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DISSERTATION ABSTRACT

Michael Gartner

Doctor of Philosopy

Department of Mathematics

December 2019

Title: Naturality In Heegaard Floer Homology

Let Man∗ denote the category of closed, connected, oriented and based

3-manifolds, with basepoint preserving diffeomorphisms between them. We

show that the Heegaard Floer invariants yield functors

HF ◦ : Man∗ → Trans(P (Z[U ]-Mod))

to the category of transitive systems in the projectivized category of Z[U ]-

modules, whose values agree with the Heegaard Floer invariants defined by

Ozsváth and Szabó. In doing so, we will see that these projective functors

actually come from a transitive system, in the projectivized homotopy

category of chain complexes over Z[U ]-Mod, associated to each 3-manifold.

This extends work of Juhász, Thurston and Zemke, who showed that there

are analogous functors

HF ◦ : Man∗ → F2[U ]-Mod
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coming from the Heegaard Floer invariants. We discuss several applications

of these naturality results, and use them to introduce and investigate

an invariant of nonorientable 3-manifolds coming from Heegaard Floer

Homology. This dissertation includes material that has been submitted for

publication.
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CHAPTER I

INTRODUCTION

1.1. Non Technical Introduction

Let us begin by musing on some of the basic ideas with which

topology is concerned. Mathematicians may prefer (and perhaps should be

encouraged) to skip this section.

Topology is a field of mathematics concerned with studying spaces and

shapes. It shares many features with and has deep relations to the (perhaps

more familiar) field of geometry, though it is often concerned with qualities

of a space which do not depend on a particular notion of distance. It turns

out that many foundational results about spaces of interest to topologists,

as well as techniques which have proved to be most useful in studying

these spaces, depend strongly on the dimension of the spaces at hand. In

many regards there is a sort of phase transition in topology at dimension

4, and the techniques which have proved to be most useful, and certainly

most popular, are drastically different in the two regimes. Low dimensional

topology is the study of spaces with dimension less than or equal to 4.

One of the central goals of low dimensional topology is to understand a

particular class of spaces known as manifolds. These are spaces which locally

resemble the Euclidean spaces we are familiar with from our waking lives.

For example, a thin shoelace can be modeled as a 1 dimensional manifold,

since an ant walking along it might be tricked into thinking there are

precisely two directions in which it could walk: forward and backward. Such
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an ant would see the shoelace as resembling a small portion of a straight,

infinite line, i.e. as resembling the 1 dimensional Euclidean space. Of course,

a physical string would have some thickness, so it would be reasonable to

object that this description is not a perfect model.

As another example, consider the surface of the earth. This could be

modeled as a 2 dimensional manifold: an ant walking on its surface would

look at the ground immediately surrounding them to see a two dimensional

plane resembling the two dimensional Euclidean plane. An astute ant

might realize that while they may be convinced that their immediate,

local surroundings resemble 2 dimensional Euclidean space, they should

not conclude that the entire surface of the earth must also resemble it.

This point lies at the heart of the interest in mathematics of the study of

manifolds. Manifolds are locally familiar from our everyday experience, and

are locally amenable to calculations, but nonetheless can have large scale,

nontrivial structure, such as the sphere-like structure of the surface of the

earth.

As a final example, the physical space we inhabit seems to be well

modeled by a 3 dimensional manifold. Regardless of where you are on earth

or in space, locally it seems there is a 3 dimensional Euclidean space of

directions in which you can move: front/back, up/down and left/right.

Someone might justly argue that in fact time is another independent

direction in which we move, so perhaps it is better to say that our space

is well modeled by a 4 dimensional manifold. This line of reasoning is one of

the first principles of our current understanding of large scale gravity. Some
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examples of manifolds and their local structure are displayed in Figure 1

below.

FIGURE 1 An example of a 1-manifold and a 2-manifold. On the top are
the spaces in question, along with a local region in each indicated inside the
dashed circles. On the bottom are depictions of the Euclidean spaces which
model immediate surroundings of the local region.

There are many types of questions about manifolds which are asked

and addressed in the study of low dimensional topology. To give a flavor for

these questions, here are a few:

1. Can we enumerate or list all manifolds of a given dimension?

2. How can we distinguish different manifolds? (e.g. how can we tell

whether the large scale structure of the earth resembles a sphere, a

donut, a piece of paper, or none of these? One answer: Fly a spaceship

around it and take pictures.)

3. How can we distinguish different manifolds using intrinsic

information? (e.g. no spaceships, only measurements we can make

from on the surface of the earth.)
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4. How do spaces interact with other spaces contained within them?

5. How does one do calculus on a manifold?

6. Are there inequivalent ways to do calculus on a given manifold?

To end our discussion and segue into more precise mathematics,

we note that one way to address questions 2 and 3 (and often inform

many other questions simultaneously) is to come up with an invariant of

manifolds. This is an assignment of a mathematical object to every manifold

which has the property that if two manifolds are the same (i.e. equivalent

in an appropriate sense), then the mathematical objects they are assigned

are also the same. The most obvious utility of an invariant is in addressing

questions 2 and 3: if your invariant assigns two different objects to two

manifolds, then the manifolds must also be distinct. In this dissertation, we

will for the most part be concerned with the study of a particular invariant

of 3 manifolds known as Heegaard Floer Homology. This invariant takes the

form of an assignment of an algebraic object to each 3 dimensional manifold,

and as we shall discuss in more detail, it has been studied extensively and

shown to have deep consequences. In particular, it can be used to address all

of the questions mentioned above, as well as many others.

1.2. Mathematical Setting

We now assume background in mathematics and topology, and provide

an outline of some context for our main results. The Heegaard Floer

invariants associated to closed, oriented 3-manifolds were defined in the work

of Ozsváth and Szabó [1]. There it was shown that to each such 3-manifold,
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one can associate an isomorphism class of Z[U ]-module. Furthermore,

cobordisms between 3-manifolds were shown to induce maps between the

invariants [2]. However, there was a gap in the proof of the naturality of

these maps. Showing that these invariants are natural with respect even

to diffeomorphisms is subtle, and involves detailed consideration of the

dependence of the invariants on the choices of Heegaard data, basepoints

and embeddings of Heegaard diagrams involved in their construction.

These subtleties were studied extensively by Juhász, Thurston and

Zemke in [3]. There they explicated a particular type of loop of Heegaard

moves, simple handleswaps, which previous work did not preclude from

potentially yielding monodromy in the Heegaard Floer invariants. Moves

analogous to these simple handleswap moves were previously studied in

detail and suggested as possible candidates for loops with monodromy in

the work of Sarkar (e.g. in [4]). Through a careful analysis of a space of

embedded Heegaard diagrams, Juhász, Thurston and Zemke exhausted all

possible monodromies and obstructions to the Heegaard Floer assignments

being natural with respect to diffeomorphisms, and were then able to

provide a minimal set of requirements which could be checked to verify such

naturality. They then checked that these requirements are satisfied for all

variants of Heegaard Floer homology with coefficients in F2. By building on

the work in [2] and [3], Zemke established in [5] that the cobordism maps

defined in [2] are in fact natural (over F2) with respect to composition of

cobordisms (when the cobordisms are appropriately decorated with graphs).

In this dissertation we explain the necessary modifications that must

be made to obtain naturality with respect to diffeomorphisms of all variants
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of Heegaard Floer homology, but with coefficients in Z. The most immediate

goal of our work is simply to fill a gap in the literature. We hope this will be

useful both as a resource for non-experts who aim to understand Heegaard

Floer homology itself, and as groundwork which can be used to better

understand other invariants associated with Heegaard Floer homology. For

example, the contact invariants defined in [6] have proved to be extremely

effective in detecting subtle contact properties, and both their definition

and many of their applications require the ability to nail down particular

elements in the modules HF ◦, and the ability to effectively compare two

such elements in the same module. We also note that the results in [3]

and the analogous integral results presented here are necessary steps for

establishing naturality of the integral Heegaard Floer invariants with respect

to cobordisms.

A secondary goal of our work is to utilize naturality of the Heegaard

Floer invariants with respect to diffeomorphisms over Z to obtain new

applications of the invariants. We use our results to extend a construction

known as Involutive Heegaard Floer homology to the integral setting, and

also use them to introduce and investigate an for nonorientable 3-manifolds

arising from Heegaard Floer homology.

1.3. Statement of Main Results

In order to study naturality of many flavors of Heegaard Floer

homology and Knot Floer homology simultaneously, Juhász, Thurston

and Zemke work with sutured 3-manifolds. They consider a graph G which

encodes the combinatorial structure of a space of sutured Heegaard diagrams
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related by certain Heegaard moves. Roughly, the vertices of G correspond

to isotopy diagrams of sutured manifolds, and between any two such isotopy

diagrams there are edges which describe whether they are related by any of

the standard Heegaard moves, or additionally whether they are related by

a diffeomorphism. The graph G contains many sutured isotopy diagrams

which are not relevant to the consideration of closed 3-manifolds, so in

considering the closed 3-manifold invariants HF ◦ attention is restricted to

a subgraph G(Sman). This is the full subgraph of G whose vertices consist

only of those isotopy diagrams representing sutured manifolds which can be

constructed from a closed 3-manifold in a prescribed way. Since we are only

concerned with results regarding closed 3-manifolds in this dissertation, we

will minimize the role of sutured manifolds, and phrase our results in terms

of a graph which is isomorphic to G(Sman) which we denote by Gman. This

graph has vertices corresponding to isotopy diagrams of closed, pointed 3-

manifolds, where the isotopies are required to be supported away from the

basepoint. Edges in Gman correspond to stabilizations, diffeomorphisms and

sequences of handleslides.

To study naturality using these graphs, we consider the two notions of

a Heegaard invariant introduced in [3]. The first, a weak Heegaard invariant

valued in a category C, is simply a morphism of graphs from Gman to C

under which all edges in the domain get mapped to isomorphisms. In this

language, we can summarize one of the invariance results shown in [1] as

stating that the morphisms of graphs

HF ◦ : Gman → C
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for C = Z[U ]-Mod or C = F2[U ]-Mod determined by Heegaard Floer

homology are weak Heegaard invariants. The second notion, that of a strong

Heegaard invariant, serves as a minimal set of conditions which are needed

to ensure that a weak Heegaard invariant yields a natural invariant of the

underlying 3-manifolds; precisely, the authors show that the image of a

strong Heegaard invariant HF ◦ : Gman → C, when appropriately restricted,

forms a transitive system in C. This step occupies a majority of the work in

the paper, and none of the results in this step depend on the target category

C. The authors then prove that, in the case when C = F2[U ]-Mod, such a

transitive system yields a functor

HF ◦ : Man∗ → F2[U ]-Mod.

Finally, they establish that HF ◦ : Gman → F2[U ]-Mod is in fact a strong

Heegaard invariant, completing their proof that the invariants HF ◦ yield

functors from Man∗ to F2[U ]-Mod.

Our main goal here is to establish similar results for C = P (Z[U ]-Mod),

the quotient category obtained from Z[U ]-Mod by the relation f ∼ −f for

all f ∈ HomZ[U ]-Mod. Said simply, we want to show that naturality holds

over Z, up to a sign. We will consider a category Trans(P (Z[U ]-Mod)) of

transitive systems in P (Z[U ]-Mod), and our main result will be:

Theorem 1.3.1. There are functors

ĤF ,HF−, HF+, HF∞ : Man∗ → Trans(P (Z[U ]-Mod))
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whose values on a based 3-manifold (Y, z) are isomorphic to the modules

defined in [1]. Furthermore, isotopic diffeomorphisms have the same image

under HF ◦.

Remark 1.3.2. The finite rank variant HFred of Heegaard Floer homology

defined in [1, Definition 4.7] arises as a suitable quotient (or submodule)

of HF±, and Theorem 1.3.1 implies that this variant also yields a functor

HFred : Man∗ → Trans(P (Z[U ]-Mod)).

We will import wholesale the logical structure of [3] used to prove the

analog of Theorem 1.3.1 appearing there. It will therefore suffice to show

that HF ◦ : Gman → P (Z[U ]-Mod) is a strong Heegaard invariant. We will

in fact show something slightly stronger. Let Kom(Z[U ]-Mod) denote the

homotopy category of chain complexes over Z[U ]-Mod, and, as described

above, let P (Kom(Z[U ]-Mod)) denote the projectivization of this category.

Finally, let Trans(P (Kom(Z[U ]-Mod))) denote the category of transitive

systems in P (Kom(Z[U ]-Mod)). We will unpack the precise meaning of

these categories in Section 2.5. A majority of the paper will be occupied

with showing:

Theorem 1.3.3. The morphisms

ĈF , CF−, CF+, CF∞ : Gman → Trans(P (Kom(Z[U ]-Mod)))

are strong Heegaard invariants.

While proving Theorem 1.3.3 we will show the analogous result holds

on the level of homology:
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Corollary 1.3.4. The morphisms

ĤF ,HF−, HF+, HF∞ : Gman → P (Z[U ]-Mod)

are strong Heegaard invariants.

We will establish Theorem 1.3.3 in Sections 2.8 and 2.9. We will also

obtain from Theorem 1.3.3 the following statement about the constituent

chain complexes.

Corollary 1.3.5. Given a closed, connected, oriented and based 3-manifold

(Y, z) and a Spinc-structure s over Y , the Z[U ]-module chain complexes

CF ◦(H, s), ranging over all strongly s-admissible embedded Heegaard

diagrams H for (Y, z), fit into a transitive system of homotopy equivalences

in P (Kom(Z[U ]-Mod)) with respect to the maps induced by sequences of

pointed handleslides, stabilizations, isotopies, and diffeomorphisms of

Heegaard surfaces which are isotopic to the identity in Y .

Remark 1.3.6. The Heegaard Floer invariants arise as direct sums of

invariants

HF ◦(Y, z) =
⊕

s∈Spinc(Y )

HF ◦(Y, z, s)

associated to triples (Y, z, s) for s ∈ Spinc(Y ). All of the main results

have refined statements regarding these invariants of (Y, z, s). Theorem

1.3.3, Corollary 1.3.4 and Corollary 1.3.5 also depend on choices of coherent

orientation systems, which we omit from the statements here. For now, we

note that all of the results above hold in particular for the Heegaard Floer

chain complexes defined with respect to the canonical coherent orientation
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systems constructed in [7]. The precise conditions required of the coherent

orientation systems implicitly appearing in the results above will be specified

in Definition 2.7.9.

1.4. Organization of the Dissertation

In Chapter II we address our naturality results for Heegaard Floer

homology. We begin in Section 2.2 by recalling the definition and setting of

Heegaard Floer homology. In Section 2.3 we recall the notion of sutured

3-manifolds and sutured Heegaard diagrams, as all of the results in [3]

are phrased in this setting. We discuss a correspondence between sutured

and closed 3-manifolds, and use the correspondence to translate a graph

of sutured diagrams central to setting of [3] into an equivalent graph of

closed diagrams which we use throughout the remainder of the paper.

In Section 2.4 we introduce and rephrase the notions of weak and strong

Heegaard invariants defined in [3]. Section 2.5 deals with setting up the

algebraic framework in which our main results are phrased, and in particular

includes the definitions of the projectivizations and categories of transitive

systems appearing in Theorems 1.3.1 and 1.3.3. In Section 2.6, we deduce

Theorem 1.3.1 and Corollary 1.3.5 from Theorem 1.3.3 and Corollary 1.3.4.

In Sections 2.7 and 2.8 we recall the constructions involved in defining

the integral Heegaard Floer chain complexes, and establish that these

constructions yield suitably defined weak Heegaard invariants. In Section

2.8, we check that these weak Heegaard invariants satisfy all but one of the

axioms required of a strong Heegaard invariant. Finally, in Section 2.9 we
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carry out the main work and establish that these weak Heegaard invariants

also satisfy the last axiom, known as simple handleswap invariance.

In Chapter III we describe an application of our naturality results to

involutive Heegaard Floer homoloy, as well as potential generalizations to

stronger naturality results and lines of future work which we expect to be

useful.

In Chapter IV we discuss potential applications to studying

nonorientable 3-manifolds using Heegaard Floer Homology. We begin

by describing a notion of Heegaard splittings and Heegaard diagrams for

nonorientable manifolds, and proving some existence results for such things.

We then introduce a bilinear form coming from Heegaard Floer homology

asociated to nonorientable 3-manifolds, and study its properties. Finally, we

give examples and outline future lines of questioning.

We note that Sections 1.3, Sections 2.1-2.9 and Chapter III of this

dissertation have been submitted for publication.
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CHAPTER II

NATURALITY OF HEEGAARD FLOER HOMOLOGY

The Heegaard Floer invariants associated to closed, oriented 3-

manifolds were defined in the work of Ozsváth and Szabó [1]. These

invariants take the form of an isomorphism class of Z[U ]-module assigned to

each such 3-manifold. To describe the construction of the invariants and our

results, we first recall some notions regarding decompositions of 3-manifolds

into elementary pieces. The work in this chapter has been submitted for

publication to the Journal of Topology.

2.1. Background on Heegaard Splittings

A 3-dimensional handlebody is a compact 3-manifold with boundary,

H, which contains a collection of disjoint, properly embedded disks

{(Di, ∂Di) ↪→ (H, ∂H)}

such that cutting H along the collection of disks yields a 3-ball. The genus

of a handlebody is the genus of the surface ∂H. An example of a handlebody

is depicted in Figure 2.

A Heegaard splitting of a closed, connected 3-manifold Y is a

decomposition

Y = H1 ∪Σ H2,

where H1 and H2 are handlebodies glued by a diffeomorphism along their

common boundary surface Σ. We say a Heegaard splitting is a genus g
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FIGURE 2 A 3-dimensional, genus 4 Handlebody, with one possible system
of disks indicated.

Heegaard spliting if the genus of Σ is g. For example, consider two copies

of a genus 1 handlebody (i.e. two copies of a solid torus). Let us call a

curve on the boundary surface of the handlebody which bounds a disk

within the handlebody a meridian, and any other curve which intersects a

meridian transversally in a single point a longitude. Then by glueing two

copies of the solid torus along their boundary by a diffeomorphism which

identifies a meridian with a longitude, we obtain a Heegaard splitting for

S3. If we instead identify the two handlebodies along their boundaries by a

diffeomorphism which identifies the two meridians and the two longitudes,

we obtain a Heegaard splitting for S1 × S2. These examples are depicted in

Figure 3.

A classical theorem in smooth topology asserts that every closed,

connected, oriented 3-manifold admits a Heegaard splitting [8]. This can be

seen by considering a piecewise-linear structure on Y and taking H1 to be a

regular neighborhood of the 1-skeleton and H2 to be a regular neighborhood

of the corresponding dual graph, or via Morse theory by considering a
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H2

H1

H1

H2

FIGURE 3 Two schematics for genus 1 Heegaard splittings: on the left is
a splitting of S3, and on the right is a splitting for S1 × S2. Meridians on
H1 are depicted in red, while meridians on H2 are depicted in green. In
each case, we glue the handlebodies along their boundary by the evident
diffeomorphism which carries the green curve to the blue curve.

CW decomposition of Y coming from a Morse function. In fact, a given 3-

manifold will admit many different Heegaard splittings. For example, given

a genus g splitting Y = H1 ∪Σ H2, one can construct a genus g + 1 splitting

for the same 3-manifold as follows. We say an arc γ properly embedded in

H2 is an unknotted arc if there is an embedded disk D in H2 such that ∂D

is the union of a single arc α on ∂H2 and the interior of the arc γ. Then one

can choose any unknotted arc properly embedded in the handlebody (H2,Σ)

connecting two points on Σ and attach a tube to Σ along this arc to obtain

a surface Σ′, and a genus g + 1 Heegaard splitting Y = H ′1 ∪Σ′ H
′
2. An

example of this process is depicted in Figure 4.

We call the process exhibited in this example stabilization of a

Heegaard splitting. Singer showed that any two Heegaard splittings for
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γ

H1
H ′1

FIGURE 4 A depiction of the stabilization process. On the left is a genus
4 handlebody which we imagine embedded in a genus 4 Heegaard splitting,
and an unknotted arc γ properly embedded in the complement of H1. On
the right is the result H ′1 of attaching a solid tube along this arc to obtain a
new splitting with genus increased by 1.

the same 3-manifold become isotopic after stabilizing each splitting some

number of times:

Theorem 2.1.1. [8] Let Y = H1 ∪ H2 and Y = H ′1 ∪ H ′2 be two Heegaard

splittings for the same 3-manifold. Then the k-fold stabilization of the first

splitting is diffeomorphic to the k′-fold stabilization of the second splitting for

some k and k′.

This implies that any well-defined assignment of algebraic objects

to diffeomorphism classes of Heegaard splittings which is invariant under

stabilization is in fact an invariant of closed, oriented 3-manifolds. As we

will now describe, the construction of the Heegaard Floer invariants arises in

this way.

To explain how this occurs, we first describe a framework for encoding

the data of a Heegaard splitting using curves and surfaces. Given a

handlebody H with ∂H = Σ a genus g surface, the collection of properly

embedded disks {Di ↪→ H} specifies a collection of closed embedded curves

16



{αi : ∂Di ↪→ Σ} in the boundary surface. Since H is a handlebody, these

curves bound pairwise disjoint, properly embedded disks in H, and removing

the curves from Σ yields a sphere with punctures. Given any collection of

closed embedded curves {γi}i=1,...,g in the genus g surface Σ = ∂H satisfying

1. The curves γi are disjoint in Σ.

2. The curves γi bound pairwise disjoint, properly embedded disks in H.

3. Σ \ (γ1 ∪ . . . ∪ γg) is connected.

we will say the collection {γi} is an attaching set for H. Given any

collection of closed embedded curves {γi}i=1,...,g in a genus g surface Σ which

satisfy conditions (1) and (3), we will say the collection is an (abstract)

attaching set in Σ. Let Y = H1 ∪Σ H2 be a genus g Heegaard splitting. We

will say a collection of closed, embedded curves (Σ, α1, . . . , αg, β1, . . . , βg) is a

Heegaard diagram for the splitting Y = H1 ∪Σ H2 if {αi} form an attaching

set for H1 and {βi} form an attaching set for H2. For example, the two

splittings depicted in Figure 3 above can be represented by the Heegaard

diagrams depicted in Figure 5.

βα βα

FIGURE 5 Heegaard diagrams for the splittings of S3 and S1 × S2 depicted
in Figure 3.

We note that the correspondence between Heegaard splittings and

Heegaard diagrams representing them is not a bijection. While an abstract
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Heegaard diagram specifies a diffeomorphism class of Heegaard splitting and

thus a diffeomorphism class of 3-manifold, even a fixed class of Heegaard

splitting admits many Heegaard diagrams (as can be easily seen, for

example, by performing small isotopies on the embedded curves defining any

diagram compatible with a given splitting). However, any two diagrams for

the same 3-manifold are related by a sequence of basic moves on diagrams,

namely isotopies, handleslides, and stabilizations. We now discuss each of

these moves.

Given two attaching sets in a surface Σ, we say they are related by

an isotopy if the two sets of attaching curves are related by an isotopy for

which the curves remain disjoint throughout the isotopy.

Given an attaching set {γi} in a genus g surface Σ, fix an arc δ in Σ

whose endpoints are on γ1 and γ2, and whose interior is disjoint from all of

the γi. A small tubular neighborhood of γ1 ∪ γ2 ∪ δ in Σ then has three

boundary components γ′1 ∪ γ′2 ∪ δ′, where γ′1 and γ′2 are isotopic to γ1 and

γ2 respectively. We say the attaching set {δ′, γ2, γ3, . . . , γg} obtained by

replacing γ1 with δ′ is an attaching set obtained from {γ1, γ2, γ3 . . . , γg} by

handlesliding γ1 over γ2 . In this situation we will also say the attaching sets

are related by a handleslide. Note that this definition is equivalent to saying

that δ′ is obtained by handlesliding γ1 over γ2 if δ′, γ1 and γ2 cobound a pair

of pants embedded in Σ \ (γ3 ∪ . . . ∪ γg).

We will say two Heegaard diagrams (Σ, α1, . . . , αg, β1, . . . , βg) and

(Σ, α′1, . . . , α
′
g, β

′
1, . . . , β

′
g) are related by a sequence of isotopies (resp.

sequence of handleslides) if the attaching sets (α1, . . . , αg) and (α′1, . . . , α
′
g)

are related by isotopies (resp. handleslides) and the attaching sets
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(β1, . . . , βg) and (β′1, . . . , β
′
g) are related by isotopies (resp. handleslides).

An example of two Heegard diagrams related by an isotopy is depicted in

Figure 6. An example of two Heegaard diagrams related by a handleslide is

depicted in Figure 7.

FIGURE 6 Two Heegaard diagrams related by an isotopy.

FIGURE 7 The figures on the left are Heegaard diagrams related by a
handleslide. In the top right, an arc connecting two curves in one of the
original attaching sets is depicted in green. In the bottom right, a pair of
pants specified by this arc is shaded in gray. The result of the handleslide is
obtained by replacing one of the curves in the original attaching set with the
third boundary component of this pair of pants.
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We now state a key result which relates different attaching sets for

the same handlebody. Reidemeister and Singer showed (See [9] or [10] for

modern descriptions of this result):

Theorem 2.1.2 ([8], [11]). Any two attaching sets (Σ, α1, . . . , αg) and

(Σ, α′1, . . . , α
′
g) for a handlebody H are related by a sequence of isotopies

and handleslides.

If a Heegaard surface Σ is endowed with a choice of basepoint z, we

further refine the above definitions and say two Heegaard diagrams on Σ are

related by pointed isotopies or pointed handleslides if the processes described

above can be carried out in the complement of the basepoint. Given two

choices of basepoint on a Heegaard surface for a fixed splitting, we will say

two diagrams on the surface are related by a sequence of pointed isotopies

and pointed handleslides if the curves in the diagrams can be related as

above, while also allowing isotopy of the basepoint. In this case, we require

that the isotopies of attaching curves and handleslides of attaching curves

remain disjoint from the basepoint throughout the entire isotopy of the

basepoint. Then one can also show that any two choices of basepoint on

the same diagram are related by pointed Heegaard moves, according to the

following result.

Theorem 2.1.3. [1] Given a Heegaard diagram (Σ, α1, . . . , αg, β1, . . . , βg)

and basepoints z, z′ ∈ Σ \ (α1 ∪ α2 ∪ . . . ∪ αg ∪ β1 ∪ β2 . . . ∪ βg), the Heegaard

diagrams (Σ, α1, . . . , αg, β1, . . . , βg, z) and (Σ, α1, . . . , αg, β1, . . . , βg, z
′) are

related by a sequence of pointed handleslides and pointed isotopies.

Finally, we describe the stabilization move on a Heegaard diagram.

Given a genus g Heegaard diagram (Σ, α1, . . . , αg, β1, . . . , βg) for a genus
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g Heegaard splitting Y = H1 ∪Σ H2, we may form a new diagram

(Σ#T, α1, . . . , αg, αg+1β1, . . . , βg, βg+1) by taking the connect sum of Σ with

the genus 1 surface T , and introducing two new closed curves αg+1 and βg+1

which are contained in T and intersect transverally in a single point. This

new diagram is genus g + 1, and is compatible with the Heegaard splitting

obtained from the original diagram by stabilizing it in the sense previously

described. Stabilization of a diagram is depicted in Figure 8 (compare

Figure 4).

α1β1

α2β2

FIGURE 8 A region of the Heegaard diagram (Σ1,α1,β1) is depicted in the
dashed circle, with two attaching curves α1 ∈ α1 and β1 ∈ β1. The standard
genus 1 diagram for S3 has been attached via a connect sum to the this
region, resulting in the stabilized diagram.

The key observation is then that any two pointed Heegaard diagrams

for the same 3-manifold become diffeomorphic after applying a sequence of

pointed isotopies, pointed handleslides and stabilizations:
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Theorem 2.1.4. [1] Any two pointed Heegaard diagrams (Σ,α,β, z) and

(Σ′,α′,β′, z′) representing the same 3-manifold become diffeomorphic after

applying a finite sequence of pointed Heegaard moves.

This follows from Theorem 2.1.1, Theorem 2.1.2 and Theorem 2.1.3.

From this observation it follows that any assignment of algebraic data to

pointed Heegaard diagrams which is invariant under pointed isotopies,

pointed handleslides and stabilizations is an invariant of closed, oriented

3-manifolds. In the next subsection we will provide a brief overview of how

Heegaard Floer homology arises in this way.

2.2. Background on Heegaard Floer Homology

Heegaard Floer homology is an invariant of closed, connected, oriented

3-manifolds introduced by Ozsváth and Szabó in [1]. In this section, we

provide a sketch of the construction of the invariant. We will omit many

details, and refer the reader to the original source [1] for a more detailed

description of the technical ingredients that go into the construction. We

will also recall more of the technical background that will be necessary to

prove our main results in Section 2.7. We concern ourselves here with the

simplest variant of Heegaard Floer homology, which is denoted ĤF .

Heegaard Floer homology is defined with respect to a Heegaard

diagram for a 3-manifold. Fix a genus g based Heegaard diagram

H = (Σ,α = (α1, α2, . . . , αg),β = (β1, β2, . . . , βg), z)
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for a closed, connected, oriented and based 3-manifold (Y, z). We begin by

considering the symmetric product

Symg(Σ) := (Σ× · · · × Σ)/Sg,

which is the quotient of the g-fold product of Σ with itself by the action of

the symmetric group which permutes the factors of the product. Despite

the fact that the symmetric group action is not free, Symg(Σ) is in fact

a smooth manifold (where the smooth structure depends on a choice of

complex structure j on Σ). One can also show that this choice of complex

structure j on Σ induces a complex structure J := Symg(j) on Symg(Σ).

Fixing such complex structures j and J , one considers the tori

α1 × α2 × · · · × αg, β1 × β2 × · · · × βg ⊂ Σ× · · · × Σ

and their images in the symmetric product Symg(Σ). We denote their

images in the symmetric product by Tα and Tβ respectively. It can be

shown that the induced tori Tα and Tβ are totally real with respect to the

induced almost complex structure J . The Heegaard Floer homology is then

defined as a variation of Lagrangian intersection Floer homology, as defined

by Floer in [12], applied to these tori. We will now sketch this process and

illustrate some of the details in a few examples.

First, we note that Heegaard Floer homology is the homology of a

chain complex. To define the chain complex, one must in fact fix some

additional data related to the fixed Heegaard diagram H. In addition to

the Heegaard diagram H, the complex structure j on Σ, and the induced
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complex structure J on Symg(Σ), one must also fix a choice of generic path

Js of almost complex structures on Symg(Σ), which satisfies Js=0 = J and

an additional technical condition which we ignore for the purposes of this

introduction (see [1]). We will also require that our Heegaard diagram H =

(Σ,α,β, z) satisfy a certain admissibility criterion. We postpone a precise

discussion of this admissibility criterion to Section 2.7. For now, we just

note that it is shown in [1] that every closed, connected, oriented and based

3-manifold admits a Heegaard diagram which is appropriately admissible,

so admissibility is never an obstruction to applying the construction to a

3-manifold to obtain a Heegaard Floer chain complex.

For an admissible Heegaard diagram, the chain complex, denoted by

ĈF Js(H) (or by ĈF (H) or ĈF (Y ) when the dependence on the additional

data is understood), is freely generated as an abelian group by the

intersection points Tα ∩ Tβ. We note that an intersection point x ∈ Tα ∩ Tβ

is just an unordered g-tuple of intersection points {x1, x2, . . . , xg} between

α and β in Σ such that each αi and βj contains exactly one of the xk. The

differential will count pseudo-holomorphic disks in the symmetric product,

as we now explain.

Given two intersection points x,y ∈ Tα ∩ Tβ, we begin by considering

Whitney disks in Symg(Σ) connecting x to y. Let D = [0, 1] × R ⊂ C

denote the infinite strip in the complex plane, DL = {0} × R denote the

left part of the boundary, and DR = {1} × R denote the right part of the

boundary. We write z = s + ti for coordinates on D, and interchangeably

refer to D as a disk or a strip. A Whitney disk u from x to y is a smooth

map u : D → Symg(Σ) satisfying:
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1. limt→−∞ u(s+ ti) = x.

2. limt→∞ u(s+ ti) = y.

3. u(DL) ⊂ Tβ.

4. u(DR) ⊂ Tα.

A schematic of a Whitney disk is given in Figure 9. We caution the reader

that a Whitney disk as just defined is a map to Symg(Σ), so our schematic

which indicates the image as a disk in the plane is misleading for g > 1.

x

y

DRDL
Tβ Tα

FIGURE 9 A schematic of a Whitney disk from x to y.

Given two intersection points x,y ∈ Tα ∩ Tβ, we let π2(x,y) denote

the set of homotopy classes of Whitney disks connecting x to y. Given such

a homotopy class φ ∈ π2(x,y), we denote by MJs(φ) the parametrized
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moduli space of Js-holomorphic disks in the class φ:

MJs(φ) = {u ∈ φ|du
ds

+ Js
du

dt
= 0}.

We note that MJs(φ) comes equipped with an R-action coming from

vertical translations on the strip (the automorphisms of the strip fixing the

ends and preserving the boundary components). To define the differential

we want to count certain types of pseudo-holomorphic disks which are

unparametrized, so we will consider

M̂Js(φ) :=MJs(φ)/R,

the quotient of the parametrized moduli space with respect to this R-action.

To finish defining the differential, we need to make use of the Maslov

index of a pseudo-holomorphic disk with Lagrangian boundary conditions.

Given a homotopy class of Whitney disks φ, the unparametrized moduli

space MJs(φ) may or may not be a smooth manifold. In fact, the moduli

space MJs(φ) can be viewed as the zero set of a bundle section ∂, and using

well-known results about transversality in infinite dimensional settings it is

smooth whenever this section ∂ is transverse to the zero section. The Maslov

index µ(φ) is the expected dimension of MJs(φ), and corresponds to the

Fredholm index of the linearized (Fredholm) operator determined by the

differential D(∂) of ∂. When the moduli space is transversely cut out by

the section ∂, the Maslov index agrees with the dimension of the resulting

smooth manifold. We will need the following result to state the definition of

the differential.
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Theorem 2.2.1. [1] There is a choice of almost complex structure data

Js such that for any homotopy class of Whitney disk φ with µ(φ) = 1, the

unparametrized moduli space M̂Js(φ) is a compact, oriented, 0-dimensional

manifold.

Let µ(φ) denote the Maslov index of the class φ, and let nz(φ) denote

the algebraic intersection number of φ with {z} × Symg−1(Σ). The Maslov

index yields a well defined relative cyclic grading on the generators of

ĈF (H) defined above, via the formula

gr(x,y) = µ(φ)− 2nz(φ)

where φ is any homotopy class of Whitney disk φ ∈ π2(x,y).

Finally, the differential

∂ : ĈF (H)→ ĈF (H)

is defined by the formula

∂(x) =
∑

{y∈Tα∩Tβ}

∑
{φ∈π2(x,y)|µ(φ)=1,nz(φ)=0}

#M̂Js(φ) · y

A few words are in order about terms appearing in the differential,

and the well-defintion of this construction. By Theorem 2.2.1, for a suitable

choice of complex structure data Js the unparametrized moduli spaces

M̂Js(φ) appearing in the sum in the differential are compact, oriented,

0-manifolds. Furthermore, by work of Gromov and Ozsváth and Szabó,

the unparametrized moduli space
⋃
φ|µ(φ)=1 M̂Js(φ) will in this case be
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a compact 0-manifold so long as the Heegaard diagram is admissible,

so the sum appearing in the differential is finite. It turns out that the

moduli spaces can all be oriented, and the symbol #M̂Js(φ) indicates

the signed count of this collection of oriented points with respect to some

implicitly chosen orientations. These remarks justify the fact that the

boundary operator given above is a well defined map. Finally, as shown in

[1] using well-known glueing results about the moduli spaces in question,

this operator also satisfies ∂2 = 0 (assuming certain technical conditions

are satisfied) and thus yields the structure of a chain complex on ĈF (H).

