3. A psc-metric connected sum of gx and gy is a positive scalar curvature metric
on the connected sum X#Y, obtained using the Gromov-Lawson technique for connected suins
on gx and gy. Recall that on X, the Gromov-Lawson technique involves modifying the metric on
a disk D = D™ around some point w € X, by pushing out geodesic spheres around w to form a
tube. It is possible to construct this tube so that the metric on it has positive scalar curvature and
so that it ends as a Riemannian cylinder S*~! x I. Furthermore the metric induced on the S™~!
factor can be chosen to be arbitrarily close to the standard round metric and so we can isotopy
this metric to the round one. By Lemma II.1, we obtain a metric on X \ D™ which has positive
scalar curvature and which near the boundary is the standard product §%ds2_, + dt? for some
(possibly very small) §. Repeating this procedure on Y allows us to form a psc-metric connected

sum of (X, gx) and (Y, gy) which we denote

(X, 9x)#(Y, g9v).

I11.6.2 An analysis of the metric g" obtained from the second surgery
Recall that f specifies a pair of cancelling surgeries. The first surgery is on an embedded
sphere S? and we denote the resulting surgery manifold by X’. Applying the Gromov-Lawson

construction results in a metric g’ on X', which is the orginal metric g away from S? and transitions
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on a region diffeomorphic to S7 x $7 x I to a metric which is the standard product g7 () x 62ds?

on the handle DPT! x §9. The second surgery sphere, embedded in X, is denoted SP*1. In section

11.5.4, we showed that it is reasonable to assume that on the standard region, the restriction of g’

p+1

to the sphere SP*! is precisely the g7

() factor of the standard metric g7h!(e) + 6%ds?; see Fig.

11.37. Applying the Gromov-Lawson construction to ¢’ with respect to this second surgery, results

in a metric ¢” on X (see Fig. 11.38) which is concordant to g.

Standard metric

g2 (e) + 82ds?_,

ds? + gt (€) + 82ds?_,

New transition metric
ds? + gPH 1 (e) + 5%ds2_,

tor

Easy transition metric

\
iginal i ) — - )
Original metric: ~Old transition metric 0Old standard metric

D

X\D

Figure I1.38: The metric g”

In Fig. I1.38, we describe a metric which is obtained from ¢” by a only a very minor
adjustment. We will discuss the actual adjustment a little later but, as it can be obtained through
an isotopy, to ease the burden of notation we will still denote the metric by ¢”. This metric agrees

with g outside of an n-dimensional disk D; see Fig. 11.38. The restriction of ¢” to this disk can
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be thought of as consisting of several regions. Near the boundary of the disk, and represented
schematically by two dashed curves, is a cylindrical region which is diffeomorphic to S?~! x I.
This cylindrical region will be known as the connecting cylinder; see Fig. 11.39. We will identify
the sphere which bounds X \ D with $*~! x {1}. This sphere is contained in a region where g” = g

and so we know very little about the induced metric on this sphere.

di? + ds? + e?ds?2 + 6'%ds?_,

ds? + gior ' (€) +

ivh .‘.?27 sy go + dl?

New transition metric

_tﬁ

Figure I1.39: The connecting cylinder S?~* x I

The region S x [%, 1] is where most of the transitioning happens from the old metric
g to the standard form. This transition metric consists in part of the old transition metric from
the first surgery and the new transition metric from the second surgery. The old transition metric
is on a region which is diffeomorphic to 57 x D? x [1,1] (schematically this is the region below
the horizontal dashed lines near the bottom of Fig. 11.39) while the new transition metric is on a
region which is diffeomorphic to DP*! x S471 x [1,1]. On the second cylindrical piece S*7' x [0, 3],
the metric g” is much closer to being standard.

Turning our attention away from the connecting cylinder for a moment, it is clear that
the metric g” agrees with the standard part of the metric ¢’ on a region which is diffeomorphic

P+l

to DP*1 x DY; see Fig. 11.38. Here g” is the metric g7,;" (€) + 62ds2|ps and we call this piece the

old standard metric. The old standard metric transitions through an easy transition metric on a
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region diffeomorphic to I x DPF! x S9 to take the form ds® + g2 (¢') + 6’20’,52_1. This particular
transition is known as the easy transition metric as it is far simpler than the previous transitions.
Returning now to the second cylindrical piece of the connecting cylinder, we see that there

is a neighbourhood of S*~! x [0, 1], containing both the old standard and easy transition regious
g » 5l g ) g

2

where the metric g” takes the form of a product ¢ dsf, + dt? + Jq, Where the metric g, is a metric

on the disk DY; see Fig. 11.40. Shortly, we will write represent g, more explicitly.

dt? + ds® + €*ds? 4 6"ds?_

i \ / \
e2dsZ + gy + di? 2 dsZ + g7,.(8') + dt?

Figure I1.40: A neighbourhood of S"~! x [0, ] on which g” has a product structure (left) and the
metric resulting from an isotopy on this neighbourhood (right)

Returning once more to the metric ¢” on D, we observe that outside of S7~! x I and
away from the old standard and easy transition regions, the metric is almost completely standard.
The only difference between this metric and the metric g” constructed in Example 11.30, is the
fact that the metric on the second surgery sphere SP*! is first isotopied to the double torpedo
metric g%7! (¢), before finally transitioning to the round metric e*ds?, ;. This gives a concordance

between the metric g%tir +6?ds2_; and €*ds2 | + §"ds?_, which is capped off on the remaining

DP+2 % §9=1 by the new standard metric ghy(€) + 6"2ds?_,. This completes our initial analysis

1

of g

11.6.3 The proof of Theorem I1.34

We now proceed with the proof of Theorem II.34.

Proof. We will perform a sequence of adjustments on each of the metrics g and g”. Beginning with

the metric g”, we will construct g; and g4 each of which is isotopic to the previous one. Similarly,



92

we will make sequence adjustments to the metric g, resulting in isotopic metrics ¢;, g2 and gs. The

metrics g3 and g4 will then be demonstrably isotopic.

The initial adjustment of ¢”'.

We will begin by making some minor adjustments to the metric ¢” to obtain the metric
g7. Recall that on the part of the connecting cylinder identified with 5”~! x [0, ], the metric g”
is somewhat standard. We observed that on a particular region of $"~! x [0, 1], g” takes the form

62d812, + gq + dt?. Here g, can be written more explicitly as
gg =dr’ + F("')2d3r21—17

where r is the radial digtance cordinate and F is a function of the type shown in Fig. 1[.41. A

3 T
dsin %

Figure I11.41: The function F, with fs shown as the dashed curve

linear homotopy of F' to the torpedo function fs induces an isotopy from the metric g, to the
metric g}, (6'). With an appropriate rescaling, it is possible to isotopy the metric eQde, + g, + dt?
to one which is unchanged near 5"~! x {3} but near S"~* x {0}, is the standard product e*ds? +
gi..(8") + dt?. This isotopy then easily extends to an isotopy of g” resulting in a metric which, on
the old standard and easy transition regions, is now g/t () + g2 (6’) away from $7~! x {5} see

Fig. 11.42.

The embedding J.

For sufficiently small )\, the cylindrical portion $™~1 x [0, A] of the connecting cylinder

571 x I is contained entirely in a region where g” = gPt'(e) + g2 (6"); see Fig. 11.43. Recall

that in section I1.2.5, we equipped the plane R™ = RPT! x R9 with this metric, then denoted by

pt1
tor

h =gl (€) +gf,.(6"). In standard spherical coordinates (p, ¢), (r, ) for R?*! and RY respectively,



ds? + g% (e) + 8"%ds

tor (€) + 911 (8")

S e

Old transition metric

Figure I1.42: The metric gy resulting from the initial adjustment

2
g—1

ds® + gl (e) + 6 ds?_;
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we can represent this metric with the explicit formula
h=dp® + fe(p)®ds? + dr® + fs (r)%ds, (I1.6.1)

where f¢, fs: are the standard e and é-torpedo functions defined on (0, oc). The restriction of g”
to the region S™~! x [0, \] is now isometric to an annular region of (R™, h) shown in Fig. 11.44.

For a more geometrically accurate schematic of (R™, h); see Fig. I1.6 in section I11.2.

')

Y

Y

Sl % [0, A]

Figure I11.43: The collar neighbourhood S*~! x [0, A]

There is an isometric embedding J of the cylindrical portion $*~1 x [0, A] of the connecting

cylinder S™~! x I into (R", k). Let @ denote an embedding

a:[0,\ x[0,0] > RxR

(t1, t2) = (a1(t1, t2), az(t1, t2))
which satisfies the following properties.

(1) For each t; € [0, A], the restriction of @ to {¢1} x [0,8] is a smooth curve in the first quadrant
of R? which begins at (¢; +¢1,0), follows a vertical trajectory, bends by an angle of Z towards
the vertical axis in the form of a circular arc and continues as a horizontal line to end at
(0,c1 4+ t1). We will assume that ¢y > max{Ze, 5¢'} and that the bending takes place above

the horizontal line through line (0,6%) as in Fig. I1.7.
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RY
LY
50
%e ]RP+1
A /

Figure I1.44: The image of J
(2) At each point (t1,t2), the products %‘;—;.% and %%%% are both zero.

For some such @, there is a map J defined

J:[0,A] x [0,] x 87 x §971 — RPH! x RY

(t1,t2,4,0) — (a1(t1,t2), @, a2(t1,12),0)

which isometrically embeds the cylindrical piece (S~ x [0, A], g"|gn-1x[0,y)) into (R", h); see Fig.

I1.44. Furthermore, assumption (2) above means that the metric g"|gn-1xjo,5 can be foliated as

di? + g}, where g;' is the metric induced on the restriction of J to {t1} x [0,A] x SP x §¢. For
each t; € [0, A], the metric g’ is a mixed torpedo metric gg’vﬁgrl. These metrics are of course not

isometric, but differ only in that the tube lengths of the various torpedo parts vary.

Isotopying the metric on S™~! x [0, \] to the “connected sum” metric gy .
Given two copies of the plane R™, each equipped with the metric h, we can apply the
Gromov-Lawson technique to construct a connected sum (R™, h)#(R™ k). This technique de-

termines a psc-metric by removing a disk around each origin and gluing the resulting manifolds
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together with an appropriate psc-metric on the cylinder S™*~1 x I. In this section, we will isotopy
the metric g”'| sn-1x[0,5] to obtain precisely this cylinder metric; see Fig. 11.45. Importantly, this
isotopy will fix the metric near the ends of the cylinder and so will extend easily to an isotopy of

g7 on all of X to result in the metric g7.

St x {0}

St x {A}

Figure II.45: The metric obtained by isotopying ¢”| sn-1x[0,5 to the cylinder metric of Gromov-
Lawson “connected sum” construction

Let a** denote the curve which is the image of the map a restricted to {t1} x [0,8] aud J*
will denote the embedded sphere in R™ which is the image of the map J on {1} x [0, 5] x SP x §47 L.

We define the map K7 as

K™ :[0,27] x S x §9=1  — RP1 x R9
(t, $,0) — (7 cos(L), ¢, Tsin(£),6)

For each 7 > 0, the image of K7 in (R™, k) is a geodesic sphere of radius 7. Now consider the
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region, shown in Fig. 11.47, bounded by the embedded spheres J % and K™ where 7 is assumed to
be very small. Let ¢” denote the circular arc given by ¢ (t) = (7 cos(%), 7 sin(%), for t € [0, Z7]. Tt
is easy to construct a smooth homotopy between a% and ¢” through curves (z,,y,),v € I where
¢ = (zo,y0) and at = (z1,1). For example, this can be done by smoothly shrinking the straight
edge pieces of a: to obtain a pilece which is within arbitrarily small smoothing adjustments of

being a circular arc, the radius of which can then be sinoothly shrunk as required; see Fig. 11.46.

Ty Yv

$ \

T cl+%

QI
wf>

Figure I1.46: Homotopying the curve az toc”

By smoothly varying the length of domain intervals of x, and ¥y, with respect to v, we can
ensure that the curve (x,,y,) is unit speed for all v. The above homotopy gives rise to a foliation

2 and K7; see Fig. 11.47, and a corresponding foliation of the

of the region contained between J
metric h on this region. Letting I € [0,1] denote the coordinate running orthogonal to the curves
given by the above homotopy, we can write the metric h = dl? + h;. Moreover, the metric h; can

be computed explicitly as
hy = dt® + fe(a(t))?ds + for (y(t)) ds?

where £ = 7, and y = ¥, for some v. An elementary calculation shows that —1 < z, < 0,
0 <4y, <1, 2, <0andy, <0. A further elementary calculation now shows that the functions
Ffe(z(t)) and fs(y(t)) belong to the spaces U and V defined in section I1.2. Thus, by Lemina I1.7,
the metric h; has positive scalar curvature and so the decomposition of 4 into di? + h; induces an
isotopy between the metric hy = g’%’ and the metric hp induced by h on the geodesic sphere of

radius 7.
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B>

KT

Figure I1.47: The region bounded by J2 and K™

Recall that the restriction of the metric g’ to S™*~! x [0, %], isometrically embeds into

(R™, h) as the region between the curves J° and Jz. Using the foliation h = dl? + h;, this metric
can now be continuously extended as the metric h over the rest of the region between J° and K7;
see Fig. 11.48. As the curve K7 is a geodesic sphere with respect to h, this metric can then be
continuously extended as the metric obtained by the Gromov-Lawson construction, to finish as a
round cylinder metric. The metric g”| sn-1x[0,4] has now been isotopied to one half of the metric
depicted in Fig. I1.45 without making any adjustment near S®~! x {0}.

An analogous construction can be performed on g”| sn-1x[3,)]» this time making no alter-
ation to the metric near S"~! x {A}. Both constructions can be combined to form the desired
isotopy by making a minor modifcation to ensure that at each stage, the metric near S* ! x {12\-}
is a psc-Riemannian cylinder. Such a modification is possible because of the fact that the above

foliation decomposes h into an isotopy of psc-metrics.



\
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PR,

Figure I1.48: Isotopying the metric g” |gn-1x[0,3] to the metric & on the region bounded by J°
and K7
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Isotopying the metric g.

In this step we will perform three successive adjustments on the metric g, resulting in
successive positive scalar curvature metrics g1, g2 and gs. Each adjustrent will result in a metric
which is isotopic to the previous one and thus to g.

