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An Abstract of the Dissertation of

Wei Sun for the degree of Doctor of Philosophy

in the Department of Mathematics to be taken June 2010

Title: CROSSED PRODUCT C*-ALGEBRAS OF MINIMAL DYNAMICAL SYSTEMS ON
THE PRODUCT OF THE CANTOR SET AND THE TORUS

Approved:

Dr. Huaxin Lin

This dissertation is a study of the relationship between minimal dynamical systems on
the product of the Cantor set (X) and torus (T2?) and their corresponding crossed product C*-

algebras.

For the case when the cocyles are rotations, we studied the structure of the crossed product
C*-algebra A by looking at a large subalgebra A,. It is proved that, as long as the cocyles are
rotations, the tracial rank of the crossed product C*-algebra is always no more than one, which
then indicates that it falls into the category of classifiable C*-algebras. In order to determine
whether the corresponding crossed product C*-algebras of two such minimal dynamical systems

are isomorphic or not, we just need to look at the Elliott invariants of these C*-algebras.

If a certain rigidity condition is satisfied, it is shown that the crossed product C*-algebra
has tracial rank zero. Under this assumption, it is proved that for two such dynamical systems, if
A and B are the corresponding crossed product C*-algebras, and we have an isomorphism between
K;(A) and K;(B) which maps K;(C(X xT?)) to K;(C(X x T?)), then these two dynamical systems
are approximately K-conjugate. The proof also indicates that C*-strongly flip conjugacy implies

approximate K-conjugacy in this case.

We also studied the case when the cocyles are Furstenberg transformations, and some
results on weakly approximate conjugacy and the K-theory of corresponding crossed product C*-

algebras are obtained.
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CHAPTER 1

INTRODUCTION AND NOTATION

1.1 INTRODUCTION

Let X be a compact metric space, and let o € Homeo(X') be a minimal homeomorphism of
X. We can construct the crossed product C*-algebra from the minimal dynamical system (X, o),

denoted by C*(Z, X, «).

One interesting question is how properties of the dynamical system (X, «) determine
properties of the crossed product C*-algebra, and how properties of the crossed product C*-algebras

shed some light on properties of the dynamical system (X, ).

For minimal Cantor dynamical systems, Giodano, Putnam and Skau studied how the
relationship between two such dynamical systems and the relationship between the corresponding
crossed product C*-algebras interplay with each other. They found (in [GPS]) that for two minimal
Cantor dynamical systems, the corresponding crossed product C*-algebras are isomorphic if and

only if the minimal Cantor dynamical systems are strongly orbit equivalent.

Lin and Matui studied this problem when the base space is the product of the Cantor set
and the circle (see [LM1], [LM2]), and they discovered that in the rigid cases (see Definition 3.1
of [LM1]), for two crossed product C*-algebras to be isomorphic, the dynamical systems must be
approximately K-conjugate (a “strengthened” version of weak approximate conjugacy, in the sense

that it is compatible with the K-data).

We study minimal dynamical systems on the product of the Cantor set and the torus.

For the case that the cocycles take values in the rotation group, similar results are found for



the relationship between C*-algebra isomorphisms and approximate K-conjugacy between two
dynamical systems. It is also shown that the tracial rank of the crossed product C*-algebra is no

more than one.

For the case that the cocycles are Furstenberg transformations, a necessary condition for
weak approximate conjugacy between two minimal dynamical systems (via conjugacy maps whose

cocycles are Furstenberg transformations) is given.

1.2 NOTATION

Let (X, ) be a minimal dynamical system, by a-invariant probability measure u, we
mean such a probability measure p on X satisfying u(D) = u(a(D)) for every p-measurable
subset D. Following the Markov-Kakutani fixed point Theorem, it is shown that the set of
a-invariant probability measures is not empty (see Lemma 1.9.18 and Theorem 1.9.19 of [Lin2] for

details).
Let 4 be a measure on X. For f € C(X), we use u(f) to denote [, f(x) dp.

For a minimal dynamical system (X, o) we use C*(Z, X, ) to denote C(X) x, Z, the

crossed product C*-algebra of the dynamical system (X, «).

In a topological space X, we say a subset D is clopen, if ID is both closed and open.

In Chapters II, IIT, TV and V, unless otherwise specified, X denotes the Cantor set, T

denotes the circle, and T? denotes the two-dimensional torus.

For a compact Hausdorfl space Y, Homeo(Y) is used to denote the set of all the

homeomorphisms of Y.

As the Cantor set X is totally disconnected, we can write a homeomorphism of X x T? as
a x ¢ (the skew product form), with o € Homeo(X) and ¢: X — Homeo(T?) being continuous,
and

ax@: X xT? = X x T? defined by (z,t1,t2) — (a(2), o(x)(t1,t2)).



For the case that the cocycles take values in rotation groups, we can further express o x ¢

as (X x T x T,a x Re x Ry), with £,7: X — T continuous, and

axRe x Ryt X x T2 — X x T? defined by (x,t1,t2) = (0(2),t1 + £(x), ta +n(x)).

We use A to denote the corresponding crossed product C*-algebra. For z € X, the

subalgebra A, is defined as below.

Definition 1.2.1. For a minimal dynamical system (X xTxT,axRe¢xR,,), Ay is defined to be the
subalgebra of the crossed product C*-algebra generated by C(X X TXT) and u-Co((X\{z})xTxT),

with u being the implementing unitary in A satisfying u* fu = f o (a x Rg x R,))7 1.

Remark: From the definition, if D is a clopen subset of the Cantor set X, and 1p.2 is the

characteristic function of D x T2, then ulpyr2u* = 12 o (a x Re x Ry) = 1o-1(pyxre-

Let {Pn: n € N} be as in the Bratteli-Vershik model of the minimal Cantor dynamical
system (X, o) (see [HPS, Theorem 4.2]), and let ¥, be the roof of P, (denoted as R(P,)). Then
{Y,} will be a decreasing sequence of clopen sets such that [\, ¥;, = {z}. Use A, to denote the
subalgebra generated by C(X x T x T) and u - Co((X\Y,) x T x T).

In a C*-algebra A, for a,b € A, a ~, b just means |ja —b|| <e. By a =, b=, ¢, we mean

la —b|| <ey and ||b —¢| < e2. It is clear that a =, b=, ¢ implies a =, y¢, C
In a C*-algebra A, [a,b] (the commutator) is defined to be ab — ba.

For a C*-algebra A we use T(A) to denote the convex set of all the tracial states on A,

and Aff(T(A)) to denote all the affine linear functions from T(A) to R.

In a C*-algebra A, for a € A, we use Her(a) to denote the smallest hereditary subaglebra

that contains a.

For a C*-algebra A we use TR(A) to denote the tracial rank of A. The detailed definition
of tracial rank can be found in [Lind, Definition 3.6.2]. We use RR(A) to denote the real rank of
A and tsr(A) to denote the stable rank of A. The detailed definition of real rank and stable rank

can be found in [Lind, Definition 3.1.6] and [Lind, Definition 3.1.1].



Definition 1.2.2. Let A be a C*-algebra. Let p be a projection of A and let a € Ax. We say that

p = a if p is Murray-von Neumann equivalent to a projection g € Her(a).

Let A be a C*-algebra. We use U(A) to denote the group of all the unitary elements in A.
We use CU(A) to denote the norm closure of the group generated by the commutators of U(A).
In other words, CU(A) is the norm closure of the group generated by elements in {uvu*v*: u,v €
U(A)}. One can check that CU(A) is a normal subgroup of U(A) and U(A)/CU(A) is an abelian
group.
Definition 1.2.3. Let ¢ : A — B be a C*-algebra homomorphism. We define

o' U(A)/CU(A) — U(B)/CU(B)

to be the map induced by o which maps [u] € U(A)/CU(A) to [p(u)] € U(B)/CU(B).



CHAPTER 11

THE STRUCTURE OF THE SUBALGEBRA A,

In this section, we study properties of a “large” subalgebra of A, namely A,. The idea of
the construction of A, was first given by Putnam, but the construction here is a bit different from
that in the sense that we are removing one fiber {z} x T x T instead of one point. In other words,
we define A, to be the subalgebra generated by C(X x T x T) and u - Co({(X\{z}) x T x T), with

u being the implementing unitary in A (as defined in Section 1.2).

II.1  DIRECT LIMIT STRUCTURE OF A,

The following lemma gives the basic structure of A,.