We will discuss more of the technical details of this construction in later

sections.

We now turn towards describing a few examples to illustrate the

construction of the Heegaard Floer chain complex in practice, and to

illustrate some of the difficulties that immediately arise when one tries to

calculate the differentials involved. Before doing so, we introduce some

results which are convenient for analyzing Whitney disks in Symg(Σ), and

which will be useful in our calculations.

Definition 2.2.2. Given a Heegaard diagram H = (Σ,α,β), let D1, . . . , Dk

denote the closures of the connected components of Σ \ (α ∪ β). Fix points

pi ⊂ Di which miss the curves α and β. Given a homotopy class of Whitney

disk φ, the domain of φ is the formal linear combination:

D(φ) =
k∑
i=1

npi(φ)Di.
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We regard domains as being two chains in C2(Σ). Any homotopy class

of Whitney disk φ ∈ π2(x,y) specifies a two chain D(φ) by the construction

defined above, and in fact it is possible to determine when such a two chain

comes from a homotopy class of Whitney disk:

Lemma 2.2.3. [13] Fix a Heegaard diagram H = (Σ,α,β) with connected

components Di as above. Given intersection points x = {x1, . . . , xg},y =

{y1, . . . , yg} ∈ Tα ∩ Tβ, and a linear combination

D =
∑
i

ciDi,

we say D is a domain from x to y if the boundary of D restricted to the

curves α consists of curves from x to y, while the boundary of D restricted

to the curves β consists of curves from y to x. Then if g(Σ) > 1, any

domain D from x to y is the domain of a homotopy class of Whitney disk

φ ∈ π2(x,y).

Next, we note a crucial lemma which provides a low dimensional model

for holomorphic disks in symmetric products of surfaces.

Lemma 2.2.4. [1] Given a homotopy class φ ∈ π2(x,y) and a holomorphic

representative u ∈ M(φ), there is a Riemann surface S, a holomorphic g-

fold branched covering space uD : S → D and a holomorphic map uΣ : S →

Σ such that for each p ∈ D,

u(p) = uΣ(u−1
D (p)).
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Furthermore, this is one direction of a bijective correspondence:

{holomorphic disks u : D → Symg(Σ)} ↔



diagrams

S Σ

D

uΣ

uD

where S is a Riemann surface,

uΣ and uD are holomorphic,

and uD is a g-fold branched cover


Finally, we provide some facts which are extremely useful for

calculating the Maslov index. To do so, we first introduce a few more

definitions. Let φ ∈ π2(x,y) be a homotopy class of Whitney disk,

and consider the domain D(φ). For xi ∈ x, let nxi(φ) be the average

of the coefficients of the four cells adjacent to xi appearing in D(φ), and

nx(φ) =
∑

i nxi . Define ny(φ) by the analogous formula. Finally, the Euler

measure of the domain D = D(φ) is given by the formula

e(D) := χ(D) + a/4− b/4

where χ(D) is the Euler characteristic, a is the number of 270◦ corners in D,

and b is the number of 90◦ corners in D. The Euler measure is additive in

the sense that e(
∑

iDi) =
∑

i e(Di).

Lipshitz proved the following combinatorial formula which can be used

to calculate the Maslov index of holomorphic disks.
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Theorem 2.2.5. [14] Given a homotopy class of Whitney disks φ ∈

π2(x,y), the Maslov index µ(φ) is given by the formula

µ(φ) = e(φ) + nx(φ) + ny(φ).

A straightforward application shows that this implies:

Corollary 2.2.6. If φ, φ′ are two homotopy classes of Whitney disks with

domains related by D(φ) = D(φ′) + k · Σ then µ(φ) = µ(φ′) + 2k.

We are now ready to investigate some examples.

Example 2.2.7. The simplest example is the chain complex associated with

the “standard” genus 1 pointed diagram H for S3 depicted in Figure 10. In

such a genus 1 case, we have Sym1(Σ) = Σ and Tα∩Tβ = α∩β. The α and

β curve intersect transversely in a single intersection point which we denote

x. We thus have

ĈF (H) = Z〈x〉.

The differential must be zero, since the differential is degree -1 and

gr(x,x) = 0, so we have:

ĤF (S3) ∼= Z.

Example 2.2.8. Next we consider the diagram H for S3 depicted in Figure

11. This can be obtained from the diagram in Figure 10 by an isotopy of

the blue attaching curve. In this case, there are three intersection points

x,y, z ∈ Tα ∩ Tβ, so as an abelian group the chain complex is given by:
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x

z

FIGURE 10 A pointed diagram for S3. The chain complex is generated by
the single intersection point x, and there can be no differentials.

ĈF (H) = Z〈x,y, z〉 = Z⊕ Z⊕ Z.

To understand the differential, we make the following observations.

First, there are precisely three components of Σ \ (α ∪ β). Any disk being

counted in the differential must have a domain which misses the basepoint,

so we may disregard the region containing z. There remain two regions,

both of which are bigons. The evident homotopy classes of Whitney disks

from x to y and from z to y (shaded in gray in Figure 11) each admit

holomorphic maps from a disk with the appropriate boundary conditions; by

the Riemann mapping theorem, both of these regions are biholomorphically

equivalent to the unit disk (or the domain of a Whitney disk), and such

biholomorphisms can easily be adjusted to ensure the necessary boundary

conditions hold.

Moreover, we may conclude that these homotopy classes each admit

a unique holomorphic representative (up to the R-action) as follows. Given

two holomorphic disks u1 and u2 with the appropriate boundary conditions,
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we may arrange for them to agree at a third point on the boundary of their

domains by applying an appropriate vertical translation. Then u1 ◦ u−1
2 is an

automorphism of the unit disk with three fixed points on the boundary. By

standard results in complex analysis, such a map must be the identity.

Both of these disks can also be shown to have Maslov index 1. For

example, by Theorem 2.2.5, the top domain has index µ(φ) = e(φ) + nx +

ny = e(φ) + 1/4 + 1/4. The Euler measure is given by e(φ) = χ+a/4− b/4 =

1 + 0 − 2/4 = 1/2. Thus µ(φ) = 1. We thus conclude that ∂x = ±y and

∂z = ±y. If the signs of these two differentials are opposite, we have

ĤF (S3) ∼= ĤF (H) = Z〈x+ z〉 = Z

as desired, and if the signs are the same we have

ĤF (S3) ∼= ĤF (H) = Z〈x− z〉 = Z

as desired.

x
y

z
z

FIGURE 11 Another pointed diagram for S3. The chain complex is
generated by the intersection points x, y and z. Disks from x to y and
from z to y are shaded in gray.
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The genus 1 examples discussed above are misleading for several

reasons. In general, calculating the differential for a higher genus Heegaard

diagram is a difficult business, since counting holomorphic representatives

of homotopy classes of Whitney disks can be complicated. We end our brief

introduction to the Heegaard Floer invariants with a genus 2 example which

illustrates some of these complications.

Example 2.2.9. We consider the genus 2 pointed Heegaard diagram H

shown in Figure 12 below. This is again a diagram representing S3. It can

be obtained from the standard genus 1 diagram depicted in Figure 10 by

first stablizing the diagram, then performing a handleslide on the resulting

diagram, and finally performing an isotopy on this resulting diagram.

x

y
z

a

z

FIGURE 12 Yet another pointed diagram for S3. The chain complex is
generated by the intersection points x × a, y × a and z × a. A domain D
which supports a holomorphic disk is shaded in gray.

In this case, generators of the complex ĈF (H) are given by the points

of Tα ∩ Tβ ⊂ Sym2(Σ). Such points correspond to unordered tuples

{x1, x2} of intersection points xi in Σ between the curves α and β. These

unordered tuples must furthermore satisfy the condition that every curve
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αj in α contains exactly one xi, and every βj in β contains exactly one xi.

Abusing notation, we will denote the unordered tuple {x1, x2} ∈ Sym2(Σ)

by x1 × x2. In the case at hand, we have precisely three intersection points

x × a,y × a, z × a ∈ Tα ∩ Tβ, and the Heegaard Floer chain complex is

generated as:

ĈF (H) = Z〈x× a,y × a, z × a〉 = Z⊕ Z⊕ Z.

There are again three connected components of Σ \ (α ∪ β). Since

we aim to count holomorphic disks in classes φ with nz(φ) = 0, we focus

attention on the two components that do not contain the basepoint.

Consider the region homeomorphic to a disk situated between y and z.

By the same argument used in the previous example, it can be shown that

there is a unique holomorphic disk u in Σ connecting y to z, up to vertical

translation in the source. Such a disk gives rise to a holomorphic Whitney

disk u′ : D → Sym2(Σ) from y × a to z × a via u′(p) = {u(p),a}, and

in fact this is the unique unparametrized holomorphic Whitney disk in this

homotopy class. One can show it has Maslov index 1, so we have a unique

index 1 holomorphic disk from y × a to z × a.

Next, we consider the connected component of Σ \ (α ∪ β) indicated

in gray in Figure 12. This is a domain from y × a to x × a, so by Lemma

2.2.3 it is the domain of some homotopy class of Whitney disk from y × a

to x × a. We claim that this domain admits exactly one holomorphic disk

representative. To argue that this is the case, we will use Lemma 2.2.4.

Consider the annulus specified by the shaded domain, and perform

a cut of length l from the intersection point a into the annulus along the
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red curve in α. This yields a region biholomorphic to the complex annulus

A depicted in the top right of Figure 13 below. We denote by a1 and a2

the two points in the cut annulus corresponding to the original intersection

point a. By Lemma 2.2.4, any holomorphic disk u in the homotopy class in

question will give rise to a branched double cover uD : A → D satisfying

uD(a1) = uD(y) = i and uD(a2) = uD(x) = −i. Such a branched

double cover will be the quotient of the annulus A under a holomorphic

covering involution which preserves {x,a1} and {y,a2}, and exchanges

the red curves on the two boundary components (see Figure 13). Such an

involution can only exist if the angles determined by the two red arcs are

the same, and in this case there is a unique such involution [1, Lemma 9.3].

By analyzing the Gromov limits of the sequence of annuli obtained as the

cut length varies from 0 to 1, one can show that there is algebraically a

single cut length for which the images of the red curves on the uniformized

annulus will have the same conformal angle. This can presumably also be

shown using a classical conformal invariant, such as extremal length. We

thus conclude that there is algebraically one cut length l for which the

annulus branch double covers the disk (for a branched double cover with the

appropriate boundary conditions). By Lemma 2.2.4, this implies that the

signed count of holomorphic disks representing the annular shaded domain is

precisely one.

Finally, one can show that the holomorphic disk u just described

has Maslov index 1, using Theorem 2.2.5. The domain D(u) has Euler

characteristic χ = 0, two 90◦ corners, and zero 270◦ corners, thus the Euler
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x

y

a
a2

a1

x

y

i

−i

FIGURE 13 The annular domain under consideration is depicted in the top
left. We cut along the red curve in the dotted box to obtain an annulus
biholomorphic to the standard annulus in the top right. There is a unique
cut length for which this annulus admits an involution exchanging the red
arcs on the two boundary components. Such an involution gives rise to a
branched double cover of the disk.

measure is

e(D) = 0− 2/4 = −1/2.

The average multiplicities at the intersection points in question are given by

ny×a(u) = 1/4 + 2/4 = 3/4

and

nx×a(u) = 1/4 + 2/4 = 3/4.

Thus by Theorem 2.2.5 we have µ(u) = −1/2 + 3/2 = 1. Thus there is a

unique index 1 disk from y × a to x× a.
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To finish computing the form of the differential on this chain complex,

we would need to analyze the possible orientations of the moduli spaces

of disks just discussed. Since we postpone a careful treatment of these

orientations until later, we just note here that for any possible orientations,

the resulting chain complex will yield the Heegaard Floer homology of S3

that we computed in the previous examples, as desired. For example, if

consideration of orientations showed that:

∂(y × a) = x× a+ z × a.

then we would obtain

ĤF (H) =
Z〈x× a, z × a〉
Z〈x× a+ z × a〉

∼= Z.

The computations for other possible orientations are analagous.

2.3. Background on Sutured Manifolds

In order to introduce notation and terminology for the remainder of

the dissertation, we give a quick summary of some relevant background on

sutured manifolds and Heegaard diagrams. The discussion in this section

follows [3]. To unify the approach, the results in [3] are most often phrased

in terms of sutured manifolds. Since we are interested here in the closed

variants of Heegaard Floer homology, we will set up some background in

order to be able to rephrase the results we use from [3] in language more

typically used for the closed invariants. We hope this section will serve as a

dictionary for the interested reader referencing results we cite from [3].
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To begin, we will briefly sketch the necessary background on sutured

manifolds and the relation to the closed 3 manifolds of interest to us here.

We will then describe the notion of sutured diagrams for sutured manifolds,

and see how moves on them relate to the typical Heegaard moves one

considers on Heegaard diagrams for closed 3 manifolds. Next we will recall

the definition of the graph of sutured isotopy diagrams G(Sman) introduced

in Section I, and describe an isomorphism to a graph Gman of closed

isotopy diagrams which we will consider instead of G(Sman) throughout the

remainder of the dissertation. We refer the reader to [3, Section 2.1] for a

more detailed treatment of all of the background in this section.

Sutured Manifolds

In this dissertation a sutured manifold will always refer to the

following notion.

Definition 2.3.1. A sutured manifold (M,γ) is a compact, connected,

oriented 3 manifold M with boundary ∂M , along with a specification of

the following data:

1. A collection γ ⊂ ∂M of pairwise disjoint annuli in the boundary of M

2. For each annulus in the collection, an oriented simple closed curve

contained in the interior of the annulus, which is homologically

nontrivial in the annulus. We call the union of these curves sutures,

and denote them by s(γ).

3. A choice of orientation on each component of R(γ) = ∂M \int(γ) which

agrees with the orientation on s(γ).
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We denote by R+(γ) ⊂ R(γ) those components for which the

orientation agrees with that of ∂M induced by the orientation on M , and

by R−(γ) ⊂ R(γ) those components for which the orientation is the opposite

of that of ∂M induced by the orientation on M .

s(γ) s(γ)γ
γ

R+(γ)

R−(γ)
R−(γ)

R+(γ)

FIGURE 14 Sutured manifold structures on B3 and Σ×I, where Σ is a torus
with a disk removed.

Remark 2.3.2. The definition here is less general than the standard

definition in the literature, i.e. that introduced by Gabai in [15, Definition

2.6]. In particular, we dismiss here the possibility of toroidal sutures on the

boundary.

Remark 2.3.3. We will say a sutured manifold (M,γ) is proper if M has

no closed components and every boundary component contains at least one

suture (i.e. π0(γ) → π0(∂M) is surjective). In this case, the data of M and

γ satisfying the first two conditions in Definition 2.3.1 uniquely specifies

orientations on the components of R(γ) which give (M,γ) the structure of a

sutured manifold. Throughout this dissertation, all sutured manifolds will be

assumed to be proper unless otherwise stated.
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Sutured Diagrams

We now describe the notion of Heegaard diagrams for sutured

manifolds. Throughout the dissertation we will need to keep track of

the distinction between genuine Heegaard diagrams, which carry a fixed,

concrete set of attaching curves, and isotopy diagrams, in which only the

isotopy class of the attaching curves are recorded. We begin with some

definitions.

Definition 2.3.4. Given a compact, oriented surface Σ with boundary, we

say a one dimensional smooth submanifold δ ⊂ int(Σ) is an attaching set in

Σ if every connected component of Σ \ δ contains at least one component of

∂Σ. For any attaching set δ in Σ, we denote by [δ] the isotopy class of the

submanifold δ.

Definition 2.3.5. A sutured diagram (Σ,α,β) is a compact surface with

boundary, Σ, together with two attaching sets α and β. If (Σ,α,β) is a

sutured diagram, we call the data (Σ, [α], [β]) a sutured isotopy diagram.

To describe the relationship between sutured diagrams and sutured

manifolds, we first describe how a single attaching set gives rise to a sutured

manifold.

Definition 2.3.6. A sutured manifold (M,γ) is called a sutured compression

body if either

1. There is an attaching set δ in R+(γ) such that compressing R+(γ)

inside M along δ yields a surface which is isotopic to R−(γ) relative to

s(γ)

or
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2. There is an attaching set δ in R−(γ) such that compressing R−(γ)

inside M along δ yields a surface which is isotopic to R+(γ) relative to

s(γ)

In either case we say that δ is an attaching set for the sutured compression

body (M,γ).

To any attaching set in a surface Σ, we can associate a sutured

compression body as follows.

Definition 2.3.7. Given an attaching set δ in Σ, let C(δ) = (M,γ) be

the sutured compression body given by the following data. Let M be the 3

manifold with boundary obtained from Σ× I by attaching 3 dimensional two

handles along δ × {1} ⊂ Σ × {1}, let γ = ∂Σ × I, and let the sutures be

given by s(γ) = ∂Σ × {1

2
}. We write C−(δ) = R−(M,γ) = Σ × {0} and

C+(δ) = R+(M,γ) = ∂C(δ) \ (C−(δ) ∪ γ).

This can be verified to be a sutured compression body by taking the

attaching set required in Definition 2.3.6 to be δ′ := δ × {0} ⊂ C−(δ).

By construction, compressing R−(γ) along the attaching curve δ then yields

a surface which is isotopic to R+(γ). See Figure 15 for a depiction of this

construction.

Definition 2.3.8. Given two attaching sets δ and δ′ in Σ, we will say

they are compression equivalent, and write δ ∼ δ′, if the corresponding

compression bodies are equivalent in the following sense: there is a

diffeomorphism d : C(δ) → C(δ′) such that d|C−(δ) = id. This relation is

well defined on isotopy classes, so we will also write [δ] ∼ [δ′] to indicate

compression equivalence of isotopy classes.
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Σ

δ δ′

γ R−(γ)

R+(γ)

FIGURE 15 The construction of a sutured compression body from a
surface Σ with an attaching set δ. On the left is a torus Σ with a disk
removed, and an attaching set δ. On the right is the sutured manifold C(δ).
The attaching set δ′ in C−(δ) is a parallel copy of δ living on Σ× {0}.
Compressing C−(δ) along it yields a punctured sphere which is isotopic to
C+(δ) relative to the suture s(γ)

Remark 2.3.9. The sutured compression body C(δ) satisfies χ(C+(δ)) =

χ(C−(δ)) + 2|δ|, where |δ| is the number of connected components in

the attaching set δ. Thus if two attaching sets δ and δ′ are compression

equivalent, δ ∼ δ′, then in fact the attaching sets must have the same

number of components: |δ| = |δ′|.

We note that the notion of compression equivalence of attaching sets

in a surface Σ corresponds precisely to the notion of sequences of handleslide

equivalences of attaching sets in typical Heegaard diagrams.

Definition 2.3.10. Fix two simple closed curves δ and δ′′ in a surface

Σ, and an embedded closed arc γ in Σ whose endpoints are on δ and δ′′

respectively, and whose interior is disjoint from δ ∪ δ′′. Then a small

neighborhood of δ ∪ δ′′ ∪ γ in Σ has three boundary components, one isotopic

to δ, one isotopic to δ′′ and one given by a third curve we denote by δ′. We

say δ′ is obtained by handlesliding δ over δ′′ in Σ, or that δ and δ′ are related

by a handleslide.
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Given two attaching sets δ and δ′ in Σ, we say they are related by

a handleslide if there are two components δ1, δ2 ⊂ δ such that one can

handleslide δ1 over δ2 along an arc whose interior is disjoint from all of δ

to obtain the curve δ′1, and (δ \ δ1) ∪ δ′1 = δ′.

Given two isotopy classes of attaching sets A = [δ] and A = [δ′], we

say they are related by a handleslide if they can be represented by attaching

sets which are.

Lemma 2.3.11. [3, Lemma 2.11] Fix two attaching sets δ and δ′ in a

surface Σ. If δ and δ′ are related by a handleslide, then δ ∼ δ′. Conversely,

if δ ∼ δ′ then [δ] and [δ′] are related by a sequence of handleslides.

We are now ready to state the definition of an embedded sutured

diagram for a sutured manifold (M,γ).

Definition 2.3.12. [3, Definition 2.13] Let (M,γ) be a sutured manifold.

We will say that the sutured diagram (Σ,α,β) is an embedded sutured

diagram for (M,γ) if:

1. Σ is an embedded oriented surface Σ ⊂ M such that ∂Σ = s(γ) as

oriented manifolds.

2. The components in the collection α bound disjoint discs in M on the

negative side of Σ, and the components in the collection β bound

disjoint discs in M on the positive side of Σ.

3. Compressing Σ along α yields a surface which is isotopic to R−(γ)

relative to γ
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4. Compressing Σ along β yields a surface which is isotopic to R+(γ)

relative to γ.

We say an isotopy sutured diagram (Σ, A,B) is an embedded isotopy

diagram for (M,γ) if there is an embedded sutured diagram (Σ,α,β) for

(M,γ) with A = [α] and B = [β].

We note that as in the case of Heegaard splittings, all sutured

manifolds (M,γ) admit embedded sutured diagrams for (M,γ) ([3,

Lemma 2.14]). Conversely, from any (abstract) sutured diagram one can

construct a sutured manifold for which the sutured diagram is in fact an

embedded sutured diagram (via the same sort of construction mentioned for

compression bodies earlier, but applied now to both attaching sets). This

construction yields a well defined diffeomorphism type of sutured manifold

which only depends on the underlying abstract isotopy diagram. Thus for an

abstract isotopy diagram H, we denote by S(H) the diffeomorphism type of

sutured manifold arising from this construction.

Moves on Sutured Diagrams

We now discuss the set of moves on sutured diagrams we will be

considering throughout this dissertation. They will play a role analogous

to that of pointed Heegaard moves on Heegaard diagrams for closed 3-

manifolds. In fact, we will make this correspondence more precise in the

next subsection.

Definition 2.3.13. Given two isotopy diagrams (Σ1, A1, B1) and

(Σ2, A2, B2), we say they are α-equivalent if Σ1 = Σ2, B1 = B2 and A1 ∼ A2.

We say they are β-equivalent if Σ1 = Σ2, A1 = A2 and B1 ∼ B2.
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Definition 2.3.14. We say the sutured diagram (Σ2,α2,β2) is obtained

from (Σ1,α1,β1) by a stabilization, or equivalently that (Σ1,α1,β1) is

obtained from (Σ2,α2,β2) by destabilization if:

1. There is a disc D1 ⊂ Σ1 and a punctured torus T2 ⊂ Σ2 such that

Σ1 \D1 = Σ2 \ T2.

2. α1 = α2 ∩ (Σ2 \ T2)

3. β1 = β2 ∩ (Σ2 \ T2)

4. α2 \ α1 := α2 and β2 \ β1 := β2 are simple closed curves in T2 which

intersect transversely in a single point.

A schematic of such a stabilized diagram is depicted in Figure 16.

α1β1

α2β2

FIGURE 16 A region of the Heegaard diagram (Σ1,α1,β1) is depicted in
the dashed circle, with two attaching curves α1 ∈ α1 and β1 ∈ β1. The
standard genus 1 diagram for S3 has been attached via a connect sum to the
this region, resulting in the stabilized diagram (Σ2,α2,β2).
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Given isotopy diagrams H1 and H2, we say they are related by a

stabilization/destabilization if these conditions hold for some representatives

of the isotopy classes of attaching sets.

Definition 2.3.15. Let H1 = (Σ1, A1, B1) and H2 = (Σ2, A2, B2) be isotopy

diagrams for sutured manifolds. A diffeomorphism of isotopy diagrams d :

H1 → H2 is an orientation preserving diffeomorphism d : Σ1 → Σ2 such that

d(A1) = A2 and d(B1) = B2. Here for an isotopy class A1 of an attaching set

on Σ1, we mean by d(A1) the isotopy class [d(α)] for some representative α

of A1.

As we will describe in Section , sutured manifolds representing

the same 3-manifold can always be connected by a sequence of the

aforementioned moves.

A Correspondence Between Closed and Sutured Manifolds

Since our goal in this dissertation is to ultimately establish facts about

the Heegaard Floer invariants for closed 3 manifolds, we now describe how

we can move between sutured and closed manifolds in the cases of interest.

We will need to understand certain properties of this correspondence to

ensure that the techniques used to obtain functoriality in [3] which we

import can be applied to the closed setting of interest here.

First, suppose (M,γ) is a sutured manifold, with ∂M ∼= S2 and a

single suture s(γ). Then one can take the quotient Y = M/S2 to obtain a

closed, oriented 3-manifold. The fact that ∂M ∼= S2 ensures this operation

is a topological manifold, and the fact that we are in dimension 3 ensures

this operation can be smoothed uniquely. We view the result as a based
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3-manifold (Y, p), with basepoint p given by the equivalence class of the

boundary, p = [∂M ].

Conversely, given any closed, connected, oriented and based 3-manifold

(Y, p), and an oriented two dimensional subspace V ⊂ TpM , one can

construct a sutured manifold (Y (p, V ), γ) with boundary S2 and a single

suture s(γ). To describe the construction, we recall the following notion of a

spherical blow up. We only sketch the idea of the construction and refer the

reader to [16] for a precise formulation of the definition.

Definition 2.3.16. Given a 3-manifold M , and an embedded submanifold

L ⊂ M , denote the normal bundle of L in M by N(L), and the

corresponding sphere bundle by S(N(L)). Then the spherical blowup of

M along L is the 3-manifold with boundary obtained by replacing x for

each x ∈ L with the fiber S(N(L))x. We denote this blow up by BlLM .

Equivalently, it is the 3 manifold M \ int(D(N(L))), where D(N(L)) is the

unit disc bundle of N(L).

With this in hand, we construct a sutured manifold from a closed one

as follows.

Definition 2.3.17. Fix a closed, connected, oriented 3 manifold Y , a

basepoint p ∈ Y , and an oriented two plane V ⊂ TpY . The oriented

two plane V specifies an oriented curve s(γ) ⊂ ∂(BlpY ) ∼= S2. We

denote by (Y (p, V ), γ) the sutured manifold with underlying 3-manifold

Y (p, V ) = BlpY , s(γ) the curve specified by V , and γ a small tubular

neighborhood of s(γ) in ∂(BlpY ) ∼= S2.
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Since the suture data in this construction is defined using only

the data Y , p, and V , we will denote both the resulting 3-manifold with

boundary and the sutured manifold by Y (p, V ).

Remark 2.3.18. The sutured manifolds Y (p, V ) arising from this

construction have boundary S2 and a single suture.

Graphs of Heegaard Diagrams

Following [3, Definition 2.22], construct a directed graph G as follows.

The class of vertices, |G|, of G is given by the class of isotopy diagrams of

sutured manifolds. Given two isotopy diagrams H1, H2 ∈ |G|, the oriented

edges from H1 to H2 come in four flavors

G(H1, H2) = Gα(H1, H2) ∪ Gβ(H1, H2) ∪ Gstab(H1, H2) ∪ Gdiff(H1, H2).

Here

1. Gα(H1, H2) consists of a single edge if the diagrams are α-equivalent.

2. Gβ(H1, H2) consists of a single edge if the diagrams are β-equivalent.

3. Gstab(H1, H2) consists of a single edge if the diagrams are related by a

stabilization or destabilization.

4. Gdiff(H1, H2) consists of a collection of edges, with one edge for each

diffeomorphism between the isotopy diagrams.

We denote by Gα,Gβ,Gstab and Gdiff the subgraphs of G arising from only

considering the corresponding edges on the class of vertices |G|.
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We can now state precisely the following analog of the Reidemeister

Singer theorem for sutured manifolds (applied to sutured diagrams) alluded

to earlier:

Proposition 2.3.19. [3, Proposition 2.23] Two isotopy diagrams H1,

H2 ∈ |G| can be connected by an oriented path in G if and only if they define

diffeomorphic sutured manifolds.

Remark 2.3.20. By the definition of G, if there is an unoriented path from

H1 to H2 then there is also an oriented path from H1 to H2.

Given any set S of diffeomorphism types of sutured manifolds, denote

by G(S) the full subgraph of G spanned by those isotopy diagrams H for

which S(H) ∈ S. For our purposes, the case of interest will be S = Sman.

This is the set of diffeomorphism types of sutured manifolds which arise as

[Y (p, V )], where (Y, p) is a closed, oriented, based 3-manifold, and V ⊂ TpY

is an oriented 2-plane.

Thus the vertices of G(Sman) correspond to isotopy diagrams H for

sutured manifolds which arise as Y (p, V ) for a closed, oriented 3-manifold

Y. Given an actual (rather than isotopy) sutured diagram H = (Σ,α,β)

for such a 3-manifold Y (p, V ), the boundary of the Heegaard surface Σ is

S1, so it can be quotiented to a point to obtain a closed surface Σ and a

pointed Heegaard diagram H = (Σ,α,β, z) for Y , where the basepoint z

is given by the equivalence class of the image of the boundary of Σ under

the quotient. Under this correspondence, isotopies of attaching curves

in the sutured diagram H yield pointed isotopies (i.e. isotopies which

do not cross the basepoint z) of attaching curves in H. Thus a sutured
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isotopy diagram H specifies a pointed isotopy diagram H. It is clear that

diffeomorphisms of sutured isotopy diagrams d : H1 → H2 as in Definition

2.3.15 correspond bijectively to pointed diffeomorphisms of pointed isotopy

diagrams d : H1 → H2. It also is immediate that stabilizations of sutured

isotopy diagrams correspond to stabilizations of pointed isotopy diagrams.

By Lemma 2.3.11, two sutured isotopy diagrams H1 = (Σ,α1,β1) and

H2 = (Σ,α2,β2) are α-equivalent if and only if the curves α1 and α2 are

related by a sequence of handleslides in the pointed isotopy diagrams H1

and H1, where the handleslides never cross the basepoint. The analogous

statement holds for β-equivalent sutured isotopy diagrams. Since these sorts

of equivalences will play a prominent role throughout the dissertation, we

introduce terminology introduced in [2] to describe them:

Definition 2.3.21. Given two closed, pointed Heegaard diagrams H1 =

(Σ,α1,β1, z) and H2 = (Σ,α2,β2, z) we say they are strongly equivalent

if they are related by a sequence of isotopies and handleslides which do not

cross the basepoint. If the diagrams are related by a sequence of isotopies,

and handleslides which occur only among the α curves, we say the diagrams

are strongly α-equivalent. If the diagrams are related by a sequence of

isotopies, and handleslides which occur only among the β curves, we say

the diagrams are strongly β-equivalent.

Let Gman be the oriented graph with vertices given by pointed isotopy

Heegaard diagrams of closed, connected 3 manifolds, and with the edges

from an isotopy diagram H1 to an isotopy diagram H2 given by

Gman(H1, H2) = Gαman(H1, H2) ∪ Gβman(H1, H2) ∪ Gstab
man(H1, H2) ∪ Gdiff

man(H1, H2)
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where

1. Gαman(H1, H2) consists of a single edge if the diagrams are strongly α-

equivalent.

2. Gβman(H1, H2) consists of a single edge if the diagrams are strongly β-

equivalent.

3. Gstab
man(H1, H2) consists of a single edge if the diagrams are related by a

stabilization or destabilization.

4. Gdiff
man(H1, H2) consists of a collection of edges, with one edge for each

pointed diffeomorphism between the isotopy diagrams.

We provide a sketch of a piece of the graph Gman in Figure 17 below. The

following analog of Proposition 2.3.19 holds in the closed and pointed

setting:

Proposition 2.3.22. [1, Proposition 7.1] Two isotopy diagrams H1,

H2 ∈ |Gman| can be connected by an oriented path in Gman if and only if

they define diffeomorphic pointed manifolds.

The preceding arguments specify an isomorphism of graphs

T : G(Sman)→ Gman (2.1)

which we will use implicitly in the remainder of the dissertation to rephrase

certain results from [3] in terms of Gman.
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β d

α

αα

σ

d σ

d

FIGURE 17 An illustration of a small subgraph in Gman. The vertices are
isotopy diagrams, which in the picture are depicted by particular Heegaard
diagrams representing the isotopy class. We label each pair of edges with
α,β, σ or d according to whether the given pair of edges corresponds to a
strong α-equivalence, a strong β-equivalence, a stabilization/destabilization
pair, or a diffeomorphism pair respectively. We use the convention that on
each Heegaard diagram the collection of red attaching curves is denoted α
while the collection of blue attaching curves is denoted β.

2.4. Heegaard Invariants

We now make precise two notions of what one might mean by a

Heegaard invariant of closed 3-manifolds. For the interested reader’s

convenience, we note that the definitions originally given in [3] apply

to sutured manifolds and the graph G(Sman). Instead, we state here the

equivalent definitions phrased in terms of closed manifolds and the graph

Gman.

Suppose we produce some assignment of algebraic objects to Heegaard

diagrams (the vertices of the graph Gman), and an assignment of maps

between these algebraic objects to each Heegaard move between two
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diagrams (the edges of Gman). Given Proposition 2.3.22, the minimal

requirement we should ask of such an assignment to obtain an invariant of

the underlying 3-manifold is for edges in Gman to be assigned isomorphisms.

Given any category C, we have:

Definition 2.4.1. [3, Compare Definition 2.24] A weak Heegaard invariant

of closed 3-manifolds is a morphism of graphs F : Gman → C for which F (e)

is an isomorphism for all edges e ∈ Gman.

Of course, this level of invariance was established for Heegaard Floer

homology at the outset.

Theorem 2.4.2 ([1]). The morphisms

ĤF ,HF−, HF+, HF∞ : Gman → F2[U ]-Mod

and

ĤF ,HF−, HF+, HF∞ : Gman → Z[U ]-Mod

are weak Heegaard invariants of closed 3-manifolds.

The above results also immediately yield

Corollary 2.4.3. The morphisms

HF ◦ : Gman → P (Z[U ]-Mod)

are weak Heegaard invariants of closed 3-manifolds.

In Section 2.7 we will recall the definition of these morphisms of graphs

precisely. In particular, since the vertices of Gman are isotopy diagrams, we
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will need to explain the meaning of HF ◦(H) when H is an isotopy diagram

rather than a particular Heegaard diagram representing the isotopy class.

Remark 2.4.4. For the reader referencing the corresponding results stated

in [3], we note that in [3, Theorem 2.26], Theorem 2.4.2 is instead phrased

as “HF ◦ : G(Sman) → F2[U ]-Mod are weak Heegaard invariants”.

Of course, as they were originally defined HF ◦ are invariants assigned

to closed, pointed Heegaard diagrams; the meaning of HF ◦(H) for H a

sutured isotopy diagram in this statement is interpreted as follows. Recall

that vertices of G(Sman) correspond to isotopy diagrams H of sutured

manifolds which arise as Y (p, V ) for a closed, oriented 3-manifold Y. Given

an actual sutured diagram H = (Σ,α,β) (not up to isotopy) for such a

3-manifold Y (p, V ), the boundary of the Heegaard surface Σ is S1, so it

can be capped off with a disk to obtain a closed surface Σ and a pointed

Heegaard diagram H = (Σ,α,β, z) for Y , where the basepoint z is chosen

to lie in the disk. Thus given a sutured diagram H representing the isotopy

diagram H, we define CF ◦(H) := CF ◦(H). Finally, we will describe how the

collection {CF ◦(H)} gives rise to CF ◦(H) in Section . Equivalently, using

the isomorphism of graphs T specified in Equation (2.1), the definitions

above will amount to defining HF ◦(H) := HF ◦(T (H)) for H a sutured

isotopy diagram.

