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DISSERTATION ABSTRACT

Andrew M. Stephens

Doctor of Philosophy

Department of Mathematics

December 2018

Title: A Categorification of the Positive Half of Quantum sl3 at a Prime Root of
Unity

We place a differential on U̇+
sl3

and show that U̇+
sl3

is Fc-filtered. This gives a

categorification of the positive half of quantum sl3 at a prime root of unity.
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CHAPTER I

INTRODUCTION

In [1], Crane and Frenkel conjectured that when q is a root of unity, a

categorification of Uq(sl2) should exist. Over the last 10 years, much progress has

been made towards this end. In [9] Aaron Lauda categorifies U̇q(sl2) for a generic

q. Lauda’s categorification is extended to U̇q(sln) in [6]. Similarly, the positive half

Uq(g) of an arbitrary quantum group is categorified at a generic q in [5].

The general procedure in these categorifications has been to define a

diagrammatic 2-category U and its Karoubi envelope U̇ where the indecomposable

1-morphisms correspond to basis elements in U̇. The nilHecke algebra, and more

generally the KLR-algebras, govern how 1-morphisms in U̇ decompose. Using the

diagrammatic description of these categories, one shows that the relations in U̇ are

lifted to the categorical level by giving direct sum decompositions of 1-morphisms.

It is then shown that the split Grothendieck group of U̇ is isomorphic to an integral

form of U̇

For q a prime root of unity, a categorification of U̇q(sl2) was achieved in [2, 3].

Categorification at a prime root of unity involves taking the previously defined

category U̇ and giving it the structure of a p-DG category. A differential ∂ is

placed on the 2-morphisms of U̇ which satisfies a certain Leibniz rule and for which

∂p = 0. The p-DG Grothendieck group of U̇ is a module over Op := Z[q]/(1 + q2 +

· · ·+ q2(p−1)). For categorification at a generic q the relations in U̇ lift to direct sum

decompositions. This is not a strong enough condition to ensure compatibility with

the p-DG structure and to guarantee a relation on the Grothendieck group. Instead
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one needs to check that these direct sum decompositions are actually Fc filtrations

(see Definition 2.7.5).

There are currently no techniques which make this easy to show in

the abstract. Instead one needs to check by hand that explicit idempotent

decompositions satisfy the conditions of an Fc-filtration. For sl2, Lauda gave

idempotent decompositions for EF and FE . What was still needed was a

decomposition for the divided powers which was given by the Stošić formula in [7].

Elias and Qi showed that these decompositions, as well as two others, were indeed

Fc-filtrations. In [12], Stošić also gave idempotent decompositions for U̇+
sl3
. In the

last chapter we show that this decomposition is an Fc-filtration.

At this stage it is not clear how to proceed any further since there are few

other idempotent decompositions which are currently known. Indeed Lusztig’s

canonical basis is much more complicated for U+
sl4

consisting of 14 different types

of monomials [13].

There are a few complications to be aware of when checking that an

idempotent decomposition is an Fc-filtration. The first is that there may be

multiple p-DG structures that one can place on U̇ . Additionally, there may be

many different idempotent decompositions that one could use. It is possible for

a decomposition to be an Fc-filtration with respect to one differential but not

with respect to another. This is one issue we encountered working with U̇+
sl3
. In

[2, 3] much of the work, including many of the formulas, had been derived for one

particular differential ∂1. Unfortunately the idempotents in [12] are not an Fc-

filtration with respect to this differential. They are instead compatible with another

differential, ∂−1. Because of the complexity of Stošić’s computation, we have chosen

to use his original idempotents and use ∂−1. In Remark 3.3.1, we explain how to
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adapt these idempotents to obtain the idempotents which are an Fc-filtration with

respect to ∂1.

Another complication we encountered was in deriving the needed formulas for

∂−1. The formulas can be derived in two ways. One way uses the symmetries of U̇

along with the differential ∂1. Another way to derive the formulas is by placing a

differential on U which induces a differential on the partial idempotent completion

see (2.94). When checking that both methods produced the same results, it was

discovered that some of the formulas in [3] were incorrectly justified. The correct

justification for their formulas involves using a different idempotent to define the

divided powers Fa. We mention this because we will also use a different idempotent

to define the divided powers.

We now sketch the organization of this paper. The second chapter is intended

to provide the relevant background material which we will use in the following

chapter. We have chosen to motivate much of this material though the example

of quantum sl2. In doing so this chapter is also intended to serve as an analogy

for our later work with U+
q (sl3). We begin by recalling Lusztig’s idempotented

quantum group U̇q(sl2), which will be categorified. We define Lauda’s category

U̇ and explain how the thick calculus of [7] can be used to perform computation

directly inside of U̇ . Crucially, this thick calculus has been used to provide

explicit direct sum decompositions of arbitrary 1-morphisms in U̇ in terms of

indecomposable 1-morphisms. Next, we recall notions of p-DG algebras and p-DG

categories and the notion of a fantastic filtration which allows one to describe the

p-DG Grothendieck of a p-DG category in terms of the Grothendieck group of the

underlying category. We recall how a p-DG structure has been placed on U̇ and
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explain how these ideas lead to a categorification of quantum sl2 at a prime root of

unity.

The last chapter accomplishes a similar result except for the positive

half of quantum sl3. We include relevant definitions and explain how the thick

calculus works in this new setting. Resembling the case for sl2, we use the explicit

idempotent decomposition from [12]. This is sufficient to decompose any 1-

morphism as a direct sum of indecomposable 1-morphisms. We place a p-DG

structure on U̇+
sl3

which extends the one of the differentials given in [8, 2, 3] and

derive some formulas for this differential. Our main theorem is a computation

of the p-DG Grothendieck group of U̇+
sl3
. We achieve this by showing that the

direct sum decomposition of arbitrary 1-morphisms in terms of indecomposable

1-morphisms is actually an Fc-filtration.
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CHAPTER II

PRELIMARIES

Quantum sl2

In this section we define quantum sl2, which we will denote U. We will also

describe the idempotented form of U, denoted U̇, and recall some of its properties.

Definition 2.1.1. Quantum sl2 is the Q(q)-algebra generated by E, F,K±1 subject

to the following relations

KK−1 = K−1K = 1 (2.1)

EF − FE =
K −K−1

q − q−1
(2.2)

KE = q2EK (2.3)

KF = q−2FK. (2.4)

U is a Hopf algebra with coproduct, ∆ : U→ U⊗Q(q) U, given by

∆(K±1) = K±1 ⊗K±1, ∆(E) = E ⊗ 1 +K ⊗E,

∆(F ) = 1⊗ F + F ⊗K−1.

The counit is given by

ε(E) = ε(F ) = 0, ε(K±1) = 1,
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while the antipode is given by

S(E) = −K−1E, S(F ) = −FK, S(K) = K−1.

For a ∈ Z we define quantum a to be [a] :=
qa − q−a

q − q−1
. A quick calculation

shows that for a ∈ N, [a] = qa−1 + qa−3 + . . . q1−a =
∑a−1

i=0 q
a−1−2i. The quantum

factorials are defined by [a]! := [a][a− 1] . . . [1] and quantum binomial coefficients by
[
a
b

]

=
[a]!

[b]![a− b]!
. We also define the divided powers of E, F to be

E(a) :=
Ea

[a]!
, F (a) :=

F a

[a]!
.

A weight vector with weight n in a U-module is a vector v such that Kv =

qnv. By (2.3), E takes a weight vector with weight n to a weight vector of weight

n+ 2. Similarly F takes a weight n vector to a weight n− 2 vector.

Next we define the Lusztig’s idempotented quantum group U̇ which formally

adds idempotents projecting to weight spaces. To do this we first define mU̇n as

follows

mU̇n := U/ ((K − qm)U+U(qn −K)) , (2.5)

and set

U̇ :=
⊕

n,m∈Z

mU̇n. (2.6)

We then define 1n as the identity element inside nUn.

The idempotented quantum group, U̇, does not have a unit (nor does it

contain E, nor F ) since the sums

∑

n∈Z

1n,
∑

n∈Z

E1n,
∑

n∈Z

F1n
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are not elements of U̇. On any weight representation of U, the idempotented form,

U̇, has elements which act as 1, E, and F since the sums above act locally-finitely

on any element. The category of U̇-modules is equivalent to the category of U-

modules which are weight modules.

Remark 2.1.2. Roughly speaking, we have replaced the unit in U with an infinite

collection of mutually orthogonal idempotents, 1n indexed by Z (the weight lattice

of sl2). The idempotent 1n should be thought of as an operator which projects a

vector in any weight modules of U onto the n’th weight space. Very informally, one

thinks of the following ‘identities’ as holding in U̇:

1 =
∑

n∈Z

1n, E =
∑

n∈Z

E1n, F =
∑

n∈Z

F1n.

Remark 2.1.3. It is possible to define U̇ without having defined U first. As

generators, one has E1n, F1n, 1n for n ∈ Z with the following relations:

i. 1n1m = δn,m1n

ii. EF1n − FE1n = [n]1n (c.f. (2.2))

iii. E1n = 1n+2E, and F1n = 1n−2F (c.f. (2.3, 2.4)).

A particularly important reason to consider U̇ instead of U is the existence of

Lusztig’s canonical basis Ḃ, which has positive structure constants. This will prove

crucial later.

Ḃ = {E(a)F (b)1n | a, b ∈ N, n ∈ Z, n ≤ b−a}∪{F (b)E(a)1n | a, b ∈ N, n ∈ Z, n ≥ b−a}.

(2.7)
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U has an integral form, UA, which is the Z[q, q−1]-subalgebra generated by

the divided powers and K±1. The integral form UA gives rise to an integral form

U̇A which is spanned by 1mE(a)F (b)1n, 1mF (b)E(a)1n.

The following relations define U̇A:

E(a)E(b)1n =

[
a+ b

a

]

E(a+b)1n, (2.8)

F (a)F (b)1n =

[
a+ b

a

]

F (a+b)1n, (2.9)

E(a)F (b)1n =

min(a,b)
∑

j=0

[
a− b+ n

j

]

F (b−j)E(a−j)1n, (2.10)

F (b)E(a)1n =
min(a,b)
∑

j=0

[
b− a− n

j

]

E(a−j)F (b−j)1n. (2.11)

There are numerous automorphisms and antiautomorphisms of U̇ [9]. In

particular, two of these will be important for our purposes.

– We denote by ψ : U̇A → U̇A the Q-linear isomorphism which is defined by

ψ(E(a)1n) = E(a)1n, ψ(F (a)1n) = F (a)1n, ψ(q) = q−1.

– We denote by τ : U̇A → U̇A the Q-linear antiautomorphism defined by

τ(q) = q−1, τ(E(a)1n) = q−a(a+n)1nF
(a), τ(F (a)1n) = qa(n−a)1nE

(a).
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The 2-category U̇

In [9] Lauda categorifies U̇. He constructs a 2-category U , whose Karoubi

envelope is denoted U̇ , and proves that the Grothendieck group of U̇ is isomorphic

to U̇A. The 2-category U has a natural description using the notation of string

diagrams. See [9, Section 4] for more about string diagrams.

Definition 2.2.1. U is the k-linear 2-category with:

– Objects: There is one object of U for each n ∈ Z .

