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This dissertation consists of four principal parts. In the first, we introduce the tracial
quasi-Rokhlin property for an automorphism a of a C*-algebra A (which is not assumed to be
simple or to contain any projections). We then prove that under suitable assumptions on the
algebra A, the associated crossed product C*-algebra C*(Z, A,q) is simple, and the restriction
map between the tracial states of C*(Z, 4, @) and the a-invariant tracial states on A is bijective. In
the second part, we introduce a comparison property for minimal dynamical systems (the dynamic
comparison property) and demonstrate sufficient conditions on the dynamical system which ensure
that it holds. The third part ties these concepts together by demonstrating that given a minimal
dynamical system (X, h) and a suitable simple C*-algebra A, a large class of automorphisms 8
of the algebra C(X,A) have the tracial quasi-Rokhlin property, with the dynamic comparison
property playing a key role. Finally, we study the structure of the crossed product C*-algebra
B = C*(Z,C(X, A), B) by introducing a subalgebra By, of B, which is shown to be large in a
sense that allows properties of By, to pass to B. Several conjectures about the deeper structural

properties of By,} and B are stated and discussed.
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CHAPTER 1

INTRODUCTION

The principal subject of this dissertation is the properties of what are known as crossed
product C*-algebras. Let A be a C*-algebra A and consider an integer action Z — Aut(A)
given by fixing an automorphism « € Aut(A4) and taking the action to be n — «™. Then the
crossed product C*-algebra of A by a is the universal C*-algebra C*(Z, A, a) generated by A
and a formal unitary v satisfying the relation uau* = a(a) for all a € A. We often refer to u
as the implementing unitary for the crossed product. We may construct the crossed product as
~ the universal C*-completion of the skew group ring A[Z], consisting of formal finite power series
in u with coefficients in A but where the multiplication is twisted by « according to the rule
ua = afa)u. A special case of this construction that deserves particular attention is when the
algebra A is the algebra C(X) of continuous functions f: X — C for some compact metric space
X, and the automorphism « is the induced automorphism of a homeomorphism h: X — X, given
by a(f) = foh~!. In this case, the crossed product C*-algebra C*(Z, C(X), a) is usually denoted
C*(Z, X, h) and is called the transformation group C*-algebra of X by h. The pairing of a compact
metric space with a homeomorphism is called a dynamical system. Of particular interest in the
context of transformation group C*-algebras are the dynamical systems where ki is a minimal
homeomorphism; that is, there are no proper h-invariant closed subsets of X. For the case of
minimal dynamical systems where the space X is infinite, the associated transformation group
(C*-algebras are always simple, and under additional assumptions frequently have nice structural
properties. This will be discussed in more detail shortly.

The study of C*-algebras arising through crossed product constructions has been an area
of significant interest in the Elliott classification program for nuclear C*-algebras, as in many

situations these crossed products are classifiable. Well-known examples such as the irrational



rotation algebras of [46] have been shown to arise naturally as crossed products, and in [8] it is
shown that these algebras are simple AT-algebras with real rank zero and are thus classifiable by
their K-theory. Various forms of the Rokhlin property have appeared in the literature and these
have been used to establish many structural results about crossed products by automorphisms
with these properties. (For example, see [13], [15], [16], and [17].) The tracial Rokhlin property
for automorphisms of certain simple C*-algebras was first introduced by Osaka and Phillips in
[36], where it is shown that crossed products by automorphisms with the tracial Rokhlin property
preserve real rank zero, stable rank one, and order on projections being determined by traces.
Several versions of the tracial Rokhlin property for actions of finite groups on C*-algebras have
also appeared, such as those of [42] and [3]. Similar results on the structure of the associated
cross products have been obtained in this situation. (For examples see the aforementioned papers,
and also [7].) In the best case, it has been shown that tracial rank zero is preserved under crossed
products by finite group actions with the tracial Rokhlin property, and hence these crossed products
are classifiable by Huaxin Lin’s classification theory for C*-algebras with tracial rank zero, provided
they also satisfy the Universal Coefficient Theorem. (See [22], [20], and [21] for the precise details
of this classification theory.)

Perhaps even more successful has been the effort to classify the transformation group
C*-algebras associated to minimal dynamical systems (X, k). The case where the space X is the
Cantor set was analyzed extensively in the work of Giordano, Putnam, and Skau [11], where it is
shown that the transformation group C*-algebras of two minimal homeomorphisms are isomorphic
if and only if the homeomorphisms are strong orbit equivalent. Moreover, it is known that
such transformation group C*-algebras are AT-algebras with real rank zero. The key results
are obtained in Putnam’s study [45] of the transformation group C*-algebra through certain useful
approximating subalgebras, having a particularly tractable structure, resulting from a Rokhlin
tower construction. In particular, Putnam’s subalgebras were AF-algébras. Putnam’s approach
was later massively generalized by Qing Lin and Phillips in the long unpublished preprint [29]
(see also the survey articles [26] and [27]) to give a careful description of the transformation group
C*-algebras arising from minimal diffeomorphisms of smooth compact manifolds in terms of a
direct limit decomposition. In order to study the properties of their approximating subalgebras,
which are much more complicated than Putnam’s, Phillips introduced the concept of a recursive

subhomogeneous algebra and studied the structure of this class of algebras and their direct limits



in [39], [40], and [41]. Subsequently, Huaxin Lin and Phillips showed in [24] that under suitable
K -theoretic conditions, the crossed product of an infinite compact metric space with finite covering
dimension by a minimal homeomorphism has tracial rank zero, and is therefore classifiable.

There is little existing overlap between these two branches of research into crossed
products. The tracial Rokhlin property is formulated for a simple C*-algebra and requires
the existence of many projections, while the C*-algebra C(X) may have few or no non-trivial
projections. Also problematic is the so-called “leftover comparison condition” in the definition of
the tracial Rokhlin property, which we cannot generally expect to be satisfied in the commutative
situation. In fact the tracial Rokhlin property of Osaka and Phillips is only a sensible definition for
simple C*-algebras with a strong condition on the existence of many projections, such as real rank
zero. In the case of finite group actions, Archey has introduced in [3] an analogue of the tracial
Rokhlin property whichr dispenses with projections in favor of positive elements. Unfortunately,
the leftover comparison condition in this property is still unsuitable for the situation where the
algebra under consideration is C(X) as it uses Cuntz subequivalence, which is too restrictive for
positive elements of C(X) which are given more or less arbitrarily. Specifically, it roughly requirés
that the support of one function lie in the support of the other. In this dissertation, we introduce
the tracial quasi-Rokhlin property for automorphisms of a unital, separable C*-algebra A which is
not assumed to be simple. In fact, the C*-algebras in which we will be most interested will be of
the form C(X, A), where X is an infinite compact metric space having finite covering dimension,
and A is a simple, unital, separable C*-algebra with tracial rank zero. By letting A = C, this class
of algebras includes the algebras C(X) just discussed.

In Chapter II, we define the tracial quasi-Rokhlin property, and show that if o is
an automorphism of A and A has no non-trivial a-invariant ideals, then the crossed product
C*(Z,A, ) is simple. Further, an additional technical assumption about A (specifically, we
assume A is not a scattered C*-algebra) allows us to also show that the restriction mapping
T{(C*(Z,A,)) — To(A), between the simplex of tracial states on the crossed product and the
simplex of a-invariant tracial states on A, is a bijection.

In Chapter III we develop a comparison property for minimal, uniquely ergodic dynamical
systems (X, h, 1) (where h is a minimal homeomorphism of the compact metric space X and p is the
unique h-invariant Borel probability measure on X) that roughly says an arbitrary closed set with

smaller measure than an arbitrary open set can be decomposed into closed subsets, which can then



be moved by powers of h so that they land in the open set and are pairwise disjoint. We term this
the dynamic comparison property, and demonstrate that it should hold at a reasonably high level of
generality by proving that it is implied by another, more basic dynamical property (the topological
small boundary property). Based on observations about the tracial quasi-Rokhlin property and
the dynamic comparison property, we also suggest possible definitions for a comparison theory of
positive elements in dynamical systems.

In Chapter IV we use this condition to show that (with appropriate hypotheses on X
and A) certain automorphisms G of the algebra C(X, A), which act minimally on the center
C(X), have the tracial quasi-Rokhlin property. After examining the structure of idealls in
C(X,A) and of its tracial state space, it will follow that the structural theorems of Chapter
II apply the the associated crossed product C*-algebras C*(Z,C(X, A), 5). We also exhibit some
examples of known C*-algebras which can be realized as crossed product C*-algebras of the form
C*(Z,C(X, A), B) and that are known to have stronger structural properties, which suggests that
such properties might hold for these in some generality.

In Chapter V, we introduce the machinery to begin a more detailed study of the structure
of the transformation group C*-algebras C*(Z,C(X, A),B) of the previous chapter. The rough
idea is to follow the development of [29] and [24] by approximating the crossed product C*-algebra
B = C*(Z,C(X, A), B) with a subalgebra By, = C*(Z,C(X, A),B)(y; (for y € X) that is the
appropriate analogue of their approximating subalgebras. We demonstrate that By} is a direct
limit of certain other subalgebras which generalize the recursive subhomogeneous algebras of [39]
by roughly replacing matrix algebras of the form C(Xy, My, ) with C(Xg, My, (A4)). It is our
hope that the good behavior of the class of recursive subhomogeneous algebras (particularly in
terms of permanence properties for direct limits) is also present in this new class of algebras, and
consequently that they can be used to study the approximating subalgebras By,; and the crossed
product C*-algebras B.

Chapter VI investigates the relationship between By} and B by demonstrating that By,
is a large subalgebra of B, a concept introduced by Phillips in [43] to provide a general formalism
for an idea that has already been used for the case of transformation group C*-algebras for minimal
dynamical systems. By Theorem 4.5 of that paper, it follows that the radius of comparison for B
is no greater than that of By,;. We conclude by offering some conjectures about the structure of

the algebras By,; and B that we hope to be true, in analogy with known results for C*(Z, X, ).



CHAPTER II

THE TRACIAL QUASI-ROKHLIN PROPERTY

The following definition is based on Definition 1.1 of [36] and also on the behavior of
automorphisms induced by minimal homeomorphisms. Indeed, one of our main applications of it

will be to automorphisms related to minimal dynamics.

Definition I1.1. Let A be a separable, unital C*-algebra, and let o € Aut(A). We say that o has
the tracial quasi-Rokhlin property if for every € > 0, every finite set F C A, every n € N, and

every positive element x € A with ||z|| = 1, there exist cg,...,cn € A such that:
1.0<¢; €1 for0<j<ny
2. cjep, =0 for0<j,k<nandj#k;
3. Jlafes) —cjp1ll <€ for0<j<n-—-1;
4. llcja—acjll <e for0<j<n and for alla € F;

5 with ¢ = E?:OCji there exist N € N, positive elements eg,...,eny € A, unitaries

wo,...,wy € A, and d{0),...,d{N) € Z such that:
(a) 1—c< E;.Vzo'ej;
(b) w;a) (ej)w;‘fwkad(k)(ek)w}‘; =0for0<5 k<N andj#k;
(c) wja?D(e;)w} € zhAzx for 0 < j < N;
6. with ¢ as above, ||cxc|| > 1 —e.

The key differences between this definition and Definition 1.1 of [36] are the change from

projections to positive elements of norm less than or equal to 1, and the statement of condition



'(5) (as compared to condition (3) in Definition 1.1 of [36]). We also make no assumptions about
the simplicity of the algebra A, but it should be noted that this definition is only formulated for
cases where the algebra A is expected to be “a-simple” (have no non-trivial a-invariant ideals);
it is unclear if this definition is useful without that condition. Condition (6) is an additional
requirement, but it is probable that, with certain extra assumptions on A, condition (6) is implied
by condition (5) (this is the case for finite group actions with the tracial Rokhlin property of [42],
when A is stably finite). It is also not clear that condition (5) is actually the most appropriate
formulation for the leftover comparison condition in this situation. We postpone further discussion

to the end of Chapter I11.

Lemma IL.2. Let A be a separable, unital C*-algebra, let a € Aut(A), and let u be the canonical
unitary of the crossed product C*-algebra C*(Z, A, o). Given anye > 0 andn € N, letcp,...,cp €

A satisfy:
1.0<¢i <1 for0<5<ny
2. cic, =0for0<j,k<n and j #k;
3. |lafej) —cjp1ll <e for0<j<n—1.
Then for0 < j <n and 1 <k <n, we have chu‘kcjn < 3ne and ”cjukcj]l < 3ne.

Proof. Since uau™! = afa) for all a € A, we have
leyu™es = [lu= e (e)es | < flo*(ey)es|
Next, for 0 < ¢ < j — 1 we obtain the inequality

e* i (cj-i)ai (cj—i)|| < [lod*Fi(ej—i)at (i) — " (cj—i)a T (cjminn) |
+ [lo*Fies i) (ejmimt) — T (e 1)at T (ejoi-1) |

+ “Oék+i+1(Cj—i—l)ai+1(cj—i—1:‘

< 2lleji = alej—ic)| + || Hejmimr) @ (emi-n)|| -



Repeated application of this inequality gives

j-1

llo*(es)es || < [lo*H (co)o? (co)|| +2 D llej—i — alej—i1)l
i=0

< Ha"(co)coH + 2ne
= ||a"(c0)co — ckc0|| + 2ne

< o (e0) =i +2me

k-1

< 2ne+ Z ||ak—i(ci) - ak"ifl(ci+1)||
=0
k-1

=2ne+ Y _ |la(e) - il

i=0
< 2ne + ne

= 3ne,

and so we conclude that

]]cju“kcj” < ”ak(Cj)Cj” < 3ne.

Similarly, for 0 < ¢ < j — 1 we have the inequality
lat(cjms)obti(cjmi)|| < 2lledejmim1) — e+ 5 —ill + || (cjmim1) — F T (i)

which gives

[lesute;|| = |lejo (es)u™|
< Jleje® ()]
] ' k—1
< Jlo? (o)a" )| +2 3 lodegmsm) = il
=0

< ”Coak(Co)H + 2ne
< Hak(co) - ckH + 2ne

< 3ne.

This completes the proof of the desired inequalities.



Lemma I1.3. Let A be a separable, unital C*-algebra, let a € Aut(A), and let a € C*(Z, A, ) be
positive and non-zero. Then for any € > 0, there exist N € N and a; € A for —N < j < N such

that ||agl| = 1 and

N
a— E a;ul || <e.

j==N

Proof. Let E: C*(Z,A,a) — A be the standard faithful conditional expectation. Set b = al/?,

which is positive and non-zero. Then as F is faithful, it follows that
E(a) = E(b%) = E(b*b) # 0,

By replacing a with m(z if necessary, we may assume that ||E(a)| = 1. Since C.(Z, A, q) is
dense in C*(Z, A, &), there exist N € N and fl;j € A for —N < j < N such that

1
< 3&.

N —~ .
(a-E(@)- Y. B

j=—N

Using

E(a — E(a)) = E(a) - B(E(a)) = E(a) ~ E(a) = 0

and

N
E ( Z Ejuj) = E(Eo),

j=—N

we estimate

N

E(a—E(a)) - E ( > Bjuf) < ||(a = E(a)) -

[£o] =
j=—N




Now set by = 0 and b; :Ej for 1 <|j| £ N. Then

N N
(a - E(a)) — Z bju? || = |[bo + (a — E(a)) - Z [
j=—N j=—N
o~ N ~
g”bon+ (a—E@)~ 5 b
j=—-N
< ze+ 3e
=e.

"By defining a9 = E(a) and a; = b; for 1 < [j| < N, it follows that ||ag|| = 1 and

N

N
a— Z a; vt || = ||{a — E(a)) — Z bl || <e,

j=—N j=~N

as required. |

Theorem I1.4. Let A be a separable, unital C*-algebra, let o € Aut{A) have the tracial
quasi-Rokhlin property, and suppose that A has no non-trivial a-invariant ideals. Then C*(Z, A, o)

is simple.

Proof. Let J C C*(Z, A,a) be a non-zero ideal, let v € C*(Z, A, @) be the canonical unitary in
the crossed product, set ¢ = %, and let a € J be non-zero and positive. By Lemma I1.3 there exist

n € Nand a; € A for —n < k < n such that |jag]| =1 and

n

a— Z apu®

k=—n

< ZE.

1
g

For convenience, set M = 3, ,, [lak |- Define continuous functions f,g: [0,1] — [0,1] by

0 t<1-%
fO=q8¢-1)4+2 1-g<t<l—%

1 t>1-

Sle
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and

0 t<l-1;
g9(t) =

16

2t-D+1 t21-F.

Setting ¢ = g(a(l)/2) and r = f(a(l)/2), we have the relations q,7 > 0, rq = ¢, and ||¢|| = ||| = 1.

Now let
_ &
T 12(M(n+1)24+1)

€I

and F = {ax: —n <k <n}. Apply the tracial quasi-Rokhlin property with F,¢’,n, and ¢ to

obtain ¢g,...,c, € A such that
1.0<¢; <1l for 0 <) <my
2. cjep =07for 0 < 5,k <nand j#k;
3. llafes) —cjql <€ for0<j<n—1,
4. ||cja;vc —agcj|| <& for0<j<nand —n<k<n;
5. with ¢ = 377, ¢j, we have [cge]| > 1 ~¢'.

Using the mutual orthogonality of the ¢;, we have -

n n n n n
CjaCy - CiagU"Ci|| = ¢ |a— aru Cy
§=0 j=0

j=0k=—n k=—n
n
< max |lej | a— Z agu® Cj
0<j<n
k=—n
k)
< lla — Z akuk
k=~—n

A
s
™
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Since the ¢; approximately commute with the ax, we obtain

n n n
E E aku Cj — E E aijuij
j=0k=

n
k
E (cjar — akey)u’cy

>

- j=0k=-n 0k
n
<Y llejan — aes|
=0 k=—n
< 2(n+1)%

Next, applying Lemma I1.2 gives

n n mn n
3 3wt~ Yoo = 3T wents
j=0 k= 3=0 k#0

k=— j= i=0

éz fael s

< 3n(n+ 1)M¢e'

< 4E&.

N,

n

Finally, orthogonality of the ¢; gives ¢® = 377 ¢,

and using this we get the estimate

n n

2 : 2 2
aocj - cagpc GQCJ - CJao Cy

=0 j=0

n
<Y " llaoe; — cjaoll
§=0

n+1)e

AN

< ZE.

.

Setting x = Y_7_, ¢;ac;, it follows that
lz — caoc|| < 2e+ te+ e+ je=e

We next show that ||cagc]| is sufficiently large. With f(¢) as before, for t € [0,1] we have

[tf(t) — f(t) = |t — 1] f(t). If t <1 — &, then f(t) = 0 and so this quantity is zero. If t > 1 —
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then |t — 1| < §. Since 0 < f(¢) < 1, this implies |t — 1] f(¢) < § as well. Tt follows that

”“3/2’" - ’“" = sup [tf(t) - ()] < 3¢
te€(0,1]
Since rq = ¢, we have
Haé/?q - q“ = Haémrq - TqH < ”aé/zr B TH lal < de <e.

This gives

l—e<1—¢ <leqel
< ”cqc - ca(l)/zqc“ + “caé/zqc“
<[l o] + fleas’”|

<erfe].

/

and so Hcaé/ 2” > 1 — 2e. Now the C*-property, the self-adjointness of ¢ and a(l) 2 ande= i give

Jeaoel = | (cad®)(eat/y | = [Jeat?|| > (1 262 = (1 - )* = &.

Now suppose that JN A = 0. By Theorem 3.1.7 of [35], A + J is a C*-subalgebra of C*(Z, A, o),
and the assumption that J N A = 0 implies that the projection map m: A + J — (A+J)/J is
isometric when restricted to A (and of course it is norm-reducing in general). Since cagc € A and

z € J, it follows that
15 < llcaoc|| = [[m(cae)|| = [[(caoc — z)[| < [lcaoc — z[| < §,

a contradiction. So there must be a non-zero element in J N A. Finally, we claim that JN A is an
o-invariant ideal of A, To see this, let b € J N A. Then a(b) = ubu* € J since J is an ideal, and
clearly a(b) € A, so a(b) € JN A. Thus, JN A is a non-zero a-invariant ideal of A, which implies

that JN A = A. Tt follows that J = C*(Z, A, o), and so C*(Z, A, &) is simple. O
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Lemma IL5. Let f € C([0,1]). For any € > 0, there is a § > 0 (depending on both € and f)

such that if A is a unital C*-algebra and a,b € A satisfy 0 < a,b < 1, then ||ab — bal| < § implies

1£(b)a —af(B)]| <e.

Proof. By the Stone-Weierstrass Theorem, there is a polynomial p(z) = ¢ 2™ +- - -+ c12+ ¢ such

that sup,cp1) 1 f(z) — p(z)] < je. For any n € N, we have
6"t e — ab™ || < ||o" ' — b"ab|| + ||67ab — ab™ || < [ba — ab|| + [[b"a — ab®]|.

It follows by induction that ||b™a — ab™|| < n ||ba — ab||. Setting

= &
3m(1+ 20 [el)’

we obtain the estimate

If(6)a —af(B)l| < [If(b)a - p(blall + |p(b)a — ap(b)|| + [lap(b) — af(b)]|

<2|all- sup ||f(z)—p(@)ll+ > 7lcs| llba —abl|
z€(0,1] =0

n
< Ze+ méz les]
7=0

<

wlnd

1
€+ 3¢

:5"

as desired. 0

Lemma IL.6. Let f € C([0,1]). For every € > 0, there is a § > 0 (depending on both € and f)

such that if A is a unital C*-algebra and a,b € A satisfy 0 < a,b,< 1, then |la — b|| < & implies

1f(a) = FO)|| <e.

Proof. By the Stone-Weierstrass Theorem, there is a polynomial p(z) = ¢p2™+- - - +c12+¢p such

that supgepo,) [ f(z) — p(z)|| < €. For any n € N, we have

st = < ot — b + ot = 47 < o = 67+ fa— .
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It follows by induction that ||a™ —b™|| < n|a —b||. Setting

5_ &
3m(1+ 3 lesl)’

we obtain the estimate

1f{a) = fO) < ([ f(a) = pa)l| + [[p(a) = p(O) ]| + Ilp(b) — FO)|

m
<2 sup | f(z)—p(@) > ilesllla—bll
z€[0,1] =0

n
<Ze+ m5Z |es]
=0

as desired. O

Definition I1.7. Let A be a separable, unital C*-algebra, and let T{A) denote the set of tracial
states on A. For a € Aut(A), we say a trace 7 € T(A) is o-invariant if (a(a)) = 7(a) for all

ac A Forac Aut(A), we adopt the notation
To(A) = {r € T(A): 7 is a-invariant} .

Lemma IL.8. Let A be a separable, unital C*-algebra, let o € Aut(A), and let 7 € To(A). Then

the set I = {a € A: 7(a*a) = 0} is an a-invariant ideal of A.

Proof. The map a — 7(a*a) is clearly a bounded linear functional A — C, so the set I =
{a € A: 7(a*a) =0} is closed. In Section 3.4 of [35] it is shown that I is a closed left ideal of
A {using Theorem 3.3.7 there). As 7(ae* = 7{a*a), it is clear that ¢ € I if and only if a* € I.
Therefore I is a closed left ideal of A that is closed under adjoints. But then for any b € A and
a € I, wehave b* € A and a* € I. Since [ is a left ideal of A, we get b*a* € I, and since [ is closed

under adjoints, it follows that ab = (b*a*)* € I. Therefore, I is an ideal of A.
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Finally, given a € I, the a-invariance of 7 implies that
7((a(a))(a(a))) = T(a(a®)a(a)) = T(ala”a)) = 7(aa) = 0,

and this gives a(a) € I. Therefore, I is a-invariant. O

Proposition IL.9. Let A be a separable, unital C*-algebra, let & € Aut(A), and assume that A
has no a-invariant ideals. Then given any 7 € Ty (A) and any y € A with sp(y) = [0,1], and with
p the spectral measure for T on C*(y,1), there is an open interval U C [0, 1] such that U # & and
w(U) <e.

Proof. Since A has 1no non-trivial a-invariant ideals, Lemma II.8 implies that
{a € A: 7(a*a) =0} = 0, and so T is faithful. Let V C [0,1] be any non-empty open
interval, let o € V, and define f € C*(y,1) & C([0,1]) by setting f(zo) = 1, f(z) = 0 for
z € [0,1]\ V, and extending continuousty with the Tietze Extension Theorem. Then 0 < f <1
and f # 0, which imply that

,U(V)Z/Olfd#=T(f)>0-

Hence all non-empty open intervals in [0, 1] have positive p-measure. For n = 2,3,4,... define

open intervals U,, C [0,1] by U,, = ( 1 l). Then the collection (Uy,)ow.; is pairwise disjoint, and

n+l'n

@(Uy,) > 0 for all n > 1 by the previous argument. By pairwise disjointness it follows that

Zﬂ(Un) =4 (U Un) <u(0,1) =1
n=2 n=2

and so this series converges. Thus for some N € N we must have Y ° \ u(U,) < ¢, and so by

setting U = Uy we obtain a non-empty open interval U C [0,1] with u(U) < e. 0

In order for the previous lemma to be useful we must know that our C*-algebra A contains

a positive element with spectrum equal to [0, 1]. We thus introduce the following definition.