Let Man∗ be the category whose class of objects consists of closed,

connected, oriented and based 3-manifolds, and whose morphisms are

basepoint preserving diffeomorphisms. In [1] and [2], significant progress was

made towards showing that the weak Heegaard invariants in the theorem

above can in fact be assembled into functors from Man∗ to F2[U ]-Mod.
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However, there was a gap in the proof. In [3], the authors carefully analyzed

the dependence of such a result on the nature of embedded (versus abstract)

Heegaard diagrams, and basepoints, and set up a framework which allowed

them to finish this program. To do so, they introduced a stronger notion of

a Heegaard invariant which we now describe.

To begin, we introduce some terminology for particular subgraphs in

Gman (or more generally in G) which will serve as minimal data on which this

new notion of invariance will rely.

Definition 2.4.5. [3, Definition 2.29] A distinguished rectangle is a

subgraph of Gman of the form

H1 H2

H3 H4

e

f g

h

which satisfies one of the following conditions:

1. The arrows e and h are strong α-equivalences, and the arrows f and g

are strong β-equivalences.

2. The arrows e and h are either both strong α-equivalences or both

strong β-equivalences, and the arrows f and g are stabilizations.

3. The arrows e and h are either both strong α-equivalences or both

strong β-equivalences, and the arrows f and g are diffeomorphisms.

Furthermore, f = g (Note in this case Σ1 = Σ2, and Σ3 = Σ4, so this

requirement makes sense).
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4. All of the arrows e, f, g and h are stabilizations. Furthermore, there

are disjoint disks D1, D2 ⊂ Σ1 and disjoint punctured tori T1, T2 ⊂ Σ4

such that Σ1 \ (D1 ∪ D2) = Σ4 \ (T1 ∪ T2), Σ2 = (Σ1 \ D1) ∪ T1, and

Σ3 = (Σ1 \D2) ∪ T2.

5. The arrows e and h are stabilizations, and the arrows f and g are

diffeomorphisms. Furthermore, the diffeomorphism g is an extension

of the diffeomorphism f in the following sense. There are disks

D1 ⊂ Σ1, D3 ⊂ Σ3 and punctured tori T2 ⊂ Σ2, T4 ⊂ Σ4 such

that Σ1 \D1 = Σ2 \ T2, Σ3 \D3 = Σ4 \ T4, f(D1) = D2, g(T3) = T4 and

f |Σ1\D1 = g|Σ2\T2 .

We illustrate cases 4 and 5 schematically in Figures 18 and 19 below.

D1

D2

T1

T2

T1

T2

f g

e

h

FIGURE 18 A schematic illustrating case 4 in the definition of a
distinguished rectangle. The blue regions indicate the identifications
specified in case 4. For ease of visualization, we suppress the attaching
curve data in the initial diagram and in the stabilizations.
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D1

D3

T2

T4

f g

e

h

FIGURE 19 A schematic illustrating case 5 in the definition of a
distinguished rectangle. The blue regions indicate the identifications of
the regions specified in case 5. For ease of visualization, we suppress the
attaching curve data in each diagram.

Definition 2.4.6. [3, Definition 2.31] A simple handleswap is a subgraph of

Gman of the form

H1

H3 H2

eg

f

such that:

1. The isotopy diagrams Hi are given by Hi = (Σ#Σ0, [αi], [βi]), where

Σ0 is a genus two surface.

2. e is a strong α-equivalence, f is a strong β-equivalence, and g is a

diffeomorphism.

3. In the punctured genus two surface P = (Σ#Σ0)\Σ, the above triangle

is equivalent to the triangle in Figure 20 in the following sense. There

are diffeomorphisms from P ∩ Hi to the green discs labeled Hi in

the figure, such that the image of the α curves are the red circles in
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the figures, and the image of the β curves are the blue circles in the

figures.

4. The diagrams H1, H2 and H3 are identical when restricted to Σ.

H1

H2

H3

e

f

g

α1

α2

β1

β2

α′1

β′1

F F

R R

F F

R R

F F

R R

FIGURE 20 The standard simple handleswap.

With these notions in hand, the stronger sense of invariance we will

ask of our Heegaard invariants is as follows.

Definition 2.4.7. [3, Definition 2.32] A strong Heegaard invariant of closed

3-manifolds is a weak Heegaard invariant F : Gman → C that additionally

satisfies the following axioms:
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1. Functoriality: The restriction of F to Gαman, Gβman and Gdiff
man are

functors to C. If e : H1 → H2 is a stabilization and e′ : H2 → H1

is the corresponding destabilization, then F (e′) = F (e)−1.

2. Commutativity: For every distinguished rectangle in Gman,

H1 H2

H3 H4

e

f g

h

we have F (g) ◦ F (e) = F (h) ◦ F (f).

3. Continuity: If H ∈ |Gman| and e ∈ Gdiff
man(H,H) is a diffeomorphism

isotopic to IdΣ, then F (e) = IdF (H).

4. Handleswap Invariance: For every simple handleswap in Gman,

H1

H3 H2

eg

f

we have F (g) ◦ F (f) ◦ F (e) = IdF (H1).

As we will summarize in Section 2.6, it was shown in [3] that for any

weak Heegaard invariant the axioms required above are sufficient to ensure

the images of the invariant, when restricted to a particular subgraph of Gman

whose vertices represent a fixed 3-manifold, form a transitive system in the

given category. For certain categories C, this in turn is enough to ensure
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that the assignments of the invariants can be understood as a functor from

an appropriate category of 3-manifolds.

2.5. Transitive Systems

In this section we describe the algebraic framework which will be

necessary to phrase our projective functoriality results. To begin with, we

recall the following fundamental notions.

Definition 2.5.1. A directed set (I,≤) is a set I together with a reflexive

and transitive binary relation ≤, such that for every pair of elements a, b ∈ I

there is an element c ∈ I with a ≤ c and b ≤ c.

Definition 2.5.2. Let C be a category, and (I,≤) be a directed set. Given

a collection of objects {Oi} in C indexed by I, and a collection of morphisms

{fi,j : Oi → Oj} for all i, j ∈ I with i ≤ j, we say the collections are a

transitive system in C (indexed by I) if they satisfy:

1. fi,i = IdOi

2. fi,k = fj,k ◦ fi,j

We also have the following notion of morphisms between transitive

systems:

Definition 2.5.3. Given two transitive systems T1 = {I1,≤, {Oi}, {fi,j}}

and T2 = {I2,≤, {Pi}, {gi,j}} in a category C, a morphism of transitive

systems (M, {ni}) from T1 to T2 consists of a map of directed sets M : I1 →

I2 and a collection of morphisms {ni : Oi → PM(i)} in C such that for all
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i, j ∈ I1 with i ≤ j the squares

Oi PM(i)

Oj PM(j)

ni

fi,j gM(i),M(j)

nj

commute in C. We denote the resulting category of transitive systems in C

by Trans(C).

Finally, given a transitive system in Trans(C) indexed by J, we obtain

what one might call a two dimensional transitive system. Such a two

dimensional transitive system naturally has the structure of a transitive

system in C indexed by I × J , where (i, j) ≤ (i′, j′) if and only if i ≤ i′ and

j ≤ j′.

We now explain how these notions will arise in the context of our

results. We will begin by considering the category Kom(Z[U ]-Mod), the

homotopy category of chain complexes of Z[U ]-modules. To each pointed

isotopy diagram H, corresponding to a vertex of Gman, we will assign a

transitive system CF−(H) ∈ Trans(Kom(Z[U ]-Mod)). To a diffeomorphism,

strong α-equivalence, strong β-equivalence, or stabilization between two

such isotopy diagrams H1 and H2 we will associate a morphism of transitive

systems from CF−(H1) to CF−(H2). Together, these assignments will yield

a morphism of graphs

CF− : Gman → Trans(Kom(Z[U ]-Mod)).
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This morphism of graphs may not be a strong Heegaard invariant. We

will however be able to establish that this morphism of graphs satisfies the

axioms required of a strong Heegaard invariant up to an overall sign in each

of the axioms (2), (3) and (4) appearing Definition 2.4.7.

Equivalently, we will phrase this result in terms of an appropriate

projectivization. Recall that given any category C, with an equivalence

relation ∼ on every hom set which furthermore respects composition, we

may form the quotient category C = C/ ∼. This is the category whose

objects are those of C, and whose morphisms are equivalence classes of

morphisms with respect to ∼. Given an additive category C, we define the

projectivization of C, P (C), to be the quotient category of C with respect

to the relation f ∼ −f for all morphisms f . The last statement in the

preceding paragraph is then given precisely by the following statement:

considering now the category of transitive systems in the projectivized

homotopy category, Trans(P (Kom(Z[U ]-Mod))), we will show that the

morphism of graphs above yields a strong Heegaard invariant

CF− : Gman → Trans(P (Kom(Z[U ]-Mod))).

Remark 2.5.4. While the proliferation of transitive systems may seem

undesirable, we were unable to produce another framework in which our

naturality results could be phrased. There appear to be two issues that

arise if one tries to use the same framework developed in [3] to phrase our

projective results.

The first issue comes from the fact that the statement in Theorem

1.3.3 is concerned with the Floer chain complexes. If one wanted to dispense
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with the category of transitive systems appearing in that statement, one

would need to assign a single chain complex CF ◦(H) of Z[U ]-modules

to an isotopy diagram H. As we will recall in the next section, what the

Heegaard Floer construction actually produces for each isotopy diagram

H is a transitive system of chain homotopy equivalences between chain

complexes of Z[U ]-modules. In general, it is not clear how one should define

an object like a colimit of such a transitive system of chain complexes to

obtain a single chain complex. We note that it seems likely that this issue is

in fact a non-issue, for the following reason. We expect our transitive system

of chain homotopy equivalences is homotopy coherent in the sense of [17],

which if true would allow one to define a single chain complex CF ◦(H)

via a homotopy colimit. Indeed, that our transitive systems are homotopy

coherent in this sense seems likely to follow from the results in [18].

However, even if one could assign to each isotopy diagram a single

chain complex CF ◦(H), there is another key obstruction to phrasing

Theorem 1.3.1 without the use of transitive systems. In the proof of

Theorem 1.3.1, which will be given in Section 2.6, we will associate to each

closed, pointed 3-manifold a transitive system in P (Z[U ]-Mod). The author

is unaware of a notion of a colimit in P (Z[U ]-Mod) which would allow

Theorem 1.3.1 to be stated without transitive systems, in such a way that

it is also not merely reduced to a statement about the F2 invariants.

2.6. Projective Naturality from Strong Heegaard Invariants

In this section we prove Theorem 1.3.1 assuming Corollary 1.3.4,

which we will prove in turn in Section 2.8. Our argument will follow the
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same logical structure as that used to prove the analogous result over

F2 appearing in [3, Theorem 1.5]. We provide the argument here for the

reader’s convenience, but note that the scheme is essentially the same.

In [3] Juhász, Thurston and Zemke show that the images of any strong

Heegaard invariant, appropriately restricted, fit into a transitive system. To

make this precise, we introduce a few more definitions.

Definition 2.6.1. Suppose H1 and H2 are embedded isotopy diagrams for

a closed, oriented, pointed 3-manifold (Y, z), with Heegaard surfaces ι1, ι2 :

(Σ1, z), (Σ2, z) ↪→ (Y, z). We say a diffeomorphism of isotopy diagrams d :

H1 → H2 is isotopic to the identity in M if ι2 ◦ d : Σ1 → (Y, z) is isotopic to

ι1 : Σ1 → (Y, z) relative to the basepoint.

Definition 2.6.2. Given (Y, z), let (Gman)(Y,z) be the following subgraph of

Gman whose vertices are embedded isotopy diagrams for (Y, z). The edges

e ∈ (Gman)(Y,z)(H1, H2) between two isotopy diagrams again come in four

flavors:

(Gman)(Y,z)(H1, H2) = Gαman(H1, H2)∪Gβman(H1, H2)∪Gstab
man(H1, H2)∪(Gdiff

man)0(H1, H2)

Here Gαman, Gβman and Gstab
man are the same collections as in the definition of

Gman, while (Gdiff
man)0(H1, H2) consists of one edge for each element in the set

of diffeomorphisms from H1 to H2 which are isotopic to the identity in M .

With these notions in hand, we have a stronger version of Proposition

2.3.22 which applies now to embedded diagrams for some fixed (Y, z):
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Proposition 2.6.3. [3, Proposition 2.36] Given (Y, z), any two vertices in

the graph (Gman)(Y,z) can be connected by an oriented path in (Gman)(Y,z).

The salient feature of a strong Heegaard invariant, F , is that the the

isomorphisms F (e) associated to edges e in (Gman)(Y,z) fit into a transitive

system. This follows from the fact that the isomorphism associated to a

path depends only on the endpoints:

Theorem 2.6.4 (Theorem 2.38 in [3]). Let F : Gman → C be a strong

Heegaard invariant. Given two isotopy diagrams H,H ′ ∈ |(Gman)(Y, z)| and

any two oriented paths η and ν in (Gman)(Y, z) from H to H ′, we have

F (η) = F (ν)

Now, for any two isotopy diagrams H,H ′ and an oriented path η from

H to H ′, we can define the map FH,H′ = F (η).

Corollary 2.6.5 (Corollary 2.41 in [3]). Suppose that H,H ′, H ′′ ∈

|(Gman)(Y,z)|. Then

FH,H′′ = FH′,H′′ ◦ FH,H′

These results should provide some intuitive justification for the

appearance of the notion of a strong Heegaard invariant. At the very least,

the notion is enough to ensure such invariants fit into a transitive system. In

particular, applying Corollary 2.6.5 to the strong Heegaard invariants

CF ◦ : Gman → Trans(P (Kom(Z[U ]-Mod)))
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of Theorem 1.3.3 immediately yields Corollary 1.3.5. We now show that

this transitivity is also enough for the functoriality ends we seek in Theorem

1.3.1.

Proof of Theorem 1.3.1. Assuming Corollary 1.3.4, the Heegaard Floer

invariants

HF ◦ : Gman → P (Z[U ]-Mod)

are strong Heegaard invariants. Let Man∗ be the category of closed,

connected, oriented, and based 3-manifolds with based diffeomorphisms.

Using the strong Heegaard invariants above, we can obtain functors:

HF ◦1 : Man∗ → Trans(P (Z[U ]-Mod))

as follows. Given a manifold (Y, z) ∈ Ob(Man∗), Corollary 2.6.5 ensures

that the modules HF ◦(H) for isotopy diagrams H ∈ |(Gman)(Y,z)|, along

with the isomorphisms HF ◦H,H′ , form a transitive system. We denote this

transitive system by HF ◦1 (Y, z) ∈ Trans(P (Z[U ]-Mod)).

To a pointed diffeomorphism φ : (Y, z)→ (Y ′, z′), the functor HF ◦1 will

assign a morphism of transitive systems

HF ◦1 (φ) : HF ◦1 (Y, z)→ HF ◦1 (Y ′, z′)

defined as follows. Given any isotopy diagram H = (Σ, A,B, z) for (Y, z),

let φH = φ|Σ and H ′ be the isotopy diagram φ(H) for (Y ′, z′). By virtue of

being a strong Heegaard invariant, HF ◦ associates a morphism HF ◦(φH) :

HF ◦(H)→ HF ◦(H ′) in P (Z[U ]-Mod) to any such diffeomorphism of isotopy
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diagrams φH . The collection of morphisms {φH} for H ∈ |(Gman)(Y,z)|

will thus yield a collection of morphisms {HF ◦(φH)}. We claim that this

collection of morphisms is in fact a morphism of transitive systems

HF ◦1 (φ) : HF ◦1 (Y, z)→ HF ◦1 (Y ′, z′)

as desired. According to Definition 2.5.3, we must check that for any path

of edges γ in (Gman)(Y,z) from H1 to H2, we have HF ◦(φH2) ◦ HF ◦(γ) =

HF ◦(γ′) ◦HF ◦(φH1), for some path γ′ in (Gman)(Y ′,z′) from H ′1 to H ′2. If γ is

given by the path of edges

D0 D1 · · · Dn−1 Dn
e1 e2 en−1 en

in (Gman)(Y,z) from D0 = H1 to Dn = H2, we pick out a path γ′ in

(Gman)(Y ′,z′) from H ′1 to H ′2 given by

D′0 D′1 · · · Dn−1 D′n
e′1 e′2 e′n−1 e′n

as follows. We define the intermediate isotopy diagrams in the path γ′ by

D′i = φ(Di). If the edge ei is given by a strong α-equivalence, a strong β-

equivalence, or a (de)stabilization, we let ei′ denote the corresponding strong

α-equivalence, strong β-equivalence, or (de)stabilization. If ei corresponds

to a diffeomorphism ei : Di−1 → Di isotopic to the identity, we set e′i =

φDi ◦ ei ◦ φ−1
Di−1

. We then have a subgraph in Gman given by
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D0 D1 · · · Dn−1 Dn

D′0 D′1 · · · Dn−1 D′n

e1

φH1

e2

φD1

en−1 en

φDn−1
φH2

e′1 e′2 e′n−1 e′n

The condition that needs to be verified is that the image under HF ◦ of the

outer rectangle in this subgraph commutes. By construction of the path γ′,

each small square in the diagram is either a distinguished rectangle (recall

Definition 2.4.7) or a commuting square of diffeomorphisms. Commutativity

of the large rectangle now follows by virtue of HF ◦ being a strong Heegaard

invariant. Since the restriction of HF ◦ to Gdiff
man is a functor, the image under

HF ◦ of the commuting square of diffeomorphisms also commutes. Since the

image under HF ◦ of any distinguished rectangle also commutes, we thus see

that the morphism of transitive systems

HF ◦1 (φ) : HF ◦1 (Y, z)→ HF ◦1 (Y ′, z′)

associated to a pointed diffeomorphism φ is well defined.

The assignments above thus define the functor HF ◦1 ; we note that

composition of morphisms in Man∗ are respected under HF ◦1 because HF ◦

is a strong Heegaard invariant, and in particular must be a functor when

restricted to Gdiff
man (see Axiom 1 in Definition 1.3.4).

Finally, we note that isotopic diffeomorphisms in Man∗ induce

identical maps under HF ◦1 . To see this, suppose φ : (Y, z) → (Y, z) is

isotopic to Id(Y,z), and fix an isotopy diagram H = (Σ, A,B, z) for (Y, z).

Then φH = φ|H is isotopic to IdH and H ′ = φ(H) = H, so by virtue
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of HF ◦ being a strong Heegaard invariant we must have HF ◦(φH) =

IdHF ◦(H). Thus HF ◦1 (φ) is the map of transitive systems defined by the

data {HF ◦(φH) = IdHF ◦(H)} for H ∈ (Gman)(Y,z), and is thus an identity

morphism in Trans(P (Z[U ]-Mod)).

2.7. Heegaard Floer Homology as a Weak Heegaard Invariant

In this section we very briefly recall numerous maps defined on the

Heegaard Floer chain complexes, and then use these maps to define the

underlying morphisms of graphs of the strong Heegaard invariants appearing

in Theorem 1.3.3. For the most part we just seek to establish notation in

the first few subsections, and refer the reader to [1], [14] and [3] for detailed

descriptions of the constructions involved in the definitions appearing there.

For concreteness and ease of notaton, we will phrase the results in

this section in terms of CF−, however we note that the definitions vary

in a cosmetic way, and analogous results hold, for all of the variants CF ◦.

In particular, the proof of Theorem 1.3.3 for CF ◦ will follow by the same

arguments given here for CF−. In fact, one could also obtain the results for

the other variants directly from those we prove, as ĈF , CF+ and CF∞ can

all be obtained by taking suitable tensor products with CF− and quotients

thereof.

Finally, we note at the outset that we will use ∼ to indicate homotopic

chain maps.
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Spin Structures and Strong Admissibility

We must first address the fact that while the graph Gman that we

have been considering thus far contains arbitrary Heegaard diagrams, the

Heegaard Floer chain complexes defined in [1] are defined only with respect

to certain admissible diagrams. Since we will focus on the case of CF− in

this section, the admissibility we will need is given by the notion of strong

admissibility, which we now summarize.

We begin by recalling the setting of Heegaard Floer homology, and

the role of Spinc structures in the construction of the Heegaard Floer chain

complexes. This discussion is an elaboration of that in Section 2.2, in which

we will both provide more details and emphasize the role of Spinc-structures,

admissibility, and orientation systems. Given a genus g based Heegaard

diagram

H = (Σ,α = (α1, α2, . . . , αg),β = (β1, β2, . . . , βg), z)

for a closed, connected, oriented and based 3-manifold (Y, z), one considers

the tori

Tα = α1 × α2 · · · × αg, Tβ = β1 × β2 · · · × βg

in the symmetric product Symg(Σ) := (Σ × · · ·Σ)/Sg. A choice of complex

structure on Σ induces an almost complex structure on Symg(Σ), and with

respect to such an induced structure the tori Tα and Tβ are totally real.

The Heegaard Floer homology is then defined as a variation of Lagrangian

intersection Floer homology applied to these tori. To define the chain
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complexes one must fix a complex structure j on Σ, and a choice of generic

path Js of almost complex structures on Symg(Σ) through Symg(j) (see [1]).

The basepoint z induces a map

sz : Tα ∩ Tβ → Spinc(Y )

which associates to each intersection point a Spinc-structure. One first

defines a chain complex

CF−(H, s)

which is freely generated as an abelian group by [x, i], for x ∈ Tα ∩ Tβ with

sz(x) = s and for i ∈ Z with i < 0. Given two intersection points x,y ∈

Tα ∩ Tβ, we let π2(x,y) denote the set of homtopy classes of Whitney disks

connecting x to y in Symg(Σ), with the usual boundary conditions. Given

a homotopy class φ ∈ π2(x,y), we denote by MJs(φ) the moduli space of

Js-holomorphic disks in the class φ, and write M̂Js(φ) = MJs(φ)/R for the

quotient with respect to the R-action coming from the translation action on

the disks. We let µ(φ) denote the Maslov index of the class φ, and let nz(φ)

denote the algebraic intersection number of φ with z × Symg−1(Σ). We then

have a well defined relative grading on the generators defined above, given

by the formula

gr([x, i], [y, j]) = µ(φ)− 2nz(φ) + 2i− 2j,

where φ is any class φ ∈ π2(x,y). Finally, the differential

∂ : CF−(H, s)→ CF−(H, s)
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is defined by the formula

∂([x, i]) =
∑

{y∈Tα∩Tβ|sz(y)=s}

∑
{φ∈π2(x,y)|µ(φ)=1}

#M̂Js(φ) · [y, i− nz(φ)].

There is an action of the polynomial ring Z[U ] on the complex CF−(H, s),

where

U · [x, i] = [x, i− 1]

decreases the relative grading by 2. We will always consider CF−(H, s) as a

complex of Z[U ]-modules. Finally, the total chain complex associated to H

then splits by definition as

CF−(H) =
⊕

s∈Spinc(Y )

CF−(H, s).

Given a Spinc structure s, we call a pointed Heegaard diagram s-

realized if there is an intersection point x ∈ Tα ∩ Tβ with sz(x) = s. We

note that for any s ∈ Spinc(Y, z) there is an s-realized pointed Heegaard

diagram for (Y, z) by [1, Lemma 5.2].

The chain complex CF−(H, s) can in fact only be defined for Heegaard

diagrams H = (Σ,α,β, z) which satisfy an admissibility hypothesis. Given

s ∈ Spinc(Y ), we say the diagram H is strongly s-admissible if every

nontrivial periodic domain D on H satisfying 〈c1(s), H(D)〉 = 2n ≥ 0

has some coefficient that is greater than n. Here H(D) ∈ H2(Y ;Z) is the

homology class naturally associated to the periodic domain D. It turns

out that this notion of admissibility is enough to ensure that differential ∂

given above consists of a finite sum and is well defined on CF−(H, s), and to
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ensure that it in fact yields a chain complex. It is shown in [1, Lemma 5.4]

that given any s ∈ Spinc(Y ), there is an s-realized, strongly s-admissible

pointed diagram for (Y, z).

To define triangle maps on the Floer chain complexes, we will need an

analogous notion of admissibility for Heegaard triple diagrams. A pointed

triple diagram T = (Σ,α,β,γ, z) specifies a 4-manifold with boundary,

which we denote by Xα,β,γ . Given now a Spinc-structure s on Xα,β,γ , denote

by sα,β the restriction of s to the boundary component Yα,β. We will say

the triple diagram T is strongly s-admissible if any triply periodic domain D

which is the sum of doubly periodic domains,

D = Dα,β +Dβ,γ +Dα,γ

and which furthermore satisfies

〈c1(sα,β), H(Dα,β)〉+ 〈c1(sβ,γ), H(Dβ,γ)〉+ 〈c1(sα,γ), H(Dα,γ)〉 = 2n ≥ 0

has some coefficient greaer than n. It is shown in [1, Lemma 8.11] that given

any pointed triple diagram T and a Spinc structure s on Xα,β,γ , there is a

pointed triple diagram isotopic to T which is strongly s-admissible.

Orientation Systems

Coherent Orientation Systems of Disks

We recall that to define the differential on the Heegaard Floer chain

complexes with coefficients in Z, one must perform signed counts of the
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points in certain moduli spaces of psuedo-holomorphic disks. To do so,

one must ensure that on a pointed Heegaard diagram H = (Σ,α,β, z)

the moduli spaces of holomorphic disks in a homotopy class A ∈ π2(x,y),

which we denote by MA or M(A), are orientable. By [1, Proposition 3.10]

(or[14, Proposition 6.3] for the reader more comfortable in the cylindrical

setting), these moduli spaces are orientable whenever they are smoothly cut

out. There this is shown by trivializing the determinant line bundle L of the

virtual index bundle of the linearized ∂̄-equation defining the moduli space

in question, so when necessary we will specify our orientations by specifying

sections of these determinant line bundles.

In order for these orientations to allow for the structure of a chain

complex on the Heegaard Floer chain modules, we actually need somewhat

more: we want the moduli spaces for different homotopy classes of disks to

be oriented coherently. To make this precise, Ozsváth and Szabó used the

notion of a coherent orientation system for the moduli spaces of holomorphic

disks in a Heegaard diagram H = (Σ,α,β, z). Such an orientation

system consists of a collection oH = oα,β := {oAα,β} of sections oAα,β of

the determinant line bundle L over all possible homotopy classes of disks

A ∈ π2(x,y) (ranging over all x,y ∈ Tα ∩ Tβ). Roughly, the coherence

condition amounts to requiring that these sections are compatible with a

process of glueing holomorphic disks together. We refer the reader to [1] for

the precise definition of the coherence condition, or to Section where we will

formulate a precise version of the notion in the cylindrical setting. For our

purposes in this section, we just recall the fact that every pointed Heegaard

diagram equipped with complex structure data achieving transversality
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admits a coherent orientation system by [1, Remarks following Definition

3.12].

Coherent Orientation Systems of Triangles

Given a pointed Heegaard triple diagram T = (Σ,α,β,γ, z), we

also note that moduli spaces of holomorphic triangles in a homotopy class

ψ, which we denote by Mψ or M(ψ), are also orientable when they are

smoothly cut out, by [1, Section 8.2] (or [14, Proposition 10.3]). Given

a collection oT := {oα,β,γ , oα,β, oβ,γ , oα,γ}, where oα,β,γ is a collection

of sections of the determinant line bundle over all homotopy classes

of triangles, and oα,β, oβ,γ , and oα,γ are collections of sections of the

determinant line bundle over all homotopy classes of disks in the respective

double diagrams, we will consider a related notion of coherence (see [1,

Definition 8.6]). Roughly, the coherence condition here will amount to the

requirement that each collection of orientations of the moduli spaces of

strips on the respective double diagrams are coherent, and that all possible

pregluings of triangles with strips satisfy the analogous glueing condition

(this coherence condition will also be spelled out precisely in Section ). The

existence of such coherent orientation systems is guaranteed by the following

result.

Lemma 2.7.1. [1, Lemma 8.7] Fix a pointed Heegaard triple diagram

(Σ,α,β,γ, z), and let s be a Spinc structure on Xα,β,γ whose restriction

to each boundary component is realized by an intersection point in the

corresponding Heegaard diagram. Then for any coherent orientation systems

oα,β and oβ,γ for two of the boundary components, there exists at least one
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coherent orientation system oα,γ for the remaining boundary component

and a coherent orientation system oα,β,γ such that the entire collection of

orientations is coherent.

Change of Almost Complex Structures

Next, we recall the dependence of the construction of the Heegaard

Floer invariants on the choices of almost complex structures involved. The

definition of the Heegaard Floer chain complex associated to a pointed

Heegaard diagram (Σ,α,β, z) in fact requires a choice of complex structure

j on Σ, and a generic path of almost complex structures Js ⊂ U on Symg(Σ)

going through the structure Symg(j) induced by j. Here g is the genus of Σ

and U is a particular contractible set of almost complex structures specified

by Ozsváth and Szabó in [1, Theorem 3.15 and Section 4.1]. Given a

strongly s-admissible pointed Heegaard diagram H = (Σ,α,β, z), a coherent

orientation o on H, and two choices of such almost complex structure data

(j, Js) and (j′, J ′s), there is a chain homotopy equivalence

ΦJs→J ′s : CF−Js(Σ,α,β, z, s, o)→ CF−J ′s(Σ,α,β, z, s, o).

These equivalences fit into a transitive system in the homotopy category of

chain complexes of Z[U ]-modules, in the sense that ΦJs→Js ∼ idCF−(Σ,α,β)

and ΦJ ′s→J ′′s ◦ ΦJs→J ′s ∼ ΦJs→J ′′s . This is shown in [2, Lemma 2.11]. We

denote this transitive system in the homotopy category of complexes of

Z[U ]-modules by

CF−(Σ,α,β, z, s, o).
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Of course we also obtain from the maps ΦJs→J ′s a transitive system of

isomorphisms on homology. We will denote the colimit of the Z[U ]-modules

HF−Js(Σ,α,β, z, s, o) with respect to this transitive system by

HF−(Σ,α,β, z, s, o).

Triangle Maps and Continuation Maps

Given a pointed Heegaard triple diagram T = (Σ,α,β,γ, z) which is

strongly s-admissible for a Spinc structure s on Xα,β,γ , as well as a coherent

orientation system oα,β,γ compatible with coherent orientation systems oα,β,

oβ,γ and oα,γ , there are Z[U ]-module chain maps

Fα,β,γ : CF−Js(α,β, sα,β, oα,β)⊗Z[U ]CF
−
Js

(β,γ, sβ,γ , oβ,γ)→ CF−Js(α,γ, sα,γ , oα,γ)

defined in [1, Theorem 8.12]. Here we have suppressed the dependence of

this map on the spinc-structure s, the coherent orientation system oα,β,γ

and the basepoint z in our notation. Put simply, these chain maps count

pseudoholomorpic triangles on the triple diagram. In fact, the homotopy

class of the chain map Fα,β,γ does not depend on the choice of almost

complex structure data. More precisely, for two choices of almost complex

structure data the maps above commute up to homotopy with the change of

almost complex structure maps, by [1, Proposition 8.13]. Thus with respect

to the transitive systems CF−(Σ,α,β, z, s, o), the map Fα,β,γ is a morphism

in Trans(Kom(Z[U ]-Mod)), i.e. a morphism between two transitive systems
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in the homotopy category of Z[U ] modules. We denote this morphism by

Fα,β,γ : CF−(α,β, sα,β, oα,β)⊗Z[U ]CF
−(β,γ, sβ,γ , oβ,γ)→ CF−(α,γ, sα,γ , oα,γ)

We also obtain induced maps of Z[U ]-modules:

Fα,β,γ : HF−(α,β, sα,β, oα,β)⊗Z[U ]HF
−(β,γ, sβ,γ , oβ,γ)→ HF−(α,γ, sα,γ , oα,γ)

The triangle maps above allow one to define maps associated to handleslides.

To describe the handleslide maps, we first recall the following fact.

Lemma 2.7.2. [1, Lemma 9.4 and Section 9.1] (cf. [3, Lemma 9.2])

Let (Σ,β,γ ′, z) be a pointed genus g Heegaard diagram such that γ ′ can

be obtained from β by performing a sequence of handleslides among the

curves in β. Then the diagram represents #g(S1 × S2). There is a unique

Spinc structure s0 ∈ Spinc(#g(S1 × S2)) such that c1(s0) = 0, and upon

performing a particular small Hamiltonian isotopy of γ ′ (specified in [1]) to

obtain (Σ,β,γ, z) one can ensure this new diagram is strongly s0-admissible.

Furthermore, there is a choice of coherent orientation system oβ,γ on this

diagram such that in the highest nontrivial relative homological grading

HF−(Σ,β,γ, z, s0, oβ,γ) is isomorphic to Z =: 〈θβ,γ〉 for a generator we

denote θβ,γ.

Remark 2.7.3. For such a diagram, we can also identify a particular

intersection point θβ,γ ∈ CF−(Σ,β,γ, z, s0, oβ,γ) representing this element

of homology. Indeed, the strongly admissible diagram referred to in the

lemma statement yields a chain complex whose rank is the same as that
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of its homology, and which has a unique intersection point realizing s0 in the

maximal relative grading.

Given a strongly s-admissible triple diagram (Σ,α,β,γ, z) with γ

related to β as in the statement of Lemma 2.7.2, we will write

Ψα
β→γ := Fα,β,γ(·⊗θβ,γ) : CF−(Σ,α,β, z, sα,β, oα,β)→ CF−(Σ,α,γ, z, sα,γ , oα,γ)

Here we have used an arbitrary coherent orientation system oα,β and the

coherent orientation system oβ,γ of Lemma 2.7.2, and enlarged them to a

coherent orientation system oα,β,γ to define this map. That this enlargement

can be done is ensured by Lemma 2.7.1. Similarly if instead β is related to

α as in the statement of Lemma 2.7.2, we will write

Ψα→β
γ := Fβ,α,γ(θβ,α⊗·) : CF−(Σ,α,γ, z, sα,γ , oα,γ)→ CF−(Σ,β,γ, z, sβ,γ , oβ,γ)

These can be thought of as maps on the Floer invariants associated to (small

variations of) sequences of handleslides on diagrams. These maps are in fact

homotopy equivalences according to the following result:

Lemma 2.7.4. [1, Theorem 9.5 and Section 9.1]

1. If (Σ,α,β,γ, z) is a strongly s-admissible triple diagram and β is

related to γ as in the statement of Lemma 2.7.2, then Ψα
β→γ is a chain

homotopy equivalence.

80



2. Furthermore, such equivalences are transitive: for two triples satisfying

the conditions above we have

Ψα
β→γ ∼ Ψα

δ→γ ◦Ψα
β→δ.

3. The analogous results hold for the maps induced by changing the α

curves.

There are also maps associated to special Hamiltonian isotopies of

diagrams [1, Proof of Theorem 7.3]. Given strongly s-admissible diagrams

(Σ,α,β, z) and (Σ,α′,β′, z) and an exact Hamiltonian isotopy φt on (Σ, ω)

taking α to α′ and β to β′, which furthermore never crosses the basepoint,

each coherent orientation system oα,β for the first diagram determines a

unique coherent orientation system oα′,β′ for the second. With respect to

these orientation systems there is an induced chain homotopy equivalence

Γα→α
′

β→β′ : CF−(Σ,α,β, z, s, oα,β)→ CF−(Σ,α′,β′, z, s, oα′,β′)

which we call a continuation map associated to the Hamiltonian isotopy φt.

We will also use the notation

Γα→α
′

β = Γα→α
′

β→β

and

Γαβ→β′ = Γα→αβ→β′
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By [2, Lemma 2.12], these equivalences compose naturally under

concatenation of isotopies in the sense that

Γα→α
′′

β ∼ Γα
′→α′′

β ◦ Γα→α
′

β

and

Γα→α
′

β→β′ ∼ Γα→α
′

β′ ◦ Γαβ→β′ ∼ Γα
′

β→β′ ◦ Γα→α
′

β .