– 1-morphisms: The 1-morphisms of U are formal direct sums of grading shifts

of composites of the morphisms

1n : n→ n

1n+2E1n : n→ n+ 2

1nF1n+2 : n+ 2→ n. (2.12)

Where there can be no confusion, instead of writing 1n+2E1n we will simply

write E or possibly E1n. In this way, we write Ea1n for the a-fold composition

1n+2aE1n+2a−2 . . . 1n+2E1n. We use similar notation for 1nF1n+2. We denote

shifts of morphisms as En{s},Fn{s}, 1n{s} for s ∈ Z.

– 2-morphisms:

i) There are degree zero identity 2-morphisms for each 1-morphism which

are depicted in the usual way for string diagrams. For E1n, the 2-
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morphism IdE1n is depicted as

nn+ 2

E1n

, (2.13)

while for F1n+2, the 2-morphism IdF1n+2 is depicted as

n+ 2n

F1n+2

. (2.14)

The 2-morphism Id1n is depicted as a region labeled by n. We use

similar notation for composite 1-morphisms. The identity Idf1...fk where

each fi ∈ {E ,F} is depicted as

nm . . .

f1 f2 fk

. (2.15)

We will often omit the labels E ,F by drawing arrows on the vertical

lines. An upward arrow will denote E and a downward arrow will denote

F .

IdE1n : nn+ 2 IdF1n+2 : n+ 2n (2.16)

ii) For each integer n, there are the following 2-morphisms of degree 2.

nn+ 2 and n+ 2n
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We will allow dots to carry labels of a ∈ Z+, by which we mean the a

fold composition of the dot with itself. For example,

n

2 :=

n

while

n

3 :=

n

.

iii) For each integer n, there are the following 2-morphisms of degree -2.

nn+ 4 and n+ 4n

iv) For each integer n, there are the following 2-morphisms with given

degree.

n

deg 1− n

n

deg 1 + n

n

deg 1 + n

n

deg 1− n

The 2-morphisms are required to satisfy the following relations.

I) NilHecke relations

= 0,
n

=

n

(2.17)

= −n n n = −n n (2.18)
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II) Isotopy relations: cups and caps are biadjoint morphisms. Diagrammatically

this is equivalent to the equality of the following diagrams.

n

=
n n+ 2

=

n+ 2

(2.19)

n+ 2

=

n+ 2 n

=

n

(2.20)

Further, all 2-morphisms are required to be cyclic with respect to the

biadjoint structure. That is,

n

=

n

=

n

(2.21)

n+ 2

=

n+ 2

=

n+ 2

(2.22)

n
= n =

n
(2.23)

n
= n =

n
. (2.24)

These relations mean that planar diagrams up to isotopy unambiguously

represent 2-morphisms.
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III) sl2 relations: The following relations are in place to ensure that the quantum

sl2 relations of E, F lift.

n

= −
−n
∑

l=0

n−n − l

n − 1 + l
(2.25)

n

=
n
∑

l=0

n

−n − l + l

n − l

(2.26)

n

= −

n

+
n−1
∑

l=0

l
∑

j=0

n

l − j

−n − 1 + j

n − 1 − l

(2.27)

n

= −

n

+
−n−1
∑

l=0

l
∑

j=0

n

l − j
n − 1 + j

−n − 1 − l

(2.28)

Remark 2.2.2. Notice in the above equations that it is possible for a sum to

have a decreasing index (for example
∑2

3). Any time this happens, the sum is

taken to be zero.

IV) Negative degree bubbles are zero. For k ∈ Z,

n

k

= 0 if k < −n− 1,
n

k

= 0 if k < n− 1. (2.29)
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Degree 0 dotted bubbles are equal to 1.

n

−n − 1

= 1 for n ≤ −1,
n

n − 1

= 1 for n ≥ 1. (2.30)

Remark 2.2.3. Formal symbols, called fake bubbles, are defined in [9]. Fake

bubbles are dotted bubbles where the dot is allowed to carry a negative label.

For example
n

−2

or
n

−2

.

Of course it doesn’t make any sense to compose the dot with itself −2 times.

Instead, fake bubbles are formal symbols which are introduced to stand for

specific 2-morphisms in U . The benefit of these symbols is that they give a

convenient way to write formulas. We define the only fake bubble which we

will use below.
n

−n − 1
= 1 (2.31)

Remark 2.2.4. In [5], Khovanov and Lauda categorify the positive half of an

arbitrary quantum group in a similar manner. The presentation of U is simplified

since one only needs upward pointing strands–one ‘color’ of upward pointing strand

for each generator. Caps, cups, and downward pointing strands are no longer

needed as generators. From the relations above, only I and V are needed as well

as new relations involving the crossings of strands of different colors. In the next

chapter we will be concerned with categorification of the positive half of quantum

sl3.
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We also introduce some helpful notation. For any Laurent polynomial, f =
∑

i∈Z aix
i, and any 1-morphism M , we define

⊕

f

M :=
∑

i∈Z

aiM{i}. (2.32)

In particular, we have
⊕

[n] 1n = 1n{n− 1}+ 1n{n− 3}+ · · ·+ 1n{1− n}.

U has many properties one would expect from a categorification of U̇A.

– There are symmetries of diagrams in U giving lifts of certain algebra maps

in U̇A. The lift of τ from Section 2.1 is given by τ̃ which corresponds to

rotating a diagram by 180 degrees. Similarly there is a lift of ψ, denoted ψ̃,

which corresponds to reflecting across a horizontal axis and then inverting the

orientation of the strands.

– The U̇ relations between E and F lift to direct sum decompositions in U .

More specifically we have [9, Theorem 5.10],

EF1n ∼= FE1n ⊕[n] 1n, (2.33)

FE1n ∼= EF1n ⊕[n] 1n. (2.34)

We outline the proof of (2.33) following the arguments given in [9]. The proof

provides a useful illustration of how string diagrams can be used to demonstrate

a direct sum decomposition. Similar arguments will play an important role later.

The general procedure is to find a pair of 2-morphisms for each potential direct

summand, corresponding to the projection to and the inclusion from this summand.

One then can use previously developed diagrammatic identities to show that the

2-morphisms give a direct sum decomposition. Explicitly, if λi is the inclusion

15



from the i-th summand, and σi is the projection, then one needs to show that the

compositions ei := λiσi form a collection of mutually orthogonal idempotents with

∑

i

ei = IdEF1n . (2.35)

A difficulty which we do not address is how to arrive at the maps in the first place.

To prove (2.33), define

σn := − , σi :=
s
∑

j=0

−n − 1 + j

i − j

for 0 ≤ i < n, (2.36)

λn := − , λi :=
n − 1 − i

for 0 ≤ i < n, (2.37)

and set ei = λiσi.

We first show (2.35). Diagrammatically, this corresponds to showing the

equality of the following diagrams.

−

n

+
n−1
∑

i=0

l
∑

j=0

n

i − j

−n − 1 + j

n − 1 − i

=

n

(2.38)

But the equality above is precisely relation (2.27). Hence, (2.35) holds.

To show that the ei are mutually orthogonal idempotents, it suffices to show

the following two statements. First, that σnλn = IdFE1n. Second, that for i, j not

both equal to n, σiλj = δi,jId1n . Notice that for n ≥ 0 the summation in relation
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(2.28) contains a decreasing index, which by convention is 0 in U . That means that

n

= −

n

+
−n−1
∑

l=0

l
∑

j=0

n

l − j
n − 1 + j

−n − 1 − l

=

n

. (2.39)

Thus, we have proved the first statement, that σnλn = IdFE1n .

To prove the second statement, we start by showing that the composition

σiλi = Id1n for i < n. Composing, we get

l
∑

j=0

−n − 1 + j

n − 1 − j

=

−n − 1

n − 1

= 1. (2.40)

The first equality holds because for j > 0 the bottom bubbles in the summands

have negative degree and so are zero. This leaves a single non-zero summand. The

second equality holds because the top bubble is a fake bubble defined in (2.31) to

be 1, while the bottom bubble is also 1 by relation (2.30). The proof that σiλj = 0

for i ≠ j is similar.

Lusztig’s canonical basis for U̇ is given by products of the divided powers,

which are defined to be E(a) := Ea

[a]! . In U there are no 1-morphisms to represent the

divided powers. We want there to be 1-morphisms E (a)1n with

Ea1n ∼=
⊕

[a]!

E (a)1n. (2.41)

The hope is to look for a collection of idempotent 2-morphisms in Hom(Ea1n, Ea1n)

whose images are all isomorphic, giving the decomposition in (2.41). We will denote
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a particular one of these idempotents as ea (see Section 2.4). Since idempotents

need not split in U , we first need to pass to the Karoubi envelope to ensure that

idempotents split.

In light of some issues that will be discussed in Remark 2.7.4, we choose a

slightly different notion than that of the usual Karoubi envelope. To contrast the

two, we will define both the usual Karoubi envelope below as well as the notion we

will use, the partial idempotent completion. This is to ensure that we are able to

extend a p-DG structure from U to U̇ .

Definition 2.2.5. For an additive category C, the Karoubi envelope Kar(C) is the

category which has as objects pairs (X, ε) where X is an object of C and ε is an

idempotent in HomC(X,X). Given two objects (X, ε), (Y, ε′) a morphism is a triple

(ε′, f, ε) : (X, ε)→ (Y, ε′) where f ∈ HomC(X, Y ) is a morphism which is unchanged

under precomposition with ε and postcomposition with ε′ on the left. That is, f =

ε′fε, and HomKar(C)((X, ε), (Y, ε′)) = ε′HomC(X, Y )ε.

The definition of Kar(C) ensures that every idempotent ε ∈ EndC(X) will

factor through (X, ε) ∈ Kar(C). A category where every idempotent splits is called

Karoubian. There is a functor from C to Kar(C) sending X to (X, IdX) which is an

equivalence of categories when C is Karoubian.

Definition 2.2.6. Fix an additive category C and a collection X = {(Xi, εi)} of

idempotents εi ∈ EndC(Xi). The partial idempotent completion C(X) is the category

with objects Ob(C) ∪ X and morphisms given by

HomC(X)((Xi, εi), (Xj, εj)) = εjHomC(Xi, Xj)εi

HomC(X)(X, (Xi, εi)) = εiHomC(X,Xi)
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HomC(X)((Xi, εi), X) = HomC(Xi, X)εi

HomC(X)(X, Y ) = HomC(X, Y ).

That is, C(X) is the full subcategory of Kar(C) whose objects are (X, εi) and

(X, IdX) for X ∈ Ob(C) and εi ∈ X.

We denote by U̇ the partial idempotent completion of U with respect to the

idempotents (Ea, ea). That is, U̇ := U(X) for X = {(Ea, ea) | a ∈ N}. The

definition of U̇ given in [9] is as the Karoubi envelope. It turns out that that U(X)

is Karoubian and that Kar(U) ∼= U(X). Still, in light of Remark 2.7.4, we choose to

define U̇ as the partial idempotent completion.

We define the lifts of the divided powers as E (a)1n :=
(

Ea1n
{

a(1−a)
2

}

, ea
)

.

The direct sum decomposition in (2.41) is [9, Proposition 9.4].

