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DISSERTATION ABSTRACT

Adam Layne

Doctor of Philosophy

Department of Mathematics

June 2018

Title: Stability Within T 2-Symmetric Expanding Spacetimes

We prove a nonpolarized analogue of the asymptotic characterization of T 2-

symmetric Einstein flow solutions completed recently by LeFloch and Smulevici. We

impose a far weaker condition, but obtain identical rates of decay for the normalized

energy and associated quantities. We describe numerical simulations which indicate that

there is a locally attractive set for T 2-symmetric solutions not subject to this weakened

condition. This local attractor is distinct from the local attractor in our main theorem,

thereby indicating that the polarized asymptotics are unstable.

This dissertation includes unpublished coauthored material.
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CHAPTER I

INTRODUCTION

This dissertation is concerned with the stability properties of a special class of

expanding vacuum spacetimes. There exist broad conjectures about the expanding

direction behavior of such spacetimes (see Section 1.2), but currently little is known

about some of the most elementary examples. In the special case that the spacetime

has spatial topology T 3, admits two spacelike Killing vector fields, and satisfies a

further technical condition (that the spacetime is polarised, cf. Section 1.1) results

of [LS16] show that there is a local attractor of the Einstein Flow in the expanding

direction. It is natural to ask whether the condition that the spacetime be polarised

is necessary. Do spacetimes on T 3 with two spacelike Killing vector fields necessarily

become approximately polarised? Do they then flow to the polarised attractor?

We partially resolve these questions by analytic and numerical means. Our main

theorem states that solutions which are not polarised will have the expanding direction

asymptotics of polarised solutions if they satisfy a certain weaker condition: that one

of the two conserved quantities of the flow vanishes. See Section 1.1 for the precise

statement of this condition; we will call such solutions B0 or B = 0 solutions. The

conserved quantity B vanishes for all polarised solutions, but setting B = 0 defines a

much larger set. In particular, the set of B = 0 solutions is of codimension one in the

space of all solutions in these coordinates while polarised solutions occupy a set of infinite

codimension.

Our main theorem states that the condition B = 0 suffices to ensure that a solution

has polarised asymptotics. Solutions with B = 0 flow toward polarised solutions, and

thus flow toward the polarised attractor. In the latter portion of the paper, we present

numerical evidence that the condition B = 0 is necessary for the solution to have

polarised asymptotics and flow toward the polarised attractor. There appears to be an
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attractor for solutions satisfying B 6= 0, which shares some formal properties with the

B = 0 attractor. However, such solutions flow away from the B = 0 set, and so the

B = 0 asymptotics appear to be unstable within the set of vacuum spacetimes with

spatial topology T 3 and two spacelike Killing vector fields.

Previous to this work, numerical simulations conducted by Berger [Ber15a, Ber15b]

indicated that all solutions, without regard to the polarisation condition, flowed toward

the polarised attractor. This work relied on a technique for solving the constraints

which was not general. Our contribution to that numerical work has been to solve the

constraints in a random way. This was necessary to demonstrate that earlier simulations

had implicitly satisfied B = 0, and to discover that solutions which did not satisfy this

condition have distinct behavior.

Our stability proof follows the technique of [LS16]. There are, however,

considerable new difficulties introduced by assuming the much weaker condition that

B = 0. We overcome these issues by using a new foliation to make use of a correction to

the energy that differs from those previously considered. All chapters of this dissertation

are joint work with Jim Isenberg and Beverly K Berger.

1.1. The Spacetimes under Consideration, and Their Asymptotics

The class of solutions under consideration here are the T 2-symmetric spacetimes,

which have spatial topology T 3 and two spacelike Killing vector fields. It was shown in

[BCIM97] that these conditions suffice to determine a unique, global, areal foliation of the

spacetime; all such Einstein Flows have a metric of the form

g =el̂−V+4τ
(
−dτ2 + e2(ρ−τ)dθ2

)
+ eV [dx+Qdy + (G+QH)dθ]2 + e−V+2τ [dy +Hdθ]2

where ∂x and ∂y are the Killing vector fields. The area of the {∂x, ∂y} orbit is e2τ , so the

singularity occurs as τ → −∞ and the spacetime expands as τ → ∞. Relative to the
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coordinates t, P, α, λ used in [Rin15], our quantities are given by

V :=P + log t

ρ :=− 1

2
logα

τ := log t

l̂ :=P +
1

2
λ− 3

2
log t.

See the Appendix for a complete concordance of notations between the cited papers and

this dissertation.

There are two quantities associated to the Killing vector fields which, as a

consequence of the equations, are constant: Kx and Ky [Ger71, Ger72]. Any constant

nondegenerate linear transformation of ∂x and ∂y yields an isometry of the spacetime,

and without loss of generality we may perform such a transformation to arrange for one

of Kx or Ky to vanish identically. We denote the nonvanishing constant simply by K.

Then in these coordinates the vacuum Einstein Field Equations reduce to

l̂θ =VθVτ + e2(V−τ)QθQτ

and

Vττ − e2(τ−ρ)Vθθ =− ρτVτ − e2(τ−ρ)ρθVθ + e2(V−τ)
(
Q2
τ − e2(τ−ρ)Q2

θ

)
(1.1)

Qττ − e2(τ−ρ)Qθθ =− ρτQτ − e2(τ−ρ)ρθQθ − 2
(
QτVτ − e2(τ−ρ)QθVθ

)
+ 2Qτ (1.2)

l̂τ + ρτ + 2 =
1

2

[
V 2
τ + e2(τ−ρ)V 2

θ + e2(V−τ)
(
Q2
τ + e2(τ−ρ)Q2

θ

)]
ρτ =

1

2
K2el̂. (1.3)

It is of interest to note that equation (1.3) actually appears as a consequence of the

constraint equations. We, however, take it to be the evolution equation for the quantity
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ρ. The remaining variables G and H satisfy evolution equations which may be integrated

after (V,Q, l̂, ρ) are determined.

The condition Q ≡ 0 is often imposed when studying these solutions in the

collapsing direction. Such solutions are called polarised. A simple class of solutions are

those which are spatially homogeneous (l, V,Q are independent of θ) and satisfy ρ ≡ 0.

Such solutions are called Kasner and form an important class of anisotropic examples.

Let us note that, in our coordinates, polarised Kasner solutions take the form

V = aτ + b, l̂ =
1

2
a2τ + c

for some constants a, b, c ∈ R. Solutions which satisfy only the condition K = 0 (in

this case one can perform a change of coordinates to ensure that ρ ≡ 0) are called

Gowdy. These, too, have been studied extensively in the direction of the singularity. In

the expanding direction, the dynamics of Gowdy solutions are known [Rin17] and appear

to be very different than those of non-Gowdy solutions. Non-Gowdy solutions such that

l̂, V,Q are independent of θ are called pseudo-homogeneous or PH [Rin15]. The future

asymptotics of polarised PH solutions are known to be of the form

|V − (aτ + b)| → 0,

∣∣∣∣l̂ − (1

2
a2τ + c

)∣∣∣∣→ 0, a ∈ (−2, 2).

That is, PH solutions have asymptotics of the same form as a Kasner solution, but the

value of Vτ at τ =∞ is not entirely free. The major accomplishment of [Rin15] is to show

that a solution is PH if and only if
∫
S1 e

ρ dθ is bounded.