Furthermore, by their definition in [1, Proof of Theorem 7.3], they satisfy

Γα→αβ→β = idCF−(Σ,α,β,z,s,oα,β).

As suggested by the notation, we note that while the continuation

map is a priori associated to a Hamiltonian isotopy between the isotopic

attaching curves, in the cases of interest for us its chain homotopy class will

actually be independent of the choice of isotopy. To see this, we recall:

Lemma 2.7.5. [1, Lemma 9.1 and Section 9.1] Let (Σ,β,β′, z) be a pointed

diagram such that each curve β′i in β′ is obtained from the curve βi in β

by performing a small Hamiltonian isotopy which introduces two transverse

intersection points between βi and β′i, and no intersection points between β′i

and βj for j 6= i. Then the diagram represents #g(S1 × S2). There is a

unique Spinc structure s0 ∈ Spinc(#g(S1 × S2)) such that c1(s0) = 0, and

the diagram (Σ,β,β′, z) is strongly s0-admissible. Furthermore, there is a

choice of coherent orientation system oβ,β′ on this diagram such that in the

highest nontrivial relative homological grading HF−(Σ,β,β′, z, s0, oβ,β′) is

isomorphic to Z =: 〈θβ,β′〉 for a generator we denote θβ,β′.

Using the generator θβ,β′ we have an analogous triangle map to that

defined above, which is also shown to be an equivalence:
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Lemma 2.7.6. [1, Theorem 9.8 and Section 9.1] If (Σ,α,β,β′, z) is

a strongly s-admissible triple diagram and β′ is related to β as in the

statement of Lemma 2.7.5 by a sufficiently small isotopy, then

Fα,β,β′(· ⊗ θβ,β′) : CF−(Σ,α,β, z, sα,β, oα,β)→ CF−(Σ,α,β′, z, sα,β′ , oα,β′)

is a chain homotopy equivalence.

Furthermore, we have

Lemma 2.7.7. [14, Proposition 11.4] If the triple diagram (Σ,α,β,β′, z)

is strongly s-admissible and β′ is related to β as in the statement of Lemma

2.7.5 by a sufficiently small isotopy, then the continuation map associated to

any Hamiltonian isotopy φt between β and β′ satisfies

Γαβ→β′ ∼ Fα,β,β′(· ⊗ θβ,β′)

We thus see that the continuation maps associated to small

Hamiltonian isotopies of the attaching curves are independent of the choice

of isotopy.

Finally, we introduce notation for a composition of triangle maps

and continuation maps associated to strong α-equivalences and strong β-

equivalences.

Definition 2.7.8. [2, Section 2 and Lemma 2.13] Given two strongly s-

admissible diagrams (Σ,α1,β1, z) and (Σ,α2,β2, z) which are strongly

equivalent, one can construct another pointed diagram (Σ,α′1,β
′
1, z) such

that:
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1. α′1 and β′1 are obtained respectively from α1 and β1 by special

isotopies.

2. α2 and β2 are obtained respectively from α′1 and β′1 by (small

variations of) sequences of handleslides as in Lemma 2.7.2.

3. The quadruple diagram (Σ,α′1,β
′
1,α2,β2) is strongly s-admissible for

the unique Spinc-structure on Xα′1,β′1,α2,β2
which restricts to s on Yα′1,β2

and s0 on Yα′1,α2
and Yβ′1,β2

.

We define a map,

Φα1→α2
β1→β2

(·, s) : CF−(Σ,α1,β1, z, s)→ CF−(Σ,α2,β2, z, s)

associated to two such strongly equivalent diagrams by the formula:

Φα1→α2
β1→β2

(·, s) = Ψα2

β′1→β2
◦Ψ

α′1→α2

β′1
◦ Γ

α1→α′1
β1→β′1

.

We will sometimes use the notation

Φαβ→β′ = Φα→αβ→β′

and

Φα→α
′

β = Φα→α
′

β→β .
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The Weak Heegaard Floer Invariants

Using the previous two subsections, we are now in position to define

the value on vertices of the morphism of graphs

CF− : Gman → Trans(P (Kom(Z[U ]-Mod)))

which will partially define the weak invariants underlying the maps in

Theorem 1.3.3. In doing so, we will also define the value on vertices of the

morphism of graphs

HF− : Gman → P (Z[U ]-Mod)

appearing in Corollary 1.3.4.

Definition 2.7.9. Fix some pointed isotopy diagram H = (Σ, A,B, z)

(corresponding to a vertex in Gman) representing the pointed 3-manifold

(Y, z). For s ∈ Spinc(Y ), let

Admiss(Σ,A,B,z)(s) = {strongly s-admissible diagrams (Σ,α,β, z)|[α] = A, [β] = B}

be the set of strongly s-admissible diagrams representing H. By [1, Proofs

of Lemma 5.2 and Lemma 5.4], this is nonempty for all s ∈ Spinc(Y ).

Choose any diagram H = (Σ,α,β, z) ∈ Admiss(Σ,A,B,z)(s), and fix a

coherent orientation system oα,β on it. By [1, Lemma 7.3], the transitive

system CF−(Σ,α,β, z, s, oα,β) can be used along with the continuation

maps Γ to induce coherent orientation systems for all strongly s-admissible

diagrams representing the isotopy diagram H. Then by [2, Lemma
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2.12], the transitive systems CF−(Σ,α,β, z, s, oα,β) ranging over all

(Σ,α,β, z) ∈ Admiss(Σ,A,B,z)(s) fit into a transitive system (of morphisms

between transitive systems) with respect to the continuation maps Γα→α
′

β→β′ .

We can therefore define a single transitive system (see Section 2.5) in

Kom(Z[U ]-Mod), which we denote by

CF−(H, s).

Finally, we define the value of the weak Heegaard invariant CF− on the

isotopy diagram H by

CF−(H) =
⊕

s∈Spinc(Y )

CF−(H, s).

Passing to homology, we obtain instead that the Z[U ]-modules

HF−(Σ,α,β, z, s, oα,β) for (Σ,β,α, z) ∈ Admiss(Σ,A,B,z)(s) fit into a

transitive system of isomorphisms with respect to the continuation maps.

We denote the colimit of this transitive system by

HF−(H, s)

and define

HF−(H) =
⊕

s∈Spinc(Y )

HF−(H, s).

We now proceed to fix the data of the underlying coherent orientation

systems we will use to define CF−(H ′) for all other isotopy diagrams H ′

in Gman. First consider the path component of Gman containing the fixed

isotopy diagram H chosen above. We note that by Proposition 2.3.22, the
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collection of vertices in this path component corresponds to the collection of

all isotopy diagrams representing the fixed 3-manifold (Y, z). Given another

isotopy diagram H ′ in this path component, choose a sequence of edges γ

in (Gman)(Y,z) from H to H ′. For any diagrams H ∈ H and H′ in H ′, the

constructions described in the previous subsections yield a composition of

maps associated to γ on the underlying chain complexes:

CF−(γ) : CF−(H)→ CF−(H′).

Here the sequence of maps CF−(γ) of course depends on our previously

fixed choice of coherent orientation system for H; we described in the

previous subsections how each of the possible constituent maps in the

composition CF−(γ) induces a coherent orientation system on the target

given a coherent orientation system on the domain, and it is this induced

orientation system that we fix on H′. One can check that this induced

orientation on H′ is independent of the choice of path γ using [3, Proof

of Theorem 2.38 and Remark 2.39], by verifying the commutativity of the

induced orientations occurring in each of the five types of distinguished

rectangle, and in a simple handleswap. We thus see that our specification

of the coherent orientation systems oα,β on all diagrams H representing H

actually yields a choice of coherent orientation systems for all diagrams in

the same path component as H. Repeating this entire procedure for all path

components in Gman, we have thus defined

CF−(H) =
⊕

s∈Spinc(Y )

CF−(H, s)
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and

HF−(H) =
⊕

s∈Spinc(Y )

HF−(H, s)

for all isotopy diagrams H in Gman.

Remark 2.7.10. We interpret the role of coherent orientations in the

definition above loosely as follows. If one fixes any Heegaard diagram for

a 3-manifold, there are numerous inequivalent choices of for a coherent

orientation system (in fact there are 2b1(Y ) such choices, see [1, Lemma

4.16]). The above definition just says one should fix whichever choice

they prefer, and then take care to use the maps induced by the standard

Heegaard moves (or diffeomorhisms isotopic to the identity) to carry this

choice around when considering different Heegaard diagrams for the same

3-manifold.

To finish defining the weak Heegaard invariants, we need to associate

isomorphisms to all edges in Gman. We begin by assigning maps to edges

corresponding to strong α-equivalences and strong β-equivalences.

Definition 2.7.11. Given two strongly α-equivalent isotopy diagrams

H1 = (Σ, A,B, z), H2 = (Σ, A′, B, z) ∈ |Gman| representing (Y, z), and

s ∈ Spinc(Y ), fix strongly s-admissible diagrams (Σ,α,β, z) and (Σ,α′,β, z)

representing them. As above, this is possible by [1, Section 5]. Then by [2,

Theorem 2.3 and Lemma 2.13], the chain homotopy equivalences Φα→α
′

β

fit into a morphism of transitive systems between the transitive systems

CF−(H, s) appearing in Definition 2.7.9. Thus for the edge e ∈ Gαman(H1, H2)

corresponding to the strong α-equivalence, we can associate this collection of

chain homotopy equivalences (or equivalently, this collection of isomorphisms
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in Kom(Z[U ]-Mod)) to obtain a morphism

Φe := ΦA→A′
B : CF−(H1)→ CF−(H2)

We note that such a collection of chain homotopy equivalences is precisely

the notion of an isomorphism in Trans(Kom(Z[U ]-Mod)). We define

the chain homotopy equivalences associated to a strong β-equivalence

analogously.

To finish defining the weak Heegaard invariants, we assign

isomorphisms to stablizations and diffeomorphisms in the next two

subsections.

Stabilization Maps

We recall maps on the Heegaard Floer chain complexes which can

be associated to stabilizations (in the sense of Definition 2.3.14). Given a

strongly s-admissible diagram H = (Σ,α,β, z) and a stablization thereof,

H′ = (Σ#Σ0,α
′,β′, z), each coherent orientation system o on H induces

a coherent orientation system o′ on H′. With respect to these orientation

systems, there is a Z[U ]-equivariant chain isomorphism

σH→H′ : CF−Js(Σ,α,β, z, s, o)→ CF−J ′s(T )(Σ#Σ0,α
′,β′, z, s, o′)

defined for sufficiently large values of a parameter T . This is established in

[1, Theorems 10.1 and 10.2].

The curves α′ ∪ β′ are obtained as the disjoint union of α ∪ β

along with a pair of closed curves α′, β′ contained in Σ0 which intersect
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transversally in a single point we will denote by c. We can identify the

intersection points in the two diagrams above by assigning to an intersection

point x ∈ Tα ∩ Tβ the intersection point σH→H′(x) = x × c ∈ Tα′ ∩ Tβ′ .

Fix complex structures jΣ on Σ and jΣ0 on Σ0, and let j′(T ) denote the

complex structure on Σ#Σ0 defined by inserting a neck of length T between

(Σ, jΣ) and (Σ0, jΣ0). Then one can associate to a perturbation Js of

Symg(jΣ) on Symg(Σ) and a perturbation J0
s of jΣ0 , a perturbation J ′s(T )

of Symg+1(j′(T )) on Symg+1(Σ#Σ0). The key argument needed to establish

the above chain isomorphism then comes in the form of a neck stretching

argument which yields the following glueing result: for sufficiently large

values of T , a homotopy class of Whitney disk φ ∈ π2(x,y) on Σ with

Maslov index 1, and the corresponding homotopy class φ′ ∈ π2(x × c,y × c)

on Σ#Σ0 with Maslov index 1, there is an identificaton of moduli spaces

MJs(φ) ∼= MJ ′s(T )(φ
′). From this it follows readily that the above map is a

Z[U ]-equivariant chain isomorphism.

Definition 2.7.12. Given isotopy diagrams H and H ′, with H ′ obtained

from H via a stabilization, we can associate a morphism of transitive

systems

σH→H′ : CF−(H)→ CF−(H ′)

as follows. Fixing any Spinc-structure s, strongly s-admissible

representatives H and H′ which realize the stabilization, and almost complex

structure data on H, there is some choice of almost complex structure data

on H′ for which the stabilization ismorphism is defined. As described in [2,

Lemma 2.15], the stabilization maps σH→H′ commute with the change of

almost complex structure maps, and with the strong equivalence maps. This
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implies that the chain isomorphisms {σH→H′}, when the complex structures

are chosen so that they are defined, satisfy the commutativity requirements

required of a morphism of transitive systems as in Definition 2.5.3. We

can complete this partially defined morphism of transitive systems for

other choices of complex structure data by declaring the stabilization map

σH→H′ to be computed for allowable complex structure data, followed by

the appropriate change of almost complex structure homotopy equivalence

ΦJs→J ′s . We define the morphism of transitive systems associated to the

corresponding destablization to be the inverse of σH→H′ .

On the level of homology, we obtain via the colimit construction in

Definition 2.7.9 canonical isomorphisms iH : HF−(H) → HF−(H) and

iH′ : HF−(H′)→ HF−(H ′). We set σH→H′ = iH′ ◦ σH→H′ ◦ i−1
H for any choice

of such H, H′. This is independent of the choice of diagrams H and H′ by

the aforementioned result [2, Lemma 2.15]

Diffeomorphism Maps

Finally, we need to discuss how diffeomorphisms of Heegaard surfaces

lead to maps on the associated chain complexes. We use the following

definition:

Definition 2.7.13. [3, Definition 9.23] Fix a strongly s-admissible diagram

(Σ,α,β, z), with |α| = |β| = k. Let j be an almost complex structure

on Σ, and Js be a perturbation of the almost complex structure Symk(j)

on Symk(Σ). Let o be a coherent orientation system on the diagram. Fix

a diffeomorphism d : Σ → Σ′, and set d(α) = α′, d(β) = β′. We

define an associated map as follows. First, the almost complex structure j
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and perturbation Js can be conjugated via the differential of d to obtain

j′ = d∗(j) on Σ and J ′s = d∗(Js) a perturbation of d∗(j) on Symk(Σ′).

The diffeomorphism d provides an identification between periodic classes

π2(x,x) ∼= π2(x′,x′) for x ∈ Tα ∩ Tβ and x′ ∈ Tα′ ∩ Tβ′ . We use this

identification to push forward the coherent orientation system o to obtain an

induced orientation system o′. This yields a chain isomorphism

dJs,J ′s : CF−Js(Σ,α,β, z, s, o)→ CF−J ′s(Σ
′,α′,β′, z′, d(s), o′)

as can be seen easily by a direct argument pushing forward all intersection

points, and holomorphic discs connecting two such, via d. We note that

the change of complex structure maps commute with the maps dJs,J ′s (by a

direct check), so there is also an induced map of transitive systems

d∗ : CF−(Σ,α,β, z, s)→ CF−(Σ′,α′,β′, z′, d(s))

Finally, by Lemma 2.7.7 and [3, Lemma 9.24] the maps d∗ commute with the

maps Γα→α
′

β→β′ appearing in Definition 2.7.9. Thus by using the continuation

maps the maps d∗ can be extended to a morphism of the transitive systems

in Definition 2.7.9

d∗ : CF−(H, s)→ CF−(H ′, d(s))

where H = (Σ, [α], [β], z) and H ′ = (Σ′, [α′], [β′], z′).
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On the level of homology, the above definitions give a well defined map

of the Z[U ]-modules in Definition 2.7.9,

d∗ : HF−(H, s)→ HF−(H ′, d(s)).

2.8. Heegaard Floer Homology as a Strong Heegaard Invariant

In the previous section we recalled the definition of the weak Heegaard

invariants

CF− : Gman → Trans(P (Kom(Z[U ]-Mod)))

and

HF− : Gman → P (Z[U ]-Mod)

underlying the strong Heegaard invariants appearing in Theorem 1.3.3 and

Corollary 1.3.4 respectively. To establish Theorem 1.3.3 we need to check

the four axioms required of a strong Heegaard invariant in Definition 2.4.7.

The proofs of axioms 1 and 2 given in [3, Section 9.2, pg 131] for

F2[U ]-Mod apply almost directly to establish axioms 1 and 2 for CF− and

HF− as Heegaard invariants valued in Trans(P (Kom(Z[U ]-Mod))) and

P (Z[U ]-Mod) respectively, as we now summarize for CF−.

For axiom 1, the functoriality of CF− restricted to Gαman and Gβman

follows from Lemma 2.7.4 and [2, Theorem 2.3]. The functoriality of

CF− restricted to Gdiff
man is immediate from Definition 2.7.13. Finally, for

a stabilization e and the corresponding destabilization e′, CF−(e′) =

CF−(e)−1 by Definition 2.7.12.
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For axiom 2, we need to establish that the images under CF− of

distinguished rectangles in Gman (recall Definition 2.4.5) form commuting

rectangles. For a rectangle of type 1, commutativity follows from Lemma

2.7.4 and [2, Theorem 2.3]. For a rectangle of type 2, commutativity follows

from [2, Lemma 2.15]. For a rectangle of type 3, commutativity follows from

[3, Lemma 9.24]. Finally, rectangles of type 4 and 5 can be seen to commute

by directly applying the arguments in [3, pg. 131].

We now investigate axiom 3. Let H = (Σ, A,B, z) ∈ |Gman| be

an isotopy diagram, d : H → H a diffeomorphism of isotopy diagrams

which is isotopic to IdΣ, and d∗ := CF−(e) where e ∈ Gdiff
man(H,H) is the

edge corresponding to d. We need to show d∗ = IdCF−(H) as morphisms

of transitive systems in P (Kom(Z[U ]-Mod)). We adapt and restate the

argument given in [3, Proposition 9.27] in order to explain why it can

be applied to the case of (projective) integral coefficients. We show the

following result.

Theorem 2.8.1. Let (Σ,α,β, z) be a strongly s-admissible diagram.

Suppose that d : Σ → Σ is a diffeomorphism isotopic to IdΣ, and let

α′ = d(α) and β′ = d(β). Let oα,β be a coherent orienation system on

(Σ,α,β, z) and oα′,β′ be the coherent orientation system on (Σ,α′,β′, z)

induced by d. Then with respect to these orienation systems, we have

d∗ = ±Γα→α
′

β→β′ : HF−(Σ,α,β, z, s, oα,β)→ HF−(Σ,α′,β′, z′, s, oα′,β′)

Furthermore, as maps

d∗,±Γα→α
′

β→β′ : CF−(Σ,α,β, z, s, oα,β)→ CF−(Σ,α′,β′, z′, s, oα′,β′)
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d∗ is chain homotopic to one of ±Γα→α
′

β→β′ .

In fact, this theorem will establish axiom (3) in Definition 2.4.7 for the

weak Heegaard invariants CF− and HF− above. Since d is isotopic to IdΣ

by hypothesis, we have α′ is isotopic to α and β′ is isotopic to β, so H :=

(Σ, [α], [β], z) = (Σ, [α′], [β′], z′). The induced map of transitive systems

d∗ : CF−(H) → CF−(H) defined in Definition 2.7.13 is then computed by

extending the following map by conjugation with the continuation maps:

CF−(Σ,α,β, z, oα,β)
d∗−→ CF−(Σ,α′,β′, z, oα′,β′)

Γβ′→β

α′→α−−−−→ CF−(Σ,α,β, z, oα,β).

Since Γβ
′→β
α′→α ∼ (Γβ→β

′

α→α′)
−1 and d∗ ∼ ±Γβ→β

′

α→α′ by Theorem 2.8.1, we see that

d∗ : CF−(H) → CF−(H) is the extension of a map CF−(Σ,α,β, z, oα,β) →

CF−(Σ,α,β, z, oα,β) which is homotopic to plus or minus the identity. Thus

we see that d∗ = IdCF−(H) as morphisms in Trans(P (Kom(Z[U ]-Mod))).

Proof of Theorem 2.8.1. Since d is isotopic to idΣ, we may decompose it into

a composition of diffeomorphisms di on some diagrams Hi = (Σ,αi,βi),

such that each di is Hamiltonian isotopic to idΣ for some symplectic form

ωi on Σ, and the diagrams satisfy the intersection properties |α ∩ di(α)| =

|β ∩ di(β)| = 2 for all α ∈ αi−1 and β ∈ βi−1. As described in [3, Proposition

9.27], it will suffice to prove the result for such a di. So let dt for t ∈ R

be a Hamiltonian isotopy which is independent of t for t ∈ (−∞, 0] and

t ∈ [1,∞), and which connects idΣ to a diffeomorphism d of H = (Σ,α,β).

Throughout the proof, we will use the notation dt(α) = αt, dt(β) = βt, and

use primes to indicate the values of various quantities at t = 1.
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Fix the data of a complex structure j on Σ and a perturbation Js

of Symk(j) on Symk(Σ), and for t ∈ R let jt = (dt)∗(j) and Js,t =

(Symk(dt))∗(Js). As described in the sections above, there are numerous

chain maps on the Heegaard Floer chain complexes we can associate with

the isotopy dt and this induced almost complex structure data. We will be

concerned here with the following three:

1. We can change the almost complex structure on Symk(Σ) from Js =

Js,0 to J ′s = Js,1, while leaving the attaching curves unchanged, and

consider the induced map

ΦJs→J ′s : CF−Js(Σ,α,β, z, oα,β)→ CF−J ′s(Σ,α,β, z, oα,β).

We recall here that this map is defined (in [1]) by counting Maslov

index 0 discs u : [0, 1] × R → Symk(Σ) connecting some x ∈ Tα ∩ Tβ

to some y ∈ Tα ∩ Tβ, which satisfy u(0, t) ∈ α, u(1, t) ∈ β and

du/ds+ Js,t(du/dt) = 0.

2. We can leave the almost complex structures (j, Js) fixed, and consider

the effect on the Floer complex of altering only the attaching curves

via the map

Γβ→β
′

α→α′ : CF−Js(Σ,α,β, z, oα,β)→ CF−Js(Σ,α
′,β′, z, oα′,β′)

associated to the Hamiltonian isotopy dt. In this case, the map

is defined by counting Maslov index 0 discs u connecting some

x ∈ Tα ∩ Tβ to some y ∈ Tα′ ∩ Tβ′ as above, but with dynamic
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boundary conditions u(0, t) ∈ αt, u(1, t) ∈ βt, and which satisfy

du/ds+ Js(du/dt) = 0.

3. We define a new sort of continuation map associated with dt,

Γdt : CF−Js(Σ,α,β, z, oα,β)→ CF−J ′s(Σ,α
′,β′, z, oα′,β′)

which combines the ideas from the previous two. This map is defined

to count Maslov index 0 discs u which connect some x ∈ Tα ∩ Tβ to

some x′ ∈ Tα′ ∩ Tβ′ , have dynamic boundary conditions u(0, t) ∈ αt,

u(1, t) ∈ βt, and which satisfy du/ds + Js,t(du/dt) = 0. We will denote

the set of homotopy classes of Whitney disks (not necessarily Js,t-

holomorphic) satisfying the boundary conditions above by πdt2 (x,x′),

and for φ ∈ πdt2 (x,x′) we will denote the moduli space of Js,t-

holomorphic maps representing φ by Mdt(φ).

We claim that the third map in the list above is in fact chain

homotopic to the map dJs,J ′s from Definition 2.7.13. To see this, we first

explain that if a diffeomorphism (which we also indicate by d, as an abuse of

notation) d : Σ → Σ isotopic to the identity (via an isotopy dt) is sufficiently

close to IdΣ, then the map defined in case (3) above satisfies Γdt = dJs,J ′s as

chain maps. Indeed, by taking d to be a sufficiently small perturbation of

IdΣ, we may ensure the isotopy dt is arbitrarily close to being constant in t.

For an isotopy which is constant in t, the definition of the continuation map

in (3) above counts Maslov index 0 disks with fixed boundary conditions

which are Js-holomorphic. The only such maps are constant maps. Thus, by

Gromov compactness, if the isotopy dt is sufficiently close to being constant,
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the Maslov index 0 solutions to the equation appearing in the definition

of Γdt will be close enough to constant disks to ensure that Γdt will be a

nearest point map.

Next we note that the definition of Γdt depends on a choice of

coherent orientation system for the moduli spaces Mdt(φ). As explained

in [1, Proof of Proposition 7.3], when πdt2 (x,x′) 6= 0 a single homotopy

class φ ∈ πdt2 (x,x′) ∼= Z yields via glueing an identification between

periodic classes π2(x,x) ∼=φ π2(x′,x′) on the two diagrams, and a choice

of orientation for Mdt(φ) then yields an identification between coherent

orientation systems on the two diagrams. Thus given a coherent orientation

system oα,β on (Σ,α,β), and an orientation on Mdt(φ), we obtain an

induced orientation oα′,β′ on (Σ,α′,β′) with respect to which the map

is defined. We claim that we may arrange for this induced orientation to

agree with that induced by dJs,J ′s . Indeed, fix for each x ∈ Tα ∩ Tβ a

homotopy class φx ∈ πdt2 (x,x′). We can choose orientations on all such

Mdt(φx) freely such that Γdt is the positive nearest point map (with the

generator corresponding to an intersection point being taken to the positive

generator corresponding to the nearest intersection point after the isotopy

is performed), and then extend these choices to a coherent system. The

coherent orientation oα′,β′ on (Σ,α′,β′, z′) induced by Γdt that results

will then be the same as that induced by dJs,J ′s , as we now explain. Fix

x,y ∈ Tα ∩ Tβ and let x′ = d(x) and y′ = d(y) be the corresponding

interesection points in Tα′ ∩ Tβ′ . Given a homotopy class ψ ∈ π2(x,y)

and a positively oriented Whitney disk u from x to y in the class ψ, the

orientation system induced by dJs,J ′s will positively orient the corresponding
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disk d(u) representing the class d(ψ) ∈ π2(x′,y′) (see Definition 2.7.13). We

need to show that the disk d(u) is also positively oriented in the orientation

system induced by Γdt . As described above, the orientation on d(u) induced

by Γdt is specified as follows. We consider representative disks v1 and v2

for the classes φx ∈ πdt2 (x,x′) and φy ∈ πdt2 (y,y′), which we may assume

are both positively oriented by the choice we made for orientatations on

Mdt(φx) and Mdt(φy). We then consider the glued disk v2\u\v1. Since an

orientation has been specified on each constituent disk and our system is

coherent, this glued disk also has a specified orientation, which is positive

given our choices. Finally, we note that this disk is identified with d(u)

under the identification between coherent orientation systems in the two

diagrams, and thus d(u) must also be oriented positively. We thus see that

both maps induce the same coherent orientation system on the target and

both take the form of the positive nearest point map, so Γφt = φJs,J ′s .

Finally, we can decompose our original diffeomorphism d :

(Σ,α0,β0) → (Σ,α1,β1) into a sequence of diffeomorphisms d1, d2, · · · , dN ,

where di : (Σ,α(i−1)/N ,β(i−1)/N) → (Σ,αi/N ,βi/N) and each di is isotopic

to IdΣ via isotopies dit. For sufficiently large N , we can ensure that the

continuation map Γdit associated to each consitituent isotopy satisfies

Γdit = (di)Js,(i−1)/N ,Js,i/N

by the argument in the preceding paragraphs. Furthermore, by inserting

long necks one can see that the composition of the corresponding
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continuation maps is homotopic to the original continuation map:

Γdt ∼
(

ΓdNt ◦ · · · ◦ Γd1
t

)
.

Since

dJs,J ′s = dNJs,(N−1)/N ,Js,1
◦ · · · ◦ d1

Js,0,Js,1/N

we thus see that dJs,J ′s ∼ Γdt , which establishes the claim.

Using Definition 2.7.13 we have d∗ = ΦJ ′s→Js ◦ dJs,J ′s . Thus to complete

the proof it will in fact suffice to show that ΦJ ′s→Js ◦ dJs,J ′s ∼ ±Γα→α
′

β→β′ , or,

since dJs,J ′s ∼ Γdt and Φ−1
J ′s→Js ∼ ΦJs→J ′s , to show that

Γdt ∼ ±ΦJs→J ′s ◦ Γα→α
′

β→β′ . (2.2)

To see that equation (2.2) is true, we consider the following generalized

notion of a continuation map, of which each of the three maps involved

are a special case. Consider a Hamiltonian isotopy φt and a generic two

parameter family of almost complex structures Ks,t on Symk(Σ) which are

perturbations of Symk(kt) where kt is a one parameter family of complex

structures on Σ. Here we assume for convenience as above that this data is

independent of t for t ∈ (−∞, 0] and t ∈ [1,∞). We set αt = φt(α) and

βt = φt(β). Given such data we can associate the continuation map with

respect to (φt, Ks,t):

Γ(φt,Ks,t) : CF−Ks,0(Σ,α0,β0)→ CF−Ks,1(Σ,α1,β1) (2.3)
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by counting Maslov index 0 discs u connecting some x ∈ Tα0 ∩ Tβ0 to some

y ∈ Tα1 ∩ Tβ1 , with dynamic boundary conditions u(0, t) ∈ αt, u(1, t) ∈ βt,

and which satisfy

du

ds
+Ks,t(

du

dt
) = 0.

The maps Γdt ,ΦJs→J ′s and Γα→α
′

β→β′ above are then the continuation

maps with respect to the data (dt, Js,t), (idΣ, Js,t) and (dt, Js,0) respectively.

Furthermore, since the homotopy classes of such continuation maps are

natural under concatenation and rescaling of the φt and Ks,t by [2, Lemma

2.12] (see also the argument below), the composite ΦJs→J ′s ◦ Γα→α
′

β→β′ is

homotopic to the continuation map defined with respect to the data

(dt,1, Js,t,1) :=


(d2t, Js,0) t ∈ [0, 1/2]

(idΣ, Js,2t−1) t ∈ [1/2, 1].

Js,t dt

Js d2t

Js,2t−1 IdKs,t,τ φt,τ

FIGURE 21 A schematic of the complex structure and isotopy data
defining the continuation maps Γdt and (a continuation map homotopic to)
ΦJs→J ′s ◦ Γα→α

′

β→β′ , and the homotopies between the two sets of data. The data
defining Γdt is represented by the top edges of the two triangles, while the
data defining ΦJs→J ′s ◦ Γα→α

′

β→β′ is represented by the bottom edges followed by
the vertical edges.

Consider now two Hamiltonian isotopies φt,0 and φt,1 with φ0,0 = φ0,1 =

idΣ and φ1,0 = φ1,1, and two generic two parameter families Ks,t,0 and Ks,t,1
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with Ks,0,0 = Ks,0,1 and Ks,1,0 = Ks,1,1. We will complete the proof by

showing that a generic homotopy h = (φt,τ , Ks,t,τ ) between (φt,0, Ks,t,0) and

(φt,1, Ks,t,1) induces a chain homotopy between Γ(φt,0,Ks,t,0) and ±Γ(φt,1,Ks,t,1).

In particular, equation (2.2) will follow, as the data (dt, Js,t) used to define

Γdt,Js,t =: Γdt is homotopic to the data (dt,1, Js,t,1) used to define Γdt,1,Js,t,1 ∼

ΦJs→J ′s ◦ Γα→α
′

β→β′ .

Fixing τ , let πτ2 (x,y) denote the homotopy classes of discs u which

connect x to y, and which satisfy the boundary conditions u(0, t) ∈ φt,τ (α),

u(1, t) ∈ φt,τ (β). Given a homotopy class φ ∈ πτ2 (x,y), we denote by Mτ (φ)

the moduli space of discs in the class φ satisfying

du

ds
+Ks,t,τ (

du

dt
) = 0

We note that for fixed τ , the definition of the continuation map with respect

to (φt,τ , Ks,t,τ ) given above can be restated succinctly as counting Maslov

index 0 discs in the moduli spaces Mτ (φ). For any τ , the homotopy h

induces an identification between homotopy classes of discs π0
2(x,y) ∼=

πτ2 (x,y). Using this identification, we may define for each φ ∈ π0
2(x,y)

the moduli space

Mh(φ) =
⋃
τ∈I

Mτ (φ)× {τ} (2.4)

For a generic choice of homotopy h, this is a manifold of dimension

µ(φ) + 1. We use this moduli space to define a chain homotopy Hh :

CF−Ks,0(Σ,α0,β0) → CF−Ks,1(Σ,α1,β1) between Γ(φt,0,Ks,t,0) and Γ(φt,1,Ks,t,1)

associated with the homotopy h. For x ∈ Tα ∩ Tβ we set
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Hh([x, i]) =
∑

y∈Tα1∩Tβ1

∑
φ∈π0

2(x,y)
µ(φ)=−1

#(Mh(φ))[y, i− np(φ)].

To see that this is a chain homotopy, we will consider the ends of the

moduli spaces Mh(ψ) for ψ with Maslov index µ(ψ) = 0. Since such spaces

Mh(ψ) are smooth 1 dimensional manifolds for generic choices of almost

complex structure data, and since they are orientable, the signed count of

the ends is zero for any choice of orientation.

The ends can be partitioned into three types: those corresponding to

τ = 0, those corresponding to τ = 1, and those corresponding to strips

breaking off for values 0 < τ < 1. For the ends corresponding to τ = 0,

the contribution to the count of the ends is given by the count of the zero

dimensional moduli space #Mτ=0(ψ). Modulo signs, this is precisely the

count occurring in the definition of Γ(φt,0,Ks,t,0). For τ = 1, the contribution

to the count of the ends is similarly given by #Mτ=1(ψ), which is the count

occurring in the definition of Γ(φt,1,Ks,t,1), modulo signs. We will discuss the

signed contributions below. Finally, the ends corresponding to strip breaking

come from the space

 ∐
φ∗φ′=ψ

µ(φ)=0,µ(φ′)=1

Mh(φ)× M̂(φ′)

∐
 ∐

φ′∗φ=ψ
µ(φ)=0,µ(φ′)=1

M̂(φ′)×Mh(φ)


Supposing the orientations on the moduli spaces Mh are chosen to

be coherent with respect to preglueings of strips, the count of the terms

in the first parentheses is precisely the count occurring in the composition
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∂−0 ◦ Hh, while the count of the terms in the second parentheses is precisely

the count occurring in Hh ◦ (∂1)−. Here ∂−0 indicates the differential on

CF−Ks,0(Σ,α0,β0) and (∂1)− indicates the differential on CF−Ks,1(Σ,α1,β1).

Finally, we note that we may arrange for the spaces Mh(φ) to be

coherently oriented such that the total signed count of the ends of Mh(ψ)

is given by

0 = Γ(φt,0,Ks,t,0) − Γ(φt,1,Ks,t,1) − ((∂1)− ◦Hh +Hh ◦ ∂−0 )

Indeed, we have

Mh(ψ) =
⋃
τ∈I

Mτ (ψ)× {τ} = {(u, τ) ∈ C∞(I ×R, Symk(Σ))× I|u ∈Mτ (ψ)}

(2.5)

so for each homotopy class ψ we may choose orientations on Mτ=0(ψ) fitting

together coherently, and obtain induced orientations on the spaces Mh(ψ)

via the product structure in equation (2.5). Such an induced orientation

will enjoy the property that the restrictions to the ends at τ = 0 and

τ = 1 yield the counts −#Mτ=0(ψ) and +#Mτ=1(ψ) respectively. We

omit the technical details of this argument, and refer the interested reader

to the proof of Lemma 2.9.13, where an analogous argument dealing with

holomorphic triangles is spelled out in detail. We have thus shown that a

generic homotopy h = (φt,τ , Ks,t,τ ) between (φt,0, Ks,t,0) and (φt,1, Ks,t,1)

induces a chain homotopy between Γ(φt,0,Ks,t,0) and ±Γ(φt,1,Ks,t,1).