The relations in U̇ lift to the decompositions

E (a)E (b)1n ∼=
⊕

[a+b
a ]

E (a+b)1n, (2.42)

F (a)F (b)1n ∼=
⊕

[a+b
a ]

F (a+b)1n, (2.43)

F (b)E (a)1n ∼=

min(a,b)
⊕

j=0

⊕

[b−a−n
j ]

E (a−j)F (b−j)1n if n < −2a + 2, (2.44)

E (a)F (b)1n ∼=

min(a,b)
⊕

j=0

⊕

[a−b+n
j ]

F (b−j)E (a−j)1n if n > 2b− 2. (2.45)

It is also shown in [9, Proposition 9.9] that the 1-morphisms

E (a)F (b)1n{s} for a, b ∈ N, s ∈ Z, n ≤ b− a,
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F (b)E (a)1n{s} for a, b ∈ N, s ∈ Z, n ≥ b− a,

are indecomposable and that no two of them are isomorphic with the exception

that F (b)E (a)1n{s} ∼= E (a)F (b)1n{s} when n = b − a. Up to isomorphism, these are

the only indecomposable 1-morphisms and every 1-morphism can be written as the

direct sum of such indecomposable 1-morphisms [9, Proposition 9.10].

The 2-category U̇ gives a categorification of U̇ in the following sense. The

split Grothendieck group of U̇ is isomorphic to U̇A as Z[q, q−1]-modules where the

grading shift {1} corresponds to multiplication by q [9, Theorem 9.13]. Moreover,

any Grothendieck group is equipped with a natural A-basis given by the symbols of

the indecomposable 1-morphisms (up to isomorphism and grading shift). This basis

matches with Lusztig’s canonical basis.

While adding idempotents is an essential step, it means that the

diagrammatic description of U in [9, Section] can not be used directly for

computations in U̇ . In [7], the authors develop diagrammatic notation for

performing computations in U̇ itself, which they call thick calculus, and which we

explain in section 2.4. To lay the groundwork for this thick calculus, we first define

the nilHecke ring, which we do in the next section.

The nilHecke ring

For a fixed n, if one considers the Z-span of diagrams in HomU (Ea1n, Ea1n)

which involve only dots and crossings (but not bubbles), and imposes the relations

in U , one gets the nilHecke ring on a strands, denoted NHa. We present a more

common definition below.

Definition 2.3.1. The nilHecke ring on a strands, NHa, is a unital subring of

the ring of endomorphisms of the group Z[x1, . . . , xa] generated by two families of
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generators: x1, . . . , xa which act by multiplication by xi, and ∂1, . . . , ∂a−1, called

divided difference operators. The ∂i act via ∂i(f) =
f − sif

xi − xi+1
where sif swaps the

variables xi and xi+1. We give NHa a grading where the xi are of degree 2 and the

∂i of degree −2. In later sections we will consider the generators above over a field

k instead of Z. When we do so we will refer to it as the nilHecke algebra.

Remark 2.3.2. To interpret NHa diagrammatically, xi corresponds to placing a

dot on the i’th strand (from the left) while ∂i corresponds to a crossing of the i’th

and i+ 1’st strands. The unit in NHa is depicted by the 2-morphism IdEa. That is,

. . . . . . := xi , . . . . . . := ∂i , . . . := 1. (2.46)

From the definition of the operators above, one can deduce the defining relations

of NHa. The column on the left below gives the defining relations of NHa while

the column on the right shows the diagrammatic interpretation of the relations.

Notice that the first four relations correspond to the nilHecke relations in U . The

last three relations hold in U because of rectilinear isotopy of diagrams, something

which is automatically implied using string diagram notation for 2-categories.

∂2i = 0 ←→ = 0 (2.47)

∂i∂i+1∂i = ∂i+1∂i∂i+1 ←→ = (2.48)

∂ixi − xi+1∂i = 1 ←→ =− (2.49)

xi∂i − ∂ixi+1 = 1 ←→ =− (2.50)
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∂i∂j = ∂j∂i if |i− j| > 1

xixj = xjxi

∂ixj = xj∂i if |i− j| > 1

⎫

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪⎭

←→ rectilinear isotopy of diagrams (2.51)

The braid relations in (2.48) imply that for w ∈ Sa and w = si1 . . . sik

a reduced expression of w, the operator ∂w := ∂si1 . . . ∂sik is well defined.

That is, ∂w does not depend on the choice of reduced expression. Denote the

longest element of Sa by w0. The Demazure operator, ∂w0 , is a linear map from

Z[x1, . . . , xa] → Z[x1, . . . , xa]Sa . This operator will be used in Section 2.4 to define

Schur polynomials.

We record some properties of the nilHecke ring below:

– The center of NHa is isomorphic to symmetric polynomials in a variables.

– NHa is isomorphic to a! × a! matrices with coefficients in symmetric

polynomials in a variables (see [9, Proposition 3.5]). It is this isomorphism

which enables the definition of the divided powers E (a) in U̇ .

Thick calculus for U̇

In [7] the authors develop a diagrammatic calculus which can be used

to represent and decompose certain 2-morphisms between products of divided

powers in U̇ . They call this thick calculus. Using thick calculus, the authors are

able to prove the direct sum decompositions in (2.45) and (2.44) using the same

techniques as we used in the proof of (2.33). That is, they give explicit projection

and inclusion maps which decompose the products of the divided powers. Having

this idempotent decomposition is an essential component of the categorification of
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U̇ at a prime root of unity given in [3], which we will review in Section 2.9. We

recall the relevant parts of thick calculus from [7] below.

More notation for diagrams in U

To begin, we introduce some new notation which is meant to simplify certain

diagrams in U . We will draw IdEa as a single upward strand with label a. That is,

a

:=

a

. . .

︸ ︷︷ ︸

. (2.52)

Next we will define what the authors of [7] call box notation. For any element

in f ∈ NHa, we will use the following notation to depict f as a 2-morphism in U .

a

f or alternatively

. . .

. . .

f

We give names to certain 2-morphisms in End(Ea). Da will denote the

Demazure operator ∂w0 in NHa viewed as a 2-morphism in U . For example, D3

is shown below.

D3 := D3 =

We define the 2-morphisms δa : Ea → Ea in the following way. Let δa =

xa−1
1 xa−2

2 . . . xa−1 ∈ NHa. As above, we now consider δa as a 2-morphism in U .
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For example, δ3 is shown below.

δ3 := δ3 = 2

Next, we define ea to be the composition δaDa. Diagrammatically, this is

a

ea =

. . .

. . .

ea =

. . .

. . .

a−1 a−2

Da . (2.53)

In [5, Lemma 5] the authors show that Daea = Da. This implies that ea is an

idempotent since δaDaea = δaDa = ea. It is this idempotent which we used in

Section 2.2 to define the divided powers E (a)1n in U̇ . Recall that we defined the

divided powers as E (a) :=
(

Ea{a(1−a)
2 }, ea

)

.

Finally, we can apply our functor τ̃ to any of the above diagrams to obtain

2-morphisms involving downward pointing strands. We define box notation for

downward strands in the following way:

a

n

f := τ̃

⎛

⎜
⎝

a

n

f

⎞

⎟
⎠ . (2.54)

In particular,

a

ea =

. . .

. . .

ea =

. . .

. . .
a−1a−2

Da . (2.55)
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Diagrammatics for U̇

With this notation in hand, we are ready to extend the diagrammatics of

U to U̇ . By naturally considering U as a full subcategory of U̇ , we think of U̇ as

being obtained from U by adding some additional 1-morphisms. Each new 1-

morphism is a direct summand of a 1-morphism in U . This means that to extend

our diagrammatics to U̇ we will need new notation for each added 1-morphism. We

will also need new notation for 2-morphisms giving the projection and inclusion

to and from the added summand (see the remark below). Instead of defining new

symbols for every new 1-morphism, we will only define symbols for the divided

powers. After all, the morphisms between the divided powers are of particular

importance since they govern how the 1-morphisms E (a)F (b) decompose.

Remark 2.4.1. In light of the above comments, at first it seems necessary to

add projection and inclusion 2-morphisms for each summand appearing in the

decomposition Ea1n =
⊕

[a]!E
(a)1n–that is, that we need to add [a]! worth of

projection and inclusion 2-morphisms. It turns out that this is unnecessary. It

suffices to add a single symbol for projection to the summand with the highest

grading shift and a single symbol for inclusion of the summand with the lowest

grading shift. All other projection and inclusion morphisms can be obtained by

composing these with existing 2-morphisms in U .

We will represent E (a) using a thick strand of thickness a. In this way E (1) = E

is represented by our previously used thin strands. The inclusion and projection of

the divided powers in the decomposition of Ea given in (2.41) are depicted as
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a

. . .

,

a

. . .

(2.56)

where the inclusion is from the lowest degree copy of E(a) and projection is onto

the highest degree copy. We call these 2-morphisms complete splitters. Recall that

a 2-morphism in U̇ is a triple (e, f, e′) where f is a 2-morphism in U and e, e′ are

idempotent 2-morphisms in U such that e′fe = f . The complete splitters above

represent the triples (ea, Da, IdEa) and (IdEa , ea, ea) respectively.

Remark 2.4.2. The use of color in the diagrams above currently has no

significance. In the next chapter the colors of strands will take on meaning.

The identity 2-morphism for E (a) is the triple (ea, ea, ea), which will draw as

an oriented strand of thickness a. Similarly, a downward arrow of thickness a will

denote the 2-morphism (τ̃ (ea), τ̃(ea), τ̃(ea)) .

a

:= (ea, ea, ea) = IdE(a) ,

a

:= (τ̃(ea), τ̃(ea), τ̃(ea)) = IdF(a) (2.57)

The authors also develop notation for certain other 2-morphisms in U̇ . We

include some of these, referred to as splitter diagrams, below (see [7, Sections 4.2-

4.5] for a complete list).

a+ b

a b
:=

⎛

⎜
⎜
⎝
ea+b,

b a

ea eb
, eaeb

⎞

⎟
⎟
⎠

(2.58)
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a+ b

a b

:=

⎛

⎜
⎜
⎝
eaeb,

a b

ea+b , ea+b

⎞

⎟
⎟
⎠

(2.59)

a+ b

a b

:=

⎛

⎜
⎜
⎝
τ̃ (ea)τ̃(eb),

b a

ea eb
, τ̃(ea+b)

⎞

⎟
⎟
⎠

(2.60)

a+ b

a b
:=

⎛

⎜
⎜
⎝
τ̃(ea+b),

a b

ea+b , τ̃(ea)τ̃(eb)

⎞

⎟
⎟
⎠

(2.61)

Remark 2.4.3. In [3, Proposition 5.2], the authors explain how all of the new

diagrams for U̇ can be obtained by adding to U the complete splitters in (2.56)

along with the relations

a

. . .

. . .

=

. . .

. . .

Da , (2.62)

a

a−1 a−2 1

a

=. . . . (2.63)

Schur polynomials

We want to develop notation for this thick calculus which is similar to

the box notation defined in 2.4. As before, we continue to label boxes on thin

strands with any element of NHa. For thick strands, we will only label boxes with
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elements in the center of NHa. That is, we will only decorate thick strands with

symmetric polynomials. We are particularly interested in Schur polynomials. Schur

polynomials form a linear basis for symmetric polynomials. This basis has certain

nice properties with respect to U̇ which we will exploit later.