Since the future behavior of Gowdy and PH solutions is understood, we will only be

concerned with non-Gowdy, non-PH solutions; that is, solutions with K 6= 0 and
∫
S1 e

ρ dθ
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unbounded as τ →∞. In this case, note that we can shift l̂ by a constant

l := l̂ + log(K2/2)

so that

l̂θ = lθ, l̂τ = lτ

and

lτ + ρτ + 2 =
1

2

[
V 2
τ + e2(τ−ρ)V 2

θ + e2(V−τ)
(
Q2
τ + e2(τ−ρ)Q2

θ

)]
(1.4)

ρτ =el (1.5)

lθ =VθVτ + e2(V−τ)QθQτ (1.6)

Thus the unknowns will be (V,Q, l, ρ) and the evolution equations will be (1.1), (1.2),

(1.4) and (1.5) subject to the constraint (1.6). It is sometimes useful to write equations

(1.1) and (1.2) in the following form:

∂τ (eρVτ ) =∂θ
(
e2τ−ρVθ

)
+ e2(V−τ)+ρ

(
Q2
τ − e2(τ−ρ)Q2

θ

)
(1.7)

∂τ

(
eρ+2(V−τ)Qτ

)
=∂θ

(
e−ρ+2VQθ

)
. (1.8)

As shown in [Rin15], the system has two conserved quantities:

A :=

∫
S1

eρ
(
Vτ − e2(V−τ)QτQ

)
dθ

B :=

∫
S1

eρ+2(V−τ)Qτ dθ.

Definition. Let B0 be the class of non-Gowdy (that is, K 6= 0), non-pseudo-homogeneous

(that is, not all of l, V,Q are θ-independent) solutions for which B = 0.
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We refer to elements of this set with the adjective B0. Pseudo-homogeneous solutions

satisfying B = 0 were shown in [Rin15] to have slightly different asymptotics from general

PH solutions.

1.2. Conjectures Regarding the Limiting Behavior of Expanding Spacetimes

Given the variety of subsets of T 2-symmetric spacetimes which have been

previously considered, it is natural to ask which solutions are stable under the inclusion

into a larger class. We are interested in, for example, the stability in the expanding

direction of polarized T 2-symmetric spacetimes within the class of all T 2-symmetric

spacetimes. Efforts to understand the stability properties of this restricted class

are concentrated on a conjecture due to Anderson, Fischer and Moncrief on the

geometrization of expanding Einstein Flows.

Before describing this conjecture, note that when the curvature is negative there

exist examples (see, eg. [AM04]) of future stable behavior. The case considered in this

dissertation seems to be very different. The Kasner metrics on T 3 are unstable within

the class of Gowdy metrics, which appear to be unstable within the class of all T 2-

symmetric metrics. Given the prevalence of instabilities, symmetric solutions may not

appear to be useful tools in the understanding of the behavior of generic solutions on

compact topologies. Let us state one generic conjecture in the case that Σ has closed

spatial topology. The definition makes use of the notion of proper time distance between

Cauchy surfaces. See [Rin13] for a precise definition of this concept.

Conjecture ([And01]). Let (M, g) be a vacuum spacetime satisfying the following

conditions:

1. (M, g) has a compact spacelike Cauchy hypersurface Σ,

2. the Yamabe invariant σ(Σ) ≤ 0,

3. M is foliated by CMC hypersurfaces exhausting the interval [H0, 0), and
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4. (M, g) is future causally geodesically complete.

Furthermore, let the Cauchy surface of constant mean curvature τ be called Στ , and let

the induced metric on Στ be called g(τ). Let t̂(Στ ) be the proper time distance from Στ to

the fixed surface Σ. Define

h(τ) :=
(
t̂(Στ )

)−2
g(τ).

Then Σ admits a decomposition Σ = H ∪ S, where the union is along 2-tori, such that

1. h converges on H as τ → 0 to a complete hyperbolic metric of finite positive volume,

2. S is Siefert fibered and limτ→0 volh S = 0.

See [FM01] for a similar formulation. As a statement about geometry, the conjecture says

that the Einstein Flow, properly normalized, on CMC surfaces which are not Yamabe

positive, is geometrizing. As a statement about cosmology, note that the hyperbolic

metric which is the limit of h on H is isotropic. So the conjecture states that the

probability that a randomly chosen observer in Σ observes Σ to be locally isotropic

increases to 1 as τ → 0.

The space of examples where this rescaling procedure has been carried out in full is

very small; our work provides an example of stable expanding behavior in the case that Σ

consists of a single Seifert fibered component: Σ = T 3.

1.3. An Outline of This Dissertation

The focus of the current work is to prove a result analogous to the local stability

theorem of [LS16]. In the large, the technique of proof is straightforward and replicates

the technique of that work. That is, we make an ansatz that the means of some of the

metric components and their derivatives are close to their asymptotic values, linearize the

system around these values thereby introducing error terms, and then use a bootstrap
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argument to show that these estimates are improved by the flow as long as the initial

data are close enough to their asymptotic values. As a corollary of the bootstrap, we

obtain strong enough control of the error terms to show that these are negligible as τ →

∞, which finishes the proof.

There is considerable work in determining precisely the right quantities to linearize.

In particular, the right side of equation (1.4) is natural to use as an energy for V and Q.

We compute the derivative of this energy in Chapter II and also make some introductory

definitions. This energy, however, involves time derivatives, which is not desirable. One

thus modifies the energy by a term schematically of the form

∫
S1

fτ

(∫
S1

f dφ− f
)
dθ

which, after differentiating, produces terms of the form appearing in the energy, but

where the time and space components have opposite sign. It is this corrected energy that

we actually use in the stability proof, and so it is necessary to bound the error terms

produced by adjusting the energy by this correction. We define the correction, compute

its derivatives, and compute bounds on the associated error terms in Chapter III. In

Chapter IV we compute the evolution of the energy with the addition of the correction,

and derive a number of bounds on error terms which will appear in the bootstrap proof,

which is contained in Chapter VI. Before proceeding with the bootstrap, however, we

determine in Chapter V which quantities we will linearize and derive a bound on the

distance from a solution to the linearized solution. In Chapter VII, we use the bootstrap

argument to derive bounds on the metric components. Chapter VIII consists of numerical

evidence that the B = 0 attractor is not an attractor for solutions with B 6= 0. Finally,

the Appendix includes a concordance of notations between this document and many of

the previous works concerned with T 2-symmetric Einstein flows.
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CHAPTER II

PRELIMINARY COMPUTATIONS

This chapter is joint work with Jim Isenberg and Beverly K Berger.

Before proceeding with the proof of the main theorem, we define the energy under

consideration and calculate its evolution. First, however, it will be useful to have a

convenient notation for the mean of a function in the θ-direction.

Definition (S1-mean). For f : S1 → R, let

〈f〉 :=

∫
S1

f(θ) dθ.

Note that in [LS16], the authors choose to use the volume form eρ dθ for their mean. Our

choice is almost identical to that used in [Rin15], but we normalize so that
∫
S1 dθ = 1.

Either choice would suffice.

Define the following energy

J :=
1

2

[
V 2
τ + e2(τ−ρ)V 2

θ + e2(V−τ)
(
Q2
τ + e2(τ−ρ)Q2

θ

)]
E :=

∫
S1

eρ−2τJ dθ

and the S1-volume

Π :=〈eρ〉 =

∫
S1

eρ dθ.

Note that equation (1.4) now reads lτ + ρτ + 2 = J . We will use the terms V -energy and

Q-energy loosely to refer to V 2
τ + e2(τ−ρ)V 2

θ and e2(V−τ)
(
Q2
τ + e2(τ−ρ)Q2

θ

)
, respectively.
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One may compute using the evolution equations for V and Q that

∂τ (eρJ) =2eρJ − ρτeρJ − eρV 2
τ − e2V−ρQ2

θ + ∂θ
(
e2τ−ρVθVτ + e2V−ρQθQτ

)
so the energy E evolves by

Eτ =

∫
S1

−ρτeρ−2τJ − eρ−2τV 2
τ − e2(V−τ)−ρQ2

θ dθ.