Lemma IL1.1. If (X xTxT,axRe xRy} is minimal, then for any z € X there are k1, ka,... € N
k

and dsn, € N for n € N such that A, = h_r)n@Mds‘n(C(']I‘z)).

no =1
Proof. As o x Rg x Ry, is minimal, it follows that (X, a) is also minimal. For z € X, let P =
{X(n,v,k):veVy,k=1,2,...,h,(v)} be as in the Bratteli-Vershik model ([HPS, Theorem 4.2])
for (X,a). Let R(P,) be the roof set of P,, defined by R(Ppn) = U,ey, X(n,v, hn(v)). We can
agsume that the roof sets satisty

ﬂ R(Pn) = {z}.

neN

Let A, be the subalgebra of the crossed product C*-algebra A such that A, is generated
by C(X x T x T) and u - Co((X\R(P,)) x T x T), with u being the implementing unitary element
satisfying ufu* = fo(axRe xRy) for all f € C(X x T x T). Then it is clear that Ay C Ay C ---.



As we can approximate f € Co((X\{z}) x T x T) with
f € Co(X\R(P)) x T x T) = C((X\R(P,)) x T x T),

we have ME(AH, ¢Pn) = Ag with ¢, Ap — Anqy being the canonical embedding.

For C(X\R(Pn) x T x T), it is clear that we have

CUX\R(P.) xTxT)= P H  C(X(nvk) xT?.

veVy 1<k<hn(v)—1

We will show that A, 2 P, cy. Ma, )(C(X(n,v,1)) ® C(T?)).

Let ef ; = Lx(n - 47 Then e}, - e;?,/yj, =0 if v # v’. Note that

v i—7 k—s
€5 €hs = LX) U7 Lx(nwky - U

o i—j+k—s
= 1xX(nwi) * Lx(nwkriogy - 87

v

= 5k;j “Cisr

h{v)

In other words, {e} ;};;Z, is a system of matrix units.

As A, is generated by
{e; ® C(X(n,v,0)®C(T?) :v € Vp,1 < 4,5 < h(v)},

it follows that

An = @B My, (C(X(n,v,1) @ C(T?).
veVy

Let Br = @,ey, Mr,()(C® C(T?)). Then it is clear that B, can be regarded as a

subalgebra of A,,.

As for the canonical embedding ¢, nt1: An — Ans1, consider

a € An 2 @ My, )(C(X(n,v,1)) ® C(T?))
vEVn



such that o = (f ® g) - u*™7 € ef; ® C(X(n,v,1) ® C(T?)), with f € C(X(n,v,7)) = C(X(n,v,1))
and g € C(T?).

Note that the Kakutani-Rokhlin partition of A, 4, is finer than that of A,,. We can write

f= > fok with for € C(X(n+1,vs,k)).
X(n+1,ve,k)CX(n,v,3)

It follows that

¢'n,'n+l(f ®9) = Z fs,k ®g.

X (n+1,vs,k)CX (n,v,7)

Then we have

d’n,nﬁ-l((l) = Z fs,k ® g .ui—j

X (n+1we,k)CX(nw,3)

= > (fok ®9) w7,

X(n+1,vs,k)CX(n,v,i)

WIth D (11 00 k) X () (fs.6 @ g)-u'™7 being an element in Ap 1. It is then clear that ¢, n41(Bp) C

Bt if we regard B, as a subalgebra of A, and B, 41 as a subalgebra of A,4;.

Just abuse notation and use ¢p n41 to denote the canonical embedding from By, to By 41.

Then we have the following commutative diagram:

¢771,n+1 ¢n+1,n+2
Bn Bn-}-l Bn+2 ——
jn jn+1 jﬂ+2
An An+l 5 An+2 ——
§b71,n+1 ¢n+1,n+2

For every a € A, = Um(Ay, ¢nnt1) and every & > 0, there exists a, € Ay such that
la = anl| < /2 if we identity ay, with ¢n co(an) € Az. Without loss of generality, we can assume

that
hn(v)

L
ap = Z Z Z (frw,ig © Ihwin) " €5 4

k=1veVy i,j=1

with frwi; € C(X(n,v,0)) and gi,.,; € C(T?).



Let M = maxe ;. ;{llk v ;||}.- For all k,v,4,j as above, we can find § > 0 such that for

xz,y € X, if dist{z,y) < §, then

IFr(®) = Fravta @ < 53 TV o

According to the Bratteli-Vershik model, (), .y B(Prn) = {z}. We may further require
that for all n € N, every block X(n,v,k) in P, satisfles diam(X (n,v,k)) < 1/n. Then we can

choose N € N such that diam{R(Py)) < 6. Without loss of generality, we can assume that N > n.

In Py, for every X(N,v, k), choose wyoix € X(N,v,k). For k = 1,...,L, v € Vp,

i,7=1,...,h,(v), define

—
fewis = Z Frwi i (WN v k) - Lx (N k)
XN k)CX(nvk)

According to our choice of N, it is clear that || fiv,i,j — fewajll < TALIVATRn)E
For the a, given above, define ay, € A, by
hn(v)

L
an = Z Z Z (fk,v,i,j & gk,v,i,j) -e}’,j.

k=1veVy i,5=1

— 6
| fiewini = Frwigll < S RAN O

it follows that ||a, — an|| < &/2.

—

As frv,i,; is constant on X(N,v', k'), it follows that ¢, nv(an) € By. It is clear that

[6n,n (@n) — all < ¢n.n(@n) —anll + lla - an||
= Ha’; - an” + ||a - an”
<e/2+4¢/2

=E£.

Note that a € A, and € > 0 are arbitrary. It follows that | J,, oy #n,c0(Bn) is dense in A;. In other



words, we have li_lll(Bn,qﬁﬂ,ﬂ_H) > A, As B, = Docv, Mh, ) (C® C(T?)), we conclude that
As = lim @2y Ma, ,(C(T?).

Lemma I1.1.2. Let A; be defined as above. If o x Rg X Ry, is minimal, then Ag is simple.

Proof. This proof is essentially the same as that of Proposition 3.3 (5) in [LM1]. It works like this:

Note that X x T x T is compact and « x R¢ x R, is minimal. It is clear that the positive

orbit (under a X R¢ x Ry) of (z,%1,12) is dense in X x T x T,

The C*-algebra A corresponds to the groupoid C*-algebra associated with the equivalence

relation

R = {((z,t1,t2), (@ X Re x Rp)*(x,t1,12)): (z,t1,82) € X x T x T},

and the C*-subalgebra A, corresponds to the groupoid C*-algebra associated with the equivalence

relation

R =R\ {(ax Re x Ry)¥ (2,11, 1)), (@ x Re x Ry) (2,81, 2)):

(t1,t) ET X T, k>0,l<0ork <0, >0}

As the positive orbit of any (z,t1,%s) is dense in X x T x T, it follows that each equivalence
class of R, is dense in X x T x T. According to [Renault, Proposition 4.6], this is equivalent to

the simplicity of A,.

1I.2 K-THEORY OF A,

In this section, we study the K-theory of A, using its direct limit structure.
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Lemma I1.2.1. The group Ko(C(T?)) is order isomorphic to Z2 with the unit element identified
with (1,0) and the positive cone D being {(m,n): m > 0} U {(0,0)}, and the group K,(C(T?)) is

isomorphic to Z°.

Proof. By the Kiinneth Theorem, it follows that
Ko(C(T?) 2 Ko(C(T)) ® Ko(C(T)) €D K1 (C(T)) @ K:(C(T)) = 22,

and

K1(C(T?) = Ko(C(T)) ® K1(C(T)) D K1 (C(T)) ® Ko(C(T)) = Z2.

For C(T?), it is known that the order on Ko(C(T?)) is determined by the first copy of Z,
which corresponds to the rank of projections. It follows that Ko(C(T?)); can be identified with

D.

Lemma I1.2.2. There is an isomorphism v: Ko(C(X x T?)) — C(X,Z?) which sends [1] to the
constant function with value (1,0). Furthermore,  maps Ko(C(X x T?))4 onto C(X, D), with D

as defined in Lemma I1.2.1.

Moreover, for a clopen set U of X and a projection n € My(C(T?)) such that [n] €

Ko(C(T?)) corresponds to (a,b) as in Lemma IL.2.1, «([diag(ly,...,1y) 1)) = (ly - a, 1y - b).
k

Proof. For D as in Lemma I1.2.1, define
: C(X, D) — (Ko(C(X x T%)))4
by

o= > L2 (tmms 0 =1 (tmm))) - Thmn |
(m,n)eD

dm ,

where 7, , is a projection in My,  (C(T?)) which is identified with (m,n) as in Lemma 1I.2.1.
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If we can show that o is one-to-one, preserves addition, and maps the constant function
with value (1,0) to [1o(x xT2)], then we can extend ¢ to a group isomorphism from C(X,Z?) to

Ko(C(X x T2)).