We say that an a-tuple λ = (λ1,λ2, . . . ,λa) is a partition with at most a rows

if λi ≥ λi+1 ≥ 0 for all i. We will also set |λ| :=
∑

i λi. Let P (a) denote the set

of partitions with at most a parts. The set of Schur polynomials in a variables are

indexed by partitions with at most a parts.

Let ∂w0 be the Demazure operator, and λ = (λ1, . . . ,λa) ∈ P (a). The Schur

polynomial corresponding to λ, which we call πλ, is given by

πλ := ∂w0

(

xλ1+a−1
1 xλ2+a−2

2 . . . xλa−1+1
a−1 xλaa

)

. (2.64)

Notice that if we define xλ as xλ11 . . . xλaa , then the Schur polynomial above is

πλ = ∂w0

(

δax
λ
)

.

Diagrammatically we define

a

πλ :=

a

λ1+a−1 λa+1 λa. . . =

a

. . .

. . .
xλδa . (2.65)
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We will use a single dot on a thick strand (of thickness a) to denote the first

elementary polynomial in a variables, e1.

a

:=

a

e1 (2.66)

Using this notation, we have the following identites:

a

k a− k

=

a

k a− k

+

a

k a− k

, (2.67)

a

k a− k

=

a

k a− k

+

a

k a− k

. (2.68)

We define P (a, b) to be the set of partitions with at most a rows where each λi ≤ b.

We identify partitions with Young diagrams where we use the English notation for

Young diagrams. That is, the partition (4, 4, 3, 1) will be drawn as

.

We think of P (a) as Young diagrams which have at most a rows. We think of

P (a, b) as Young diagrams which have at most a rows and b columns. We will also
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place a partial order on partitions and say that β ≤ α if the Young diagram for α

can be obtained from the Young diagram for β by iteratively adding boxes.

We adopt much of the notation for various Schur polynomials from [12]. For

a partition α, we denote by ᾱ the partition represented by the transpose of α. For

example, for

α = , ᾱ = .

Given α = (α1, . . . ,αa) ∈ P (a, b), we define α̂ by α̂ = (b− αa, . . . , b− α1). This can

be interpreted as rotating 180 degrees and then transposing all the boxes in an a by

b rectangle which are not contained in α.

Given 3 partitions α, β, and γ, we will denote the Littlewood-Richardson

coefficients cγα,β, which are defined by the identity

παπβ =
∑

γ

cγα,βπγ .

Given 2 partitions α and γ, we denote the skew-Schur polynomial πγ/α, which

is defined by

πγ/α =
∑

β

cγα,βπβ

We denote the partition (b, b, . . . , b
︸ ︷︷ ︸

a

) by Ka,b. Finally, for any α ≤ Ka,b, we denote

the partition (b− αa, . . . , b− α1) by Ka,b − α.
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For our purposes, one significance of thick calculus is its use in the proof of [7,

Theorem 5.9], which states that for n ≥ b− a there is a direct sum decomposition

E (a)F (b) ∼=

min(a,b)
⊕

j=0

⊕

α∈P (j,n+a−b−j)

F (b−j)E (a−j)1n{2|α|− j(n+ a− b)}. (2.69)

When n ≤ b− a, there is a decomposition

F (b)E (a) ∼=

min(a,b)
⊕

j=0

⊕

α∈P (j,−n−a+b−j)

E (a−j)F (b−j)1n{2|α|− j(b− a− n)}. (2.70)

Remark 2.4.4. After reindexing the second direct sum using the identity
[
a+b
b

]

=
∑

λ∈P (a,b) q
2|λ|−ab, these are the same isomorphisms given in (2.45) and (2.44).

The isomorphisms above follow from the so-called Stošić formula, which

explicitly give idempotent decompositions of the direct sums above. The projection

maps are

σi
α := (−1)ab

∑

β,γ,x,y

(−1)
i(i+1)

2 +|x|+|y|cKi

α,β,γ,x,y

a b

n

a− ib− i

i

i

πx̄ πȳ

πβ

π♠
γ

, (2.71)

while the inclusion maps are

λiα :=

b− i a− i

n

a b
i

πα
. (2.72)
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Remark 2.4.5. The spades which appear in the notation for thick bubbles are

defined in [7, Section 4.5]. They are intended to emphasize the degree of the thick

bubbles.

Quantum sl2 at a prime root of unity

Before defining quantum groups at a root of unity, we fix some notation.

Throughout this section we let p be prime. We denote the n’th cyclotomic

polynomial in the variable q by Ψn(q). We define

Op := Z[q]/
(

Ψp(q
2)
)

.

Recall that Ψp(q2) = 1 + q2 + · · ·+ q2(p−1). Also notice that

[p] = qp−1 + qp−3 + · · ·+ q1−p = q1−p(1 + q2 + · · ·+ q2(p−1)).

This means that [p] = 0 in Op.

The quantum groups U and U̇ were defined in Section 2.1 as algebras over

Q(q). Given a Z[q, q−1] subalgebra, we can specialize q2 to be a p’th root of 1.

This leads to the idea of a quantum group at a prime root of unity. There are

different notions of what quantum sl2 at a root of unity is, in part because there

are different integral forms a quantum group. Below, we recall 3 of these notions.

Note that they generalize to arbitrary quantum groups.

In U we have already defined the integral form of divided powers, UA. We

can also consider the Z[q, q−1] subalgebra of U generated by (the non-divided

powers) E, F,K±1. Taking the integral form of non-divided powers and specializing

q2 to be p’th root of unity via base change leads to the Kac-De Concini notion of
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a quantum group at a root of unity. By adding the relation Ep = F p = 0 to the

Kac-De Concini version, we get the small quantum group, which we denote up.

A third notion of a quantum group at a root of unity, due to Beilinson,

Lusztig, and MacPherson, is what we call the BLM form and denote Up. The BLM

form is obtained by base change from Lusztig’s integral form UA. That is

Up = UA ⊗Z[q,q−1] Op. (2.73)

Note that Ep = 0 in Up because

Ep ⊗ 1 = [p]!E(p) ⊗ 1 = 0 (2.74)

if q2 is a p’th root of 1. Similarly F p = 0. In this way we see that the small

quantum group is both a sub and quotient of the BLM version.

We will mostly be concerned with the BLM version. As before, instead of

working with Up we prefer to work with the idempotented form,

U̇p := U̇A ⊗Z[q,q−1] Op. (2.75)

Remark 2.5.1. When giving a presentation for U̇p over Op by generators and

relations (for instance see [3, Definition 6.1]) it is common to call the generators

‘divided powers’. Previously, divided powers had been defined by the formula

E(a) =
Ea

[a]!
, but that formula can no longer hold for a ≥ p since [p] = 0. Instead,

the divided power generators of U̇p are the elements E(a) ⊗ 1 using the definition in

(2.75).
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The small quantum group up(sl2) is categorified in [2] and the BLM form

U̇p(sl2) is categorified in [3]. In the next section we review p-DG algebras and

p-DG categories. These are the structures used to give the categorifications of

quantum sl2 at a prime root of unity.

p-DG algebras and categories

Our goal in this section is to define p-DG categories and their Grothendieck

groups. We spend much of the section recalling definitions and properties from

[2, 3, 8]. A particularly remarkable feature is that under certain assumptions, the

Grothendieck group of a p-DG category can be described in terms of the usual (non

p-DG) Grothendieck group of the underlying category. Our main theorem involves

showing that U̇+
sl3

satisfies these assumptions. We start by defining p-DG algebras

and categories.

Definition 2.6.1. Let k be a field of characteristic p. We call the tuple (A, ∂) a

p-DG algebra if A is a Z-graded algebra over k and ∂ is a p-nilpotent (meaning that

∂p = 0) degree 2 endomorphism of A satisfying the following Leibniz rule: for all

f, g ∈ A,

∂(fg) = ∂(f)g + f∂(g). (2.76)

We refer to ∂ as a differential. For simplicity we will denote the p-DG algebra

(A, ∂) as A∂ or simply as A when the differential is understood.

Remark 2.6.2. Notice that the Leibniz rule implies that

∂n(fg) =
n
∑

i=0

(
n

i

)

∂n−i(f)∂i(g)
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(where ∂0(f) is taken to be f). In particular, ∂p(fg) = ∂p(f)g + f∂p(g) since k is of

characteristic p. Thus it suffices to check p-nilpotence on generators of A.

Example 2.6.3. We can place a differential on the polynomial ring A =

k[x1, . . . , xn] which is defined on generators by ∂(xi) = x2
i and then extended via

the Leibniz rule. By the Leibniz rule, ∂n(xi) = n!xn+1
i and so ∂ is p-nilpotent on

generators and thus everywhere on A. For degree conventions to match, we use the

grading where deg(xi) = 2.

Example 2.6.4. We consider the nilHecke algebra (over k) on n strands. In [8]

a family of differentials, ∂a, are defined on NHn. These differentials are defined

locally as follows and then extended by the Leibniz rule.

∂a

( )

= , (2.77)

∂a

⎛

⎜
⎝

⎞

⎟
⎠ = a − (a+ 1) + (a− 1) (2.78)

Example 2.6.3 shows that ∂a are p-nilpotent on dots. The differentials are p-

nilpotent on crossings if and only if a ∈ Fp ([8, Lemma 3.6]). We will return to this

example once we have defined p-DG Grothendieck groups. Of particular interest

will be ∂±1.

Definition 2.6.5. A left p-DG module (M, ∂M ) over a p-DG algebra (A, ∂A) is a

graded left module over A equipped with a k-linear, p-nilpotent differential ∂M of

degree 2 which satisfies the following Leibniz rule, for all a ∈ A,m ∈M ,

∂M (am) = ∂A(a)m+ a∂M(m). (2.79)
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As before, we will often simply write M instead of (M, ∂M).

Example 2.6.6. Let A∂ be as in example 2.6.3. Let M be the left regular module

A. We explore the differentials we can place on M to give M the structure of an

A∂-module. The Leibniz rule for modules means we can possibly have a differential

∂M where ∂M(1) ≠ 0. We set ∂M (1) =
∑

i aixi and extend via the Leibniz rule:

∂M(f) = ∂A(f) + ∂M(1) for any polynomial f ∈M . One can compute that

∂pM (1) =
∑

i

ai(ai + 1)(ai + 2) . . . (ai + p− 1)xp
i ,

and so ∂p(1) will be zero if and only if one of ai, ai + 1, . . . ai + p − 1 is zero for

each i. Thus ∂M is p-nilpotent if and only if each ai ∈ Fp. We recover the p-DG

algebra structure of A by taking each ai = 0. When ∂M(1) is non-zero, we call the

differential on M a twisted differential and M a twisted regular module.

A morphism between p-DG modules f : M → N is a degree preserving A-

module morphism which commutes with the respective differentials.

Example 2.6.7. Consider k itself as a p-DG algebra. The Leibniz rule implies that

any differential on k is necessarily trivial. The Leibniz rule for k∂-modules means

that any differential is actually just a p-nilpotent k-linear map. We use the term

p-complexes for k∂-modules. These are analogous to chain complexes but instead of

∂2 = 0, we have ∂p = 0. Except for the degree of the differential, these are the same

thing as Mayer’s complexes in [11].