The terms −eρ−2τV 2
τ − e2(V−τ)−ρQ2

θ appearing here are undesirable for proving energy

inequalities. This necessitates the modification of E by a term which trades V 2
τ for V 2

θ .

This is the main topic of Chapter III.
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CHAPTER III

CORRECTIONS AND THEIR BOUNDS

This chapter is joint work with Jim Isenberg and Beverly K Berger.

Define the correction

Λ :=
1

2
e−2τ

∫
S1

Vτ (V − 〈V 〉 − 1) eρ dθ. (3.1)

Corrections to the energy of essentially this form were used previously in the Gowdy

case [Rin04] and in the existing results on T 2-symmetric spacetimes [Rin15, LS16]. Our

definition differs only slightly from those previously used. Differentiating (3.1) and using

integration by parts yields the two components of the V -energy, but with opposite sign.

This allows us to replace time derivatives by space derivatives, which may be bounded.

At the same time, the correction has better decay properties than the energy, and so we

are able to draw conclusions about the energy in the expanding direction.

To trade V 2
τ for V 2

θ and Q2
τ for Q2

θ, it would be more natural to consider the

corrections

1

2
e−2τ

∫
S1

Vτ (V − 〈V 〉) eρ dθ, and
1

2
e−2τ

∫
S1

e2(V−τ)Qτ (Q− 〈Q〉) eρ dθ

separately as other authors have done. Then, by differentiating the Q-correction one

would hope to obtain terms of the form Q2
τ − e2(τ−ρ)Q2

θ, perhaps with a leading factor.

Our definition exploits the fact that (1.7) contains exactly the expression that we would

like to obtain from the Q-correction.
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Lemma 1. Consider a non-Gowdy T 2-symmetric Einstein flow. The correction defined

in (3.1) evolves by

∂τΛ =− 2Λ +
1

2
e−2τ

∫
S1

−e2τe−ρV 2
θ dθ +

1

2
e−2τ

∫
S1

V 2
τ e

ρ dθ

+
1

2
e−2τ

∫
S1

e2(V−τ)+ρ
(
Q2
τ − e2(τ−ρ)Q2

θ

)
(V − 〈V 〉 − 1) dθ − 〈Vτ 〉

〈
1

2
eρ−2τVτ

〉
.

Proof. We compute straightforwardly using equations (1.7), (1.8) and integration by

parts. From the definition of Λ we have

∂τΛ =− 2Λ +
1

2
e−2τ

∫
S1

(eρVτ )τ (V − 〈V 〉 − 1) dθ +
1

2
e−2τ

∫
S1

Vτ∂τ (V − 〈V 〉 − 1) eρ dθ

=− 2Λ

+
1

2
e−2τ

∫
S1

[
e2τ
(
e−ρVθ

)
θ

+ e2(V−τ)+ρ
(
Q2
τ − e2(τ−ρ)Q2

θ

)]
(V − 〈V 〉 − 1) dθ

+
1

2
e−2τ

∫
S1

Vτ∂τ (V − 〈V 〉 − 1) eρ dθ

=− 2Λ +
1

2
e−2τ

∫
S1

−e2τe−ρV 2
θ dθ +

1

2
e−2τ

∫
S1

V 2
τ e

ρ dθ

+
1

2
e−2τ

∫
S1

e2(V−τ)+ρ
(
Q2
τ − e2(τ−ρ)Q2

θ

)
(V − 〈V 〉 − 1) dθ

− 〈Vτ 〉
〈

1

2
eρ−2τVτ

〉

which completes the proof.

We will modify the energy E by Λ to obtain only spatial terms. It will then be

desirable to know that Λ has better decay than E. To that end, note that

‖V − 〈V 〉‖C0 .
∫
S1

|Vθ| dθ ≤
(∫

S1

V 2
θ e
−ρ dθ

)1/2

Π1/2 ≤ (ΠE)1/2. (3.2)

As is standard (cf. [RS14]), we use the notation f . h to mean that there is a constant

C ≥ 0 which is independent of the solution under consideration, such that f ≤ Ch. If
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a constant depends on the solution or the time at which we specify initial data, we will

explicitly insert it.

One finds the following bound using Hölder’s Inequality.

Lemma 2 ([Rin15], Lemma 72). Consider a non-Gowdy T 2-symmetric Einstein flow.

Then

∣∣∣∣Λ +

〈
1

2
eρ−2τVτ

〉∣∣∣∣ =

∣∣∣∣12e−2τ

∫
S1

Vτ (V − 〈V 〉) eρ dθ
∣∣∣∣ . e−τΠE

For the following bound on the Q correction, cf. [Rin15], Lemma 73 where the

author assumes a uniform bound on Π which we don’t assume here. The proof is

essentially the same.

Lemma 3. For any a non-Gowdy T 2-symmetric Einstein flow,

∣∣∣∣e−2τ

∫
S1

e2(V−τ)Qτ (Q− 〈Q〉) eρ dθ
∣∣∣∣ . e−τe2(ΠE)1/2ΠE

Proof. Note that we have already bounded ‖V − 〈V 〉‖C0 in equation (3.2), and so we may

commute out factors of eV to obtain

∥∥eV (Q− 〈Q〉)
∥∥
C0 =

∥∥∥eV−〈V 〉+〈V 〉 (Q− 〈Q〉)∥∥∥
C0

=e‖V−〈V 〉‖C0e〈V 〉 ‖Q− 〈Q〉‖C0

≤e2‖V−〈V 〉‖C0

(∫
S1

e2VQ2
θe
−ρ dθ

)1/2

Π1/2

≤e2‖V−〈V 〉‖C0eτE1/2Π1/2
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via Hölder’s inequality. So we may compute, using the bound on ‖V − 〈V 〉‖C0 , Hölder’s

inequality, and the definition of E

∣∣∣∣e−2τ

∫
S1

e2(V−τ)Qτ (Q− 〈Q〉) eρ dθ
∣∣∣∣ .e−4τ

∥∥eV (Q− 〈Q〉)
∥∥
C0

∣∣∣∣∫
S1

eVQτe
ρ dθ

∣∣∣∣
.e2‖V−〈V 〉‖C0e−3τE1/2Π1/2

∣∣∣∣∫
S1

eVQτe
ρ dθ

∣∣∣∣
≤e2‖V−〈V 〉‖C0e−τEΠ

.e−τe2(ΠE)1/2ΠE.

We only need the Q correction for the following identity, which follows directly from

the definitions of the conserved quantities A,B:

〈
eρ−2τVτ

〉
= e−2τ

(
A+B〈Q〉+

∫
S1

e2(V−τ)Qτ (Q− 〈Q〉) eρ dθ
)
.

For B0 solutions, however, we use the bound on the Q correction to obtain the following

bound

∣∣〈eρ−2τVτ
〉∣∣− e−2τ |A| . e−τe2(ΠE)1/2ΠE (3.3)

which yields the desired estimate on the correction.

Proposition 1. Fow any a non-Gowdy, B0 T
2-symmetric Einstein flow,

|Λ| − e−2τ |A| . e−τ
(

1 + e2(ΠE)1/2
)

ΠE. (3.4)

We write these last two inequalities in this way merely to show that the bound occurs

with no arbitrary constant in front of e−2τ |A|.

The correction Λ introduces significant new error terms after differentiation.

However, these terms have good bounds, and the modified energy E + Λ has significantly

14



better properties upon comparison to E alone. The evolution of this modified energy is

the focus of the next chapter.
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CHAPTER IV

EVOLUTION OF THE CORRECTED ENERGY

This chapter is joint work with Jim Isenberg and Beverly K Berger.

One would like to show that, up to error terms, Π and E satisfy an ODE. While

this is true asymptotically, it is more useful to compute with an energy which has been

modified by the correction.