Definition I1.10. A C*-algebra A is called scattered if every state on A is atomic; that is, given
any state w on A, there ezist pure states (w;)32; and real numbers (t;)32,, satisfying t; = 0 for

all j =1 and 3522, t; =1, such that

o0
w = E tiw;.
i=1



16

By Theorem 2.2 of [18], a C*-algebra is scattered if and only if the spectrum of every
self-adjoint element of A is countable. The argument in the fourth fact about scattered C*-algebras
on page 61 of [1] shows that if A is unital and not scattered, then there is a positive element y € A
with sp(y) = [0, 1]. For the case in which we have the most interest the algebras involved are not

scattered. See Proposition IV.20 for the justification of this claim.

Proposition II.11. Let A be a separable, unital C*-algebra that is not scattered, let oo € Aut(A)
have the tracial quasi-Rokhlin property, and assume that A has no non-trivial a-invariant ideals.
Then for every € > 0, every finite set F C A, everyn € N, and every 7 € To(A), there ezist

Coy. ..y Cn € A such that
1.0<Lc¢; <1 for0<j<mny
2. ciep=0for0<j,k<nand j #k;
3. |lafej) —cjp1ll <e for0<j<n—1;
4. |lac; —cja|| <e for0<j <n and for alla € F;
5. with c= 3% cj, we have T(1—¢) <e.

Proof. Let € > 0, F C A finite, n € N, and 7 € T,,(A) be given. Since A is not scattered, there is

ay € A with sp(y) = [0, 1]. Let i be the spectral measure for 7 on C*(y, 1) = C(]0,1]), so that

1
7(f(4)) = /0 f du

for all f € C([0,1]). By Proposition IL.9, there is a non-empty open interval I C [0, 1] such that
u(I) < e. Since I is an open interval, there exist 0 < tg < t; < t3 < t3 < t4 < t5 < tg < 1l such

that I = (to,t¢). Define continuous functions f,g¢: [0,1] — [0,1] by

0 0<t<ty

bt

Lo b St<t
fA) =11 tg <t <ty

fat o <t <ty

0 s <t <1



and

g(t)

0 0<t <ty

sz ty <t <tg

—ta——ta tys <t <ty

0 s <t <1
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Then supp(f),supp(g) C I, fg =g, and f,g#0. Set x =g(y) and b= f(y). Then0 <z <b <1

and zb = bz = z. Now for any a € TAz with 0 < a < 1, we have a = bY/2ab/? < bY/2(||a|-1)b'/? <

b, and so 7(a) < 7(b). It follows that for any a € zAz, we have

Now apply the tracial quasi-Rokhlin property with €, F,n, and z, obtaining cy,...

that:

1.0<L¢g <l for0<j<my
2. ciep=0for0<j,k<nandj#k;

3. |lefes) —cjpmll <efor0<j<n-—-1

r@) <) = [ fdusun<e

4. |lac; — ¢jal| < e for 0 < j < mand for all a € F;

N
(a) 1—ec< Zj:oeﬁ

(b) W (e;)a¥*)(e) =0 for 0 < 5,k < N;

Z?:o ¢j, there exists N € N, positive elements eo,...,en

W, ..., wy € A, and d(0),...,d(N) € Z such that:

(c) 7#k, and wjad(j)(ej)w;f €rxAz for 0 < 5 < N.

,Cn € A such

€ A, unitaries

Since each w;a®U)(e;)w} € Az, it follows that Z;V:O w;a?9) (e;)w} € zAz, and so

N
T ijad(j)(ej)w’; <€
j=0
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Then the linearity and a-invariance of 7 imply that

=0
N .
=T Z w9 (e;)w?
=0
< €,
which completes the proof. O

Theorem I1.12. Let A be a separable, unital C*-algebra that is not scattered, let o € Aut(A)
have the tracial quasi-Rokhlin property, and suppose that A has no non-trivial a-invariant ideals.

Then the restriction map T{C*(Z, A, «)) — To(A) is bijective.

Proof. We first verify that every trace on T{C*(Z, A, )) is a-invariant when restricted to A, so
that the restriction map indeed has codomain T, (A). For any 7 € T(C*(Z, A, «)) and any a € A,
~ we have

T{a(a)) = T(uav*) = T(au*u) = 7(a),

and so this is in fact the case.
Next, we show that the restriction map is injective. Let 7 € T{C*(Z, A, a)), let € > 0 be
given, let a € A be non-zero, let k£ € N\ {0}, and let u € C*(Z, A, @) be the canonical unitary. Set

F = {a} and choose n € N such that n > & and

&2

1
-l
n  16k2(||la*al + 1)
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Apply Lemma I1.5 with f(z) = /Z to obtain d;(¢) > 0 such that for all b,e € A with 0 < b,e <1
and ||be — eb|| < d1(€), we have

||b1/2e - eb1/2H <Z
&n

Similarly, apply Lemma II.6 with the same f to obtain dz(e) > 0 such that for all b,e € A with

0<be<1and |le—b| < bze), we have

/2 _ b1/2H &
He snk(Ja] + 1)

Define

1 2
§ =min{ ————,6 8a(e)y, ———
e { o T 1 01(E) ale) 4r(a*a) +1) }
and apply Proposition II1.11 with 6, F,n, and 7 (identifying 7 with its image in To(A) under the

restriction map) to obtain cg,...,cn € A such that:

1.0< <1lfor0<j <my

2. ciep =0for 0 <4,k <nandj#k;
3. |lafes) —cjpall < dfor 0 < j<mn—1;
4. |lcja —acj|| < S for 0 < j<m

5. with ¢ = 377 ¢;, we have 7(1 —¢) <.

By the choice of 8, and since automorphisms commute with continuous functional calculus,

we further obtain

-4 < sy
Joctey’®) = 5| < k(e ¥ 1)
for0<j<n-—k, and
1/2 1/2 €
||cj a—acj ” < %

for 0 < j < n. It is easy to see that 0 < ¢ <1 and hence also 0 < 1 —c¢ < 1. Then (1 —¢)l/?
is a well-defined positive element of A that satisfies 1 — ¢ < 1. Observing that that continuous
functions fo, f1: [0,1} — [0,1] given by fo(t) = t2 and fi(t) = t satisfy fo < fi, continuous

functional calculus gives (1 — ¢)? < (1 —¢). It follows that 7((1 — ¢)?) < 7(1 — ¢) and so the
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Cauchy-Schwarz inequality yields

(e (1 — )[* < 7((1 ~ &) (1~ &))r((au®) (au*)")
= 7((1 ~ &*)r((au®)*(au))
=7((1 — 0)?)r(u"*a*auk)
= 7((1 - *)7(a%0)

7(1 —¢)r(a*a)

< ér(a*a).

Hence |r(au*(1 - ¢))| < v/07(a*a) < 3e.
Next, we observe that if e,b € A are positive, then eb = 0 implies that e!/2bY/2 = 0 as

well. Indeed, the C*-property gives
2
172" = |©*/2e)* @/2¢) | = liebell =,
which implies that b'/2e = 0. This gives

“61/2()1/2“2 _ “(el/2b1/2)*(el/2bl/2)“ - “bl/zebuzll ~0,

which implies that e}/2b'/2 = 0 as claimed. In particular, for 0 < j < n —k, we have cjl/2 jlfk =0,

and so 7(c, /2kaukc]1/ )= T(aukcjlﬂc]l.fk) =0. For 0 < j £ n —k, we also have the inequality

1/2 1/2 k— 1/2 o =i 1/2
“ ]+k”——ZH 1 ]+z - (cj+i+1)”

< ké.
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It follows that for 0 < j <n -k,

|7 (au*c;)| = (aukcl/chlﬂ)‘

= T(aak(c;/z)u c

k ;/2)’

< 'r(aak(cjl./z)ukcl/z) - 'r(acl_/fku’“cl/2 J + } 1ﬁukc]1/2)]

Citk

= T<a<a’“<c;/2)

1 2 1/2 k 1/2 1/2 1/2 k 1/2
Il ot e}/ = efduiel?|| + 7l [[(acill, - e}fharete)”

el )|+ |r((acgli = b))

| N

1/2 1/2 1/2 1/2
< ol Ha‘%c/ ) = ] + [lecili ~ elfial

£ £
<llalk (8nk<||a|| T 1)) * 8

< —
4n

For 0 < k < n -1 the a-invariance of 7 irplies that
IT(cj1) = 7(¢;)| = I7(cj41) — T(e(cy))| = [T(cj+1 — ale))] < flej+r — ale)if <6,

and so we obtain

Now, since 0 < ¢ <1, we have Z?:o 7(¢;) < 1. Combining this with the previous result gives
n
(n+1)r(co) <n?6+ Y _7(c;) <n®6 +1,
i=0

and this implies that
n?+1 =41 1

< < < —.
'r(co) n+1 n+1 e
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Further, since |7(c;) — 7(co)| < nd for 1 < j < n (this follows by iterating one of the previous

inequalities with the triangle inequality), we conclude that for 0 < j < n, we have

n?+1  (2n?+n)d+1  +4+1 1
< = -,
n+1 n+1 n+l n

7(c;) < nd + 7(co) < nd +

Now 0 < ¢; < 1 implies that c? < ¢; by the same functional calculus argument that was used to
show (1 —¢)? <1 —c, and consequently 0 < 7(c}) < 7(c;). Applying Theorems 3.3.2 and 3.3.7 of

[35] gives

[r(avbe;)|” < 7 ((auPe;)* (avbes)
= T((ukcj)*a*a(ukcj))
la*all ((u*c;)* (ubey)

= lla*a]| 7(c})

IN

< lla*all m(c;)

*
_ lla*a|
n
62
< ——
16k2’

which implies |r(aufc;)| < £.

Finally, we compute

|T(auk')| < |‘r(auk(1 - c))| + |T(aukc)|

n—k n

< ze+ Z |7 (aue;)| + Z |7 (au*e;)|

7=0 j=n—k+1
n—k c n e
1
< ze+ — + —
2 Z dn 2 4k
j=0 j=n—-k+1

1 1 1
§§€+Z€+Z€
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Since £ > 0 was arbitrary, it follows that T(au®) = 0. Now if & € Z with &k < 0, then the

previous argument implies that 7(a*u"*) = 0, and therefore
T(au®) = T(uFa) = T((a*u™*)*) = T(a*u=F) = 0.

Thus for any 7 € T(C*(Z, A, @)), any non-zero a € A, and any k € Z\ {0}, we have 7(au*) = 0. Let

E: C*(Z,A, o) — Abe the standard conditional expectation. Then for any element Z?’:_ N aul €

(o) -rr=e (o £)):

and so 7 = 70 FE on a dense subset of C*(Z, A,«). This implies that the restriction map

C.(Z, A, ), we have

T(C*(Z, A, o)) — T,(A) is injective.

For surjectivity, let 7 € T,(A), and let E be the standard conditional expectation
introduced above. We claim that 7 = 7o E is a tracial state on C*(Z, 4, o) that satisfies 7|4 = 7.
It is clear that 7 is a positive linear map since both 7 and E are positive, and we compute
7(1) = 7(E(1)) = (1) = 1. Let a = apu™ and b = byu" for some ag,bg € A and m,n € Z. Then
we obtain the formulas

ab = agu™bou™ = aga™ (bg)u"t™

and

ba = bou"agu™ = bya (ag)u™*™

If m # n, then E(ab) =0 = E(ba), and consequently 7(ab) =0 = T(ba). So assume that m = —n,
which implies E(ab) = apo""(bo) and E(ba) = boa™(ap). Using the a-invariance of 7 and the

trace property, we obtain
T(apa™"(bo)) = T(a™"(a™(a0)bo) = T(a™(ao0)bo) = T(boa"(a0)),

which implies that
F(ab) = 7(E(ab)) = 7(E(ba)) = F(ba).

Since the dense subset C.(Z, A, &) of C*(Z, A, @) is linearly spanned by elements of the form au™ for



24

a € Aandn € Z, it follows that 7 is a tracial state on C*(Z, 4, a). Since E(a) = afor alla € A, we
clearly have 7| 4 = 7, which completes the proof that the restriction map T(C*(Z, A, a)) — To(A)

is surjective, and hence a bijection. O
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CHAPTER 1II

COMPARISON IN CERTAIN MINIMAL DYNAMICAL SYSTEMS

Applications of dynamics to C*-algebras frequently require the use of techniques from
both topology and measure theory. It is therefore crucial that given a dynamical system (X, k),
there is some degree of control over the interactions between the topological dynamics (given by
h) and the space My (X) of h-invariant Borel probability measures on X. In this chapter, we shall
develop a condition which tells us these interactions behave in a reasonably nice way, which will
play a crucial role in demonstrating that the tracial quasi-Rokhlin property is satisfied by certain

automorphisms related to dynamical systems.

Notation IIL.1. Throughout, we let X be an infinite compact metric space with finite covering
dimension, and let h: X — X be a minimal homeomorphism. The corresponding minimal
dynamical system (X, h) will frequently be denoted simply by X, with the homeomorphism h

understood. For x € X and € > 0, we will denote the e-ball centered at = by
B(z,e) ={y € X:d(z,y) <¢€}.

Lemma IIL.2. Let (X,h) be as in Notation III.1. If U C X is non-empty and open, then
X = U;";_oo h™(U). Moreover, n(U) > 0 for all p € Mp(X).

Proof. Set Y = X \ > _ . h™(U), which is closed. Let y € h(Y), so that y = h(y’) for some
y €Y. Ify ¢ Y, then we must have y € h™(U) for some n € Z, and we may write y = h(z) for some
& € k"~ }(U). But then h(y’) = h(z) implies that y’ = z, a contradiction since y' & |p__. A" (U).
Thus h(Y) € Y and now the minimality of A implies that ¥ = & or ¥ = X. But clearly
Une_ oo B™(U) # @, and hence Y # X. Therefore Y =@ and X =, __ h"(U).

n=—0C
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Now suppose that u(U) = 0 for some u € Mp(X). Then the h-invariance of y implies that
o o0 o
1=p(X)=p ( U h“(U)) < >0 pEmU) = Y wU) =0,
n=—00 n=-—=0o0 n=—0o0
a contradiction. O

The following version of Urysohn’s Lemma (see [48]) will be used frequently without
comment in many of the arguments that follow. Note that we take the definition of supp(f)

to be

supp(f) = {z € X: f(z) # 0}.

Proposition I11.3. Let X be a compact Hausdorff space. Let F C E C X with F closed and E

open. Then there is a continuous function f: X — [0,1] such that f =1 on F and supp(f) C E.

Lemma II1.4. Let (X,h) be as in Notation III.1. For any € > 0 and any non-empty open set

U C X, there is a non-empty open set E C U such that u(E) < € for all p € Mp(X).

Proof. Let z € U, and let § > 0 be such that B(z,5) C U. Define a sequence (E,)2; of open sets
by E, = B(z,6/(n+1)). Then En41 C E,, forall n € N, and (07 B, = {z}. Choose continuous
functions f,,: X — [0, 1] with f, = I on Eny, and supp(fs) C En. Then fn > fn41 forall n € N.

Now each f, defines an affine function f, on Mp(X) by

Falp) = /X fn du.

It is easily seen that the minimality of h implies that u({z}) = 0 for all 4 € M,(X). Applying the
Dominated Convergence Theorem, we conclude that

lig Fo) = tim [ fudu= [ lim fodu=p(fah =0.

n—00

for all p € Mp(X). It follows that the monotone decreasing sequence (ﬁl);’f:l of continuous
functions converges pointwise to the continuous affine function fz 0 on the compact set Mp(X),
and so Dini’s Theorem implies that the convergence is uniform. Therefore, there is an N € N such

that fN(p) < ¢ for all u € My(X). Finally, set £ = Eny1. Then E C U, and fn|g = 1 implies
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that
p(E) < / fvdp=fnp) <e
X

for all p & Mp(X). ]

The following definition has been proposed by N. Christopher Phillips [44] as an analogue
of a transversality property for manifolds. Its importance in our development will become apparent

later.

Definition IIL5. Let (X,h) be as in Notation IIL1. A closed subset F C X is said to be
topologically h-small if there is some m € Zy4 such that whenever d(0),d(1),...,d(m) are m + 1
distinct elements of Z, then h*O(F) N p4D(F)n--- nh4™)(F) = &, The smallest such constant
m is called the topological smallness constant. We say (X, h) has the topological small boundary
property if whenever F, K C X are disjoint compact sets, then there exist open sets U,V C X such
that FCU, K CV,UNV =@, and dU is topologically h-small.

The next two propositions describe how closed and open sets can be approximated in

measure by sets with topologically small boundaries.

Proposition II11.6. Suppose that (X, h) has the topological small boundary property, and lete > 0
be given. Then for any closed subset FF C X any open subset B C X with F C E, and any
h-tnvariant Borel probability measure p on X, there is an open subset U C X such that F C U C

U C E, 8U is topologically h-small, and u(U) — u(F) < €.

Proof. Using the regularity of i1 choose an open set Wy such that F C Wy and (W) — u(F) <&,
and set Wy = WoNE. Then F C W1 C E, and u(W1) — u(F) < w(Wo) — u(F) < €. Since X is
locally compact Hausdorff, there is an open set W C X such that W is compact and F ¢ W C
W C W;. Then we also have u(W) — u(F) < u(W,) — uw(F) < e. Set K = X \ W, which is a
compact subset of X disjoint from F, and apply the topological small boundary property to F' and
K, obtaining open sets U,V C X such that F c U, K c V,UNV =@, and U is topologically
h-small. Since K C V, it follows that UN(X\W) = @ as well, andso U C W. Then U C W C E,
and u(U) ~ u(F) < p(W) — pu(F) <e. O

Proposition II1.7. Suppose (X, h) has the topological small boundary property, and let € > 0 be
given. Then for any open set E C X, any p € Mp(X), and any ¢ > 0 with ¢ < u(E), there is an
open set U C E such that U C E, OU is topolagically h-small, u(E) — u(U) < &, and o < u(U).
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Proof. Set § = min {4¢, 1(u(F) — o)}, and use the regularity of 4 to choose a compact set F C E
with u(E) — u(F) < 8. Since X is locally compact Hausdorff, there is an open set W with W
compact satisfying F C¢ W ¢ W € E. Set K = X\ W. Then F and K are disjoint compact
subsets of X, so we may apply the small boundary property to obtain open sets U,V C X such
that FC U, K CV,UNV = @, and dU is topologically h-small. Then U N (X \ W) = @, which
implies U € W, and then we immediately have U ¢ W C F as required. Finally, F C U C E

implies that p(E) — u(U) < w(F) — u(F) < 6 < g, and that

wU) — o = (UE) — o) = (1(E) — p(V))

which gives ¢ < u(U) as required. ' O

The following theorem is the well-known Rokhlin tower construction, where the space X
is decomposed in terms of a closed set ¥ C X and the “first return times to Y for the points of
X. We show that a Rokhlin tower can be made compatible with some given partition of X by sets
with non-empty interior, in the sense that the interior of each level in the tower is contained in

exactly one set of the partition.

Theorem IIL.8. Let (X, h) be as in Notation II1.1. Let Y C X be a closed set with int(Y) # @.
ForyeY, define r(y) = min{m > 1: h™(y) € Y'}. Then sup,ey 7(y) < 00, so there are finitely

many distinct values n(0) < n(1) < --- < n(l) in the range of r. For 0 <k <1, set

={yeY:r(y) =nk)} and Y2 =int({y € Y: r(y) = n(k)}).

Then:
1. the sets hi(Y?) arc pairwise disjoint for 0 <k <l and 0 <j <n(k)—1;
2. U Ya=Y;

3. Upmo UT 1R (1) = X.
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Moreover, given any finite partition P of X (consisting of sets with non-empty interior), there
exist closed sets Zy, ..., Zm C Y and non-negative integers t(0) < t(1) < -+ < t(m) such that with

Z,EO) = Zi \ 0Zy (which may be empty) for 0 < k < m, we have:
1. the sets hj(Z,EO)) are pairwise disjoint for 0 <k <m and 0 < j <t(k) - 1;
2. UpeoZk=Y;
3. Uit Uio ™ W(26) = X;
4. for0 <k <mand 0 <7 <tlk)—1, the set hj(Z,(CO)) 1$ contained in eractly one P € P.

Proof. The finiteness of r(y) and all statements concerning the éets Y, are shown in [29]. Now
suppose we have a finite partition 7 of X consisting of sets with non-empty interior. For each
0 <k <, the set

By ={h 7 (W (Y)NnP):0<j<n(k)-1,PecP}

is a cover of Y, by a finite collection of sets with non-empty interior. Write By = {Bj,..., By} for
an appropriate choice of N € N. Let Cx be the collection of all sets of the form D = [~ ; C;, where
each for each i, thereisa j € {1,..., N} such that either C; = B; or C; = Y\ B;. Set C° = Ufk:o Cr
and C = {D: D € C°}, both of which are finite collections of sets. Write C = {Zj,...,Z},}, and
for 0 < 1 < m, set t(i) = n(k) where Z! = D and D € Cx. Without loss of generality, arrange
the order of the sets Zj, ..., 2/, so that t(0) < t(1) < --- < t(m). Finally, define Z; and Z,(CO) for

0<k<mby
Z = 7, Zi, = Z\ U2, 25, 2 = 7\ 0z,

Then Zy,...,Zm is a cover of Y by closed sets with the desired properties. d

It is technically important to have some control over the boundary 8Y of a closed set ¥ ¢
X used in the construction of a Rokhlin tower as above. In [29] this is accomplished by restricting
to the situation where X is a compact smooth manifold and A is a mirﬁmal diffeomorphism, then
requiring that 9Y satisfy a certain transversality condition. Definition IIL.5 is an attempt. to
formulate an analogous property for the case of a more general compact metric space. For our

purposes, we will find it convenient to use another type of smallness property for closed sets, also
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proposed by N. Christopher Phillips. The connection between Definition IIL.5 and the following

one is given by Proposition IiI.15.

Definition IIL1.9. Let (X, h) be as in Notation III.1. Let F C X be closed and let U C X be open.
We write F' < U if there exist M € N, Uy, ...,Up C X open, and d(0),...,d(M) € Z such that:

1. FcUl,Us;
2. RIU) CU for0<j < M;
3. the sets h?U)(U;) are pairwise disjoint for 0 < j < M.
We say the closed set F' is thin if F < U for every non-empty open set U C X.

It is clear that any closed subset of a thin set is thin, and hence the intersection of

arbitrarily many thin sets is thin. It is also clear that if F" is thin, then so is A" (F) for any n € Z.

- Lemma II1.10. Let (X,h) be as in Notation III.1. Suppose that F C X is closed and U C X s

open with F < U. Then there is an open set V C X such that FCV and V < U.

Proof. Since F < U, there exist M € N, Up,..., Uy C X open, and d(0),...,d(M) € Z such
that F C UjM=O U; and such that the sets h=4()(U;) are pairwise disjoint subsets of U. Let
E = Uino Uj, and use X locally compact Hausdorff to choose an open set V with V' compact
satisfying F ¢ V ¢ V C E. Then V < U using the same open sets U; and integers d(j) as‘for
F. O

Lemma IIL.11. Let (X,h) be as in Notation IIL1. If F C X is thin, then u(F) = 0 for all
@€ Mp(X).

Proof. Let € > 0 be given, and choose N € N such that 1/N < e. Since the action of & on
X is free, there is a point z € X such that z,h(z),...,hAN(z) are distinct. Choose disjoint
open neighborhoods Uy, ...,Uyn of these points, and let U = ﬂ;vzo h~3(U;), which is an open
neighborhood of z such that U, h(U),...,hY (U) are pairwise disjoint. Now let x € My(X). Then

using the h-invariance of y, it follows that

N N
(N +Du(U) = Y _u(W (U)) = u (U hf’(U)) <uX) =1,
. A

j=0
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which gives u(U) < 1/N < €. Since F' is thin, we have F' < U, and so there exist M € N,
Ug,..., Uy C X open, and d(0),...,d(M) € Z such that F C U;‘io U; and such that the sets
h4U)(U;) are pairwise disjoint subsets of U for 0 < j < M. Then again using the h-invariance of

{t, we have

M M M
<wp|UJUs Z = > _ O Uy) = U HO(U;) | < wU) <.
7=0 7=0
Since € > 0 was arbitrary, it follows that p(F') = 0. g

Lemma II1.12. Let (X, h) be as in Notation III.1.

1 If F\,F, C X are closed and V,Vo C X are open such that Fy < Vi, Fa < V,, and
VinVy, =@, then F1UEF, < ViUV,

2. The union of finitely many thin sets in X is thin.

Proof. To prove (1), simply observe that since VNV, = @, the union of a pairwise disjoint collection
of subsets of V; and a pairwise disjoint collection of subsets of V; is still pairwise disjoint.

For (2), it is sufficient to prove that the union of two thin sets is thin. Let Fy, F; ¢ X
be thin closed sets, and let U C X be a non-empty open set. Since h is minimal there must be
distinct points z1,29 € U. Let ¥V} C U and V3 C U be disjoint open neighborhoods of z; and x4
respectively. Then F; < V; and Fy < V,, and now part 1 implies that 5y U Fy, < ViUV, C U,

which proves that I U F3 is thin. O

Lemma III.13. Let (X, k) be as in Notation III.1. Let F C X be a thin closed set, and let U C X
be open. Then there exist N € N, Fy,...,Fp C X closed, and d(0),...,d(M) € Z such that:

1. FcUL,Fy;
2. h4O)N(F}) c U for0< j < M,
3. the sets h4U)(F;) are pairwise disjoint for 0 < j < M.

Proof. Since F' is thin, we have F < U, and so there exist N € N, Up,...,Up C X open, and
d(0),...,d{M) € Z such that ' C U -~ o U; and the sets A%0)(U;) are pairwise disjoint subsets of U
for 0 < j < M. Now temporarily fix j € {0,..., M}. For each z € Uy, let V% be a neighborhood
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of z such that Vz(j) C V(zj) C U;. Then {Vz(j): zel;0<5< M} is an open cover for F, hence it
contains a finite subcover. For 0 < j < M let S; be the (possibly empty) collection of all sets v
that appear in the finite subcover for F', and set F; = UVGS], V. Note that F; = @ if the collection
S; is empty. Then each Fj is closed (being the union of finitely many closed sets) and satisfies

F; C U;. Tt follows that the sets hd(j)(Fj) are pairwise disjoint subsets of U for 0<j <M. O

Lemma II1.14. Suppose that dg,...,dn are m + 1 distinct integers, and that ny,ng are distinct

integers (but not necessarily distinct from the d;). Then the set
{di+n;:0<i<m,j=1,2}

contains ot least m + 2 distinct integers.