Just as for ordinary chain complexes, there is a notion of homotopy between

two p-complexes. Given morphisms between k∂-modules, f, g : M → N , we say that
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f, g are homotopic if there is a k-linear map h of degree 2− 2p such that

f − g =
p−1
∑

i=0

∂iN ◦ h ◦ ∂
p−i−1
M . (2.80)

Example 2.6.8. Let A∂ be a p-DG algebra and M,N be A∂-modules. Let

Homi
A(M,N) be A-module maps of degree i. One can place a differential on the

total space HomA(M,N) :=
⊕

i Hom
i
A(M,N) as follows. For f ∈ HomA(M,N),

∂(f)(x) = ∂N (f(x)) − f(∂M(x)). This differential is p-nilpotent which gives the

space HomA(M,N) the structure of a p-complex. The p-DG module morphisms in

HomA∂
(M,N) are precisely the morphisms in Hom0

A(M,N) which are killed by this

differential.

Remark 2.6.9. The p-complexes above can be thought of as modules over

k[∂]/(∂p). Since k[∂]/(∂p) is a Hopf algebra, where comultiplication is given by

∆(∂) = ∂ ⊗ 1 + 1 ⊗ ∂, a consequence is that the tensor product of p-complexes is

again a p-complex. In fact, any p-DG algebra A∂ can be equipped with a k[∂]/(∂p)

module structure in a way which makes the category of A∂-modules closed under

tensor product with p-complexes (see [8, remark 2.11]).

The notion of a p-DG category extends that of a p-DG algebra.

Definition 2.6.10. A p-DG category (A, ∂) is a graded k-linear category A where

the Hom spaces HomA(X, Y ) are equipped with a p-nilpotent differential, ∂, of

degree 2 such that for all objects X, Y, Z ∈ A and all f ∈ HomA(X, Y ), g ∈

HomA(Y, Z) the differential satisfies the Leibniz rule

∂(g ◦ f) = ∂(g) ◦ f + g ◦ ∂(f). (2.81)
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Notice that for X, Y ∈ A, HomA(X, Y ) is a k∂-module.

A left p-DG module M over a p-DG category A is a covariant functor from A

to p-complexes which commutes with the differential,

M(∂A(f)) = ∂(M(f)).

A p-DG module M is said to be representable if it is isomorphic to

HomA(M,−) for some object M ∈ A. Representable modules are the analog for

categories of free modules for rings. We will see later that for U̇ we can restrict

our focus to representable modules. In light of Example 2.6.6 and Example 2.6.11

(which is still to come), we emphasize that a representable module M carries the

standard differential from A.

The category of left p-DG modules over a p-DG category A is abelian. We

denote this category A∂-mod.

Example 2.6.11. One can define twisted representable modules similar to the

modules in Example 2.6.6. The Leibniz rule for p-DG categories means that

differentials have to act trivially on identity morphisms. However, for a module,

this no longer needs to be true.

Consider the representable module Hom(M,−). For objects X ∈ A, we view

the p-complexes Hom(M,X) as being Hom(M,X) ◦ idM . Let φ be a degree two

morphism in EndA(M). We define a twisted differential ∂̃ on Hom(M,X) ◦ idM by

∂̃ (f ◦ idM) := ∂(f) + f ◦ φ. (2.82)
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For a general morphism φ, this differential may or may not be p-nilpotent. It

will be p-nilpotent when ∂(φ) = aφ2 for a ∈ Fp. We call these modules twisted

representable modules.

Remark 2.6.12. We will use the notation HomA∂
(M,N ) for morphisms of p-

DG modules and HomA(M,N ) for morphisms just as A-modules (where we just

view A as an additive category). Consider the representable p-DG modules M =

HomA(M,−) and N = HomA(N,−). The natural transformations in HomA(M,N )

are given by morphisms HomA(N,M) in the underlying category A. In the same

way as before we can place a p-complex structure on these natural transformations,

HomA(M,N ). The degree zero morphisms in HomA(N,M) which are killed by this

differential are the p-DG module morphisms.

In the same way as Remark 2.6.9, we can define the notion of homotopy

between two morphisms of p-DG modules. For morphisms between two p-DG

modules, f, g : M → N , we say that f, g are homotopic if there exists a

collection of linear maps hX , one for each X ∈ ObA, where each hX is a homotopy

between fM(X) and gN (X). A morphism f between two p-DG modules is called

null-homotopic if f is homotopic to the zero morphism. We define the homotopy

category of A∂-mod, H(A), to be the quotient of A∂-mod by null-homotopic

morphisms. We say that two p-complexes X, Y are quasi-isomorphic if there is a

map of p-complexes f : X → Y which yields an isomorphism in H(k∂). Similarly,

two A∂-modules M,N are quasi-isomorphic if there is a natural transformation

which induces quasi-isomorphism on the underlying p-complexes fX : M(X) →

N (X) for every object X ∈ A. We formally invert quasi-isomorphisms to obtain

the derived category, D(A).
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The morphisms in the p-DG derived category are not easy to understand. For

instance, a short exact sequence of A-modules

0→M→ N → O → 0,

need not be a short exact sequence as p-DG modules and so the relation [N ] =

[M]+ [O] is not guaranteed to hold in the p-DG Grothendieck group. A short exact

sequence of A-modules which are also cofibrant does lead to a short exact sequence

as p-DG modules and to relation in the Grothendieck group. Cofibrant modules

should be thought of as analogous to complexes of projective objects in ordinary

homological algebra.

Definition 2.6.13. Let A be a p-DG category and M a p-DG module over A.

i. M is said to be cofibrant if any surjective quasi-isomorphism of p-DG modules

f : N1 → N2 induces a homotopy equivalence of p-complexes HomA(M,N1) →

HomA(M,N2).

ii. M is a finite-cell module if there is a finite filtration on M by p-DG A-modules

F i,

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = M,

where the subquotients F i/F i−1 are all isomorphic to direct sums of

representable modules.

iii. Viewing M as an object in the derived category, we say that M is compact if

HomD(A)(M,−) commutes with taking direct sums.

At this stage we could try to define the Grothendieck group of a p-DG

category to be the Grothendieck group of D(A). For this to be non-zero we will
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need to impose some boundedness conditions. We define the compact derived

category Dc(A) to be the strictly full subcategory of D(A) consisting of compact

objects. We denote the Grothendieck group of Dc(A) by K0(A, ∂).

Remark 2.6.14. The Grothendieck group of Dc(k∂) is Op [4]. One remarkable

feature about p-DG algebras is that K0(A) is naturally a module over K0(k∂).

This is because, following Remark 2.6.9, tensoring A∂-modules with p-complexes

gives rise to exact functors and an action of H(k∂) on H(A∂). Since K0(k∂) ∼= Op,

this gives p-DG Grothendieck groups the structure of an O-module instead of just

the usual Z[q, q−1] structure one would expect. We will soon see that in certain

instances there is an isomorphism

K0(A, ∂) ∼= K0(A)⊗Z[q,q−1] Op, (2.83)

where K0(A) is the Grothendieck group of A as an p-DG category.

Example 2.6.15. [2.6.4 cont] Set (NH, ∂) :=
⊕

n∈N(NHn, ∂). For the

differentials∂1 and ∂−1 defined in 2.6.4 the p-DG Grothendieck group K0(NH, ∂)

is isomorphic to u+
sl2
. But, of course,

u+
sl2
∼= K0(NH)⊗Z[q,q−1] Op. (2.84)

Definition 2.6.16. We define a p-DG 2-category to be a graded k-linear 2-category

A where the 1-morphisms are p-DG categories and the differential satisfies the

Leibniz rule for both horizontal and vertical composition of 2-morphisms.
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The homotopy category is defined as

H(A) :=
⊕

n,m∈Ob(A)

H(HomA(n,m)). (2.85)

Similarly the derived category and Grothendieck group are defined as

D(A) :=
⊕

n,m∈Ob(A)

D(HomA(n,m)), K0(A) :=
⊕

n,m∈Ob(A)

K0(HomA(n,m)).

(2.86)

Induced differentials and filtrations

Given a p-DG category A and a set of idempotents {εi}, one can consider the

partial idempotent completion. In some cases it is possible to extend the differential

on A to the partial idempotent completion. In this section we recall the conditions

given in [3] which allow a differential to be extended to an idempotent completion.

Of particular interest will be understanding when certain submodules and quotient

modules of representable p-DG modules inherit a differential.

Given a p-DG algebra A and an idempotent ε ∈ A, we can consider when the

decomposition A = Aε ⊕ A(1 − ε) holds as p-DG modules. First ,we notice that for

any idempotent ε, the Leibniz rule implies that ε∂(ε)ε = 2ε∂(ε)ε and so

ε∂(ε)ε = 0. (2.87)

This implies, again using the Leibniz rule, that Aε is preserved by the differential if

and only if

ε∂(ε) = 0. (2.88)
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Said another way, if ε is an idempotent with the property that ε∂(ε) = 0, then Aε

is a p-DG submodule with differential

∂Aε(aε) := ∂(aε) = ∂(aε)ε. (2.89)

Now suppose that A(1 − ε) is a p-DG submodule (that A(1 − ε) is preserved

by the differential). This is equivalent to ∂(1− ε)ε = 0. Using the equality

0 = ∂((1− ε)ε)) = ∂(1− ε)ε+ (1− ε)∂(ε),

this is equivalent to

∂(ε) = ε∂(ε) (2.90)

(and hence to ∂(ε)ε = 0). Similar to before, we see that Aε is a p-DG quotient if

and only if ∂(ε) = ε∂(ε). The equation

0 = ∂(aε(1 − ε)) = aε∂(1 − ε) + ∂(aε)(1 − ε), (2.91)

implies that in the quotient Aε we again have the equality ∂(aε) = ∂(aε)ε. Said

again, as a p-DG quotient, Aε has a differential given by

∂Aε(ae) := ∂(ae) = ∂(aε)ε. (2.92)

Note that by (2.88) and (2.90) Aε will be both a p-DG submodule and

quotient module if and only if ∂(ε) = 0.
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Definition 2.7.1. We say that ε is a subquotient idempotent if ε is an idempotent

in a p-DG submodule Aε′ and Aε is a quotient of Aε′. In this case we call Aε a

subquotient summand.

Lemma 2.7.2. [3, Lemma 4.4] For a subquotient idempotent ε in a p-DG algebra

A, there is an inherited differential on εAε which is given by

∂εAε(εaε) := ε∂(εaε)ε (2.93)

Remark 2.7.3. The discussion above has all been regarding p-DG algebras. The

same statements can all be used for representable modules M over a p-DG category

A. See [3, Section 4.5] for one way to do so. In the language of categories, we are

interested in subquotient idempotents ε ∈ EndA(M) and Mε = HomA(M,−) ◦ ε.

We refer to these idempotents as subquotient idempotents in A.

A consequence of the discussion above is that given a collection of

subquotient idempotents in a p-DG category A, the partial idempotent completion

Ȧ = A ({εi}) inherits a differential from A. Recall that morphisms in Ȧ are triples

ḟ = (εi, f, εj). The inherited differential is given by

∂Ȧ(ḟ) := εi∂(εifεj)εi. (2.94)

Remark 2.7.4. It is this reason why we prefer the partial idempotent completion,

U̇ , over the Karoubi envelope, Kar(U). The idempotents ea will be subquotient

idempotents and so we will get an induced differential on U̇ .