One computes that

(E + Λ)τ =

∫
S1

−eρ−2τρτJ − eρ−2τV 2
τ − e2(V−τ)−ρQ2

θ dθ − 2Λ

+
1

2
e−2τ

∫
S1

−e2τe−ρV 2
θ dθ +

1

2
e−2τ

∫
S1

V 2
τ e

ρ dθ

+
1

2
e−2τ

∫
S1

e2(V−τ)+ρ
(
Q2
τ − e2(τ−ρ)Q2

θ

)
(V − 〈V 〉 − 1) dθ

− 〈Vτ 〉
〈

1

2
eρ−2τVτ

〉
=−

(
1 +

Πτ

Π

)
(E + Λ) +

(
Πτ

Π
E −

∫
S1

eρ−2τρτJ dθ

)
−
(

1− Πτ

Π

)
Λ

+
1

2
e−2τ

∫
S1

e2(V−τ)+ρ
(
Q2
τ − e2(τ−ρ)Q2

θ

)
(V − 〈V 〉) dθ − 〈Vτ 〉

〈
1

2
eρ−2τVτ

〉
.

The leading term on the right leads us to the ansatz that Π (E + Λ) (and so ΠE) should

decay like e−τ . Accordingly, define the corrected, normalized energy H := Π (E + Λ). One

computes that

∂τ (eτH) =eτH + eτΠτ (E + Λ) + eτΠ (E + Λ)τ

=eτΠ

(
(E + Λ)

(
1 +

Πτ

Π

)
+ (E + Λ)τ

)
=eτΠ

[(
Πτ

Π
E −

∫
S1

eρ−2τρτJ dθ

)
−
(

1− Πτ

Π

)
Λ (4.1)

+
1

2
e−2τ

∫
S1

e2(V−τ)+ρ
(
Q2
τ − e2(τ−ρ)Q2

θ

)
(V − 〈V 〉) dθ − 〈Vτ 〉

〈
1

2
eρ−2τVτ

〉]
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The ansatz in the local stability proof will be that eτH is of constant order. The

proof is via a bootstrap argument, where we will want to bound all of the terms of

∂τ (eτH) in terms of Π, E,H and τ . The following Proposition deals with each of these

error terms.

Proposition 2. Consider the evolution of a B0 T
2-symmetric solution with initial data

given at time τ = s0. The following estimates hold.

∣∣∣∣Πτ

Π
E −

∫
S1

eρ−2τρτJ dθ

∣∣∣∣ .E ∫
S1

eρ−τρτJ dθ (4.2)∣∣∣∣(1− Πτ

Π

)
Λ

∣∣∣∣ .|A|e−2τ

(
1 +

Πτ

Π

)
+ e−τ

(
1 + e2(ΠE)1/2

)
(Π + Πτ )E (4.3)∣∣∣∣〈Vτ 〉〈1

2
eρ−2τVτ

〉∣∣∣∣ .Cρ(s0)e
−τ
(
|A|+ eτe2(ΠE)1/2ΠE

)
E1/2 (4.4)

and

∣∣∣∣e−2τ

∫
S1

e2(V−τ)+ρ
(
Q2
τ − e2(τ−ρ)Q2

θ

)
(V − 〈V 〉) dθ

∣∣∣∣ .Π1/2E3/2. (4.5)

Proof. For (4.2), using Young’s inequality, we note that

|lθ| ≤|VτVθ|+ |eV−τQτeV−τQθ|

=|e(ρ−τ)/2Vτe
−(ρ−τ)/2Vθ|+ |eV−τe(ρ−τ)/2Qτe

V−τe−(ρ−τ)/2Qθ|

≤1

2

[
eρ−τV 2

τ + eτ−ρV 2
θ + e2(V−τ)eρ−τQ2

τ + e2(V−τ)eτ−ρQ2
θ

]
=eρ−τJ. (4.6)
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Thus we may use the Poincaré inequality to compute that

∣∣∣∣Πτ

Π
E −

∫
S1

eρ−2τρτJ dθ

∣∣∣∣ =Π−1

∣∣∣∣ΠτE −Π

∫
S1

eρ−2τρτJ dθ

∣∣∣∣
=Π−1

∣∣∣∣∫
S1

∫
S1

eρ(φ)eρ(θ)−2τJ(θ) (ρτ (φ)− ρτ (θ)) dφdθ

∣∣∣∣
≤Π−1

∣∣∣∣∣
∫
S1

∫
S1

eρ(φ)eρ(θ)−2τJ(θ) sup
a,b∈S1

|ρτ (a)− ρτ (b)| dφdθ

∣∣∣∣∣
=Π−1Π

∫
S1

eρ(θ)−2τJ(θ) dθ sup
a,b∈S1

|ρτ (a)− ρτ (b)|

.E
∫
S1

ρτ |lθ| dθ

≤E
∫
S1

ρτe
ρ−τJ dθ.

Inequality (4.3) follows directly from inequality (3.4). To prove (4.5), we first

commute out the V -mean.

∣∣∣∣e−2τ

∫
S1

e2(V−τ)+ρ
(
Q2
τ − e2(τ−ρ)Q2

θ

)
(V − 〈V 〉) dθ

∣∣∣∣
≤e−2τ‖V − 〈V 〉‖C0

∫
S1

e2(V−τ)+ρ
∣∣∣Q2

τ − e2(τ−ρ)Q2
θ

∣∣∣ dθ
≤e−2τ (ΠE)1/2

∫
S1

eρe2(V−τ)
(
Q2
τ + e2(τ−ρ)Q2

θ

)
dθ

.(ΠE)1/2

∫
S1

eρ−2τJ dθ

=Π1/2E3/2.

Lastly, for (4.4) recall that ρ is increasing and compute that

|〈Vτ 〉| ≤
(∫

S1

V 2
τ e

ρ dθ

)1/2(∫
S1

e−ρ dθ

)1/2

≤Cρ(s0)e
τ

(∫
S1

V 2
τ e

ρ−2τ dθ

)1/2

.Cρ(s0)e
τE1/2
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and use (3.3). This completes the proof.

Now that we have an energy satisfying a good differential equation with good

bounds on the error, we must proceed to the linearization. This is the topic of the

following chapter.

19



CHAPTER V

LINEARIZATION

This chapter is joint work with Jim Isenberg and Beverly K Berger.

In [LS16], the authors present an argument that certain asymptotic rates of Π, E

should be preferred, based on the assumption that eτH should be of constant order. In

this section we briefly summarize that argument as it appears in our context.

Definition. Let Y :=
〈
el+ρ+2τ

〉
.

Note that we have defined Y so that Yτ = 〈el+ρ+2τ (lτ + ρτ + 2)〉 = 〈el+ρ+2τJ〉. We

want to form a system of ordinary differential equations from the means, however. So we

distribute the integral over the product, introducing the error term Ω. One computes

Πτ =e−2τY (5.1)

Yτ =e2τEYΠ−1 + Ω (5.2)

where

Ω :=
〈
el+ρ+2τJ

〉
− e2τEYΠ−1

is an error term satisfying

|Ω| . e4τE
〈
el+ρ−τJ

〉
= eτEYτ .