In adjusting the metric g, we wish to mimic, as closely as possible, the Gromov-Lawson
technique applied in the construction of ¢”’. The main difficulty is that we are prevented from
making any topological change to the manifold X. Thus, the first adjustment is one we have seen
before. The metric g; is precisely the metric gyq constructed in Theorem II.11, this being the
closest we can get to the original Gromov-Lawson construction without changing the topology of
X; see Fig. 11.49. The metric ¢ is the original metric g outside of a tubular neighbourhood of the
embedded SP. It then transitions to a standard form so that near S? it is eQng + g2+ (8) for some
suitably small § > 0. We will refer to this region as the standard region throughout this proof;

see Fig. 11.49. From Theorem II.11, we know that g, is isotopic to the original g. We make two

important observations.

(i) All of the data regarding the effects of the Gromov-Lawson construction on (X, g), is con-

tained in the metric g;.

(ii) The embedded disk D**! agrees entirely with the non-standard part of the embedded sphere

SPEL,

—
—

Transition metric Standard metric

e*dsy + g/or(6)

7

Original metric g

Figure I1.49: The metric g; on X, made standard near the embedded SP

The aim of the next adjustment is to mimic as closely as possible the metric effects of the
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second surgery. The boundary of DY 1 lies at the end of the standard region of (X, g1). Application
of Theorem II.11 allows us adjust the metric near DPT exactly as in the construction of g. Near
the boundary of D’'!, the induced metric is standard and so we can transition (possibly very
slowly) back to the metric g;; see Fig. IL.50. The connecting cylinder S~ ! x I can be specified
exactly as before and it is immediately obvious that the metric g; agrees with ¢’ on this region.
The metric g3 is now obtained by making precisely the adjustments made to the metric ¢” in the

region of $™7! x [0, 3].

New standard metric
+1
ngT‘ (6) + ggOT‘((s,)

) Easy transition metric

e ——— o

New transition metric | .. ~

Old transition metric V Old standard metric

X\D D

Figure I1.50: Adjusting the metric g1 on a neighbourhood of the embedded disk DP*: Notice
how no change is made near the boundary of this disk.
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Comparing the metrics gy and gs.

At this stage we have constructed two metrics g4 and g3 on X which agree on (X \ D) U
(S™' x [3,X)). Near S7~% x {3}, both metrics have the form of a standard round cylinder. The
remaining region of X is an n-dimensional disk which we denote D’'. Here the metrics gf and g3
are quite different. Henceforth g and gs will denote the restriction of these metrics to the disk
D'. As g4 and g3 agree near the boundary of IV, to complete the proof it is enough to show that
there is an isotopy from ¢4 to g3 which fixes the metric near the boundary.

Both ¢4 and g3 are obtained from metrics on the sphere S™ by removing a point and
pushing out a tube in the manner of the Gromov-Lawson connected sum construction. In both
cases, the point itself is the origin of a region which is isometrically identified with a neighbourhood
of the origin in (R™, k). We will denote by g4 and gs, the respective sphere metrics which give rise

to g4 and g3 in this way; see Fig. I11.51 and Fig. 11.52.

k/j g5t (&) + g2 .(6")

Figure II.51: The metric g/
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.. p+1 ....... q ..... e E2d312) + gg:;l ((y)
Gior (E> + 9IDtor (6 )

Figure I1.52: The metric gs
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The metrics g5 and gs isotopy easily to the respective mixed torpedo metrics gf;l’q_l

and g% on S™ (Fig. I1.53), and are thus isotopic to each other by the results of section I1.2, in

particular Lemma I1.9. The proof of Theorem I11.34 then follows from Theorem I1.19, where we

showed that the Gromov-Lawson construction goes through for a compact family of psc-metrics.

O

Figure IL.53: The mixed torpedo metrics gy~ and ghfl9™

I1.7 Gromov-Lawson Concordance Implies Isotopy in the General Case

Theorem I1.34 is the main tool needed in the proof of Theorem I1.36. The rest of the
proof follows from Morse-Smale theory and all of the results needed to complete it are to be found
in [30]. Before we proceed with the proof of Theorem I1.36, it is worth discussing some of these

results.

I1.7.1 A weaker version of Theorem I1.36

Throughout, {W"*! Xy, X1} is a smooth compact cobordism where X, and X are closed
manifolds of dimension n. Later on we will also need to assume that X, X; and W are simply
connected and that n > 5, although that is not necessary yet. Let f denote a Morse triple on W,
as defined in section I1.4. Recall this means that f: W — I is a Morse function which conies with
extra data, a Riemannian metric m on W and a gradient-like vector field V' with respect to f and
m. Now by Theorem I1.27, f can be isotopied to a Morse triple which is well-indexed. We will
retain the name f for this well-indexed Morse triple. As discussed in section I1.4, f decomposes

W into a union of cobordisms Cy U Cy; U -+ U 41 where each Cy contains at most one critical
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level (contained in its interior) and all critical points of f on this level have index k. For each
0 <k <n+1, we denote by Wy, the union Cy UCy U --- U Cy. By setting W_, = Xy, we obtain

the following sequence of inclusions
Xo=W cWogCWLC---C W/n_+1 =W,

describing this decomposition.

Suppose that f has [ critical points of index k. Then for some a,b,c with a < ¢ < b, the
cobordism Cy, = f~1[a, b], where ¢ is the only critical value between a and b. The level set f~'(c)
has [ critical points w;,...,w;, each of index k. Associated to these critical points are trajectory
disks K*(w1),... K*(w;) where each K*(w;) has its boundary sphere $¥~!(w;) embedded in
f71(a). These trajectory disks determine a basis, by theorem 3.15 of [30], for the relative integral
homology group Hy(Wy, Wi_1) which is isomorphic to Z&Z & --- & Z (I summands).

We can now construct a chain complex C. = {Ck, 0}, where C, = Hp(Wg, Wi—1) and
0 : Cp — Cg—1 is the boundary homomorphism of the long exact sequence of the triple Wy _o C
Wk_1 C Wi. The fact that 82 = 0 is proved in theorem 7.4 of [30]. Furthermore, this theorem

gives that Hy(C.) = Hp(W, Xg).

Theorem I1.35. Let X be a closed simply connected manifold with dimension n > 5 and let go be
a positive scalar curvature metric on X. Let f be an admissible Morse function on X x I with no
eritical points of index 0 or 1. Let § = g(go, f) be a Gromov-Lawson concordance on X x I. Then

the metrics go and g1 = glx x{1} are isotopic.

Proof. By Corollary I1.29, we may assume that f is well indexed. Using the notation above, f
gives rise to a decomposition X x I = Co UC3 U -+ U Cy,_o which in turn gives rise to a chain
complex

Crn2—Chzg— =2 Crp1 = C— - = C

where each Cp is a free abelian group. (Recall that all critical points of an admissible Morse

function have index which is less than or equal to n —2.) Since H.(X x I, X) = 0, it follows that

the above sequence is exact. Thus, for each Ciy1 we may choose elements zf“‘, . ,z;‘kﬁ € Cry1 and
k41 E+1 k+1 : k+1 k41 ph+1 E+1
byt b € Crgr so that A(0FH) = 2 for i = 1,... 1. Then 27, ..zt oyt gt

is a basis for Cr41.
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We will now restrict our attention to the cobordism CyUCk4;. Let w’f“ \ wg"’l, R w,"kﬂ 1,
denote the critical points of f inside of Cxy1 and w¥, w§,... ,wl"; +1,,, denote the critical points

of f inside of Cy. As 2 < k < k+1 <n-—2, 1t follows from theorem 7.6 of [30], that f can be

perturbed so that the trajectory disks K_ (wf™!),... K. (w{"tiﬂk) and K_(wf),... K _(wf ,, )

k

represent the chosen bases for Ci41 and Ci respectively.

Denote by w®,wk, ..., wlkk, those critical points on Cj which correspond to the elements
PLI - S Zlkk of Cy, i.e. the kernel of @ : C, — Ci_1. Denote by wf"’l, w§+2, e ,wfk"’l, those critical
points in Ck41 which correspond to the elements b’]‘_'“, s b;_“:l € Cp+1. A slight perturbation of

[f replaces C U Cry with the decomposition C, UCY UCY, ; UCy 1; see Fig. 11.54. Here C;, UCY
is diffeomorphic to Cy, however, the critical points w¥, wk ... ,w{“k have been moved to a level set

above their orginal level, resulting in a pair of cobordisms each with one critical level. Similarly,

we can move the critical points w_’f“ , w§+2, e ,wf:l down to a level set below their original level
to replace Ciy1 with C’,’C’Jrl U C’,’CH.
/—\ -
S _ Gl
/—\—,/
Ck:—i—l C]/(,I+1
cy
Ck e
—

Figure TI.54: Replacing Cy U Cyyy with Cp UCH U CY , UC),,

We now consider the the cobordism C} U C},,. For some a < cx < ¢ < cey1 < b,
CYUC = f%a,b], where f~!(ck) contains all of the critical points of index k and f~*(cx41)
contains all of the critical points of index k + 1. Each critical point w¥ of index & is associated

with a critical point wf“ of index & + 1. Using Van Kampen’s theorem, we can show that

f~([a,b]), f~'(a) and f~1(b) are all simply connected; see remark 1 on page 70 of [30].



107

Since 8(1)?“) = z¥, each pair of trajectory spheres has intersection 1 or ~1. The strong
cancellation theorem, Theorem I1.32, now gives that f can be perturbed so that each pair of trajec-
tory spheres interseets transversely on f~!(c) at a single point and that f~!([a, b)) is diffeomorphic
to f1(a) x [a,b].

Consider the restriction of the metric § = g(go, f) to f~'([a,b]). Let g, and g, denote
the induced metrics on f~!(a) and f~!(b) respectively. The trajectories connecting the critical
points of the first critical level with trajectory spheres in f~!(a) are mutually disjoint, as are those
connecting critical points on the second critical level with the trajectory spheres on f~!(b). In
turn, pairs of cancelling critical points can be connected by mutually disjoint arcs where each arc is
the union of intersection points of the corresponding trajectory spheres. The metric g, is therefore
obtained from g, by finitely many independent applications of the construction in Theorem 11.34
and so g, and gy are isotopic. By repeating this argument as often as necessary we show that gg

is isotopic to g1. O

11.7.2  The proof of the main theorem of Part One

We can now complete the proof of Theorem 11.36. To do this, we must extend Theorem

11.35 to deal with the case of index 0 and index 1 critical points.

Theorem I1.36. Let X be a closed simply connected manifold with dimX =n > 5 and let gy be
a positive scalar curvature metric on X. Suppose § = §(go, f) is a Gromov-Lawson concordance

with respect to go and an admissible Morse function f + X x I — I. Then the metrics go and

91 = Glxx {1} are isotopic.

Proof. We will assume that f is a well-indexed admissible Morse function on W. Using the notation
of the previous theorem, f decomposes W into a union of cobordisms Co UC, U---UC, 2. In
the case where f has index 0 critical points, f can be perturbed so that for some € > 0, f=1([0, ¢])
contains all index 0 critical points along with an equal number of index 1 critical points. These
critical points are arranged so that all index 0 critical points are on the level f~1(cg) and all
index 1 critical points are on the level set f‘l(cl), where 0 < ¢g < ¢ < ¢1 < €. In theorem 8.1
of [30], it is proved that these critical points can be arranged into pairs of index 0 and index 1
critical points where each pair is connected by mutually disjoint arcs and each pair satisfies the

conditions of theorem I1.31. Thus, Theorem I1.34 gives that the metric go is isotopic to the metric
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ge = 3(90, )l s-1(0)-

If f has no other critical points of index 1, then Theorem I1.35 gives that g. is isotopic
to g1, completing the proof. We thus turn our attention to the case where f has excess index 1
critical points which do not cancel with critical points of index 0. Each of these critical points
is asscociated with a critical point of index 2 and the intersection number of the corresponding
trajectory spheres is 1 or —1. Unfortunately, theorem 11.32 does not apply here as the presence of
index 1 critical points means the upper boundary component of Wi is not simply connected. In
turn, this prevents us from applying Theorem 11.34.

There is however, another way to deal with these excess index 1 critical points which we
will now summarise. It is possible to add in auxiliary pairs of index 2 and index 3 critical points.
This can be done so that the newly added pairs have trajectory spheres which intersect transversely
at a point and so satisfy the conditions of theorem II1.31. Furthermore, for each excess index 1
critical point, such a pair of auxiliary critical points may be added so that the newly added index
2 critical point has an incoming trajectory sphere which intersects transversely at a single point
with the outgoiug trajectory sphere of the index 1 critical point. This allows us to use theorem
I1.31 and hence Theorem I1.34 with respect to these index 1, index 2 pairs. The old index 2 critical
points now all have index 3 critical points with which to cancel and so we can apply Theorem I1.35
to complete the proof. In effect, the excess index 1 critical points are replaced by an equal number
of index 3 critical points. The details of this construction are to be found in the proof of theorem
8.1 of [30] and so we will provide only a rough outline. The key result which makes this possible

is a theorem by Whitney, which we state below.

Theorem I1.37. [41] If two smooth embeddings of a smooth manifold M of dimension m into
a smooth manifold N of dimension n are homotopic, then they are smoothly isotopic provided

n>2m+ 2.

Choose § > 0 so that the metric g is a product metric on X x [1 —4,1]. Thus, f has no
critical points here either. On any open neighbourhood U contained inside f~1([1 — 4,1]), it is
possible to replace the function f with a new function f, so that outside U, f; = f, but inside U,
f has a pair of critical points, y and z with respective indices 2 and 3 and so that on the cylinder
F7H[1 = 6,1]), f1 satisfies the conditions of Theorem I1.31. For a detailed proof of this fact; see

lernma 8.2 of [30].
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Remark I1.7.1. The Morse functions f and fi1 are certainly not isotopic, as they have different

numbers of critical points. However, this is not a problem as the following comment makes clear.

Recall that the metric g

¥x{1-6) = g1 and that our goal is to show that g, is isotopic to
go. By Theorem I1.34, the metric g|xx{1-s} is isotopic to g(go, f1)|xx{1} and so it is enough to
show that go is isotopic to §(go, f1)|xx (1} for some such f.

For simplicity, we will assume that f has no index 0 critical points. We will assume that
all of the critical points of index 1 are on the level f = ¢;. Choose points a < ¢; < b so that
f7([a,b]) contains no other critical levels except f~'(e1). Let w be an index 1 critical point of
f. Emerging from w is an outward trajectory whose intersection with the level set f~1(b) is an

n — l-dimensional sphere S7!(z). The following lemma is lemma 8.3 of [30].