We collect below some propositions and theorems to aid in computing

Grothendieck groups of p-DG algebras and categories.
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Definition 2.7.5. Let A be a p-DG category. For an object M , an Fc-filtration on

M is a finite set of objects {Ni | i ∈ I}, equipped with inclusion and projection

maps σi,λi for which the following conditions hold

i)

σiλj = δi,jIdNi
, (2.95)

IdM =
∑

i

λiσi. (2.96)

ii) There exists some total order on I for which ∂(σi)λj = 0 for j ≥ i.

Remark 2.7.6. The idea behind an Fc-filtration is that it gives a filtration on

the representable module HomA(M,−) where the subquotients are isomorphic to

representable modules. The condition involving the differential, ∂(σi)λj = 0 for j ≥

i, ensures that the subquotients are actually p-DG subquotients. In the language of

Definition 2.7.1, the idempotents λiσi are subquotient idempotents. The upshot of

this is the following proposition.

Proposition 2.7.7 ([3, Proposition 4.15]). Given an Fc-filtration, the idempotents

εi := λiσi and the order on I define a filtration on M where the subquotients are

p-DG isomorphic to the representable modules Ni.

Definition 2.7.8. A Karoubian mixed p-DG category with self dual

indecomposable objects is fantastically filtered if every object has an Fc filtration

where the summands are grading shifts of the indecomposable objects.

Proposition 2.7.9 ([3, Proposition 4.24]). If a p-DG category is fantastically

filtered, then K0(A, ∂) ∼= K0(A)⊗Z[q,q−1] Op
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The previous proposition motivates the following: to show that the p-DG

Grothendieck group of a category is what you expect it to be, show that the

category is fantastically filtered.

U and U̇ as p-DG categories

In this section we consider Lauda’s U where k is of characteristic p. We

sketch the results of [3] which give a categorification of the idempotented form of

quantum sl2 at a root of unity, U̇p.

The differential ∂1 from examples 2.6.4, 2.6.15 is extended to all of U by the

following.

∂1

⎛

⎝

⎞

⎠ = 2 , ∂1

⎛

⎜
⎝

⎞

⎟
⎠ = − 2 ,

∂1

⎛

⎝

⎞

⎠ = 2 , ∂1

⎛

⎜
⎝

⎞

⎟
⎠ = − 2 ,

∂1

(
λ
)

=
λ
−

λ

1 , ∂1

(

λ

)

= (1− λ)
λ

∂1

(

λ

)

=
λ

+
λ

1 , ∂1

(
λ
)

= (1 + λ)
λ

The other differential, ∂−1, can be extended in a similar way. It turns out that

the differentials are in a sense dual to each other in the sense that ∂−1 = τ̃ ∂1τ̃−1.

Similarly ∂−1 = ψ̃∂1ψ̃. This means that ∂1 is left unchanged under conjugation by

the composition τ̃ ◦ ψ̃. In order for these differentials to induce a differential on U̇

it must be the case that the idempotents in U̇ are subquotient idempotents (recall

that U̇ is the partial idempotent completion with respect to the idempotents ea.)

46



It is indeed the case that the ea are subquotient idempotents with respect

to the differentials ∂1, and so the differentials can be extended to U̇ . In [3], the

authors derive formulas for the induced differential for upward splitters and merges

and then use that ∂1 is fixed under conjugation by τ̃ ◦ ψ̃ to compute the action of

the differential on downward splitters and merges. Explicitly,

∂1

⎛

⎜
⎜
⎜
⎝

a

k

⎞

⎟
⎟
⎟
⎠

= ψ̃ ◦ τ̃ ◦ ∂1

⎛

⎜
⎜
⎜
⎝

a

k

⎞

⎟
⎟
⎟
⎠

. (2.97)

Remark 2.8.1. One subtlety is that this differential no longer agrees with the

induced differential on the partial idempotent completion. For the differential to

agree, the downward thick strands should be defined using a different idempotent.

The idempotent which should be used for the downward strands is ψ̃(ea).

We adopt the notation from [3, (2.2a), (2.2b)] for certain linear polynomials

which we also view as elements in NHn

❅❅ n :=
n
∑

i=1

(n− i)xi , "" n :=
n
∑

i=1

(i− 1)xi. (2.98)

We list some formulas below for the differential on U̇ (see [3] for details). In

light of the above remark, if these are viewed as the induced differential ∂̄1, the

partial idempotent completion needs to be with respect to different idempotents for

the downward pointing strands.

∂̄1

⎛

⎜
⎜
⎝

a

. . .
⎞

⎟
⎟
⎠

= −

a

. . .

❅❅ a
, (2.99)
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∂̄1

⎛

⎜
⎜
⎜
⎝

a

. . .

⎞

⎟
⎟
⎟
⎠

= −

a

. . .

"" a
, (2.100)

∂̄1

⎛

⎜
⎜
⎝

a

k a− k⎞

⎟
⎟
⎠

= −(a− k)

a

k a− k

, (2.101)

∂̄1

⎛

⎜
⎜
⎜
⎝

a

k a− k

⎞

⎟
⎟
⎟
⎠

= −(k)

a

k a− k

, (2.102)

∂̄1

⎛

⎜
⎜
⎜
⎝

a

k a− k

⎞

⎟
⎟
⎟
⎠

= −(a− k)

a

k a− k

, (2.103)

∂̄1

⎛

⎜
⎜
⎝

a

k a− k⎞

⎟
⎟
⎠

= −(k)

a

k a− k

. (2.104)

To obtain similar formulas for ∂̄−1 one can conjugate by τ̃ .

It is easy to see that the differentials ∂1 and ∂−1 act the same on polynomials.

Their action on Schur polynomials has a particularly nice description. We introduce

some notation designed to make formulas easier to write. For a partition λ ∈

P (a, b), we denote by λ + ! a new partition which is obtained from λ by adding

a single box. We don’t allow λ + ! to have a + 1 rows (we require that it still be

in P (a)), but we do allow it to have b + 1 columns. We will index sums by this new

symbol. The index in
∑

λ+!
is meant to be understood as the sum over all ways

to form a new partition by adding a box to λ. The content of a box in a Young
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diagram is the column number minus the row number. The contents of each box

have been labeled in the example below.

0 1 2 3

−1 0 1 2

−2 −1 0

−3

.

For partitions λ+!, we denote the content of the added box by C(!).

Lemma 2.8.2 ([3, Lemma 2.4]). For any Schur polynomial πλ ∈ P (a) the

differentials ∂±1 act as

∂±1(πλ) =
∑

λ+!

C(!)πλ+!. (2.105)

When viewing Schur polynomials as elements of U̇ , the Lemma above results

in the following diagrammatically equality:

∂̄±1

⎛

⎜
⎜
⎝

a

πλ

⎞

⎟
⎟
⎠

=
∑

λ+!

C(!)

a

πλ+! . (2.106)

A categorification of U̇ at a prime root of unity

The p-DG 2-category (U̇ , ∂1) categorifies U̇p. In other words,

K0(U̇ , ∂1) ∼= U̇A ⊗Z[q,q−1] Op. (2.107)

Relations (2.42)-(2.45) are enough to decompose any 1-morphism in terms of

indecomposable 1-morphisms. The task in [3] was to prove that the direct sum
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decompositions are actually Fc-filtrations. Showing that (2.42) and (2.43) are Fc-

filtrations is comparatively straightforward. Showing that (2.44) and (2.45) are

Fc-filtrations is much more difficult and crucially relies on the explicit idempotents

given in the Stošić formula [7, Theorem 5.9]. The special case a = b = 1 is Lauda’s

original decomposition given in (2.33) and (2.34). It is shown in [7] that U̇ is self-

dual and mixed.

This means that U̇ is fantastically filtered and so

K0(U̇ , ∂1) ∼= K0(U̇)⊗Z[q,q−1] Op. (2.108)

Since U̇ categorifies U̇A we have that K0(U̇) ∼= U̇A. This gives an isomorphism

K0(U̇ , ∂1) ∼= U̇A ⊗Z[q,q−1] Op = U̇p. (2.109)
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CHAPTER III

CATEGORIFICATION OF THE POSITIVE HALF OF QUANTUM SL3 AT A

PRIME ROOT OF UNITY

Quantum sl3

We begin this chapter by recalling the work that has been done categorifying

quantum sl+3 . In the first section we define the quantum group U+
sl3

and construct

Khovanov and Lauda’s diagrammatic category U+
sl3

which categorifies it [5]. We

view this category as an extension of U+
sl2

(see Remark 2.2.4).

Similar to the case for quantum sl2, a thick calculus has been developed in

[12] which enables a diagrammatic representation of 2-morphisms directly inside of

U̇+
sl3
. Stošić also gives an idempotent decomposition for certain 2-morphisms which

is sufficient to decompose any 2-morphism into a direct sum of indecomposable

2-morphisms.

In [8], a family of differentials is placed on the thin category U+
sl3

which

gives the structure of a p-DG category. They show that for only two of these

differentials, the quantum Serre relations hold. When restricted to E1 (or E2) these

differentials are precisely the differentials ∂±1 in Section 2.8. We then extend

these differentials to U̇+
sl3
, giving it a p-DG structure. We derive formulas for

how the differentials act on thick strands. Our main result (Proposition 3.3.2)

is to show that the idempotent decomposition given in [12] together with one

of the differentials from [8] is an Fc-filtration. Since, in addition, U+
sl3

is mixed

and Karoubian we see that U+
sl3

is Fc-filtered. By Proposition 2.7.9, this gives a

categorification of U̇+
sl3

at a prime root of unity.
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Remark 3.1.1. It should be noted that the work mentioned above–the

categorification of U+
sl3
, the development of the thick calculus, and the differential

placed on U+
sl3
–was all done in the more general setting of quantum sln. The Stošić

formula in [12], however, is only sufficient to decompose every 2-morphism in sl3.

For that reason, we work with sl3 specifically. Lusztig’s canonical basis for U+
sl4

is considerably more complicated where the basis consists of 14 different types of

monomials [13, Theorem 2.2].

In this chapter we drop the subscript sl3 letting U+ denote U+
sl3
. As in the

previous chapter, where we dropped that subscript sl2, in this chapter we drop the

subscript sl3 letting U+ denote U+
sl3
. We will denote the categorified versions in a

similar manner.

Categorified and decategorified quantum sl+3

Definition 3.2.1. The positive half of quantum sl3, U+, is the algebra over Q(q)

generated by E1 and E2 subject to the relation

E2
i Ej + EjE

2
i = [2]EiEjEi, for i ≠ j. (3.1)

Remark 3.2.2. We will not work with the idempotented version like we did in

Section 2.1. This is because we are only dealing with the positive half of quantum

sl3 and so do not need the projection morphisms.

Similar to the sl2 case, we will consider the Z[q, q−1] subalgebra U+
A spanned

by the divided powers. Using divided powers, the relation in (3.1) becomes

E(2)
i Ej + EjE

(2)
i = EiEjEi, for i ≠ j. (3.2)
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We also have the sl2 relation

E(a)
i E(b)

i =

[
a+ b

b

]

E(a+b)
i . (3.3)

Lusztig’s canonical basis B of U+
A is given by

B = {E(a)
1 E(b)

2 E(c)
1 , E(a)

2 E(b)
1 E(c)

2 | b ≥ a+ c, a, b, c,∈ N}. (3.4)

Non-basis elements E(a)
i E(b)

j E(c)
i for i ≠ j, b ≤ a + c can be decomposed in this

basis as [10, Lemma 42.1.2]

E(a)
i E(b)

j E(c)
i =

∑

p+r=b
p≤c
r≤a

[
a+ c− b

c− p

]

E(p)
i E(a+c)

j E(r)
i . (3.5)

In [5], Khovanov and Lauda give a diagrammatic description for a

categorification of the positive half of an arbitrary quantum group. The

categorification follows a similar construction to that previously discussed for

Usl2 . For an arbitrary quantum group (thin) strands are labeled with colors, one

for each generator of the quantum group. The relations for sl2 hold for crossings

of strands of the same color and there are new relations regarding the crossing of

strands of different colors which depend on i · j. For sl3, the category is defined

diagrammatically as follows.