Proof. Without loss of generality, suppose that do < d; < -+ < d;, and n1 < ng. Then we have
do+ni <di+n < - <dn+n <dpn+ng,

which provides m + 2 distinct integers in the set {d; +n;: 0 <i<m,j = 1,2}. O

Proposition II1.15. Let (X,h) be as in Notation HI.1. If F C X is topologically h-small, then
F s thin.

Proof. The proof is by induction on the smallness constant m. First consider the case where
the smallness constant is m = 1. Then given j,k € Z with j # k, we have &/ (F) N h*(F) =
@. Let U C X be open and non-empty, and let V; C U be open and non-empty with V C
X. By Lemma IIL.2, {h"™(V}): n € Z} is an open cover for F', so there exists a finite subcover
{h=4O(Vy), ..., h= M (Vp)}. Set F; = FNh=40) (Vo). Then the sets k40 (F}) are closed, disjoint
(since A% (F;) ¢ h4U)(F) and these sets are disjoint) and satisfy h%9)(F;) ¢ Vo C U. Since X
is normal, there exist disjoint open sets Wy, ..., Wp C X such that hd(j)(Fj) C W;. Finally, for
0<j<MsetUj =h %0 (W;NU). Then F C U;VI:O U;, and the sets k%) (U;) are pairwise
disjoint (being subsets of the W;) and contained in U.

Now let m > 1, and suppose that closed sets which are topologically h-small with smallness
constant m are thin. Let FF C X be topologically h-small with smallness constant m + 1. For

j,k € Z with j # k, define Fj = h/(F) O h*(F). We claim that the sets F}; are topologically
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h-small with smallness constant m. To see this, let dp,...,d,, be m + 1 distinct integers, and let
J.k € Z with § # k. By Lemma I11.14, the set {d; +{: ,0 <1 < m,{ = j, k} contains at least m+2

distinct integers. It follows that

(R4 (F)n k4R () = @,

y

h%(Fj ) N N (Fy ) =
0

1

which proves the claim. Now choose disjoint, non-empty open sets Vi,Vo C U, and choose

disjoint, non-empty open sets Z;, Zy with Z, C V; and Z, C V,. By Lemma II1.2, the collection

{h™(Z,): n € Z} is an open cover for F', so it contains a finite subcover {h™™°(Z;),...,h™"5(Z1)}.

Set T = {(j, k): 0 < j < k < K} and for each (j, k) € T define D; = h™ (F)nNh™ (F)NZy, which is

a closed subset of Fy,; »,. By the earlier claim, Dj x is topologically h-small with smaliness constant

m, and so it is thin by the induction hypothesis. Choose pairwise disjoint open sets S;x C Z3 for:
0)

(4,k) € T. Since each Dj is thin, there exist M(j, k) € N, U;,k,OV‘ . U;?,C)’M(j,k) C X open, and

d;.(0),...,d; k(M(j,k)) € Z such that:

ik 0
1. Djx c UMGR UQ;

ik (® 0
2. hde@W Q) ) c Sk
3. the sets hdf‘k(i)(U;'(;c),i) are pairwise disjoint for 0 < i < M (5, k).

Set

j ko
D= |J n™(Djx) and Wo= |J a™ ML(JJ ) j(,(;c),i> .
(4.k)ET (G,k)ET i=0
Then D is closed, Wy is open, and D C Wy. Choose W C X open such that D ¢ W C W C W
For0<j < K,set F; = h™™i(Z;)N(X \W)NF, which is closed. Let z € F and suppose z ¢ W.
For some j € {0,...,K}, we have z € h~™(Z;). Thenz € F, z € h™™(Z,),and x € X \ W, s0
x € Fj. It follows that {Fy,...,Fkg,W} covers F. Next suppose that z € h™ (F;) VA" (Fy) for
some (j,k) € T. Then there are z; € F; and xy € Fy such that h™ (z;) = z = k™ (xx). Since
F;, F, C F we certainly have x € h™ (F)N k™ (F). Moreover, z; = k™™ (z) € h™™(Z,), which
gives z € Z,. It follows that z € D; 4, and so also z; = k™™ (z) € h™™ (Dy;,) € W. This implies
z; ¢ Fj, a contradiction. Therefore, the sets h™ (F;) are pairwise disjoint. Since h™ (F;) C Z,

they are all subsets of V3. Using the normality of X, choose non-empty pairwise disjoint open sets
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Uéo), ce U}? C X such that "™ (F;) C UJ@ C V1. For an appropriate M € N, re-index the sets

(k) EeT0<i< M(j.k)}

{rre@d™),. ey u o)

and

{no,....,ng} U{n; + djr(): (4, k) € T,0 <1 < M(5,k)}

as {Us,...,Un} and {d(0),...,d(M)} respectively. Then F C UiMSO U; and the sets h®W)(U;)
are pairwise disjoint subsets of U for 0 < j < M. It follows that F is thin, completing the

induction. [

Corollary II1.16. Let (X, h) be as in Notation III.1. Let F C X be closed and topologically
h-small. Then p(F) =0 for every p € Mp(X).

Proof. This follows immediately from Proposition II1.15 and Lemma III.11. O

Notation IIIL.17. From now on, unless stated otherwise, we assume that the minimal
homeomorphism h of Notation III.1 is uniquely ergodic; that is, there is a unique h-invariant Borel
probability measure on X. Let u denote this measure. Any reference to X also refers implicitly to

the minimal, uniquely ergodic dynamical system (X, h,pn).

We suspect that most of what follows can be done without the assumption of unique
ergodicity, with a corresponding increase in the technicalities of both the proofs and certain
definitions.

The essential content of the property given by the following definition is that comparison of
measures is sufficient to determine when a closed set can be decomposed and translated disjointly
into an open set. The main result of this chapter will be to show that it holds for a reasonably

large class of minimal, uniquely ergodic dynamical systems (X, h, u).

Definition III.18. Let (X,h,u) be as in Notation IIL17. We say (X, h,u) has the dynamic
comparison property if whenever U C X is open and C C X is closed with u(C) < p(U), then
there are M € N, continuous functions fj: X — [0,1] for 0 < j < M, and d(0),...,d(M) € Z
such that }:J-Aio fi =1 on C, and such that the sets supp(f; o h=¢0)) are pairwise disjoint subsets
of U for0<j< M.
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The next lemma gives a condition that implies the dynamic comparison property holds,

and is easier to verify because it assumed additional structure for the closed and open sets involved.

Lemma II1.19. Let (X,h,u) be as in Notation HI.17. Suppose that X has the property that
if whenever F' C X is closed with int(F) # & and OF topologically h-smell, E C X is open,
and there exists an open set Ey C FE with Eg C E, EgNF = &, 0Ey topologically h-small, and
w(F) < u(Ep), then there exist M € N, continuous functions f;: X — [0,1] for 0 < j < M,
and d(0),...,d(M) € Z such that z;'\io fi =1 on F, and such that the sets supp(f; o h~=%9)) gre
pairwise disjoint subsets of E for 0 < j < M. Then (X, h) has the dynamic comparison property.

Proof. Let U C X be open and let C C X be closed with y(C) < p(U). By Proposition II1.7,
there is an open set Uy C U with Uy C U and u(C) < u(Up). First suppose that C C Up.
Since X is a locally compact Hausdorff space, we can choose an open set V, with V' compact,
that satisfies C C V ¢ V C U. Now set M = 0 and d(0) = 0, and choose a continuous function
for X — [0,1] such that fo = 1 on C and supp(fo) C V. Then Zj]\io fi=fo=1onC, and
supp(fo © h~49) = supp(fo) € V C U as required.

So we may assume that C N (X \ Up) # @. By Proposition IIL.7 there is an open set
V C Uy such that 3V is topologically h-small and p(C) < u(V). Moreover, V C Uy implies that
V c Uy CcU. Setting § = u(V) — u(C) and applying Proposition III.6 three times, we obtain open
sets Gg,G1, Gy C X such that

CNVCcGyCcGyc G CG CGyC Gy C Uy,

with 0G; topologically h-small for ¢ = 0, 1, 2 (so also #(9G;) = 0 for ¢ = 0,1, 2 by Corollary I11.16),
1w(Go) —(CNV) < 39, u(Gy) — w(Go) < 36, and u(G2) — u(Gy) < 4.
Set Fo = C\ Gy, E=U\G), and E, =V \ Gy. Then:

1. Fy is closed and non-empty, since Gy C Up implies that C N (X \ Go) # &;
2. E, and E are both open and non-empty, and by construction we have E; C E, C E;
3. E1nFy = @;

4. Observing that CNV C Gy and CNV ¢ C imply CNV € CN Gy, and hence u(C N Gy) -
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w(C NV) > 0), it follows that

#(E1) — u(Fo) = w(V \ Ga) — u(C'\ Go)
= u(V) = u(V N G) — (u(C) — u(C N Go))
> (u(V) = u(C)) + p(C N Go)
— (CNV)+u(G2\ G1) + u(G1\ Co) + u(Go \ (C NV)))

> 68— (G2 \ G1) + (G \ Go) + (Go \ C N V)

Now Proposition III.7 gives an open set Ey C E; such that Eg C E;, 0Eq is topologically
h-small, and u(E;) — p(Eo) < 6. From E1 N Fy = @ it follows immediately that Fo N Fy = @.
By the normality of X and the regularity of u, there is an open set Wy € X such that Fy C Wy,
EynWy = @, and u(Wy) — u(Fo) < 11—66. Next, Proposition II1.6 implies that there is an open set
W C X such that Fy ¢ W ¢ W C Wy, 8W is topologically h-small, and u(W) > u(Ws) — %5.
Now set F' = W, which satisfies int(F) # @, F topologically h-small (which in particular gives

w(F) = u(W)), and Eg N F = @. Finally, we compute

p(Eo) — u(F) = u(Eo) — u(W)
> u(E1) — 150 — p(W)
> (u(Fo) + 16) — 150 — u(W)
> (u(Wo) — 150) + 150 — u(W)

= (u(Wo) — p(W)) + 16

v
Qof—

)

\Y
o

where in the next-to-last step we have used the fact that W C Wy implies u(Wy) — u(W) > 0.

It follows that the sets F and Ey satisfy the conditions for the property given in the statement
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of the Lemma. Therefore, there exist M € N, continuous functions fo,..., fsr: X — [0,1], and
d(0),...,d(M) € Z such that Z;Vio fi = 1 on F, and such that the sets supp(f; o h=%9)) are
pairwise disjoint subsets of E for 0 < j < M. Choose a continuous function fur41: X — [0,1] such
that faze1 = 1 on G; and supp(fa41) C Go, and set d(M + 1) = 0. Now for any z € C, either
Tz € Fyporz € GoyNC. If z € Fy then in particular z € F, and so Zjﬂi’(;l fi(z) > ZinO fi(z) = 1.
If z € Go N C then in particular z € G}, and so Zjlvi“(;l (x) > fama(z) = 1. Tt follows that
ZJ-ASI fi(z) > 1 for all x € C. From the continuity of the f;, there is an open set S C X such
that C C S and Zjng)l fi(x) > 3 for all z € S. Choose a continuous function f: X — [0,1] such
that f =1 on C and supp(f) € S. For 0 < j < M +1, define a continuous function g;: X — [0,1]
by
-1
f@fi@) (DI fi@)  ifzes

0 frxdgS.

g5(z) =

Then for any z € C, we have

=0

M+1 M+1 1M+l M+1 L a4
S ) = (z fi(w)) I ) = (z fim) S hiw) =1
j=0 =0 7=0 =0

Moreover, gj(z) = 0 for any ¢ € X where f;(z) = 0, which implies that supp(g;) C supp(f;).
It follows that supp(g; o h=¢()) C supp(f; o A=) for 0 < j < M + 1. This immediately gives
pairwise disjointness of the sets supp(g; oh~90)) for 0 < j < M, since the sets supp(f; oh~¢U)) are
pairwise disjoint for 0 € 7 < M. Further, all of these sets are contained in U as E C U. Finally,
supp(gar+1 © g~ MH) = supp(gar41) C supp(fa+1) = supp(far41 0 A~4M+)) € G3 C U, and
ENG; = @. Thus, the sets supp(g; o h~%?) are pairwise disjoint subsets of U for 0 < j < M +1.

It follows that (X, h, u) has the dynamic comparison property. O

Lemma II1.20. Let (X, h, u) be as in Notation IIL.17. Suppose that F C X is closed and E C X
is open with FNE = @ and u(F) < u(E). Then there exist continuous functions go,g1: X — [0, 1]
such that go = 1 on F, supp(go) C X \ E, supp(q1) C E, and

/gldﬂ>/godu~
X X

Moreover, with g = g1 — go, there exist Ng € N and o > 0 such that for all N > Ng and z € X,
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we have
] N-1

W Z 9(W () > 0.

s,

Proof. Since F N'E = @, the normality of X gives open sets Vp, Vi C X such that F C Vg,
EcVi,and VynVi = @. Let § = u(E) — u(F) > 0 and use the regularity of u to choose an
open set W C X and a compact set K C X such that F ¢ W, K C E, (W) — u(F) < 36 and
w(E) — u(K) < 38. Set Wy = Vo N W, which satisfies F C Wy, Won Vi = @, and p(W,) <
w(W). Then this last inequality, the fact that Wy \ F is open, and Proposition III.2 imply that
0 < u(Wo) — w(F) < pu(W) — u(F) < 38. Now choose continuous functions go and g1 such that
go = 1 on F, supp(go) C Wy (so that supp(go) is disjoint from E), g; = 1 on K, and supp(g;) C E.

Observing that

we thus obtain

/godu=/ goduSu(Wo)'<#(K)=/ 9 dus/. 91 dp.
X Wo X X

Noting that, by the previous calculation, the function g = g1 — go satisfies

/gdﬂ>0,
X

1
== dis.
7 2/xg“

Suppose for a contradiction that no Ny € N as in the statement lemma exists. Then there

we define ¢ > 0 by

exist sequences (Ng)72,; C N and (zx)32,; C X such that for all £ € N we have

Ne—1

Nik > o) <o
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Passing to subsequences (Ng(;)i2, and (zx())i2; (if necessary) and applying the pointwise ergodic

theorem (see the remark after Theorem 1.14 of [54]) yields

Nk([)—l
diy = lim W (zen)) < o,
/Xg p=fim ]Z:% g(h (zx))
which contradicts the definition of o. O

Lemma II1.21. Let (X, h,p) be as in Notation III.17. Let e > 0 be given, and let FF C X
be thin. Then for any non-empty open set U C X there exist M € N, closed sets F; C X for
0<j< M, open sets T, V;, W; C X for0 < j <M, continuous functions fo,..., far: X — [0, 1],

and d(0),...,d(M) € Z such that: .
1. Fc U F;
2. R¥DNF)cTycT,cV;cV;cW; cU for0<j<M;
3. ZjM=O fi=1on Ujlvio h¢(V5);
4. supp(fj o h=9)) C W; for 0 < j < M;
5. the sets W; are pairwise disjoint and Zﬁ_ou(W}-) <e.

Proof. Since U is open and non-empty, Lemma II1.4 implies there is a non-empty open set E C U
with ((E) < e. Since F is thin, we can apply Lemma II1.13 to F and E, which implies there exist
MeN, Fy,...,Fy € X closed, and k(0),...,k(M) € Z such that F C UinO F; and such that the
sets h*¥U)(F}) are pairwise disjoint subsets of £. For 0 < j < M, we set d(j) = —k(j). Since X
is normal, we may choose for 0 < j < M open sets W; with F; C W; C E such that the W; are

pairwise disjoint. Now we can use the compactness of X to obtain open sets 7, V; C X such that
RN T, cT,cV; cV; Wy

For 0 < j < M choose continuous functions g;: X — [0,1] such that g; = 1 on A% (V;) and
supp(g;) C h*9)(W;). Then Zjnio gi(z) > 1forallz e U;.VI:O h*9)(V;). By the continuity of the
g, there is an open set @ C X such that UinO rRYN(V;) € @ and ZinO g;(x) > 5 forall z € Q.

Choose a continuous function f: X — [0,1] such that f =1 on Uino r4U(V ;) and supp(f) C Q.
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Now, for 0 < j < M, define continuous functions f;: X — [0,1] by

f@)es@) (Dlo0@)  itreQ
0 . ifzg Q@

fi(z) =

Then for any z € szvio R4 (V;), we have

In particular, Z].Aio fi=1on anio h#9)(Ty). Moreover, supp(fj) = supp(g;) C h%)(W;), which
implies that supp(fj o h~99)) = supp(g; o h~49) C W;. Finally, as the W; are pairwise disjoint

subsets of E for 0 < j < M, it follows that

M M
Zu(Wj)=u UW; | <wE) <,

§=0 j=0
which completes the proof. g

The next proposition is included to contrast the relative ease in which the dynamic
comparison property is verified for the special case of the Cantor set compared to the complexity

of the proof in more general situations.

Proposition I11.22, If X is the Cantor set and (X, h, 1) is as in Notation II.17, then (X, h,p)

has the dynamic comparison property.

Proof. This is essentially the content of Lemma 2.5 of [12], although their result is not stated in
terms of functions. Since characteristic functions of compact-open subsets of X are continuous,

re-casting it to obtain the dynamic comparison property is straightforward. O

The situation becomes significantly more complicated once we leave the case where X
is the Cantor set, since we can no longer work with compact-open sets and their characteristic
functions. The key technical assumption in the general case is that (X, h) have the topological

small boundary property.
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Lemma IIL.23. Suppose that (X, k) has the topological small boundary property. Then for any
N €N, there exists a closed set Y C X such that int(Y) # &, Y is topologically h-small, and the

sets Y, h(Y),...,RM(Y) are pairwise disjoint.

Proof. Since the action of h on X is free, for y € X the iterates y, h(y),..., h"V (y) are all distinct
elements of X. Choose pairwise disjoint open neighborhoods Wy, Wi, ..., Wy bf these points,
and set W = ﬂj-vzo h~I(W). Then the iterates W, h(W),..., kN (W) are pairwise disjoint. Let
F = {y}, and apply Proposition II1.6 with F' and W to obtain an open set U < X such that
F c U cUcC W and such that dU is topologically h-small (we ignore the unneeded measure
theoretic conclusion). Setting Y = U, it follows that int(Y") # @ and 8Y is topologically h-small.
Finally, as Y € W, the sets Y, h(Y),..., A" (Y) are pairwise disjoint. 0O

Lemuma II1.24. Let (X,h) be as in Notation [{I.1. Let Y C X be closed with int(Y) # @ and 9Y
topologically h-small. Adopt the notation of Theorem IIL8. Then O(hI(Y%)) is thin for 0 < k <

and 0 < j < n(k) —1.

Proof. By Proposition 111,15, §Y is thin. For 0 < j < n(k) — 1, we have 9h¥(Y}) = h¥(8Y%), and
since translates of thin sets are thin, it suffices to prove that each of the sets Y is thin. But
oYx C U;LS())—I R?(3Y’), and this set is thin by Lemma III.12, since it is a finite union of translates

of thin sets. O

Theorem I11.25. Let be X be an infinite compact metric space with finite covering dimension m,
let h: X — X is be a uniquely ergodic minimal homeomorphism, let p be the unique h-invariant
Borel probability measure on X, and suppose that (X,h) has the topological small boundary

property. Then (X, h, 1) has the dynamic comparison property.

Proof. Let C C X be closed and U C X be open such that u(C) < p(U). By Lemma II1.19, we may
assumne that int(C) # @, 9C is topologically h-small, and that there is an open set Up C U such
that Ug C U, Uy is topologically h-small, Uy N C = @, and u(C) < u(Us). Applying Proposition
I11.20 to C and Uy, there exist continuous functions gg,g1: X — .[(], 1} such that go = 1 on C,

supp(go) C X \ Uy, supp(g1) C Uy, and

/gldu>/godu-
X X



42

Moreover, with g = g1 — go, there exists Ng € N and ¢ > 0 such that for all N > Ny and z € X,

we have

N-—-1

1

7 2 oW (@) 2o

§=0

By Lemma II1.23, there exists a closed set ¥ C X with int(Y) # @ such that 8Y is
topologically h-small, and such that the sets Y, h(Y),...,h"¥o(Y) are pairwise disjoint. Following
the notation of Theorem IIL.8, we construct the Rokhlin tower over Y by first return times to Y/,
then apply the second statement of Theorem III.8 with the partition P = {Uy,C, X \ (Uy UC)}
of X by sets with non-empty interior (discarding the third set if it is empty). For convenience, we
will use Yp,...,Y¥; and n(0) < n(1) < --- < n(l) for the base spaces and first return times in the

tower compatible with P, and set Y,C(O) =Y, \ 0Y,. (Note that since these Yj are the sets Zg in

Theorem IIL.8, it may be the case that Yk(o) = @.) We set

1 n{k)-1
F:X\(U U hJ‘(Y,j"’)).

k=0 j=0

For each & € {0,...,1}, the column {h(Yx): 0 < j < n(k) — 1} has height at least No. Thus, for

any z € Yx we have

1 n(k)~1 '
wlh) z gk (z)) 2o > 0.
7=0

For § ¢ X and k € {0,...,!} define
N(8k)={ne{0,1,...,nlk) =1} : ™(Y}) C §}.

Letting x = xv, — Xc, We observe that go = 1 on C implies that x¢ < go and supp(g1) C Uy

implies that g; < xp,. Combining these inequalities gives g < ¥, and so

1 R 1 W card(N (U, ) — card(N(C,))
0<0Smj=09(h (m))Smjjgox(h (x)) = o) .

It follows that for 0 < k < I, we have card(N (U, k)) > card(N(C,k)) (that is, more levels in
the column {h7(Y;): 0 < j < n(k) — 1} are contained in Uy than are contained in C) and so there

is an injective map @r: N(C, k) — N(Up, k). If we order N(C,k) as {sx(0),...,sc(Lx)} and
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similarly order N(Uy, k) as {tx(0),...,tx(Lk),...}, then one way to represent the injection ¢y is

by ¢k = (dk(0),...,dk(Lx)) € ZL* where, for 0 < m < Ly, the integer di(m) satisfies
R ™) (o) (7)) € BB O (Yy).

Next, we claim that the closed set F' is thin. Since the finite union of thin sets is thin by
Lemma III.12,V it clearly suffices to prove that Oh7 (V%) is thin for each 0 < k <!, 0 < j < n(k)-1.
Now, 8C and 8Uy are both topologically h-small, hence thin. Since (X \ (U UC)) = d(UyUC) C
AUyUBC, it follows that the boundaries of all sets in the partition 7 are thin. As the only processes
used in the construction of the Rokhlin tower compatible with this partition are translation by
powers of h, finite unions, and finite intersections, it follows that it is sufficient to prove that the
boundaries A7 (Y%) in a standard Rokhlin tower (without any condition about compatibility with
respect to a partition) are thin. This is true by Lemma II1.24, and consequently F is thin,

Now, set Q = {k-. 0<k<l,Y 4 g}, Q' ={0,...,1}\ Q, and define
€= 4 min {/J,(Yk(o)): ke Q}

The € > 0, and so we may apply Lemma I11.21 with F', U\ Uy, and . We obtain M € N, and for
0 <% < M open sets T3, V;, W; C X, closed sets F; C X, continuous functions b;: X — [0, 1}, and

integers r(z) such that:
LR FYCcT,cT;cVicVic W, cU\TUg for 0 <i < M;
2 Tilob=1on Uiy OT);
3. supp(b; o A~T@B) ¢ W; for 0 < i < M;

4. the sets W, are pairwise disjoint and Zfio w(W;) < e.
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By the choice of ¢, it follows that for k € @ and 0 < j < n(k) — 1,

M M
uQﬂWHUWWMOEMWWDﬂ«UVWMO

=0 =0

M
> 95 = Y u(h" (W)

1:'/!-':0
=e— Y u(Wi)
=0

>e£

>0,

and so the sets h7 (Y2) \ U?io h™&(W;) are non-empty whenever k € Q. It follows that for k € Q,
each set hJ (Vi) \ UM, A7 (V;) is a non-empty closed subset of h7(Yi). Now for k € Q and 0 < m <
Ly choose a continuous function fm k: X — [0,1] such that fm = 1 on A (V) \ UM, 7@ (V;)

and supp(fm ) C o™ (Vi) \ UM, hr@(T;). Now we have collections of continuous functions
i 0<i <M frap: K €Q,0<m < L}
and associated integers
{r(®): 0<e < M}U{dr(m): k€ Q,0<m< L}.