Lemma I1.38. There exists an embedded 1-sphere S = S* in f=1(b) which intersects transversely

with Si_l(z) at a single point and meets no other outward trajectory sphere.

Replace f with the function fi above. By Theorem I1.27, the function f; can be isotopied
through admissible Morse functions to a well-indexed one f;. Consequently, the metric §(go, f1)
can be isotopied to a Gromov-Lawson concordance (go, f1). The critical points y and z have now
been moved so that y is on the same level as all of the other index 2 critical points. There is a
trajectory sphere S (y), which is converging to y, embedded in f~%(b). Theorem II.37 implies
that fi can be isotopied so as to move S! (y) onto the embedded sphere S of Lemma II1.38. The
resulting well-indexed admissible Morse function has the property that the outward trajectory
spheres of index 1 critical points intersect the inward trajectory spheres of their corresponding
index 2 critical points transversely at a point.

We can make an arbitrarily small adjustment to f; so that the index 2 critical points which
correspond to the kernel of the map 8 : C5 — Ca, are on a level set just above the level containing
the remaining index 2 critical points. Let f~!(c) denote a level set between these critical levels.
Then f~1([0, c]) is diffeomorphic to X X [0, ¢] and, by Theorem I1.34, the metric go is isotopic to the
metric §(go, f1)]-1(c). Furthermore, the cobordism f~!([e,1]) is diffeornorphic to X x [¢,1] and
the restriction of f; satisfies all of the conditions of Theorem I1.35. This means that §(gy, f; D=1

is isotopic to g(go, f1)|f71(1), completing the proof. O
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CHAPTER III

PART TWO: FAMILIES OF GROMOV-LAWSON COBORDISMS

II1.1 Foreword to Part Two

Our main goal in Part Two is to develop tools for parameterising families of Gromov-
Lawson cobordisms by admissible Morse functions. This was done to an extent in Theorem II.25
of Part One. This theorem allows for the parametrisation of a family of GL-cobordisms by a
compact contractible family of admissible Morse functions. Unfortunately, all admissible Morse
functions in this family must have the same number of critical points of the sane index. As it is
possible for certain pairs of Morse critical points to cancel in the form of birth-death singularities,
this theorem gives us a rather limited picture.

In order to connect up admissible Morse functions which have different critical sets, we
must allow for this cancellation. This means working in the space of admissible generalised Morse
functions. A generalised Morse function has Morse and birth-death singularities; see below for a
definition. By utilising the “geometric cancellation” described in the proof of Theorem I1.36, we
will describe a regularised Gromov-Lawson cobordism; see Theorem I11.2 and Corollary I11.3 below.
This is a type of GL-cobordism which has been adapted to vary continuously over a cancellation
of Morse critical points.

A convenient setting for describing families of admissible generalised Morse functions arises
from the work of Eliashberg and Mishachev on wrinklings of smooth maps in [8] and [9]. Roughly
speaking, a wrinkled map gives rise to a particular smooth bundle of admissible generalised Morse
functions. In our main result, Theorem III.6, we perform a construction on the total space of this
bundle, which restricts on each fibre to a regularised Gromov-Lawson cobordism.

The final result of Part Two provides a partial answer to a question we posed in the

introduction. Namely, how does the choice of admissible Morse function affect the isotopy type
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of a Gromov-Lawson cobordism? In Theorem III.9, we show that when the cobordisin and its
boundary components are simply connected and of dimension > 5, the isotopy type of the metric

is unaffected by the choice of admissible Morse function.

II1.2 A Review of Part One

We begin by very briefly reviewing some notions from Part One which will be of use to
us in Part Two. In particular, we review what we mean by an admissible Morse function, before
reexamining the structure of a Gromov-Lawson cobordism. This will be especially useful when it

comes to proving Theorem III.2.

II1.2.1  Admissible Morse functions

In this section we review what we mean by an admissible Morse function. We begin with
an important piece of terminology. Let M and N be smooth manifolds of dimensions m and n
respectively. Let f: M — N be a smooth map and let w € M. We say that f is locally equivalent
near w to a smooth map f’: R™ — R, if there exist neighbourhoods U € M,V C N withw € U
and f(w) € V, along with diffeomorphisms 1; : R™ — U, 12 : R® — V with (0) = w and

1¥2(0) = f(w), for which the following diagram commutes.
vu——— V

(A 2

R — = R»

f'l

Let (W™+1 Xy, X1) be a smooth compact cobordism. Recall that we let F = F(W)
denote the space of smooth functions f : W — I satisfying f~1(0) = Xo and f~!(1) = X, and
having no critical points near OW. The space F is a subspace of the space of smooth functions
on W with its standard C topology; see Chapter 2 of [17] for the full definition. A critical point

w € W of a smooth function f : W — [ is a Morse critical point if, near w, the map f is locally
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equivalent to the map

R’Il-l-l R
p+1 n+1
2 2
Tr— — r;° -+ xTi.
=1 i=p+2

The integer p+1 is called the Morse index of w and is an invariant of the critical point. A function
f € F is a Morse function if every critical point of f is a Morse critical point. By equipping W
with a Riemannian metric m, we can define grad,, f, the gradient vector field for f with respect to

m. More generally, we define gradient-like vector fields on W with respect to f and m, as follows.

Definition II1.1. A gradieni-like vector field with respect to f and m is a vector field V on W

satisfying the following properties.
(1) df.(Vy) > 0 when 2 is not a critical point of f.
(2) Each critical point w of f lies in a neighbourhood U so that for all x € U, V, = grad,, f(z).

Definition II1.2. An admissible Morse function f on a compact cobordism {W; Xy, X1} is a
triple f = (f,m,V) where f : W — I is a Morse function, m is a background metric for f, V is
a gradient like vector field with respect to f and m, and finally, any critical point of f has Morse

index less than or equal to n — 2.

We emphasise the fact that an admissible Morse function is actually a triple consisting
of a Morse function, a Riemannian metric and a gradient-like vector field. However, to ease the
burden of notation, an admissible Morse function (f,m, V) will be denoted simply by f.

We conclude with some comments on the space of Morse functions M = M(W) C F.
Recall that this an open dense subspace of F; see theorem 2.7 of [30]. We let F denote the space
of triples (f,m,V) so that f € F, m is a backgound metric for f and V is a gradient-like vector
field with respect to f and m. Recall that the space F is homotopy equivalent to the space F. In

fact, by equipping W with a fixed background metric 77, the inclusion map

f— (f,m, grads f) (I11.2.1)

forms part of a deformation retract of F down to F; see Chapter 2, section 2 of [16] for details.
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We denote by M = /\;I(T/V), the subspace of F, consisting of triples (f,m,V) where f
is a Morse function. Elements of M are known as Morse triples. The subspace of M consisting
of admissible Morse functions is denoted M%¥™m = MM (1Y), Successive restrictions of the
deformation retract above give rise to respective deformation retracts of M onto M and Modm
onto M%™_ Here M%™ jis the space of Morse functions with all critical points having index

<n-—2.

I11.2.2 A brief review of the Gromov-Lawson cobordism Theorem

Let (W; Xo, X1) be as before and let gg be a psc-metric on Xg. In Part One we discuss
the problem of extending the metric gg to a psc-metric § on W which has a product structure near

OW. In particular we have proved the following theorem.

Theorem I1.23. Let {W™*!; Xo, X1} be a smooth compact cobordism. Suppose go is a metric of
positive scalar curvature on Xg and f : W — I is an admissible Morse function. Then there is a

psc-metric § = g(go, f) on W which extends go and has a product structure near the boundary.

We call the metric § a Gromov-Lawson cobordism with respect to go and f. It is worth
briefly reviewing the structure of this metric.

We begin with a few topological observations. For simplicity, let us assume for now that
f has only a single critical point w of index p + 1. Intersecting transversely at w are a pair of
trajectory disks KP*! and Kff“; see Fig. IIL.1. The lower disk K”*! is a p 4 1-dimensional disk
which is bounded by an embedded p-sphere S C Xy. It consists of the union of segments of
integral curves of the gradient-like vector field beginning at the bounding sphere and ending at w.
Similarly, K fl is a ¢ + 1-dimensional disk bounded by an embedded g 4 1-sphere 5] C X;. The
bounding spheres S? and S¢ are known as trajectory spheres.

Let N denote a small tubular neighbourhood of S?, defined with respect to the metric
m|x,. Consider the region Xy \ N. For each point € X \ N, there is a unique maximal integral

curve of the vector field V, 1, : [0,1] — W satisfying f o, (t) = t; see section 3 of [30] for details.
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X

Xo

Figure IIL.1: Trajectory disks of the critical point w contained inside a digk U
This gives rise to an embedding

P (Xog\N)xI — W

(,1) — (b= (1))-

We denote by U, the complement of this embedding in W, and observe that U is a neighbourhood
of KPTTUK fl; see Fig. II1.1. Indeed, a continuous shrinking of the radius of N down to 0 induces
a deformation retract of U onto KPT' UK ffl.

We now define the metric § on the region W \ U to be simply go|x\n + dt? where the ¢
coordinate comes from the embedding 1 above. Of course, the real challenge lies in extending this

metric over the region U. Notice that the boundary of U decomposes as
U = (8P x DI U (8P x 84 x I) U (DPF! x §9).

The SP x DI part of this decomposition is of course the tubular neighbourhood N while the
DPF1 % §9 piece is a tubular neighbourhood of the outward trajectory sphere S C Xi. Without
loss of generality, assume that f(w) = % Let ¢ and ¢1 be constants satisfying 0 < ¢y < % <

¢1 < 1. The level sets f = ¢o and f = ¢; divide U into three regions: Uy = f~1([0,e1]) N U,
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Up = fYeo,e1]) NU and Uy = f~([e1, 1)) NU.

The region Uy can be diffeomorphically identified with IV x [0, ¢;] in exactly the way we
identified W \ U with Xo \ N x I. Thus, on Uy, we define g as simply the product go|y + dt®.
Indeed we can extend this metric go|nx + dt? near the SP x S9 x I part of the boundary also
where, again, £ is the trajectory coordinate. Inside the region U,,, which is identified with the disk
product DP*! x D*1 the metric smoothly transitions to a standard product g% (e) 4+ 241 (6)
for some appropriately chosen ¢,6 > 0. This is done so that the induced metric on the level
set f!(c1), denoted g1, is precisely the metric obtained by application of the Gromov-Lawson
construction on go. Furthermore, near f~'(cy), § = g1 + dt>. Finally, on U;, which is identified
with DPT1 x 8% x [c1,1] in the usual manner, the metric g is simply the product g; + dt?. See Fig.

I11.2 for an illustration.

g1+ dt?
t

1 T

| transition transition :

i |

| | dt?
9o + : standard | go

t [

1 I

! transition transition !

| '
f=co f=cy

Figure III.2: The metric g on the disk U

We should point out that this construction can be carried out for a tubular neighbourhood
N of arbitrarily small radius and for ¢y and ¢; chosen arbitrarily close to % Thus, the region U,,,
on which the metric 7 is not simply a product and is undergoing some kind of transition, can be
made arbitrarily small with respect to the background metric m. As critical points of a Morse
function are isolated, it follows that this construction generalises easily to Morse functions with

more than one critical point.
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I11.2.3  Continuous families of Gromov-Lawson cobordisms

A careful analysis of the Gromov-Lawson construction shows that it can be applied contin-
uously over a compact family of metrics as well as a compact family of embedded surgery spheres;
see Theorem II.19 in section I1.3. It then follows that the construction of Theorem I1.23 can be
applied continuously over certain compact families of admissible Morse functions to obtain The-
orem II.25. Before stating it we introduce some notation. Let B = {g, € Riem*(Xy) : b € B}
be a compact continuous family of psc-metrics on Xy, parametrised by a compact space B. Let
C ={f. € M*(W):ce D*} be a smooth compact family of admissible Morse functions on T,

parametrised by the disk D¥.

Theorem I1.25. There is a continuous map

B x C — Riem™ (W)

(gb, fc) L — gb,c = g(gb: fc)

so that for each pair (b, c), the metric Gy i3 ¢ Gromov-Lawson cobordism.

I1.2.4 A brief review of Gromov-Lawson concordance

We now consider the case when W is the cylinder X x I for some closed smooth manifold
X. If go is a psc-metric on X and f : W — I is an admissible Morse function, then the metric
g = §(go, [) obtained by application of Theorem II.23, is a concordance. We call this metric a
Gromov-Lawson concordance with respect to gg and f. The main result of Part One can now be

stated as follows.

Theorem I1.36. Let X be a closed simply connected manifold of dimension n > 5. Let gy be
a positive scalar curvature metric on X. Suppose § = §(go, f) is ¢ Gromov-Lawson concordance

with respect to go and an admissible Morse function f : X x I — I. Then the metrics gy and

g1 = Jlxx{1} are isotopic.

The key geometric fact used in the proof of Theorem I1.36 is Theorem I1.34 below.



117

Theorem I1.34. Let f : W — I be an admissible Morse function which satisfies conditions (a),(b)

and (¢) below.
(a) The function [ has exactly 2 critical points w and z and 0 < f(w) < f(z) < L.
(b) The critical points w and z have Morse index p 11 and p + 2 respectively.

(c) Foreacht € (f(w), f(z)), the trajectory spheres S{ , (w) and S’.f!tl(z) on the level set f~1(t),
respectively emerging from the critical point w and converging toward the critical point z,

intersect transversely as a single point.

Let g be a metric of positive scalar curvature on X and let § = glg, f) be a Gromov-Lawson
cobordism with respect to f and g on W. Then g is a concordance and the metric g = Flxx{1)

on X 1s isotopic to the original metric g.

The fact that g is a concordance follows immediately from Theorem 5.4 of [30] as conditions (a), (b)
and (c) force W to be diffeomorphic to the cylinder Xg x I. The rest of the proof of Theorem II.34
is long and technical and involves explicitly constructing an isotopy between the metrics g and g”.
Roughly speaking, simple connectivity and the fact that n > 5 mean that the proof of Theorem

11.36 can be reduced down to finitely many applications of the case considered in Theorem II.34.

I11.3 Folds, Cusps and Wrinkles

In this section we review some basic singularity theory. For the most part this section
summarises a discussion by Eliashberg and Mishachev in [8]. We will employ much of the same

notation.