Note that our quantity E contains the terms Qθ and Qτ , and so is not identical to the

energy in [LS16]. Nonetheless, the quantities Π, Y, E satisfy similar relations to the
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relations LeFloch and Smulevici’s quantities do. Normalizing, we compute that

∂τ

(
e−τH−1/2Π

)
=e−τH−1/2Πτ − e−τH−1/2Π− 1

2
e−τH−1/2Π

Hτ

H

=
(
e−3τH−1/2Y

)
+
(
e−τH−1/2Π

)(
−1− 1

2

Hτ

H

)
∂τ

(
e−3τH−1/2Y

)
=e−3τH−1/2Yτ − 3e−3τH−1/2Y − 1

2
e−3τH−1/2Y

Hτ

H

=e−3τH−1/2
(
e2τEYΠ−1 + Ω

)
+
(
e−3τH−1/2Y

)(
−3− 1

2

Hτ

H

)
=

(
e−3τH−1/2Y

)
Π2

e2τΠE +
(
e−3τH−1/2Y

)(
−3− 1

2

Hτ

H

)
+ e−3τH−1/2Ω

=

(
e−3τH−1/2Y

)(
e−τH−1/2Π

)2 ΠE

H
+
(
e−3τH−1/2Y

)(
−3− 1

2

Hτ

H

)
+ e−3τH−1/2Ω

=

(
e−3τH−1/2Y

)(
e−τH−1/2Π

)2 +
(
e−3τH−1/2Y

)(
−3− 1

2

Hτ

H

)
+ e−3τH−1/2Ω

+

(
e−3τH−1/2Y

)(
e−τH−1/2Π

)2 (ΠE

H
− 1

)
.

We insert our ansätze that Hτ
H → −1, e−3τH−1/2Ω → 0, and

(
ΠE
H − 1

)
→ 0, to obtain the

ODE

∂τ

(
e−τH−1/2Π

)
=
(
e−3τH−1/2Y

)
+
(
e−τH−1/2Π

)(
−1

2

)
∂τ

(
e−3τH−1/2Y

)
=

(
e−3τH−1/2Y

)(
e−τH−1/2Π

)2 +
(
e−3τH−1/2Y

)(
−5

2

)

which has a fixed point at

Π

eτ
√
H

=
2√
10
,

Y

e3τ
√
H

=
1√
10
.

So we conjecture that the quantities

c :=
Π

eτ
√
H
− 2√

10
, d :=

Y

e3τ
√
H
− 1√

10

21



decay and compute the evolution of these quantities using (5.1) and (5.2). We find that

∂τ

 c

d

 =

 −1/2 1

−5/2 0


 c

d

− 1

2
∂τ log (eτH)

 c

d



−1

2
∂τ log (eτH)

 2√
10

1√
10

+

 0

f(d,c)(
c+ 2√

10

)2 +

(
ΠE

H
− 1

)
d+ 1√

10(
c+ 2√

10

)2 +
Ω

e3τH1/2


︸ ︷︷ ︸

=:Ω̃

where f(c, d) = 1
4c
(
c
(
10c− 10d+ 3

√
10
)
− 4
√

10d
)

has vanishing linear part. In the end,

the following estimate is obtained (cf. [LS16], Proposition 5.1).

Proposition 3. Consider the evolution of a B0 T
2-symmetric solution. Provided the

corrected energy H is positive one has for s ≥ s0∣∣∣∣∣∣∣
 c

d


∣∣∣∣∣∣∣ (s) .e(s0−s)/4

(
es0H(s0)

esH(s)

)1/2

∣∣∣∣∣∣∣
 c

d


∣∣∣∣∣∣∣ (s0) +

∫ s

s0

e(τ−s)/4
(
eτH(τ)

esH(s)

)1/2

|ω(τ)| dτ,

where

|ω| .
∣∣∣Ω̃∣∣∣ .

Quickly note a bound on one of the terms appearing in Ω̃.

Lemma 4. Consider the evolution of a B0 T
2-symmetric solution. The following

estimate holds.

∣∣∣e−3τH−1/2Ω
∣∣∣ .e−2τ |H|−1/2EYτ .
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The proof of this lemma proceeds in the same manner as the proof of inequality (4.2).

The remaining three terms in Ω̃ will be estimated directly. In the next section, we

will perform a bootstrap argument to bound these errors, provided the initial data is

sufficiently close to the asymptotic behavior.
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CHAPTER VI

THE BOOTSTRAP LEMMA

This chapter is joint work with Jim Isenberg and Beverly K Berger.

The technique of proof follows [LS16]. The idea is to impose some smallness

assumptions on the means of the energy, the S1 volume, and their derivatives. We will

then use a bootstrap argument to show that these assumptions are improved. The reason

for obtaining the estimates of Lemma 2 is to bound the evolution of the corrected energy

H. Let us discuss how that proof will go. We have computed ∂τ (eτH) in equation (4.1).

Note that we may bound the right side of that equation by an expression of the form

|∂τ (eτH)| .eτΠEF + F̃ = eτH
ΠE

H
F + F̃

where, using the results of Lemma 2 we can write

F :=
1

E

[
E

∫
S1

eρ−τρτJ dθ + e−τ
(

1 + e2(ΠE)1/2
)

(Π + Πτ )E + Π1/2E3/2 + e2(ΠE)1/2ΠE3/2

]

=

∫
S1

eρ−τρτJ dθ + e−τ
(

1 + e2(ΠE)1/2
)

(Π + Πτ ) + (ΠE)1/2 + e2(ΠE)1/2ΠE1/2 (6.1)

and

F̃ :=eτΠ

(
|A|e−2τ

(
1 +

Πτ

Π

)
+ e−τ |A|E1/2

)
= |A|Π

(
e−τ

(
1 +

Πτ

Π

)
+ E1/2

)
. (6.2)

Note that F and F̃ are nonnegative. We will then be concerned with the quantities

∫ ∞
s0

F (τ) dτ, and

∫ ∞
s0

F̃ (τ) dτ

which will bound the evolution of eτH in the bootstrap proof.
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Lemma 5. There exist M, s0, ε > 0, functions Uε, Lε and an open set of B0 Einstein

Flows satisfying |A| < 1,

|c| ≤ε

|d| ≤ε∣∣∣∣ΠEH − 1

∣∣∣∣ ≤1,

and

M ≤ Lε ≤ es0H(s0) ≤ Uε ≤ε (6.3)

at time τ = s0 such that, for all τ ∈ [s0,∞), the following weaker estimates hold:

|c| ≤ε1/4 (6.4)

|d| ≤ε1/4∣∣∣∣ΠEH − 1

∣∣∣∣ <3 (6.5)

1

2
Lε ≤ eτH(τ) ≤2Uε (6.6)

The rest of this chapter consists of a proof of this lemma. The technique of proof

will be a straightforward “open closed” argument:

1. Suppose estimates (6.4) to (6.6) are satisfied for τ ∈ [s0, s).

2. We will improve each of the five estimates (6.4) to (6.6) at τ = s by choosing ε

small enough and s0,M large enough.
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3. In the course of these estimates, we will define the functions

Uε = es0H(s0) + Cε1/2e−
s0
4

Lε = es0H(s0)− Cε1/2e−
s0
4

which involve ε and s0. We will then need to verify for this Uε, Lε that it is in fact

possible to pick a nonempty open set of initial data satisfying (6.3) by choosing s0

large depending on ε.

6.1. Auxiliary Bootstrap Estimates

From the bootstrap assumptions, we have that

1

2
Me−τ ≤ 1

2
Lεe
−τ ≤ H ≤ 2Uεe

−τ ≤ 2εe−τ ,

and

∣∣∣∣ Π

eτ
√
H
− 2√

10

∣∣∣∣ = |c| < ε1/4,

∣∣∣∣ Y

e3τ
√
H
− 1√

10

∣∣∣∣ = |d| < ε1/4

so

Π .

(
2√
10

+ ε1/4
)
eτH1/2 ≤

(
2√
10

+ ε1/4
)
ε1/2eτ/2 . ε1/2eτ/2,

e2τΠτ = Y .

(
1√
10

+ ε1/4
)
e3τH1/2 .

(
1√
10

+ ε1/4
)
ε1/2e5τ/2 . ε1/2e5τ/2.