Finally, we note that since the homotopy h is constant in τ for t = 0

and t = 1, the chain homotopy Hh, defined with respect to the orientations

on Mh(φ) specified above, is a chain homotopy between the continuation
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maps

Γ(φt,0,Ks,t,0),Γ(φt,1,Ks,t,1) : CF−Ks,0,0=Ks,0,1
(Σ,α0,β0, z, oα0,β0)→ CF−Ks,1,0=Ks,1,1

(Σ,α1,β1, z, oα1,β1)

defined with respect to the same coherent orientation systems on their

domains, and the same coherent orientation systems on their targets.

In particular, in the case of interest (i.e. equation (2.2)) we may choose

orientations on Mτ=0 = Mdt so that dJs,J ′s ∼ Γdt (which we established is

possible earlier), which together with the above remarks establishes equation

(2.2). This completes the proof of the theorem.

Finally, we relegate the proof of axiom 4, simple handleswap

invariance, to Section 2.9 below. Given a simple handleswap in Gman,

H1

H3 H2

eg

f

we will show that the composition of the induced maps in the category of

transitive systems in the projectivized homotopy category yields the identity.

We recall from Definition 2.4.6 that here Hi = (Σ#Σ0,αi,βi) are isotopy

diagrams, e is a strong α-equivalence, f is a strong β-equivalence, and g is a

diffeomorphism of isotopy diagrams.

Theorem 2.8.2 (cf. Theorem 9.30 in [3]). Let ({Hi}, e, f, g) be data defining

a simple handleswap as above. For the weak Heegaard invariants CF ◦

defined in Definition 2.7.9, the induced maps g∗ := CF ◦(g), Φe := CF ◦(e),
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and Φf := CF ◦(f) satisfy

g∗ ◦ Φf ◦ Φe = IdCF−(H1)

Thus the weak Heegaard invariants CF ◦ : Gman → Trans(P (Kom(Z[U ]-Mod)))

satisfy simple handleswap invariance.

Corollary 2.8.3. The weak Heegaard invariants HF− : Gman →

P (Z[U ]-Mod) satisfy simple handleswap invariance.

Theorem 2.8.2 and Corollary 2.8.3 will establish Theorem 1.3.3 and

Corollary 1.3.4, which by Section 2.6 also establishes Theorem 1.3.1.

2.9. Simple Handleswap Invariance

In this section we prove Theorem 2.8.2. The key result which will

need to be established is the integral analog of a triangle count proved in

[3, Proposition 9.31]. We will consider the pointed genus two Heegaard triple

diagram T0 shown in Figure 22 (compare the diagrams in Figure 20). Given

any triple diagram T we will show that triangle maps on the stabilized

diagram T #T0, endowed with a sufficiently stretched neck, are determined

by triangle maps on the unstabilized diagram T .

We now fix some notation regarding the intersection points in the

triple diagram T0 = (Σ,α′0,α0,β0, p0). We write Tα0 ∩ Tβ0 = {a} ,

Tα′0 ∩ Tβ0 = {b}, and Tα′0 ∩ Tα0 = {θ+
1 θ

+
2 , θ

+
1 θ
−
2 , θ

−
1 θ

+
2 , θ

−
1 θ
−
2 }. Here the

intersection points θ±1 ∈ α′1 ∩ α1 and θ±2 ∈ α′2 ∩ α2 are those labeled in Figure

22. We write Θ := θ+
1 θ

+
2 . We will show:
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β1

β2

α′1

α′2

α1

α2

θ−1 θ+
1

θ+
2

θ−2

p0

F F

R R

FIGURE 22 The pointed triple diagram T0, with the curves α′0 = (α′1, α
′
2),

α0 = (α1, α2), β0 = (β1, β2), and the θ intersection points, labeled.

Proposition 2.9.1. (compare [3, Proposition 9.31]) Fix a strongly s-

admissible Heegaard triple T = (Σ,α′,α,β, p), and consider the diagram

T #T0, where T0 = (Σ,α′0,α0,β0, p0) is the diagram in Figure 22 and the

connect sum is taken at the basepoints p and p0. Then for a generic and

sufficiently stretched almost complex structure there is a coherent orientation

system oT0 on T0, which together with any coherent orientation system oT on

T induces a coherent orientation system oT#T0 on T #T0. Furthermore, with

respect to these orientations,

FT#T0((x×Θ)⊗ (y × a), s) = ±FT (x⊗ y, s)× b

for any x ∈ Tα′ ∩ Tα and y ∈ Tα ∩ Tβ.

In fact when we prove handleswap invariance the diagram T0 and

the triangle count just stated will be relevant only to the consideration
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of the strong α-equivalence involved in the statement. We will need an

analogous result which pertains to the strong β-equivalence map occurring

in the statement. We now state the precise result we will need for this. Let

T ′0 = (Σ0,α
′
0,β0,β

′
0, p0) denote the pointed genus two triple diagram shown

in Figure 23, where α′0 = {α′1, α′2}, β′0 = {β1, β2} and β′0 = {β′1, β′2} (again

compare the diagrams in Figure 20).

β1

β2

α′1

α′2

β′1

β′2

(θ−1 )′

(θ+
1 )′

(θ+
2 )′(θ−2 )′

p0

F F

R R

FIGURE 23 The pointed triple diagram T ′0 , with the curves α′0 = (α′1, α
′
2),

β0 = (β1, β2), and β′0 = (β′1, β
′
2), and the θ′ intersection points, labeled.

We further fix the following notation for intersection points in

the diagram: we let Tα′0 ∩ Tβ0 = {b}, Tα′0 ∩ Tβ′0 = {c}, and Θ′

denote the generator in Tβ0 ∩ Tβ′0 with the highest relative grading. Let

T ′ = (Σ,α′,β,β′, p) be another pointed Heegaard triple, and consider the

diagram T ′#T ′0 , where the connect sum is taken at the basepoints p and p0.

Then we will have an analogous triangle count:

Proposition 2.9.2. (compare [3, Proposition 9.32]) Fix a strongly s-

admissible Heegaard triple T ′ = (Σ,α′,β,β′, p), and consider the diagram
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T ′#T ′0 as above. Then for a generic and sufficiently stretched almost

complex structure there is a coherent orientation system oT ′0 on T ′0 , which

together with any coherent orientation system oT ′ on T ′ induces a coherent

orientation system oT ′#T ′0 on T ′#T ′0 . Furthermore, with respect to these

orientations,

FT ′#T ′0 ((x× b)⊗ (y ×Θ′), s) = ±FT ′(x⊗ y, s)× c

for any x ∈ Tα′ ∩ Tβ and y ∈ Tβ ∩ Tβ′.

We will prove Proposition 2.9.1 in the following subsection. Since a

nearly identical proof can be used to establish Proposition 2.9.2, we omit the

proof of that result. We now assume Propositions 2.9.1 and 2.9.2 and use

them to establish Theorem 2.8.2.

Proof of Theorem 2.8.2. We consider a simple handleswap

(H1, H2, H3, e, f, g) as in Definition 2.4.6. We first note that to prove the

statement about transitive systems appearing in Theorem 2.8.2, it will

suffice to find representatives H1, H2, and H3 for the isotopy diagrams, and

show that for these representatives we have

g∗ ◦ Φf ◦ Φe = ±IdCF−(H1)

in Kom(Z[U ]-Mod), or equivalently

g∗ ◦ Φf ◦ Φe = IdCF−(H1)
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in P (Kom(Z[U ]-Mod)). Indeed, since each of the maps Φe, Φf , and g∗ above

are contained in the morphisms Φe,Φf and g∗ of the transitive systems

CF−(H), by the results in Sections 2.7 and 2.8, this monodromy relation

will automatically yield corresponding monodromy relation for all such

triangles.

Let H1 = (Σ#Σ0,α1,β2) be a representative for the first isotopy

diagram in the collection of data specifying the simple handleswap. By

definition, H1 decomposes as H#H0, where H = (Σ,α,β) and H0 =

(Σ0,α0,β0) are as in Figure 20 (H0 here is what we were denoting by P ∩H1

in Definition 2.4.6).

Fix two new curves α′0 on Σ0 which are related to α0 as in the

diagram T0 in the statement of Proposition 2.9.1. Fix also a collection of

curves α′ on Σ which are obtained by performing a small Hamiltonian

isotopy on the curves in α. The second isotopy diagram H2 can then be

represented as H2 = (Σ#Σ0,α
′∪α′0,β∪β0), and the morphism associated to

the strong α-equivalence e is given by the triangle map Φe := Ψ
α∪α0→α′∪α′0
β∪β0

.

We note that our choices of representatives for the isotopy diagrams H1

and H2 ensure that the strong equivalence map of Definition 2.7.8 applied

to these representatives is computed using only a single triangle map, as

opposed to a composition of triangle maps and continuation maps. As in the

notation of Proposition 2.9.1, we set Tα0 ∩ Tβ0 = {a} and Tα′0 ∩ Tβ0 = {b}.
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We then have for any y × a ∈ Tα∪α0 ∩ Tβ∪β0 :

Φe(y × a) = Ψ
α∪α0→α′∪α′0
β∪β0

(y × a)

= Fα′∪α′0,α∪α0,β∪β0
(Θα′∪α′0,α∪α0

⊗ (y × a))

= Fα′∪α′0,α∪α0,β∪β0
((Θα′,α ×Θ)⊗ (y × a))

= ±Fα′,α,β(Θα′,α × y)× b

= ±Γα→α
′

β (y)× b

Here we have used Proposition 2.9.1 in the second to last equality, and

Lemma 2.7.7 in the last equality.

We perform the analogous calculation for the strong β-equivalence.

Fix two new curves β′0 on Σ0 which are related to β0 as in the diagram

T ′0 in the statement of Proposition 2.9.2. Fix also a collection of curves β′

on Σ which are obtained by performing a small Hamiltonian isotopy on

the curves in β. The third isotopy diagram H3 can then be represented

as H3 = (Σ#Σ0,α
′ ∪ α′0,β′ ∪ β′0), and the morphism associated to the

strong β-equivalence f is given by the triangle map Φf := Ψ
α′∪α′0
β∪β0→β′∪β′0

.

As in the notation of Proposition 2.9.2, we set Tα′0 ∩ Tβ′0 = {c}. By the

same sequence of computations as in the previous case we then have for any
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x× b ∈ Tα′∪α′0 ∩ Tβ∪β0 :

Φf (x× b) = Ψ
α′∪α′0
β∪β0→β′∪β′0

(x× b)

= Fα′∪α′0,β∪β0,β′∪β′0((x× b)⊗Θβ∪β0,β′∪β′0)

= Fα′∪α′0,β∪β0,β′∪β′0((x× b)⊗ (Θβ,β′ ×Θ))

= ±Fα′,β,β′(x×Θβ,β′)× c

= ±Γα
′

β→β′(x)× c

This time we have used Proposition 2.9.2 in the second to last equality, and

again used Lemma 2.7.7 in the last equality.

We note that in the collection of representatives for the isotopy

diagrams in a simple handleswap one could leave the α and β curves

unchanged throughout the handleswap, which would necessitate the

diffeomorphism g restricting to the identity on Σ. Here we have altered α

and β slightly, so that the strong α-equivalence and strong β-equivalence

maps could each be computed via a single triangle map Ψ. Since our

alteration of the curves α and β on Σ came from small Hamiltonian

isotopies, we can however still ensure that for our representatives for the

handleswap the diffeomorphism g is isotopic to the identity when restricted

to Σ. Furthermore, since g is part of a simple handleswap it must satisfy

g(α′) = g(α) and g(β′) = g(β). Thus, by definition of the maps induced by

diffeomorphisms of diagrams, we have

g∗(z × c) = (g|Σ)∗(z)× a

for all (z × c) ∈ Tα′∪α′0 ∩ Tβ′∪β′0 .
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Putting these formulas for each of the induced maps together, we find

that

g∗ ◦ Φf ◦ Φe(y × a) =
(
g∗ ◦Ψ

α′∪α′0
β∪β0→β′∪β′0

◦Ψ
α∪α0→α′∪α′0
β∪β0

)
(y × a)

= ±
(

(g|Σ)∗ ◦ Γα
′

β→β′ ◦ Γα→α
′

β

)
(y)× a

Since the restiction of g to Σ is isotopic to the identity, Theorem 2.8.1

ensures

(g|Σ)∗ ◦ Γα
′

β→β′ ◦ Γα→α
′

β ∼ ±IdCF−(H)

We thus have

g∗ ◦ Φf ◦ Φe = ±
(

(g|Σ)∗ ◦ Γα
′

β→β′ ◦ Γα→α
′

β

)
⊗ IdCF−(H0)

∼ ±IdCF−(H) ⊗ IdCF−(H0)

∼ ±IdCF−(H1)

which by the remarks at the beginning of the proof completes the argument.

Having established the implication (Proposition 2.9.1 and Proposition

2.9.2 =⇒ Theorem 2.8.2), we now turn towards proving Proposition 2.9.1.

We employ the strategy used in [3] for proving the analog of

Proposition 2.9.1 appearing there. We import many results exactly as they

are stated there, while in a few cases we make small modifications in order

to be able to apply their results. For the reader’s convenience we provide
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statements of some results from [3], and provide proofs of any imported

results which must be modified slightly for our purposes. We also provide

sketches of proofs of certain statements from [3] which we do not need to

modify, but whose exposition we hope will aid in the readibility of this

dissertation.

In the remainder of this section we work in the cylindrical formulation

of Heegaard Floer homology introduced by Lipshitz in [14].

Moduli Spaces of Triangles

We begin by recalling some notation and terminology regarding

holomormphic triangles in the cylindrical setting of Heegaard Floer

homology (see [14]). We denote by ∆ the subset of C shown in Figure

24 below, which has three cylindrical ends modeled on [0, 1] × [0,∞).

We will think of this region as a triangle with its vertices removed. We

also introduce in the figure notation we will use to indicate the boundary

components and ends of this region.

να′β

ναβ να′α

eα

eβ eα′

FIGURE 24 The region ∆.
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We will consider almost complex structures J on Σ × ∆ which satisfy

the following conditions:

(J ′1′) J is tamed by the split symplectic form on Σ×∆.

(J ′2′) On each component of Σ \ (α′ ∪ α ∪ β) there is at least one point at

which J = jΣ × j∆.

(J ′3′) On each cylindrical end Σ × [0, 1] × R of Σ × ∆, there is a 2-

plane distribution η on Σ × [0, 1] × {0} such that the restriction

of ω to η is non-degenerate, J preserves η, and the restriction of

J to η is compatible with ω. Furthermore, η is tangent to Σ near

(Σ× {0, 1} × {0}) ∪ (Σ× [0, 1]× {0}).

(J ′4′) The planes Td({p} ×∆) are complex lines of J for all (p, d) ∈ Σ×∆.

(J ′5′) There is an open set U ⊂ ∆ containing ∂∆ \ {να′α, ναβ, να′β} such

that the planes Tp(Σ × {d}) are complex lines of J for all (p, d) near

(α′ ∪α ∪ β)×∆ and for all (p, d) ∈ Σ× U .

J-holomorphic curves in Σ × ∆ for almost complex structures J of this sort

enjoy the following property.

Lemma 2.9.3 (Lemma 3.1 in [14]). Let J be an almost complex structure

on Σ × ∆ that satisfies the axioms (J ′1′) − (J ′5′). If u : S → Σ × ∆ is J-

holomorphic and πΣ◦u is nonconstant on a component S0 of S, then πΣ◦u|S0

is an open map. Furthermore, there are coordinates near any critical point of

πΣ ◦ u|S0 where πΣ ◦ u takes the form z 7→ zk for some k > 0.

In fact, this result follows immediately from [19, Theorem 7.1].
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To understand Proposition 2.9.1, we will need to investigate the nature

of triangle maps on the diagram T #T0. In the cylindrical setting, the notion

of a holomorphic triangle in a Heegaard triple diagram takes the following

form.

Definition 2.9.4. Let T = (Σ,α′,α,β) be a triple diagram, and set d =

|α′| = |α| = |β|. By a holomorphic triangle in the triple diagram T we will

mean a (j, J)-holomorphic map u : S → Σ×∆ satsifying:

(M1) (S, j) is a (possibly nodal) Riemann surface with boundary and 3d

punctures on ∂S.

(M2) u is locally nonconstant.

(M3) u(∂S) ⊂ (α′ × eα′) ∪ (α× eα) ∪ (β × eβ).

(M4) u has finite energy.

(M5) For each i ∈ {1, . . . , d} and σ ∈ {α′,α,β}, the preimage u−1(σi × eσ)

consists of exactly one component of the punctured boundary of S.

(M6) As one approaches the punctures of ∂S, the map u converges to

a collection of intersection points on the Heegaard triple in the

cylindrical ends of Σ×∆.

We will often ask holomorphic triangles to satisfy the following additional

two requirements:

(M7) π∆ ◦ u is nonconstant on each component of S.

(M8) S is smooth, and u is an embedding.
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Unless otherwise specified, we will use the term holomorphic triangle

to refer to maps satisfying axioms (M1)− (M6), and explicitly note when we

are considering curves satisfying the additional axioms (M7) and (M8).

For any homology class ψ of triangles on a Heegaard triple diagram

T , we will denote by M(ψ) the moduli space of holomorphic triangles on

T in the homology class ψ. Given a Riemann surface S, we will indicate

by M(ψ, S) the subspace of M(ψ) consisting of holomorphic triangles with

source S.

To obtain the triangle count we are after on a sufficiently stretched

copy of T #T0, we will need to understand compactifications of these moduli

spaces of triangles. These compactifications allow for a weaker notion of

triangle which we refer to as broken:

Definition 2.9.5. Let T = (Σ,α′,α,β) and d be as above. We say that a

collection of (j, J)-holomorphic curves BT = (u1, v1, . . . , vn, w1, . . . , wm) is a

broken holomorphic triangle on T representing the homology class ψ if

(BT1) u1 is a curve mapping to Σ×∆ satisfying (M1) and (M3)− (M6).

(BT2) vi are curves mapping to Σ × I × R which satisfy the analogs of (M1)

and (M3) − (M6), each representing some homology class of strips in

one of the diagrams (Σ,α,α′), (Σ,α′,β) or (Σ,α,β).

(BT3) The wi are curves from Riemann surfaces with d boundary components

and a single puncture on each boundary component, and which map to

Σ× I × R
∐

Σ×∆. For each i, the boundary components of the curve

wi all map to a single set of attaching curves.

(BT4) The total homology class of the curves in BT is equal to ψ.
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With this notion in hand, we can state the following compactness

result which describes the behavior of triangles on T #T0 as we stretch the

neck:

Proposition 2.9.6 (Proposition 9.40 in [3]). Let ψ#ψ0 be a homology class

of triangles on (Σ#Σ0) × ∆, and uTi be a sequence of holomorphic triangle

representatives for ψ#ψ0 on (Σ#Σ0) × ∆, with respect to almost complex

structures J(Ti) for neck lengths Ti →∞. Then there is a subsequence which

converges to a triple (U, V, U0) where U and U0 are broken holomorphic

triangles on Σ × ∆ and Σ0 × ∆ representing ψ and ψ0 respectively, and

V is a collection of holomorphic curves on the neck regions S1 × R × ∆ or

S1 × R × [0, 1] × R which are asymptotic to (possibly multiply covered) Reeb

orbits S1 × {d} for d ∈ ∆ or d ∈ [0, 1]× R.

Remark 2.9.7. More precisely, the asymptotic condition on the curves

appearing in V in Proposition 2.9.6 above has the following meaning. By

a “Reeb orbit” in this context, we mean a periodic orbit γ of the vector

field
d

dθ
on S1 × R × ∆ or S1 × R × I × R, where θ is the coordinate on

S1. The curves v in V have as sources punctured Riemann surfaces. Let S

be a connected component of such a source, q a puncture of S, and v : S →

S1×R×∆. Write (θ, r, z) for coordinates on the target. Then v is asymptotic

to γ at q if:

1. There is a neighborhood U of q in S and a biholomorphic

diffeomorphism φ : U ∼= S1 × (0,∞). Write (x, y) for coordinates

on S1 × (0,∞).

2. r ◦ v ◦ φ−1 →∞ as y →∞
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3. (θ, z) ◦ v ◦ φ−1(x, y)→ γ(x) as y →∞ as maps S1 → S1 ×∆ in C∞loc.

Matched Moduli Spaces and Orientations

Fix a triple diagram T = (Σ,α′,α,β) and a point p ∈ Σ\(α′∪α∪β)).

Let u : S → Σ × ∆ be a J-holomorphic curve satisfying (M1)-(M6), for

some almost complex structure J on Σ × ∆ satisfying (J ′1′)-(J ′5′). Then u

is locally non-constant by condition (M2), so by Lemma 2.9.3 πΣ ◦ u is an

open map on each component of S, and takes the form z 7→ zk near any

critical point. Thus (πΣ ◦ u)−1(p) is a finite set of points. Furthermore, using

property (J ′4′) of the almost complex structure J , positivity of complex

intersections for J-holomorphic curves (See e.g [19] or [20]) ensures that all

intersections between p×∆ and the image of u are positive.

We will write (πΣ ◦ u)−1(p) = {x1, . . . , xnp(u)} ∈ Symnp(u)(S), and define

ρp(u) := {π∆ ◦ u(x1), . . . , π∆ ◦ u(xnp(u))} ∈ Symnp(u)(∆)

We remark that our notation involving set braces is somewhat misleading, as

there may of course be repetitions among the points xi in the symmetric

product, corresponding to intersection points occuring with positive

multiplicity greater than 1.

To understand the triangle count, we will be concerned with

holomorphic triangles u for which ρp(u) takes prescribed values. As a first

step towards understanding the moduli spaces of such triangles, Juhász,

Thurston and Zemke show that, for any prescribed value outside the fat

diagonal, such a triangle is somewhere injective.
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Lemma 2.9.8 (Lemma 9.45 in [3]). Let (Σ,α′,α,β, p) be a triple diagram,

and d ∈ Symk(∆) \ Diag(∆). If u : S → Σ × ∆ is a J-holomorphic

curve satsifying (M1) − (M6) for an almost complex structure satisfying

(J ′1′) − (J ′5′), which furthermore has ρp(u) = d, then every component of u

is somewhere injective.

Fix a Heegaard triple diagram T = (Σ,α′,α,β, p) and a homology

class of triangle ψ, with np(ψ) = k. Given a subset X ⊂ Symk(∆), we let

M(ψ, S,X) = {u ∈M(ψ, S)|ρp(u) ∈ X}

and

M(ψ,X) = {u ∈M(ψ)|ρp(u) ∈ X}.

Using techniques similar to those used in the standard setting, Juhász,

Thurston and Zemke prove the following result, which shows that generically

these matched moduli spaces are smooth manifolds.

Proposition 2.9.9 (Proposition 9.47 in [3]). Let (Σ,α′,α,β) be a triple

diagram, and fix a point p ∈ Σ \ (α′ ∪ α ∪ β). Suppose X ⊂ Symk(∆)

for some k ∈ N is a nonempty submanifold that does not intersect the fat

diagonal. Furthermore, suppose that for every x ∈ X, the k-tuple x has no

coordinate in the open set U ⊂ ∆ from (J ′5′). Then, for a generic choice

of almost complex structure J , the set M(ψ, S,X) is a smooth manifold of

dimension

ind(ψ, S)− codim(X)
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where ind(ψ, S) denotes the Fredholm index of the linearized ∂̄ operator at

any representative u : S → Σ × ∆ for ψ. For X = Symk(∆), the same

statement holds near any curve u that has no component T on which π∆ ◦

u|T is constant and has image in U , and such that all components of u are

somewhere injective.

It will be important for our purposes to note that these moduli

spaces are also orientable when they are smoothly cut out, which follows

in a straightforward manner from the framework in which the proof of

the previous proposition is carried out. We now provide a sketch of the

argument.

Lemma 2.9.10. For J and X satisfying the hypotheses of Proposition 2.9.9,

with X ⊂ Symk(∆) furthermore assumed to be an orientable submanifold,

M(ψ, S,X) is orientable.

Proof. Forgetting the matching condition (i.e. taking X = Symk(∆)) we

consider M(ψ, S, Symk(∆)) =M(ψ, S). By [14, Proposition 6.3 and Section

10.3], whenever this space is transversely cut out it is an orientable smooth

manifold.

For the case when X 6= Symk(∆), we briefly recall how one can

establish the existence of a smooth manifold structure on M(ψ, S,X), as

in the proof of [3, Proposition 9.47]. Consider the map ρp : M(ψ, S) →

Symk(∆). To obtain the smooth manifold structure on M(ψ, S,X), one

considers the universal moduli space M`
univ(ψ, S). This consists of triples

(u, j, J), where j is a C` complex structure on S, J is a C` almost complex

structure on Σ × ∆ satisying conditions (J ′1′) − (J ′5′), and u is a (j, J)-

holomorphic map u : S → Σ × ∆ in the homology class ψ, which
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furthermore satisfies certain regularity conditions (see [14, pg 968]). It

is shown in the proof of Proposition 2.9.9, using the technique of [14,

Proposition 3.7], that the universal moduli space M`
univ(ψ, S) is a Banach

manifold and the evaluation map ρp : M`
univ(ψ, S) → Symk(∆) is a

submersion at all triples (u, j, J) for which ρp(u) is not in the fat diagonal.

Thus for X missing the fat diagonal, the universal matched moduli space

M`
univ(ψ, S,X) := (ρp)−1(X) is a Banach manifold. One can then apply

the Sard-Smale theorem to the Fredholm map π : M`
univ(ψ, S,X) → J ` to

obtain a regular value J ∈ J ` so that M`(ψ, S,X) = π−1(J) is a smooth

manifold. Finally, one uses an approximating bootstrapping argument

to obtain the same result for C∞ complex structures. More precisely,

one obtains that for a generic choice of J the space M(ψ, S) is a smooth

manifold and the map

ρp :M(ψ, S)→ Symk(∆)

is transverse to X. Thus for X missing the fat diagonal M(ψ, S,X) :=

(ρp)−1(X) is a smooth manifold.

Fixing u ∈M(ψ, S,X) we have

TuM(ψ, S) ∼= TuM(ψ, S,X)⊕Nu

where N is any choice of orthogonal complement. Since M(ψ, S) is

orientable, it will suffice to show N is orientable to establish that
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M(ψ, S,X) is orientable. Since ρp is transverse to X, we have

dρp(TuM(ψ, S)) + Tρp(u)X = Tρp(u)Symk(∆).

Since (dρp)−1(TX) = TM(ψ, S,X), the two equations above yield a direct

sum decomposition

dρp(Nu)⊕ Tρp(u)X ∼= Tρp(u)Symk(∆).

Finally, since X and Symk(∆) are orientable, and dρp|N is an ismorphism on

each fiber, the last equation establishes orientability of the complement N .

Thus M(ψ, S,X) is orientable, as desired.

We now turn to an investigation of the behavior of orientations on

these moduli spaces. We recall again the notion of coherent orientation

systems, and now provide the precise definitions in the cylindrical setting,

as we will need them in some of our computations. We begin with the

moduli space of holomorphic strips in a homology class A ∈ π2(x,y),

denoted MA, on some Heegaard (double) diagram H = (Σ,α,β). We set

M̂A =MA/R. As noted above, these moduli spaces are orientable whenever

they are smoothly cut out by [14, Proposition 6.3]. There this is shown by

trivializing the determinant line bundle of the virtual index bundle of the

linearized ∂̄-equation. In fact, this line bundle is trivialized over a larger

auxiliary space of curves which are not necessarily holomorphic, which we

denote by BA, rather than over MA. We ask for the trivializations of these

determinant lines L over BA to satisfy the following compatibility under

glueing.
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Definition 2.9.11. Given a Heegaard diagram H, homology classes of strips

A,A′ which are adjacent on the diagram (i.e. A ∈ π2(x,y), A′ ∈ π2(y, z)),

and maps u : S → Σ× I × R and u′ : S ′ → Σ× I × R representing A and A′

respectively, one can preglue the positive corners of u to the negative corners

of u′ (see [14, Appendix A] for one such construction). In fact, there is a 1

parameter family of such preglueings (u\ru
′ : S\rS

′ → Σ× I ×R) in the class

A+A′, defined for sufficiently large values of the parameter r . One can show

that this map preserves the analogs of (M1), (M3) and (M4) for strips,

and the asymptotic conditions one asks of the strips. Denote the collection

of maps of the form S → Σ × I × R in a given homology class A which

furthermore satisfy (M1), (M3), (M4), and the asymptotic conditions by

BA(S). We say a choice of orientations for all M̂A, specified by a collection

of nonvanishing sections oH = oα,β = {oA} of L over all of the M̂A, is a

coherent orientation system on H if the induced map of determinant lines

covering the map \r : BA(S) × BA′(S ′) × (R,∞) → BA+A′(S\rS
′) satisfies

(\r)∗(o
A × oA

′
) = +oA+A′ .

That such coherent orientation systems exist is shown in numerous

places. One construction sufficient for our purposes can be found in [14,

Section 6].

In the case of holomorphic triangles, the moduli spaces M(ψ) are

also orientable. For a collection of orientations on M(ψ) for all homology

classes ψ of triangles in a triple diagram, we will consider a related notion of

coherence.

Definition 2.9.12. Given a Heegaard triple diagram T , we will say a choice

of orientations for Mψα,β , Mψβ,γ , Mψα,γ , and M(ψ) (for ψα,β, ψβ,γ and
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ψα,γ ranging over all classes of strips in the respective double diagrams, and

ψ ranging over all classes of triangles in the triple diagram) specified by a

collection of sections oT = {oα,β,γ , oα,β, oβ,γ , oα,γ} is a coherent orientation

system of triangles, if each collection of orientations of the moduli spaces

of strips on the respective double diagrams are coherent, and all possible

pregluings of triangles with strips satisfy the analogous glueing condition.

Following [14, Section 6], given a homology class of triangles ψ on the

triple diagram T , let T (ψ) denote the space of pairs (u, j), where u : S →

Σ × ∆ is a curve in the class ψ satisfying (M1), (M3) and (M4), and j is

a complex structure on S. We declare two such pairs (u : S → Σ × ∆, j)

and (u′ : S ′ → Σ × ∆, j′) to be equivalent if there is a biholomorphism

φ : (S, j)→ (S ′, j′) such that the diagram

S S ′

Σ×∆

u

φ

u′ (2.6)

commutes. We denote the quotient of T (ψ) by this equivalence relation by

B(ψ).

Let p : I → Symk(∆) be an embedded path missing the fat diagonal.

We consider the following moduli spaces of triangles associated to homology

classes ψ0 ∈ π2(Θ,a, b) in the triple diagram T0 from Proposition 2.9.1:

Bψ0

I = B(ψ0, p(I)) = {(u, t)|u ∈ B(ψ0) and ρp(u) ∈ p(t) for some t ∈ I}
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and

Bψ0
t = B(ψ0, p(t)) = {u ∈ B(ψ0) and ρp(u) ∈ p(t)}

Let Mψ0

I = M(ψ, p(I)) and Mψ0
t = M(ψ, p(t)) denote the corresponding

moduli subspaces of holomorphic curves satisfying the same constraints

as well as the other conditions required of holomorphic triangles (recall

Definition 2.9.4). By Proposition 2.9.9, for a generic choice of almost

complex structure on Σ0×∆ the moduli spaces Mψ0

I are smooth manifolds of

dimension µ(ψ0)−codim(p(I)). By Lemma 2.9.18, we have µ(ψ0) = 2np0(ψ0),

so the expected dimension becomes 2np0(ψ0) − (2k − 1). In particular,

when k = np0(ψ0) the moduli space Mψ0

I is a smooth 1 manifold when it

is transversely cut out. Similarly, the expected dimension of Mψ0
t is 0 when

k = np0(ψ0). Finally, we define the spaces

MI =
∐

ψ0∈π2(Θ,a,b)
np0 (ψ0)=k

Mψ0

I

Mt =
∐

ψ0∈π2(Θ,a,b)
np0 (ψ0)=k

Mψ0
t

BI =
∐

ψ0∈π2(Θ,a,b)
np0 (ψ0)=k

Bψ0

I

Bt =
∐

ψ0∈π2(Θ,a,b)
np0 (ψ0)=k

Bψ0
t

We provide a schematic of these spaces and their relationships in Figure 25.
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We note for the following arguments that by the remarks above MI

is a smooth manifold of dimension 1 for a generic choice of almost complex

structure, and for each t a (potentially different) generic choice of almost

complex structure will ensure Mt is a smooth manifold of dimension 0. We

will denote by oMI
and oMt nowhere zero sections of the bundles LI and

Lt respectively, which are the determinant line bundles of the virtual index

bundles of the linearized equations defining these moduli spaces. We recall

that such sections determine orientations of the moduli spaces.

M0 M1

Mt MI

BtB0 B1

FIGURE 25 A schematic of the space BI . Vertical slices of the picture such
as the vertical dashed line represent the spaces Bt, while the solid curves
represent the smooth moduli space MI . The left and right endpoints on MI

represent M0 and M1 respectively, while the endpoints of MI on the top
and bottom of the figure represent degenerations of triangles into broken
triangles in the compactification.

For arguments appearing later, we want to ensure we can achieve the

following intuitively achievable constraints on our orientations:

Lemma 2.9.13. Let MI and Mt be as above. Then there is a nowhere

vanishing section oR of the bundle MI ×R, and coherent orientation systems

oM0 on M0, oM1 on M1, and oMI
on MI such that (oMI

)|M0 = −oM0 ⊗

(oR|M0) and (oMI
)|M1 = oM1 ⊗ (oR|M1). Furthermore, given a particular
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coherent orientation system oM0, there are coherent orientation systems

oM1 , oMI
and a section oR satisfying the same relations.

Proof. Orientations for MI and Mt can be specified by a trivialization

of the determinant line bundle of the virtual index bundle for the

corresponding linearized ∂̄ equation (See [14, Section 6]). Somewhat less

opaquely, this amounts to a trivialization of the determinant line bundle

LI := det(D∂̄) = Λtop(ker(D∂̄)) ⊗ Λtop(coker(D∂̄)) over BI , and to a

trivialization of the line bundle L0 := det(D(∂̄|Bt)) = Λtop(ker(D(∂̄|Bt))) ⊗

Λtop(coker(D(∂̄|Bt))) over Bt.

To describe this process in more detail, we consider the vector bundle

E = Epk−1 over BI , whose fiber over u is Lp,dk−1(Λ0,1T ∗S⊗Ju∗T (Σ×∆)). For our

purposes, it will be sufficient to note that such fibers are the Banach spaces

comprised of sections of the bundle Λ0,1T ∗S ⊗J u∗T (Σ × ∆) which satisfy a

finite norm regularity condition (see [20, Section 3.2] or [14, Definition 3.4-

3.6,Proposition 3.7] for the precise definitions of the regularity conditions

and the construction of this bundle). Then ∂̄ can be considered as a section,

∂̄ : BI → E , and with respect to this section the moduli space MI is the

preimage of the zero section, MI = ∂̄−1(0), while TMI
∼= Ker(D∂̄).

We write j for the inclusion j : B0 → BI given by j(u) = (u, 0), and

consider the pullback of E along this map. The linearized ∂̄ operators under

consideration are defined as:

D∂̄ : TBI → TE ∼−→ TBI ⊕ E → E

and
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D(∂̄|B0) : TB0 → T (j∗E)
∼−→ TB0 ⊕ j∗E → j∗E

Here the splittings TE ∼−→ TBI ⊕ E and T (j∗E)
∼−→ TB0 ⊕ j∗E depend on

a choice of connection on TW (see [20, Section 3.1] for the details of this

construction). Fix a splitting j∗TBI ∼= TB0 ⊕ R so (D∂̄)|B0 = [D(∂̄|B0) C]

for some C.