It is easy to check that ¢({1,0)) = [lo(xxt2)|. From the definition, it follows that ¢

preserves addition. We just need to show that ¢ is one-to-one.
Injectivity of ¢:

If o(f) = 0 for some f € C(X, D), then

o @ rmmys o Lp=i(Gmmy) T | =0
(m,n)eD

[ T

in (Ko(C(X x T2)))4. As

Ko(C(X xT*) = P Ko(C(f((myn)) x T?)),

(mn)eD

we get that

[(1,7”“1((m.n))a ey 1f—1((m,n))) : nm,n] =01in KO(C(f—l((m’n)) X Tz)) for all (man) €D.

d'f".,'n

That is, there exists k € N such that

(L= (s -+ L1 () * T €D dBG(Lo(f=1 ((man)) xT2)5 -+ > La (51 (mm)) xT))
d7”«,7l k

is Murray-von Neumann equivalent to diag(le(s—1¢om,n))xT2)s - - - » Lo(f =1 ((m.n))xT2) )+

v

k

Let s € Mg, ,+x(f7((m,n))xT?) be the partial isometry corresponding to the Murray-von
Neumann equivalence above. Choose z € f~!({(m,n)). Then s(z) can be regarded as an element

in My, ,+1(T?) that gives a Murray-von Neumann equivalence between

N D diag(lc(qu)), . 1C(’JI‘2)) and diag(lC(Tz)), Cee 10(”1?2))-
k k
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It then follows that 7,, » = 0, which proves injectivity.

Surjectivity of :

For every projection p € My, (C(X x T?)), we can find a partition X = Uzﬂil X; such that
llp(z) —p(y)|| < 1 for all z,y € X;. Choose z; € X, fori =1,..., M, and identify Muo(C(X x T?))
with C(X, Moo (C(T?))). Define p’ € C(X, Mo(C(T?))) by o’ |x, = p(z:). It is clear that we can

regard p' | x, as an element in My, (C(T?)).
Use (a4, b;) to denote the corresponding element in Ko(C(T?)) as identified in Lemma

- (@i, b;). Then we can check that o(f) = [p/] in (Ko(C(X x T?)))4.

i

I1.2.1 and let f = Zi\il 1x,

As [p] = [p'], we have proved surjectivity of ¢.

As ¢ is unital, one-to-one and preserves addition, we can extend it to an ordered group

isomorphism ¢: C(X,Z?%) — Ko(C(X x T?)). Let ¢ = 7!, and we have finished the proof.

Lemma 11.2.3. There is an isomorphism

Yot An — @ My, ) (C(X(n,v,1)) ® C(T?)),
’UEVn

such that for every clopen set U in X,

Yo(loxre) = €D diag (1x(nw, vy -+ Lx(rwnwnv) -
veEV,

Proof. The proof is essentially the same as that of [Putnam, Lemma 3.1]. It can also be obtained

as a K-theory version of part of the proof of Lemma II.1.1.
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Lemma 11.2.4. There is a group isomorphism

¢: P C(X(n,v,1),2%) — C(X,2%) /{f — foa': fly, =0}

veV,

such that
¢ (- fiva)) = D Mxmn) « fol

veV,

f07“(f1’---,~f|v,,| @C (n,v, )

veVy,
Furthermore, if we define D to be

{(m,n) € Z%: m > 0} U {(0,0)},

and if we define the positive cone of @ C(X(n,v,1),Z%) to be @ C(X(n,v,1),D) and the
vEVR vEV,
positive cone of C(X,22)/{f — foa™t: fly, =0} to be C(X,D)/{f — foa~t: fly, =0}, then

both ¢ and ¢~ are order preserving.

Proof. For (f1,.. ., fiv,)) € Byev, C (X(n,v,1),72), define

¢ (fry s fivay) = Z [Lx(n,0,1) * fol-
VEV,

Injectivity of ¢:

Suppose
(fl,...,f|v" @C nvl ZQ)

VeV,

and that ¢((f1,..., fiv,|)) = 0. That is, there exists H € C(X,Z?) with H |y, = 0 such that

[Vl
Z:fvzH—Hooz_l

v=1

It follows that

h(v) [Val h(v)
Z]-X(n,v,k) : va Zl}‘("“k) H Hoa™ )
k=1 v=1
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As H

Y, — 0)
h(v) h(v)

Z Ixmuwk) | - (Hoa™!) = Z Ix(nwky - H | oo™
k=1 k=1

It then follows that

h{v) h(v) h(v)
S x| (H=Hoa™) = { Y Ixmer) H| - D Ixpk H ) oo™
k=1 k=1 k=1
h(v) h{v)
Use H, to denote Z 1x(nwk) | - H. It is clear that H, is supported on u X(n,v, k).
k=1 k=1

Now we have f, = H, — H,oa™!. As f, is supported on X(n,v, 1), we get
H,—~H,oa '=0
on X(n,v, k) for 2 < k < h(v), which implies that for all z € X (n,v,1),
H(z) = Hy(a(z)) = - - = H, (ah(“)_l(z)> .

As o"W~1(z) € Yy, it follows that H,(a")~}(z)) = 0. Now we can conclude that H, = 0. It is

then clear that f, = 0.

Applying the process to all v = 1,...,h(v), we get H = 0. It follows that f; = 0 for

i=1,...,|Va|, which proves the injectivity of ¢.

Surjectivity of ¢:

For every g € C(X,Z?%), we need to find

(frs-o s fivap) € @ C(X(n,v,1),Z%)

veEV,

such that

¢<(f15"'1f|vn\)>_g:h_hoa_l

for some h € C(X,7?) satisfying h |y, = 0.
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Write g as
h(v)

g=1-g= Z Z Lx(nuk) - -

veV, k=1
For every k with 2 < k < h(v), consider (1x(n k) - 9) 0 @ It is easy to check that

(1X(n.v,k') : 9) SNed |Y” =0 and
1X(n,v,k) g -+ ((1X(n,v,k) ' g) o — (1X(n,’u,k) . g) oQ o a_l)

is supported on X (n,v,k—1).

By repeating this process, we get s € C(X,Z?) such that Ixmuk) g+ (s —s0a)is

supported on 1x (n,0,1)-

Apply the process for all 1xm k) - g With v € V, and 1 < k& < A(v). We can find
H € C(X,%?) such that g + (H — H o a™') is supported on o(R(Py)) = Py, X(n,v,1).
According to the definition, if we set f, = lxp 1) (9 + (H — Ho a™1)), then ¢ will map
(fro- o fiva)) to g

Positivity of ¢:

As
¢ (1o fya)) = D Ixmw) * fos

veV,

for

(fl,...,f|vn|) S @ C(X(?’L,’l), 1),Z2),

vEV,
if the range of each f; is in the positive cone D, it is clear that 37 cy 1x(nw,1) - fo € C(X, D).

Thus ¢ is order preserving,.
Positivity of ¢!

For f € C(X, D), we will show that if there is

(f1o 5 fiva) € @ C(X(n,v,1),D)

veVy
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such that
d(f1, s fiva) = ],

then f, € C(X(n,v,1) for all 1 < v < |V,].

In fact, such an element (f1,...,fjv,|) can be constructed from f as in the proof of
surjectivity of ¢. The fact that f € C(X, D) then implies that for all v with 1 < v < |V, the

image fr is in D, which finishes the proof.

Lemma 11.2.5. There is an order isomorphism
pnt Ko(An) — C(X,Z)/{f = foa™ i [ € C(X,2%), [ |y, =0}
with the unit element and positive cone of
CX,Z)/{f ~foa™": f€C(X,2%, [y, =0}
being [(1x,0)] and

{lg) € C(X,Z%)/{f — foa™': f € C(X,Z%), [y, = 0}:

Vz € X, g(z) = (0,0) or g(x) = (a,b) with a > 0}.

For a clopen subset U of X and n € My(C(T?)) such that [n] € Ko(C(T?)) corresponds to (a,b) as

in Lemma I1.2.1, p,([diag(ly, ..., 1y)n]) is exactly [(1y-a, 1y-b)] with 1y denoting the continuous
N’

k
function from X to Z that is 1 on U and 0 otherwise.

Proof. Consider the isomorphism

i An — €D My, (C(X(n,v,1)) ® C(T?))

vEVn
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as in Lemma I1.2.3. It is clear that

(n)sot Ko(An) — Ko (@ My, (C(X(n,0,1))® C (T2))>

’UEVn
is an order isomorphism.

We know that

Ko <@ My, () (C(X (n,v,1) ®C<T2>>> = (P Ko (My,0)(C(X (n,,1) ® C(T?),

vEV, veEV,

and use

ha: Ko (@ My, ()(C(X(n,v,1)) ®C(']I‘2))> — @ K, (Mhn(v)(C(X(n,v,l)) ®C(']I‘2)))

veVy vEV,
to denote the order isomorphism.

There are natural order isomorphisms
lnwt KoM, @) (C(X(n,v,1)) ® C(T?))) — Ko(C(X(n,v,1)) @ C(T?)).
By Lemma 11.2.2, we can find order isomorphisms
Sn Ko(C(X(n,v,1)) ® C(T?)) — C(X(n,v,1),7?)

such that each s, maps [Lo(x nw,1)@c(r?)] to the constant function with value (1,0).