II1.8.1 Birth-death singularities

Let M be a smooth manifold of dimension n and f : M — R a smooth function. The
singular set of f is the set ©f = {w € M : df,, = 0} and a point w € Ef is said to be a non-
degenerate singularity if detd?f, # 0 and a degenerate singularity otherwise. Non-degenerate
singularities of are of course just the Morse singularities discussed earlier. This is proved in a
lernma of Morse; see Lemma 2.2 of [31]. Degenerate singularities on the other hand may be much

more complicated. We will restrict our attention mostly to one type of degenerate singularity, the
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so-called birth-death singularity. A critical point w € X f is said to be birth-death of index s + %

if, near w, f is locally equivalent to the map

RxR"1 SR

3 n—1
(z,2) — 2% — E T2+ E ;2.
i=1

t=s+1

The assignment of a non-integer index to w conveys the fact that at a birth-death critical point,

regular Morse critical points of index s and s + 1 may cancel.

Definition ITIL.3. The smooth function f : M — R is said to be a generalised Morse function if

all of its degenerate singularities are of birth-death type.

Later, we will insist that M is a smooth cobordism {W, Xy, X3} of the type discussed
earlier and that f : W — I with f=1(0) = X, and f~(1) = X;, but for now the more general

definition will suffice.

II1.3.2  Fold singularities
Let M and @ be smooth manifolds of dimension n and & respectively. Let f: M — @ be

a smooth map. The singular set £ f is the set {w € M : rank df,, < k}.

Definition II1.4. A point w € 3f is called a fold type singularity of index s if, near w, the map

f is locally equivalent to

Rk—l % Rn-k+1 Rk—-]. xR

8 n—k-1
(1,2) (%—zxm > ) .
i=1

i=a+1
Definition IIL.5. A fold of f is a connected component of 3f which contains only fold-type
singularities.

In the case when @ = R, a fold singularity is just a Morse singularity of index s and
is thus non-degenerate, i.e. detd?f, # 0. When k > 2, this is a degenerate singularity with

dim(kerd?f,) = k — 1. In this case, it is often useful to regard f locally as a constant k — 1-
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parameter family of Morse functions

Rn—k+1 _ SR

3 n—k+1

2 2

T — E Ty" + E T;°,
=1 i=s+1

over RF-1,

II1.3.3  Cusp singularities

In defining a cusp singularity we will agssume that k& > 1. See Fig. II1.3 for the case when

s+1
y \
S
< ’

T

s+1

Figure II1.3: A cusp singularity and its image where k = 2.
Definition III.6. A point w € 3 f is called a cusp type singularity of index s + % if near w, the

map f is locally equivalent to

REIXRxRYVF L RFIXR

s n—=k
=1

i=s+1

As before, it is often useful to regard f as a k — 1-parameter family of functions, although

unlike the fold case this family is not constant. In the above coordinates, the singular set of f is
Sf=A{(y,22): 22 +y =0,z =0}

Thus, when y; > 0, the function f is locally a k — 1-parameter family of Morse functions with no
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critical points, parametrised by y € (0,00) x R¥=2. At y; = 0, the function f is a k — 2-parameter
family of generalised Morse functions each with exactly one birth-death critical point occurring
at (z = 0,z = 0). When y; < 0, f is a k — 1-parameter family of Morse functions each with
exactly two critical points, parametrised by y € (—00,0) x R¥=2. Each Morse function in this
family has a critical point of index s at (z = \/—y1,# = 0) and a critical point of index s + 1 at
(z = —\/—y1,2 = 0). Thus, as y; — 07, these pairs of Morse critical points converge and cancel
as a k — 2-parameter family of birth-death singularities. The case when k = 2 is illustrated in
Figures I11.3 and 111.4.

This is the standard unfolding of a birth-death singularity and is best thought of as a

1-parameter family of functions

g RxR"? R

n—2

(z,x) — 2° + 3yz — le + Z 2,

i=s-+1

parametrised by y € R. In these coordinates, the singular set $f is the curve 22 +y = 0 on the
plane x = 0, shown in Fig. I11.3. The topological effects of the unfolding are illustrated in Fig.
1I1.4 by selected level sets ¢, = ¢,(v/¢,0) — €, ¢y =0 and ¢, = gy(—+/c,0) + € for y = —¢,0 and ¢,
where ¢ and € are both positive constants. The critical points of index s and s+ 1 occur at z = /¢
and z = —+/c respectively for the function g_.. The birth-death singularity occurs on the level set

go = 0 shown in the centre of this figure while the function ¢, has no critical points.

18,4 Wrinkles and wrinkled maps

Let w denote the map

WiRFIXKRxR"* L RFELxR

n—k
(Y, z,z) — (y,z +3(Jy|* - Q—Zm Z .’L’712>.

=541

Here |y| is the standard Euclidean norm on R*~!, The singular set Yw, shown with its image in

Fig. 1I1.5, is the standard k& — 1-dimensional sphere

{z=0,22+y? =1} CR" " xR x RF 1.
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Figure III.4: Selected level sets showing the unfolding of a birth-death singularity
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The equator of this sphere is the k — 2-dimensional sphere
{=0,2=0,yF =1} cR"* x R x RF!

consisting of cusp points of index s + % The upper hemisphere Sw N {z > 0} consists of folds of
index s and the lower hemisphere consists of folds of index s+ 1. Alternatively, the map w can be

regarded as a smooth k& — 1-parameter family of smooth functions
wy R x R — R

(z,2) — 25 4 3(|y|* — z—Z:m +Zz7.

i=s+1

When |y| < 1, wy has a pair of non-degenerate critical points of index s and s +1. When |y| =1,
the function w, has a single birth-death singularity of index s + % and when |y| > 1, wy has no

critical points. Let D denote the disk {z = 0,22 + |y|? <1} CR"* x R x R*~! bounded by Zw.

z

\_/ y

i

w
+
=

Figure IIL.5: The singular set Yw and its image in the case when & = 2.

Let U be an open neighbourhood of M.

Definition II1.7. A map f: U — Q is called a wrinkle of index s +  if f is equivalent to the

restriction of the map w on some open neighbourhood V, so that D C V.

When it is not confusing the term wrinkle will also be used to denote the singular set
of f. More generally, a map f : M — @ is called a wrinkled map if there exists disjoint open
neighbourhoods Uy ..., U; € M so that flpynp(U = Ui=1 U;) is a submersion and for each ¢ =

1,...,1, the restriction f|y, is a wrinkle.
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II1.8.5 Regularising a wrinkled map
In this section we describe a procedure for replacing a wrinkled map f with a submersion
/. We describe it here in the form of Lemma IT1.1. The submersion f’ constructed in this lemma

is known as the regularisation of the wrinkled map f.

Lemma II1.1. Let f: M — @Q be o wrinkled map. Let Uy...,U; C M be a collection of open
neighbourhoods so that each fly, is a wrinkle and ¥f C U = U2=1 U;. Then there is a smooth

submersion ' M — @ which agrees with f on M\ U.

Figure TI1.6: The graphs of the term 3(22 -+ |y|? — 1) and its replacement T'(y,z,z) when z = 0

Proof. As wrinkles of f are isolated, it is enough to consider the case when f is the function w
defined above. Consider the differential, dw : T(R™) — T'(R?). This map is degenerate when the
element 3(z2 + |y|2 — 1) of the Jacobian matrix is 0. The differential dw can be regularised by
replacing this term with one which agrees with 3(22 + |y|? — 1) outside of a neighbourhood of

D, but which is never zero; see Fig. IIL.6. Let o : R** — [0,1] and 5 : R x RF"1 — [0,00)

Figure IIL.7: The bump functions a and 3

be bump functions of the type shown in Fig. II1.7. In particular, «(0) = 1, a(z) = B(z,y) =0
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when |z| > ¢€,|(z,y)| > 1 + ¢, for some small constant € > 0, and B(z,y) > |3(2% + |y|? — 1)| when

22+ y? < 1. Define the function 7 : RFIXxR xR SR by the formula
m(y,z,3) = 3(z" + [y|* — 1) + a(2)B(2, y)-

The function 7(y, z,z) > 0 for all (y, z,z) and agrees with 3(z2+ |y|? — 1) outside of Bga—x (0, €) X
Bgx(0,1+ ¢€). Replacing the term 3(2% -+ |y|? — 1) with 7(y, z,z) in the Jacobian matrix, results in
the desired “regularised” differential R(dw).

We can now define a new map w’ so that w’ = w outside Bpn-x(0,€) x Bpx(0,1+ ¢€) and

Yw' = ). This map is defined

W RFTXR xR — R xR

3 n—k
(y,2z,2) — <y,T(y,z,z)—Z$i2 + Z :1:7-_2) ;
i=1

i=s+1

where the term T'(y, z, z) is given by the formula
"z
Ty, 25) = [ G+ - 1)+ a@p)d
0

This completes the proof. O

I11.4 Regularising a Gromov-Lawson Cobordism

In this section we discuss a notion of regularisation for admissible Morse functions as
well as a geometric analogue which applies to Gromov-Lawson cobordisms. In particular, we will
prove a slightly stronger version of Theorem I1.34. We begin by discussing some of the topological

implications of conditions (a), (b) and (¢) of that theorem.

II1.4.1 Regularisation of admissible Morse functions
Let f : W — I be an admissible Morse function satisfying conditions (a), (b) and (c) of

Theorem 11.34. Recall these conditions are as follows.

(a) The function f has exactly 2 critical points w and z and 0 < f(w) < f(z) < 1.
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(b) The points w and z have Morse index p 4+ 1 and p + 2 respectively.

(c) Foreacht € (f(w), f(2)), the trajectory spheres S7 , (w) and Sf_tl(z) on the level set f~1(t),
respectively emerging from the critical point w and couverging toward the critical point z,

intersect transversely as a single point.

Let K?"(w) € f~1([0, f(w)]) denote the inward trajectory disks of w. This disk is bounded by a
trajectory sphere which we denote S” C Xo. Let t € (f(w), f(2)). Emerging from w is an outward
trajectory disk K f‘:l (w) € f='([f(w),t]) which is bounded by an outward trajectory sphere S{ | C
F7(t). Similarly, associated to z is an inward trajectory disk K27 (w) € f~([t, f(z)]) bounded by
an inward trajectory sphere Sﬁtl C f7(t) and an outward trajectory disk K¢ (z) C f~1([f(2),1])
bounded by an outward trajectory sphere Si—l C X1. We define a smooth trajectory arc «y :

[f(w), f(2)] — W by the formula

w, when t = f(w)
) =4 58, 5P, when t € (f(w), £(2))

z, when t = f(z).

Condition (¢) means that for each t € (f(w), f(2)), the intersection Sf, N S} *1 is a single point
and so this formula makes sense.

The embedded sphere S* in X x {0} bounds a particular embedded disk which we denote
DP*!. This disk is determined as follows. Let ¢ € (f(w), f(2)). Each point in ST\ y(t) € f~1(t)
is the end point of an integral curve of V' beginning in Xo. Thus, applying in reverse the trajectory

flow generated by V, to S} 1\ ~(¢), specifies a diffeomorphism
SPHI\ y(t) — D C Xo.

The boundary of this disk is of course the inward trajectory sphere S? which collapses to a point
at w.

Let N, and N, denote respective tubular neighbourhoods in X of the sphere S and the
disk DP*! with respect to the background metric m. We will assume that N,, C N,. Note that IV,
is topologically a disk and the radii of these neighbourhoods can be chosen to be arbitrarily small.

Each point z € Xo \ N, is the starting point of a maximal integral curve v, : [0,1] — W of V,
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which ends in X;. As before, this gives rise to an embedding ¢ : (Xo \ N,) x I — W. We denote
by U, the complement in W of the image of this embedding. The region U contains both critical
points w and z, the trajectory disks KT (w) and K{(z) as well as the trajectory arc v; see Fig.
II1.8. It is immediately clear that U is diffeomorphic to N, x I, however, the gradient-like vector
field V has zeroes in U and so we cannot use its trajectory to construct an explicit diffeomorphism

here in the way we can outside of U. It is possible regularise the admissible Morse function f,

Xo X,
Figure III.8: The neighbourhood U, diffeomorphic to the cylinder N, x I
replacing it with an admissible Morse function f’ which agrees with f on W\ U and near X, and
X1, but which has no critical points. This is Theorem 5.4 of [30]. The key point, which requires

much work to show, is that there is a coordinate neighbourhood U’ € U, containing the trajectory

arc v, on which f|y takes the form

RxR* —R

s n—2
(z,2) — 2% + 3yz — me + Z %,
i=1 1==s+1

for some constant y < 0. This function can then be regularised as in the previous section. The

effect of this regularisation on the gradient-like vector field V, replacing it with a non-vanishing
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vector field V7 which agrees with V on W \ U and near X, and X1, is shown schematically in

Fig. II1.9. The map ¥ can now be extended to a diffeomorphism ¢ : X x I — W, satisfying

Ll
Crerr

Figure IIL9: The gradient-like vector fields V and V’

oz, t) =t and providing a foliation of U with leaves which are diffeomorphic to N;. We now

turn our attention to an important geometric analogue of regularisation.

II1.4.2 A geometric analogue of regularisation

We retain the notation of the previous section. As before, f : W — I is an admissible
Morse function which satisfies conditions (a), (b) and (¢) of Theorem IT.34. Furthermore 4, U, f', V'
and 9/ are as defined above.

Let g € Riemt(Xy) and let § = g(g, f) be a Gromov-Lawson cobordism on W. This
metric is constructed so that on W\ U, gly\v = gol Xo\N; T dt?, the t coordinate coming from the
identification ¢ : (Xo \ N;) x I — W\ U. Also, near Xy and X1, the metric has respectively the
product structure g + dt? and g” + dt?, where g’ is obtained by two applications of the Gromov-
Lawson construction to g. Inside U, and away from W, the metric g has a more complicated
structure. Later on we will wish to describe certain families of these metrics. It will then be useful
that our metrics have a more regular structure in this region. This is the goal of Theorem III.2.
Here we replace g with a “regularised” metric §’. This metric agrees with g on W\ U and also

near OW, but takes the form of a particular warped product metric.
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Theorem TI1.2. Let g € Riem™ (Xo) and let f : W — I be a smooth map satisfying conditions
(a), (b) and (c) of Theorem I1.34. Let § = g(g, f) be a Gromov-Lawson cobordism with respect to g
and f. Finally, let co and ¢ be constants satisfying 0 < ¢g < f(w) < f(2) < ey < 1. There exists

a diffeomorphism ¢ : Xo x I — W and a psc-metric § on W satisfying the following conditions.
(i) On (W\U)U(F1([0,¢0])) U(f7([e1,1])), the composition f o) satisfies f oz, t) =t.
(i) On WA\ U(F720,c0)) U (f~([er, 1)), the metric §' satisfies § = .