We may think of the linearized ∂̄ operators as giving us parametrized

collections of Fredholm maps

(D∂̄)|B0 : B0 →
⋃
x∈B0

Fred(TBI |x → E|∂̄(x))

and

D(∂̄|B0) : B0 →
⋃
x∈B0

Fred(TB0|x → E|∂̄(x))

These give rise to virtual bundles ind((D∂̄)|B0), ind(D(∂̄|B0)) ∈ K(B0)

(see e.g [21, Appendix 1]). Note that B0 is not compact, and so K(B0)

has a few possible interpretations. For us, K(Y ) will always indicate the

Grothendieck group of isomorphism classes of vector bundles on Y . When

Y is not compact, this group does not have some of the properties one often

enjoys in their favorite notion of topological K-theory, but it will suffice for

our purposes here.

Remark 2.9.14. It seems plausible that one could show Bt and BI have

the homotopy type of CW complexes, by arguments similar to those used by

Milnor to show certain continuous function spaces do [22]. If this were the
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case, a natural choice would be to define K(B0) to be the inverse limit of the

K-theories of the finite subcomplexes of B0. We will not however pursue this

direction here.

We have for each t ∈ I a line bundle Lt over Bt, namely the

determinant bundle of the virtual index bundle ind(D(∂̄|Bt)) ∈ K(Bt).

These fit together to form a smooth vector bundle L̃I :=
⋃
t∈I Lt over

BI . Similarly, the index bundles themselves fit together to form a bundle

ĩnd :=
⋃
t∈I ind(D(∂̄|Bt)) ∈ K(BI). We will compare LI to L̃I and show that

LI |X ∼= (L̃I ⊗ R)|X (2.7)

for each compact X ⊂ BI . To see this it will suffice to prove that the two

corresponding index bundles satisfy

ind(D∂̄)|X = (ĩnd⊕ R)|X ∈ K(X) (2.8)

for each compact X ⊂ BI . Indeed, with equation (2.8) understood, we just

take the determinant line bundles of the virtual index bundles to obtain

equation (2.7). We now assume equation (2.8), and relegate its proof to

Lemma 2.9.15 and Remark 2.9.16 below.

Consider now the compactified matched moduli space MI . The

ends of MI correspond to the boundary components of MI . Fix a collar

neighborhood N ∼= ∂MI × [0, 1) of MI . Then MI \ N ⊂ BI is compact,

as it is closed in MI compact. By equation (2.7) the line bundles LI and L̃I

thus satisfy LI ∼= L̃I ⊗ R on MI \N . In fact, we can extend the bundles LI ,

L̃I ⊗ R over all of MI since ι : MI \ N ↪→ MI is a deformation retraction.
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Furthermore, by homotopy invariance of induced bundles and the fact that ι

is a deformation retraction, we have

r∗LI ∼= r∗(L̃I ⊗ R) (2.9)

as bundles over MI , where r is any retraction for ι. We note that on MI

we may assume these extensions in fact agree with the originally defined

bundles

r∗LI |MI
∼= LI |MI

and r∗(L̃I ⊗ R)|MI
∼= L̃I ⊗ R|MI

.

Indeed, by our hypotheses on the choice of almost complex structure

the moduli space MI is a smooth 1 manifold with boundary, so the collar

is a disjoint union of arcs and there is a unique choice of extension for each

bundle over the collar. We thus conclude

LI |MI
∼= L̃I ⊗ R|MI

. (2.10)

Fix now a trivialization oMI
of LI over MI , which is possible by

Lemma 2.9.10. Given any section oR of MI × R, equation (2.10) specifies

a section õ of L̃I over MI . This specifies sections õ0 of L̃I |M0 = L0 and õ1 of

L̃I |M1 = L1, which by construction satisfy

(oMI
)|M0 = õ0 ⊗ oR|M0 (2.11)

and
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(oMI
)|M1 = õ1 ⊗ oR|M1 (2.12)

Setting oM0 := −õ0 and oM1 := õ1, we have thus verified there are

orientation systems oM0 , oM1 and oMI
satisfying the restriction conditions

as in the lemma statement. We now turn to verifying that the preceding

construction allows for the simultaneous coherence of the orientation systems

oMI
, oM0 and oM1 .

By the same argument used to prove [14, Lemma 10.10], we may

arrange for the initially fixed orientation system oMI
in the preceding

paragraph to be enlarged to a coherent system in the sense of Definition

2.9.12. We remark that doing so entails enlarging the orientation data to

include both the section oMI
of LI over MI guaranteed by orientability of

MI , but also a collection of sections (oMI
)strips := {oAI } of the determinant

bundles L over the (unmatched) configuration spaces BA in all homology

classes of strips, A, in the three associated Heegaard double diagrams. The

coherence of this data then says that all possible pregluing maps of two

strips, and all possible pregluing maps of triangles with strips, respect the

orientations.

More precisely, consider the Heegaard triple diagram in question, T0 =

(Σ0,α
′
0,α0,β0), and the associated double diagrams Hα′0,α0

, Hα0,β0 and

Hα′0,β0
. Let x, y and z be intersection points (also referred to as I-chord

collections in the cylindrical setting) in the respective double diagrams.

For all homology classes of triangles ψ0 ∈ π2(x,y, z) and homology

classes of strips A ∈ π2(z, z′) (with z′ also an intersection point on Hα′0,β0
),
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there are pregluing maps, covered by linearized preglueing maps on the

determinant bundles, fitting into the diagram below:

Lψ0

I × LA Lψ0+A
I

Bψ0

I × BA Bψ0+A
I

\∗

\
(2.13)

The coherence condition for oMI
regarding glueing triangles to strips

says that in all such diagrams, we have \∗(o
ψ0

MI
× oA) = +oψ0+A

MI
. Of

course, the analogous statements must hold for homology classes of strips

A ∈ π2(x,x′) and A ∈ π2(y,y′) as well.

For the condition regarding glueing strips to strips, we consider

homology classes of strips A ∈ π2(x,x′) and A′ ∈ π2(x′,x′′) associated

with the diagram Hα′0,α0
. Then we have a diagram given by the pregluing

maps:

LA × LA′ LA+A′

BA × BA′ BA+A′

\∗

\
(2.14)

Here the coherence condition on oMI
says that for all such diagrams,

\∗(o
A
I × oA

′
I ) = +oA+A′

I . The analogous statements for the other Heegaard

double diagrams must also hold.

We want to show that the orientation systems oM0 and oM1 defined

above satisfy these same coherence conditions. We show this is true for oM0 ,

as the other case is identical.
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Let us define the data (oM0)strips = {oA0 } = {−oAI } of orientations for

homology classes of strips in the three double diagrams to be the negation

of that used for the coherent system into which oMI
fits. Then we note that

the coherence of the orientation systems oM0 with respect to preglueings of

strips to strips follows immediately; since oMI
was chosen to be coherent we

have \∗(o
A
I × oA

′
I ) = +oA+A′

I .

To check the coherence of glueing triangles to strips, fix classes ψ0 ∈

π2(x,y, z) and A ∈ π2(z, z′) and consider the corresponding orientations

over them: oψ0

M0
, oA0 and oψ0+A

M0
. By equation (2.11), we have (oMI

)|M0 =

−oM0 ⊗ (oR|M0). Coherence of oMI
then yields:

\∗(o
ψ0

MI
× oAI ) = +oψ0+A

MI
=⇒ \∗(o

ψ0

MI
× oAI )|M0 = +oψ0+A

MI
|M0

=⇒ (oψ0

MI
∧ oAI )|M0 = −oψ0+A

M0
∧ oR

=⇒ (−oψ0

M0
∧ oR ∧ oAI ) = −oψ0+A

M0
∧ oR

=⇒ (oψ0

M0
∧ oAI ∧ oR) = −oψ0+A

M0
∧ oR

=⇒ −(oψ0

M0
∧ oA0 ∧ oR) = −oψ0+A

M0
∧ oR

=⇒ −\∗(oψ0

M0
× oA0 ) ∧ oR = −oψ0+A

M0
∧ oR

=⇒ \∗(o
ψ0

M0
× oA0 ) = +oψ0+A

M0

We have thus shown the orientation systems oM0 , oM1 , and oMI
we

have defined can be taken to be simultaneously coherent, which completes

the proof of the lemma.
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The following lemma can be used to establish equation (2.8) in the

preceding argument.

Lemma 2.9.15. Let X be a compact topological space, H1 and H2 be

Banach bundles over X, B : H1 → H2 be a bundle map over X which

is Fredholm on each fiber, V = Rn be a finite dimensional Banach space,

and C : V × X → H2 be a linear bundle map. Then the index of[
B C

]
: H1 ⊕ V → H2 satisfies

ind(

[
B C

]
) = ind(B) + [V ] ∈ K(X)

Proof. To fix notation and terminology, we very briefly recall the definition

of the index bundle associated with a map such as B. For more details of

the construction, see [21, Appendix] for the general idea in the context of

Fredholm operators on seperable Hilbert spaces, and [20, Appendix A.2] for

the necessary modifications needed to carry out the same constructions for

Fredholm maps between Banach spaces.

Fix x ∈ X and consider B restricted to the fiber over x, Bx : H1|x →

H2|x.

– If coker(Bx) = 0, one can show that coker(By) = 0 and ind(Bx) =

ind(By) for all y sufficiently close to x (where here we use ind(Bx) to

denote the numerical index of the Fredholm map Bx). Denote such

a neighborhood of x by U . Then the kernels fit together into a well-

defined honest vector bundle,
⋃
y∈U ker(By), over U .

– Otherwise, choose a finite dimensional space W and a linear map

πx : W → H2|x such that Bx ⊕ πx : H1|x ⊕W → H2|x is surjective
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and Fredholm. Choose continuously the analogous data for all y in

a neighborhood U of x, i.e. maps πy : W → H2|y. Via the same

construction described in the preceding paragraph,
⋃
y∈U ker(By ⊕ πy)

has the structure of a vector bundle over U .

We note that the first case may be subsumed into the second case

by taking W , and thus the auxiliary data, to be trivial. For the remainder

of the proof we will refer to the local data necessary to define the bundle

of kernels in the second case above, i.e the collection {(W,πy)|y ∈ U}, as

auxiliary data for B on the neighborhood U .

Given two collections of auxiliary data on neighborhoods U and V , we

can enlarge the data to a single set of auxiliary data on U ∪ V , at the cost

of potentially increasing the dimension of W if the cokernel of B changes

dimension from U to V . That one can do so continuously is verified in e.g.

[21, Appendix] and [20, Appendix A.2], in the cases of Fredholm maps on

Hilbert spaces and Fredholm maps on Banach spaces respectively. For a

compact base one can then ensure there exists a choice of a single finite

dimensional space W and a continous family of linear maps πz : W → H2|z

so that ker(B⊕π) :=
⋃
z∈X ker(Bz⊕πz) has the structure of a vector bundle.

The index bundle of B is then defined via this construction as

ind(B) = [ker(B ⊕ π)]− [W ×X] ∈ K(X)

and one readily checks that any other choice of global auxiliary data gives

rise to the same element in K-theory. This completes our summary of the

construction of the index bundle associated to the map B.
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To prove the lemma, we will compare the results of applying this

construction to B and to

[
B C

]
.

Fix x ∈ X. Then we have dim(coker(

[
Bx Cx

]
)) + k = dim(coker(Bx))

for some 0 ≤ k ≤ dim(V ). Fix any choice of auxiliary data (W,π) for B

on a neighborhood U of x. Then because im(Bx) ⊂ im(

[
Bx Cx

]
) for all

x in U , (W,π) also serves as auxiliary data for

[
B C

]
on U . The bundles

ker(

[
B π

]
) and ker(

[
B C π

]
) are therefore both well-defined on U , and

we will now show that ker(

[
B π

]
)⊕ V ∼= ker(

[
B C π

]
). Indeed, consider

the exact sequences:

0→ ker(B)→ ker(

[
B π

]
)→ π−1(im(B))→ 0

and

0→ ker(

[
B C

]
)→ ker(

[
B C π

]
)→ π−1(im(

[
B C

]
))→ 0

Here the first map in the top sequence is given by a 7→ (a, 0) and the second

map is given by (b, c) 7→ c, with the second sequence defined similarly.

The cokernels differ in dimension by k, and we have ker(

[
B C

]
) ∼=

ker(B) ⊕ Rdim(V )−k. Furthermore since H2 = im(B) + im(π) we have

isomorphisms cok(B) = H2/im(B) ∼= W/π−1(im(B)) and cok(

[
B C

]
) =

H2/im(

[
B C

]
) ∼= W/π−1(im(

[
B C

]
)) , so π−1(im(

[
B C

]
)) ∼=

π−1(im(B))⊕Rk. Thus since the sequences split we have ker(

[
B π

]
)⊕ V ∼=
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ker(

[
B C π

]
). To summarize, we have shown that on a neighborhood U

of x, any choice of auxiliary data (W,π) for B yields ker(

[
B π

]
) ⊕ V ∼=

ker(

[
B C π

]
) as vector bundles over U .

Finally, we need to show that the index bundles are globally equivalent

in K(X). To do this, it suffices to show that there are constants k1 and k2

and global choices of auxiliary data (W,π) and (W ′, π′) for B and

[
B C

]
respectively such that there are (now global) isomorphisms of vector bundles

ker(

[
B C π′

]
)⊕ Rk1 ∼= ker(

[
B π

]
)⊕ V ⊕ Rk2 and W ′ ⊕ Rk1 ∼= W ⊕ Rk2 .

In fact, this follows immediately from the observations above. Fix once

and for all a finite open cover
⋃
i Ui of X, and a collection of local auxiliary

data {(Wi, πi)} for B on the Ui. To construct ind(B), we use the collection

of local data to produce global auxiliary data (W,π) for B on X. By the

observations made earlier, ind(

[
B C

]
) can be constructed from the same

finite collection of local auxiliary data, which will give rise to the same

global auxiliary data (W,π) for

[
B C

]
. Finally, we have observed above

that for such global auxiliary data (W,π), the two (honest) vector bundles

ker(

[
B C π

]
) and ker(

[
B π

]
) on X will satisfy

ker(

[
B C π

]
)|Ui ∼=fi (ker(

[
B π

]
)⊕ V )|Ui

for each Ui. Furthermore, the isomorphisms agree across charts in the sense

that fi|Ui∩Uj = fj|Ui∩Uj , so we have a global isomorphism of vector bundles

on X

ker(

[
B C π

]
) ∼= ker(

[
B π

]
)⊕ V
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We thus have

ind(

[
B C

]
) = [ker(

[
B C π

]
)]− [W ×X]

= [ker(

[
B π

]
)⊕ V ]− [W ×X]

= ind(B) + [V ] ∈ K(X),

as desired.

Remark 2.9.16. Equation (2.8) in the proof of Lemma 2.9.13 now

follows from applying Lemma 2.9.15 to any compact subset X ⊂ BI ,

with H1 =
⋃
t∈I TBt, H2 = E , V = R, B =

∐
t∈I D(∂̄|Bt∩X) and

C =
∐

t∈I((D∂̄)|Bt∩X)|0⊕R⊂TBt⊕R.

Having discussed the smooth manifold structure and a particular

construction of coherent orientations on the matched moduli spaces of

triangles on a triple diagram, we now state a glueing result from [3] which

will allow us to relate these matched moduli spaces of triangles on the

diagram T0 to the triangles on T #T0 we seek to count. We consider

homology classes of triangles ψ on an arbitrary pointed triple diagram

T = (Σ,α′,α,β, p) and ψ0 on the pointed diagram T0 = (Σ0,α
′
0,α0,β0, p0).

We form the connected sum of the diagrams at the points p and p0, and

consider the resulting homology class ψ#ψ0:

Proposition 2.9.17 (Proposition 9.49 in [3]). Let u and u0 be holomorphic

triangles representing homology classes ψ and ψ0 in Σ × ∆ and Σ0 × ∆

respectively. Let k = np(ψ) = np0(ψ0), and suppose µ(u) = 0, µ(u0) =

2k, and ρp(u) = ρp0(u0) ∈ Symk(∆) \ Diagk(∆). Suppose further that
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M(ψ) and M(ψ0, ρ
p(u)) are transversely cut out near u and u0. Then there

is a homeomorphism h between [0, 1) and a neighborhood of (u, u0) in the

compactified 1-dimensional moduli space

⋃
T

MJ(T )(ψ#ψ0)

such that h(u, u0) = {0}

Finally, the following three facts will also be useful in the proof of the

triangle count of Proposition 2.9.1, so we state them here as lemmas for

convenience in referencing.

Lemma 2.9.18 (Lemma 9.50 in [3]). Consider the triple diagram T0 =

(Σ0,α
′
0,α0,β0). If x ∈ Tα′0 ∩ Tα0 and ψ0 ∈ π2(x,a, b), then

µ(ψ0) = 2np0(ψ0) + µ(x,Θ) (2.15)

Lemma 2.9.19. The differential on ĈF (Σ0,α
′
0,α0, p0, oα′0,α0

), defined with

respect to the coherent orientation system oα′0,α0
specified in Lemma 2.7.2,

vanishes.

Proof. By [1, Lemma 9.4] rankZ(ĤF (Σ0,α
′
0,α0, p0, oα′0,α0

)) = 4. By

inspection rankZ(ĈF ) = 4, so the differential must vanish.

Lemma 2.9.20. The map

Ψ
α0→α′0
β0

: ĈF (Σ0,α0,β0, p0)→ ĈF (Σ0,α
′
0,β0, p0)

satisfies Ψ
α0→α′0
β0

(a) = ±b.
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Proof. By Lemma 2.7.4, Ψ
α0→α′0
β0

is a quasi-isomorphism. Since the two

complexes in question are trivial of rank one over Z, the quasi-isomorphism

must be an isomorphism between trivial, rank one complexes over Z, of

which there are precisely two.

Counting Triangles

We are now in position to prove the main triangle count, and conclude

the proof of handleswap invariance.

Proof of Proposition 2.9.1. As we did in Sections 2.7 and 2.8, we will

consider the case of the chain complexes CF− in what follows in order to

fix definitions, however we note that the proof carries over equally well for

all variants CF ◦.

For an almost complex structure J which achieves transversality we

have, by definition,

FT#T0((x×Θ)⊗ (y × a)) =
∑
z

∑
A∈π2(x×Θ,y×a,z×b)

µ(A)=0

(#MJ(A))Unp(A) · z × b

and

FT (x⊗ y)× b =

∑
z

∑
A∈π2(x,y,z)
µ(A)=0

(#MJ(A))Unp(A) · z

× b
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To obtain the result we will count Maslov index 0 holomorphic

triangles in the homology class A, for each generator z ∈ Tα′ ∩ Tβ and

class A ∈ π2(x×Θ,y × a, z × b).

Consider two homology classes of triangles ψ ∈ π2(x,y, z) on

T = (Σ,α′,α,β, p) and ψ0 ∈ π2(Θ,a, b) on T0 = (Σ0,α
′
0,α0,β0, p0). If

np(ψ) = np0(ψ0), so the classes match across the connect sum point, then

the homology classes can be combined to give a class ψ#ψ0 ∈ π2(x×Θ,y ×

a, z×b). Conversely, it is clear that any class A ∈ π2(x×Θ,y×a, z×b) can

be written uniquely as a connect sum of suitable classes with this matching

condition.

So for any such homology class A = ψ#ψ0 with µ(A) = 0, we aim

to count Maslov index zero holomorphic representatives as we stretch the

neck, i.e to count #MJ(Ti)(ψ#ψ0), where J(Ti) is a sequence of almost

complex structures being stretched along the neck. To do so, suppose uTi

is a sequence of J(Ti)-holomorphic triangles representing ψ#ψ0, where

µ(ψ#ψ0) = 0. We note here that by [23, Theorem 4.1] and Lemma 2.9.18

we have µ(ψ#ψ0) = µ(ψ) + µ(ψ0)− 2np(ψ0) = µ(ψ) + µ(θ,θ) = µ(ψ). Hence

µ(ψ) = 0, and µ(ψ0) = 2np0(ψ0).

By Proposition 2.9.6, there is a subsequence of uTi which converges

to a triple (U, V, U0) where U is a broken holomorphic triangle in Σ × ∆

representing ψ, U0 is a broken holomorphic triangle in Σ0 × ∆ representing

ψ0, and V is a collection of holomorphic curves mapping into the neck

regions that are asymptotic to (possibly multiply covered) Reeb orbits of

the form S1 × {d}.

The proof will now proceed in steps as follows:
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1. We will show U consists of a single holomorphic triangle u with Maslov

index zero, with u satisfying (M1)-(M8), and potentially some number

of constant holomorphic curves.

2. We then show that U0 consists of a single Maslov index 2np0(ψ0)

triangle u′0, with u′0 satsisfying (M1)-(M8) and ρp(u) = ρp0(u0), and

potentially some number of constant holomorphic curves.

3. We rule out the possibility of constant curves occurring in steps 1

and 2, and show that V consists of a collection of trivial holomorphic

cylinders.

4. Using this knowledge of (U, V, U0) and the glueing result, we reduce

the proof to showing Lemma 2.9.21 below.

In fact, the proofs of steps (1) through (3) given in [3] carry over

exactly as they are stated there, so we will only carry out step (4).

Step 4 By steps (1)-(3), a sequence uTi of J(Ti)-holomorphic triangles

representing ψ#ψ0 converges to a broken holomorphic triangle (U, V, U0),

where U = u is a single holomomorphic triangle satisfying µ(u) = 0, V

is a collection of trivial holomorphic cylinders, U0 is a single holomorphic

triangle u0 satisfying µ(u0) = 2np(ψ), and ρp(u) = ρp0(u0). By Proposition

2.9.17, there is therefore a homeomorphic identification h between a

neighborhood of (u, u0) in the compactified 1 dimensional moduli space

⋃
Ti

MJ(Ti)(ψ#ψ0)
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and the interval [0, 1), such that h(u, u0) = {0}. This yields an identification

MJ(Ti)(ψ#ψ0) ∼= {(u, u0) ∈M(ψ)×M(ψ0)|ρp(u) = ρp(u0)}

for sufficiently large Ti. We now fix JTi for such a sufficiently large value of

Ti, and drop this choice of almost complex structure from our notation.

Given coherent orientation systems oT over T and oT0 over T0, there is

a coherent orientation system oT#T0 with respect to which the signed count

of the 0 dimensional moduli space M(ψ#ψ0) is given by

#M(ψ#ψ0) = #{(u, u0) ∈M(ψ)×M(ψ0)|ρp(u) = ρp(u0)}.

Indeed, given two homology classes of triangles ψ on T and ψ0 on T0, the

glueing map \ (see [14, Appendix A, page 1082] for the definition) used to

identify the two moduli spaces is covered by a map of determinant lines (\)#

which can be used to produce an orientation oψ#ψ0

T#T0 over M(ψ#ψ0) from

orientations oψT over M(ψ) and oψ0

T0 over M(ψ0). Similarly, for two homology

classes of strips A on T and A0 on T0, the same procedure can be used to

determine an orientation oA#A0

T#T0 from oAT and oA0
T0 . The fact that homology

classes of strips and triangles on T #T0 are in bijective correspondence to

pairs of homology classes of strips on T and T0 ensures that the coherent

orientation systems oT and oT0 thus determine a single orientation system

oT#T0 over all classes of strips and triangles in the connect summed diagram

(i.e. the determinations for a particular class of triangle or strip on the

summed diagram are not overspecified). That this induced orientation is

coherent follows from the coherence of the two constituent orientations,
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along with the fact that glueing map (\)# above commutes with the map

(\)∗ appearing in Definition 2.9.12. More precisely, the coherence follows

from these facts as

o
(ψ+A)#(ψ0+A0)
T#T0 := (\)#(oψ+A

T × oψ0+A0

T0 )

= (\)#((\)∗(o
ψ
T × oAT )× (\)∗(o

ψ0

T0 × oA0
T0 ))

= (\)∗((\)#(oψT × oψ0

T0 )× (\)#(oAT × oA0
T0 ))

=: (\)∗(o
ψ#ψ0

T#T0 × oA#A0

T#T0 )

where the second equality is the definition of coherence for the orientation

systems oT and oT0 , and the third equality is the statement of the

commutativity of the two induced glueing maps referenced above. This

commutativity follows from the fact that the two glueing maps can be

viewed as taking place in a small neighborhood of the curves being glued,

and can thus be performed in either order, or simultaneously, via the

construction in [14, Appendix A]. This establishes coherence of the system

oT#T0 .

For u ∈M(ψ) let

M(Θ,a,b)(ρ
p(u)) =

∐
ψ0∈π2(Θ,a,b)
µ(ψ0)=2np(ψ)

M(ψ0, ρ
p(u)).

With respect to a coherent orientation system oT#T0 on T #T0 determined

from any coherent systems oT and oT0 as above, the triangle map in question

can then be written as
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FT#T0((x×Θ)⊗ (y × a)) =

=
∑
z

∑
ψ∈π2(x,y,z)
ψ0∈π2(Θ,a,b)
µ(ψ#ψ0)=0

#{(u, u0) ∈M(ψ)×M(ψ0)|ρp(u) = ρp(u0)}Unp(ψ) · z × b

=
∑
z

∑
ψ∈π2(x,y,z)
µ(ψ)=0

∑
ψ0∈π2(Θ,a,b)
µ(ψ0)=2np(ψ)

#{(u, u0) ∈M(ψ)×M(ψ0)|ρp(u) = ρp(u0)}Unp(ψ) · z × b

=
∑
z

∑
ψ∈π2(x,y,z)
µ(ψ)=0

∑
ψ0∈π2(Θ,a,b)
µ(ψ0)=2np(ψ)

∑
u∈M(ψ)

# (u×M(ψ0, ρ
p(u)))Unp(ψ) · z × b

=
∑
z

∑
ψ∈π2(x,y,z)
µ(ψ)=0

∑
u∈M(ψ)

#
(
u×M(Θ,a,b)(ρ

p(u))
)
Unp(ψ) · z × b

We will show in Lemma 2.9.21 below that there is a coherent orientation

system oT0 on T0 for which either

#M(Θ,a,b)(ρ
p(u)) = 1

for all ψ with µ(ψ) = 0 and all u ∈M(ψ), or

#M(Θ,a,b)(ρ
p(u)) = −1

for all ψ with µ(ψ) = 0 and all u ∈M(ψ). Then we will have
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F−T#T0((x×Θ)⊗ (y × a)) =

=
∑
z

∑
ψ∈π2(x,y,z)
µ(ψ)=0

∑
u∈M(ψ)

#
(
u×M(Θ,a,b)(ρ

p(u))
)
Unp(ψ) · z × b

= ±
∑
z

∑
ψ∈π2(x,y,z)
µ(ψ)=0

#M(ψ)Unp(ψ) · z × b

= ±

∑
z

∑
ψ∈π2(x,y,z),µ(ψ)=0

(#M(ψ))Unp(ψ) · z

× b
= ±F−T (x⊗ y)× b

This completes the proof of the proposition, modulo Lemma 2.9.21.

Lemma 2.9.21. For d ∈ Symk(∆)\Diag(∆) and a generic choice of almost

complex structure J , the moduli space M(Θ,a,b)(d) is a smoothly cut out 0-

manifold. For such J , there is a coherent orientation system oT0 on T0 for

which the signed count of points in the moduli space is

#M(Θ,a,b)(d) = ±1

where the constant is independent of d.

Proof. The proof is again carried out in steps:

1. We show the moduli space is transversely cut out for generic J .

2. We show that for generic d ∈ Symk(∆) \ Diag(∆), the signed count

#M(Θ,a,b)(d) is independent of d.

3. We find one choice of d giving the desired count.
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In fact, the proof of step (1) given in [3] carries over exactly as it is

stated there, so we will only prove steps (2) and (3).

Step 2 Let p : I → Symk(∆) be a path from d0 to d1, where the

image of p satisfies the conditions of Lemma 2.9.9. We consider the moduli

space ⋃
t∈I

M(Θ,a,b)(p(t))

which by Proposition 2.9.9 and Lemma 2.9.10 is a smooth, orientable 1

manifold. From orientability, we know that the signed count of the ends

of the moduli space above is zero. We now describe all contributions to the

count of the ends. We begin by making considerations which will hold for

any choice of coherent orientation system satisfying the property appearing

in Lemma 2.9.13.

The ends of
⋃
t∈IM(Θ,a,b)(p(t)) fall into three classes. They arise from

M(Θ,a,b)(d0), M(Θ,a,b)(d1), and degenerations of holomorphic triangles to

broken holomorphic triangles in the compactification. Let ui : S0 → Σ0 ×∆

be a sequence of holomorphic triangles in
⋃
t∈IM(Θ,a,b)(p(t)). As shown in

[3, Lemma 9.58], the only degenerations that can occur correspond to “strip

breaking”. In particular, if ui converges to a broken holomorphic triangle

U = (u1, v1, . . . , vn, w1, . . . , wm)

(in the sense of Definition 2.9.5), then in fact U = (u1, v1, . . . , vn) where the

vi are holomorphic strips. We note that the argument used to rule out other

types of degenerations has nothing to do with orientations. Furthermore, we

will see presently that among degenerations corresponding to strip breaking,
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the only ones which can occur yield broken triangles U consisting of a

triangle u1 of index 2k − 1 which matches a divisor p(t) for some t ∈ I,

as well as a single curve v1 : S → Σ0 × I × R with index 1.

To see this, note that if U is genuinely broken then U = (u1, v1, . . . , vn)

with u1 a holomorphic triangle representing a class in π2(x,a, b) and vi

holomorphic curves in π2(yi, zi) for some yi, zi ∈ Tα′ ∩ Tα.We now analyze

what contributions to the ends can occur for the four possible intersection

points x ∈ Tα′ ∩ Tα.

Suppose x = Θ. Then by applying Lemma 2.9.18 to u1 we obtain

µ(u1) = 2np0(u1). Since u1 satisfies a matching condition with p(t) for

some t ∈ I, we have 2np0(u1) = |ρp(p(t))| = k = 2np0(ψ0) = µ(ψ0).

Thus µ(u1) = µ(ψ0). Since the total homology class of U must be ψ0,

we therefore must have µ(vi) = 0 and np0(vI) = 0 for all i. Since the

vi satisfy (M1) and (M3)-(M6), the only possibility for such curves is

that each is a collection of constant components. Indeed, if any vi were

locally nonconstant, it would satisfy (M2), hence by [3, Corollary 7.2] the

dimension of the relevant moduli space containing it would be negative.

Thus U = (u1) (plus potentially some constant curves) is in the interior of⋃
t∈IM(Θ,a,b)(p(t)), and so contributes nothing to the signed count of the

ends.

Next we consider the cases x = θ+
1 θ
−
2 , θ

−
1 θ

+
2 . In these cases Lemma

2.9.18 yields that the index of the triangle must be µ(u1) = 2np0(u1) − 1 =

2np0(ψ0) − 1, so the remaining curves must have indices which sum to 1.

Similarly, 0 = np0(ψ0) − np0(u1) =
∑

i np0(vi), so vi must have multiplicity

0 at the basepoint for each i. The only possibility in this case is that there
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is a single Maslov index 1 strip v1. Thus in this case, we have additional

contributions to the ends coming from:

⋃
t∈I

x∈{θ+
1 θ
−
2 ,θ
−
1 θ

+
2 }

⋃
φ∈π2(Θ,x)
np0 (φ)=0

M(x,a,b)(p(t))× M̂(φ)

Fix x ∈ {θ+
1 θ
−
2 , θ

−
1 θ

+
2 }. Then by Lemma 2.9.19 we know that

∑
φ∈π2(Θ,x)
np0 (φ)=0

#M̂(φ) = 0

Thus

#(
⋃
t∈I

x∈{θ+
1 θ
−
2 ,θ
−
1 θ

+
2 }

⋃
φ∈π2(Θ,x)
np0 (φ)=0

M(x,a,b)(p(t))× M̂(φ))

=
∑
t∈I

x∈{θ+
1 θ
−
2 ,θ
−
1 θ

+
2 }

∑
φ∈π2(Θ,x)
np0 (φ)=0

#(M(x,a,b)(p(t))× M̂(φ))

=
∑
t∈I

x∈{θ+
1 θ
−
2 ,θ
−
1 θ

+
2 }

∑
φ∈π2(Θ,x)
np0 (φ)=0

(#M(x,a,b)(p(t))) · (#M̂(φ)) = 0

Here we have used in the last equality the fact that we have endowed the

orientable manifold
⋃
t∈IM(Θ,a,b)(p(t)) with some coherent orientation

system. This implies in particular that the orientation induced on the

compactification agrees with the product orientation at ends such as those

above. So we see these cases also contribute nothing to the count of signed

ends of the moduli space.

Lastly, we consider the case x = θ−1 θ
−
2 . For any ψ0 ∈ π2(θ−1 θ

−
2 ,a, b) we

have by lemma 2.9.18 µ(psi0) = 2np0(ψ0)− 2 = 2k − 2. By proposition 2.9.9,
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for a generic choice of almost complex structure J , and a fixed source S, the

matched moduli space M(ψ0, S, p(I)) is a smooth manifold of dimension

ind(ψ0, S)− codim(p(I)) = ind(ψ0, S)− (2k − 1) ≤ µ(ψ0)− (2k − 1) = −1

Here the fact being used to establish the inequality is that for any

holomorphic triangle u in the homology class A (not necessarily embedded),

the index of the linearized ∂̄ operator at u satisfies ind(A, S) = µ(A) −

2sing(u), and in particular ind(A, S) ≤ µ(A). This is [3, Equation 9.46],

which comes from adapting [24, Proposition 5.69]. This shows that for a

generic choice of J , the broken triangle U can not in fact contain a triangle

u1 in such a class ψ0.

To summarize, we have shown that the ends of
⋃
t∈IM(Θ,a,b)(p(t))

correspond to M(Θ,a,b)(d0), M(Θ,a,b)(d1), and to degenerations of triangles

into broken triangles containing one triangle and one strip, and that the

last types of ends contribute nothing to the total signed count of the ends.

Since we have chosen a collection of orientation systems satisfying the

conclusion of Lemma 2.9.13, we see that the signed count of the ends of⋃
t∈IM(Θ,a,b)(p(t)) is given by:

#M(Θ,a,b)(d1)−#M(Θ,a,b)(d0) = 0.

This concludes step 2.

We note that by Lemma 2.9.13, a coherent orientation system

on M(Θ,a,b)(p(0)) induces a coherent orientation system over
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⋃
t∈IM(Θ,a,b)(p(t)) and M(Θ,a,b)(p(1)) satisfying the conclusion of the

lemma. We thus see that if we can find a single divisor d and a coherent

orientation system o over M(Θ,a,b)(d) giving the desired count, then the

argument of step 2 shows that there are induced coherent orientations over

all divisors d′ in the same path component as d for which the counts are the

same. We will construct such a divisor in step 3 below.

Step 3 To construct a divisor d ∈ Symk(∆) \ Diag(∆) giving the

desired count, we consider a path of divisors subject to constraints, and

evaluate the asymptotics of the moduli spaces of triangles matched to

divisors in this path. Our argument is an explication of that in [3], which

is in turn based on an analogous argument in [25, pg. 653] which deals with

holomorphic strips. Our goal in summarizing these proofs is to make explicit

the dependence of all statements on signs and orientations.

We consider any path p : [1,∞) → Symk(∆) \ Diag(∆) for which

each point in p(t) is at least a distance of t away from all other points in

p(t), with respect to a metric on ∆ for which the corners are infinite strips

in C (see Figure 24). We further require that the points in p(t) smoothly

approach the vertex vα0β0 of ∆ as t → ∞. For such a path of divisors, we

have as before a matched moduli space

M(Θ,a,b)(p) =
⋃

t∈[1,∞]

M(Θ,a,b)(p(t)).