Note that (6.5) implies that ΠE . 4H on this interval, which implies that

ΠE . εe−τ . ε, and 1 + e2(ΠE)1/2 . 1 + eε
1/2 ≤ 3

26



for sufficiently small ε. The bound on Π and the fact that Π, Y > 0 together imply that,

for a < −1/2,

∫ ∞
s0

eaτΠτ dτ = lim
s→∞

(easΠ(s))− eas0Π(s0)− a
∫ ∞
s0

eaτΠ dτ . e(a+ 1
2)s0ε1/2,

and

∫ ∞
s0

e(a−2)τYτ dτ = lim
s→∞

(
e(a−2)sY (s)

)
− e(a−2)s0Y (s0)− (a− 2)

∫ ∞
s0

e(a−2)τY dτ

.e(a+ 1
2)s0ε1/2.

6.2. Bound on Λ

To improve inequality (6.5), first Note also that
∣∣ΠE
H − 1

∣∣ = Π
H |Λ|. Then we may use

(3.4) to obtain, for some constant C independent of the solution,

Π

H
|Λ| ≤Π

H

[
e−2τ |A|+ Ce−τ

(
1 + e2(ΠE)1/2

)
ΠE
]

=e−2τ |A|Π
H

+ Ce−τ
(

1 + e2(ΠE)1/2
) Π2E

H
.

For the latter term, note that

Ce−τ
(

1 + e2(ΠE)1/2
) Π2E

H
. e−τ

Π

H
(ΠE) . e−2τ ε

1/2eτ/2

1
2Me−τ

ε . ε1/2e−τ/2.

while for the first summand we estimate in a similar manner

e−2τ |A|Π
H

. e−2τ ε
1/2eτ/2

1
2Me−τ

. ε1/2e−τ/2.

Thus in total we obtain

∣∣∣∣ΠEH − 1

∣∣∣∣ =
Π

H
|Λ| . ε1/2e−τ/2 (6.7)
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which is less than 3 for small ε and large s0.

6.3. An Upper and Lower Bound on H

For the energy H we have the following estimate:

|∂τ (eτH)| =eτΠ

∣∣∣∣(Πτ

Π
E −

∫
S1

eρ−2τρτJ dθ

)
−
(

1− Πτ

Π

)
Λ

+
1

2
e−2τ

∫
S1

e2(V−τ)+ρ
(
Q2
τ − e2(τ−ρ)Q2

θ

)
(V − 〈V 〉) dθ − 〈Vτ 〉

〈
1

2
eρ−2τVτ

〉∣∣∣∣
.eτΠEF + F̃

=eτH
ΠE

H
F + F̃

.eτH(1 + Cε1/2)F + F̃ .

The quantities F and F̃ are the nonnegative quantities defined in equations (6.1) and

(6.2). We then integrate to obtain the following lower bound

es0H(s0)−
∫ s

s0

F̃ dτ − (1 + Cε1/2)

∫ s

s0

eτH(τ)F dτ .esH(s)

and upper bound

esH(s) .es0H(s0) +

∫ s

s0

F̃ dτ + (1 + Cε1/2)

∫ s

s0

eτH(τ)F dτ

and use the integral version of Grönwall’s inequality (note that the quantity es0H(s0) +∫ s
s0
F̃ dτ is nondecreasing in s) to obtain

(
es0H(s0)−

∫ s

s0

F̃ dτ

)
exp

[
−(1 + Cε1/2)

∫ s

s0

F dτ

]
. esH(s), (6.8)
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and

esH(s) .

(
es0H(s0) +

∫ s

s0

F̃ dτ

)
exp

[
(1 + Cε1/2)

∫ s

s0

F dτ

]
. (6.9)

What we want, then, is for
∫ s
s0
F̃ dτ to be bounded in terms of s0 and ε, and for∫ s

s0
F dτ → 0 as ε→ 0. Recall that we have assumed |A| < 1 and note that

F̃ =|A|
(
e−τ (Π + Πτ ) + ΠE1/2

)
.
(
e−τ

(
ε1/2eτ/2 + ε1/2eτ/2

)
+ ε3/4e−τ/4

)
.ε1/2e−τ/4.

so

∣∣∣∣∫ ∞
s0

F̃ dτ

∣∣∣∣ .ε1/2e− s04 . (6.10)

So let Uε := es0H(s0) + Cε1/2e−
s0
4 (C is the constant associated to the . in inequality

(6.10), and does not depend on the solution) and take s0 > 4 log
(

4C√
ε

)
and |H(s0)| <

ε
2e
−s0 . Similarly, let Lε := es0H(s0)− Cε1/2e−

s0
4 . Then it is obvious that

es0H(s0)− Cε1/2e−
s0
4 ≤ es0H(s0) ≤ es0H(s0) + Cε1/2e−

s0
4

and by the choice of s0, we have

0 <es0H(s0)− ε

4
< es0H(s0)− Cε1/2e−

s0
4

es0H(s0) + Cε1/2e−
s0
4 <

ε

2
+
ε

4
< ε.

It is clear that there is an open set of data satisfying these inequalities.
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Inequalities (6.8) and (6.9) become

Lε exp

[
−(1 + Cε1/2)

∫ s

s0

F dτ

]
. esH(s) . Uε exp

[
(1 + Cε1/2)

∫ s

s0

F dτ

]
.

Now we turn to the bound on F .

F =

∫
S1

eρ−τρτJ dθ + e−τ
(

1 + e2(ΠE)1/2
)

(Π + Πτ ) + (ΠE)1/2 + e2(ΠE)1/2ΠE1/2

.e−3τ

∫
S1

eρ+l+2τJ dθ + e−τ (Π + Πτ ) + (ΠE)1/2 + ΠE1/2

.e−3τYτ + ε1/2e−τ/2 + ε1/2e−τ/2 + ε1/2e−τ/2 + ε3/4e−τ/4

.e−3τYτ + ε1/2e−τ/4.

We have previously bounded the integral of the latter term in time by Cε1/2e−
s0
4 , so it

remains to compute

∫ ∞
s0

e−3τYτ dτ . e−
s0
2 ε1/2.

So

∫ ∞
s0

F dτ . ε1/2e−
s0
4 .

Thus, in total for H, we have

Lε
2

3
< Lε exp

[
−(1 + Cε1/2)

∫ s

s0

F dτ

]
. esH(s) . Uε exp

[
(1 + Cε1/2)

∫ s

s0

F dτ

]
≤ Uε

3

2

for sufficiently small ε.
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6.4. Bounds on Π, Y

At this stage, we must improve the bounds on c and d. Let us determine what

the smallness assumptions of Lemma 5 imply for the error term of the ODE system of

Chapter V. Recall the conclusion of Proposition 3: if H > 0, then

∣∣∣∣∣∣∣
 c

d


∣∣∣∣∣∣∣ (s) .e(s0−s)/4

(
es0H(s0)

esH(s)

)1/2

∣∣∣∣∣∣∣
 c

d


∣∣∣∣∣∣∣ (s0) +

∫ s

s0

e(τ−s)/4
(
eτH(τ)

esH(s)

)1/2

|ω(τ)| dτ,

(6.11)

where

|ω| .
∣∣∣Ω̃∣∣∣ =

∣∣∣∣∣∣∣−
1

2
∂τ log (eτH)

 2√
10

1√
10



+

 0

f(d,c)(
c+ 2√

10

)2 +

(
ΠE

H
− 1

)
d+ 1√

10(
c+ 2√

10

)2 +
Ω

e3τH1/2


∣∣∣∣∣∣∣∣

and

∣∣∣e−3τH−1/2Ω
∣∣∣ .e−2τ |H|−1/2EYτ .