For any z € C, if 2 € Upeq U5, (hsk(m>(Yk) \UY, h““(V{)), then f, x(x) # 0 for some k € Q
and some m € {0,...,L;;}. Otherwise, z € U?io RT@(V;), and b;(z) # 0 for some 0 < § < M.
(Notice that if z € Uyeq Ufn’;o hek(m)(Yy), then in fact = € F, and so also z € U?io AOIAR
Now re-order the two collections above as {fj(o): 0<j< K} and {d(j): 0<j <K} for an
appropriate K € N. Then Z]K:O f;o)(z) > 0 for all z € C. Since C is compact and the f}o)
are continuous, there must be a w > 0 such that Zf:o f}o)(x) > w for all z € C. Again using
continuity, we can choose an open set § C X such-that C C 5 and Zf:o f}o)(x) > lwforallze S.

Choose a continuous function f: X — [0,1] such that f(z) = 1 for all z € C, and supp(f) C S.
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For 0 < j < K define continuous functions f;: X — [0,1] by

F@ 0@ (X fzﬁ(’)(m))"l ifz e s
0 ifz &S

fi=

Then for any z € C,

K K -1 g K -1 g
> fix) = (Zf,@(m)) Y @) 0 @) = (fo%)) S0 =1
7=0

3=0 i=0 i=0 j=0

Moreover, supp(f;) C supp(fj(o)) for0<j< K. If f]-(o) = b; for some 0 < ¢ < M, then
supp(f}o) o b=y = supp(b; o k"D c W; c U\ Tp

and the sets W; are pairwise disjoint. Therefore the sets supp( f;o) o h=47)) are pairwise disjoint
for all choices of 7 where f}o) € {b;: 0 <7< M}, Next, if f}o) = fmx for some k € @ and some

0 <m < Ly, then
supp(f{” 0 h™40)) = supp(fmx 0 h™H™) C B (Y) C U
Moreover, the definition of the functions f, , implies that
SUpP(fm s © h™™) € R (o1 (Y) \ Uo O (V)

so that in particular, for & € Q the set supp(fin x 0 A% (™) is a subset of h‘k(m)(Yk(O)) (which is
non-empty by thé choice of k). Since the sets h‘k(m)(Yk(O) ) are pairwise disjoint, the sets supp( f;o) o
h~49)) are pairwise disjoint for all choices of § where f}o) €{fmk: k€ Q,0<m < L} Moreover,
the sets are W; are pairwise disjoint from the sets h‘k(m)(Yk(O)) as U\ Uy is certainly disjoint from
Us. Therefore, the sets supp( f}o) o h=%)) are pairwise disjoint subsets of U for all 0 < j < K. It
follows that the sets supp(f; o h=4() are pairwise disjoint subsets of U for all 0 < j < K. This

completes the proof. 0

In order for the result of this theorem to be useful, we need to know that we can actually

find minimal dynamical systems (X, k) that have the topological small boundary property. If we
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restrict to the case where, in addition to our usual assumptions, we take X to be a smooth compact
- connected manifold and k to be a minimal diffeomorphism of X, then it is not hard to show that the
topological small boundary property holds. We call a closed set Y C X generic if 8Y is a smooth
submanifold of X such that any finite subfamily of {A"(8Y): n € Z} intersects transversally. In
particular, the intersection of any dim(X) + 1 such sets is empty, so 9Y is topologically h-small
with topological smallness constant dim(X). By the main theorem of [28], there exist sufficiently
many generic sets Y so that if F, K C X are disjoint compact sets, then there exist open sets U

and V with UNV = @ and such that U is generic. We thus obtain the following existence result.

Corollary II1.26. Let (X,h) be a smooth minimal dynamical system, consisting of a compact
connected smooth manifold X with finite covering dimension and a uniquely ergodic minimal
diffeomorphism h, with unique h-invariant Borel probability measure p. Then (X, h,p) has the

dynamic comparison property.

Proof. By the previous discussion, (X, &) has the topological small boundary property. Theorem

IT1.25 then implies (X, h, 1) has the dynamic comparison property. [

Before proceeding with our main development, we digress momentarily to make some
speculative comments about comparison of positive elements in C(X). As mentioned in the
introduction, Cuntz subequivalence 2 (which will be defined formally in Definition VIL.1} is a fairly
restrictive form of comparison for positive elements in this situation. Two functions f,g € C(X)

satisfy f = g if and only. if
{zeX: flz)y#0}Y c{z e X: g(z) #0}.

The dynamic comparison property suggests that in dynamical systems where it holds, a weaker
form of subequivalence of functions could be appropriate. We tentatively propose the following

definition.

Definition II1.27. Let (X,h) be as in Notation IIL1. Given f,g € C(X)4, we say f is
h-subequivalent to g, and write f =i g, if there exist fi,..., far € C(X)4 and d(1),...,d(M) € Z
such that f 2 Z;‘il fi and such that the sets supp(f o h=%9)) are pairwise disjoint subsets of

supp(g) for 1< j < M.
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Proposition I11.28. The relation =, is a partial order on C(X) 4.

Proof. Tt is clear that 3, is reflexive. (Take M =1, fi = f and d(1) = 0.) Suppose that f $xr g and

g Zn k. Then there exist fi,...,fa,691,.--,98y € C(X)4 and d(1),...,d(M),7(1),...,7r(N) € Z
such that f 2 Zi:l fi, 9 3 Zjil g;, the sets supp(f; o h~%?) are pairwise disjoint subsets of
supp(g) for 1 < i < M, and the sets supp(g; o h=7(9)) are pairwise disjoint subsets of supp(k) for
1<j<N.Forl<i<Mandl1<j<N, define @; ; € C(X)4 by @i ; = fi(g5 0 h*®). We claim

that if Zfil Z?’zl @s,5(x) = 0, then f(z) = 0. To see this, observe first that

N
> D fulgs 0 k1)

j=1

N
ol

j=1

fi g; | o h%®
j=1

filg o h4O)).

Mz

i=1 j=1

.
Il
—

e 11

.
i
—

s
™=

L
Il
—

M:

=

@
I
-

If YN S wig(x) =0, then 307 fi(2)g(h%®) (z)) = 0 as well. If fi(z) = 0 for 1 < i < M, then
f(z) = 0 and we are done. If not, then g(h%®(x)) = 0 for some 1. Since supp(f;oh~%®) C supp(g),
it follows that f; o h=¢(®(h4()(z)) = 0, which implies that f;(z) = 0. This proves the claim. From

the claim we may conclude that f 3 Zfil Z;.\I:l ©;,4- Further,

supp(pij o h~ (d(1)+7“(.7))) = supp((f; o h~ (d(t)+r(J)))(g o B2 o p— d(t)+r(1))))

C supp(gj o h™"),

which implies that the sets supp(p; ; o h~ (404D} are pairwise disjoint subsets of supp(k). It

follows that f 3p k. O

It is certainly the case that if f < g then f 3, g, as supp(f) is already a subset of
supp(g). If (X,h,u) is as in Notation I11.17 and has the dynamic comparison property, then
a sufficient condition for f =p g would be that there is an open set U C supp(g) such that

u(supp(f}} < w(U). Two questions immediately come to mind. The first is whether this definition
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is actually useful; that is, can any interesting results be obtained from it. The second is whether
it can be generalized to give an appropriate definition of “a-subequivalence”, where « is an action
of a countable amenable group on a unital C*-algebra A, and what relationship this definition
has with the leftover comparison condition in the tracial quasi-Rokhlin property. In the tracial
Rokhlin property of [36] for Z-actions, this condition is given in terms of Murray-von Neumann
subequivalence of projections, while in the projection-free tracial Rokhlin property of [3] for finite
group actions, it is given in terms of Cuntz subequivalence of positive elements. Again, we propose

a (very tentative) definition.

Definition II1.29. Let A be a separable, unital C*-algebra, and let a: T' — Aut(A) be an action
of a countable, amenable group ' on A. For a,b € Ay, we say a is a-subequivalent to b, and write
a 34 b, if there exist N €N, v1,...,yw €T, a1,...,ay € Ay, and wy,...,w, € U(A) such that

a < ij:l a; and the elements wja.,(a;)w; are mutually orthogonal positive elements of bAb.

With this definition available, condition (5) in Definition II.1 could be re-stated as: with
c= Z?:o ¢j, 1 — ¢ is a-subequivalent to a positive element of zAz. We have not attempted to
verify that =, is a partial order on A4, and in fact this may not even be true. The computations
in the proof of Theorem IV.15 suggest that an additional requirement may be needed regarding the
centrality (or perhaps approximate centrality) of the positive elements a;,...,ay. Note also that
whereas in Definition I11.27 we have used =, Definition .29 uses <, mainly for consistency with
the tracial quasi-Rokhlin property. It seems possible that we could also use Cuntz subequivalence
in this case and not lose any of results about the tracial quasi-Rokhlin property, but this needs
to be checked. We do not pursue h-subequivalence or a-subequivalence further here, leaving them

instead for potential future work,
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CHAPTER 1V

AUTOMORPHISMS OF C(X,A) WITH THE TRACIAL QUASI-ROKHLIN PROPERTY

Our next goal is to study the automorphisms for a sort Qf noncommutative minimal
dynamical system, where the commutative C*-algebra C(X) studied by H. Lin, Q. Lin, and N. C.
Phillips is replaced by the algebra of all continuous functions f: X — A, and A is some abstract
C*-algebra with sufficiently nice structure. (For any interesting new applications, A will be a
noncommutative C*-algebra.) With the dynamic comparison property at our disposal, we prove
that automorphisms of such algebras which take the action of a minimal homeomorphism when
restricted to the central subalgebra C(X) satisfy the tracial quasi-Rokhlin property (under some
additional technical assumptions). After further consideration of the structure of these algebras, it
will follow that our results for crossed products by automorphisms with the tracial quasi-Rokhlin
property in Chapter II will apply to their associated transformation group C*-algebras. The
following definition was ﬁrst. given in [20]. The version presented here is equivalent to the original
one by Proposition 3.8 of [20]. Recall that if p and ¢ are projections in a C*-algebra A, we say
that p is Murray-von Neumann subequivalent to ¢, and write p 3 g, if there is a partial isometry

v € A with v*v = p and vv* <q.

Definition IV.1. Let A be a simple, unital C*-algebra. We say that A has tracial rank zero if
for every € > 0, every finite subset FF C A, and every nonzero positive element x € A, there exists

a projection p € A and a unital finite-dimensional subalgebra D C pAp such that:
1 |lpa—ap| <€ for alla € F;
2. dist(pap, D) < ¢ for all a € F;

3. 1—p is Murray-von Neumann equivalent to a projection in in zAz. (That is, thereis av € A

such that v*v =1 — p and vv* s a projection in cAx.)
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A C*algebra with tracial rank zero is thought of as being “approximately
finite-dimensional in trace”. (If z is small enough in a suitable sense, then condition (3) of the
definition tells us that 7(1 — p) < ¢ for all 7 € T(4).) Every AF-algebra (a C*-algebra which is a
direct limit of finite-dimensional C*-algebras) has tracial rank zero, but there are many C*-algebras
with tracial rank zero which are very far from being AF-algebras. Consequently, tracial rank zero
is a rather weak type of approximate finite-dimensionality for a C*-algebra A, that nevertheless
is known to imply a great deal about the structure of A. For our purposes, this definition will
be used to ensure that certain C*-algebras we will use have tractable structure. It is one of the
most important concepts in the classification theory of C*-algebras, and our ultimate goals (which
is still far from being realized) is to show that the crossed product C*-algebras we consider have

tracial rank zero under suitable assumptions about their K-theory.

Notation IV.2. Throughout, we take (X, h) to be as in Notation III.1, and A to be a simple,
um’_tal, separable, infinite-dimensional nuclear C*-algebra with tracial rank zero that satisfies
the Universal Coefficient Theorem of [{7]. Assume in addition that A is a direct limit of
recursive subhomogeneous algebras, in the sense of [39]. Form the algebra C(X, A), consisting
of all continuous functions f: X — A, with pointwise algebra operations, adjoints given by
f*(x) = (f(z))* for all z € X, and || f|| = supgex [[f(z)||. We frequently identify C(X, A)
with C(X) ® A in the canonical way; see [55] for details. For f € C(X) and a € A, we denote
by f ® a the element of C(X, A) given by (f ® a)(z) = f(x)a for all z € X, noting that these
elementary tensors in fact span C(X, A). We identify C(X) with the subalgebra of C(X, A) given
by {f®1: f € C(X)}, and observe that this is the center Z(C(X, A)) of C(X, A).

We will not elaborate on what it means for a C*-algebra to satisfy the Universal Coefficient
Theorem, since it is quite complicated and is only necessary for one technical step in our
development. It is a technical requirement that is needed to show certain types of C*-algebras are
classifiable.

We observe some basic facts about the structure of C(X, A). Recall that a C*-algebra
A is said to have order on projections over A determined by traces if whenever p,g € A are
projections and 7(p) < 7(q) for all + € T(A), then p X g. This is Blackadar’s Second Fundamental
Comparability Question for Mo, (A4). (See [4].)



51

Proposition IV.3. Let (X,h) and A be as in Notation IV.2. Then C(X, A) has cancellation of

projections, and order on projections over C(X, A) is determined by traces.

Proof. Since A has tracial rank zero and satisfies the Universal Coeflicient Theorem, Lin’s
classification theory (see [22]) implies that A is a simple infinite-dimensional AH-algebra with
no dimension growth. Write A = lim A4,,, where the A,, are recursive subhomogeneous algebras

and the direct system has no dimension growth, and observe that
C(X,A) = C(X)@A=C(X)® (hm An) =~ 1limC(X) ® Ay.

Hence C(X, A) itself is a simple, infinite-dimensional inductive limit of homogeneous algebras with
no dimension growth. Now Corollary 1.9 of [40] implies that the associated direct system has strict
slow dimension growth. By Theorem 3.7 of [32], it follows that C(X, A) has cancellation and order

on projections over C(X, A) is determined by traces. O

This proof used heavy machinery which necessitated the inclusion of hypotheses that are
probably not actually needed for the desired result, and a more direct argument should be possible

using results of [58] on the homotopy groups for the spaces of projections in certain C*-algebras.

Proposition IV.4. Let (X,h) and A be as in Notation IV.2, and suppose that A has a unigue
tracial state 7. Then T(C(X,A)) = T(C(X)) =2 M(X), the space of Borel probability measures on

X. Given a Borel probability measure 1 on X, the induced tracial state A, on C(X, A) is given by

Ml f) = /X (f()) dy

fordll f € C(X, A).

Proof. Let A € T(C(X,A)), and define w: C(X) — C by w(f) = A(f ®1). Then w is clearly a
tracial state on C(X). We claim that A = w®7. By the continuity of w®T, it suffices to check this
on elements of the form f®a, since these span C(X, A). Further, by the linearity of w, it suffices to
prove this for f > 0. Fix f € C(X); and consider the map-/\f: A — Cgiven by A¢(a) = AMf ®a).
Then Ay is a positive linear functional on A that is easily seen to satisfy the trace property, but is

not necessarily normalized. Therefore, Ay must be a positive scalar multiple of 7. Let wy € [0, 00)
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be this scalar, so Af(a) = wsr(a). Now for any f € C(X)4, we have

w(f)=Af@1) = As(1) = wyr (1) = wy,

and so A(f ®a) = w(f)r(a) = (w®T)(f®a) for all f € C(X); and a € A. As discussed, this is
sufficient to imply that A =w ® 7.
Finally, the Riesz Representation Theorem yields a Borel probability measure ¢ on X such

that
w(f) = /X f dp

for all f € C(X), from which the given result follows. 0

Lemma IV.5. Let (X,h) and A be as in Notation IV.2. Let o: X — Aut(A4) (where a(z) will
be denoted o) be a map which is continuous in the strong operator topology. (In other words, for

each a € A the mapping T — az(a) is norm-continuous.) Then the map o' X — Aut(A) given

by o~ !(z) = a;! is continuous in the strong operator topology.

Proof. Let € > 0 be given, let z € X, and let a € A. Then there is a b € A such that oy (b) = a.
V By the strong operator continuity of « at z, there is a § > 0 such that d(z,y) < & implies

[|az(b) — ay (b}]] < e. Then for all y € X with d(x,y) < §, we have

loz (@) — oy (@) = [|log (o (b)) = o (s (B)
= |6 — oy (e (B)
= [lay ey (B)) — agH(aa (0))]
< Jlay (b) — az(b)]

< E.

It follows that o~ ! is strong operator continuous at z. Since this holds for all z € X, o~ ! is

continuous in the strong operator topology. O

Proposition IV.6. Let (X,h) and A be as in Notation IV.2. Let a: X — Aut(A4) be a map
which is continuous in the strong operator topology. Define a map B: C(X,A) — C(X,A) by
B(f)(z) = ay(f o h™1(x)) for each z € X. Then B € Aut(C(X, A)).
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Proof. We first verify that 5(f) is continuous for f € C(X, A). Let € > 0 be given, let f € C(X, 4),
and let z € X. Since f o h!(z) € A and « is continuous in the strong operator topology, there
exists §; > 0 such that d(z,y) < &; implies ||az(f o h™}(z)) — ay(f o h™}(2))|| < &/2. Since [ is
continuous, there exists d; > 0 such that d(z,y) < €/2 implies || f(z) — f(y)|| < &/2. Also, since h
is a homeomorphism, there is a d3 > 0 such that d(z,y) < d3 implies d(h~1(z),h71(y)) < §3. Now

let § = min {4, d3,d3}. Then for all y € X with d(z,y) < 4, we have

I1B(£)(z) = B = |lew(f o A1 (@) — ay (f o B ()|
< |laa(f o B (z)) = oy (f o B (@) || + || (f 0 B2 (2)) — aa(f 0 A7 (W))||

< S+l |[foh™Ma) - foh ()]

<e+e
2 2
=e.

Thus G(f) is continuous at z. Since this holds for any « € X, it follows that G(f) € C(X,A).
Therefore 3 really is a mapping C'(X, A) — C(X, A).

Since the operations on C(X, A) are given pointwise, each «, is an automorphism on A
for z € X, and the map f — foh~! is an automorphism of C(X), it follows easily that for all
f,9 € C(X,A), we have B(f + g) = B(f) + Blg), B(fg) = B(f)B(g), and B(f*) = B(f)*. This
implies that § is a *-homomorphism.

Next suppose that f € ker(83). Then B(f)(z) =0 for all z € X, and so az(foh™!(z)) =0
for all z € X. Since each a, is an automorphism of A, this implies that f o hA='(z) = 0 for
each € X, and hence foh™! = 0. As h is a homeomorphism, it follows that f = 0. Now
let f € C(X,A). Define g: X — A by g(z) = a;!(f o h(z)). That g is continuous follows
from the same argument that shows ( is continuous, using Lemma IV.5. Now for each z € X,
B(g)(z) = az(az1((f o h) o h™1(x))) = f(z), and so B(g) = f. It follows that § is bijective, and
hence 3 € Aut(C(X, A4)). 3

Proposition IV.7. Let (X,h) and A be as in Notation IV.2. Let a: X — Aut(A) be continuous
in the strong operator topology. For k € Z\ {0}, we define a®: X — Aut(A) by o®)(z) =
Oz O Ap-1(g) @ ~*+ O QAp—(k=1)(g) Zf k>1 and a(k)(a:) = Qp(g) @+ 0 ah|k|(m) ’Lf k< 0, henceforth

denoting o®)(z) by agﬂ) . Then o'¥) is continuous in the strong operator topology. Moreover,
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the map &= ®: X — Aut(A), defined by az®) = a,:_l(k_l)(x) o -~-a,:_11(z) oaj! fork > 1 and

Oz;,_;(k) -1

= Qpikig) © 7 © a,:(lz) for k < 0, is continuous in the strong operator topology and satisfies

oz F = (ozgk))*1 foralze X.

Proof. First, assume that k > 1. We proceed by induction on k. When k = 1 the map o): X —
Aut(A) is simply o) = o, which is continuous in the strong operator topology by assumption.
Suppose that a(*) is continuous in the strong operator topology for some k > 1. Let € > 0
be given, let a € A, and let x € X. Then there is a §; > 0 such that d(z,y) < & implies
”a;k)(a) - az(,k)(a)H < . Further, with b = o (a), the strong operator continuity of o = o

gives a d2 > 0 such that d(z,y) < 6, implies ||op(b) — oy (b)|| < 3e. Let § = min {6y,62}. Then.

d(z,y) < ¢ implies that

ot (@) - aff* (@) < a1 (@) — oy 0 0l (@) + oy 0 (@) ~ afFD(a)|
= o= (@) - oy (0P (@) + [|ay (@ (@) - afP (@)
< Jlas(®) = oy B)] + (@) - o (a)|

< €+

=
=

=Ee&.

It follows that af**1) is continuous at = in the strong operator topology. Since this holds for all
z € X, ol**1D) js continuous in the strong operator topology. By induction, a(¥) is continuous in
the strong operator topology for all k > 1. To obtain continuity for all & € Z \ {0}, note that

g = h™! is also a homeomorphism, and for any k£ > 1 we have
(k) — . =0 e -
o, Qpx O O Qpk(g) Ag-1(g) O O Qg—k(g):

Applying the above argument to the map Y : X — Aut(A) given by v¥)(z) = oy 0 ag-1( ©
Qg-k(g) shows that 'yék) = o™ is continuous at z in the strong operator topology for k > 1.
Since 7! is also continuous at z in the strong operator topology, so is ol = a;lo 'yg(gk) Thus
a®) is continuous in the strong operator topology for all & € Z.

Finally, a~! is continuous in the strong operator topology by Lemma IV.5, and so an

argumeﬁt analogous to the one above, with o~! in place of a, shows that o~ () is continuous
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in the strong operator topology for all & € Z. Further, it is easy to see that for any =z € X,

o oz ® =idy =0z ® oalF, 0

Corollary IV.8. Let (X, h) and A be as in Notation IV.2, and let § € Aut(C(X,A)) be the
automorphism of Proposition IV.6. For n € Z\ {0}, the automorphism " € Aut(C(X, A)) is
given explicitly by ™(f)(z) = a&”)(f oh™™(z)) forallz € X.

Proof. We consider first the case where n > 1, and proceed by induction on n. Observe that for

all z € X, we have
BL(f)(z) = B(f)(z) = ax(f o b7 (z)) = a{V)(f o k™ (2))

and so the base case holds. Next, suppose that §"(f)(z) = o™ (fon (z)) for some n > 1. Then

for all z € X, we compute

BY(f) (@) = B(B(f)) (=)
= a{((B(f)) o k™" (2))
= oM (B(f)(h " ™(2)))
= o™ (@-n(e) (f o h7H(A™(2))))
= o™ o @ynin(f o A1 (z))

- ag."“) (f ° h—("'H)(.'B)).

It follows that the result holds for all n > 1. To extend this result to all n € Z\ {0}, we first
observe that ¢ € Aut{C(X, 4)), given by ¥{f)}{(z) = a;(lz)(foh(x)), satisfies Yo 0(f)(z) = f(z) =
Bop(f)(z) for all f € C(X,A) and z € X, and hence 9 o § = id¢(x,4) = B o1. This gives
% = @7, Further, an induction argument entirely analogous to the one above shows that for
k> 1, 95(f)(=) = ag_k)(f o hE(z)) for all f € C(X,A) and z € X. But ¢ = 87! implies that
B=k(f)(z) = al™¥ (foh*(z)) for k > 1. Letting n = —k, it follows that 8™(f)(z) = a{™(foh™(z))
for n < 0. 0

Definition IV.9. Let (X,h) and A be as in Notation IV.2. For an open set V C X and a

projection p € A, the hereditary subalgebra of C(X,A) determined by V and py, denoted by
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Her(V,po), is defined to be the hereditary subalgebra of C(X, A) generated by all functions f €
C(X,A) such thatsupp(f)CV and f <1 ®p.

Lemma IV.10. Let (X,h) and A be as in Notation IV.2, and let a: X — Aut(A) be continuous
in the strong operator topology. Let po € A be a non-zero projection, assume that A has a unique
tracial state T, let k € Z, and let of®) be as in Proposition IV.7. Then for any projection p € A with
the property that 7(p) < 7(po), the function g,: X — A given by qp(r) = a;k)(p) 18 a projection in
C(X, A) that satisfies ¢ 31 ® po.

Proof. 1t is clear that g, is continuous, that g, = ¢, and that qg = ¢p. Therefore, ¢ is a projection
in C(X, A). For any z € X, P e Aut(A) implies that roat) ¢ T'(A), and therefore roal =1.

Hence for any z € X, we have
T(gp(z)) = 7(al? (p)) = 7(p) < 7(p0) = 7((1 ® po)(x)).

Now let A € T(C(X, A)). Since A has a unique tracial state, Proposition IV.4 implies that there

is a Borel probability measure 4 on X such that

M = [ (f)) du
X
for all f € C(X, A). Then the previous inequality gives

Agp) = /X r(gp(z)) di < /X (1 ®p0)(z)) d = A(1 ® ),

Since A € T(C(X, A)) was arbitrary and Proposition IV.3 implies that order on projections over

C(X, A) is determined by traces, we conclude that g, X 1 ® pg. O

We expect that the assumption that A has a unique tracial state can eventually be removed,
through a more careful analysis of the tracial state space of C(X, A). Several of the proofs we give
later will thus contain statements such as “for all 7 € T(A)" even though T'(A) will contain only
one element 7, since it is no more difﬁcult to present them this way and will facilitate adapting

them to the more general situation.