Definition 3.2.3. The category U+ is defined to be the Z-linear category which

has a single object ∗. The 1-morphisms are formal direct sums of grading shifts of

composites of E1, E2. The 2-morphisms are generated by:
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i. Identity 2-morphisms IdE1 and IdE2 , which we depict as

E1

:= IdE1 ,

E2

:= IdE2 . (3.6)

We will frequently omit labeling the strands and instead draw the strands using

colors; one color for E1 and another for E2.

ii. The following 2-morphisms of degree 2.

Ei

(3.7)

iii. The following 2-morphisms of degree −2.

Ei Ei

(3.8)

iv. For i ≠ j, the following 2-morphisms of degree 1.

Ei Ej

(3.9)

The defining relations are:

1. NilHecke relations hold for strands of a given color. Explicitly, for strands of

any single color
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= 0, = , (3.10)

= − = − . (3.11)

2. Two color relations: for crossings of different colors (for i ≠ j), we impose the

following relations.

Ei Ej

=

Ei Ej

,

Ei Ej

=

Ei Ej

, (3.12)

Ei Ej

=

Ei Ej

+

Ei Ej

, (3.13)

=

Ei Ei Ej Ei Ei Ej

(3.14)

=

Ei Ej Ei Ei Ej Ei

+

Ei Ej Ei

. (3.15)
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For strands of a single color, we will use the box notation given in Section 2.4.

This means that we have idempotents ea in both End(Ea
1 ) and End(Ea

2 ). We will

define U̇+ to be the partial idempotent completion with respect to the idempotents

{(Ea
1 , ψ̃(ea)), (Ea

2 , ψ̃(ea)) | a ∈ N}.

In [12], the thick calculus introduced in [7] is extended to U̇+ (and more

generally to U̇+
sln
). Diagrammatically we can define U̇+ by adding thick strands for

each color to the generators of U+. We add complete splitters for each color which

individually satisfy relations (2.62), (2.63). A crossing of thick strands of different

colors is defined by expressing thick edges as thin ones.

a b

:=

a b

δb δa

. . . . . .

. . . . . .

. . .

(3.16)

Remark 3.2.4. We reiterate that our choice of idempotents for the partial

idempotent completion is made so that we can work with the differential ∂−1. This

is the differential for which the idempotent decomposition given in [12] is an Fc-

filtration. This also necessitates defining the splitters as

a

. . .

:= (ψ̃(ea), ψ̃(ea), IdEa
i
) ,

a

. . .

:= (IdEa
i
, ψ̃(ea), ψ̃(ea)). (3.17)
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Having a diagrammatic description enables us to compute directly in U̇+. We

recall some of the properties from U̇+ which we will use and which can be deduced

from the defining relations.

Proposition 3.2.5 (Associativity of splitters [7, Proposition 2.2.4]). For any color,

the following holds:

=

a+ b+ c

b ca

a+ b+ c

a b c

.

Proposition 3.2.6 (Pitchfork lemma). For any two colors,

=

a+ b

a bc

c a+ b

a bc

c

.

Proof. After expressing the thick strands as thin strands, repeatedly apply relations

(3.12) and (3.14).

Proposition 3.2.7 (Dot slide [12, Proposition 6]). Thick dots can slide past

crossings of different colors.

=

πα

πα

a b a b

and =

πα

πα

a b a b

In [12, Theorem 2], Stošić shows that the indecomposable 1-morphisms, up to

shift, in U̇+ are {E (a)
1 E (b)

2 E (c)
1 , E (a)

2 E (b)
1 E (c)

2 | b ≥ a + c, a, b, c,∈ N} and that they

are pairwise non-isomorphic with the exception that

E (a)
1 E (a+c)

2 E (c)
1
∼= E (a)

2 E (a+c)
1 E (c)

2 .
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These are the self-dual indecomposable 1-morphisms, and they correspond precisely

to Lusztig’s canonical basis for UA.

The decomposition of non-basis elements given in (3.5) is categorified by

finding an idempotent decomposition with indecomposable summands.

Theorem 3.2.8 ([12, Theorem 3]). For i ≠ j, b ≤ a+ c there is a decomposition

E (a)
i E (b)

j E (c)
i =

⊕

p+r=b
p≤c
r≤a

⊕

α∈P (c−p,a−r)

E(p)
j E(a+c)

i E(r)
j {2|α|− (c− p)(a− r)}. (3.18)

Remark 3.2.9. As in 2.4.4, the right hand side above can be written as

⊕

p+r=b
p≤c
r≤a

[
a + c− b

c− p

]

E(p)
j E(a+c)

i E(r)
j ,

using the equality
[
a+c−b
c−p

]

=
∑

α∈P (c−p,a−r) q
2|α|−(c−p)(a−r).

Stošić proves this theorem by explicitly giving projection and inclusion 2-

morphisms which decompose the left hand side. The projection and inclusion maps

are defined as follows. For every integer p with max(0, b − a) ≤ p ≤ min(b, c), and

partition α ∈ P (c− p, a− r), the inclusion morphisms are

λpα := (−1)r(a+c−r)+|α|

πα

p

a+ c

r

p

a c

, (3.19)
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while the projection morphisms are

σp
α :=

πα̂

a p+ r c

a− r

p r

. (3.20)

In the next section we place differentials on U̇+ which extend ∂±1. Our main

result is to show that this collection of idempotents, together with a partial order,

gives an Fc-filtration with respect to one of these differentials. This is enough to

decompose any 1-morphism in U̇+ and so U̇+ is Fc-filtered. It is also true that U̇+

is Karoubian and mixed. Hence the p-DG Grothendieck group of U̇+
3 is isomorphic

to K0

(

U̇+
3

)

⊗Z[q,q−1]Op. This gives a categorification of the positive half of quantum

sl3 at a prime root of unity.

A p-DG structure on U̇+
sl3

In [8, Lemma 4.3] a family of differentials is placed on KLR algebras giving

p-DG structures. For A2, the Serre relation (3.1) is lifted to U+ for two of these

differentials (see [8, Proposition 4.11]). When restricted to diagrams which only

involve strands of a single color, these two differentials act as ∂±1 from Section 2.8.

We will extend one of their differentials to U̇+ giving a p-DG structure.

Remark 3.3.1. In what follows we focus on ∂−1, which we will simply denote

∂. With this differential, and a partial order, the idempotent decomposition in

Theorem 3.2.8 is an Fc-filtration. An idempotent decomposition that is an Fc-

filtration with respect to the differential ∂1 and where the differential agrees with
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the induced differential on the partial idempotent completion with respect to the

usual idempotents can be obtained by composing the idempotents from [12] with ψ̃.

This is the same thing as reflecting the idempotents along a horizontal axis.

We define ∂ on generators as follows:

∂

⎛

⎜
⎜
⎜
⎝

Ei

⎞

⎟
⎟
⎟
⎠

=

Ei

2
, (3.21)

∂

⎛

⎜
⎜
⎜
⎝

Ei Ei

⎞

⎟
⎟
⎟
⎠

= −

Ei Ei Ei Ei

− , (3.22)

∂

⎛

⎜
⎜
⎜
⎝

Ei Ej

⎞

⎟
⎟
⎟
⎠

=

Ei Ej

=

Ei Ej

, for i ≠ j. (3.23)

When considering the partial idempotent completion, U̇+, the idempotents

{(Ea
1 , ψ̃(ea)), (E

a
2 , ψ̃(ea))} are all subquotient idempotents and so we get a

differential on U̇+. For single color thick strands and splitters, we can use the

identity ∂̄ = τ̃ ∂̄1τ̃ and the the formulas in (2.99)-(2.106) to derive the following

formulas:

∂̄

⎛

⎜
⎜
⎝

a

. . .
⎞

⎟
⎟
⎠

= −

a

. . .

"" a
, (3.24)
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∂̄

⎛

⎜
⎜
⎜
⎝

a

. . .

⎞

⎟
⎟
⎟
⎠

= −

a

. . .

❅❅ a
, (3.25)

∂̄

⎛

⎜
⎜
⎝

a

k a− k⎞

⎟
⎟
⎠

= −(k)

a

k a− k

, (3.26)

∂̄

⎛

⎜
⎜
⎜
⎝

a

k a− k

⎞

⎟
⎟
⎟
⎠

= −(a− k)

a

k a− k

, (3.27)

∂̄

⎛

⎜
⎜
⎝

a

πλ

⎞

⎟
⎟
⎠

=
∑

λ+!

C(!)

a

πλ+! . (3.28)

It is also a straightforward computation to show that ∂(δn) = ❅❅ nδn. On thick

2 color crossings, the differential acts as

∂̄

⎛

⎜
⎜
⎜
⎝

a b

⎞

⎟
⎟
⎟
⎠

= (b)

a b

. (3.29)

Proof. To prove (3.29), we express the thick crossing by

a b

=

a b

δb δa

. . . . . .

. . . . . .

. . .

. (3.30)
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The Leibniz rule means that ∂ acts via summation over all the ways to apply the

differential to various different splitters, crossings, etc.

On the bottommost splitter of each color, the differential acts by

multiplication of δb (resp. δa) by ❅❅ b (resp. ❅❅ a). Each summand has a pair of

strands which are symmetric in 2 variables and so is zero. For each color, after

applying the differential to the top splitter and box we get the same term with

opposite signs. Applying the differential to the 2-color crossings, the only non-zero

terms are

a b

δb δa

. . . . . .

. . . . . .

. . .

=

a b

(3.31)

and there are precisely b such terms.

We now proceed to our main result.

Proposition 3.3.2. The direct sum decomposition

E (a)
1 E (b)

2 E (c)
1
∼=

⊕

p+r=b,p≤c,r≤a

⊕

α∈P (c−p,a−r)

E (p)
2 E (a+c)

1 E (r)
2 {2|α|− (c− p)(a− r)}

is an Fc-filtration.

We use the partial order (β, p′) ≤ (α, p) if and only if p′ < p, or p′ = p and

β ≤ α. Recall that for two partitions, β ≤ α means that the Young diagram for

α can be obtained from the Young diagram for β by successively adding boxes. We

need to check that σp′

β ∂(λ
p
α) = 0 for (β, p′) ≤ (α, p). We start by computing ∂(λpα).
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To simplify things we first compute the differential of the top half of λpα.

∂

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

πα

a+ c− p
p+ r

p

a c ⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= −(a)
πα

a+ c− p
p+ r

p

a c

+(p+r)
πα

a+ c− p
p+ r

p

a c

−(p)
πα

a+ c− p
p+ r

p

a c

+
∑

α+!