To begin with, note that eτH(τ) has both upper and lower bounds, and so both

terms of the form
(
eτH(τ)
esH(s)

)1/2
can be bounded above in terms of Lε and Uε:

∣∣∣∣∣∣∣
 c

d


∣∣∣∣∣∣∣ (s) .e(s0−s)/4

∣∣∣∣∣∣∣
 c

d


∣∣∣∣∣∣∣ (s0) +

∫ s

s0

e(τ−s)/4|ω(τ)| dτ (6.12)

.ε+

∫ s

s0

e(τ−s)/4|ω(τ)| dτ.
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The contribution to the right side of (6.11) from the error term e−3τH−1/2Ω is

∫ s

s0

e(τ−s)/4
∣∣∣e−3τH−1/2Ω

∣∣∣ dτ .e−s/4
∫ s

s0

e−7τ/4
∣∣∣H−1/2Π−1

∣∣∣ΠEYτ dτ
=e−s/4

∫ s

s0

e−11τ/4

∣∣∣∣∣ΠEH 1

c+ 2√
10

∣∣∣∣∣Yτ dτ
.e−s/4

∫ s

s0

e−11τ/4

∣∣∣∣ΠEH Yτ

∣∣∣∣ dτ
.e−s/4

∫ s

s0

e−3τ/4−2τYτ dτ

.e−s/2ε1/2

where we have used the fact that eτH−1/2

c+ 2√
10

= Π−1 and the bootstrap assumptions.

The contribution from
(

ΠE
H − 1

) d+ 1√
10(

c+ 2√
10

)2 is

∫ s

s0

e(τ−s)/4

∣∣∣∣∣∣∣
(

ΠE

H
− 1

) d+ 1√
10(

c+ 2√
10

)2

∣∣∣∣∣∣∣ dτ .e−s/4
∫ s

s0

eτ/4
∣∣∣∣(ΠE

H
− 1

)∣∣∣∣ dτ
.e−s/4

∫ s

s0

eτ/4ε1/2e−τ/2 dτ

.ε1/2e−s/4
∫ s

s0

e−τ/4 dτ

.ε1/2e−s/2

where we have used inequality (6.7).

Turning to f(d,c)(
c+ 2√

10

)2 , we recall that f has vanishing linear part, so

∫ s

s0

e(τ−s)/4

∣∣∣∣∣∣∣
f(d, c)(
c+ 2√

10

)2

∣∣∣∣∣∣∣ dτ .ε1/2
(

4− 4e
s0−s

4

)
. ε1/2e−s/4
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To bound ∂τ log (eτH), note that eτH is uniformly bounded away from 0, and use

the estimates on F and F̃ obtained above to compute

|∂τ log (eτH)| = 1

eτH
|∂τ (eτH)|

.
1

eτH

(
eτH

ΠE

H
F + F̃

)
=

ΠE

H
F +

1

eτH
F̃

.F + F̃

.ε1/2e−τ/4 + e−3τYτ .

So the contribution to (6.11) is

∫ s

s0

e(τ−s)/4
∣∣∣Cs0 (ε1/2e−τ/4 + e−3τYτ

)∣∣∣ dτ . ε1/2e−s/2.

Combining these estimates, we have from inequality (6.12) that

∣∣∣∣∣∣∣
 c

d


∣∣∣∣∣∣∣ (s) .e(s0−s)/4

∣∣∣∣∣∣∣
 c

d


∣∣∣∣∣∣∣ (s0) +

∫ s

s0

e(τ−s)/4|ω(τ)| dτ

.Cs0εe
−s/4 + ε1/2e−s/4

.ε1/2e−s/4 (6.13)

.ε1/4.

Thus we have improved all of the bootstrap inequalities, and the proof is complete.
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CHAPTER VII

ASYMPTOTIC BEHAVIOR

This chapter is joint work with Jim Isenberg and Beverly K Berger.

We are now in a position to present the B0 version of the main result of [LS16].

The primary difference is that the fine grained asymptotics of V and its mean are lost.

Forthcoming work will describe the behavior of V and Q, and the dependence of that

behavior on the conserved quantity B. Given our estimates above, the proof of the

theorem is nearly identical to the polarized case.

Theorem 1. Let C1 > 0 and τmin > 0 be fixed. There exists an ε0 such that if 0 ≤ ε ≤ ε0

and s0 ≥ τmin, for any B0 initial data set satisfying the smallness conditions of Lemma 5,

the associated solution satisfies for τ ∈ [s0,∞)

∣∣eτH − C2
∞
∣∣ .e−τ/4 (7.1)∣∣∣∣Π− 2√

10
C∞e

τ/2

∣∣∣∣ .eτ/4 (7.2)∣∣∣∣Y − 1√
10
C∞e

5τ/2

∣∣∣∣ .e9τ/4 (7.3)∣∣∣∣∣E −
√

10

2
C∞e

−3τ/2

∣∣∣∣∣ .e−7τ/4 (7.4)

|〈l〉 − l| .e−τ/2 (7.5)∣∣∣el − 1
∣∣∣ .e−τ/4 (7.6)∣∣Π−1eρ − eρ∞
∣∣ .e−τ/2 (7.7)∣∣∣∣H − 4√

10
C∞e

τ/2eρ∞
∣∣∣∣ .eτ/4 (7.8)

for some C∞ > 0 and ρ∞ : S1 → R.

Proof. The proof proceeds as in [LS16]. We may, for example, notice that (6.13) implies

that |c|, |d| . e−τ/4. Similarly, we may apply the bounds we have found on F, F̃ to (6.8)
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and (6.9) to find that

∣∣eτH − C2
∞
∣∣ . e−τ/4

for some C∞ > 0, giving (7.1). Combining this with the bound on c, d and rearranging

yields (7.2) and (7.3).

Recall that H = Π(E + Λ) and

|Λ| . e−2τ |A|+ e−τ
(

1 + e2(ΠE)1/2
)

ΠE . e−2τ .

Then combine (7.1) and (7.2) to obtain (7.4). The estimate (7.5) follows from (4.6) and

(7.4).

Once we know that l converges pointwise to a constant, to estimate el let us note

that

e−2τY = Π〈el〉+

(∫
S1

eρ+l dθ −Π〈el〉
)
.

We may then estimate the error term as usual, and combine the estimates on Y,Π to

arrive at (7.6).

For (7.7), we begin by noting that inequality (4.6) implies that

|ρτθ| =
∣∣∣ellθ∣∣∣ ≤ e−3τ

∣∣∣eρ+l+2τJ
∣∣∣ = e−3τYτ

which is integrable over S1 × [τmin,∞). Thus ρ converges to some function ρ∞ as τ →∞,

and we may apply the Poincaré inequality to obtain (7.7).

Finally, (7.8) follows directly from the definition of c and bounds (7.2) and (7.7).
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CHAPTER VIII

NUMERICAL EVIDENCE AND CONJECTURES

This chapter is joint work with Jim Isenberg and Beverly K Berger.

The full Einstein flow is a large, quasilinear system of partial differential equations

about which it is difficult even to make conjectures. This remains true even in the

simplified T 2-symmetric case considered in this work. It has been crucial to this work

to base our conjectures on evidence garnered from numerical simulations of T 2-symmetric

Einstein flows.

Our code is a reimplementation of code previously developed by Berger to simulate

T 2-symmetric spacetimes in the contracting direction, and then later in the expanding

direction. We reimplemented this code in OCaml, and made a number of modifications

to improve the accuracy and speed. Most importantly, we developed code to produce

solutions of the T 2-symmetric constraint equation via a random process, which allowed us

to probe the behavior of generic T 2-symmetric Einstein flows.