Lemma IV.11. Let (X,h) and A be as in Notation IV.2. Let p,q € C(X, A) be projections with

p = q. Then there is a unitary w € C(X, A) such that wpw* < q.
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Proof. Since C(X, A) has cancellation by Proposition IV.3, there exists a projection ¢ € C(X, A)
such that e < ¢ and partial isometries s,t € C(X, A) such that s*s = p, ss* = ¢,t*t =1 —p, and
tt* =1 —e Define w = s+ ¢ It is straightforward to check that s*t = st* = ts* = t*s = 0,
from which it follows that w*w = (s* +t*)(s+t) = s*s+t*'t =p+ (1 —p) = 1 and ww* =

(s+t)(s*+t*)=s8*+tt* =e+ (1 —e) =1, sow is unitary. Moreover,

wpw™ = (s +t)p(s* +t%)
= sps™ + tpt* + spt* + tps*
= ss"ss* + (L — t"t)t" + ss*st™ + (1 — t"t)s”
=e? +tt* — tt ¢t
=e+(l—e)—(1—e)?

.‘:6’

as required. 0

Proposition IV.12. Let (X,h) and A be as in Notation [V.2. Suppose in addition that h
is uniquely ergodic, and let (X,h,u) be as in Notation IIL17. Let f € Aut{C(X,A)) be the
automorphism of Proposition I[V.6. Suppose that (X, h, ) has the dynamic comparison property,
and that A has a unique tracial state. Then for every non-zero projection pg € A and every
non-empty open set V C X, there exist M € N and € > 0 such that whenever go € C(X) is positive
and satisfies u(supp(go)) < €, then there exist for 0 < k < M positive elements ap € C(X, A),
unitaries wy € C(X, A), and r(k) € Z’ such that:

1.5M e >g®1;
2. the elements B7%)(ay) are mutually orthogonal, and supp(6™*)(ax)) C V for each k;
3. with by = wkﬂr(k)(ak)w,‘;, the by are mutually orthogonal positive elements in Her(V, po).

Proof. Set 6 = infrer(a)7(po) > 0, and choose N € N such that N > 1 and 1/N < 4. Then
by Theorem 1.1 of [58] there exist 2V + 1 mutually orthogonal projections gg,...,go~ such that

N
go 3 g1 ~ -+ ~ gov and Z?:o ¢; = 1. We immediately obtain 7(q1) = --- = 7(gon) for all
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7 € T(A). Then for 1 < j < 2" and each 7 € T(A), we have

2N 2N

L=7(1) =Y _r(a:) = > _7(a:) =2"r(g),
i=0 . i=1

and so 7(g;) < 1/2V. This gives 7(g;) < 1/N < § for 1 < j < 2N, Hence 7(g;) < 7(po) for
all 7 € T(A), and since the order on projections in A is determined by traces, we conclude that
gj 3poforl<j <2V, Since go 2 q1, we actually obtain g; = po for 0 < j <2V,

Set J =2V, and let o = u(V) > 0. Choose J distinct points zo,...,z; € V and for each
J consider the nested sequence of neighborhoods (B(z;,1/k))52;. Choose K; € N so large that
B(z;,1/K1) N B(z;,1/K,) =@ for 0 <4,j < J and ¢ # j (this can be done since X is Hausdorff)
and choose Ky € N so large that u(B(z;,1/K3)) < ¢/(J +1). This is possible since for 0 <
j < 2%, the sequence (u(B(zj,1/k)))%2; decreases monotonically to 0. Let K = max {K1, K>},
and for 0 < j < 2V set V; = B(z;,1/K) and W; = B(z;,1/(K +1)). Then W; c W; C V;,
w(V3) < o/(J +1), and the sets V; are pairwise disjoint. Now set ¢ = min {u(W;): 0 < j < M}
Let go € C(X) be positive such that C = supp(go) satisfies u(C) < €. Then u(C) < u(Wj) for
0 < j < J. By assumption, X has the dynamic comparison property, and so for each 0 < j < J
there exist M; € N, continuous functions f;;: X — [0,1] for 0 < i < M, and r;(i) € Z for
0 <1 < M;j, such that Ef\i’o fis =1 on C and such that the sets supp(f;; o h™"(¥)) are pairwise
disjoint subsets of V; for 0 < i < M;.

For 0 < j < Jand 0 <i < M, define g;;: X — A by g;(z) = af i) (g,). Then
by Lemma IV.10, each ¢;; is an element of C(X,A) and ¢;; 3 1 ® po (since 7(g;) < ¢ for
all 7 € T(A)). Hence by Lemma IV.11, there exist unitaries w;; € C(X,A) for 0 < j < J,

0 <1 < Mj such that wjq;,w’; <1®po. Now for 0 < j < Jand 0 <7< Mj set aj; = fj,i ® ¢y

gt =
and b;; = w;,;0"7 (‘)(aj,i)w;i.

Let z € X. Ifx ¢ C, then (go @ 1)(z) = 0 < Z] OZ@ Haji(z). If « € C, then we

compute
M;

J J J
Z aj,z Z f ZQJ Zf], :quzl-
j=0

§=0 =0 =04 i=0

=

-
I
o
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It follows that go ® 1 < Z;.;O S Mi a;:. Next, for any € X, we have

57 (@5,)(@) = oD (S350 17D (2))dy)
=(fii0 h_”(“(x))af[f“))(qj)

= (fji 0 k79 (z))g;,:(2).

This gives supp(67?(a;;)) C supp(fj: o h~#®¥) C V and hence the sets supp(67®)(a;,))
are pairwise disjoint, implying that the elements §79(9(a;;) are mutually orthogonal. Since
supp(bj;) C supp(87((a;,)), it follows immediately that the b;; are also mutually orthogonal.
Moreover, as 0 < f;; < 1 and wy,iq;,iwj; < po, it follows that 0 < b;; < 1 ® po. Therefore, the

b;,; are mutually orthogonal positive elements in Her(V,po). Now simply order the a;:, w;, d;(4),

and b;; as ax, wi,d(k), and by for 0 <k < M, where M +1 = Z}',:o M;. O

Lemma IV.13. Let E C C be open, let f: E — C be continuous, let A be a unital C*-algebra,
and set Q = {b€ A: bis normal withsp(b) C E}. Then ¢: Q — A given by ¢(b) = f(b) is

norm-continuous.
Proof. This is easily adapted from Lemma 2.5.11 of [19]. O

Proposition IV.14. Let (X,h) and A be as in Notation IV.2. Let g € C(X, A) be a non-zero
positive element with ||g| = 1. Then there is an open set V' C supp(g), o non-zero projection

po € A, and a unitary w € C(X, A) such that wfw* € gC(X, A)g for all f € Her(V,po).

Proof. Let € > 0 be given, and assume that € < 1. Since ||g|| =1 and X is compact, there exists
zo € supp(g) such that ||g(zo)|| = 1. Let a = g(zo) (note that a > 0 since g is positive) and define

continuous functions ky, k2: [0,1] — [0,1] by

K (£) = 32—¢ 33
1 1-5<t<1
and
0 0<t<l-%&
ka(t) =



60

Setting a1 = ki(a) and ay = ky{a), we observe that aga; = a2 and

la—aill= sup |t—ki(t)] < Fxe.
t€[0,[lall]
This gives [|aza ~ az|| = [|aza — aza1|| < |la — a1]| < f5&. Since A is simple, unital, and has tracial

rank zero it also has real rank zero by Theorem 3.6.11 of [19], so there is a non-zero projection
g € agAayz. Then aza; = ay implies that ga; = ¢. We thus obtain |jga ~q|] = |lga — ga1] <
la —aill < {5€, and similarly [lag — q|| < &e. Now choose a neighborhood U of zo such that
llg(z) — g(zo)|| < g for all x € U. Using the compactness of X, choose an open set W-C U with
W C U, and set K =W. Then for all z € K,

lag(z) — qll < llag(z) — qg(zo)ll + llgg(zo) — qll

IA

lg(z) — g(zo)ll + liga — gl

So for all z € K, we have

lg(z)ag(z) — qll < llg(z)ag(z) — g(x)qll + [lg(x)q — 4|

< llg()ll llgg(z) - all + llg(z)q — ql|

Set E = (—00,1/2) U (1/2,00), f = X(1/2,00), a0d @ = {b€ A: b is normal with sp(b) C E}.
Apply Lemma IV.13 to obtain a continuous function ¢: @ — A such that ¢(b) = Xx(1/2,00)(b) for
all b € Q. Next observe that for all z € K, ||g(z)qg(z) — ¢q|| < %—5 < % implies that g(z)qg(z) € Q.
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* Thus we may define a function ¢: K — @ by ¥(z) = g(z)gg(z). Further, for z,y € K we have

¥(z) ~ vl = llg(z)gg(z) — g(v)ag()
< llg(z)qg(z) — gl + llg — 9(¥)ag ()|l

1 1
<§8+§8

which implies that 4 is continuous on K. Now setting p{¥) = ¢ 0 gives a continuous function
p@: K — A with pO(z) = x(1/2,00)(9(z)a9(z)) € g(z)Ag() for all z € K. Extend p@ to a
continuous function p: X — A such that supp(p) C supp(g). Choose § > 0 so small that § < 1
and d(z,79) < & implies p(z) is a projection. Set Vo = B(p(zo),d) and V = p~!(V5). Then
z9 €V CV, and ||p(z) — p(zo)|| < 2 < 1 for all z € V by the continuity of p. Let po = p(zo) and
F=YV.

Set pr = p|p and let e: F — A be the constant function e(z) = pg. Then pp and e
are projections in C(F, A), and satisfy |pr(z) — e(z)|| = ||p(z) —po|| < ¢ for all z € F. This
implies that ||[ps — el| < 1, and so by Lemma 2.5.1 of [19], there is a unitary u € C(F, A) such that
uppu* = e and |1 — u| < v2||pr — e||. This norm estimate further implies that |1 — u| < V2,
and so u € Uy(C(F, A)). (Recall that for a unital C*-algebra B, Uy(B) denotes the connected
component of U(B) containingllg). Since the restriction map Up(C(X,A)) — Uog(C(F, A)) is
surjective, there is a w € Up(C(X, A)) such that w|p = u. If f € Her(V, pg), then supp(f) C F and
f £1®po. Then for any z € supp(f), we have w(z)f(z)w(z)* < w(z)pow?: = u(z)poul = p(z).
Thus for every f € Her(V,po), supp(f) C F C supp(g) and f(x) € g(x)Ag(z) forallz e X. O

Theorem IV.15. Let (X,h) and A be as in Notation IV.2. Assume that h is uniquely ergodic,
and let (X, h, ) be as in Notation IIL17. If (X, h) has the topological small boundary property, A
has o unique tracial state, and B € Aut(C(X, A)) is the automorphism of Proposition IV.6, then

B has the tracial quasi-Rokhlin property.

Proof. First observe that by the choice of X and h and the assumption that (X,h) has the
topological small boundary property, Theorem II1.25 implies that (X, h,u) has the dynamic
comparison property. Let ¢ > 0, let F C C(X, A) be finite, let n € N, and let g € C(X, A4)

be positive with ||g|]| = 1. By Proposition IV.14, there is non-zero projection pg € A, an open set
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V C supp(g), and a unitary u € C(X, A) such that ufu* € gC(X, A)g for all f € Her(V,pg). By
Proposition IV.12, there is an M € N and a § > 0 such that for any positive element gg € C(X)
with p(supp(go)) < 6, there exist for 0 < k < M positive elements a; € C(X,A), unitaries
wy € C(X,A), and r(k) € Z such that Z}c\io ak > go ® 1, the elements §7*)(ay) are mutually
orthogonal, and such that with by = w;4"*) (ag)wy, the by are mutually orthogonal elements of
Her(V, pg). By the continuity of g and the compactness of X, there exist g € X with ||g(zo)| =1
and an open neighborhood G of zo such that |g(z)|| > 1 — e for all z € G. Choose open
neighborhoods Go, G1, G2 of z¢ such that G, € G € G1 € G1 C Go C G, u(Gy) < 6, and
lg(z)]] > 1 —e€ for all z € G4. Choose continuous functions gg, g1: X — [0,1] such that g; =1 on
G2, supp(g1) € G1, go = 1 on Gy, and supp(go) C Go. Apply Proposition IV.12 with gg to obtain
the ag, wg, and r(k) described above. Set o = min {%u(Gz),e} and choose K € N so large that
% < %a. Apply Lemma I11.23 with N = nK to obtain a closed set ¥ C X such that int(Y) # @,
dY is topologically A-small, and the sets ¥, A(Y),..., A" (Y) are pairwise disjoint. Adopt the
notation of Theorem II1.8, and let M = (I +1) EZ:O n(k). Then:

1. the sets k7 (YY) are pairwise disjoint for 0 < k <land 0 < j <n(k) —1;
2. Uhlo e = Y5

3. Ureo U9 W (10) = X,

4. ORI (Yy) is topologically h-small for 0 < k <[ and 0 < j < n(k) — 1;

5. for 0 < k < [, there exists an open set Uy C Y such that U, C Yy, OUy is topologically

h-small, and u(YY) — u(Uk) < 5%

6. for 0 < k < [, there exists an open set Wy C Uy such that W, C Uy, W is topologically

h-small, and p(Uy) — u(Wi) < 5%

Properties (1) — (3) follow immediately from Theorem IIL.8, and property (4) is given by Lemma
I11.24. For (5), we apply Proposition IIL.7 to ¥;? and 357 to obtain non-empty open sets Uy, with the
given properties, and for (6) we apply Proposition II1.7 to Uy and 3% to obtéin non-empty open
sets W), with the given properties. Now for 0 < k < [ set s(k) = max{m > 1: mn < n(k) —1}.
Note that s(k) > K by the choice of Y. For 0 < £ <{ and 0 £ 7 < s(k), choose continuous

functions c,(c(?;: X — [0,1] such that c,(c(?; = 1 on RI"(Wy), and supp(cg‘);) C Ux = 0. Next set



63

Ckj = c,(CO; ®1for 0 <k <!land0<j< (k). Finally, define co, ...,cp € C(X, A) by setting

[ s(k)

co = chk,i

k=0 j=0
and c¢j 1 = fcj) for 0 < j <n—1. It follows immediately from these definitions that:
1.0 <lfor0<j <y
2. cjep =0for 0 < 5,k <nandj#k;
3. 18(ej) —cjp1l| =0for 0<j<n—1;
4. |lejf — fe;)l =0 for 0 <j <nandforall f € F.
Now set ¢ = Z?:o ¢; and let C' = supp(l — ¢). Then we have

[ s(kin

ccx\|J U W)

k=0 j=0

Also, 8Y}; topologically h-small for 0 < k <! implies that u(8Yx) = 0 by Corollary I11.16, and so

w(Yr) = p(Yy). Since the Y} are pairwise disjoint, we obtain the inequality

! i { !
u(Y)=u<UYk>2u< Y§)=ZM(YE)=ZM(YO-
k=0 k=0 k=0 k=0

Further, the h-invariance of 4 and the pairwise disjointness of the sets h7(Y) for 0 < j < nK imply

that
nK nK
123 u(b(Y)) =3 u(Y) = nKuY)
j=0

=0

and so we have p(Y) < 1/(nK). Observing that the sets Uy and W all have measure zero by
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Corollary II1.16, it follows that

l s(k)n
u(C) < p (X\ U U hf(wn)

k=0 =0
1 n(k)—1 _ 1 s(k)n .
<SS W)+ S (Wb U\ W) + (b (Vi \ U)))
k=0j=3(k)n+l k=0 j=0
I n(k)-1 l s(k)n
=Y Y wW)+), #(Uk \ Wi) + u(Ye \ Ux))
k=0 j=s(k)n+1 k=0 ]=0

L (k)
< (n+ DY) + Z Z (((Uk) = (W) + (u(Ye) = 1(Uk)))
k=0 j=0
n+1 o
<%x M (5 * a31)

2 1
<'R-+ZG'

< 0.

l=

Thus p(C) < 0 < u(Gs), and so by the dynamic comparison property there exist N € N,
continuous functions f]-(o): X — [0,1] for 0 < j < N, and d(0),...,d(N) € Z such that
Z;\l:o f].(o) = 1 on C, and such that the sets supp( f],(o) o h=%9) are pairwise disjoint subsets
of Gy for 0 < j < N. Define continuous functions f;: X — A by f; = f;o) ® 1. Then

1—c< E;-Vzo fs, and for 0 < j < N, the elements 8%U)(f;) are mutually orthogonal positive

elements in (g ® 1)C(X,A)(g;1 ®1). For 0 < j < N and 0 < k < M, define e;x = f;6749 (ax).

Since the 8%U)(f;) are mutually orthogonal elements of (g1 ® 1)C(X, A)(g1 ® 1), it follows that
Z;‘J:O B (f; ® 1) < go ® 1. Moreover, since gk (g, ) = griI+dI(£157*) (q)) and the
f; are central, the elements B2 +7(*)(e; ;) are mutually orthogonal. Now let wjj = uwy for

0<j<N,0<k< M. Then
Uj,kﬂd(j)+r(k)(ej,k)u;'k = ﬂd(j)+’(k)(fj)uwkﬁr(k)(ak)w,’gu* = ﬂd(”"'r(’“)(fj)ubku*.

Since G+ R (1) € C(X) and ubgu* € gC(X, A)g, it follows that u; xe;, kUi € gC(X, A)g.
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Finally, we compute

> Z £~ (go ® 1)

j=

2

A4 (f5) (90 ®1))

I
NE

<,
i
<

ﬂ—d(j)(,@d(j)(fj))

i
NE

a,
Il
(=)

I
M=

I

s,
I
(=]

>1l-—c

Now re-order the elements e;x,u;x, and d(j) + r(k) as e;,u;, and t(i) for 0 < ¢ < I, where
I'=(M+1)(N+1). It follows that 1 — ¢ < S e;, 84D (e;)5* ) (ej) = 0 for 0 < 4,5 < I and
i # §, and uesul € gC(X, A)g for 0 < i < I. Finally, as u(Gy) > u(C), there is an z € Gy such
that z ¢ C. Then (1 -c¢)(z) = 0, and so ¢(z) = 1. It follows that ||c(z)g(z)c(z)| = ||g(z)| > 1—¢,

which implies that ||cgel|| > 1 — &. Thus, 8 has the tracial quasi-Rokhlin property. g

In order to apply our structure theorems from Chapter II to C*(Z, C(X, A), 8), we require

information about the ideals of C(X, A).

Lemma IV.16. Let (X,h) and A be as in Notation IV.2. If F C X is closed, then Ip =
{f e C(X,A): flr =0} is an ideal in C(X,A). Moreover, given any ideal I C C(X,A), I = If

for some closed set F C X.

Proof. For F' C X closed, it is obvious that Iz as given above is an ideal in C(X, A). Now let
I'cC(X,A) beanideal. Define F C X by F={x € X: f(z) =0for all f € I'}, which is certainly
a closed subset of X. Set Ir = {f € C(X, A): f|r = 0}, which we have already shown is an ideal
of C(X, A). From the definition of F it is clear that I C I'r. To prove the converse, let 2o € X\F;
We claim that {g(z¢): g € I} is dense in A. To see this, let § > 0 be given, and let a« € A. Since
zo € F, there is a function go € I such that go(zo) 0. Then the ideal Ago(zo)A is non-zero

and so equals A by the simplicity of A. It follows that there exist b;,...,by,c1,...,cn € A such
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that Ha D bjgo(mo)ch < 8. Define a function g € C(X,4) by g = 37, (1 ® b;)go(1 ® ¢5).
Then f € Tas go€ I and 1 ®b;,1®c¢; € C(X,A), and ||gg, — al| < §. Now let € > 0 be given
and let ¢ € Ip. For each © € X, choose f; € I such that || fz(z) — q(z)|| < te. This can be done
by taking f, = 0 whenever z € F, and for z ¢ F, f; can be obtained from the previous claim.
Next for each z € X choose an open neighborhood U, of z such that ||f.(z) — fz(y)|| < e and
llg(z) — q(w)|| < §e for all y € U,. We obtain an open cover {U;: = € X} of X, which has a finite
subcover {Uy,,..., Uz, }. Let fl, ..+, fn be the functions corresponding to the points z1,...,z,.
Choose a partition of unity ¢1,...,¢n subordinate to this cover, let g; = ¢;f; for 1 < j < N, and

set g = Z;\;l g;- Then g € I, and for 1 <j < N and every z € X we have

lg(z) — fi(@)l < llg(z) — a(@)ll + la(z;) — Fi (@)l + 11 F5(z5) — fi(@)
< je+ e+ de

€.

)

This implies that, for every z € X,

I
=
&

!
3
&
=
&

lla(z) — g(=)]|

{7: z€U;}
< S ley@ae - @)
{j: zeUy}
= > ¢i(@)al@) - fi(@)]
{j: z€U;}
< (U;guj}%(m)) {j{f;:%j}{llq(w)—fj(w)ﬂ}
< Ze.

It follows that ||g — f|| < €, and hence g € I as I is closed. Therefore Ir C I, which completes the

proof. 3
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Proposition IV.17. Let (X,h) and A be as in Notation IV.2. Then the C*-algebra C(X, A) has

no non-trivial B-invariant ideals.

Proof. Let I C C(X,A) be a non-trivial ideal. By Lemma IV.16, there is a closed set ¥ C X
such that I = {fe€C(X,A): f(x)=0for allz € F}. Then F # @ and F # X as I is non-trivial.
Suppose that I is @-invariant. Then B(I) C I, and so for any f € I, we have B(f) € I. Then
for any x € F, f(z) = 0 and B(f)(z) = 0. But 0 = G(f)(z) = ax(f o h~!(z)) implies that
foh Y (z) =0 since at; € Aut(A). Thus f(z) = 0 for all x € F N h™}(F). The S-invariance of I
further implies that g™(f) € I for all n € N, and recalling that 57(f)(z) = oV (f o h="(z)) (this
is Corollary IV.8) and that a{™ € Aut(A), it follows that for any f € I, we have f(z) = 0 for all
z € (oo, h7"(F). By assumption F is closed and non-empty, and so the minimality of & gives
UnegB"™(F) = X. Thus f(z) = 0 for all z € X, which implies f = 0. It follows that I =0, a

contradiction. Therefore I cannot be B-invariant, and the desired result follows. O

Corollary IV.18. Let (X,h,u), A, and B be as in Theorem IV.15. Then the crossed product
C*-algebra C*(Z,C(X, A), B) is simple.

Proof. By Proposition IV.17, C(X, A) has no non-trivial 3-invariant ideals. Since 3 has the tracial

quasi-Rokhlin property, Theorem II.4 implies that C*(Z, C(X, A), 8) is simple. O

Definition IV.19. A topological space X is topologically scattered if every closed subset Y of X

contains a point y that is relatively isolated in Y.

It is a standard result (see [38]) that a compact Hausdorff space X is topologically scattered
if and only if every Radon measure on X is atomic; that is, if and only if for any Radon measure
v on X, there exist point-mass measures (v;)%2; and real numbers (¢;)32,, satisfying t; > 0 for all

j > 1 and Z?’;ltj =1, such that

o0
V= Zt]l/]

=1
Definition II1.10 can be thought of as a noncommutative version of this one, with an atomic state

playing the role of a “noncommutative atomic Radon measure”.

Proposition IV.20. Given any infinite compact metric space X that has a minimal
homeomorphism h: X — X and any simple, separable, unital C*-algebra A, the C*-algebra

C(X,A) is not scattered.
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Proof. First note that as X has a minimal homeomorphism, it cannot be topologically scattered.
Indeed if we take ¥ = X, then for X to be topologically scattered it must contain at least one
isolated point y, which is impossible since the h-orbit of every z € X is dense in X. Therefore X

has a non-atomic radon measure v. Define a state ¢, on C(X) by

b(f) = /x  dv.

We claim that 1, is a non-atomic state. If it were atomic, we could write ¥, = Zfil d;p; for
some sequence of pure states (¢;)52, and some sequence of nonnegative real numbers (§;)$2, such
that Y o2, 8; = 1. By the Riesz Representation Theorem, we would obtain v = 3 ;2 v; for some
sequence of point-mass measures v;, a contradiction. Now let w be any non-zero state on A,
and suppose the state ¢, ® w is atomic. By Theorem IV.4.14 of [49], we may write ¢, @ w =
Yooy ti{i ® wy) for some sequences of pure states (¢;)2; on C(X) and (w;)$2, on A, and for

some sequence of nonnegative real numbers (¢;)$2, such that y o2, ¢; = 1. Then for any f € C(X),

we have
oo
W @W)(f®1) =) tiai(f)
i=1
which implies that ¢, = Zf_f_l t;pi, a contradiction to 1, being non-atomic. O

Corollary IV.21. Let (X, h,u), A, and 0 be as in Theorem IV.15. Then the restriction map
T(C*(Z,C(X,A),3)) — Te(C(X, A)) is a bijection.

Proof. By Proposition 1V.20, C(X, A) is not a scattered C*-algebra, and by Proposition IV.17,
C(X, A) has no f-invariant ideals. Since 8 has the tracial quasi-Rokhlin property, the result follows
from Theorem 11.12. O

We summarize the results of this chapter for crossed product C*-algebras by

automorphisms with the tracial quasi-Rokhlin property.

Theorem IV.22. Let X be an infinite compact metric space with finite covering dimension, let
h: X — X be a uniquely ergodic minimal homeomorphism with unique h-invariant Borel probability
measure u, and let A be a simple, separable, unital C*-algebra with tracial rank zero and satisfying
the Universal Coefficient Theorem. Let a: X — Aut(A) be a strong operator continuous map, and

let B € Aut(C(X, A)) be defined as in Proposition IV.6. Suppose that (X, h,u) has the topological
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small boundary property, and that A has a unique tracial state. Then the crossed product C*-algebra

C*(Z,C{X, A), ) is simple and has a unigue tracial state.

We conclude by presenting some examples of crossed product C*-algebras of the form
C*(Z,C(X, A), 8) that have good structure properties. All of these results are already known, but
they suggest that algebras of this form (that is, those described by Theorem IV.22) could have

these properties more generally.