(iii) There exists a smooth family of psc-metrics hy, fort € I in Riem™ (Xo) and a smooth function

a:[0,1] — [1,00), so that ¥*(§") = he + a(t)?dt?.

Proof. The diffeomorphism 1 is precisely the one described in the previous section. As explained
above, the first critical point of f, w, determines a p-dimensional embedded surgery sphere S? in
X x {0} bounding a disk DP* which is determined by the second critical point z. More precisely,
as we follow the trajectory with respect to V, of D the effect of passing the first critical point
w is to collapse the boundary of this disk. This in turn gives rise to the inward trajectory sphere
S{iil C f(¢), with t € (f(w), f(2)), of the second critical point z. Recall that N,, and N, denote
respective tubular neighbourhoods of S? and DY in Xo, with N, C N,.

The restriction of the metric § = g(g, f) to the level sets f =0, f = c and f = 1, where
flw) < e < f(2), is shown schematically in Fig. II1.10. The induced metrics are denoted g, ¢’ and
g” respectively. The constant ¢ can always be chosen so that the metric ¢’ is the metric obtained
by a single application of the Gromov-Lawson construction with respect to the sphere S?. Thus,
outside of the neighbourhood N,, the metric ¢’ is precisely the original metric g|x,\u,, . Finally,
the metric g” is obtained by application of the Gromov-Lawson construction to the metric ¢’ with
respect to the trajectory sphere S?*!. The restriction ¢”| X\, = 9lx\w, -

In Theorem 11.34, we construct a smooth isotopy gs,s € [co, ¢1], in the space Riem™(X),
which connects the metrics g and ¢g”. That is, g, = g and g., = ¢g’’. Moreover, this isotopy fixes
the metric g on X \ NV, ie. gs|x\wv,) = 9l(x\w,), for all s € I. By Lemma II.1, there exists
a smooth bump function v : [0,8] — [0,1] of the type shown in Fig. III.11 so that the metric
gy + dl? is a psc-metric on X x [0,b]. In particular, v = 0 on [0, k;] and v = 1 on [kg,b]. The
metric g,y + dI? pulls back to a psc-metric by + (1(£)%dt? on X x [co, ¢1], where  : [eg, ¢1] — [0, 8]

is the smooth map shown in Fig. TIL.11 and hy = g, (u())- The function u can be chosen so that
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Figure III.10: The metrics g,¢" and ¢” induced by restriction of g to level sets f = 0, f = ¢ and
f=1

C1

Co

Co C1

Figure II1.11: The functions v and p
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ft = 1 when u is near ¢y and ¢;, and so this metric is a product near the boundary. Thus, it

extends smoothly over X x I, giving rise to the the metric h, defined

g+ dt?, on X x [0, co]
h= he + 1(t)2dt?, on X X [co, 1]

g’ + dt?, on X X [e1,1].

The metric k can now be pulled back onto W via the diffeomorphism %~ to obtain the desired

metric g'. O

1t is not difficult to generalise this notion of regularisation to a Gromov-Lawson cobordism
arising from an admissible Morse function with many critical points. T'wo critical points w and z
of f are said to be in cancelling position if they satisfy conditions (a), (b) and (c) of Theorem II.34.
We descibe as a cancelling pair, any two critical points of f which can be moved into cancelling
position by a smooth isotopy of f in the space of admissible Morse functions. Now suppose f is an
admissible Morse function so that every cancelling pair of critical points is in cancelling position.
Denote these cancelling pairs {(w;, zi)}ﬁ-:l and denote by ~;, the trajectory arc connecting w; to

z;. Let ¢ : D™ x [az,b;] — W denote a family of embeddings which satisfy the following.
(1) The images of the maps 1, are disjoint.
(ii) Each trajectory arc ; is contained inside the image of ;.

(iif) The constants a; and b; are chosen so that 0 < a; < f(w;) < f(z) < b; < 1 and so that
F~Y([ai, f(w;))) and f71(f(z;), b;] contain no critical points.
(iv) Near (D™ x {a;}) U(D™ x {b;})U (8D™ x I), the composition fo; is projection onto [a;, b;].

Corollary II1.3. Let i(go, f) be a Gromouv-Lawson cobordism with respect to an admissible Morse
function f and a psc-metric go on Xg. Suppose also that all cancelling pairs of critical points of
f are in cancelling position. Then there is a psc-metric § = §'(go, f) on W and a collection of

embeddings ¥; - D™ X [a;,b;) — W satisfying eonditions (i), (i), (i) and (iv) above so that:
(1) The metrics g and §' agree on W \ |J; (D™ x [a;, b;])

(2) The metric Y} (§' |y, (D x[as,b:))) 18 @ warped product hi+a;(t)?dt? where each hf € Riem™ (D™)

and ¢ : [a;, b)) — [1,00) is the constant function 1 near a; and b;.
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Proof. By Theorem 5.4 of [30], the embeddings ; may be chosen to allow for a regularisation of
the function f. In other words, the admissible Morse function f can be replaced by an admissible

Morse function f’ which satisfies the following conditions.
(i) On WA\ U, vi(D™ x [as, bs]), f' = f.
(ii) For each 4, the composition f’o1); is projection onto [a;, ;] C I.

The proof then follows by application of Theorem I11.2 inside each neighbourhood v; (D™ X [ay, bi]).
OJ

The metric §’ constructed in this corollary will be called a regularised Gromov-Lawson cobordism
g

with respect to go and f.

II1.4.3  Arc-length dependent regularisation

We will now describe a slight variation of the construction from Corollary II1.3 which will
be of use when we come to prove our main theorem. Let f : W — [ be an admissible Morse function
satisfying conditions (a), (b) and (c) of Theorem I1.34. Let L denote the length of the trajectory
arc vy connecting the critical points w and z, with respect to the reference metric m. Now consider
the metric g’ obtained by Theorem IIL.2 with respect to f and a psc-metric gg € Riem™(Xg). Ou

f*[co,c1]) N U, this metric takes the form

7 = Guiuay + A(t)?de?,

where t € [cq, ¢1] is the coordinate coming from the regularised trajectory flow and v and p are the
functions defined in the proof of Theorem III.2 and shown in Fig. III1.11. Let £ : [0,00) — [0,1]
be a standard cut-off function so that for some interval [eg, €1], £(s) = 0 when s < ey and £(s) =1

when s > ¢;. Let h(L) denote the metric defined

go - dt?, on X x [0, co)
ML) =4 ge(wuuien + 4(D)*dE?, on X x [eo, e1]

9¢(Lye, + dt?, on X x [e1,1}].
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This metric can be pulled back to a psc-metric on W by the regularised trajectory diffeomorphism

Y 1 Xo x I — W as in Theorem II1.2. We denote the resulting metric g'(L).
Lemma II1.4. The metric g'(L) has positive scalar curvature.

Proof. By construction, the metric g, 1) + ,[L(t)zdtz has positive scalar curvature, although it is
worth recalling that the positivity of the scalar curvature depends upou the fact that the function
v :[0,b] — [co, 1] has beeﬁ chosen so that || and |¥] are small. It is therefore enough to ensure
that for each L, |4 (¢(L)v)| < |4v| and Idifg(g(L)uﬂ < |%2gy\. This follows from the fact that

0<co<é(L)<er <1 O

Thus, when L is very small, the metric §'(L) is just the standard product go +dt2. As the
length L varies from €g to €1, we get a smooth transition through positive scalar curvature metrics
back to the metric §’. It is important to realise however, that the replacement of the metric g’
with the metric §’(L) changes the metric on f~1([e1, 1]). This is unlike the construction of g’ from

g, where the metric was only altered locally; see Fig. 111.12.

X1
9oy + dt? e(Lyer +dt%
....... z z I
5] . . .
' go + dt? go + dt?
Y
co
go + dt?
Xo

Figure II1.12: The metrics § and §'(L) with the shaded region representing U and the darkly
shaded region denoting where these metrics differ
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II1.5 Families of Regularised Gromov-Lawson Cobordisms

In this section we will prove our main technical theorem.

I1.5.1  Admissible wrinkled maps

Let Wt be as before and let E**+1 and QF be a pair of smooth compact manifolds of
dimension n+ 1+ k& and k respectively. The manifolds F and @ form part of a smooth fibre bundle
with fibre W, arising from a submersion 7 : £ — Q. We will assume also that the boundary of
E, 9F, contains a pair of disjoint smooth submanifolds £y and F;. The restriction of 7 to these
submanifolds is denoted 7y and m; respectively. These maps are still submersions onto ¢ and
give rise to a pair of smooth subbundles of 7 with respective fibres Xy, X; € W. These form the
comminutative diagram represented in Fig. 111.13.

X By

1

To

v v

=
Xo Eq
Figure II1.13: The smooth fibre bundle 7 and subbundles 7; where ¢ = 0, 1.

The union of tangent bundles to T(r~1(y)) over y € @ forms a smooth subbundle of TE,

the tangent bundle to E. This subbundle is denoted Vert.

Definition ITL.8. A smooth map f: £ — @ x I is said to be moderate if it satisfies the following

conditions.
(i) The diagram shown in Fig. I11.14 commutes, where p; is projection on the first factor.
(ii) The pre-images f~1(Q x {0}) and f~1(Q x {1}) are the submanifolds Fy and E; respectively.

(iii) The singular set 2 f is contained entirely in E'\ (EyLIE;) and is a union of folds and wrinkles.
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Y41

Q

Figure II1.14: The moderate map f

(iv) For each y € Q, the restriction f|,-1(,) is a generalised Morse function whose critical points

have index <n — 2.

Let V be a vector field on E. We say that V is gradient-like with respect to f and m if

for each y € @, the restriction V|1, is gradient-like with respect to f| -1¢,y and m[—1(,.

Definition I11.9. An admissible wrinkled map is a triple f = (f,m,V) where f is a moderate
map with respect to the submersion 7 : £ — @, m is a Riemannian metric on F and V is a

gradient-like vector field on E with respect to f and m.

Example IIL.5. Let 7 : T.5* — S denote the tangent bundle to the sphere S%. Equipping S4 with
a Riemannian metric allows us to define an annular bundle E = D1 (T'54)\ Do(T'S*) — 5%, where
Do(TS*) C D1(T'S*) are disk bundles. The total space E can now be thought of as a product of
sphere bundles Sp(TS*) x I and we may define a function f on this space as f(z,t) = (7(x),t). In
this case, £f = (. On any local trivialiation, 771(D%) = D? x $ x I where D* C §%, it is easy to
replace the function f with one which contains a wrinkle inside 771(D*) and which agrees with f

outside of this neighbourhood.

For a more interesting example, where f has only fold singuarities, see section 5.a of [11].
A minor modification to the example there results in a non-trivial S™ x I bundle E over a sphere

Q = S* with f restricting on each fibre as a Morse function with a pair of cancelling critical points.

II1.5.2 The main theorem of Part Two
We are now in a position to state our main theorem. This will allow us to describe a family
of regularised Gromov-Lawson cobordisms arising from admissible Morse functions with varying

numbers of critical points.
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Theorem II1.6. Let f be an admissible wrinkled map with respect to the submersion m: E — Q.
Let go : Q@ — Riem™(Xy) be a smooth map parameterising a compact family of psc-metrics on
Xo. Then there is a metric G on the total space E which, for each y € Q, restricts on the fibre
7~ (y) to a regularised Gromov-Lawson cobordism §'(go(y), fla—1(y)). In the case when the bundle

m: E — Q is trivial, there exists a smooth map

Q — Riem™ (W, 0W)

y > g'(y),
where each §'(y) is a reqularised Gromov-Lawson cobordism.

The metric G will be constructed in a method which is quite similar to that employed in
the proof of Theorem I1.23. We begin by equipping the boundary component £y with a particular
Riemannian metric Gy. Using the trajectory flow of the gradient-like vector field V', we extend Gy
as a product metric away from critical points of f. Near critical points of f, some modification
must be made. Roughly speaking however, the entire construction goes through in such a way
that the restriction to any fibre, is the construction of Corollary II1.3.

Before beginning the proof, we need to make some observations about X f. The singular
set L f forms a smooth k-dimensional submanifold of F, with possibly many path components;
see Fig. TIL.15. These path components are either folds or wrinkles of f. The condition that
flr=1(y) is & generalised Morse function, for all y € @, puts some further restrictions on the types

of singularities that can occur. Near any fold singularity, f is equivalent to the map

RF x R*+! — RF xR
s n—k+1 (11151)
(¥, @) — <y,—Zz¢2 + > '77’1‘.2) ,
i=1 i=s+1
for some s € {0,1,...,n —2}. The index s will be consistent throughout any particular fold of f

and so such a fold may be regarded as an s-fold. Each wrinkle is contained in a neighbourhood in
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which f is equivalent to the map

RFEXR xR — RF xR

s n—k+1
(y’z7x)’—) (yaz;23+yl.z*zmi2+ Z miQ) .
=1

i=s+1

where in this case s € {0,1,...,1n - 3}. In both cases, regions parametrised by the R* factor are

mapped diffeomorphically onto their images in @, by «.

>

O ;
R
\\

- s
\

Figure III.15: The singular set % f

The background Riemannian metric m on E gives a reduction of the structure group on
Vert to SO{n + 1). There is a further reduction of this structure group on folds of f. Suppose
F c Xf is a fold of f. In other words, near any point in F, f is locally equivalent to the
map (II1.5.1). The fold F is thus a smooth k-dimensional submanifold of E, and each point
w € F is an index s Morse singularity of the function f|,-1(r@p)). In keeping with our earlier
notation, we will assume that s = p+ 1 and that p+ ¢ + 1 = n. Associated to each tangent space
Verty, = Twr Y{m(w)) of w € F is an orthogonal splitting (with respect to m) of the tangent
+

space into positive and negative eigenspaces of the Hessian d? f,,. We denote these spaces Vert}

and Vert,. They have respective dimensions p + 1 and ¢ + 1 and give the restriction of Vert to
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the fold F' the structure of an SO(p + 1) x SO(g + 1)-bundle.

II1.5.3 The proof of the main Theorem

We now proceed with the proof of Theorem III.6.

Proof. Let my denote the restriction of © to Ey = f=1(Q x {0}). Recall this is a subbundle of
I with fibre Xo. Let H be an integrable horizontal distribution for the submersion 7 : £ — Q.
The restriction of H to Ey is an integrable horizontal distribution for the submersion g, which
we denote Hy. We begin by giving the bundle ng, the structure of a Riemannian submersion
mo : (Eo,Go) — (Q,mg). Here Gy is the unique submersion metric with respect to mg, the
distribution Hy and the smooth family of fibre metrics specified by the map go : @ — Riem™(Xo);
see chaper 9 of [2] for details. Since Hy is an integrable distribution, we get that Go is (locally at
least) isometric to mq + go(y); see section 9.26 of [2].