Combining I,, , and sy, for all v, we get an order isomorphism

p: @D Ko(My, 0y (C(X(n,v,1)) ® C(T2)) — P C(X(n,v,1),2%)
vEV, veV,

with the positive cone of @, C(X(n,v, 1),Z2) being P,y C(X(n,v,1), D) (D as defined in

Lemma 11.2.1). Note that ¢ is not unital.



According to Lemma 11.2.4, there is an order isomorphism

b @ C(X(n,v,1),2%) - C(X,2)/{f - foa™": fy, =0}

vEVL

Let

Pn = Yo po P © (')’n)*O

Then p, is a group isomorphism from Ko(A,) to
CX,ZH/{f - foa™t: f€C(X, 2%, f v, =0}

because ¥, ¢, hy and (vn)«0 are all group isomorphisms.

According to Lemma [1.2.3,

Yn(la,) = EB diag(1x (nw,1) - -+ Lx (n,0,h()))-
‘UEVn

Thus

(vn)xo([14,]) Z Z [1X(H,U»k)] ’

v€EVn 1<k<h(v)

It is then clear that

P ((¥n)s0([14,]) = Z [1xX(n0k)] - Z [1x (n,0,h(60) |

1<k<h(1) 1<k<h([Val)

Note that [1x (0.8 = [Lx(n,un] in Ko(Mn(X(n,v,1))). It follows that

o (hl(m)uo(Ta ) =2 D Dxmonh-- O,  [Ixmonse]

1<k<h(1) 1<k<Lh(Vnl)

Z h ]-X(nvl)]

veV,
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According to the definition of ¢ as stated in Lemma I1.2.4, we get

¥ (P (hn(7m)sol[14,]))) = ¥ (Z h(v) - [1x(n,v,1>]> = > 1

veEV, VEVL

with f, € C(X,Z?) satisfying f, ‘X(n,v,l) = h(v) and f, |X\X(nm,1) = 0.

Let

H = Z Z 1X(n,v,k) ' (I'L(’U) - ﬂ)'

vEVL 1<k<h(v)—1

Then it is clear that H

y, =0 and

Hyo akl = Z Z 1X(n,v,k) : (/’L(U) ~k+ 1)

VEVy 2<k<h(v)

It is easy to check that

H-Hoa™'=)_ > Ixmwk - (=1 | F1xmen - (h(v) = 1)

vEV), 2<k<h(v)

In C(X,Z?), it is easy to check that (3, fo) —1x = H— Hoa™". In other words, we
have

Do (hal(¥)uo((1a,00)) = D 1l = [1x]

vEV,

which implies that p,, is unital.
To show that p,, is order preserving, we just need to show that ¥, ¢, by, and (7, ).0 are all
order preserving.

It is clear that h, and (v,),, are order preserving. According to Lemma I1.2.4, ¢ is also

order preserving. We just need to show that ¢ is order preserving.

Note that ¢ = @uevn(sn,v 0lpy). We just need to show that each s, 0l is order
preserving. In fact, {,, is order preserving and sy, is an order isomorphism. It follows that

Sn,v © ln,v is order preserving. Thus ¢ is order preserving.

Now we will show that p, is order isomorphism. In fact, we just need to show that for
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every (a,b) € {(m,n): m > 0,n € Z} U {0,0} and every clopen subset U of X, if we regard

(1y - a, 1y - b) as a function in C(X,Z?) defined by

(a,b) ifzelU
(0,0) ifegU

(1 -a,1y - b)(z) =

and we define
m: C(X,2%) — C(X, Z*)/{f - foa™': f € C(X,Z%), f |y, =0}

to be the natural quotient map, then #((1y - ¢, 1y - b)) is in the image of pr (Ko(Ap)4).

For a clopen subset U of X and 7 € My (C(T?)) such that [] € Ko(T?) corresponds to

the (a,b) above (see Lemma I1.2.1), we have
pn(ldiag(lu, ... 1y) - n) = (d 0 p o by o (yn)w0)([diag(lu, -, 1u) 7).
S— —_—

According to Lemma 11.2.3,

(hn o (W’n)*o)([diag(lUv oo 1y) 77])

= (hn © (Vn) o) Z [diag(1x (nw,k)nUs - - - Lx (nw,k)n0) * 1)
V€V, 1<k<h(v) g

:( Z [1X(n,v,k’)ﬁU'n])

1<k<h(v)

v
k

veVy

Then

(90 ohyo (’Yn)*o)([diag(lUv te 1U) : 77])
k

:( Z (1a—<k—1>(X(n,v,k)nU)'a»1a~<k~”(X(n,v,k)nU)'b))

1<k<h(v) vevs

which is an element of €D, ¢y, C(X(n,v, 1),7Z%).
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According to the definition of ¢ as in Lemma I1.2.4, it follows that

(¢ 0 0 hy o (Y )x0)([diag(ly, ..., 1) - "7]) = ()((pohyo (771)*0)([diag(1U, oo ly)en))

k k
= Z 1X(n,v,l) 'fv
veV,
with
= X latnmemnny & D la-t=vix(numno) b
1<k<h(v) 1<k<h(v)

Note that for all k£ with 1 <k < h(v) — 1, we have 1y (4 1) |y, = 0. Also, we can check

that

Lx (o, 000U — Lx(nwk)nt © @71 = Lx (k) — La(x (n,06)00)-

It follows that
[lX(Tz,v‘k)ﬂUJ = []‘a(X(n.ng)ﬂU)] in C(X,Z)/{f - f © a_l: f € C(XaZ))f IYn = O}

for k =1...., h(v). We then get that in C(X,Z)/{f — fea™!: f € C(X,Z),f|y, =0},

Z lo-t-0(X(nw )y | = Z 1 (nv.0)NU
1<k<h () 1<k<h(v)

It then follows that

{Z va = Z (Lx(nw)n0 * @ Lx (nwyne - b)

VEV, veVy,
1<k<h(v)

= ([lu] - a,[ly] - b)

in C(X,ZQ)/{f —foa™l: f€C(X,Z%,fly, =0}.
We have proved that p,([diag(ly,..., 1) 1]) = 7((1y - a, 1y - b)). It then follows that p,
S’

k
is an order isomorphism, which finishes the proof.
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Corollary 11.2.6. Let p be a projection in M (Ay). Then there exists p' € Moo(C(X x T?)) C
Moo (Ay) such that [p] = [p'] in Ko(A4y).

Proof. According to Lemma I1.2.5, we have an isomorphisim
pn: Ko(Ay) = C(X.ZY)/{f ~ foa™": f € C(X,2%), f |y, =0}

Let p,([pl) = lg] for some g € C(X,Z?). Without loss of generality, we can assume that there is a
partition of X as X = |_|f\’:1 X; such that this partition is finer than P, and g|x, is constant for

i=1,...,N.

As [p] is in (Ko(An))+ and py, is an order isomorphism, it follows that [g] is in the positive
cone (defined in the statement of Lemma 11.2.4). For as g above with p,([p]) = [g], we can assume

that on any given X;, g|x, is either (0,0) or (a;,b;) € Z* with a; > 0.

According to Lemma I1.2.1, there exist projections n; € My, (C(T?)) such that [n;] in
Ko(C(T?)) can be identified with (as, b;).

Let

p' =diag | diag(lx,,...,1x,) " 71,...,diag(1x,,. .-, 1xy) - N
d(1) d(N)

Then it is clear that p’ € My (C(X x T?)).

According to Lemma I1.2.5, p,([p']) = [g¢], so that p,([P']) = pa([p]). As p, is an

isomorphism (by Lemma I1.2.5 again), it follows that [p] = [p'] in Ko(Ax).

Lemma I1.2.7. Let j,: C(X x T?) — A,, be the canonical embedding, and let v and p,, be as in
Lemma [1.2.2 and Lemma I12.5. Let (jn)w0: Ko(C(X x T?)) — Ko(A,) be the induced map on
Ky and let

T C(X,Z2) > C(X,Z2)/{f — foa™l: f € C(X,2%), f |y, =0}
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be the canonical quotient map. Then the follow diagram commutes:

Ko (C(X x T?) : C(X,Z?)

(jn)*()l] l"r"

Ko(An) T C(X,Z)/{f — foa™l: f €C(X,22), fly, =0}

Proof. As Ko(C(X x Z?)) is generated by its positive cone (Ko(C(X x Z?)))4, we just need to

show that m, 0t = py, 0 (Jn)«o on (Ko(C(X x Z2))).