Example IV.23. If A = C, then C*(Z,C(X,A),B) is just C*(Z, X, h), whose structure has
been extensively studied in [29] and [24] (among other places), as discussed in the Introduction.
(Note that any results about C(X, A) which depended on A being inﬁnite-dimensionai, specifically
Proposition IV.3, are well-known for the commutative case). In particular, if the map
poe@x.n): Ko(C*(Z,X,h)) — A(T(C*(Z, X, h))) (where Aff(A) denotes the space of real-valued
affine functions on A) given by

pe@.x.m)([n)(r) = 7(n)

has dense range, then C*(Z, X, h) has tracial rank zero. If X is a compact smooth manifold and
h is a minimal diffeomorphism, then it is possible to give an explicit direct limit decomposition for

C*(Z, X, h) as a direct limit of recursive subhomogeneous algebras.

Let ,n € R\ Q, let X = S!, let A = A, and let h: X — X be given by h(¢) = e~27¢,
Let f,g € C(S',S) and let A € Aut(Ag). We identify Ag with C*(u,v), where vu = e* ¥y,

Define a mapping a: S — Aut(4g) by a(¢) = a¢, where
ac(u) = f(OA(w), a¢(v) = g()A(v).

To see that « is continuous in the strong operator topology, let € > 0 be given. Choose § > 0 such

that || f(¢1) — f(¢2)|| < € and ||g(¢1) — g(¢2)|| < € whenever d(¢{;,{2) < 6. Then

lleve, (w) — ag, (W)l = 1 £(C)A(w) = F(G)A )]
< N1£(G) = £ M)
= I£(¢1) = £( &)

< g,



70

and similarly [la¢, (v) — ag, (v)ll < |g(¢1) — 9($2)|l < . This checks pointwise norm continuity on
the generators of Ag, and it follows that « is strong operator continuous. By Theorem 1V.15, 8
has the tracial quasi-Rokhlin property. Let us identify C(S!) with C*(z), where z is the image

(under the Gelfand transform) of the function z(¢) = ¢. Then we have the further identification
C(S', Ag) 2C(SH® A 2 C*2)®C*(u,v) X C*(1Qu,1®v,2® 1),

where the relations are given by (writing u,v, and z instead of 1 ® 4,1 ® v, and 2 ® 1)

uz = 2u, vz = zv, vu = >y,

Using functional calculus, we may then write 3 explicitly as
Blz) = ¥z, Blu) = f(2)A(u), B(v) = g(z)A(v).

Making specific choices of f, g, and A allows us to say even more.

Example IV.24. Letn = @ (so that h(¢) = €2™9¢), let f and g be given by f(¢) =1 and g(¢) = ¢,
and let X = id4 be the identity automorphism of A. Then ¢ is given by a¢(u) = u, ac(v) = (v.

It follows that B is given by
B(z) = ¥z, B(u) = u, B(v) = zv.

Letting w denote the canonical unitary in the transformation group C*-algebra C*(Z,C(S!, Ag), ),

we can tdentify this algebra with C*(u,v, z,w), subject to the relations
v, Uz = 2u, vz = 2V

wz = € ZWw, wu = uw, wv = 2vwW.

-

This gives an isomorphism between C*(Z,C(S!, Ag),B) and the C*-algebra AZ‘3 of [33].
Proposition 4.1 of [37] then implies that C*(Z,C(S*, Ag),B) is isomorphic to a transformation
group C*-algebra C*(Z,C*(Z,S' x S',4),7v), where ¢ is a smooth minimal Furstenberg

transformation and -« has the tracial Rokhlin property. By Corollary 4.2 of [37],
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C*(Z,C(S', Ag), B) has stable rank one, real rank zero, a unique tracial state, and order on

projections is determined by traces.

Example IV.25. We can also obtain the C*-algebra AZ’G of [85] as a crossed product C*-algebra
C*(Z,C(SY, Ag), B) (with analogous structural conclusions using [37]). This time, take n = 0,
f(Q) = ¢ g(¢) = 1, and let X be given by AMu) = u and A(v) = wv. Then o is given by

a¢(u) = Cu,a¢(v) = v and B is given by
Bz) = &m0z, Blu) = zu, B(v) = wv.

Again letting w denote the canonical unitary in C*(Z,C(S?, As), B), we can identify this crossed

product C*-algebra with C*(u, v, w, z) subject to the relations

vu = "y, Uz = zt, vz = ZU

wz = ¥z, wu = zuwW, WY = UVW.

which is easily seen to be the same set of generators and relations as for AZ‘G.
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CHAPTER V

RECURSIVE STRUCTURE FOR CERTAIN SUBALGEBRAS OF C*(Z,C(X,A),5)

In order to obtain a more complete description for the structure of the crossed product
C*-algebra C*(Z,C(X, A),3), we begin an adaption of the extensive theory developed in [29]
and subsequent work. Specifically, for ¥ € X we introduce a class of subalgebras By of
C*(Z,C(X, A),B) that will play an analogous role to the algebras A(Y) of {29], and show that,
under appropriate conditions on Y, they have a tractable recursive structure. For a point y € X,
we will be especially interested in the relationship between the approximating subalgebra By,
and the entire crossed product C*-algebra, which will be explored in Chapter VI. We start by
introducing the formalism for a generalization of the recursive subhomogeneous algebras introduced

in [39] that were crucial for the analysis in [29] and [24].
Definition V.1. Let A, B,C be unital C*-algebras, and let p: A — C and ¢: B — C be unital
homomorphisms. Then the associated pullback C*-algebra A ®¢ ¢ B is defined by

A®,pw B ={(a,b) € A® B: p(a) = (b}

We frequently write A @¢ B when the maps ¢ and 1 are understood.

Definition V.2, Let A be a simple, unital C*-algebra. The class of recursive A-subhomogeneous

algebras s the smallest class R of C*-algebras that is closed under isomorphism such that:
1. If X is a compact Hausdorff space and n > 1, then C(X, M, (4)) € R.

2. If Be R, X is compact Hausdorff, n > 1, X < X is closed, ¢: B — C(X©, M, (A))
is a unital homomorphism, and p: C(X,M,(A)) — C(X©,M,(A)) is the restriction
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homomorphism, then the pullback
B ®c(xo m,(ay C(X, M (A4)) = {(b,f) € B&C(X, Mn(A)): @(b) = p(f)}

s in R.

Taking A = C in this definition gives the usual definition for the class of recursive

subhomogeneous algebras (see [39]).

Definition V.3. We adopt the following standard notation for recursive A-subhomogeneous
algebras. The definition implies that any recursive A-subhomogeneous algebra R can be written
in the form

R~ [ . HCO B C’l] @05")] ] Ty C,

with Cx = C(Xk, My k) (A)) for compact Hausdorff spaces Xy and positive integers n(k), and
with C’,EO) = C’(X(O),Mn(k)(A)) for compact subsets X,(CO) C Xk (possibly empty), where the maps
pr: Cp — C’,(CO) are always the restriction maps. An expression of this type for R will be referred
to as a decomposition of R, and the notation that appears here will be referred to as the standard

notation for a decomposition. We associate to this decomposition:

.

. its length I;

2. the k-th stage algebra

R(k) = [ . HCO EBCio) Cl] @Céo) Cz] } GBCI(‘O) Ch;

3. its base spaces Xy, ..., X and total space X = HL:O Xi;

4. its matrix sizes n(0),...,n(l) and matrix size function m: X — Zxq defined by m(z) = n(k)

when x € Xy (this is called the matrix size of R at.z);
5. its minimum matrix size ming n(k) and maximum matrix size max n(k);

6. its topological dimension dim(X) = max, dim(Xy) and topological dimension function
d: X — Z>o, defined by d(z) = dim(Xy) for x € X (this is called the topological dimension
of R at z);
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7. its standard representation ¢ = og: R — @L:o C(Xky Mpy(A)), defined by forgetting the

restriction to a subalgebra in each of the fibered products in the decomposition;

8. the associated evaluation maps evy: R — My (A), defined to be the restriction of the usual
evaluation map on @Lzo C(Xk, Myp(5y(A)) to R (where R is identified with a subalgebra of

this algebra through the standard representation or).

Definition V.4. Adopt Notation IV.2, let 3 be the automorphism of Proposition IV.6, and write
B=C*Z,C(X,A),B). ForY C X closed, we define

By = C*(Z,C(X, A), B)y = C*(C(X, A),uCo(X \ Y, 4)) C C*(Z,C(X, A), B)

where we identify Co(X\Y, A) with the subalgebra of C(X, A) consisting of all continuous functions
f: X — A that vanish on 'Y,

Proposition V.5. Letyo € X, and let Y1 D Yy D --- be closed subsets of X such that (e, Yn =
{vo}. Then Byy,y = UpZ, By, =limBy, .

Proof. Let € > 0 be given and let f € Co(X \ {y},A). Since f(yo) = 0, there is a § > 0 such
that ||f(z)|| < 3e for all z € B(yo, ). The compactness of the ¥, and the inclusions Y41 C Y,
imply that co > diam(Y7) > diam(Y2) > -+, and moreover diam(Y;,) — diam({yo}) = 0. Hence
there is an N € N such that diam(Y,,) < 31-6 for n > N. Let V be an open set such that
Yy C V and diam(V) < 25. Since yo € V, we must have V C B(yo,6). Now choose a continuous
function go: X — [0,1] such that go = 0 on Y and go = 1 on X \ V, and set g = gof. Then
g9 € Co(X\Yy, A) forn > N, g(z) = f(z) forallz € X\V, and = € V implies that || f(z) — g(2)| <
If @) (1—go(2)) < || f(2)]| < 3e. It follows that || f — g|| < €, and so f € Co(X\ Yy, A) forn > N.
Then uf € By, , which implies the result since these elements, along with the elements of C(X, A),

generate By,). Note that 1 € C(X, A) C By, so the inclusion maps By, — By, , are unital, and

clearly injective, O

The results that follow for the remainder of this chapter are mostly adapted from Section
1 of [29]. Some of the proofs there go through nearly or entirely unchanged, while others require
more substantial adjustment to handle the fact that C(X, A) is not in general a commutative

C*-algebra.



Notation V.6. Let Y C X be closed with int(Y) # @ and u(Y) = 0. Following Theorem II1.8,
construct the Rokhlin tower over Y by first return times to Y, obtaining non-negative integers

n(0) < n(l) < .- < n(l) and sets

Ye ={yeY:r{y) =nlk)} and Yo =int({y € Y:r(y) =n(k)})

such that:
1. the sets b7 (Y}?) are pairwise disjoint for 0 < k <! and 1 < j < n(k);
2 Urg "BV = Y

3. Upmo TS W (Yi) = X

Form >0, we set

G = Co ((X\U;.":O h—f(y)) ,A) ‘

We observe that G, =0 form > n{l) — 1 since

Ui w3 () = 0 (G W (1)) = w70 (U U W(18) = 0 (X) = X,

Note that we have departed slightly from the notation of Theorem III.8 by effectively
taking the base of the tower to be A(Y) rather than Y, a choice that will prove more convenient

for our present purposes.

Proposition V.7. Following Notation V.6 and Definition V.4, we have the Banach space

topological direct sum

n(l)—-1 n(l)—1
By = @ Gi-w7el(X,A)e @ WGy 1.

J=1 J=1

Proof. Let :
n(l)—-1 n(l)—1

G= P GiwreocX,Ae P WG,

=1 =1
Note that this is clearly an algebraic direct sum, and that each summand is a closed subspace of

C*(Z,C(X,A),B). Let E: C*(Z,C(X, A),B) — C(X, A) be the canonical conditional expectation,



76

and for 1 < j < n(l) define maps m; and p; on G by 7;(a) = E(au?)u™’ and p;(a) = v/ E(u7a).
Then m; and p; are continuous projections from G to the summands G;_i1u™7 and w/G;_1
respectively. Defining 7(a) = E(a) gives a continuous projection from G to the summand C(X, 4),
and together with the 7; and p; this implies G is a Banach space topological direct sum.

Next, we verify that G is a C*-subalgebra of C*(Z,C(X, A), §). First, it is clear that G
is closed under addition. Also, for any j with 1 < j < n(l) — 1, we have [W/G,_q|* = Gj_qu™?
and [Gj_1u7]* = w/G,-, which shows that G is closed under adjoints. Now let f € G;_;
and g € Gy with 1 < j,k < n(l) — 1. We claim that 87%(f)g € Gjix-1. To see this, let
z € 257 h4(Y). Then either z € I h*(Y), in which case g(z) = 0, or z € | JIZF " h=i(Y),
in which case h¥(z) € JI2F™" h¥4(Y) = (JZZ h=7(Y'), which implies f o h¥(z) = 0. This proves
the claim. It follows immediately that (u?f)(u*g) = wrkB=k(flg € w**G 1k_1. Next, the
previous calculation shows that (ufg*)(u?f*) € w/ %G k-1, and the adjoint calculation then
gives (fu7)(gu™*) = [(WIf*)(u*g")]* € Gjsr-1u"YH*). If j > k, then we further compute
(u f)(gu*) = w fu—kG*(g) = wkG*(f)8*(g) and observe that B(f)B*(g) € Gj—p—y since
for any z € (JIZ5~  hi(Y), we have h=*(z) € JIZ0 A=G+R(Y) = /2L hT(Y) and so fo
h~*(z) = 0. Finally, for j > k the previous calculation and the adjoint calculation together give
(ukg)(fu=?) = [(u f*)(gu™")]* € Gj—p—1u~U~). From these four cases it follows that G is closed
under multiplication. Hence G is a C*-subalgebra of C*(Z,C(X, A), ) which certainly contains
C(X,A) and uGy = uCy(X \ Y, A), and hence contains By as well.

To see that G is contained in By, it suffices to proves that for any k with 0 < k < n(l)—1
and any f € Gy_;, we have u*f € By. By the Cohen factorization theorem (see Theorem 2.9.24

of [6]), there exist fo,..., fk—1 € Gk—1 such that f = H;:é fj. Then we may write
wFg = (uB 1 (fr-1)) (B 2 (fr—2)) - - - (uB(f1) (ufo).

Foranyz € Yandany0 <i<k-1, h7%z) € Uk 1h i(Y), and so B*(f;)(z) = 0. Therefore
B(fi) € Co(X \ Y, A) for 0 < i < k — 1, which implies that uf*(fi) € Byyy for 0 <i <k —1. It

follows that u* f € By} as required. [
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Notation V.8. Adopting Notation I'V.2 and Notation V.6, we set

and define a unitary sy € Cy by sy = (o, 51,...,81), where for0 < k <1, sk € C(Ynk), M) (4))

s given by
[0 0 00 1]
10 0 00
01 0 00
Sk =
00 100
| 0 0 01 0|

Theorem V.9, Using the notation of Proposition V.7 and V.8, for 0 < k < [ define o map
ok By — C(Yi, My (A4)) by:

1. for f € C(X,A), ow(f) = diag(B7(flver- - 87" F(H)lve);
2. for g € Gj—1, ok(W f) = siok(f) and o (fu™7) = o (f)s;”.
(Note that oy, is well-defined due to the Banach space direct sum decomposition of Proposition V.7).
Further define a map a: By — Cy by o(f) = (co(f),01(f),...,01(f)). Then o is an injective
*-homomorphism.
Before proving the theorem, it is helpful to state as a lemma an explicit matrix form for
the products siok(f), ox(f)sy”, and siox(f)s,". These calculations will be used repeatedly in

the proof of the theorem, usually without comment.
Lemma V.10. If f € Gyo1, 0 <k <, and r < n(k), then:

1. The diagonal entries of or(f) corresponding to the positions n(k) —(r—1),...,n{k)—1,n(k)

are all zero,

2. We have

87 Ply., r+1<v<nk)andu=v—r,
[sk0k(F)uw =
0 otherwise
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or explicitly

skok(f) = | B~ 1(f)ly, O

0 L0 0
0
0 0 ﬁ—(n(k)~r)(f)|yk 0
3  We have
BNy, fr+1<v<nlk)andu=v-r,
lok(f)sc"],, =
0 otherwise
or explicitly,
r 1 7
0 B~ F)lvi 0
0
. o o 0
Uk(f)sk =
0 0 0 B=ek=-(f)y,
0
|0 0 0 |

. Conjugation by s%, gives
4 Jug YS9

shor(f)sp” = diag(0,.. ., 0, 87 Hlvis -+ -, B~ PE=(A)y,),

where the first r diagonal entries are all zero.

Proof. We first prove part (1). Recall that h**)(Y};) C Y for each k, and so also h**)=7(Y}) C
R=3(Y). As f € Gp_1, for 0 < 5 <r—1and x € h®)~J(Y}), we have f(z) = 0, which proves the

claim.
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Next, a straightforward matrix calculation shows that for 1 <7 < n(k), s} = [ay,] where

1 fl<u<randv=n(k)—uvorr+l1<u<n(k)andv=u-—r

Qyy =

0 otherwise.

By part (1), we have
Uk(f) = diag(ﬂ—l(fﬂyk,. il 7ﬂ_(n(k)_r)(f)|yk70 .o '10)1

where the last r diagonal entries are zero. A routine matrix multiplication now shows that siok(f)
has the form given in part (2). The formula for ox(f)s.” in part (3) is easily obtained from the
one for sio(f) by replacing f with f* and using ox(f)s, " = (sfox(f*))*. (This equality is easily
verified, and this will be done in the proof of Theorem V.9.) Finally, part (4) follows immediately

from parts (2) and (3). a
We now prove Theorem V.9.

Proof. To prove that ¢ is a *-homomorphism, it suffices to prove that each oy, is a *-homomorphism.
Linearity of these maps is clear. For f € C(X, A), the equality o (f*) = ok (f)* follows immediately

from the fact that 8 and all of its powers are automorphisms. Further, for f € G;_1 we have
ok (W )*) = on(f*u) = ak(f*)s? = (slon(£)™ = ow (v f)*

and

oe(fu™)") = 0w (ul £*) = slo(f*) = (ox(£)sg?)* = or(fu)".

It follows that each oy preserves adjoints. Next, it follows from the part (1) of Lemma V.10 that
if f € G-y and r > n(k), then ox(f) = 0. Now, we further claim that for 0 < k < [, we have the

equalities
1. s "oe(f)shok(g) = (877 (f)9)

2. spor(g9)o " = ok(67(g))

whenever f € C(X,A) and g € G,_,. First, part (1) of Lemma V.10 implies that the last r diagonal
entries of both ox(g) and ox(87"(f)g) are zero. Further, f7(g)(z) =0 forz € U;;é h™=3(Y’), which
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implies that 8777 (g) is zero on Y for 1 < j < r. Hence the first r diagonal entries of o (87(g))
are also zero. If 7 > n(k), then both sides of equations (1) and (2) are zero. If 7 < n(k), then we

readily compute

sk ok(f)skon(g) = diag(8~ TV (1B (g) vy -, BTE ()BT E gy, .0, 0)
= diag(87 (67 (N vi -, 87 (FF (9) %, 0, -, 0)
=0x(877(f)g)

and

arok(g)oy " = diag(0,...,0, 871 (g)lvi, -, B~ (g)l)

=0k (67(9)),

- which establishes the claim. We now use equations (1) and (2) to prove that each oy is
multiplicative. Using the direct sum decomposition of By, there are several cases to consider.
Let f € Gj_1,9 € Gy, and j > r. Then (making frequent use of equations (1) and (2) where

appropriate) we have the four equalities

(W f)o(u(9)) = siow(f)skor(g)
= slstor(B77(f)g)
= o (u/*T7"g)
= ok (W (W BT (f)u"")u"g)
= (4 f)(w"9));

k(U g)or(w f) = shor(g)sion(f)
= ststor(877(9)f)
= o (u () f)
= ox(u" (WA (g)u )l f)

= ox((u"g) (v f));
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T

k(v flow(gu™") = slon(f)ok(g)sy
= ak(F7 ()5t "ok(67(9))

k(B () ~"B"(9))

= 0w (w7 (F)ud) (u™" B (g)u")u ")

= ok((w f)(gu™"));

i

and

ok(gu™")ok(w f) = ok(g)s; "ow(f)
= 5370k (87(9))stok(f)
siToR(B7 (9) )
ok ("B (g) f)
= ok (u G (g)u f)
= ok((gu™") (W f)).

il

i

These equalities establish that oy is multiplicative for the most difficult cases. If f, g € C(X, A),
then ok (f)ok(g) = ok (fg) is clear since the left-hand side is just a product of diagonal matrices.

If feC(X,A) and g € Gr1, then

ak(flor(u’g) = ok (f)sk(9)

The arguments for the equalities o, (u"g)ok(f) = o ((uw"g)f), ou(f)or{gu™") = ok (f{gu™T")), and
or{gu™")ok(f) = ok((gu™")f) are similar to the previous one. It follows that o is multiplicative
for 0 < k < 1. We have thus established that for 0 < k <[, o Is a *-homomorphism, and hence

so is o. It remains to show that o is injective. Let f € By, and using Proposition V.7, find



fo € C(X,A) and fj,9; € Gj_; for 1 <7 <n(l) —1 such that

n(l)—1 n(l)~1

f=rh+ Z ul f + Z gsul.
j=1

=1

Suppose that o(f) = 0, which is equivalent to o (f) = 0 for 0 < k <!, and fix some k € {0,...

Then
n(l)-1 n(l)—1

ok(fo)+ D stou(fy)+ D ok(gy)sy’ =0.

j=1 j=1

Since ok (f;} = ox(g;) = 0 for j > n(k), this reduces to

n(k)—1 . n(k)~1 .
or(fo) + Y slon(f)+ D orlgy)sy’ =0.
j=1 Jj=1

Using Lemma V.10, it follows that this equation takes the matrix form

B~ (fo)lvi B~ g1y, o BT Gny -
B 1)l B72(fo)ly, :

| B fa-1) BTCED(R)y, o BRI (fo)lwe

This implies fo = 0 on U”(k) h"(Yx) and f; =g; =0o0n U:(:kl)‘j R"(Y%) for 1 < j < n(k)—1. Since
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1.

k is arbitrary and (J,_, Un(k) RT(Y}) = X and h**)=3(Y,) € h=9(Y), we conclude that fo = 0

and f; = g; =0 for 1 <j <n(l) — 1. It follows that f = 0 and so ¢ is injective.

O

Lemma V.11. Identify C(Y, My ) (A)) with My ) (C(Y, A)) in the obvious way. Define maps
™ C(Ye, Mpx)(A)) — C(Yk, My (A)) by P Oty = bmtss for 1 < § < n(k) —m (if
m >0) and for —-m+1<j<nlk) (if m <0), and p,c (b)” =0 for all other pairs (1,7). (Thus,

p,(C") is the projection map on the mth subdiagonal.) Write

P = @p(m) (Ye, My (1) (A)).
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Then:
1. there is a Banach space direct sum decomposition

l n(l)

@C(Yk,Mn(k)(A))= @ Pr;

k=0 m=~n(l)

2. form>1and f € G-y, we have
ar(w™ f) € pi™ (C(Yie, Mugiy (A)))

and

Tk (fu™™) € pS™ (C(Ye, Migiy (4)));

3. for f € C(X,A), we have
a1(f) € PO(C(Ye, Muiiy (A))).

Proof. The direct sum decomposition is essentially immediate from the definition of the maps p,(cm),

while the other statements follow from Theorem V.9 and Lemma V.10. [

Lemma V.12. For k,ty,...,t, € {0,...,l}, write
Yk, ty,... tr) = (Ye \Yko) NY;, N h-n(tl)(ytz) AN h—{n(t1)+-~+n(t1-_1)](Ytr),

An element
{

(b07 ey bl) € @C(Y’W Mn(k)(A))
k=0

is in o(By) if and only if, whenever © € Y{(k,t,...,tr) with n(ty) + n(ta) + - -+ + n(t;) = n{k),

then bi(x) is given by the block diagonael matriz

r -

bt1 (:L‘)
,H_n(tl) (bt:z )("E)
bi(z) = B +nlt)l (b, ) ()

—[(t) o nlteo)]
B ! Vl(bs, ) () |



84

Proof. Suppose first that (bo,...,b) € o(B(yy). Then (bg,...,b) = o(u™f) for some m > 0 and
f € Gy (or C(X, A) in the case m = 0). Let z € Y(k, ty,...,t,) with n(t1) +- - +n(t,) = n(k).

The mth subdiagonal of bi(z) is given by
671 a),.... 67O (f)(@)),
while the mth subdiagonal of the block diagonal matrix
diag(bs, (), 87" (b, (@), ..., G~ (b ()
is given by

B @), 87 ET(£)(2),0,...,0, 87D (f)(), .., pmiREFREI=MI(£)(2),

T A ,BrinFdnte- D) gy () | gm(nlt)Fdnlte)=m)( (),

Fach sequence of zeros in this second expression has length m (if m = 0 the first and second
expression are clearly equal, so assume that m > 1) and the corresponding entries in the first

expression have the form

ﬂ—(n(t1)+«~+n(t-,:)~j)(f)(x) - a:(z:—("(tl)"'"“"n(tvi)—j))(f o hn(t1)+~-~+n(t¢)—j(x))’
where 0 <j <m—1land1<i<r—1 ButzeY(kt,... t) implies that A7+ +nltd(z) ¢
Y41 C Y, which further implies that all such entries are 0 as f € G, vanishes on U;.T;'E)l R=I(Y).
It follows that the two expressions are equal.