Now consider integral curves of the gradient-like vector field V starting at Ey. As L f is
contained entirely in the interior of F, all of these integral curves run for some time and so we

may specify a diffeomorphism

¢o : By % [0760] - f_l(Q X [0,60])

(U}, t) [— (hw(t)))

for some dy € (0, 1), where h,, is the integral curve beginning at w. In particular, fogy is projection
onto [0, &]. Each fibre metric go(y) on 75 '(y) can now be extended fibrewise as a product metric
go(y) + dt? along 7= 1(y) N f~1(Q x [0,80]), in the manner of the proof of Theorem II.23. The
restriction of H to f~1(Q x [0, dg]) allows us to glue these fibre metrics together and so extend Gy
as a submersion metric over f~1(Q x [0,d0]). We may continue extending Go over E in this way
until we encounter elements of X f and can no longer extend some of our integral curves. At this
stage we must adapt our construction. There are two cases to consider here, either we run into a

fold of f or we encounter a wrinkle.

I1.5.4 Case 1: Extending the metric past a fold of f
Suppose that for some ¢ € (0,1), the level set f~1(Q x {c}) contains a fold F. It could

contain more than one fold or even a cusp, but as folds and wrinkles are disjoint, it is enough to
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consider the case when this level set contains a single fold. Let §. be chosen sufficiently small so
that 7~3(Q X ([¢ — d¢,¢) U (¢, e+ d¢])) contains no critical points. We will assume inductively that
we have extended the metric Gp to a metric Ge—s, on f=1([0,c — §.]) so that for each y € ), the
metric induced by Ge_s, on 7 1{y) N f~HQ x [0,¢~ §,.]) is a psc-metric and is a product near
7 )N F7HQ x {c— 4.}). Our goal is to construct a metric Gers, on f~1(Q x [0,¢+ d.]), so
that on each fibre 77 1(y) N f~1Q x [0,¢ + d.]), the induced metric has positive scalar curvature
and is a product near the boundary.

Fibrewise, this is precisely the situation dealt with in Theorem I1.23. Thus, on any fibre we
can choose a Morse coordinate neighbourhood of the critical point w and perform a parametrised
version of the Gromov-Lawson construcion on this neighbourhood to extend the metric past the
critical point, exactly as we did in Theorem I1.23. This works perfectly well for a single Morse
critical point. For a family of Morse critical points however, we must ensure compatibility of our
construction over the entire family.

It is important to point out that the construction of Theorem I1.23 depends specifically
on an orthogonal decomposition of the plane R™t! into RPT! x R4t and a diffeomorphism of
R™*! onto a neighbourhood of the critical point so that R?T1 and R?*! parametrise the respective
inward and outward trajectory disks near w. The construction itself is SO(p + 1) x SO(g + 1)
symmetric with respect to this decomposition. Thus, to perform this construction fibrewise over
all critical points in the fold F' we must establish a canonical way of assigning a smoothly varying
diffeomorphism of the type just described for each w € F. This will be done with the aid of the
exponential map (with respct to m) near F.

Denote by Vert(F'), the restriction of the vertical bundle Vert to the fold F. For some
e > 0, let D(Vert(F)) C Vert denote the disk bundle of radius ¢, with respect to the background
metric m. Provided e, is small enough, the exponential map exp,, embeds DVert(F') into E. We
denote by N the tubular neighbourhood of F' that is the image of this embedding. Let w € F' and
let Ny = exp,,(Dy(Vert)) C 7~ (w(w)). We will now make some adjustments to the metric m
and the function f inside this tubular neighbourhood. These adjustments should be thought of as
standardising m and f near the fold.

The decomposition of Vert,, into negative and positive eigenspaces of the Hessian: Vert,
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and Vert!, as w varies over F can be thought of as a smooth ma
w?

SO(n +1)
SO(p+1) x SO(q+1)

Q —

For a definition of this map, see [23]. In turn this gives a smooth family of isomorphisms T, W —
R+ 22 Re+HL x RI+Lwwhich identify each Vert, with RP™! and each Vert} with R¢*!, as w varies

w

over F. Pulling back the Euclidean metric on R?*! results in a smooth family of Euclidean metrics

on the fibres Vert,,, for which the subspaces Vert, and Vert], are orthogonal. The distribution
H (along with the base metric m|r) allows us to glue these fibre metrics together to construct a
submersion metric on the total space Vert(F). Using the exponential map with respect to the
original metric m on the disk bundle DVert(F), we can pull this metric back to the tubular
neighbourhood N. By way of a partition of unity, this metric can then be extended over the rest
of E as the original metric m (with analogous constructions taking place near other folds of F').
Abusing notation, we will retain the name m for this standardised background metric.

Let w € F. Contained in N,, are a pair of trajectory disks D2+ and D& arising from the
vector field V| —1(x(w)) and intersecting orthogonally at w. We may assume that d. is sufficiently
small that f~!(c — §.) is contained entirely in the interior of N. Thus, on each neighbourhood
Ny, the psc-metric induced by G._s, is a product metric defined on a region (diffeomorphic to

SPT1 x DIt1) below the critical level exactly as in Theorem I11.23; see Fig. 111.16.

FHR > (e —6c))

Induced metric on U, N f71([0,c — &.]) is a product here

Figure IIL16: The neighbourhood U, C 7~ !(w(w)) containing the Morse singularity w of
fla=1(rwy)

Using the exponential map, we pull back the metric G.—s, on N N f~[0,c — cs] to the
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bundle D(Vert(F,+1)). We will now work entirely inside D(Vert(Fpy1)). The Inverse exponential
map embeds DPF! and D&F! into Dy, (Vert(Fy41)). Abusing notation, we will retain the names
D+l and DYt for the image disks. Contained inside the vertical tangent disk Dy, (Vert(F)) are
a pair of eigen-disks of the Hessian d2f,, DVert, = Verty, N D(Verty,(Fy41)) and DVert] =
Verty N D(Verty(Fpt1)). These are restrictions of the negative and positive eigenspaces of d?f.
We will now compare DVert} and DVert;, with D2 and D3*! near w; see Fig. I11.17 and Fig.
II1.18.
DVert],

+
Dy,

=

DVert,

Figure II1.17: The images of the trajectory disks D21 and D¢+ in D, Vert(F) after application
of the inverse exponential map

For each w € F, the trajectory disks DE! and DZF! intersect orthogonally at the origin.
Furthermore, (DZF1) intersects tangentially with DVerty,, as does (DEF) with DVert]. Thus,
provided €. is chosen sufficiently small, inside D,,Vert(F) and for all w € F, DE¥! and Dﬁ,‘“ are
the graphs of smooth functions on Verty, and Vert} repectively. The function f can now be easily
perturbed near F' so that inside the disk bundle DVert(F), the eigen-disks DVert,, and DVert;
agree with the respective trajectory disks D2+ and DF!, for all w € F; see Fig. I11.19.

This gives to each w € F, the desired association of disk neighbourhoods D, Vert(F),

each with an orthogonal splitting D, Vert(F) = DVert,, x DVert},, varying smoothly over w.
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Figure II11.18: Comparing the trajectory disks with the eigen-disks (heavy) in D, Vert(F) as w

varies over F

DVerth = D3t!

—_—————

e———

- ————

- - — = —

DVert, = Dp!

Figure II1.19: The shaded region denotes the region of the fibre D, Vert(F) on which the induced

metric is defined.
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Extending the metric fibrewise in the manner of Theorem 11.23 and pulling back via the exponential
map, gives a smooth family of fibre metrics, which, with respect to the distribution H and the

base metric my, give the desired submersion metric on f~1(Q x [0, ¢+ d.]).

I1I1.5.5 Case 2: Extending the metric past a wrinkle of f

We will assume that ¢o € (0,1) is so that all wrinkles of f lie outside of f~1(Q X [0, co))
and so that f~!(Q x {cp}) contains no critical points. From Case 1, we can construct a metric G,
on f~HQ x [0,co]) so that the metric induced on fibres has positive scalar curvature and product
structure near the boundary. Suppose P is a wrinkle of f which is contained in the interior of
F7HQ x [co, c1]) for some ¢) € (cp,1). We wish to extend G, to a metric G, on f~HQ X [co, c1])
so that the once again, the induced metric on fibres has positive scalar curvature and is a product
near the boundary. Away from the wrinkle, we can extend this metric as a standard product in
the usual way. We will focus our attention therefore, on extending this metric near P.

Recall that a wrinkle is a path component P C X f which satisfies the following property.
There is a pair of embeddings 1; : R¥ x R x R® — F and 5 : R* x R — @ x [ so that P is

contained in the image of 4; and so that the composition 1, Lo f o1y is the map w defined

FxRxR* — RExR

p+1 n+1
(y,z,x)ka(yz +3(Jy|? — ZCIZ —{—Zl).

p+2

In these coordinates, the wrinkle P is the k-dimensional sphere given by {22+ |y|? = 1,z = 0} and
the function f is locally a k-parameter family of generalised Morse functions.

We will now regularise the wrinkle P in the manner of Theorem III.1. Let Bgi+1(0,1)
denote the closed ball in R® x R x {0} which is bounded by this sphere. Theorem III.1 now gives

" which for some ¢ > 0 agrees with w outside of

that the map w can be replaced by a map w
Bpe(0,1+¢€) x [-1 —¢,1+¢€] x Bga(0, €) and which has no critical points. Let D* denote the closed
ball Bgk(0,2) in the plane R¥. It follows from the regularisation of w that there is an embedding
¢ : D¥ x [co, 1] x D™ — R¥ x R 50 that the composition pyo f 01); 0 ¢ is projection onto |co, ¢1];

see Fig. I11.20. Here py is projection onto the second factor.

Now, for each y € D*, with |y| < 1, the function f restricts to a Morse function with two
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#(D* x D™ x {co})

¢ f
c1
1
11 |I I Cl ______
1 1 0 co ____O
1 !
D
0
Dk
Q

Figure II1.20: The composition 4, o ¢ parametrises a region containing the wrinkle P
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critical points in cancelling position and connected by a trajectory arc v, given by the formula

Wi [VI—WP VI P — B

t wl(y7t7 O)

Let € denote the cut-off function described in section II1.4.3 with respect to constants ¢g and €
and let L(vy,) denote the length, with respect to m, of the trajectory arc v,. We may assume that
0<e <€ < % where L = suppx (L(7y))-

Equip D x D™ x {¢o} with the metric obtained by pulling back G, lF-1@x{co}) Via Y100
On fibres {y} x D™ x {co}, the induced metric is a psc-metric denoted hy. On each vertical
slice {y} x D™ x [co, ¢1], we extend the metric b, as the metric h,_y'(L), defined in section I11.4.3.
When L < €g, this metric is just a standard product and so this construction transitions smoothly
fibrewise over all of D¥. Near 8D¥, the metric on the fibres pulls back to precisely the one obtained
by standard product extension of the metric G, away from the wrinkle. As |y| decreases, the fibre
metric smoothly transitions into the regularised Gromov-Lawson cobordism obtained in Theorem
II1.2. This is indicated by the smaller darker rectangle in the bottom left drawing of Fig. II11.20.
Outside of this rectangle the metric extends fibreswise as the product hy + dt?. Inside of this
rectangle, the fibre metric is smoothly altered as |y| — €. Pulling back this smooth family of
metrics via 1 o ¢ results, via H and mg in the desired submersion metric G,. This completes

the proof of Theorem II1.6. (I

II1.6 Gromov-Lawson Cobordism and Isotopy

In this section we will consider the psc-metrics obtained on X; via application of the
technique of Theorem 11.23 with respect to a psc-metric go € Riem™ (W) and an admissible Morse

function f. Recall that Theorem I1.23 allows us to construct a psc-metric § = §(go, f) on W which

has a product structure near the boundary. In particular, the metric g1 = g|x, is a psc-metric
on X;. It is worth considering to what extent the metric g, depends on the admissible Morse
function f. In other words, if f, and f; are two distinct admissible Morse functions (with possibly
different numbers of critical points), what can we say about the metrics g1(a) = §(go, fa)|x, and

g1(b) = g(go, f5)? In particular are these metrics concordant or even isotopic? We have already

answered this question in the case when W is a cylinder X x I and X is simply connected with
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n > 5; see Theorem 11.36. In that case g1(a) and g;(b) are always isotopic. In this section we will
show that this result holds for more general W.

In section I11.2.1 we reviewed the notion of an admissible Morse function and described
the space of such functions on W. Recall that 7 = F(W) denotes the space of smooth functions
W — I, so that if f € F, Lf is contained in the interior of W and f~(0) = X and f~}(1) = X,.
Furthermore, F' denoted the space of triples (f,m,V) where f € F, m € Riem(W) and V is a
gradient-like vector field on W with respect to f and m. Contained in F as as open deuse subspace
is the space M of Morse functions. The subspace of M consisting of Morse functions all of whose
critical points have index < n — 2 is denoted M®¥™, The space of admissible Morse functions,
denoted Mad™ = /\;l“’dm(lf 7} is the space of triples {(f,m,V) € F: f € MM} Finally, recall

that M4 is homotopy equivalent to M®¥™,

II1.6.1 The space of generalised Morse functions

Throughout this section, W, Xy and X, are simply connected and of dimension > 5. The
space M is of course not path connected as functions lying in the same path component of M must
have the same number of critical points of the same index. There is however, a natural setting in
which to consider the cancellation of Morse critical points. Let H = H (W) denote the subspace of
F which consists of all generalised Morse functions. Recall that the singular set of a generalised
Morse function consists of both Morse and birth-death singularities and so M C H. It follows
from Theoremn 4.6.3 of [19], that any two Morse functions in M can be counected by a path in H.
Furthermore, all but finitely many points on this path are Morse functions. Note that a great deal
of work has been done in understanding the homotopy type of the space H; see for example [7],
[21] and [23].

We will be particularly interested in generalised Morse functions whose critical points
satisfy certain index requirements. Let H; ; denote the subspace of H consisting of all generalised
Morse functions with only critical points of index between 1 and j inclusively. Of special interest
to us is the space H%™ = Hon_o. Furthermore, let H;; = {(f,m,V) € F : f € H;}. As
before, ﬁ,1 is homotopy equivalent to the space H; ;. The space of admissible generalised Morse

unctions, denoted H™ | is the space Hon—2.
b) 3 y
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I111.6.2 Hatcher’s 2-Index Theorem
It will be important for us to be able to connect up an arbitrary pair of admissible Morse
functions with a path through admissible generalised Morse functions. To do this we will need the

following corollary of Hatcher’s 2-Index Theorem; see Theorem 1.1, Chapter VI, Section 1 of [23].