For every projection p € My, (C(X x T?)), according to the proof of surjectivity of ¢
in Lemma I1.2.2, there exist a partition X = Ui\il X; and projections 1; € My, (C(T?)) for i =

1,..., M such that

M
[p] = ;[(1%-'-,1&.) ).

d;

According to Lemma I1.2.1, n; can be identified with (a;,b;) € D. By Lemma I1.2.2, we
get u([pl) = 3055 (1x, - au, Lx, - bo).

By Lemma I1.2.5,

M
pn((jn)*O([p])) = pn((jn)*O(Z[(le ceey 1X¢) ’ 771]))
e ———

d;

M
= > I, - as L, - i)

It is then clear that (mp o ¢)([p]) = (pn © (Jn)+0)([p]). Since p is arbitrary, we have finished the

proof.

Corollary I1.2.8. Let p, g be projections in Meo(C(X x T?)) C My (An) such that «([p]) —¢([q]) =
h—hoa ! for some h € C(X,Z2) satisfying hly, = 0, with v as in Lemma I[2.2. Then

(Gr)e0([p]) = (n)so([g]) in Ko(Ay) with j, as in Lemma I1.2.7.

Proof. 'This follows directly from Lemma I1.2.7.
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Lemma I1.2.9. For A, as defined in the beginning of this chapter,

Ki(A:) 2 C(X,Z%)/{f — foa™': f € C(X,Z%)},

and

Ko(As)s = C(X, D)/{f — foa™l: f € C(X,Z2)},
with D defined to be {(a,b) € Z*: a > 0,b € Z} U {(0,0)}.

Proof. From Lemma I1.2.5, we know that

Ki(A) =2 C(X,Z)/{f — foa': f € C(X,Z% and f|y, =0}

As A4, = lim An, we get K;(Ay) = @Ki(An). Note that the map
(Jnpt1)xit Ki(An) = Ki(Any1)
satisfies (Jn,nr1)ws([f])) = [f] for all f € C(X,Z?*). We can conclude that
Ki(A) = C(X, 23/ {f — foa™': f € C(X,Z* and f|y, =0 for some n € N}.
As (W0, Y, = {z}, it follows that
{f € C(X,Z%: fly, =0 for some n € N} = {f € C(X,Z%: f(z) =0}
Then we have

Ki(A.) = C(X,Z2)/{f - foa™": f € C(X,Z2) and f(z) = 0}.
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For every g € C(X,Z?), define go = g — g(x). It is clear that

g€ {f € C(X,7% and f(z) = 0} and g(z) = 0.

Note that go — gooa™! =g —goa™!. It follows that

K'i(A!E) = C(X’ Zz)/{f - f © aﬁl: f € C(X,Zz)}'

Let jnoc: An — Az be the embedding of A, into A;. Then
Ko(Az)4 = U (Iny00) w0 (Eo(An)+).
According to Lemma I1.2.5,
Ko(An)y 2 C(X,D)/{f - foa™t: f€ C(X,2% and f|y, = 0}.
Similarly, using the fact that
{f € C(X,2%): fly, =0 for some n € N} = {f € C(X,Z?): f(z) =0},
we can conclude that

Ko(Az)+ 2 C(X,D)/{f = foa™: f € C(X,Z% and f(z) = 0}.

{f=foa™: fe€C(X,Z% and f(z) =0} ={f — foa™': fe C(X, 2%},

we get

Ko(As)+ = C(X, D)/{f - foa™: f € C(X,Z9)}.
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Corollary I1.2.10. For A, as in Definition 1.2.1, K;(A,) is torsion free fori =10, 1.

Proof. According to Lemma I1.2.9, we just need to show that C(X,Z?)/{f— foa~!: f € C(X,Z%)}

is torsion free.
A purely algebraic proof is given like this:

Suppose we have g € C(X,Z?) and n € Z \ {0} such that
[ng] = 0in C(X,Z%)/{f — foa™': f e C(X,Z%)}.

If we can show that [g] = 0, then we are done. In other words, we need to find f € C(X,Z?) such

that g = f — foa™!

As [ng] = 0, there exists F € C(X,Z?) such that ng = F — Foa™!. If F(z) € nZ? for all

F F F
z, just divide both sides by n. Then we get g = (;;) — <7{> oa~! with — e C(X,Z?).
n

Fix 2o € X, and define F = F — F(zg). It is clear that F(z¢) =0. As F — Foa™! = ng,

we can easily check that F-Foa!= ng. 1t then follows that

Fla(wo)) = Flzo) + nglalwo)) = 0+ ng(al=o)) € nZ2,

F(a*(w0)) = F(a(z0)) + ng(a®(z0)) € nZ?,

So for every z € Orbitz(xg), we get F(z) € nZ?. Note that F is continuous on X and Orbitz(zo)

is dense in X. It follows directly that f’(m) € nZ? for all x € X, thus finishing the proof.

Corollary I1.2.11. For A, as in Definition 1.2.1, TR(A;) < 1.

Proof. From Lemma I1.1.1, we know that A, is a AH algebra with no dimension growth. By

Lemma I1.1.2, A, is simple. According to Lemma 11.2.9, K;(A;) is torsion free.

As A, is a simple AH algebra with no dimension growth, it follows that TR(A,) < 1. O



27

CHAPTER III

THE TRACIAL RANK OF THE CROSSED PRODUCT C*-ALGEBRA A

III.1 THE GENERAL CASE

We start by showing that for the natural embedding j: A, — A, the induced

homomorphisms (7.);: K;(Az) — K;(A) are injective for i = 0, 1.

Lemma II1.1.1. Let A be C*(Z, X x T x T,a x R¢ X Ryy) and let A, be as in Definition 12.1.
Let j: Ay — A be the canonical embedding. Then j.q 1s an injective order homomorphism from

Ko(Az) to Ko(A).

Proof. It is clear that j.o will induce an order homomorphism from Ko(A,) to Kg(A) and j.o

maps [La, ] to [14].

To show that j.¢ is injective, we need to show that whenever p, ¢ € My,(A,) are projections
such that j.o{[p]) = jxo([g]) in Ko(A), we have [p] = [¢] in Kq(Az). For projections p,q € My (Ay),
we can find n € N and projections e, f € My (A,) such that [e] = [p| and [f] = [¢] in Ko(A,).
According to Corollary I1.2.6, we can find €/, f/ € My (C(X xT?)) such that [¢/] = [¢] and [f'] = |f]
in Ko(Ar). We need to show that if j.o([p]) = jxo{[¢]) in Ko(A), then [p] = [g] in Ko(A:). In fact,

if 7.0([p] — [g]) = 0, we have j.o([p]) = jxo([g]), which implies that j.«o([e’]} = juo([f']) in Ko(A).

The Pimsner-Voiculescu six-term exact sequence in our situation reads as follows:
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Ko(C(X x T2)) —297%0 o g (C(X x T?)) — 2 Ko(A)
Ki(A) L R(C(X % T?)) —2 R (O(X x T2))

As juo([ph]) = J«0([gL]), by the exact sequence above, [p,] — [g,] is in the image of (id.o —
a.p). That is, there exists z in Ko(C(X x T?)) such that [p},] — [¢h] = = — cuo(z). Apply ¢ as
defined in Lemma I1.2.2 on both sides. We get

u([pn]) = ellgn)) = o(z) — 1ewo(x)) in C(X,2%).

Note that t{a.o(z)) = t(z) o a. We get «([p]) — t([gh]) = (—=i(z) o @) — (—i(z) o) o ™!, We can
choose N € N such that for all k > N, (—u(z) o @) restricted to Y; will be a constant function, say
c € Z2. 1t is clear that

u([p]) = ellapl) = (~u(z) oo — ) — (—uz) o~ c) o™

Choose m € N such that m > max(n, N). Then (—u«(z) o —¢)|y,, = 0. According to

Corollary 11.2.8, we have (4 )+0([p),]) = (Jm)0([g]) With j,, as in Lemma I1.2.7.

We have shown that [p},] = [g),] in Ko(Am). Note that [p)] = [p,] and [g),] = [gn] In
Ky(A,) and m > n. It follows that [p),] = [p,] and [g,] = [¢,] in Ko(A;,). We then have that
[Prn] = [gn] In Ko(As), so that [p,] = [g,] in Ko(Ag).

Note that [p,] = [p] and [g,] = [¢] in Ko(A;). It then follows that [p] = [q] in Ko(As),

which finishes the proof.

Lemma II1.1.2. Let A be C*(Z,X x T x T,a x R¢ x Ry)) and let A, be as in Definition 1.2.1.
Let j: Ay — A be the canonical embedding. Then j. is an injective homomorphism from Ki(A;z)

to K1 (A).



29

Proof. The proof is similar to the proof of Lemma III1.1.1.

For any two unitaries z,y € A, such that j.i([z]) = F«1([y]) in K1(A), we need to show

that [z] = [y]. For z, y as above, we can find n € N and z’,y’ € My (A,) such that {z] = [z} and
Yl = [y'] in K1(Ag).