8.1. Numerical Methodology

The code consists of two parts which work only for non-Gowdy T 2-symmetric

solutions in the coordinates used here. However, the codes work equally well in in the

polarized, B0, and B 6= 0 cases. With some trivial modifications, the code can be made to

evolve Gowdy solutions, although we do not present any such simulations here. The two

basically independent parts of the code are

1. code to randomly generate initial data which solves the constraint equations and

2. code to evolve an initial data set according to equations (1.1), (1.2), (1.4), and

(1.5).
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We note, however, that it is preferable to formulate both the constraints and the

evolution equations in the form used in [BIW01].

Solving the Constraints Numerically

This code more or less accomplishes a division, but via a spectral decomposition

of the functions. The key is to note that the constraint equation in the coordinates of

[BIW01] is

πPPθ + πQQθ + πλλθ = 0. (8.1)

This can be thought of as a linear equation if one chooses the free data correctly. We

make the ansatz the functions which constitute initial data, P, πP , Q, πQ, λ and πλ,

are approximated by Fourier series of some finite order k. In this case, the constraint

(8.1) becomes a system of quadratic algebraic equations in the Fourier coefficients. One

then chooses some coefficients to be free data, which we choose according to a uniform

distribution on the box [−C,C]m. One could in principle use another distribution; in

our tests, the exponential terms in the evolution equations lead to numerical overflow for

initial data which are too large. Thus, we experimentally determined a value of C which

generates data that is numerically stable on the timescales we can simulate.

If we choose the coefficients correctly, after they are determined what was an

underdetermined quadratic system of equations becomes a linear system with precisely

one solution. We then call BLAS/LAPACK to solve the system, and recover the Fourier

coefficients.

This method of solving the constraints introduces two limitations to our

simulations. First, the probability distribution we use to generate the free data could

be chosen differently. We have already mentioned that this limitation is essentially

a matter of numerical stability. Second, our solutions have finite Fourier order. For
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linear equations, this is a strong restriction; for a recent illustration of the limitation,

see [Rin17] where the behavior of solutions with finite order Fourier expansions differs

qualitatively from generic solutions. Since the flow is quasilinear in the case under

consideration and we solve the system by finite differences, the solution has infinite

support in Fourier space for all times after the initial time. Thus we do not think this

is a strong restriction in our case.

Evolving the Solution

Given a solution P, πP , Q, πQ, λ, πλ satisfying (8.1), we implement a finite difference

scheme to evolve the solution forward in time. We represent S1 by a finite number of

points {θi}ni=1. In practice, we have most often chosen n ∈ {28, 29, · · · , 212}. All of the

plots in Figures 1 through 3 were generated with n = 210. Our numerical scheme is

a reimplementation of a code in FORTRAN written by Berger. This code uses finite

differences which are centered in space and 4th order accurate. In time, the integrator

uses the Iterated Crank Nicolson scheme with exactly 3 iterations [Teu00]. We observe

that the scheme has good convergence properties; as n increases, the errors decrease at

exactly the expected rate.

To obtain confidence that our simulations depict behavior which is generic for

the class under consideration, we simulated on the order of 20 randomly chosen initial

constraints solutions in each of the following classes: polarized, B0, and generic T 2-

symmetric. The qualitative behavior depicted in Figures 1 through 3 is observed to be

the same for all simulations in that class. That is, for example, all B0 solutions have

energies EV and EQ which converge to constants.

8.2. Prototypical Simulations

For a choice of initial data and spatial resolution, the code produces a set of points

{(θi, τi)} and the functions V, Vτ , Q,Qτ , l, ρ at each of these points. From these functions
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of two variables, one can generate various scalar functions of time which reveal qualities

of interest of the flow. Below, we will be interested in the following four quantities:

L :=

∫
S1

l eρ−τ/2dθ, R :=

∫
S1

ρ eρ−τ/2dθ,

EV :=

∫
S1

[
V 2
τ + e2(τ−ρ)V 2

θ

]
eρ−τ/2dθ, EQ :=

∫
S1

e2(V−τ)
(
Q2
τ + e2(τ−ρ)Q2

θ

)
eρ−τ/2dθ,

V :=

∫
S1

Vτ e
ρ−τ/2dθ

First, note that the volume form eρ−τ/2dθ is used to smooth out the graphs (the integrals

will generally oscillate without this normalization).

In Figures 1 through 3, we plot three numerical simulations; one each of polarised,

B0, and fully generic (subject to the restrictions inherent in our numerical method).

τ

τ

FIGURE 1 A typical polarised solution.

τ

τ

FIGURE 2 A typical B0 solution.
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15
τ

15
τ

FIGURE 3 A typical generic solution.

On the left is a plot of Lτ on the horizontal axis and Rτ on the vertical axis. One

can see the rotational sink which is the basis for the local stability proof. It turns out

that Π and Y satisfy better algebraic identities, and these are the quantities used in the

proof. Note that, once the asymptotic regime is reached, all three types of non-Gowdy

solutions demonstrate similar behavior.

In the center plot, we have graphed EV , EQ and EV + EQ against τ on the

horizontal axis. In the polarized case, EQ = 0. Note in the polarized and B0 cases, all

three quantities achieve a limit as τ → ∞. In the generic case, however, the total energy

converges (to the same constant that it converges to in the other two cases) but EV and

EQ do not. These quantities “slosh” energy as τ → ∞, and the amplitude of the sloshing

does not decay. The period of the sloshing is exactly the period of the rotational sink

depicted in the left plot.

This sloshing turns out to lead to an instability in the asymptotics of V . In the plot

on the right is the expression

log |V | = log

∣∣∣∣∫
S1

Vτ e
ρ−τ/2dθ

∣∣∣∣
plotted against τ on the horizontal axis. While V → 0 exponentially for B0 solutions

(and so for polarised solutions as well), V converges to a nonzero constant generically.

This feature has not been observed by other authors, and formed the largest impediment

to our proof of an analogue of Theorem 1 in the generic T 2-symmetric case.
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8.3. A Conjecture Based on the Simulations

In [LS16], the authors are able to determine the first order behavior of the energy

and Π, but also the first order behavior of V and the rate of its decay to the mean value.

We have so far been unable to derive estimates for V and Q in the B0 case. From the

numerics, however, it is clear that there is are constants a,CV such that

∣∣∣∣∫
S1

V dθ − V
∣∣∣∣ = O(e−τ/2), |V − CV τ − a| = O(e−τ/2)

and that

CV =

 0 if B = 0

−1
2 if B 6= 0

.

Other conjectures will be the subject of forthcoming work.
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APPENDIX

CONCORDANCE OF NOTATIONS BETWEEN [BCIM97], [BIW01], [Rin15],

AND [LS16]

This chapter is joint work with Jim Isenberg and Beverly K Berger.

The Einstein flows under consideration in the this work have been studied

extensively, including many important special subsets of solutions. Unfortunately, authors

have used many different coordinates for exactly the same set of spacetimes, and this

document adds yet another set of coordinates. As an aid to the reader who wishes to read

the cited works together, we provide in this appendix a concordance of notations used in

the most frequently cited of these works.

To the best of our knowledge, all of the works in the table rely on the foliation

and equations derived in [BCIM97]. This dissertation, [BCIM97], [BIW01] and [Rin15]

use coordinates for T 2-symmetric Einstein flows which are completely general. The

analysis in [LS16] only applies to polarized T 2-symmetric Einstein flows, and so relies

on the assumption that some metric components vanish identically. In [Rin04], future

asymptotics of Gowdy solutions are derived. The notation used there is exactly the

notation of [Rin15] if one imposes the conditions α ≡ 1,K = 0 so we omit it from the

table.

In the table below, each column uses the notation internal to the document named

in the first row. All of the expressions in a given row are equal. For example, the function

called P in [Rin15] has the expression 2U − logR in [LS16]. Since [LS16] only deals

with polarized flows, the expressions in this column will only be equal to those in other

documents if the polarization condition is imposed.
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