By the same arguments used in step 2, the ends of this moduli space

corresponding to degenerations of triangles at finite values of t, with t 6= 1,

will contribute nothing to the signed count of the ends, for any choice of

coherent orientation system. Consider any coherent orientation system
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o satisfying the properties of that furnished by Lemma 2.9.13; then with

respect to such an orientation system the signed count #M(Θ,a,b)(p(1))

must agree with the signed count of the ends of M(Θ,a,b)(p) coming from

degenerations of triangles as t→∞. So we now count these ends.

We claim that as t → ∞, the only broken triangles which can

occur in the limit consist of a single genuine triangle τ of index 0 on

(Σ0,α
′
0,α0,β0), along with k index 2 curves on (Σ0,α0,β0) which satisfy

matching conditions with some collection of divisors ci ∈ [0, 1] × R. To see

this, we note that each point in the path p consists of k distinct points in ∆,

and the fact that these k points separate and approach the vertex vα0β0 in

the limit necessitates that the limiting broken triangle must contain k strips

satisfying matching conditions. To see the index of each of these curves must

be 2, we make some simple observations about the diagram (Σ0,α0,β0) for

S3.

First, note that the only homology classes of discs supporting

holomorphic representatives are {ea + s[Σ0]} for nonnegative integers s,

where ea is the constant disk at a. The Maslov indices for such classes are

µ(ea + s[Σ0]) = 2s. The fact that each strip satisfies a matching condition

implies we must have s ≥ 1 for each homology class. Since the total index of

each holomorphic triangle in the moduli space M(Θ,a,b)(p) is 2k, the limiting

broken holomorphic triangle must have index 2k, so the only possibility is

that each of the k curves has index 2 (i.e. has s=1), and the triangle τ has

index 0. By counting multiplicities and noting positivity of intersections, we

see that the triangle τ must satisfy np0(τ) = 0. Using the same arguments
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as in the preceding proposition, we have that all of the curves in the broken

triangle must satisfy (M1)− (M8).

Applying the glueing result of Lipshitz [14, Appendix A, Proposition

A.1], we see that we can obtain the signed count of the ends ocurring as

degenerations as t→∞, or equivalently the count #M(Θ,a,b)(p(1)), as:

#M(Θ,a,b)(p(1)) = (#M(a,a)(c))
k ·

∑
ψ∈π2(Θ,a,b)
np0 (ψ)=0

#M(ψ)

where c is a divisor in [0, 1] × R and M(a,a)(c) is the moduli space

of index 2 strips on (Σ0,α0,β0) with ρp(u) = c. Here the counts

are occurring with respect to any coherent orientation system oT0 =

{oα′0,α0,β0
, oα0,β0 , oα′0,α0

, oα′0,β0
} on T0 and the compatible orientation system

oα0,β0 included in the data oT0 . The sum on the right hand side is precisely

the count occurring in the triangle map in Lemma 2.9.20, and is thus

±1. Thus to finish this step it suffices to show that there is a coherent

orientation system oT0 for which

#M(a,a)(c) = ±1.

Consider the standard diagram HS1×S2 for S1 × S2, twice stabilized via the

diagram (Σ0,α0,β0) as shown in Figure 26. The figure depicts this genus

3 diagram for S1 × S2, along with a choice of basepoint z. Both bigons in

HS1×S2 for S1 × S2 admit a single holomorphic representative. We consider

a choice of coherent orientation system on HS1×S2 for which the the bigons

cancel, and the resulting Floer homology is ĤF ∼= Z2. By invariance of ĤF ,

the twice stabilized bigon in the twice stabilized diagram must also have a
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single holomorphic representative. As in the proof of stabilization invariance

in [14], this implies via a neck stretching argument that there is a coherent

orientation system oα0,β0 on (Σ0,α0,β0) for which

#M(a,a)(c) = ±1.

By [1, Lemma 8.7], this coherent orientation system can be extended to a

coherent orientation system oT0 for which the same condition holds. This

completes step 3, and the proof of the lemma.

FIGURE 26 The diagram HS1×S2 on the bottom of the figure is twice
stabilized via a connect sum with (Σ0,α0,β0). Shaded in grey is a domain
on the genus 3 diagram, the ”twice stabilized bigon”, which arises from one
of the bigons in HS1×S2 .

This concludes the payment of all unpaid debts that were needed for

the proofs of our theorems. Having established our naturality results, we will

proceed in the subsequent chapter to investigate applications, and attempt

to provide some answers the question “What is it all good for?”.
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CHAPTER III

FURTHER DIRECTIONS AND APPLICATIONS

We now point out some applications and potential generalizations

of the naturality results established in the previous chapter. The work in

this chapter has been submitted for publication to the Journal of Topology.

Given two based 3-manifolds (Y1, z1) and (Y2, z2), a cobordism W between

them decorated with a choice of path in W from z1 to z2, and a choice of

t ∈ Spinc(W ), Ozsváth and Szabó constructed in [2] cobordism maps:

F ◦W,t : HF ◦(Y1, z1, t|Y1)→ HF ◦(Y2, z2, t|Y2).

(The choice of path is not made explicit in [2]). In [5] Zemke extended the

results in [3] to show that over F2 these maps are well-defined and natural

with respect to composition of decorated cobordisms. We expect that

our results can be used in a similar way to establish such naturality over

Z, up to an overall sign. Furthermore, in [2] Ozsváth and Szabó showed

how naturality of the Heegaard Floer invariants with respect to decorated

cobordisms can be used to define the so called mixed invariants of closed 4-

manifolds. Given a closed 4-manifold X and a choice of t ∈ Spinc(X), these

take the form of maps

ΦX,t : Λ∗(H1(X;F2)/Tors)⊗F2 F2[U ]→ F2.

These share many of the features of the Seiberg-Witten invariants, and

serve as powerful tools in detecting subtle smooth information. If one can
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establish naturality with respect to cobordisms over Z/±, we would obtain

corresponding mixed invariants

ΦX,t : Λ∗(H1(X;Z)/Tors)⊗Z Z[U ]→ Z/±

which we expect would provide fruitful extra information. In fact, before

the gap in the literature was noticed, the integral mixed invariants had

already been extensively studied in papers including [26], [27] and [28],

so establishing naturality with respect to cobordisms over Z would

immediately prove useful, and would likely also be useful for computations

and applications in the future.

A second application of our work comes from involutive Heegaard

Floer homology, defined by Hendricks and Manolescu in [29]. To describe

it, fix a closed 3-manifold Y and s ∈ Spinc(Y ). Given a pointed Heegaard

diagram H = (Σ,α,β, z) for (Y, z), there is a conjugate diagram H =

(−Σ,β,α, z) for (Y, z) given by reversing the orientation on the surface

and switching the role of the α and β curves. Under suitable admissibility

hypotheses, there is a chain isomorphism

ηH→H : CF ◦(H, s)→ CF ◦(H, s)

given by mapping intersection points to themselves [7, Theorem 2.4]. Using

the results in [3], Hendricks and Manolescu showed that the F2 analog of

Corollary 1.3.5 holds: the modules CF ◦(H, s) fit into a transitive system in

the homotopy category of chain complexes of F2[U ]-modules with respect

to the maps induced by the Heegaard moves appearing in Corollary 1.3.5.
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Thus, since H and H represent the same 3-manifold, there is a chain

homotopy equivalence

Φ(H,H) : CF ◦(H, s)→ CF ◦(H, s)

of complexes of F2[U ]-modules which is well defined up to homotopy. Using

these maps, they consider the map ι := Φ(H,H) ◦ ηH→H, which is well

defined up to homotopy, and which is shown to be a homotopy involution in

[29, Lemma 2.5]. They then use it to construct an invariant of Y as follows.

There is a Z/2Z action on Spinc(Y ) given by conjugation. Let

[Spinc(Y )] denote the set of orbits in Spinc(Y ) under this action. Given an

orbit ω ∈ [Spinc(Y )], let

CF ◦(H, ω) =
⊕
s∈ω

CF ◦(H, s).

The authors investigate the map (1 + ι), considered as a chain map between

complexes of F2[U ]-modules, and consider its cone

CFI(H, ω) := Cone(1+ι) =

CF ◦(H, ω)[−1]⊕ CF ◦(H, ω), ∂cone =

 ∂ 0

1 + ι −∂


 .

Here CF ◦(H, ω)[−1] indicates the shifted chain complex, whose degree n

piece is given by (CF ◦(H, ω)[−1])n = CF ◦(H, ω)n−1. They then introduce a

formal variable Q of degree −1 satisfying Q2 = 0, and rewrite the map being

coned over as

CF ◦(H, ω)
Q·(1+ι)−−−−→ Q · CF ◦(H, ω)[−1].
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As one can readily check, the cone and its differential can then be rewritten

as

Cone(1 + ι) =
(
CF ◦(H, ω)[−1]⊗ F2[Q]/(Q2), ∂ +Q(1 + ι)

)
.

Considered in this way, it is a complex of modules over the ring R =

F2[Q,U ]/(Q2). The authors then show that the quasi-isomorphism class of

the complex CFI(H, ω) of R-modules thus defined is an invariant of (Y, ω).

We now explain how Corollary 1.3.5 can be used to construct a version

of such an invariant defined over Z. Fix again a 3-manifold Y , and diagrams

H and H representing Y as above. Since H and H represent the same 3

manifold, we obtain from Corollary 1.3.5 (at most) two homotopy classes of

chain homotopy equivalences

±Ψ(H,H) : CF ◦(H, s)→ CF ◦(H, s)

associated to sequences of Heegaard moves relating the two diagrams. The

set {±Ψ(H,H)} is well defined up to chain homotopy. We thus obtain two

homotopy classes of maps ±ι := ±Ψ(H,H) ◦ ηH→H. The same argument

used in [29, Lemma 2.5] to show that ι is a homotopy involution over F2

now shows that ±ι both have order at most 4 (up to homotopy) over Z. We

define

CFI±(H, ω) := Cone(1± ι),

where now both complexes are considered as complexes of Z[U ]-modules.

While we can no longer conclude the maps ±ι are homotopy involutions, we

still obtain that the collection of the two quasi-isomorphism classes of the
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complexes of Z[U ]-modules that we obtain is an invariant of the underlying

3-manifold.

Theorem 3.0.1. The unordered pair of quasi-ismorphism classes determined

by the complexes

CFI±(H, ω)

(considered as complexes of Z[U ]-modules) is an invariant of (Y, ω, z).

Proof. The proof is essentially the same as that in [29], but we include a

sketch of it here for the reader’s convenience.

Fix (Y, z, ω), and consider a diagram H and its conjugate H as above.

As we noted earlier, for the fixed diagram H the collection of the two chain

homotopy equivalences {±Ψ(H,H)} is well defined up to chain homotopy

by Corollary 1.3.5. Thus so too is the collection {±ι}. We conclude that the

set of the two cones {CFI±(H, ω)} associated to (H, ω) is well defined up to

chain homotopy equivalence.

Next, we consider the dependence on the choice of diagram.

Consider a different diagram H′ for (Y, z) and its conjugate H′. We obtain

corresponding collections {±Ψ(H′,H′)} and {±ι′} which are both well

defined up to homotopy, and {CFI±(H′, ω)} well defined up to homotopy

equivalence. Choose some fixed sequence of Heegaard moves connecting

H to H′, and consider either of the (at most two) corresponding chain

homotopy equivalences ±Ψ(H,H′) furnished by Corollary 1.3.5. We denote

our choice by Ψ(H,H′). Consider the following diagram involving the four
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cone complexes in question

CF ◦(H, ω)[−1] CF ◦(H, ω)

CF ◦(H′, ω)[−1] CF ◦(H′, ω)

1±ι

Ψ(H,H′) Ψ(H,H′)

1±ι′

We claim that for a fixed choice in {±ι}, the diagram commutes up to

homotopy for at least one of the two choices in {±ι′}. We denote our choice

of the fixed homotopy class in the top row by ι. To establish the claim, we

need to show that

Ψ(H,H′) ◦Ψ(H,H) ◦ ηH→H ∼ ±Ψ(H′,H′) ◦ ηH′→H′ ◦Ψ(H,H′).

We note that

ηH′→H′ ◦Ψ(H,H′) ◦ ηH→H ∼ ±Ψ(H,H′).

To see this, observe that Ψ(H,H′) is a map induced by some sequence of

Heegard moves. The map resulting from precomposing and postcomposing

this map with the isomorphisms η can be realized as the map induced on

CF ◦(H) by the same set of Heegaard moves giving rise to Ψ(H,H′) (recall

the maps η have no effect on the attaching curves). Thus the conjugated

map is homotopic to ±Ψ(H,H′) by Corollary 1.3.5. We thus conclude that

Ψ(H′,H′) ◦ ηH′→H′ ◦Ψ(H,H′) ∼ ±Ψ(H′,H′) ◦Ψ(H,H′) ◦ ηH→H

∼ ±Ψ(H,H′) ◦Ψ(H,H) ◦ ηH→H
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where the last two maps being homotopic up to a sign is again guaranteed

by Corollary 1.3.5. Having established that the diagram with ι in the top

row commutes up to chain homotopy for at least one choice of {±ι′} in

the bottom row, the argument in [29] now applies directly to establish that

Cone(1+ ι) is quasi-isomorphic to at least one of the cones Cone(1± ι′). This

concludes the proof.

Finally, we will address a final line of potential future applications in

the subsequent chapter.
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CHAPTER IV

ORIENTATION REVERSING DIFFEOMORPHISMS

In this chapter, we will set out to address a potential application of

Heegaard Floer homology to the study of nonorientable 3-manifolds, and

more generally to the study of orientation reversing diffeomorphisms on

3-manifolds. In fact, this line of research was the original motivation for

understanding the naturality results presented earlier. At this stage, all of

the results in this chapter are preliminary and exploratory, in the sense that

we are still working out how the theory might be applied, and how best

to form the theory given the interests and questions at hand. We provide

our partial progress here nontheless, as we hope it may prove to be a useful

resource for others who wish to investigate related questions.

4.1. Heegaard Splittings for Nonorientable Manifolds

We begin by recalling again the fundamental notion of a splitting of

a 3-manifold into handlebodies. A handlebody is a three manifold with

boundary containing pairwise disjoint properly embedded discs such that

the manifold resulting from cutting along these discs is a 3-ball. A Heegaard

splitting of a closed 3-manifold is a decomposition into two handlebodies

which are identified along their boundary. As is well known, closed,

orientable 3-manifolds admit Heegaard splittings:

Lemma 4.1.1. Every closed, connected, orientable 3-manifold Y admits a

Heegaard splitting Y = H1 ∪Σ H2.
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We note that this notion need not be restricted to the orientable case,

and indeed the same lemma holds in the nonorientable context:

Lemma 4.1.2. Every closed, connected, nonorientable 3-manifold M admits

a Heegaard splitting M = H1∪ΣH2 into (possibly nonorientable) handlebodies

H1, H2.

Proof. The two lemmas can be proved simultaneously. In the smooth

category, choose any self indexing Morse function f : M → R. It then

follows from standard results in Morse theory that M = f−1[0, 3/2] ∪f−1(3/2)

f−[3/2, 3], and that H1 = f−1[0, 3/2] and H2 = f−1[3/2, 3] are handlebodies

(See e.g. [30]).

Alternatively, in the PL category, consider a regular neighborhood

of the 1-skeleton M1 ↪→ M . This is a handlebody. Now observe that the

complement of the closure of the neighborhood has a collection of disks

(given by the interiors of the 2 dimensional faces), such that cutting along

the disks yields a disjoint collection of balls. This implies the complement is

a handlebody (See e.g. [10]).

Notation 4.1.3. Throughout this chapter, Y will always denote an

orientable 3-manifold, while we will use M to denote a 3-manifold which

is not necessarily orientable.

Lemma 4.1.4. Let M be a 3-manifold, and α ∈ H2(M ;Z/2Z) a nonzero

homology class. Then α can be represented by a closed, connected, embedded

surface i : K ↪→M .

Proof. Consider the Poincare dual of α, P.D.(α) ∈ H1(M ;Z/2Z) ∼=

[M,RP∞]. Let f : M → RP 4 be a smooth map in this homotopy class which
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is transverse to the submanifold j : RP 3 ↪→ RP 4. Let K = f−1(RP 3). After

attaching tubes along arcs connecting the various components, we obtain a

homologous connected representative (note here that this operation is always

a homology over Z/2Z).

We now investigate the normal bundles of such representatives.

Definition 4.1.5. We will say a smoothly embedded surface S ↪→ M is

locally one sided if its normal bundle NS↪→M is nontrivial, and that it is

locally two sided otherwise. We will say the surface is nonseparating if M \ S

is connected, and that it is separating otherwise.

Lemma 4.1.6. Let M be a closed, non-orientable, connected 3 manifold,

and α = P.D.(w1(TM)) ∈ H2(M ;Z/2Z). Then α has a connected, embedded,

nonseparating representative S if and only if it has a connected, embedded

representative K for which w1(TM)|K 6= 0.

Proof. Let K be a connected, embedded representative for α. If

w1(TM)|K 6= 0, there exists a class [γ] ∈ H1(K) satisfying 〈w1(TM), [γ]〉 =

[γ] · [K] = 1 ∈ Z/2Z. Thus there is a representative loop γ in K, and a

generic pushoff γ̃ of γ in M , so that γ̃ intersects K an odd number of times

transversely.

Do surgery on K by attaching a tube along an arc of γ̃ whose

interior misses K. This produces a new surface K ′ with [K] = [K ′], and

|K ∩ γ̃| reduced by 2. Repeating this procedure, one obtains a surface K ′′

homologous to K which intersects the closed loop γ̃ exactly once. This

shows K ′′ is nonseparating. See Figure 27 for a depiction of this process.
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γ̃

K K ′

FIGURE 27 Performing surgery on K along an arc in the curve γ̃ to reduce
geometric intersection.

Suppose S is a connected, embedded representative for α which is

nonseparating.

1. If S is locally one sided, then the normal bundle NS↪→M is nontrivial.

So there is a loop γ in S which has a generic pushoff which intersects

S an odd number of times geometrically. Thus 〈w1(TM), [γ]〉 = [γ] ·

[S] = 1, so w1(TM)|S 6= 0.

2. If S is locally two sided, then w1(NS↪→M) = 0, so w1(TS) = w1(TM)|S.

Thus if S is non-orientable, w1(TM)|S 6= 0 and we are done. If S

is nonseparating, locally two sided, and orientable, choose a path γ

from one side of S to the other, and attach a tube along γ to obtain

S ′ homologous to S which is nonseparating, locally one sided, and

nonorientable. See Figure 28 for a depiction of this process. Then

w1(TM)|S′ 6= 0 by step (1).

Lemma 4.1.7. Let M be a closed, connected, nonorientable 3 manifold,

and α = P.D.(w1(TM)) ∈ H2(M ;Z/2Z). Then α has an embedded,

nonorientable, and nonseparating representative.
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γ

S S ′

FIGURE 28 Performing surgery on S along the curve γ to produce a locally
one-sided, nonrientable, homologous surface.

Proof. Suppose every closed, embedded representative for α is separating.

Fix a closed embedded representative K for α, which is possible by Lemma

4.1.4.

Let ν(K) be a tubular neighborhood of K, and consider the Mayer

Vietoris sequence for M = ν(K) ∪ (M \ ν(K)). Since K is separating,

ν(K) ∩ (M \ ν(K)) ∼= K qK. We also note that the map

H0(K)⊕H0(M \K)→ H0(K qK)

appearing in the Mayer Vietoris sequence is surjective, since k is separating.

One then has:

0→ H1(M)→ H1(K)⊕H1(M \K)→ H1(K qK)

By Lemma 4.1.6, K must satisfy w1(TM)|K = 0. By definition of

K, w1(TM)|M\K = 0. Thus w1(TM) = 0 by exactness, contradicting

nonorientability of M. This shows α has a closed, embedded, nonseparating

representative.
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If this representative is orientable, add a tube as in the proof of the

last part of Lemma 4.1.6 to obtain a surface K ′ representing α; this is now

closed, embedded, non orientable, and nonseparating.

Using the previously established facts, we will now prove the existence

of certain “equivariant” Heegaard splittings for orientation double covers.

This line of thought follows ideas presented in [31], where Rubinstein

constructs one sided Heegaard splittings of orientable 3-manifolds.

Theorem 4.1.8. Given a closed, nonorientable 3-manifold M , there is a

Heegaard splitting of the orientation double cover M̃ = H1 ∪H2 such that the

nontrivial deck transformation τ : M̃ → M̃ exchanges the handlebodies. i.e.

τ(H1) = H2, τ(H2) = H1.

Proof. Fix a closed, nonseparating, non orientable representative K for the

class α = P.D.(w1(TM)) ∈ H2(M ;Z/2Z). Such a representative exists

by Lemma 4.1.7. Let p : M̃ → M be the orientation double cover. The

preimage of K in the orientation double cover, K̃ = p−1(K) ↪→ M̃ , is an

orientable surface preserved by τ .

We claim that the surface K̃ is separating in M̃ . To see this, consider

τ -translates q̃ and τ(q̃) in M̃ \ K̃, and let γ be a path from q̃ to τ(q̃)

transverse to K̃. Then p(γ) is a loop in M based at q = p(q̃). Furthermore,

since this loop lifts to a path, it is an orientation reversing loop and

therefore must satisfy [K] · [p(γ)] 6= 0. In particular, K ∩ p(γ) is non-empty.

Thus there exist points l ∈ γ and l′ ∈ K̃ such that p(l) = p(l′). Since K̃ is

preserved by τ , this implies γ ∩ K̃ is non-empty. Hence M̃ \ K̃ is not path

connected, and K̃ is separating. To summarize, the lift K̃ is a separating,
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orientable, surface in M̃ which is preseved by τ . Note that this argument

also shows that if H1 and H2 are the closures of the components of M̃ \ K̃,

with M̃ = H1 ∪K̃ H2, then τ(H1) = H2.

We will now alter the decomposition M̃ = H1 ∪K̃ H2 so that it

becomes a Heegaard splitting while remaining τ -equivariant. Fix a Morse

function f1 : H1 → R which has a unique index 0 critical point, no index 3

critical points, and which has ∂H1 = K̃ as a level set (corresponding the

to the largest regular value with a nonempty level set). This is possible

by standard results in Morse theory (see e.g. [32]). The interior of H1 will

contain a single index 0 critical point, and some number of index 1 and

index 2 critical points. Consider the ascending manifolds of the index 2

critical points. These intersect the boundary ∂H1 = K̃ in some collection

of points P = {pi} ⊂ K̃. By performing a suitable perturbation of f1 if

necessary, we may assume P ∩ τ(P ) = ∅. Use a suitable translate of f1 to

define a Morse function f : M̃ → R by using (a suitable translate of) f1 to

define f on H1, and then enforcing f(x) = −f(τ(x)) for all x ∈ M̃ . Then f

will have a unique index 3 critical point, as well as some number of index 1

and 2 critical points in the interior of H2. The descending manifolds of the

index 1 critical points in H2 will intersect K̃ in the collection of points τ(P ).

A schematic illustrating this situation is depicted in Figure 29.

Now consider small open tubular neighborhoods N(A) and N(B)

of these ascending and descending manifolds respectively, with N(B) =

τ(N(A)). Since P ∩ τ(P ) = ∅, we may arrange for these neighborhoods

to satisfy N(A) ∩ N(B) = ∅. Let H ′1 = (H1 \ N(A)) ∪ N(B) and

H ′2 = (H2 \ N(B)) ∪ N(A). These are both handlebodies, as the restriction

169



H1

H2

K̃

FIGURE 29 A schematic of the decomposition M̃ = H1 ∪K̃ H2 with a Morse
function. Index 1 critical points are labeled with blue crosses, while index 2
critical points are labeled with red crosses. Some ascending and descending
manifolds are drawn.

of f to these spaces is either a Morse function with only index 0 and index

1 critical points, or a Morse function with only index 3 and 2 critical points.

Furthermore, M̃ = H ′1 ∪∂H′1=∂H′2
H ′2 and τ(H ′1) = H ′2 by construction. (A

depiction of this alteration of the decomposition M̃ = H1 ∪K̃ H2 is depicted

in Figure 30.) This completes the proof.

Given an orientation double cover M̃ → M , we will call a Heegaard

splitting M̃ = H1 ∪Σ H2 satisfying the property in Theorem 4.1.8 an

equivariant Heegaard splitting (EHS) of M̃ . We note that an EHS gives rise

to a Heegaard diagram which respects the action by τ :
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H ′1

H ′2

K̃ ′

FIGURE 30 An alteration of the decomposition from Figure 29 into a
Heegaard splitting M̃ = H ′1 ∪K̃′ H ′2. The handlebody H ′1 is depicted in gray
and the handlebody H ′2 is depicted in green.

Corollary 4.1.9. A closed, orientable 3-manifold Y which is an orientation

double cover admits a τ -equivariant Heegard diagram: that is, a Heegaard

diagram (Σ,α,β) satisfying τ(α) = β.

We now provide some examples of equivariant Heegaard splittings.

Example 4.1.10. Consider the orientation double cover p : S1 × S2 →

S1 × RP 2. We construct a EHS of S1 × S2 corresponding to this cover. The

class α := P.D.(w1(T (S1 × RP 2))) ∈ H2(S1 × RP 2) is nonzero. We note that

representatives for this class can be identified in practice in several ways,

such as:
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1. By work of Halperin and Toledo [33], if one considers the union of all

two simplices in the 1st barycentric subdivision of any triangulation of

S1 × RP 2, this chain represents α.

2. Any 2-cycle S satisfying [S] · [γ] = 0 ∈ Z/2Z for all orientation

preserving loops γ, and [S] · [δ] = 1 ∈ Z/2Z for all orientation reversing

loops δ, represents α.

Using the second characterization, we construct an embedded representative

for α as follows. Let us represent S1 × RP 2 as

(S1 ×D)/ ∼

where (x, eiθ) ∼ (x, ei(θ+π)) for (x, eiθ), (x, ei(θ+π)) ∈ S1 × ∂D. Consider the

subspace defined by

K = {(eiθ, reiθ/2)|r ∈ [−1, 1], θ ∈ [0, 2π]}.

We illustrate a schematic for our model of S1 × RP 2 as well as the subspace

K in Figure 31.

Note that K is an embedded submanifold, is nonseparating, and

satisfies the second characterization of the class α. Thus K is an embedded,

nonseparating representative for α. It is not difficult to see that K is

nonorientable.

To finish constructing a EHS for S1 × S2 corresponding to this cover,

we lift K to the orientation double cover, and make alterations to the lift

as in the proof of Theorem 4.1.8 if necessary. In fact, K lifts to a torus T
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FIGURE 31 On the left is a schematic for S1 ×D. Quotienting {p} × ∂D
by the antipodal map for all p in S1 yields S1 × RP 2. On the right, the
subspace K is illustrated. It represents the Poincare dual of the first Stiefel-
Whitney class in S1 × RP 2.

in S1 × S2, and the the complement can be seen to consist of the union of

two handlebodies. Thus no alterations are necessary. One can check that a

resulting τ -equivariant Heegaard diagram coming from this splitting is that

given in Figure 32. The action of τ on this diagram is realized as rotation by

π in the vertical direction.

FIGURE 32 An equivariant diagram for S1 × S2 corresponding to the
orientation double cover over S1 × RP 2. The sides of the square should
be identified to produce a torus as the Heegaard surface.

Example 4.1.11. Consider the orientation double cover p : S1 × S1 ×

S1 → S1 × K where K is the Klein bottle. We construct a EHS of S1 ×
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S1 × S1 corresponding to this cover. First, we construct a closed, embedded

representative S → S1 × K for the homology class P.D.(w1(T (S1 × K)) ∈

H2(S1 × K,F2). In Figure 33 we depict S1 × K as a quotient of a solid

cube. An orientation reversing loop γ is depicted in the identification space,

and an embedded surface S homeomorphic to S1 × S1 is depicted. One

can verify that S represents α := P.D.(w1(T (S1 × K))). As a particular

consequence, we have [S] · [γ] = 1. The surface S is an embedded, orientable,

γ

S

a

a

b

b S1

FIGURE 33 A model for S1 ×K. The embedded surface S is a torus
representing the Poincare dual of the first Stiefel-Whitney class. It has
odd algebraic intersection with every orientation reversing loop in S1 ×K,
and in particular with γ.

nonseparating surface representing α. We alter the surface by a homology to

obtain a new surface S ′ which is an embedded, nonorientable, nonseparating

surface representing α, as in the last step of the proof of Lemma 4.1.7. A

depiction of this altered surface is illustrated in Figure 34.

To finish constructing a EHS for S1 × S1 × S1 corresponding to this

cover, we lift S ′ to the orientation double cover, and make alterations to the
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S ′

FIGURE 34 The result of performing surgery on S to obtain a homologous
surface S ′ which is nonorientable.

lift as in the proof of Theorem 4.1.8 if necessary. In this case the covering

map is easy to understand via understanding of the double cover of the

Klein bottle by the torus. We depict an illustration of a quotient of a solid

cube representing S1×S1×S1, as well as a lift of the surface S ′ to this space,

in Figure 35.

The nontrivial deck translation τ in this schematic is given by vertical

translation through half the cube and reflection in a vertical plane which

divides the front (labeled) face and the opposite face in half. In this case, we

see that the lift S̃ ′ is already τ equivariant, and its complement consists of

two handlebodies. We have thus constructed a EHS. Finally, we note that

one can use this EHS to construct a τ -equivariant diagram for S1 × S1 × S1.

For example, one such diagram is depicted in Figure 36.
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S̃ ′

FIGURE 35 A schematic for S1 × S1 × S1 with the lift S̃ ′ of the surface S ′

from Figure 34.

FIGURE 36 A collection of closed curves α = (α1, α2, α3) on the Heegaard
surface from Figure 35 which bound disks in one of the handlebodies.
Applying τ to the collection would yield a collection β bounding disks in
the other handlebody, and in this way the the figure depicts a Heegaard
diagram.

4.2. A Pairing on Heegaard Floer Homology

In this section we consider the Heegaard Floer invariants ĤF (Y ) of

orientation double covers Y . We work throughout this section over F2 unless

otherwise stated.
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Given a nonorientable 3-manifold M , we consider the orientation

double cover Y → M , and fix some basepoint p ∈ Y . The cover comes

equipped with an orientation reversing involution

τ : (Y, p)
∼−→ (−Y, q).

By work of Juhász, Thurston and Zemke, this diffeomorphism induces a map

on Heegaard Floer homology:

Theorem 4.2.1. [3, Theorem 1.5] There is a natural isomorphism τ∗ :

ĤF (Y, p)
∼−→ ĤF (−Y, q) associated to the diffeomorphism τ .

Since the diffeomorphism reverses the orientation on Y , the induced

map lands in the Floer homology of −Y . However, as investigated by

Ozsvàth and Szabò, there is a chain isomorphism which can be used to

identify this Floer homology with the Floer cohomology of Y .

Lemma 4.2.2. [7] Given a Heegaard diagram H = (Σ,α,β, p) for

(Y, p), let −H = (−Σ,α,β, p) be the same diagram with the orientation

on the Heegaard surface reversed, representing (−Y, p). There is a chain

isomorphism

Φrev : ĈF ∗(−H)
∼−→ ĈF

∗
(H).

Thus there is an induced isomorphism

Φrev : ĤF ∗(−Y, p)
∼−→ ĤF

∗
(Y, p).

By the universal coefficient theorem, we also have:
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Lemma 4.2.3. There is an isomorphism Ψ : ĤF
∗
(Y, p)

∼−→

HomZ/2Z(ĤF ∗(Y, p),Z/2Z).

We will now use Lemmas 4.2.1, 4.2.2 and 4.2.3 to define a pairing on

the Floer homology of an orientation double cover.

Definition 4.2.4. Let M be a nonorientable 3-manifold, Y it’s orientation

double cover, and τ the nontrivial deck translation of Y . Fix a basepoint

p ∈ Y , and let q = τ(p). We write

Pτ : ĤF ∗(Y, p;Z/2Z)× ĤF ∗(Y, q;Z/2Z)→ Z/2Z (4.1)

for the Z/2Z bilinear pairing given by Pτ (x, y) = (Ψ ◦ Φrev ◦ τ∗(x))(y). We

will interchangeably use the notation 〈, 〉τ for the pairing.

Remark 4.2.5. 1. While our main interest thus far has been in

orientation double covers, the pairings above are defined for any

closed, orientable manifold Y with an orientation reversing, involutive

diffeomorphism τ : Y → −Y .

2. If Y is a closed, orientable manifold with an orientation preserving,

involutive diffeomorphism ψ : Y → Y , the formula above yields the

more familiar trace pairing studied in [34] (with a twist coming from a

basepoint moving map):

Pτ : ĤF ∗(Y, p;Z/2Z)× ĤF ∗(−Y, q;Z/2Z)→ Z/2Z.

3. We can use a path γ from p to q, and the corresponding basepoint

moving isomorphism:
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γ# : ĤF ∗(Y, p;Z/2Z)
∼−→ ĤF ∗(Y, q;Z/2Z)

to turn the pairing in Equation (4.1) into a bilinear form

Pτ,γ : ĤF ∗(Y, p;Z/2Z)× ĤF ∗(Y, p;Z/2Z)→ Z/2Z.

Explicitly, one has the bilinear form:

Pτ,γ(x, y) := Pτ (x, γ#y).

4. By Corollary 4.1.9, we can always find a diagram H so that H =

−τ(H).

We say a bilinear pairing φ : A × B → R is nondegenerate if the

resulting maps A→ HomR(B,R) and B → HomR(A,R) are isomorphisms.

Lemma 4.2.6. Pτ and Pτ,γ are non-degenerate

Proof. This is immediate from the definitions of the pairings, as all maps

involved are isomorphisms.

Lemma 4.2.7. Let Pτ be as above, and

P̃τ : ĤF ∗(Y, p;Z/2Z)× ĤF ∗(Y, q;Z/2Z)→ Z/2Z

be the pairing obtained from reversing the roles of the factors. That is,

P̃τ (x, y) := (Ψ ◦ φrev ◦ τ−1
∗ )(y)[x]
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where τ−1
∗ : ĤF ∗(Y, q;Z/2Z) → ĤF ∗(−Y, p;Z/2Z) and φrev :

ĤF ∗(−Y, p;Z/2Z)→ ĤF
∗
(Y, p;Z/2Z).

Then

Pτ (x, y) = P̃τ (x, y).

Proof. The map Ψ ◦ φrev ◦ τ−1
∗ appearing in the definition of P̃τ is in fact the

dual of the map appearing in the definition of Pτ ,

Ψ ◦ φrev ◦ τ−1
∗ = (Ψ ◦ φrev ◦ τ∗)∨.

This is a straightforward consequence of the fact that τ 2 = id, and the result

follows.

In some cases the bilinear form Pτ,γ is a symmetric. We now

investigate when this can occur by studying the effect of certain basepoint

moving maps on Floer homology.

Lemma 4.2.8. Let γ be an embedded path from p to q. Then τ∗ ◦ γ# =

τ(γ)# ◦ τ∗, i.e. the following diagram commutes:

ĤF (Y, p) ĤF (−Y, q)

ĤF (Y, q) ĤF (−Y, p)

τ∗

γ# τ(γ)#

τ∗

Proof. This follows from consideration of the graph cobordism functors

defined in [5]. There Zemke showed that there are functors which naturally

associate to an equivalence class of graph coborism (W,Γ) from a multi-
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based 3-manifold (Y, ~p) to a multibased 3-manofld (Y ′, ~p′) a map

F(W,Γ) : ĤF ∗(Y, ~p)→ ĤF ∗(Y
′, ~p′)

One can describe τ∗ ◦γ# and τ(γ)# ◦ τ∗ as the images under the functor

of the two graph cobordisms depicted in Figure 37.

p

q

p

p

q

p

Y

Y

Y

Y

γ

{q} × I τ(γ)

{p} × I

FIGURE 37 A schematic for the graph cobordisms (W1,Γ1) and (W2,Γ2).