Theorem II1.7. (Corollary 1.4, Chapter VI, [23]) Under the following conditions the inclusion

map H; ;1 — H, ; is k-connected.
(a) (W, X1) 1s (n — j + 1)-connected.
(b) j=i+2.
(c)n—j+1<n—k—1—min(j —1,k—1).
(d)n—j+1<n—-k-3.
We can now prove the following lemma.

Lemma II1.8. Let {W; Xo, X1} be a smooth compact cobordism where W, Xo and X1 are simply
connected and W has dimension n+1> 6. Let fo, fi € M™ = M@ (W). Then there is a path
s fo, for s €I, in H*¥™ = H"’d'm(VV) which connects fo and fi and which lies in M®¥™ for all

but finitely many points so, ..., s € (0,1).

Proof. The existence of such a path in H which connects fo and f is given to us by Theorem 4.6.3
of [19]. We need to show that such a path can be deformed to one which lies entirely inside He4.

A careful analysis of the statement of Theorem III.7 gives that the inclusions
Hadm = 7_(O,'n—‘.Z — 7_(O,n—l — HO,’VL E— 7_(0,77.+1 =H

are 0, 1 and 2-connected respectively. Note that condition (a) of Theorem III.7 is satisfied by the
existence of fo and f; on W. This gives that any path in H, connecting fy and fi1, can be deformed

into one which lies entirely in 4™, O

I1I1.6.3 An application of Hatcher’s 2-Index Theorem
We will now prove a theorem concerning the problem of how the choice of admissible

Morse function affects the isotopy type of a Gromov-Lawson cobordism.
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Theorem ITIL9. Let {W; Xo, X1} be a smooth compact cobordism where W, Xo and X1 are simply
connected and W has dimensionn > 5. Let fo, f1 € M “‘dm(W). Suppose go and g1 are psc-metrics

lying in the same path component of Riem™ (Xo). If §o = §(go, fo) and g1 = (g1, f1) are Gromov-

Lawson cobordisms, then the psc-metrics go1 = golx, end g11 = §1|x, are isotopic metrics in

Riem* (X1).

Proof. Let g5, s € I denote a path in Riem™(Xp) connecting the metrics go and g;. Recall that
Had™ is homotopy equivalent to H%™. Thus, by lemma IIL.8, there is a smooth path f, in H%%™,
with s € I, connecting fy and fi. It will be useful to regard the family f; as a smooth map f,

defined by

FWxI—IxI

(w7 S) - (S;fs(w))'

Recall that the path f, lies in M%¥™ for all but finitely many points sg,...s € (0,1).
Choose ¢ > 0 sufficiently small so that for all 4 € {0,1...,1}, the intervals (s; — €, 8; + €) are
disjoint subintervals of (0,1). On [0, sp — €], f5 is a family of admissible Morse functions. Thus, by
Theorem I1.25, we can extend the Gromov-Lawson cobordism go = §{(go, fo) as a compact family of
Gromov-Lawson cobordisms g, = §(gs, fs). Similarly, we can do this for all s € I'\|J,(si —€, 8;+¢).

This gives a disjoint collection of paths gs,1 = gs|x, in Riem™(Xy). It remains to show
that these paths can be connected along the intervals (s; — ¢, s; + ¢€). Without loss of generality
we may assume that [ = 0 and that g, 1 is defined for all s except on (sp — €, o + €). Furthermore
we may assume that fs, has only one birth-death singularity at the point (w, sg) € W x I. This
is possible since singularities of a generalised Morse function are isolated. Provided € is chosen

sufficiently small, Lemma 3.5 of [23] gives that there is a coordinate map

Pi(—€e) x RxR® — W x T

(S’ZY"I:) — (ws(zv'x% S))

so that the composition f, o v, is given by the rule

pt+1 n

fso.(z,z) :z3:i:sz—z.7:?+2mi2.
0

pt2
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Thus, the point (w, so) is a cusp singularity of f. The +sz term in the equation above is
determined by the cancellation direction. Without loss of generality we will take it as +sz. Thus,
the admissible Morse function fs,_. contains a pair of cancelling critical points, in cancelling
position and connected by a trajectory arc 7s,-.. These critical points cancel at (w, sp). Replace
the Gromov-Lawson cobordism gs,—. with the regularised arc-length dependent Gromov-Lawson
cobordism g5, _ . (L(so —¢)) constructed in section I11.4.3. Here Ls,_. is the length of the trajectory
are Ys,—e- We will assume that the cut-off function €, associated with this metric, has been chosen
with constants eg and €; satisfying 0 < g < € < L(sp — €). This will ensure that the metrics
Too—c(L) and Gs,—. agree near X x {so}. Similarly, replace gso4c with g, , (L(so + ¢)). Using
the technique of Theorem II1.6, we may now extend the regularised arc-length dependent Gromov-
Lawson cobordism g; (L) to obtain a smooth family of regularised Gromov-Lawson cobordisms
G5(L(8)) over W x [sg — €, o + €]. The restriction of this family to X x [sg — €, sg + €] provides an

isotopy connecting gs,—e,1 t0 Gsgte,1- This completes the proof. O
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APPENDIX A

ISOTOPY IMPLIES CONCORDANCE

We will prove the following lemma from section I1.2, an easy corollary of which is that

isotopic psc-metrics on a smooth compact manifold X are necessarily concordant.

Lemma IL.1. Let gp,r € I be a smooth path in Riem™ (X). Then there exists a constant0 < A <1
so that for every smooth function f : R — [0,1] with |fI,|f] < A, the metric G = gy + dt? on

X xR has positive scalar curvature.

Proof. Choose a point (zo,t0) € X x R. Denote by (z3,...,2}, 251! = t), coordinates around
(20,15}, where xé, ...,z{ are normal coordinates on X with respect to the metric gg(;,). The

respective coordinate vector fields will be denoted 81, ...,0,, 0,41 = 0;. Let V denote the Levi-
Civita connection of the metric G on X x R and let V denote the Levi-Civita connection of the
metTic gy(s,) on X X {to}. All of our calculations will take place at the point (zg,to).

We need to compute the scalar curvature of G in terms of the scalar curvature of the
metric gr,), and the first and second derivatives of the function f. We begin by computing the
Christoffel symbols T’} ; of the connection V. Recall that these are given in terms of the metric G
by the formula

Tt = %G’cl(ajGu + 3G — 0iGyy).

When 4,7,k < n, it is clear that f‘f ;= I"; ;- We now turn our attention to the remaining cases.
Suppose 4,7 <n and k =n+ 1. Then

. 1
FZ;’I = EG"H’"H(O + 0 — 0:Gij(z0, ta))
1 N

- _73r9r(z‘j)($07 F(t0))-1 (to)-



150

When 7 <n and j,k=n+1,

. 1
[iat = 5G" 040 - 0)

=0.

In the case when i,k <n and § =n + 1, we obtain

- 1
F'ﬁn—i—l = Ele(atGil(fEOatO))

:%G“&%mmeﬁd)ﬂ%)

Finally, when k <nand i,j=n+1

- 1
Trtian = 5GM(0+0-0)

=0.

Thus, T and T, | are both O(|f|), while T7#}, =0 =TF,, . Let Kj; and K;; denote the

respective sectional curvatures for the metrics G and gyq,). Viewing X x {to} as a hypersurface

of X x R, the Gauss curvature equation gives us the following formula for K;;, when i, j < n.

Kij = Kij — G(I1(9;, 8), 1185, 0;)) + G((5;, 8;), LDy, 67)),
where II denotes the second fundamental form on X x {to}. In this case,

(85, 8;) = G(V 5,0, Ont1)0nt1

__pn+tl
=700,

Hence,

Ky = Ki; +O( ).

In the case when ¢ < n and j = n + 1, we use the following formula, derived in Proposition A.1

below, for the sectional curvature.

n+1

I AT ) mk i mk i
Ki,n—i—l - a’trn—i-l,n—i-l - ﬂ+1ri,n+1 + Z (Fn-l,-l,n—i-lrik: - Fi,n—i—]rn—i-l,k.)
k=1



151

As the expression

9 L i ;
~On1l g = —51,5(1 L0 gr gty (o, £ (t0)) - f(to),

we obtain

Kint1 = O(f)) +O( /).
Finally, let R denote the the scalar curvature of the metric G, while R denotes the scalar curvature
of gr(e)- It now follows that, at the point (zo, to),

R=R+0(f))+0(/") + o).

This completes the proof. O

Proposition A.1. Let (M,g) be a Riemannian n-manifold. Let (x1,...,2z,) denote a normal
coordinate neighbourhood about a point p. The sectional curvature K;; of the metric g at p is given

by the formula

T
Kij(p) = 055 — ;T + 3 (U5l —THT) -
k=1

Proof. In these coordinates,

9(R(8:,0;)9;, %)

Kij =
N 91955 — 95

where R is the Riemannian curvature tensor for the metric g. At p this simplifies to

Kij(p) = 9(R(8;,0;)05, ;)
= 9(V5,Vas,0; — Va, V5,05, 0:)
= g(Ve,(T%;0k) — Vo, (T56k), 8)
= g(T'*,TL0 + 0,(T%,0k) — TET500 — 9;(TE.6k), 0y)

i i k i k i

4
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APPENDIX B

CURVATURE CALCULATIONS FOR THE SURGERY THEOREM

Below we provide detailed proofs of Lemmas used in the proof of Theorem II.11 from
section 11.3. In particular, Lemma I1.13 is exactly Lemma 1 from [14]. The proof below is due to
Gromov and Lawson although we include details which are suppressed in the original. Lemmas
11.14 and I11.15 are curvature calculations. The resulting formulae arise in Gromov and Lawson’s
original proof of the Surgery Theorem; see [14] or [36].

Let (X, g) be a Riemannian manifold. Fix a point z € X and let D be a normal coordinate
ball of radius ¥ around z. Recall, this means first choosing an orthonormal basis {e,...,e,}
for T, X. This determines an isomorphism E : (x1,...,2,) — z16) + ... + Tpe, from R” to

I is a coordinate map provided we restrict it to an appropriate

T,X. The composition E~1 o exp™
neighbourhood of z. Thus, we identify D = {z € R™ : || < 7}. The quantity r(z) = |z| is the
radial distance from the point z, and S"~!(e) = {z € R™ : |z| = ¢} will denote the geodesic sphere

of radius € around z.

Lemma I1.13. (Lemma 1, [14])

(a) The principal curvatures of the hypersurfaces S*~1(€) in D are each of the form =2 + O(e)

for € small.

(b) Furthermore, let g. be the induced metric on S™1(e) and let go ¢ be the standard Fuclidean

metric of curvature 3—2 Then as € — 0, C%gé — c%go,c = go.1 in the C*-topology.

Below we use the following notation. A function f(r) s O(r) asr — 0 if @ — constant as

r — Q0.



153

Proof. We begin with the proof of (a). On D, in coordinates 1, ..., z,, the metric ¢ has the form
gij(x) = 855 + Zaf’}mkml +O(|z®) = &5 + O(|z)?). (B.1)

This follows from the Taylor series expansion of g;;(x) around 0 and the fact that in a normal
coordinate neighbourhood of p = 0, g;;(0) = d;; and I‘,Z- (0) =0.
Next we will show that the Christoffel symbols of the corresponding Levi-Civita connection

have the form

LY =37 viges + O(z]?) = O(|=)).
Recall that the Christoffel symbols are given by the formula
I"Z = % Zl gkl(gil,j + gili — gij,l)-

Differentiating (B.1), gives
a%igjl =0+ Z a‘;‘f(mséti + Tebgi) + ..

Hence,

git,5 + giri — giz1 = O(|z]).

We must now deal with the g terms. Let (gr;) = I +Y where the I is the identity matrix and ¥
is the matrix (o 2;z; + O(|z[*)). Recall the following elementary fact.
(1+a)yt=1-a+a?—ad+...

Thus we can write

(") =T-Y+Y2-Y3+...

Fach component of this matrix has the form

9" = 8 + O(|z|?).
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Finally we obtain

I = 532 (05 + O(l21)(O(J=2])) = O(|z]).

We will now compute the scalar second fundamental form on tangent vectors to tle

geodesic sphere S"~!(e). Consider the smooth curve o on S™~1(¢) given by
afs) = (ecos £,esin 2,0,...,0).

Velocity vectors of this curve are tangent vectors to $"1(e) and have the form
&(s) = (—sin £,cos 2,0,...,0).

Letting £ denote the exterior unit normal vector field to S"~!(e), we have

and

&(0) = (0,1,0,...,0) = es.

We will now proceed to compute the scalar second fundamental form at a(0). We denote by

A TooyS™H(€) X TagyS™ () — R,

the scalar second fundamental form and by

S To0)S™H(e) = Tu)S™ 1(e),

the shape operator, for the hypersurface S~ 1(e) C D. Recall that,

S(Xa) = —Vx¢,

A(Xo:(O)) Ya(O)) = g(S(Xa(b))r Y)

where X,Y are tangent vector fields on S®~*(¢), and that A only depends on X and Y at p. We
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now compute

= 9(=V &, &)a0)

= —d[g(¢, &)|(a(0)) + 9(Vad, §)aco)
=0+ g(Vad, e)

=ah(0) + 32, ; ak;aal)(0).

The components of the velocity vector are

&) = —gin £, @ =cos 2, al) =0, j>3,
€ € f
while
& = —Leos s,
€ €
Thus,
= (1 1 s (8) A (7 __1 El 1 oim28 1 Gin S B 1 23
(@ + 33, abaDaD)(s) = -2 cos 2 4 of sin® £ — 2a],sin £ cos £ 4 aj, cos? £,
Hence,

(@ + 32, . aha®WaD)(0) = =1 + ady(e,0,...,0) = =% + O(e).

We now have that A(¢(0),(0)) = —1 + O(e). Finally we need to normalise the vector ¢(0). We
can write

A((0), 4(0)) = |&(0)[*A(v, v)

where v is the unit length vector @Eg;r

|6:(0)] = g(&(0), &(0))
= 9(62,62)(5,0,...,0)
= ga2(€,0,...,0)
= boz + (X4 ; aBbarar + O(2*)) (€, 0, ..., 0)
=1+ a33e® + O(|z]*)
=1+ 0(e?).
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We now have that

A(6(0), &(0)) = (1 + O(e?)) A(v, v).