From Lemma I1.2.3, we get the structure of A,,, which then implies the fact that
Ki(An) 2 C(X,Z)/{f - foa™": f € C(X,Z%) and fly, =0}.

Similar to the analysis of the Pimsner-Voiculescu six-term exact sequence as in the proof of Lemma
II1.1.1, we get [z'] = [¢] in K1 (An) for m large enough. It then follows that [z'] = [y'] in K, (A4,),

which implies that [x] = [y] in K1(A;).

The following result is a known fact, and it is used later to show approximate unitary

equivalence.

Lemma II1.1.3. Let A be an infinite dimensional simple unital AF algebra and let CU(A) be as
in Section 1.2. Then U(A) = CU(A).
Proof. For every unitary u € A and every £ > 0, we will show that dist(u, CU(A)) < e.

As A is unital and infinite dimensional, we can assume that A = h—H}A" with each A,

being a finite dimensional C*-algebra and each map jn nt1: An — Ang1 being unital. Write

3n
A = P M., (C)
k=1

with dpj) < dpjp <00 S dpgs,,-
Let d), = min{dn.s,, .. dn;s. }. As A is simple, we have lim,_, d], = cc.

For u and ¢ as given above, we can choose n large enough such that d, > 2?" and there exists

v € U(Ap) satisfying ||u — v|| < /2. Let mp;x be the canonical projection from A, to Mg, , (C).
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It is known that for any w € U(A), we have w € CU(A,) if and only if det(my,(w)) = 1 for

=1,...,s,. Without loss of generality, we can assume that
7r77';k(u'n) = diag()\k’l, ] )\k:dn;k)7 Wlth |)\k>dn:i| = 1

Choose Ly such that —7 < Ly < 7 and det{m,(un)) = e*l'*. For k = 1,..., sy, define

_iL/dn;k _iL/d'n.;k)
) .

v}, = diag(Ak,1 - e e Myt €

Let v = diag(v1, ..., v ). It is then clear that ||u, —uy|| < 7/d),. It is easy to check that

det(mps, (v)) =1 for all k = 1,..., s,, which then implies that ' € CU(A,) C CU(A).

Note that d}, > 2Z. We have

dist(u, CU(A)) < lju — /||
< uw=vl + flv— 2|
<&/2+¢€/2

= E&.

As e can be chosen to be arbitrarily small, it follows that v € CU(A).

We will need the fact that a cut-down of the crossed product C*-algebra by a projection
in C(X) is similar to the original crossed product C*-algebra, and can be regarded as a crossed

product C*-algebra of the induced action. Some definitions and facts will be given here.

Let (X x T x T,a x Rg x R,)) be a minimal topological dynamical system as defined in
Section 1.2. Let D be a clopen subset of X, and let € D. For simplicity, we use ¢ to denote

a x Re x Ry,

Define 3: D x Tx T — D x T x T by &((y, t1,t2)) = ¢ @ ((y,t1,t2)), where f(z) is the
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first return time function defined by

f(z) =min{n € N: n > 0,¢"(z) € U}.

As ¢ is minimal on X x T x T, for every z € X, the orbit of z under ¢ is dense in X. It
then follows that the intersection of this orbit with D is dense in D, which implies that ¢ is also
minimal on D x T x T. As the composition of rotations on the circle is still a rotation on the circle,
we can find maps &,7: D — T such that § = & x Rg x Ry with &(z) = o/ @ (z) for f as defined

above.

We claim that ;5 and 7] are both continuous functions. In fact, as D is clopen, we have

that f is continuous, which then implies that gand 7] are continuous.

As (D x T x T, @) is a minimal dynamical system, the corresponding crossed product
C*-algebra C*(Z,D x T x T, @) is simple. Use u to denote the implementing unitary in C*(Z, D x
T xT,&).

Define A, to be the subalgebra of C*(Z, D x T x T, $) generated by C(D x T x T) and
- Co({D\{z}) x T x T).

The lemma below shows that the cut down of the original crossed product C*-algebra is

isomorphic to the crossed product C*-algebra of the induced homeomorphism.

Lemma II1.1.4. Let ¢ and ¢ be defined as above. There is a C*-algebra isomorphism from

C*(Z,DxTxT,@) to lpxrxt - A lpxTxT-

Proof. Let f: D — N be the first return time function. As D is clopen, f is continuous. As X
is compact and D is closed in X, D is also compact. Continuity of f then implies that f(D) is a
compact set, that is, a finite subset of N. Write f(D) = {ki1,...,kn} with N, k1,..., kny € N and

set D, = f_l(k‘i).
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N .
In Ipxrxtr A 1DxTxT, let w = Zi:l 1D, xTxT - uwk. Then we have

*

N N
* 1 ki 1 ki
ww = D;xTxT" U : D;xTxT * U
i=1 =1
N N
= 1 s kil
= D;xTxT U : U DjxTxT
j=1

i=1

It

ki, —k;
1o, xrxr v - u” " 1lp, xTxT

1

I
4M2

i

o,

J

ki—k;
Ip,xrst - w™ ™+ 1p,xrxT
1

-
S
Il

I
;:MZ

].D,‘._X'LT‘X’]]‘ . (].Djx’]]‘x'ﬂ‘ o (a X Rg X Rn)ki_kj) 'Uki_kj.

i
ﬁMz

2
i
X

We need the following claim to get that ww™ = 1p.

Claim: For D;, k; as above,

1Dr,;><TXT 7: :.7

1, x1xT * (1p,xTxT © (@ X Rg x Ry)*i7 ko) = -
0 i# ]

Proof of claim:
If k; > k;, then o®i=%:(D;) ¢ X \ D. Thus D; Nna*fi=%(D;) = @.

If k; < ki, we claim that D; N akf“k"'-(Dj) = @&. If not, choose s € D; N akf—k"(Dj)‘
We can assume s = a®i~Fi(y) for some y € D;. It is then clear that aki=ki(s) =y € D; C D,

contradicting the fact that the first return time of s (in D;) is ;.
If kj =k, it is clear that 1p, - (1DJ. oaki“kf) = 1p,.

This proves the claim.



Using the claim, we get

N
ww” = Z 1, x1xt * (Lp,x7x7 © (@ X Re x Ryp)Fi7hs) - oFi=hs
hg=1

N
= E 1p,xTxT
i=1

= 1pxTxT-
Now we calculate w*w. It is clear that
N * N
)k —_ 1 ki 1 k;
ww = D;xTxT* U : D;xTxT " U
i=1 i=1
N
—k; K,
u - 1p;xTxT | - Z Ip;xTxT - u™
i=1

I
M=

1

—ky ks
u™  lp Tt LoyxTxT U

I
M= <

1

g
<
i

—k, k,
u " lp,xTxT U

I
™=

~.
i
—

1p,xTxT © (@ X Rg x Ry) 7k

|
KMz

.Q
i
-

I
E

1(axRE xRy)ki (D; x TXT)

.
Il
-

|
KMZ

1&(D-,; xTxT)

-
Il
fut

= 1pxTxT-

So far, we have shown that w is a unitary in 1pxrxT A 1pxTxT-

Define a map

ok C*(Z!D x T x Tv (;5) I 1DXT><'JI‘ CA- 1D><’1[‘><’1[‘

Y(f)=fforal f e C(DxTxT) and v(t) = w.

33
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We will check that -y is well-defined and gives the desired isomorphism between C*(Z, D x

Tx T, o) and 1pxrxT A4 Ipxrxr. In fact, for all f € C(D x T x T), we have

V@ ) = y(fo &)

:fo(ﬁﬁl.

We also have

V(@7 fu) = y(@") - (f) (@)

—w* fw
N * N N

= Zle,ukj .(f.ZlDi>.(ZlDl_ukz)
j=1 i=1 =1

N
= Z ki 1p, . f-1p, - 1p, -u¥
i, k=1

N
Y owTF e (f1p,) U
i=1

:fo@’l,

which then implies that v is really a homomorphism.

To show that v is surjective, we will show that for every g € C(X x T x T) and n € N,

1pxtxt - (gu™) - 1pxTxT I8 in the image of v. Note that

1pxrxT  (9u™)  1pxtxT = (IpxTxT - 9) - (¥" - 1pxTxT)

= (1pxTxT " 9 La=n(DyxTxT) " 4"

Without loss of generality, we assume that

DNna~"™(D) + @.

Note that there is s with 1 < s < N such that DNa~"(D) = Ds, n = k, and D; is exactly f~(n).
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It follows that

Ipxrxr - (gu™) I1pxtxT = (9 1D, xTXT) - 1"

= (g 1p,xTxT) - (1D, xTxT - u").