(C(!))
πα+!

a+ c− p
p+ r

p

a c

= (r − a)
πα

a+ c− p
p+ r

p

a c

+
∑

α+!

(C(!))
πα+!

a+ c− p
p+ r

p

a c

. (3.32)

Using the Pieri rule, the first term can be written as

∑

α+!

(r − a)
πα+!

a+ c− p
p+ r

p

a c

. (3.33)
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So we have

∂

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

πα

a+ c− p
p+ r

p

a c ⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
∑

α+!

(C(!) + r − a)
πα+!

a+ c− p
p+ r

p

a c

. (3.34)

Let k = a+ c− p− r. Computing the differential of the bottom half yields

∂

⎛

⎜
⎜
⎜
⎜
⎝

p
a+ c

r

p
⎞

⎟
⎟
⎟
⎟
⎠

= (k)

p
a+ c

r

p

− (k)

p
a+ c

r

p

. (3.35)

Putting these together, we have computed ∂(λpα).

∂

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

πα

p

a+ c

r

p

a c
⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
∑

α+!

(C(!) + r − a)

πα+!

p

a+ c

r

p

a c

(3.36)

+(k)

πα

p

a+ c

r

p

a c

− (k)

πα

p

a+ c

r

p

a c

(3.37)
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When we compose σp′

β ∂(λ
p
α), we get three terms.

∑

α+!

(C(!)+ r−a)
πα+!

πβ̂

p a+ c r

p

p′ r′

c

r′

a+ c

+(k)
πα

πβ̂

p a+ c r

p

p′ r′

c

r′

a+ c

− (k)
πα

πβ̂

p a+ c r

p

p′ r′

c

r′

a+ c

(3.38)

We examine the summands of the first term by considering 3 cases exhausting the

possibilities of what α+! can be.

1. If the partition α + ! is in P (c − p, a − r), then we can apply [12, Lemma 4]

which implies the summand will be zero for β ≤ α.

2. If the partition α +! is not in P (c− p, a− r) and the new box was added to

the first row of α, this means the content of the added box was precisely a− r

and the coefficient, C(!) + r − a, of that summand is 0.

3. If the partition α+! is not in P (c− p, a− r) and the new box was not added

to the first row of α, then α + ! must have c − p + 1 rows and again the

summand is 0 (Section 2.8).

Thus, when β ≤ α, the first term of (3.38) vanishes.
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Denote the second and third terms in (3.38) without the coefficients k,−k as

Picture 2 and Picture 3 respectively. That is,

Picture 2 = πα

πβ̂

p a+ c r

p

p′ r′

c

r′

a+ c

, Picture 3 = πα

πβ̂

p a+ c r

p

p′ r′

c

r′

a+ c

.

It follows from [12, Theorem 5] that Picture 2 is 0 unless β = α and p = p′ in

which case

Picture 2 = δp,p′δα,β(−1)
|α|+r(a+c−r)

p
a+ c

r

. (3.39)

It remains to show that the same is true for Picture 3 since the coefficients show up

with opposite signs. This would prove that σp′

β ∂(λ
p
α) = 0 for (β, p′) ≤ (α, p). We

resolve Picture 3 following the computation in the proof of Lemma 4 in [12].

We start by following [12, Lemma 4] verbatim, though with an extra dot

which we have highlighted for emphasis, up until before the last equality in the

middle of page 269. Now apply (2.67) to send the extra dot upwards through the

splitter, resulting in 2 terms. We then apply the Pieri rule to the second term

before applying [12, Lemma 3 ] to both terms. Note that we have drawn our

diagrams slightly differently than those in [12]. It is easily seen by the pitchfork
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lemma and dot slide rule that the two ways of drawing the diagrams are equivalent.

πα

πβ̂

p a+ c r

p

p′ r′

c

r′

a+ c

=
∑

ψ∈P (a−r′+c−p,p)

πγ

πψ

πψ̂

p a+ c r

p

p′ r′

r′

a+ c

,

=
∑

ψ∈P (a−r′+c−p,p)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

πγ

πψ

πψ̂

p a+ c r

p

p′ r′

r′

a+ c

−
πγ

πψ

πψ̂

p a+ c r

p

p′ r′

r′

a+ c ⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

∑

ψ∈P (a−r′+c−p,p)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

πγ

πψ

πψ̂

p a+ c r

p

p′ r′

r′

a+ c

−
∑

γ+!

πγ+!

πψ

πψ̂

p a+ c r

p

p′ r′

r′

a+ c
⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.40)
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=
∑

ψ∈P (a−r′+c−p,p)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

πγ/(K−ψ)

πψ̂

p a+ c r

a+ c− r′

p′ r′

r′

a+ c

−
∑

γ+! πγ+!/(K−ψ)

πψ̂

p a+ c r

a+ c− r′

p′ r′

r′

a+ c ⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.41)

Note that in the last equality in the middle of page 269 in [12], after the change of

variables φ = ¯̂ψ, the sum was restricted to φ ⊂ γ since the remaining terms are

zero. This is not true for us because of the extra box. Instead we continue to sum

over φ ∈ P (a− r′ + c− p, p). The arguments given in [12] (from the bottom of page

269) resolve diagrams similar to (3.41) though with different labels on the Schur

polynomials. His arguments are local away from the polynomials and do not rely on

the restricted sum. Thus Picture 3 is equal to (3.42).

∑

φ

∑

w∈P (r′,x)

r
∑

i=0

∑

f1,f2,f3∈P (i,r′−i)

∑

y∈P (a+c−r′,i)

cKi

f1f2f3

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

πŵ πf1

πf̄3

πw πy

πŷ

πf2

πψ̂

πγ/(K−ψ)

p r

p′ r′a+ c

r − i r′ − i

x

r′

−
∑

γ+!

πŵ πf1

πf̄3

πw πy

πŷ

πf2

πψ̂

πγ+!/(K−ψ)

p r

p′ r′a+ c

r − i r′ − i

x

r′

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.42)
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To analyze the digon in the middle of both terms in (3.42) we will need the

following lemma.

Lemma 3.3.3. For partitions γ ∈ P (a, b), φ ∈ P (a)

∑

ν∈P (a,b)

∑

ν+!

cγφ,ν πν+!

a

−
∑

ν′∈P (a,b+1)

∑

γ+!

cγ+!

φ,ν′
πν′

a

(3.43)

=
∑

ν∈P (a,b)

∑

ν+!∈P (a,b)

cγφ,ν πν+!

a

−
∑

ν′∈P (a,b)

∑

γ+!

cγ+!

φ,ν′
πν′

a

(3.44)

The difference between (3.43) and (3.44) is the restricted sum in (3.44). The

lemma is true if and only if (3.45) holds, which we prove below.

∑

ν∈P (a,b)

∑

(ν+!)1=b+1

cγφ,ν πν+!

a

=
∑

ν′∈P (a,b)
ν′1=b+1

cγ+!

φ,ν′
πν′

a

. (3.45)

Proof. If ν ′1 = b+1 then cγ+!

φ,ν′ can be non-zero only if (γ+!)1 = b+1 and since γ ∈

P (a, b), γ1 = b and the box was added to γ in the first row. Similarly cγ+!

φ,ν′ can only

be non-zero if ν ′2 ≤ b. Let ν = (b, ν2 . . . , νa). The Littlewood-Richardson coefficients

cγ+!

φ,ν′ , c
γ
φ,ν are equal since the skew tableaux are the same, (γ +!) \ ν ′ = γ \ ν.

Similarly, if (ν + !)1 = b + 1 then cγφ,ν can be non-zero only if γ1 = b but

then letting ν ′ = (b + 1, ν2, . . . νa) and γ + ! = (b + 1, γ2, . . . , γa) the corresponding

Littlewood-Richardson coefficients again agree.
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Now we analyze the bigons in the middle part of (3.42). By definition of πγ/φ,

πγ/φ

πy

πf̄3

πw
−
∑

γ+!

πf̄3

πw

πγ+!/φ

πy
=

∑

ν∈P (a+c−r′,r′−r)

cγφ,ν
πν

πy

πf̄3

πw
(3.46)

−
∑

ν′∈P (a+c−r′,r′−r+1)

∑

γ+!

cγ+!

φ,ν′

πf̄3

πw

πν′

πy
.

Next we apply Lemma 3.3.3 to (3.46). This restricts the size of the partitions we

need to sum over and gives the following.

∑

ν,ν+!∈P (a+c−r′,r′−r)

cγφ,ν
πν+!

πy

πf̄3

πw
−

∑

ν′∈P (a+c−r′,r′−r)

∑

γ+!

cγ+!

φ,ν′

πf̄3

πw

πν′

πy
(3.47)

Since ν ′, ν + ! ∈ P (a + c − r′, r − r′), we can make the same argument as in

[12] with the only change being that his equation (34) becomes

|w|+ |f3|+ |y|+ |γ|+ 1− |φ| = r′(a+ c− r′), (3.48)

since our partitions ν have exactly one more box that his. This results in the

inequality

|φ|+ (a + c− i− p)(r − i) + (r′ − i)(r′ − r) ≤ 1. (3.49)
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Each parenthetical factor on the left-hand side is non-negative so either |φ| = 0 or

|φ| = 1.

If |φ| = 0, then the coefficients cγφ,ν , c
γ+!

φ,ν′ in (3.47) are nonzero only when

ν = γ, ν ′ = γ + !, in which case the coefficients are 1 and the terms cancel in

(3.47).

If |φ| = 1, then (3.49) implies that both (a + c − i − p)(r − i) = 0 and

(r′ − i)(r′ − r) = 0. In addition, since r′ ≥ r ≥ i and a+ c ≥ p+ r ≥ p+ i, it follows

that r′ = r = i. Since γ ∈ P (a− r′ + c − p, r′ − r), we have that |γ| = 0. Similarly

|fi| = 0. That means that the Littlewood-Richardson coefficients in the first term of

(3.47), cγφ,ν , are all zero. The coefficients in the second term are

cγ+!

φ,ν′ =

⎧

⎪
⎨

⎪
⎩

1 |ν ′| = 0

0 otherwise
. (3.50)

We have reduced (3.47) to the single term with |ν ′| = 0, |γ| = 0, |φ| = ! . Thus,

just as in [12, Lemma 4], (3.42) reduces to

δr,r′δα,α′(−1)|α|
∑

w∈P (r,x)

∑

y∈P (a+c−r,r)

πŵ πw πy πŷ

p a+ c r

r r

. (3.51)

Note the extra dot. We can follow the final part of the proof of [12, Lemma 4]

verbatim to obtain

Picture 3 =

p
a+ c

r

(3.52)

as desired.
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Theorem 3.3.4. The p-DG Grothendieck of the derived category Dc(U̇+, ∂)

is isomorphic to U+
p . In K0(U̇+, ∂) the symbols for the representable in

{E (a)
1 E (b)

2 E (c)
1 , E (a)

2 E (b)
1 E (c)

2 | b ≥ a + c, a, b, c,∈ N} are identified with Lusztig’s

canonical basis.

Proof. In Proposition 3.3.2 we showed that every 1-morphism in U+ has an Fc-

filtration. It is also true that U+ is mixed and Karoubian. By Proposition 2.7.9,

K0(U+, ∂) ∼= K0(U+) ⊗Z[q,q−1] Op. In [12, Theorem 4], it is shown that the

indecomposable 1-morphisms are precisely those given in the theorem.
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