For the converse, let

l

(bos -- ., br) € €D C(Ye, Mruiy (A))
k=0

and assume that (bg, ..., b;) satisfies the given relations. By Corollary V.11 and by taking adjoints,
it suffices to prove that for each m > 0, we have (bg,...,b(l)) € o(By) under the additional

assumption that by € p,(cm)(C’(Yk, Mp)(A))). Define continuous functions f,ij): hi(Yy) — A by
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requiring that the mth subdiagonal of by be given by

(872, 8725, .., I gy )

and by setting f(’) =0for0 <k <landn(k)—m-+1< 7 <n(k). We claim there is a continuous
function f: X — A such that flyi(y,) = f,gj) for 0 < k <land 1< j < n(k). Moreover, if
m > 1 then f € G,,_;. If such a function f exists, then by construction we have u™f € By and
a(u™f) = (by,...,b) as required.

Suppose that f exists and is continuous, and that m > 1. Then the condition flxi(y,) = fJ’-c

implies that f = 0on A?(Y;) for 0 < k <!l and n(k) ~m+1 < j <n(k). But then f =0 on

n{k)

U U hY’“:Q,O A "U (Ohn(k)yk> Uha

k=0j=n(k)—m+1 m+1 7=0 k=0

which implies that f € G,,~1. So it suffices to prove that f exists and is continuous. Since the
sets h?(Y) give a cover of X by closed sets, it suffices to prove that f is well-defined on the
intersections A71(Yk,) N h72(Y%,). To do this, we need to show that if z € k7 (Yg,) N h72(Yg,),
then f,EJI 1)(:1:) = f,EZZ)(m). First suppose that j; = jo = j, and assume without loss of generality
that k; < ko. Then h™J(z) € Yi, N Yi,, and moreover h=7(z) € Yy, \ Y2 as n(k;) < n(ks)
is a return time for A=%(z). Let n(t;) be the first return time to ¥ of the point A™k1)=i(z).
If n(k;) + n(t;) < n(kg), let n(tz) be the first return time to Y of An(k1)Tn(t)=i(z), Since
h~i(z) € Yk,, we must have A"*2)=J(z) € Y. Proceeding inductively, we obtain a sequence
n(k1),n(k1) +n(t1),n(k1) +n(t1) +n(ta),. .. of increasing return times to Y for the point h=7(z),

that is bounded above by n(kz). So there must be an r and a return time n(t,) such that
n(k) + n(t1) + n(t2) + - + n(t;) = nlks).
Then we have

W () € (Yi, \ Y)Y NATH (5 ) = e R (v ) 1 pm (DAt dnlie-) (),
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By assumption, by, (A™7(z) is given by

[ b, (7 (2)) ]

A Bk (b V(A (2
b, (h=7(z)) = (be,)(h™(x))

grinteasntia) nte-l(h, ) (b (2))

The jth entry on the mth subdiagonal of this matrix is then ﬁ"j(f,g))(h_j(x)), while by definition
the jth entry on the mth subdiagonal of by,(h™7(z)) must be ﬁ‘j(f,g))(h‘j(x)). Since these
expressions must be equal, it follows that agl__z)(z)( f,g)(:c)) = ag;z-)(z)( f,g )(z)) and this implies
fr, (@) = fi,(z) as az(,") is an automorphism for every y € X and n € Z\ {0}. This establishes the
desired equality for the case 71 = j3 = j.

Now assume without loss of generality that j; < j;. We also assume for the moment that

n(ky) —j1 < n(ky)—Jo, handling the other case later. Finally, we may assume that m+jz < n(ks).

Indeed, if we instead have m + jy > n(ks), then this inequality and j; > j2 + n(ky) — n(ks) give

m + j1 > m+ jo + n(ky) — n(ke) > n(k1),

which implies that f,g‘)(x) =0 = ,512)&) With these assumptions in place, set Tz = h™72(z),
which is an element of Yk, N A=02790(Y}, ). Since € h/' (Yi,) N h'%(Yk,), we have hi2~71(z,) =
h=91(x) € Yk,, and so jo — 71 is a return time to Y for x5 that satisfies jo —j; < n(ky). This implies
that 2 € Yk, \ Yy,. By repeating the same type of argument used in the j; = j2 case, we construct

a sequence t1, 1%y, ...,t such that n(é1),n(t1) + nlta), ..., n(t1) + - - - + n(¢) are successive return

times of 25 to Y, and such that
n(t1) +n(te) + - +nltr) = 72 — j1.
By assumption, n(k;) + j2 — 71 < n(kz), and
Rk T2 =01 () = Rk I () € prED(Y,, ) C Y.

Using the same argument, construct a sequence t4,t),...,t. such that the numbers n(t}),n(t)) +
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n(th),...,n(ty) + - + n(t\,) are successive return times of A"(*1)472=J1(z,) to Y, and such that

n(ty) +n(ty) + -+ nty) = n(ke) ~ (n(k1) +j2 — j1).

Then
22 € (Y, \Y) N Yy, N ATV ) 0 (U +Fnltd)(y
ARl nD) oy, ) A
1
mh-[n(tl)+--.+n(tv,-)+n(k1)+n(t’1)+~-+n(t_’,_,A1)]<Yt, )
and

n(ty) + -+ nlte) +n(ky) +n(th) - + n(t.) = niks).

Therefore, the assumed relations apply, and so we know that

’- btl (.’172)

—n(t1) bt2 T
b (22) = g (bt ) (z2)

G )+ +n(te) +nlk) FnE)+Fnltl, _ )] (bt;, ) (:Eg) ]

We are interested in the joth entry on the mth subdiagonal for each term in this equality, By
definition, this entry of by,(z2) is ﬂ‘jz(fgz))(zg) while the corresponding entry in the block

diagonal matrix is

Fi0=Ga=i0) (£00)(20) it m + iy < nlki)

0 ifn(k)) <m+ 71 <m4nlk).
In the first case, we obtain the equality
oGP (f) o 1 (m2) = T (£ 0 192 (2).

Since h¥%(z3) = z and a;;j” is an automorphism, we obtain f,gg)(w) = Igl)(x), as required. In the

second case, we obtain a;;jz)(féiz)ohﬁ (z2)).= 0 using the relation, which implies that f,gf_;z)(:c) =0
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using the same reasoning as in the previous case. On the other hand, f,ifl)(av) = () since f,if) ={

by definition for any j > n(ky) ~ m. So we again have the equality f,i?)(x) = f,gl)(x).

Finally, we handle the case where j; < j2 but n(k)) + 71 > n(ks) + jo. Set

r1 = h™9(z) € Yi,. Proceeding as before, construct a sequence tj,tg,...,t such that
n(t1),n(t1) + n(ta),...,n{t1) + --- + n(t,) are successive first return times of z; to ¥, and such
that

n(ty) + n(ta) + - -+ +n(tr) =nlky).

We claim that » > 2. To see this, observe that
hn(kz)—(jZ”‘]'l)(xl) — prlk2)—jz (z) = hn(kz)(@) e hn(kZ)(Ykg) cY,

which implies that n(ks) — (j2 — 71) is a return time of z; to Y, and n(k;) > n(ky — j2 + j1) by

assumption. Choose 1 such that
n(tl) + .4 n(ti_l) < < n(tl) + o + 'I'L(ti),

and set k3 = t;, j3 = j1 — [n(t1) + -+ + n(ti_y)], and z3 = A8+ +nltio) (1) Then z3 € Yy,

and hJ(z3) = h91(z1) = z, which imply that
T € B (Yi,) N A9 (Ye,) N A2 (Yiy).

By construction, we have js < 71 and n(ks) — 73 < n{t;) — 71 < n(k1) — j1. Now the cases
we have already done imply that f,ifl)(w) = f,ga)(:v), and so we may replace j; and k; with
js and ks in the argument for f,gzl)(x) = f,gi”)(z). But n(k3) < n(k1) by the observation that
n(k1) = nlt) + - + n(t,) with r > 2, so n(ks) + n(ke) < n(k1) + n(ks). The result follows by a

finite descent argument. 0

We now have the necessary machinery to give a decomposition of By as a recursive

A-subhomogeneous algebra.
Theorem V.13. Let Y C X be closed with int(Y) # &, and adopt Notation V.6 and the notation

of Theorem V.9. Then the homomorphism o: By — Cy induces an isomorphism of By with the

recursive A-subhomogeneous algebra defined, in the notation of Definition V.3, as follows:
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1.l and n{0),n(1),...,n(l) are as in Notation V.6;
2. Xeg=Yy for0< k <,

3. X0 =vinUZly;

J:
4. For z ¢ X,go) and {bo,b1,...,bk—1) in the tmage of the k — 1 stage algebra B)(,k_l) (in
@?;é C(Y}, Mp(jy(A))), whenever z € Y (k,t1,. .., t) with n(ty) +n(te) +- - -+n(t-) = n(k),

then ¢ (bo, b1, ...,bk—1)(x) is given by the block diagonal matriz

[ btl (I)

B (p .
on(bo,bl,...,bk_l)(_fz;)_—_- ( t )(a:) | |

ﬂ_ [n(t)++n(tr—1)] (bt,‘) (.’L')

5. pk is the restriction map.

The topological dimension of this decomposition is dim(X), and the standard representation of

o(By) is the inclusion map in Cy.

Proof. We prove by induction on k that the homomorphism oy : Bg,k—” — C(Y,C(O),Mn(k)(A))
given by the formula in (4) is well defined. As we shall see this is the key element of the proof. For
the base case, we prove that ¢, is well-defined. Let x € Yl(o) =Y, NYy. Let tg,%1,...,tr—1 be the
successive return times of z to Yg, and let ¢, be the first return time of x to Y3, and require that
to = 0. Then we certainly have ¢t; = n(0) and ¢, = n(1). Since n(0) < n(1), it follows that r > 2.
Also, for i < r each h%(z) is in Y, and its first return time to Yp is t;4.1 —t;, which is always strictly
less than n(1), and so must be n(0). Then the recursion relations g = 0,t; = n(0), t;+1 —t; = n(0)
imply that ¢; = in(0) for 0 < 7 < r. In particular, we obtain n(1) =t, = rn(0). Now, if Yl(o) =0
then ¢, is trivially well-defined. If Yl(o) # @ then z € Y, \ Y7 (since if we had = € Y, we could

not have z € Yy), and so we may write YI(O) as

YO = M\ YY) NYo Nk OX) nhTO(¥p) 00 CTIO(vy).
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Then ¢, (b) is well-defined by the formula

P10 = (), 8O ) (), ., 67O ) ().

Now suppose that @1, @a, ..., @1 are well-defined. Then B,(,k ~Y is a recursive A-subhomogeneous
algebra, and its elements are exactly the sequences (bg,...,bk—1) satistying the conditions of
Lemma V.12 up to [ = k — 1. We define a homomorphism ¢y Bl(,k—l) — C’(Y,C(O),Mn(k)(A))
by the formula in condition (4). Once we have shown this is well-defined, the induction will be
complete, and it will follow that Byc) is a recursive A-subhomogeneous algebra, whose elements
are exactly the sequences (bg,...,bx) satisfying the conditions of Lemma V.12 up tol = k. Let S
be the set of all sequences (t1,1s,...,tr) such that 7 > 2 and n(t1) + n(t2) + - -+ + n(t;) = n(k).

Since r > 2, it follows that t; < k for every possible ¢;. For a sequence o = (t,...,t,) € S, define
Y = (A Y)Y, NET(Y,) 0 0 bl bty ),

By an argument analogous to that done for the base case of the induction, we observe that Yk(o) =
Uses Yk(a). To show that ¢ is well-defined, it is therefore sufficient to prove that given o, 7 € $ and
zT€ Yk(“) n Ykm, the corresponding formulas of condition (4) agree at the point z. For b € B(Y"‘”,
denote these expressions by <p§f)(b)(x) and <p,(cT)(b)(x) respectively. For o = (t1,t0,...,t.) € S,

denote by R(o) the set of successive return times associated with o:
R(o) = {0,n(t1),n(t1) + n(ta),...,n(t1) + -+ n(tr—1),n(k)}.

For o,7 € § and z € Yk(a) N Y,C(T), let p = (t1,79,...,tr) € S be the sequence such that n(t;) is
the first return time of x, n(t) is the first return time of A™*)(z), and so on. Then z € Yk(p) and
R(p) is contained in both R(¢) and R(7). It is therefore sufficient to prove that if 0,7 € S and
T€ Yk(”) ﬂYk(T), then <p,(:)(b) (z) = <p,(cT)(b)(x) under the additional simplification that R(c) C R(7).

So finally, assume that g,7 € § with R(¢) C R(r) and that z € Yk(a) N Y,C(T). Writing

T = (t1,%2,...,tr), we have

R(r) = {0,n(t1),n(t1) + nte),...,n(t1) + - +n(t)}.
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Since R{e) C R(7), there exist 0 = j(0) < 7(1) < 7(2) < -++ < j{m) such that
R(o) = {0,n(t2) + - +n(tjm),n(t) + -+ +nltj) - n(t1) + -+ nltyom) }
and n(t1) +n(t2) + -+ - + n(tj(m)) = n(k). Then o = (s1, 82,...,s(m)) where
n(s:) = ntj-1)+1) +nltja-1+2) +- + @)
Now (p(,:)(b)(m) is given by the block diagonal matrix

[ bsl(m)

—n(s1) bs, ) (z
ol (b)(x) = prre)e)

gt tnlem-0l(p, Y(z)

We apply the induction hypothesis to the individual blocks in this matrix. For 1 < ¢ < m it follows

that whenever

YE (Y \Ys)NY 1y N h"n(tj(-t—l)+1)(ytj(i_l)+2) NN h—[ﬂ(tj(i—x)ﬂ)+-~~+n(tj(i)~1)](ytjm)’

J

then b, (y) is given by the block diagonal matrix

bt]-(.i_l)ﬂ(y) W

bs';,(y) = IB*n(tj(i_lHl)(btj('i.—l)+2)(y)

ﬁ—[n(tj(i-1)+1)+...+n(tj(7:)—1)] (btj(i))(y)

By evaluating b, (y) at y = z for i = 1 and at y = p™e)*++nlsi-1d(z) for i > 2, and noting that
n(s1) + -+ + n(si—1) = n(t1) + -+ n(tje-1)), it follows that (p,(f)(b)(:r) = (p(,cT)(b)(a:) as required.
This completes the induction.

To complete the proof, we need only show that the topological dimension of the recursive
A-subhomogeneous decomposition is in fact dim(X). Since the sets Yy are closed subéets of X,

they must all satisfy dim(Y}) < dim(X) by Theorems 1.1.2 and 1.7.7 of [10]. On the other hand,
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the finite collection {A7(Y;): 0 <k <I,1<j <n(k)} covers X, and so Theorems 1.5.3 and 1.7.7

of [10] imply that dim(Yx) = dim(X) for at least one value of k. O
Corollary V.14. For anyy € X, Byy) is a direct limit of recursive A-subhomogeneous algebras.

Proof. Given y € X, choose a sequence (¥,,)%2 | of closed subsets of X with int(¥,) # @ for all

n=I
n, Yoy C Y, forn > 1, and Moo, ¥, = {y}. Then the result follows immediately by applying
Theorems V.13 and V.5. O
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CHAPTER VI

THE RELATIONSHIP BETWEEN C*(Z,C(X, A),8)(,; AND C*(Z,C(X, A),5)

For the approximating subalgebra C*(Z,C(X, 4), 8) 4 of C*(Z,C(X, A), ) to be useful,
it must be in some sense “big enough” so that various properties it satisfies can pass to the entire
crossed product C*-algebra. Giving a useful definition of this idea and showing that it is satisfied
by our subalgebra will be the main content of this chapter. In order to carefully state this definition,
we require some discussion of Cuntz subequivalence and the Cuntz semigroup, ideas that have been
mentioned occasionally but for which careful exposition was not required until now. The following

definition first appeared in [5].

Definition VL1, Let A be a C*-algebra, and let Mao(A) denote the set ™., Ma(A), which we
may interpret more formally as the algebraic direct limit of the system (Mp(A))3., where the maps
On: Mp(A) = M,41(A) are the usual embedding maps ¢, (a) = diag(a,0). For a,b € My (A), we
write a ® b for the element diag(a,b) of Mo (A).

1. Given a,b € My (A)y, we say that a is Cuntz subequivalent to b, and write a 2 b, if there

exists a sequence (Yn)S2, C Moo (A) such that yuby;, — a.

2. Givena,b € My (A)4, we say that a and b are Cuntz equivalent, and writea ~ b, ifa X b and
b = a. It is easy to check that ~ is an equivalence relation on My, (A4), and for a € Mo(A)+

we write (a) for its equivalence class under ~.

8. The Cuntz semigroup of A is the set
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with the commutative semigroup operation (a) + (b) = (a ®b). It is has a partial order <

given by (a) < (b) if and only if a 3 b.

Definition VI.2. Let A be a C*-algebra, leta € Ay, and let € > 0. Let f: [0,00) — [0,00) be the

continuous unction

Then, using continuous functional calculus, define (a — &) = f(a).

We summarize some of the known results about Cuntz subequivalence that will be
necessary for our purposes. Proofs can be found in Section 2 of [9], Section 2 of [14], and Section

1 of [43], although some of them were originally given elsewhere.
Lemma VI1.3. Let A be g C*-algebra.

1. Letc€a and let @ > 0. Then (¢*c—a)y ~ (cc* — a)4.

2. Leta,b € A be positive. Then the following are eguivalent:

(a) a 30
(b) (a—€); Zbforalle>0;

(c) for every e > O there is a & > 0 such that (a — &)y 3 (b— &) 4.
3. Leta,bc A satisfy 0 <a<b, and lete > 0. Then (a—¢e)y 2 (b—¢)t.
4. Ifa € A is positive and b € ada is positive, then b 3 a.
5. Ifa,b e A are positive and u € U(A), then a ~ b if and only if uau* ~ b.
6. If a,b € A are positive and there is an © € A such that ¥z = a and zz* = b, thena ~ b,

The next definition is adapted from Definition 2.2 of [43]. The only difference is that
normalized quasitraces have been replaced with tracial states; for nuclear C*-algebras, the

definitions coincide,

Definition V1.4, Let C be a simple, separable, unital, nuclear, stably finite, infinite-dimensional

C*-algebra. A subalgebra D C C is said to be large in C if:
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1. D contains the identity of C;
2. D is simple;
3. The restriction map T(C) — T(D) is surjective;

4. For everye >0, meN, ay,...,am € C, and b € Dy \ {0}, there exist ¢1,...,cm € C and

g € D such that:

() 0<g<l;
(6) llc; —ajll <& for 1 <j<m;
(c) (1-g)cjc;(1—g)€ B for1<j<m;

(d) g 3 b relative to the subalgebra D.

Notation VI.5. Throughout this chapter, we let (X, h,u), A, and 8 be as in the hypotheses of
Theorem IV.15, set B = C*(Z,C(X, A), B) and let u be the canonical unitary for B. ForY C X
closed, we let By = C*(Z,C(X, A), ) be as in Definition V.. Denote by C(X,A)[Z] the dense
subalgebra of B given by all sums of the form 3 . axuf, where T C Z is finite and ay € C(X, A)
forallkeT. Let E: B — C(X, A) be the standard canonical expectation, which is given explicitly
on C(X, A)[Z] by E (3 cr akuF) = ao.

Our goal is to show that for y € X, the algebra By, = C*(Z,C(X, 4),8)(y) Is a large
subalgebra of B = C*(Z, C(X, A),8). Condition (1) of the definition follows immediately from the
definition of By,;. We prove conditions (2) and (3) in the following propositions. For condition
(3) we actually show more, namely that the restriction map between the tracial state spaces is
bijective. Moreover, we identity these tracial states with the [-invariant tracial states on the

algebra C(X, A).
Proposition V1.6. Adopt Notation VI.5. Then for any y € X, By, is simple.
Proof. Let I C By,y be anon-zero ideal. Then INC(X, A) is an ideal in C(X, A), so by Proposition

IV.16 there is a closed set F' C X such that

INC(X,A)={f € C(X,A): flr =0},
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and F is given explicitly by F = {x € X: f(z) =0for all f € [}. We first claim that F # X.
Using Proposition V.5, we may write By, = linByn for some sequence Y7 D Yy D .- with
int(Y,) # @ and (., Yo = {y}. Then there is an N such that N By, # @. Let a € IN By, with
a > 0 and a # 0, and adopt Notation V.6 with Y = Y. Then Proposition V.7 implies there are
fo € C(X,A) and f-j, f; € Gjo1 for 1 < j < n(l) — 1 such that @ = fo + 374 (f_ju™ + 1/ fy).
In fact, using the relation w f; = 37(f;)u?, we may write a as a = Z?S):(:I(l)_l) g;u’ where each
g; € C(X,A) and go > 0 is non-zero. Let z € X be a point where go(z) # 0, and choose a
neighborhood V of z such that the sets h7(V) are pairwise disjoint for —(n(l) — 1) <j < n(l) — 1.
Choose a continuous function g: X — [0,1] such that g(z) =1 and supp(g) C V. Then g € By,

and so gag € I. Moreover,

n()-1 n(l)—1
9ag = % 99549 = % 9590 (9)u’ = gog?,
j==(n()-1) - j==(n()-1)
which implies that gag € C(X, A). Therefore gag € I NC(X, A) and (gag)(z) = (gog?){z) #0. It
follows that F #£ X.
Next, we claim that F C {h™(y): n € Z}. Suppose not, and that zg € F\ {h"(y): n € Z}.
Let f € INnC(X,A), and for each n > 1, choose a continuous function gn: X — [0, 1] such that
gn(R™™{(z0)) = 1 (nofe this implies B(gn)(h~""V(xq)) = 1 for n > 1) and gn(y) = 0. Then
ugi/z,gé/zu‘l € By}, so that ugi/zfgrlbﬂu—l € INC(X,A). Also, we may write ugi/zfg,l/zu_l =
ufgou™! = B(f)B(gn). Since this is an element of I N C(X, A), we must have 5(f)B(gn)(z) = 0
for every z € F. In particular, 5(f)5(91)(zo) = 0, which implies that 8(f)(zo) = 0 as B(g))(z0) =
1. Since this holds for every f € I N C(X,A), it follows that h=!(z) € F. Assuming that
zo, A (z0), ..., A" (z0) € F for n >, we obtain B(f)B(gns1){(h~™(z¢)) = 0, which implies that
ﬂkf)(h‘”(xo)) = 0. Since this holds for every f € I N C(X, A), it follows that A=+ (o) € F
as well. By induction, F' thus contains the entire forward orbit {h™(zg): n > 0}, which is dense
in X by minimality and compactness. Since F' is closed, it follows that F' = X, a contradiction.
Therefore, we must have F C {h"(y): n € Z} as claimed.
If F# @ and z € F, then z = h™(y) for some n € Z. First suppose that n < 0. For
each k > 1, choose a continuous function gx: X — [0,1] such that gx(h"*(y)) =1 and gi(y) = 0.
As in the previous argument, for any f € I N C(X,A) we have ug,lc/zfg,lcmu‘1 = G(f)B(gk) €
I'nC(X,A). This implies that 8(f)8(g1)(h"(y)) = 0 since h™(y) € F. Then B{gx)(h"(y)) = 1
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implies that 8(f)(h"™(y)) = 0, and this must hold for every f € INC(X, A), so we obtain k"~ 1(y) €
F. Assuming we have h™(y),h" (y),..., A" *(y) € F, B(f)B(gr+1)(A"*(y)) = 0 implies that
B(f)(h™F(y)) = 0 for every f € I N C(X,A), which gives h»~(*+D(y) ¢ F. By induction,
F contains the entire backwards orbit {h"~*(y): k > 0} = {h*(z): k <0}, which implies that
F = X, a contradiction.

Finally, suppose that n > 1. For k > 0 choose a continuous function gi: X — [0,1]
such that gr(h™**(y)) = 1 and ge(y) = 0. Then for any f € I n C(X,A), we have
0/ u fugy® = 67671 (Hg* = geBN(f) € INC(X, A). This gives goff~(f)(h™(y)) = 0
and so B (f)(A"(y)) = O for every f € I N C(X,A). It follows that A"*!(y) € F. Assuming
that h7(y), A 1(y),..., KPHE(y) € F, gof™L(F)(b5(y)) = 0 implies B=1(f)(h™+5(y)) = O for
every f € INC(X, A), and so h*+(+1(y) ¢ F. By induction, F' contains the entire forward orbit
{p"**(y): k > 0} = {h*(x): k = 0}, which implies F = X, again a contradiction. Therefore, we
must have F' = &, which implies that / N C(X, A) = C(X, A) and hence I = Byy;.

O

Proposition VL.7. Adopt Notation VI.5. Then the restriction map T(B) — T(Byy)) is a

bijection.