It is clear that we can identify g 1p, xrxr with a function in C(D x T x T). Note that w =

N k.
> o1 1o, xTxT - u¥. We have

Y9 1p.xrxt) - (@) = v{(g- 1p,xTxT)) - Y(W)

N
= (9 1p,xTxT) - (Z Ip,xTxT* u’“"?)
i=1

k
=g 1p,xTxT - u"™*
n

=g 1p,xTxT " U

= Ipxrxt - (9u") - 1DxTxT.

Then we have proved that -y is surjective. As C*(Z, D xT x T, ¢) is a simple C*-algebra, it follows

that + is a C*-algebra isomorphism.

The idea of topological full group of the Cantor set is needed in the next lemma, and a

definition is given below.

Definition III.1.5. Let X be the Cantor set and let o be a minimal homeomorphism of X. We
say that 8 € Homeo(X) is in the full group of « if B preserves the orbit of a. That is, for any
z € X, B({a™(@) }nez) = {a™(x) }nez. In this case, there exists a unique function n: X — Z such

that B(z) = &™) (2) for all z € X.

We say that 3 € Homeo(X) is in the topological full group of a if the function n above is

continuous.

We use [a] to denote the full group of o, and use [[@]] to denote the topological full group
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Lemma II1.1.6. Let X be the Cantor set and let o be a minimal homeomorphism of X. LetY
and U be two clopen subsets of X such that U C Y. If there exists 8 € [[a]] such that B(U) C Y and

UnNBU) = @, then there exisis v € [[a]] such that v(Y) =Y, vy =B|v and~ IX\Y =id |X\y.

Proof. As f3 € [[a]], there exists a continuous function n,: X — Z such that 8(z) = a™®)(z) for
all z € X. Let U; = Unny'(j) for j € Z. As the sets n7!(4) are mutually disjoint for j € Z, so

are the sets U; . Now we have g(U) = | 2 __ o?(D;).

j=—00

Define v € Homeo(X) by v(z) = o™ (z), with

ni{z) zelU
np(z)=9q —j  zea(U)

0 z¢ U and z ¢ B(U)

AsUNBU) = @, we get Unal(U;) = @ for all j € Z. Thus ny is a well-defined function.
Then we can check that v|y = By as n1 |y = na|v. It is also obvious that v(3(U)) = U and

’)’|y\(ng(U)) = idy\wugwy. It follows that v(Y) =Y. As ny(xz) = 0 when = ¢ Y, we get

o

x\y =id|x\v.

Lemma II1.1.7. Let X be the Cantor set. Let o be a minimal homeomorphism of X, and let
x € X. Let A be the crossed product C*-algebra of the dynamical system (X, «). Use A, to denote
the subalgebra generated by C(X) and u-Co(X\{z}). Let D be a clopen subset of X and letn € N
be such that = ¢ UZ;S a®(D). In Ag, the element s =u-1gn (D) u- lo(py-u-1p is a partial

isometry such that s*s = 1p and ss* = 1on(py.

Proof. We just need to check ss* = 1,n(py, s"s = 1p, and s € A,.
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In fact,

58" = (u-lgn-1(D)-u-lompy-u-1p) - (u-lgn1(D) - u-lgmpy-u-1p)*
—‘:u-lau—x(D)“"Uw 1a(D) 'U‘lD -1D"LL)z< '1a(D) "LL*~~~1an~1(D) cut

= lan(D),
and

§*s = (lean_l(D)---u~1a(D) -u-lD)* ’ (u~1an~1(D)~~u‘ 1Q(D) U 1D)
= 1D-u* . 1a(D) ~u*"'1an—1(D) TR TR 1an_1(D)~‘u- 1a(D) 'u-lp

=1p.

Asx ¢ UZ;S ok(D), it follows that w - 1,4x(py € Az for k=0,...,n — 1. Thus s,s* € 4,.

O

bt 13

Remark: It is easy to check that s =™ 1p and 8* = (u™ - 1p)* =1p-u

Lemma II1.1.8. Let X be the Cantor set and let o be a minimal homeomorphism of X. Let u
be the implementing unitary of the crossed product C*-algebra C*(Z, X, ). For v € [[¢]], there
exist mutually disjoint clopen sets X1, ..., Xy and n1, ..., ny € N such that X = |_|:V:1 X; and
¥(z) = o™ (z) for x € X;. Furthermore, w = lei -u' s o unitary element in C*(Z, X, @)
satisfying w* fw = f oy~ for all f € C(X). <

Proof. As v € [[o]], there exists a continuous function n: X — Z such that y(z) = o™ (z) for all

x € X. As X is compact and n is continuous, the range n(X) must be finite.

Define

w= Z 1yk~uk

ken(X)

where Y, = n~!(k). As n(X) is finite, we have finitely many sets Y. As - is a homeomorphism,

it follows that o (Yy) Nal(Y;) = @ if k # j.
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We will check that ww* =1 and w*w = 1.

Note that

ww* = (Z ly, vuk)(z ly, -uj)*

= Z 1Yk‘“k'u‘j'1yj

k,jEZ
I
= Z 1yk~(1y]0ak J)~u J
k,jEZ
L
= > Iy Laiokqyy w77
k,jEZ

As of(Yi)Na?(Y;) = @ if k # j, it follows that o/~ *(Y;) N Yy = @ if k # j. Then we get

ki
ww* = Z 1Yk . Lﬂ—k(y]_) cytd
k,j€Z

2 1w
k

=1.

As C*(Z, X, «) has stable rank one, it is finite. It then follows that w*w = 1. So far, we have

shown that w is a unitary element in C*(Z, X, e).

1

To show that w* fw = f oy~ we just need to show that for each 7 and for every clopen

set D C Y;, we have w*1pw = 1p oy~ !, As C(X) is generated by

{1p: D is a clopen set of Y; for some i € Z},

that will imply w* fw = foy~! for all f € C(X).
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For a clopen set D C Y;, it is clear that

*

w*lDw: Zlyj-uj '1D' (Zlyk~uk)

j€z kez

Zu'j~1yj-1D-1yk-u

J,kEZL

:u_i-lp-u

=1lpoa "
:1D0’y~1 ’

which finishes the proof.

Some facts about Cantor dynamical systems that will be needed are given below.

Lemma III.1.9. Let (X,a) be a minimal Cantor dynamical system and let z € X. Let U and V
be two clopen subsets of X. Let A be the crossed product C*-algebra of (X, ) and let A, be the
subalgebra generated by C(X) and u - Co(X\{z}), with u being the implementing unitary element
in A satisfying ufu* = foa™! for all f € C(X). If there exists an integer n > 1 such that

a™(U)=V andz ¢ U,_ éa (U), then there exists w € A, such that w1y - w* = ly.

Proof. As z ¢ U,c o @®(U), we can find a Kakutani-Rokhlin partition P of X with respect to «

such that the roof set R(P) is a clopen set containing z and R(P) N Uk ook (U) =@.

Write

with a(X (s,k)) = X (s,k+1) forall k =1,...,h(s) — L and a(R(P)) C | | X(s,1).

1<s<N

Use Ap to denote the subalgebra generated by C(X) and w - Co(X\R(P)). Then

N
Ap 2 (B M) (C(X(s,1))).

s=1
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In other words, there exists a C*-algebra isomorphism

N
p: Ap — @]\/[h(s)(C(X(S, 1)))

§=1

satisfying

S‘o(lX(s,k)) = dla‘g(oz R 707 17 07 = ) € ]V[h(s)(C(Xv 1))

with the k-th diagonal element being 1, k-

It is clear that 1y = 3=, 4 lunx(s,k) 20d v = 3° 4 lynx(sk)- Define Us to be
LI, (UnX(s,k)) and Vi to be | |, (V NX(s,k)). It is clear that 1y = 3> 1y, and 1y = 3", 1y,.
Recall the isomorphism ¢ above. By abuse of notation, we can regard 1y, and 1y, as two diagonal

matrices in M5y (C(Xs 1))

If we can find unitary elements w, € M) (C(X,,1)) such that w, - 1y, - w} = 1y,, by
setting w = wy + - -+ + ws, it is then clear that w is unitary element in EBiV:l My (C(X(s,1)))
such that w- 1y - w* = 1y, which is equivalent to the existence of a unitary in Ap conjugating 1y
to ly. As z € R(P), we can regard Ap as a subalgebra of A;. Then the unitary w in Ap is also

a unitary in A,.

Let w, be a unitary element in M},(,(C(X, 1)) satisfying
W - Ei,i w: = L4141

fori=1,...,h{(s)—1 and

Ws En(s) h(s)Ws = 1,1,

with (E; ;) being the standard system of matrix units. It follows that w, - 1y, - wk = 1y,, which

finishes the proof.