That is

~140(0) = (1 +0(&)Alw,v).

This means that

Alv,v) ==+ 0(e) + O(e?) = —% + O(e).

By an orthogonal change of coordinates (another choice of orthonormal basis {ei,....en}), this
computation is valid for any unit vector. In particular, it holds if v is a principal direction. Hence,
the principal curvatures have the desired form. This proves part (a).

The second part of the lemma is more straightforward. We can compare the induced

metrics g on S™1(¢) for decreasing values of ¢ by pulling back onto S™~1(1) via the map

fe:SPTHL) — 5" (e)

T — €X

Then at a point « where |z| = 1, we have

&12(90(@) = X2, ; 9us(ew)daida;
= Zi,j(éij + 6221,]’ af:}a:kxl)dx,;dmj + € (higher order ternis).

In the C?-topology (that is, in the zeroth, first and second order terms of the Taylor series expan-
sion), % f?(ge) converges to the standard Euclidean metric in some neighbourhood of $"7(1) as
e — 0. As f, is a diffeomorphism, the metric %(g.) is isometric to % f7(g.) and converges (in C?)
to the standard metric in some neighbourhood of S™!(e). This proves part (b) and completes the

proof of Lemma 11.13. O

Recall, in the proof of Theorem I1.11, we deform a psc-metric g on a smooth manifold X
inside a tubular neighbourhood N = SP x D91 of an embedded sphere SP?. Here ¢ > 2. We do

this by specifying a hypersurface M inside N x R, shown in Fig. B.2 and inducing a metric from
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the ambient metric g 4+ dt?. The hypersurface M is defined as

M, = {(y,z,t) € S* x D7) x R: (r(z),t) € v}.

where 7 is the curve shown in Fig. B.1 and r denotes radial distance from S? on N. The induced
metric is denoted g,. The fact that v is a vertical line near the point (0,7) means that g, = g,
near ON. Thus v specifies a metric on X which is the orginal metric g outside of N and then
transitions smoothly to the metric g,. For a more detailed description; see section IL.3. In the

following lemmas we compute the scalar curvature of g..

=

S|

6t te
Figure B.1. The curve 7y

Lemma I1.14. The principal curvatures to M with respect to the outward unit normal vector field
have the form
k ifj=1

Aj = (=1 4+O0(r))sinf f2<j<g+1

v
O(1)sinf ifg+2<j<n.

Here k is the curvature of «y, 8 is the angle between the outward normal vector 1 and the horizontal

(or the outward normal to the curve vy and the t-axis) and the corresponding principal directions

e; are tangent to the curve vy when j = 1, the fibre sphere S7 when 2 < j < g+ 1 and SP when

qg+2<j<n.
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Figure B.2. The hypersurface M in N x R

Proof. Let w = (y,z,t) € SP x D! x R be a point on M. Let | be the geodesic ray emanating
from y x {0} in N through the point (y,z). The surface I x R in N x R can be thought of as an
embedding of [0, 7) x R, given by the map (r,t) — (I,,t) where I, is the point on { of length r from
y x {0}. We will denote by ~y, the curve M Nl x R. This can be parametrised by composing the
parameterisation of v with the above embedding. We will denote by v1,,, the velocity vector of
this curve at w. Finally we denote by 7, the outward pointing unit normal vector field to M.

We now make a couple of observations.

(a) The surface I x R is a totally geodesic surface in N x R. This can be seen from the fact that
any geodesic in [ x R projects onto geodesics in [ and R. But D x R is a Riemannian product

and so such a curve is therefore a geodesic in D x R.

(b) The vector 7 is tangential to [ x R. This can be seen by decomposing n into orthogonal

components

n="nN + R

Here 7 is tangent to NV and ng is tangent to R. Now 7y is orthogonal to the geodesic sphere

S9(r)y, centered at y x {0} with radius r = |z|. By Gauss’s Lemma, we know that ! runs
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orthogonally through S%(r), and so nn is tangent to !. Hence, 7 is tangent to [ x R.

We will now show that ; is a principal curve in M. Let S denote the shape operator for A in
N xR and 87, the shape operator for 7; in I x R. Both shape operators are defined with respect
to 7.
SM ()= —VE>Ey

= (=VEET 4 (—VE*Ept

=-Vo%En 40

= S (1)-
The third equality is a direct consequence of the fact that [ x R is a totally geodesic surface in
N x R. Now as Ty, the tangent bundle of the curve 7, is a one-dimensional bundle, v;,, must be
an eigenvector of S™. Hence, +; is a principal curve. The corresponding principal curvature is of
course the curvature of 7y, which we denote by k.

At w, we denote the principal direction ,,, by e1. The other principal directions we denote

by es,...,en, where es,...,e441 are tangent to the S9(r) factor and e,49,...,e, are tangent to
SP. Recall that the set {ej,...,e,} forms an orthonormal basis for T,,M. The corresponding
principal curvatures will be denoted A\, = k, Ag, ..., Ay, Our uext task is to compute these principal
curvatures.

Let A denote the second fundamental form for M in N x R with respect to the outward
normal vector . Let A" denote the second fundamental form for SP x S9(r) in N, again with

respect to 7, and )\ﬁv the corresponding principal curvatures. When 2 < j <n,

Aj = Alej, €5)
=—g(Vey¥n,e5)
= —g(VY>®(cos 00; - sin 09,), ;)

= ”Q(VgXRCOS 00, e5) — g(Vé\;XRsin 00,,e;).
where 0, and 0, are the coordinate vector fields for the ¢ and r coordinates respectively. Now,

Vgxmcos 00, = cos evgxmat + 8;(cosb) - B,
=cosf-0+0-0
=0.
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However,
VERsin 00, = sin OV R0, + 9;(sin 6) - 0,
= sin HVé\;XR&n +0-8,
= gin HVQJI_XR@T.
Hence,

Aj= —sin Q.Q(Vgxkar-, ej)
=sinf - AV (e;, e5)

:sinz9~)\jN.

We know from Lemma I1.13 that when 2 < j < ¢+ 1, )\j-\r = ~7—1, + O(r). When g+ 2 <j<n,

)\;V = O(1) as here the curvature is bounded. Hence, the principal curvatures to M are

k ifj=1
Aj =9 (=14 0(r)sing f2<j<q+1

O(1)sind ife+2<j<n.

Lemma I11.15.The scalar curvature of the metric induced on M is given by

sin @

RM = RN 4 5in?0-0(1) — 2k - ¢

sin? 6

+2q(q—1) +k-qO(r)sinf.

r2

Proof. The Gauss Curvature Equation gives that

IRM =3, (K4 X))

i<j( i

where KV *R denotes sectional curvature on N x R. Before we continue we should examine KV *E,
When 2 <4, <mn,

NxR _ 1-N
KN*® = KN,



When 2 < j <n,

Kf}lx}R: Rm™M®(e) e5,e5,e1)

= Rm™*R(— cos 00, + sin §0,, e;, e, — cos 08, + sin 68;)

= cos? 6 - Rm™V®(8,,ej,¢e;,0,) +sin® 0 - Rm™V*®(3,, e;, e;,0;)

= cos®0 - Rm™N*®(8,,ej,e;,0,) +sin?6 -0

= cos? 0 - RmN(8,,¢e;,¢;,0,)

=cos’6- K}l ;.
Now,

FRM =3, (EE 4+ a0)

= 3y Ky 4 Dy K+ 0 M

We know from earlier that

nggKng = (1 —sin®0) Y K

Hence,

S KO F 4+ Y e KB = JRN —sin® - RicN(8,,0,).

Next we deal with >, ; AiA;.
2o NN =R D550 A + Dacicicor AN+ Lincicart gracicn NN T Dgracicion M

=k-q(—% +O(r))sin6 + kO(1)sin 6
+q(g — 1)(—3} +O(r))?sin® ¢
+g(—1 + O(r))O(1) sin ¢
+0(1) sin? 6.
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1M _
2R -
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iRN —sin®0- Ric¥(8,,6,)

—q®8Rl 4 k. gO(r)sinf + k- O(1)sin 6
+9(g = D) + O(1) sin’6
—4sin*0 - O(1) + gsin®* 0 - O(r)
+5in?8 - 0O(1)

iRYN —sin®0 - [RicY(8,,0,) + q(g — 1)O(1) + O(1) 4 qO(r)]
—k - q®nf 4 (g —1)820 4 k. qO(r)sin g
+k-O(1)sinf — %Sin2 g-0(1)

ARN +5in? 6. O(1) — [k ¢=22 — k- O(1) sin 4]

gl — 1)L — 4gin29.0(1)]

+k - gO(r) sin 8.

When r is small, this reduces to

RM = RN +sin?0. O(1) — 2k - g¥iné

+2q(q — 1)“;’# + k- qO(r)sin 0.



163

REFERENCES

[1] K. Akutagawa and B. Botvinnik, Manifolds of positive scalar curvature and conformal cobor-
dism theory, Math. Ann 324, no. 4, 2002, 817-840.

[2] A. L. Besse, Einstein Manifolds, Springer-Verlag (Berlin, 1987)

[3] B. Botvinnik and P.B. Gilkey, The eta invariant and metrics of positive scalar curvature, Math.
Ann 302, no. 3, 1995, 507-517.

[4] R. Carr, Construction of manifolds of positive scalar curvature, Trans. AM.S. 307, no. 1, May
1988, 63-74.

[5] J. Cert, La stratification naturelle des espaces de fonctions differentiables reelles et le theoreme
de la pseudo-isotopie, Publications mathematiques de 'TLH.E.S., tome 39 (1970), p. 5-173.

[6] V. Chernysh, On the homotopy type of the space R* (M), Preprint, arXiv:math.GT /0405235

[7] R.L. Cohen, A decomposition of the space of generalized Morse functions, Algebraic topology
and algebraic K-theory (Princeton, N.J., 1983), 365-391

[8] Y. Eliashberg and N.M. Mishachev, Wrinkling of smooth mappings and its applications. I,
Invent. math. 130, 345-369 (Springer-Verlag 1997)

[9] Y. Eliashberg and N.M. Mishachev, Wrinkling of smooth mappings-II Wrinkling of embeddings
and K.Igusa’s theorem, Topology 39 (2000) 711-732

[10] P. Gajer, Riemannian metrics of positive scalar curvature on compact manifolds with bound-
ary, Ann. Global Anal. Geom. 5, no. 3 (1987) 179-191.

[11] S. Goette, Morse Theory and higher torsion invariants I Preprint, arXiv:math.DG/0111222

[12] A. Gray, The volume of a small geodesic bull of a Riemannian menifold, Michigan Math. J.
20 (1973), 329-344.

[13] M. Gromov, Stable mappings of foliations into manifolds (Russtan), Tzv. Akad. Nauk SSSR

[14] M. Gromov and H. B. Lawson, Jr., The classification of simply-connected manifolds of positive
scalar curvature, Ann. of Math. 111 (1980), 423-434.

[15] M. Gromov and H. B. Lawson, Jr., Positive scalar curvature and the Dirac operator on com-
plete Riemannian manifolds, Publ. Math. LH.E.S., no. 58 (1983), 83-196 .

[16] A. Hatcher and J. Wagoner, Pseudo-Isotopies of Cornpact Manifolds, Societe Mathematique
de France (1973).

[17] M. W. Hirsch, Differential Topology, Springer (1980)
[18] N. Hitchin, Harmonic spinors, Adv. in Math., 14 (1974), 1-55.



164

[19] K. Igusa, Higher Franz-Reidemeister Torsion, AMS/IP, Studies in Advanced Mathematics,
Vol. 31, (2002).

[20] K. Igusa, Higher singularities of smooth functions are unnecessary, Annals of Mathematics,
2nd Ser., Vol. 119, No.1 (Jan., 1984), pp 1-58.

[21] K. Igusa, On the homotopy type of the space of generalized Morse functions, Topology 23
(1984), 245-256.

[22] K. Igusa, The space of framed functions, Trans. A.M.S. 301, no. 2, June 1987, 431-437
[23] K. Igusa, The stability theorem for smooth pseudoisotopies, K-Theory 2 (1988) 1-355

[24] D.D. Joyce, Compact 8-manifolds with holonomy Spin(7), Invent. Math. 123 (1996), no. 3,
507-552.

[25] J.L. Kazdan and F. Warner, Ezistence and conformal deformation of metrics with prescribed
Gaussian and scelar curvature, Ann. of Math. 101 (1975), 317-331.

[26] J.L. Kazdan and F. Warner, Scalar curvature and conformal deformation of Riemannion
structure, J. Diff. Geom. 10 (1975), 113-134.

[27] J. Lee, Riemannian manifolds, Springer (1997).
[28] A. Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci Paris, Ser. A-B 257 (1963), 7-9.

[29] J. Lohkamp, The space of negative scalar curvature metrics, Invent. Math. 110 (1992}, no. 2,
403-407

[30] J. Milnor, Lectures on the h-Cobordism Theorem, Princeton Univ. Press (1965).
[31] J. Milnor, Morse Theory, Princeton Univ. Press (1963).

[32] J. Milnor, Remarks concerning spin manifolds, Differential and Combinatorial Topology, a
Symposium in Honor of Marston Morse, Princeton Univ. Press (1965), 55-62.

[33] R. S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1-16.
[34] P. Peterson, Riemannian Geometry 2nd Edition, Springer (1998).

[35] A. Ranicki, Algebraic and Geometric Surgery, Oxford University Press (2002).

[

]
36] J. Rosenberg and S. Stolz, Metrics of positive scalar curvature and connections with surgery,
Surveys on Surgery Theory, Vol. 2, Ann. of Math. Studies 149, Princeton Univ. Press, 2001.

[37] D. Ruberman, Positive scalar curvature, diffeomorphisms and the Seiberg- Witten invariants.
Geom. Topol. 5 (2001), 895-924

[38] R. Schoen and S.-T. Yau, On the structure of manifolds with positive scalar curvature,
Manuscripta Math. 28 (1979), 159-183.

[39] S. Stolz, Simply connected manifolds with positive scalar curvature, Ann. of Math., 2nd Series
136, no. 3 (1979), 511-540.

[40] S. Stolz, Concordance classes of positive scalar curvature metrics, University of Notre Dame
Preprint, http://www.nd.edu/ stolz/preprint.html

[41] H. Whitney, Differentiable Manifolds, Ann. of Math. vol. 37 (1936), pp. 511-540.