Proof. Recall that from Definition I1.7, the set Tg(C(X, A)) is the space of f-invariant tracial states
on C(X, A). By Corollary IV.21, there is a bijection between T'(B) and Tg(C(X, A)). We first
prove that the restriction map T(By,) — Tp(C(X, A)) is injective. To see this, it suffices to prove
that, given any 7 € T'(Byy,)), we have 7(8(f)) = 7(f) for every f € C(X, A). We may assume that
f >0and | f|| =1. Let ¢ > 0 be given, and choose N € N such that 1/N < %5. Let Vo, V1,..., Wy
be pairwise disjoint neighborhoods of the distinct points y, h(y), ..., A" (y) respectively, and set
V = ﬂ?’;o h=3(V;), which is a neighborhood of y whose first N + 1 iterates V, A(V),...,h" (V)
are pairwise disjoint. Choose open sets Wo, W; C X such that y € Wo ¢ Wo C W, ¢ W, C V.
Choose continuous functions g§*, ¢{”: X — [0, 1] such that ¢{ =1 on X \ Wy, ¢¥ =1 on Wy,
supp(géo)) C X\ Wy, and supp(ggo)) C V. Note that (g(()o) + ggo))(:c) # 0 for all z € X. Now
define go = ¢ (68 + ™)1 and g1 = ¢ (¢ + 9®)~1, and set fo = gof and fi = g1f. Then
f = fo+ f1, where fo € Co(X \ {y},A) and B879(f1) € Co(X \ {y},A) for 1 < j < N. The second
observation follows from the fact that y € supp(f1) C supp(g1) C V, and the sets supp(8=7(f1))

are pairwise disjoint for 0 < j < N (being subsets of the sets h7(V) for 0 < j < N).
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For 1 < k< N, set v, = uﬁ'l(fl/z)uk“lﬁ‘k(giﬂ). We first claim that v € Byy;. To
- . i 1
see this, write ¢ = ﬁ‘k(gll/z) k+1 and observe that £7(q) = ﬁf—k(gll/Z) k+1 ¢ Co(X \ {y}, A) for

0 < j<k-1. Then we write

uﬂ—l(fl/Z)uk—lﬁ—k(g%/Z) = uf L (fH 2k 1kt
= uf ™} (F2)0 et

= w8 H Y2 I )] - [uB*2(q)] -+ - [uB(q)] - [ug?).

Since #571(g),...,B(q),q € Co(X \{y},A), it follows that each term in this product is an element

of By}, and so vx € Byy). Next, we compute

vivk = (W (FY 2R 3R (g1 %) (B (PR B (0y)
= 075 (gt ) (W) 8L (Y D ur e (P18 (g1)
= A7F (g1 ) (WF ) B R (917
=%, ()8 (91
=B (g1f)
= 07*(A)

and

vy = (uB ™ (F b B (g1 ) (w8 (F Y B Ry ))
= uf~ (2B R (g ) () A (1t
= uf (/)8 g) B (£ P ur
= fY2ug™ Y (gr)u" /2
= [ £1/?
=g1f
= fi.
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Now, it follows that for 1 < & < N we have
T(B7F(f1)) = T(vive) = T(vrvi) = T(f1).

Since the supports of the 37%(f1) are disjoint for 0 < k < N, we further have

N

> h

k=0

= |fill = 1.

N7(f1) =) _m(B7(f)) -r(Zﬁ )ST(éﬁ"k()

It follows that 7(87%(f1)) <1/N < fefor 0 < k < N.
Next, choose a continuous function ¢: X — [0,1] such that ¢(y) = 0 and ¢ = 1 on
supp(fo). Then fop = @fo = fo and ¢ € Co(X \ {y},A4), so both ufy and uyp are elements of

Byyy. It follows that
T(6(fo)) = T(ufou™) = T(ufopu”) = T((ufo)(up)*) = T((uwp)*(ufo) = (v fo) = 7(fo).
Now finally, we have

[7(B(F)) — (N = |7(B(f1)) + 7(B(f0)) — T(f1) — 7(fo)|
< |rBCADI+ I (fl
< ge+ie

=£.

Since € > 0 was arbitrary, this implies that 7(8(f)) = 7(f). Hence any trace on By,), when
restricted to C(X, A), induces a f-invariant trace on C(X, A). This establishes the injectivity of
the restriction map T'(Byy;) — Tg(C(X, A4)).

For surjectivity, it suffices to prove that the extension of any trace on C(X, A) to By,
is unique. To show this, it is sufficient to prove that for any closed set Y C X with int(Y) # @,
any trace on By is determined by its restriction to C(X, A). Given such a set Y, adopt Notation
V.6, and let ¢ € By. Then by Proposition V.7, there are go € C(X,A) and g;,9-; € Gj_1
for 1 < 7 < n(l) ~1 such that g = gg + Z"m Y(uig; + g_ju~7). For each z € X, choose a
neighborhood U, of z such that the sets #7(U,) are pairwise disjoint for —(rn(l)—1) < 7 < n(l)-1.
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Then {U,: z € X} is an open cover of X, and hence contains a finite subcover {Uy,...,Un}.
Let {%}i\il be a partition of unity subordinate to this cover. Then for 1 < i < M, we have

B (p:)B*(p;) = 0 for —(n(l) = 1) < j,k < n(l) —1 and j # k, and the same relation holds

with <p:/2 in place of ;. Next, we set a = cpr, b = ujgailﬂgj, and ¢ = g_ngﬂu‘j. Then

a € Z(C(X,A)) and so in particular a € Byy. By Proposition V.7, we have w/g; € By, and

/2 1/2

g-ju™l € Byyy. Since <p3 commutes with both g; and g_;, we may write b = u/g;p;’” and

c= wz/zg_ju_j, from which it follows that b,c € By,;. Using the trace property for 7 on By,

we obtain 7(ab) = 7(ba) and 7(ac) = 7(ca). Then for 1 <{< M and I < j < n(l) — 1 we have

1 i 1/2 1/2
T(Wig;) = T(wlp} %0} %g;)

i 1/2 1/2
:T(“J‘Pi/ gj‘Pi/ )

1/2

1/2
= 7(¢; &)

W' g;
2 aq 1/2 ;
= (o} 3 (0} )il g5)

=0,

which implies that 7(u/g;) = 3M | 7(u/ig;) = 0. Similarly,
r(g—spru) = (g5} "0} *u)
=1(g-501 ;" *u)
=1(p} %07 *u)
= 79— "ulp}"?)
= (g-s0i"* 877 (0} " yu)

=0,

which implies that 7(g_;u™7) = Zf\il 7(g-jpiu™?) = 0. It follows that 7(g) = 7(go), as required.
O

As it currently stands, this might seem uninteresting because Corollary IV.21, which is
used in the proof, requires both that h be uniquely ergodic and that A have a unique tracial state.
This implies that C(X, A) has a unique §-invariant tracial state (namely g ® 7 with p the unique

h-invariant Borel probability measure on X, and 7 the unique tracial state of A). However, we
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expect our results to hold in a far greater degree of generality than what has been proven here (both
the assumption of unique ergodicity on h and that A has a unique tracial state should ultimately
not be required), and so we prove Proposition V1.7 in its stated form as it would apply to this
more general situation without any change in the argument.

The next three lemmas will allow us to replace an arbitrary non-zero positive element of
By,} with a non-zero positive element of C(X) in part (4d) of Definition VI.4. The first two are

analogues of Lemmas 3.3 and 3.4 of [43], and both proofs are adapted from there with little change.

Lemma VI.8. Adopt Notation VL5, leta € C(X, A)|Z], and lete > 0. Then thereis an f € C(X)

such that
0<f<1, fa*af € C(X, A), and Ifa*af| = |E(a*a)|| —e.

Proof. Set b = a*a. If E(b) < g, we can take f = 0, so assume that E(b) > €. Then there are
N € Nand b, € C(X,A) for —N < k < N such that b = Z,]c\’:_N biuk. Moreover, E(b) > ¢

implies by is a non-zero positive element of C(X, A). Define
U=A{zeX: [lbo(z)]| > | E@®)|l - €},

which is a non-empty open subset of X. Using the freeness of the action of h on X, choose a
non-empty open set W C U such that the sets 4*(W) are pairwise disjoint for —N < k < N,
and fix some zo € W. Choose f: X — [0,1] such that f(zo) =1 and supp(f) C W. Then with
T={-N,...,N}\ {0}, we have

fa*af = fbf = fbof + ) foxuff = fbof + Y fhoB*(f)u”

k€T keT

Since the sets supp(8*(f)) are disjoint for —N < k < N, it follows that fbef*(f).= be fB5(f) =0
for k € T. Thus fa*af = fbof € C(X, A) as required. Finally,

Ifaaf] = || fbo Il Z Il f(z0)bo(za) f (zo)ll = llbo(zo)ll > [[E(a"a)]l -,

which completes the proof. a
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Lemma VL9. Adopt Notation VL5, let y € Y, and let a € (Bgyy)+ \ {0}, Then there is a
be C(X,A)y \ {0} with b3 a relative to the subalgebra By .

Proof. Without loss of generality, assume that ||Ja|| < 1. Since a is non-zero and F is faithful,
we have E(a) > 0. Set € = ¢ ||[E(a)||. Since By N C(X,A)[Z] is dense in By, there is a
¢ € Byyy NC(X, A)[Z] such that ||c — a!/?|| <e. Then |ec* — a|| < 2¢ and [c*c — af| < 2¢. Apply

Lemma VI.8 with ¢ and ¢, obtaining f € C(X) such that
0<f<, fc'ef € C(X, A), and Ife*ef|l = |1E(c* )| — e.

The third property gives ||fc*cf|| > ||E(a)|| — 3¢ = 3¢, and so (fc*cf — 2¢) 4 is a nonzero positive
element of C(X, A). By Lemma V1.3(1), it follows that { fc*cf —2¢)4 ~ (¢f2%c*—2¢)+. Since f2 <1,
we have cf?c* < cc*, and combining this with Lemma VI.3(3) gives (cf?c* — 2¢)4+ X (cc* — 2€) 4.

< a, Putting these statements together, we

~

Finally, |lec* —al|| < 2¢ implies that (cc* — 2¢)4

conclude that (fc*cf — 2¢); =% a. This gives the desired positive element of C(X, A). ' |

Lemma VL.10. Adopt Notation VL5, lety € Y, and let b € C(X,A)+ \ {0}. Then there is an
[ € C(X)4+ \ {0} with f 3 b relative to the subalgebra Byy.

Proof. Without loss of generality, assume that ||b]| = 1. Choose a point o € X \ {y} such that
l6(zo)|| = 1 and an open set Vp C supp(b) such that £ € V5 and y ¢ V5. Choose a continuous
function bg: X — [0,1] such that bg(zo) = 1 and supp(bg) C Vu. Set e = bob, and observe that
e < b. By Proposition V.14, there exist an open set V C supp(e), a non-zero projection p € A,
and a unitary w € C(X, A) such that waw* € eC(X, A)e for all a € Her(V,p). Notice that y ¢ V
by construction.

By Proposition IV.12, there exist M € N and ¢ > 0 such that whenever ¢ € C(X) is
positive with u(supp(g)) < €, then there exist, for 0 < k < M, positive elements a; € C(X, A),

unitaries wy, € C(X, A), and r(k) € Z such that:
lLg=g®1< Z,Q/I:Oak;
2. the elements 4"(¥)(ay) are mutually orthogonal, and supp(8™*)(ax)) C V for each k;

3. with by = wB"®) (ar)w}, the by are mutually orthogonal positive elements in Her(V, p).
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Choose a point zo € V and an open set W C V such that g € W and u(W) < e. Choose
a continuous function g: X — [0,1] such that g(z¢) = 1 and supp(g) C W. Then u(supp(y)) <e,
and so Proposition IV.12 yields positive elements ar € C(X, A), unitaries wy € C(X,A4), and
r(k) € Z with the aforementioned properties. Let N = max {|r(k)|: 0 <k < M}. For 0<k< M
and -V < j <N, let Uﬁ) be an open neighborhood of y such that

w(W)
22N+ 1)(M +1)+1°

wu§) <

For 0 <k <M and —N < j < N, choose an open neighborhood Uj ;. of y such that Uj,k - UJ.(?,C),

and set
M N v N |
U — U U h*f(UJ(’(;c)) and U= U U b (U k)
k=0 k=—N b0 2N
Then U ¢ U@, and
M N
) w(Uf) < IN +1 W) 1w,
w(U :4:‘_5 (M+1)2N +1) R ES eSS < fu(w)

It follows that u(W \ U) > 0. Now choose z; ew \ U and an open neighborhood W, of z; such
that W, C W and Wi NU = @. Choose a continuous function f;: X — [0, 1] such that filzr) =
and supp(fi) C Wi. Set f = fig, and for, 0 < k < M, set s = frax and ty = wkﬁr(k)(sk)wz

Finally, set
M N
= m m ],kv
k=0j=—-N
which is an open neighborhood of y. Then we claim that:
1. f< Eﬁio Sk;
2. the elements 37¥)(s;) are mutually orthogonal, and supp(87)(sy)) C V for each k;
3. with t, = wkﬁr(k)(sk)w;, the i are mutually orthogonal positive elements in Her(V, p);
4. for 0 < k < M and [j| <| r(k)|, we have 3/ (sk)(z) =0 for allz € S.

The first three statements follow immediately. To prove property (4), suppose |j| < |r(k)|. Then

supp(B?(s)) C supp(fi o h™7) C hI(W1).
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If £ € S, then = € Ujx and hence h9(z) € ﬁ‘j(Uj,k). This implies h™7(z) € U, and so h™7(z) ¢
Wi. Thus z &€ hI(W1), and consequently z & supp(3?(sx)). This verifies (4).

Next, we claim that 87 (s;) ~ s, in By, for 0 < k < M. If we write vg = ur(k)s,lc/z, then
vevf = A7) (s1,) and v}y = sk. So it suffices to prove that vx € Byyy. First assume that r(k) > 0.
Since supp(s,lc/z) = supp(sk), we have ﬂj(s,lc/z)(:r) = 0 for all j such that 0 < j < r(k) and all
z € S. Choose an open neighborhood Sy of y such that Sy C S and SpoN supp(ﬂj(sl/z)) = @ for
0 < j < r(k). Choose a continuous function ¢: X — [0,1] such that ¢ = 1 on supp(sk/ ) and
supp(e) C X\ Ur(k) h=7(Sy). Then wsk/ = s,lc/Q, and 9 = /7 is continuous. Now, we may

write

w5/ = wBpa/? = (upr®= @) (wir® W) - W) (wh) 5>

Now 87(9)(y) = 0 for 0 < j < r(k) — 1, since supp(y) = supp(p). Thus uf? () € By, for
0<j<r(k),and s,lc/z € Byyy. It follows that ur(k)s,lc/2 € Byy).

Now if r(k) < 0, we can write

ur(k)sllc/2 :ﬂr(k)(si/Z)ur(k) _ (U_T(k)ﬂr(k)(s,lc/z)> '

Let d(k) = —r(k) and e, = 87%)(s;). Then d(k) > 0, and §7(e}/?) = i=4(k)(5;/%). For all j
such that 0 < j < d(k), we have —N < j —d(k) < 0. For any ¢ with —N < i < 0, we have
B(si/*)(z) = 0 for all z € S. This implies that ﬂj(e,lc/z)(m) = 0 for all j with 0 < j < d(k) and
z € S. Applying the previous argument with d(k) in place of r(k) and e,lc/ % in place of s,lc/ 2, we
obtain u“(")e,lc/2 € By}, and this in turn gives u~"(*) gr(k) (s,lc/z) € By} Since By, is closed under
adjoints, it follows that u’(’“)s,lc/ ¢ By This completes the proof that vx € By, for 0 <k < M.

Finally, we have wy € By, for 0 < k < M, and so 2, = wgvk € Byyy. Then 2z =
wkﬂr(’“)(sk)w,’; =t and z{z, = vivr = sk. By part (6) of Lemma V1.3, it follows that ¢x ~ si with
equivalence in By,;. Further, w € By, and so part (5) of Lemma V1.3 implies that wtyw® ~ tx ~
sk relative to Byyy. Moreover, the elements wt,w* are orthogonal, and 224:0 wtpw* € m
since each ¢y is an element of Her(V, p). Part (5) of Lemma V1.3 then implies that 224:0 wtew* Je
relative to Byyy. We conclude that f 3 e relative to By,). Since e < b, we have f 3 b relative to

By O
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Theorem VI.11. Adopt Notation VI.5, and let y € X. Then Byy) is a large subalgebra of B.

Proof. As previously mentioned, condition (1) follows immediately from the definition of By,
while conditions (2) and (3) are given by Propositions V1.6 and V1.7 respectively. It remains to-
prove that condition (4) holds. Let € > 0, m € N, ay1,...,am € B, and b € (B})+ \ {0} be given.

Choose N € N such that, for 1 < k < m, there exist ¢;r € C(X, A) for —N < j < N with

N
Ay — E Cjk'lLJ <E.
j=—N

For 1 < k <m, set

N
CcrL = E ciku?.

j=-N
Then |jax — ck|| < & for 1 < k < m, which is condition (4b).

Next, use the simplicity of B,y and Lemma 1.9 of [43] to find nonzero orthogonal positive
elements y; € By, for =N < j < N such that y; ~ y; for all 5,0 € {~N,..., N} and such that
Z;V:_N y; € bB(y3b. Apply Lemmas V1.9 and VI.10 to obtain z; € C(X)4 \ {0} such that z; 3 y;
for —N < j < N. Apply Lemma 3.5 of [43] to obtain open sets V; C X for —IN < j < N such that
R (y) € V; and such that whenever f € C(X) satisfies supp(f) C V;, then f 3 z;. Choose an open
set W C X such that y € W, such that the sets h7(W) are pairwise disjoint for —N < j < N, and
such that h7(W) C V; for =N < j < N. Choose a continuous function go: X — [0,1] such that

g0(y) = 1 and supp{ge) C W. Finally, set

Then 0 < g <1, which verifies condition (4a), and g 3 b relative to By, which verifies condition
(4d).
To complete the proof, we need to verify condition (4c); that is, show that (1—g)cx € By,

and ¢ (1 — g) € By for 1 <k < m. Since
N N
Ck = Z cjkuJ = Z u’ﬂ_J(cjk),

j==N j=—N

it is sufficient to verify that u?(1 —g) € Byy) and (1 —g)u/ € By for —N < j < N. First assume
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that 0 < j < N. When j = 0 this is immediate. Now suppose that 0 < 7 < N. Since go(y) =1, it
follows that u(1 — go) € By,). Observe that 5*(go)8? (go) = 0 for ~N < 4,5 < N and i # j by the

disjointness of the sets h*(W) and h7(W). This implies that we can write
N . N o
l—g=1- > BFo)= [] (1—5(9))-

j=—N j=—N

Then we have
[u(l — go)l’ = v (1—67"go)) (1 = B2(g0)) - (1 ~ Blgo)) (1 - go) -
Set T; ={—N,...,—1}U{4,...,N}. Then we can write

W (1~ g) = [u(l — go))’ H (1 - B(90)) -
€Ty
Since u(1 — go) € Byyy, we have [u(l — %) € By}, and certainly Hz‘eTj (1—B(90)) € Byyy. It

follows that u?(1 — g) € By,}. Analogously, we may write
[u(1 = go)l? = (1= 87}g0)) (1 = B2(g0)) -+ (1 = B (90))

and set T} = {—N,...,—j+1}U0,...,N. Then we have

(1-g0 = (H (1 —ﬂi(go))) [u(1 - go)T,
€T}

7
andso (1-g)u € Byyy. Finally, if —N < j < 0, then we may write (1 - g)u/ = (u™7(1—g))" and
w(1-g) = ((1-g)u7)". Using the previous argument and the fact that By, is closed under
adjoints, it follows that (1 —g)u?,u/(1—g) € By for =N < j < 0. This completes the verification

of condition (4¢), and completes the proof. O

The following definition is a simplified form of a more general definition, introduced in
[60], where the tracial state space T'(A) is replaced by the set QT(A) of normalized quasitraces on

A. Since our C*-algebras of interest are nuclear, these two sets are equal in our situation.
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Definition VI.12. Let A be a stably finite unital nuclear C*-algebra. For v € T(A), define
dr: Moo(A)y — [0,00) by
T 1/n
d-(a) = nan;o 7(a’™)

foralla € My (A)y.

1. Forr € ]0,00), we say that A has r-comparison if whenever a,b € M (A) satisfy d,(a) <
T+ d-(b) for all T € T(A), then a 3 b.

2. The radius of comparison of A, denoted rc(A), is the number
rc(A) = inf {r € [0,00): A has r-comparison} .

If this set is empty (A does not have r-comparison for any r > 0), then we define re(A) = oo,
3. Ifre(A) =0, we say that A has strict comparison of positive elements.
Proposition VI.13. Fory € X, we have rc(B) < rc(Byy).

Proof. We have already seen that By, is large in B by Theorem VI.11. Since B is nuclear,
Definition VI.4 is equivalent to Definition 2.2 of [43]. Therefore Lemma 2.4 of [43] implies that
By, is also quasitracially large in the sense of Definition 2.1 there. Now the stated result follows

by Theorem 4.5 of [43]. O

We conclude by presenting classification results for By} and B that we have not yet been
able to prove. The first of these, at the very least, seems reasonably accessible and can be combined

with our results to produce useful new ones.

Conjecture VI.14. If Y C X is closed with int(Y) # @, then By = C*(Z,C(X,A),Q)y has

strict comparison of positive elements.

If this result holds, then we obtain strong information about the structure of the Cuntz

semigroups for By,; and B.

Theorem VI.15. Suppose that y € X, and that Conjecture VI.14 holds. Then By, has strict
comparison of positive elements. Consequently, B has strict comparison of positive elements as

well.
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Proof. By Corollary V.14 and Proposition V1.6, By} is a simple direct limit of a unital direct
system (A, ¢,,), where each A, is a recursive A-subhomogeneous algebra of the form A, = By,
for some Y, € X closed with int(Y},) # @. If the result of Conjecture VI1.14 holds, then each A,

has strict comparison of positive elements, so that rc{A,) = 0 for all j. Then
liminfrc(A,) =0,
n—o0

and Theorem 5.3 of [52] implies that By, has strict comparison of positive elements. Now

Proposition VI1.13 implies that B has strict comparison of positive elements as well. 0

It seems likely that a direct proof of Theorem VI.15 can be given, so that By} has strict
comparison of positive elements, even if it turns out that By d;)es not have strict comparison of
positive elements for more general sets Y. If such a direct argument does exist, it is also possible
that it can be adapted to show that By has strict comparison of positive elements when Y is a
finite set consisting of points with disjoint orbits.

The interest in the Cuntz semigroup lies in its usefulness as an invariant in the classification
theory of simple, separable, nuclear C*-algebras; in particular, it can distinguish between certain
C*-algebras with the same Elliott invariant. However, it can be considerably more difficult to
compute. (See [51] for a discussion of its importance to classification theory and an example that
justifies the claim about its computability.) Strict comparison of positive elements allows us to
identify the Cuntz semigroup of a C*-algebra with a more tractable set. More precisely, let A be a
simple, unital, nuclear, stably finite C*-algebra, let V(A) be its Murray-von Neumann semigroup
of projections in My, (A) (this is a subsemigroup of W(A)), and let LAff,(T(A))++ denote the
set of lower semicontinuous real affine functions on T'(A) that are bounded and strictly positive. -
Then we define a map ¢: W(A) — LAfT(T(A))++ by ¢({a))(r) = dr(a), where d.(a) is defined in

Definition VI.12. Then if A has strict comparison of positive elements, the map
idUe: V(A)LUW(A) - V(A) ULAF(T(A)) + +

is a semigroup order embedding by Theorem 5.6 of [52]. Thus in the case where A has strict
comparison of positive elements, W(A) is identified in a structure-preserving way with a subset

of LAy (T(A))++. An even more powerful result that we hope is true would be a generalization
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of Theorem 0.2 of [53]. Let Z denote the Jiang-Su Algebra, which is a stmple, separable, unital,
infinite-dimensional, nuclear C*-algebra having the same K-theory as the complex numbers C, and
is strongly self-absorbing (in particular, Z ® £ = Z). A C*-algebra A is called Z-stable if there
is an isomorphism A ® Z = A. The property of Z-stability appears to be intimately connected to
the question of whether or not a simple, separable, nuclear C'*-algebra is classified by its Elliott

invariant. Again, see [51] for a discussion of this.

Conjecture VI.16. The crossed product C*-algebras C*(Z,C(X, A), B) are Z-stable; that is, there
s an isomorphism

C*(z,C(X,A),B) ® 2= C*(2,C(X, A), B).

Whether Conjecture VI.16 is true or not is much less certain than Conjecture VI.14.
Winter [56] believes that the problem is likely to be very difficult. In particular, one must show
that for each x € X, the crossed product C*(Z, A, ;) is Z-stable. To proceed in the same manner
as 53], we must also be able to obtain information about the decomposition rank of the algebras
Byyy and Byy, 4,y (where y; # yo). It is far from clear that this is possible, and a worthwhile

question in its own right.

Conjecture VI.17. ForY C X, withY = {y} orY = {z,y} where z # y, the C*-algebra By
has finite decomposition rank in the sense of [57]. The formal definition of decomposition rank is
quite technical, but it should be thought of as a version of noncommutative covering dimension, in

particular, dr(C(X)) = dim(X).

The desired result for the structure of the crossed product C*-algebras C*(Z,C(X, A),3)
is an analogue of the main theorem from [24]. In order to carefully state it, we require some

additional machinery.

Definition VI.18. For a compact convex set A, let Af(A) denote the space of all continuous
affine functions f: A — R. For a C*-algebra A, let V(A) be its Murray von-Neumann semigroup,
and let Ko(A) be the Grothendieck group of V(A). Define a map

pa: Ko(A) — AB(T(A))
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Conjecture VI.19. Suppose that the map pg: Ko(B) — Aff(T(B)) of Definition VI.18 has
dense range. Then B = C*(Z,C(X, A), B) is a simple unital C*-algebra with tracial rank zero that

satisfies the Universal Coefficient Theorem (i corﬁpare with Theorem 4.6 of [24]).

An affirmative answer to this conjecture would provide a large new collection of classifiable
C*-algebras, arising as the crossed product C*-algebras of algebras which are neither commutative,
nor simple, nor necessarily containing many projections. Previous classification work on crossed
products has frequently assumed at least one of these conditions on the underlying C*-algebra. As
we have seen, the tracial quasi-Rokhlin property was formulated specifically for the study of such

C*-algebras and their associated crossed products.
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