Here the graph cobordism (W1,Γ1) yielding the map τ∗ ◦ γ# has

underlying 4-manifold given by concatenating the product cobordism Y × I

to the mapping cylinder Cylinder(τ) of the diffeomorphism τ , while the

graph cobordism (W2,Γ2) yielding the map τ∗ ◦ γ# has underlying 4-manifold

given by concatenating the mapping cylinder Cylinder(τ) to the product

cobordism −Y × I. The graph Γ1 is obtained by concatenating γ and

{q} × I ⊂ Cylinder(τ), and the graph Γ2 is obtained by concatenating

{p} × I ⊂ Cylinder(τ) and τ(γ).

These graph cobordisms are in fact equivalent in the sense of [5], hence

induce the same maps on Floer homology.
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Consider now the embedded curve γ · τ(γ), and consider (γ · τ(γ))∗,

the map given by the π1(Y, p) action on ĤF ∗(Y, p;Z/2Z). In what follows

we write (γ#)∨ for the map dual to the basepoint moving map γ#,

(γ#)∨ : HomZ/2Z(ĤF ∗(Y, q),Z/2Z)→ HomZ/2Z(ĤF ∗(Y, p),Z/2Z).

Corollary 4.2.9. If (γ · τ(γ))∗ = 1, then Pτ,γ is symmetric.

Proof. We have (γ · τ(γ))∗ = γ# ◦ τ(γ)# = 1, so τ(γ)# = γ−1
# . We compute:

Pτ,γ(x, y) = Pτ (x, γ#y)

= (Ψ ◦ Φrev ◦ τ∗(x))[γ#y]

= ((γ#)∨ ◦Ψ ◦ Φrev ◦ τ∗(x))[y]

= (Ψ ◦ Φrev ◦ γ−1
# ◦ τ∗(x))[y] (by Lemma 4.3.12)

= (Ψ ◦ Φrev ◦ τ(γ)# ◦ τ∗(x))[y]

= (Ψ ◦ Φrev ◦ τ∗ ◦ γ#(x))[y] (by Lemma 4.2.8)

= P̃τ (y, γ#x)

= Pτ (y, γ#x) (by Lemma 4.2.7)

= Pτ,γ(y, x)

Here we have used commutativity of a certain diagram involving Ψ◦Φrev and

the basepoint moving maps in the fourth equality. This commutativity will

follow from the proof of Lemma 4.3.12 appearing in the next section, but we

postpone a disussion of that proof, as it will take us too far astray from our
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current goals. We invite the interested reader to skip ahead and investigate

the relevant square.

In [5], the author establishes a formula which can be used to compute

the π1(Y, p) action on ĤF ∗(Y, p;Z/2Z). For a strongly admissible Heegaard

diagram, the infinity version of the Heegaard Floer complex associated to

a 3-manifold Y is a Z/2Z[U,U−1]-module, whose differential ∂∞ can be

decomposed as

∂∞ = ∂ + ∂1U + ∂2U
2 + . . . .

The map ∂1 induces a map on ĤF (Y, p) which we denote by (∂1)∗ in what

follows. For more details about this map and relevant context, see [5].

Theorem 4.2.10. [5] If δ ∈ π1(Y, p) is an embedded curve, δ∗ denotes

the π1 action on ĤF ∗(Y, p;Z/2Z), [δ] denotes the Λ(H1(Y )/Tors) action

on ĤF ∗(Y, p;Z/2Z), and (∂1)∗ denotes the map induced by ∂∞ on

ĤF ∗(Y, p;Z/2Z), then

δ∗ = 1 + (∂1)∗[δ] = 1 + [δ](∂1)∗.

We have thus far been unable to characterize nonorientable 3-

manifolds with orientation double covers which admit a symmetric form

Pτ,γ. However Corollary 4.2.9 coupled with Theorem 4.2.10 yields two cases

in which the form will be symmetric on an orientation double cover Y . We

will see that there exists an embedded curve γ from p to q for which Pτ,γ is

symmetric if either:

1. (∂1)∗ = 0 on ĤF (Y, p)
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or

2. There is a curve γ from p to q such that [γ · τ(γ)] ∈ Tors(H1(Y ;Z)).

The fact that these criteria yield a symmetric form is immediate from

Corollary 4.2.9 and Theorem 4.2.10. We explain the second criterion as a

condition on the nonorientable manifold M in the next lemma.

Lemma 4.2.11. Let M be a nonorientable 3-manifold. Given a class γ̄ ∈

Tors(H1(M ;Z)) with w1(M)[γ̄] 6= 0, let γ be the unique lift of γ̄ beginning at

p. Then Pτ,γ is a symmetric bilinear form.

Proof. Let p : Y → M be the orientation double cover, and T : H1(M ;Z) →

H1(Y ;Z) be the transfer map. If τ is the nontrivial deck transformation

of p, we have T (γ̄) = [γ · τ(γ)], by definition of the transfer map. Since

γ̄ is torsion, so too is T (γ̄) = [γ · τ(γ)], and thus the latter acts by zero

under the Λ(H1(Y )/Tors) action. By Theorem 4.2.10, the π1 action is thus

(γ ◦ τ(γ))∗ = 1, so the result follows by Corollary 4.2.9.

Example 4.2.12. Let Nh
∼= (RP 2)#h be the closed, nonorientable surface of

genus h. Then H1(S1 ×Nh;Z) ∼= Zh ⊕ Z/2Z.

For h = 1, the torsion class is represented by an orientation reversing

loop γ in RP 2 which satisfies w1(S1×RP 2)[γ] = 1. Lemma 4.2.11 thus yields

that the Heegaard Floer homology of the orientation double cover S1 × S2

with deck translation τ admits a symmetric bilinear form Pτ,γ.

For h = 2, the torsion class in H1(S1 ×Nh;Z) is not represented by an

orientation reversing loop, so this construction fails.

We now seek to characterize the first criterion in a slightly different,

perhaps more familiar, way. First, we note that (∂1)∗ can be interpreted as
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arising from the long exact sequence relating the minus and hat variants of

Heegaard Floer homology.

Lemma 4.2.13. The map (∂1)∗ is given by the composite f ◦ g of the maps

appearing in the exact sequence

HF−(Y, p) HF−(Y, p) ĤF (Y, p)·U f

g

Proof Sketch. This follows from a straightforward application of the snake

lemma, and the definition of ∂∞. We leave the details to the reader.

In the next two lemmas, we use the previous lemma to provide two

characterizations of the kernel of (∂1)∗ = f ◦ g.

Lemma 4.2.14. The composition f ◦ g is identically zero if and only if

there are no height one towers (i.e. summands of the form F2[U ]/(U)〈x〉) in

HF−(Y, p).

Proof. For a fixed Spinc-structure we have

HF− ∼= F2[U ]⊕n ⊕ F2[U ]/(U)⊕n1 ⊕

(⊕
k>1

F2[U ]/(Uk)
⊕nk

)
.

By exactness ker(f) = im(·U), so f ◦ g = 0 if and only if im(g) ⊂ im(·U).

Analysis of the snake lemma shows that im(g) is precisely the bottom of all

finite towers. Thus f ◦ g = 0 if and only if there are no height one towers.
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Consider the short exact sequence of F2[U ]-modules given by

0→ F2 → F2[U ]/(U2)→ F2 → 0

where the first map is (1 7→ U), the second map takes (1 7→ 1) and (U 7→ 0),

and F2 is considered as the F2[U ]-module where U acts by zero. Tensoring

over F2[U ] with CF− yields a short exact sequence

0→ CF− ⊗F2[U ] F2 → CF− ⊗F2[U ] F2[U ]/(U2)→ CF− ⊗F2[U ] F2 → 0

which can be easily seen to be equivalent to

0→ ĈF → CF−/(U2 · CF−)→ ĈF → 0.

We thus obtain a Bockstein morphism β : ĤF → ĤF . Another way to

characterize the kernel of the map (∂1)∗ is as the kernel of this Bockstein:

Lemma 4.2.15. The Bockstein β satisfies β = f ◦ g = (∂1)∗, where f and g

are the maps from Lemma 4.2.13.

Proof sketch. This also follows from a straightforward application of the

snake lemma, and the definition of f ◦ g. We leave the details to the reader.

We end this subsection by making some general remarks about the

bilinear pairing we have been considering, and its application to studying

nonorientable 3-manifolds.
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Remark 4.2.16. Suppose a connected orientable 3-manifold Y admits a

fixed point free, orientation reversing involution τ . By the Lefschetz fixed

point theorem, ∑
i≥0

(−1)itr(τ∗|Hi(Y ;Q)) = 0

which becomes

1− tr(τ∗|H1(Y ;Q)) + tr(τ∗|H2(Y ;Q)) + 1 = 0.

This indicates we won’t find examples of orientation double covers which are

rational homology 3-spheres.

We also note that nondegenerate, symmetric bilinear forms over F2 do

not contain much information:

Lemma 4.2.17 ([35]). Let R(x, y) = xy be the trivial bilinear form of rank

1, and H = ( 0 1
1 0 ). Then any symmetric and nondegenerate bilinear form

over F2 is isometric to one of:

1. H⊕n

2. R⊕H⊕n

3. R⊕R⊕H⊕n

Corollary 4.2.18. Two odd, symmetric and nondegenerate forms over F2

are isometric if and only if they have the same rank. Two even, symmetric

and nondegenerate forms over F2 are isometric if and only if they have the

same rank.

187



With these results in mind, we had hoped to characterize when the

form Pτ,γ is even, however we have been unable at this stage to establish

such a characterization.

4.3. The Pairing on the Chain Level

We now set out to describe how the pairing we have been investigating

arises on the chain level. In this section we always work over Z unless

otherwise stated.

First, we note that an orientation reversing diffeomorphism τ still gives

rise to an induced map at the level of chain complexes, and over Z:

Lemma 4.3.1. Let Y be a closed, connected, oriented and based 3-

manifold, and τ be an orientation reversing diffeomorphism on Y. Fix

a strongly s-admissible diagram H = (Σ,α,β, z) for (Y, z), and let

τ(H) = (τ(Σ), τ(α), τ(β), z′ = τ(z)) be the induced diagram for (−Y, z′).

Then for appropriate choices of almost complex structures there is a Z[U ]-

module chain isomorphism:

τ∗ : CF−(Σ,α,β, z, s)→ CF−(τ(Σ), τ(α), τ(β), τ(z), τ(s))

The fact that diffeomorphisms induce such isomorphisms on the

Heegaard Floer chain complexes with coefficients in either F2 or Z is

straightforward; one simply pushes forward all intersection points, the

complex structure choices, and holomorphic disks via the diffeomorphism

restricted to the Heegaard surface. More details can be found in [3].
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As before, we also have a chain isomorphism corresponding to

reversing the orientation of a Heegaard diagram. However, this isomorphism

mixes the invariants CF− and CF+.

Lemma 4.3.2 ([7, Proposition 2.5]). Let H = (Σ,α,β, z) be a strongly

s-admissible diagram for (Y, z) and −H := (−Σ,α,β, q) be the reversed

diagram for (−Y, z). Then there is a Z[U ]-module chain isomorphism

φrev : CF−(Σ,α,β, z, s)→ HomZ(CF+(−Σ,α,β, z, s),Z)

.

As noted in [34], this isomorphism can also be interpreted as an

unmixed duality on the invariant CF− as follows:

Lemma 4.3.3 ([34, Lemma 2.3]). Let H = (Σ,α,β, z) be a strongly s-

admissible diagram for (Y, z) and −H := (−Σ,α,β, z) be the reversed

diagram for (−Y, z). Then there is a Z[U ]-module chain isomorphism:

φrev : CF−(Σ,α,β, z, s)→ HomZ[U ](CF
−(−Σ,α,β, z, s),Z[U ]).

Remark 4.3.4. The map

φrev([x, i]) ∈ HomZ[U ](CF
−(−H),Z[U ])
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in Lemma 4.3.3 is given explicitly by

φrev([x, i])([y, k]) =


U−i−k−2 x = y

0 x 6= y.

We note that −i− k − 2 ≥ 0, as CF− is generated by [x, i] with i < 0.

Notation 4.3.5. We note that the map φrev([x, i]) appearing in Lemma

4.3.3 is a Z[U ]-module map, so it is uniquely specified by its values on

elements of the form [y,−1]. With this in mind, we will sometimes denote

φrev([x, i]) by (x 7→ U−1−i) or by x∨, abusing notation to indicate

x := [x,−1].

We are now in position to introduce the invariant at the chain level,

which will be defined with respect to the composition

Ψ := φrev◦τ∗ : CF−(Σ,α,β, z, s)→ HomZ[U ](CF
−(−τ(Σ), τ(α), τ(β), τ(z), τ(s)),Z[U ]).

We note that if the diffeomorphism τ preserves the oriented Heegaard

surface Σ, this composition is a map

Ψ := φrev◦τ∗ : CF−(Σ,α,β, z, s)→ HomZ[U ](CF
−(−Σ, τ(α), τ(β), τ(z), τ(s)),Z[U ]).

Definition 4.3.6. Let Y be a closed, connected, oriented and based 3-

manifold, and τ be an orientation reversing diffeomorphism on Y. Fix a

strongly s-admissible diagram H = (Σ,α,β, z). We denote by

〈, 〉τ : CF−(Σ,α,β, z, s)× CF−(−τ(Σ), τ(α), τ(β), τ(z), τ(s))→ Z[U ]
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the pairing defined by 〈a, b〉τ = Ψ(a)[b].

Remark 4.3.7. The pairing in Definition 4.3.6 obviously depends on the

diagrams (even the chain complexes do), however we often suppress this

dependence unless it is explicitly needed. As we shall justify in what follows,

this map will end up being independent of the diagrams chosen to represent

it, up to an appropriate notion of homotopy.

Lemma 4.3.8. 〈, 〉τ is Z[U ]-bilinear.

Proof. Linearity in both factors follows from the definitions. For the first

factor, φrev and τ∗ are both chain isomorphisms of complexes of Z[U ]-

modules, so their composition Ψ is Z[U ]-linear in its argument. For the

second factor,

φrev ◦ τ∗(a) ∈ HomZ[U ](CF
−(−τ(Σ), τ(α), τ(β), z′, τ(s))),Z[U ])

for any a ∈ CF−(Σ,α,β, z, s), so φrev ◦ τ∗(a) is a Z[U ]-module map.

Lemma 4.3.9. Consider Z[U ] as the chain complex with one copy of Z in

every non-negative grading, and with differential δ = 0.Then the map

〈, 〉τ : CF−(Σ,α,β, z, s)⊗Z[U ] CF
−(−τ(Σ), τ(α), τ(β), τ(z), τ(s))→ Z[U ]

induced by the map given in Definition 4.3.6 is a chain map.

Proof. Let ∂ be the differential on CF−(H), ∂′ be the differential on

CF−(−τ(H)), (∂′)∨ be the induced differential on HomZ[U ](CF
−(−τ(H)),Z[U ]),

and d = ∂ ⊗ id − id ⊗ ∂′ be the differential on CF−(H) ⊗ CF−(−τ(H)). As

δ ◦ 〈, 〉τ = 0, we need to show that 〈, 〉τ ◦ d = 0.
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For [x, i]⊗ [y, j] ∈ CF−(H)⊗ CF−(−τ(H)) we have:

〈, 〉τ ◦ d([x, i]⊗ [y, j]) = 〈∂[x, i], [y, j]〉τ − 〈[x, i], ∂′[y, j]〉τ

= Ψ(∂[x, i])[y, j]−Ψ([x, i])[∂′[y, j]]

= (∂′)∨Ψ([x, i])[y, j]−Ψ([x, i])[∂′[y, j]]

= Ψ([x, i])[∂′[y, j]]−Ψ([x, i])[∂′[y, j]]

= 0

Here the third equality follows from the fact that Ψ = φrev ◦ τ∗ is a

chain map according to Lemmas 4.3.1 and 4.3.3.

Notation 4.3.10. We will sometimes use the notation Pτ (P for pairing) to

denote the map

〈, 〉τ : CF−(H)⊗ CF−(−τ(H))→ Z[U ].

Theorem 4.3.11. Let H, H̃ be two Heegaard diagrams for the based 3-

manifold (Y, z), and −τ(H), −τ(H̃) be the diagrams for (Y, τ(z)) obtained by

reversing τ(H) and τ(H̃). Then there is a chain homotopy equivalence of the

form

G = g1 ⊗ g2 : CF−(H)⊗ CF−(−τ(H))→ CF−(H̃)⊗ CF−(−τ(H̃))
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such that the diagram below commutes up to chain homotopy (up to an

overall sign).

CF−(H)⊗ CF−(−τ(H))

Z[U ]

CF−(H̃)⊗ CF−(−τ(H̃))

<>τ

G

<>τ

Before proving Theorem 4.3.11, we will establish the following fact

about the map Ψ = φrev ◦ τ∗.

Lemma 4.3.12. Let H = (Σ,α,β, z) and H̃ = (Σ̃, α̃, β̃, z̃) be two Heegaard

diagrams representing the same 3-manifold. Fix a homotopy equivalence

g : CF−(H)→ CF−(H̃)

fitting into the transitive system of [36, Corollary 1.5], and let

f : CF−(H̃)→ CF−(H)

be the homotopy inverse given by applying the same sequence of Heegaard

moves in reverse. Let

τ(g) : CF−(τ(H))→ CF−(τ(H̃))
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be the corresponding homotopy equivalence resulting from applying τ to the

sequence of Heegaard moves defining g. Finally, let

τ(f) : CF−(−τ(H̃))→ CF−(−τ(H))

be the homotopy equivalence resulting from the same sequence of Heegaard

moves defining τ(f) applied to the reversed diagram. Then the diagram below

commutes up to chain homotopy (up to an overall sign.)

CF−(H) CF−(τ(H)) HomZ[U ](CF
−(−τ(H)),Z[U ])

CF−(H̃) CF−(τ(H̃)) HomZ[U ](CF
−(−τ(H̃)),Z[U ])

τ∗

g

φrev

τ(g) τ(f)
∨

τ∗ φrev

Proof. The first square commutes up to an overall sign by the work in

[3] (see [36] for the case of Z coefficients), where it is shown that the

diffeomorphism maps commute with the homotopy equivalences induced

by Heegaard moves.

For the second square, it will suffice to establish commutativity for the

homotopy equivalences determined by each of the three types of Heegaard

moves. We provide a proof for the case when g is a homotopy equivalence

induced by a handleslide relating H and H̃, and leave the other moves as an

exercise for the reader.

Suppose g is a homotopy equivalence induced by a handleslide relating

H = (Σ,α,β, z) and H̃ = (Σ,α,γ, z). Then for x ∈ Tα ∩ Tβ, the homotopy
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equivalence g will act on [x, i] by counting certain holomorphic triangles

emanating from x:

g([x, i]) =
∑

y∈Tα∩Tγ

∑
φ∈π2(x,Θ,y)
µ(φ)=0

#M(φ) · [y, i− nz(φ)].

We recall that Θ ∈ Tβ ∩ Tγ is the unique (up to sign) generator in the

diagram (Σ,β,γ, z) with highest relative grading. In the cylindrical setting,

the holomorphic triangles being counted in this sum are holomorphic maps

u : S → Σ×∆ from Riemann surfaces satisfying certain boundary conditions

and asymptotics near the corners of the triangle ∆ (See [14]). A schematic

of such a triangle, and the asymptotic and boundary conditions it must

satisfy, is displayed on the left hand side of Figure 38.

α

β

γ

α

β

γ

Σ −Σ

x

y

Θ

x

y

Θ̃

FIGURE 38 Schematics of holomorphic triangles. On the left is a triangle
representing a class φ ∈ π2(x,Θ,y) on the diagram (Σ,α,β,γ) and on

the right is a triangle representing a class φ̃ ∈ π2(y, Θ̃,x) on the diagram
(−Σ,α,γ,β).
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On the other hand, the homotopy inverse f induced by the same

handleslide viewed in reverse, and taking place on −Σ, takes the form

f([y, i]) =
∑
x

∑
φ∈π2(y,Θ̃,x)
µ(φ)=0

#M(φ) · [x, i− nz(φ)]

for y in Tα ∩ Tγ . The triangles being counted here are holomorphic maps

u : S → −Σ × ∆, with the role of the boundary conditions altered

slightly. Again, see Figure 38 for a depiction of the situation. We note that

a homotopy class φ ∈ π2(x,Θ,y) specifies a homotopy class φ̃ ∈ π2(y, Θ̃,x)

by vertical reflection, and note that in fact there is an identification of the

moduli spaces M(φ) ∼=M(φ̃) for an appropriate choice of complex structure

data. Indeed, given a fixed Riemann surface (S, j), an almost complex

structure J on Σ × ∆ (satisfying the usual conditions, see e.g. [14]), and a

J-holomorphic triangle u : S → Σ×∆ in the class φ, one can postcompose u

with a vertical reflection of ∆ to obtain a triangle ũ representing φ̃ which

is J̃-holomorphic, where J̃ = J is the conjugate structure to J . The

identification of these two moduli spaces implies that if

g(x) =
∑
y

nxy · y

then

f(y) =
∑
x

nxy · x.

But this in turn ensures that

f
∨
(x∨) =

∑
y

nxy · y∨.
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Returning to the second square in the diagram in question, we thus have

φrev ◦ g(
∑
x

ax · x) =
∑
x

∑
y

axnxyy
∨

while

f
∨ ◦ φrev(

∑
x

ax · x) =
∑
x

∑
y

axnxyy
∨.

This completes the proof.

With this result in hand, we proceed with the proof of the theorem.

Proof of Theorem 4.3.11. Let g, τ(g) and τ(g) be homotopy equivalences as

in Lemma 4.3.12. We will prove that the triangle in the theorem statement

commutes up to homotopy with respect to the map G = g ⊗ τ(g). We have

Pτ (x⊗ y) = (φrev ◦ τ∗)(x)[y]

and

(P̃τ ◦G)(x⊗ y) = (φrev ◦ τ∗ ◦ g)(x)[τ(g)(y)].

By Lemma 4.3.12, we also know that

φrev ◦ τ∗ ◦ g1 ∼ τ(f)
∨
◦ φrev ◦ τ∗.

Thus (P̃τ ◦G) is homotopic to the map given by

(τ(f)
∨
◦ φrev ◦ τ∗)(x)[τ(g)(y)] = (φrev ◦ τ∗)(x)[(τ(f) ◦ τ(g))(y)].
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Since τ(f) and τ(g) are homotopy inverses, this map is homotopic to

(φrev ◦ τ∗)(x)[y] = Pτ (x⊗ y),

as desired.

Properties

We collect here some properties of the chain map Pτ analogous to

those discussed in the case of the pairing defined at the level of homology.

Fix diagrams H = (Σ,α,β, z) and −τ(H) = (−τ(Σ), τ(α), τ(β), τ(z))

related by the orientation reversing diffeomorphism τ and reversal of the

Heegaard surface as above.

We first investigate a notion of symmetry for the pairing.

Lemma 4.3.13.

Pτ ([x, i]⊗ [y, j]) = Pτ ([τ(y), j]⊗ [τ(x), i])

Proof. Note first that for [x, i] ∈ CF−(H) and [y, j] ∈ CF−(−τ(H)), we

have [τ(x), i] ∈ CF−(−τ(H)) and [τ(y), j] ∈ CF−(H).
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We compute

Pτ ([x, i]⊗ [y, j]) = φrev ◦ τ∗([x, i])[y, j]

= φrev([τ(x), i])[y, j]

= (τ(x) 7→ U−i−1)[y, j]

=


0 y 6= τ(x)

U−i−j−2 y = τ(x)

and

Pτ ([τ(y), j]⊗ [τ(x), i]) = φrev ◦ τ∗([τ(y), j])[τ(x), i]

= φrev([τ
2(y), j])[τ(x), i]

= (y 7→ U−j−1)[τ(x), i]

=


0 y 6= τ(x)

U−i−j−2 y = τ(x)

where the second from last equality uses τ 2 = id.

Question 4.3.14. What notions of symmetry, even-ness, or other

computable properties of the pairing are preserved by our notion of

equivalence/homotopy?

We note that by Theorem 4.3.11, the chain maps given by

Pτ : CF−(H)⊗ CF−(−τ(H))→ Z[U ]
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specify a well-defined chain homotopy class associated to a 3-manifold

Y with an orientation reversing diffeomorphism. We thus obtain Pτ ∈

(CF−(H) ⊗ CF−(−τ(H)))∨ in the cochain complex. In fact, this is an

element of the cohomology of the tensor chain complex:

Lemma 4.3.15. Pτ ∈ H∗(CF−(H)⊗CF−(−τ(H)) and the cohomology class

is independent of the Heegaard diagram used to define Pτ .

Proof. Let d be the differential on CF−(H) ⊗ CF−(−τ(H)). We have

d∨ ◦ Pτ (a) = Pτ ◦ d(a) for all a. By 4.3.9, Pτ is zero on the image

of d, hence Pτ is a cocycle. If Pτ and P ′τ are the pairings defined with

respect to the same diffeomorphism, but with respect to different Heegaard

diagrams H and H̃, they are chain homotopic when both are viewed

as maps CF−(H) ⊗ CF−(−τ(H)) → Z[U ], by Lemma 4.3.11. Thus

Pτ − P ′τ = K ◦ d = d∨(K). Hence the two pairings define cohomologous

cocyles in (CF−(H)⊗ CF−(−τ(H))∨.

Question 4.3.16. Can we characterize when Pτ ∈ H∗(CF−(H) ⊗

CF−(−τ(H)) is nontrivial?

In [7] the authors describe a quasi-isomorphism

Ψ : (CF−(H)⊗ CF−(−τ(H))∨ → CF−(H#− τ(H))∨.

In fact, this map is further elucidated in [37, Proposition 5.2], where it is

shown to be the map induced by a graph cobordism in the sense of [5]. The

graph cobordism which induces this map has underlying 4-manifold given by

the standard cobordism from Y
∐
Y to Y#Y , and is sketched in Figure 39

below.
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(Y#Y, z′)

(Y, z) (Y, τ(z))

FIGURE 39 A graph cobordism from Y
∐
Y to Y#Y .

We therefore obtain Ψ(Pτ ) ∈ CF−(H#τ(H)′)∨. At the level of

homology, this yields a well defined element Ψ(Pτ ) ∈ (HF−)∗(H# − τ(H)).

We have yet to investigate this element of homology in depth, however we

hope that it may prove useful in investigating our homotopical notion of

equivalence, and in studying involutions on 3-manifolds.

4.4. Examples and Computations

In this section we examine the construction of the invariants we

have defined in the context of specific examples of orientation reversing

diffeomorphisms.

Example 4.4.1. We compute the form for the orientation double cover M̃

of M = S1 × RP 2. Consider the pointed Heegaard diagram H = (Σ,α,β, z)

we obtained for the orientation double cover M̃ in Example 4.1.10. We

reproduce this diagram in Figure 40.

Recall that the nontrivial deck translation τ of the orientation double

cover p : S1 × S2 → RP 2 acts on this Heegaard surface by a rotaton of π in
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zαβ

x

y

FIGURE 40 A pointed diagram for S1 × S2.

the vertical direction. The Heegaard Floer chain complex is given by

CF−(H) = (Z[U ]〈x,y〉, ∂)

with ∂ = 0. Note that this diagram is equivariant, in the sense that

(Σ,α,β) = (τ(Σ), τ(β), τ(α)). Thus the Floer homology of the diagram

τ(H) may be computed as:

CF−(−τ(Σ), τ(α), τ(β), z′) = CF−(−Σ, τ(α), τ(β), z′) = CF−(Σ,α,β, z′).

Thus the Heegaard Floer chain complex for the reversed diagram is given by

CF−(−τ(H)) = (Z[U ]〈x,y〉, ∂)

where again ∂ = 0. Note that

〈x,y〉τ = τ(x)∨(y) = y∨(y) = 1,

and similarly

〈y,x〉τ = 1,
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while

〈x,x〉τ = 〈y,y〉τ = 0.

The pairing is determined by these relations, and we see that with respect

to the Z[U ]-basis {x,y} for CF−, it is given by ( 0 1
1 0 ). We remark that of

course it is at this stage only the homotopy class (in the sense of Theorem

4.3.11) of this pairing

〈, 〉τ : CF−(H)⊗ CF−(−τ(H))→ Z[U ]

which we know to be an invariant of the cover (S1 × S2, τ).

Example 4.4.2. Fix any closed, connected, oriented, 3-manifold Y .

Then we may form the connect sum Y# − Y . This manifold comes

equipped with an orientation reversing diffeomorphism τ which exchanges

the two factors, regardless of whether or not Y admits an orientation

reversing diffeomorphism. This diffeomorphism is not free, however we may

still consider the bilinear pairing from Definition 4.3.6. In the following

computations we fix the basepoint to lie in the connected sum region and

to be τ -invariant, and suppress it from our notation.

To see the effect of the pairing, we consider the chain isomorphisms

τ∗ : CF−(Y#− Y )→ CF−(−Y#Y )

and

φrev : CF−(−Y#Y )→ CF−(Y#− Y )∨.
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The orientation reversing diffeomorphism τ acts on Y#− Y by swapping the

factors, and with respect to the identification

CF−(Y#− Y ) ∼= CF−(Y )⊗Z[U ] CF
−(−Y )

the two chain maps take the form

τ∗(x⊗ y) = y ⊗ x

and

φrev(y ⊗ x) = (y ⊗ x)∨.

Thus according to Definition 4.3.6, we have

〈x⊗ y, z ⊗w〉τ = (y ⊗ x)∨(z ⊗w) = y∨(z) · x∨(w) ∈ Z[U ].

We note for the interested reader that we can rephrase this computation in

terms of the trace maps

tr : CF−(Y )⊗ CF−(−Y )→ Z[U ]

introduced in [34]. From the definition of the trace map, our computation

above is equivalent to the statement

〈x⊗ y, z ⊗w〉τ = tr(x⊗w) · tr(z ⊗ y).
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This is equivalent to the statement that the pairing is the map induced by

the graph cobordism depicted in Figure 41 below.

Y −Y Y −Y

Y#− Y Y#− Y

FIGURE 41 A null graph cobordism of (Y#− Y )
∐

(Y#− Y ).

Fix a Z[U ]-basis {xi} for CF−(Y ) coming from the intersection points

in a fixed admissible Heegaard diagram. Then {xi} also serves as a Z[U ]-

basis for CF−(−Y ) (since it corresponds to the intersection points in the

reversed diagram). With respect to the basis on the tensor product obtained

from these two bases, we have

〈xi ⊗ xj,xk ⊗ xl〉τ =


1 if xi = xl and xj = xk

0 else.

Thus if n is the Z[U ] rank of CF−(Y ), with respect to the basis {xi ⊗ xj}

for CF−(Y ) ⊗ CF−(−Y ) the bilinear form can be expressed as a direct sum

of an n× n identity block (where n is the rank of CF−(Y )) coming from the
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terms

〈xi ⊗ xi,xi ⊗ xi〉τ = 1,

and
(
n
2

)
blocks of the form

(
0 1
1 0

)
coming from the terms

〈xi ⊗ xj,xj ⊗ xi〉τ = 1.

Summarizing, the bilinear form for Y# − Y with its obvious orientation

reversing involution can be presented on a Z[U ]-basis by :

〈, 〉τ ∼= (1)⊕n ⊕
(

0 1
1 0

)⊕(n2).

Since we suppressed the explicit dependence of the above computation

on a choice of Heegaard data into one or two sentences, we now provide

an actual example of the model computation given above to make this

dependence more clear.

Example 4.4.3. Consider (S1 × S2)#(−S1 × S2) with the orientation

reversing diffeomorphism τ switching the two factors. We consider the

Heegaard diagram H = (Σ,α,β, z) for (S1 × S2)#(−S1 × S2) in Figure

42 below, where the action of τ on the diagram is given by the reflection

taking α1 to α2.

We fix the Z[U ]-basis for CF−(H) given by the intersection points

labeled in the diagram: a = {x1, y2}, b = {x1, x2}, c = {y1, y2} and d =

{y1, x2}. We have

CF−(H) = (Z[U ]〈a, b, c,d〉, ∂)
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α1 β1 α2β2

x1

y1 y2

x2

z

FIGURE 42 The pointed diagram H for (S1 × S2)#− (S1 × S2).

where the differential takes the form

a

b c

d

We note that the diagram H is actually the connect sum of the genus 1

diagram on the left with its reverse −H1: if H1 = (Σ1, α1, β1, z) is the left

diagram and −H1 = (−Σ1, α1, β1, z) then H = H1#−H1. We have

CF−(H) = CF−(H1)⊗Z[U ] CF
−(−H1).

where CF−(H1) = (Z[U ]〈x1, y1〉, ∂x1 = y1). With respect to this

identification, x2 and y2 are respectively just x1 and y1 in the second tensor

factor, and we may rewrite

CF−(H) = (Z[U ]〈x1 ⊗ x1, x1 ⊗ y1, y1 ⊗ x1, y1 ⊗ y1〉, ∂)
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where the differential takes the form

x1 ⊗ y1

x1 ⊗ x1 y1 ⊗ y1

y1 ⊗ x1

We now want to compute the action of the chain maps τ∗ and φrev.

Note that the diagram

τ(H) := (τ(Σ), τ(α), τ(β), τ(z)) = (−Σ,α,β, z)

is the diagram −H. We thus have

τ∗ : CF−(H)→ CF−(τ(H)) = CF−(−H).

Any basis for CF−(H) is also a basis for CF−(−H), and with respect to the

Z[U ]-basis

CF−(H) = (Z[U ]〈x1 ⊗ x1, x1 ⊗ y1, y1 ⊗ x1, y1 ⊗ y1〉, ∂),

this map takes the form

τ∗(a⊗ b) = b⊗ a.

Note that while CF−(H) and CF−(−H) share a basis, the relative gradings

of elements in this basis are different in the two chain complexes; in

particular, this remark should be considered to reconcile that the formula
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for τ∗ given above determines a chain isomorphism which preserves relative

grading, as it must.

The chain map φrev has the straightforward effect:

φrev(b⊗ a) = (b⊗ a)∨.

We thus see that

〈x1 ⊗ x1, x1 ⊗ x1〉τ = 〈y1 ⊗ y1, y1 ⊗ y1〉τ = 1.

and

〈x1 ⊗ y1, y1 ⊗ x1〉τ = 〈y1 ⊗ x1, x1 ⊗ y1〉τ = 1.

while all other pairings between basis elements are zero. Finally, all other

possible pairings are determined by Z[U ]-bilinearity. We thus see that the

pairing can be presented on a Z[U ]-basis by :

〈, 〉τ ∼= (1)⊕2 ⊕
(

0 1
1 0

)
which agrees with the model computation from the previous example.

This concludes our exploration of orientation reversing diffeomorphisms

viewed from the context of Heegaard Floer theory. We hope the

investigations discussed in this chapter may prove useful in further study

of orientation reversing involutions in this context, and on the study of

orientation double covers in their own right.
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[25] Peter Ozsváth and Zoltán Szabó. Holomorphic disks, link invariants and
the multi-variable Alexander polynomial. Algebr. Geom. Topol., 8(2):
615–692, 2008. ISSN 1472-2747. doi: 10.2140/agt.2008.8.615. URL
https://doi.org/10.2140/agt.2008.8.615.
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