Lemma II1.1.10. Let (X, «) be a minimal Cantor dynamical system and let U,V be two clopen

subsets of X satisfying o™(U) = V for some n € N. Then there exists a partition of U, say
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U= uznzl U; with each U; clopen such that for allk =1,...,n and 4,7 =1,...,m with i # j, we

have o (U;) N o (U;) = @.
Proof. We just need to find a partition of U into U = | ||~ U; such that for every given ¢ with
1 <14 < m, the clopen sets a!(U;),...,a"(U;) are mutually disjoint.

For every y € U, as « is a minimal homeomorphism, we can find a clopen set D, C U
such that a'(Dy),...,a"(D,) are mutually disjoint. As U is compact, there exists a finite subset

of U, say {w1,...,yn}, such that Uiv=1 D,, =U.

As the intersection of two clopen sets is still clopen, without loss of generality, we may

assume that the sets Dy, ,..., Dy, are mutually disjoint. That is, U = | [[*.| D,,. It is then clear
that for any given s with 1 < s < N, a*(D,,) are mutually disjoint for £ = 1,...,n , which finishes
the proof.

O

The lemma below is the strengthened version of Lemma II1.1.9 in the sense that we no

longer require z ¢ Uy, o (U).

Lemma II1.1.11. Let X be the Cantor set and let x € X. Let o be a minimal homeomorphism
of X and let A, be defined as in Lemma I11.1.9. For every n € N and clopen subset U C X, there

exists a unitary element w € A, such that

w = lejuj and w -1y - w* = lany,
JEZ

where Dy for j € Z are mutually disjoint clopen subsets of X satisfying X = |_| Dy, and all but
JEZ

finitely many D; are empty.

Proof. Let d be the metric on X. As (X, a) is a minimal dynamical system, z, a(z),...,a™(x) are

distinct from each other.

Let

R= min  d(ef(z),a?(z)).

1
2 0<i,j<nixtj
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It is clear that R > 0.

For k with 0 < k < n, if x € o®(U), as of(U) is clopen, there exists 7, > 0 such that
the open set {y € X: d(z,y) < 7} is a subset of &*(U). If z ¢ o*(U), as o*(U) is compact,

infy ek dz,y) = d(z,y’) for some y' € o®(U). In this case, let 7, = inf, cor 0y d(z, ).

Let

r=min(R,rg,ry,...,Tn) >0

and define £’ to be
{y € X:d(z,y) <7}

Then E’ is an open subset of X. As the topology of the Cantor set X is generated by clopen sets,

we can find a clopen subset £ C E’ such that z € E.

According to the definition of r, it follows that for k = 0,1,...,n, either E C o*(U) or
E'no*({U) = @. The fact that E C E’ implies that for £ = 0,1,...,n, either E C a*(U) or
Ena®(U)=@.

Let P be a Kakutani-Rokhlin tower such that the roof set is F. As F is the roof set and
E,a(E),...,oa™(E) are mutually disjoint, it follows that the height of each tower in P is greater

than n + 1.

Use X (N, v, s) to denote the clopen subset of the partition P at the v-th tower, with height

s. Then

X = l_l X(n,v,s),

vEV,1<k<h(v)

where h(v) is the height of the v-th tower.

Let Uy =UNX(N,v, k). Then

U = I__I Uv,k~

vEV,1<k<h(v)

For every v, k such that U,  # @, if there exists m € Nsuch that I < m <nand o™ (U, x) C a(E),

then ENa™ Y (U) # @. According to our choice of E, for all s with 1 < s < n, either E C o*(U)
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or ENaof(U) = ©. By assumption, we have o™ (U, ) C «(F) and U, # @. Then
Ena™ N U) > ENd™ Y Upx) = o™ HUpk) # 2,

which implies that E C o™~ 1(U).

Let Ag be the subalgebra of A generated by C(X) and u - Co(X\R(P)), with u being
the implementing unitary of A. We will show that there exists a unitary element w € Ag such

that

szleuj

jez
with all the sets D; for j € Z being mutually disjoint and w - 1y - w* = lgn(yy. As Ag can be
regarded as a subalgebra of A, that is enough to prove the lemma if we can find the unitary w as

described above.

If k+n < h(v), this is the case that = ¢ U?;Ol o’ (U, k). According to Lemma II1.1.7, there
exists a partial isometry sy, € A, such that sj s,k = 1y, , and su,.65; 1 = lan(u, ) = 10U, xpn-

According to the remark after Lemma IIL.1.7, we have s, = u™ - 1y, ,.

If there is a nonempty U, x such that k +n > A(v), then
"I =EYNE D "R U, ) NE # .

According to the construction of E, it follows that E ¢ o™%)~%(U), which then implies that

a~(M=k)(E) ¢ U. Intersecting both sets with

o~ PR (E) = | | X(n,o', () — (h(v) - k),

%



we get,

|| X(n, v/, m(v") = (h(v) = k) = a= BBV N | | X (n,0, A(v') = (h(v) ~ k)

v'eV v eV
cUn I_I X(n,v', h(v") — (h(v) — k))
VeV
C I_I X(n,v', h(v') — (h(v) — k)) ,
veV

which implies that

un || X' h(v') = (h(v) = k) = | | X(n,v',h(v') = (h(v) - k).

v'eV v' eV

In other words,
Uv’,h(v’)f(h(’u)—k) = X(ﬂ,UI, h(’Ul) - (h(’U) — k)) forallve V.
Now we have

a” (F=R(E) < |__| Uyt h(v') = (h(v)—k) = |__| Xt h(w)~ (h(v)—k) -
v eV v'ev

It follows that

a” ( | | Uv/,h(uf)_(h(v)_k)> =a" ( | | Xv’,h(v’)—(h(v)—k)) = || Xun—tm-p)-

v eV v eV v'EeV
By Lemma IT1.1.7, there exists a partial isometry s;, , such that
Su Sk = LU h(v) = (h(v)~k))

and

8y k80 k = Lan(U(w h(v')=(h(v)—k))

= 1y ho ) +n—(h(@)—k)) —h(v') -

44
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Furthermore, according to the remark after Lemma II1.1.7, SL,k € Ag.

For every non-empty U, , either k +n < h(v) or U D o~ *W=*(R(P)). Thus the above

two cases will give a partial isometry s € Ag such that ss* = 1y and s*s = 1ga (.

There exists a partial isometry § € Ag such that
5§ = 1X\U and §°5 = 1X\an(U).

Let w = s 4 5. Then w is a unitary element in Ag satisfying w - 1, - w* = Lgn(yy, which finishes

the proof.

Lemma I11.1.12. Let X be the Cantor set and let x € X. Let D be a clopen subset of X satisfying
r € D, and use X x Ty x Ty to denote the product of the Cantor set and two dimensional torus. Let
A be the crossed product C*-algebra C*(Z, X x Ty x Tq, x Rg x Ryy) and let u be the implementing
unitary of A. Let zy € C(T,,C) be defined by z1(t) = t and let zo € C(Ty,C) be defined by
z9(t) = t. By abuse of notation, we identify z; with idx ® z; ® idy, and 2y with idx ® idy, & 24.

Suppose that there exists M € N such that
||uMzipu_M — zq|| <€ fori=1,2, where p=1p and q = uMpu=M,
Then there erists a partial isometry w € A, (with A, as defined in Lemma [11.1.9) such that

w'w =p, ww* =q and |wzpw* — 24| <e fori=1,2.

Proof. According to Lemma III.1.11, we can find a unitary element w; € A, such that

w) = Z uk )

kez

for some n € C(X,Z) and

wpw = q.
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Let
jo: C(Tl X Tg) — C(D X Tl X Tg)

be defined by jo(f) = 1p ® f for all f € C(T; x Ty). Then it is clear that j is an injective
homomorphism.

As C(D x Ty x Ty) C pA,p (with p = 1p), we hence get the canonical inclusion map

(}50'. C(D X Tl X Tg) g prp

Define
¢1: C(D x Ty x Ty) — pAyp

by
b1(g) = wt - uM cg-u™ w forallge C(D x Ty x Tq).

As g =uMpu—M and p = 1p, it follows that u™ . g u™M € gC(X x T?)q C qA.q.

The fact that wipw? = ¢ implies that wigA,qw; = pA,q. So far, we have shown that
¢1 is really a homomorphism from C(D x T?) to pA,p. As ||¢1(g)]l = |lgll, it is clear that ¢y is

injective.

Define g = ¢g 0 jo and @1 = ¢; 0 Jp. Then g, 1 are two injective homomorphisms from

C(T?) to pA.p.

Let

J:pAzp — pAp

be the canonical embedding.

By Lemmas I11.1.1 and III.1.2,

Jxit Ki(pAzp) — Ki(pAp)

will induce an injective embedding of K;(pA,p) into K;(pAp) for 1 =0, 1.

Cousider {pg).; and (¢1)xi: K(C(T1 x T)) — Ki(pA.p) for i = 0,1. As ¢1(f) =
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wiuM fu=Muy, | it is clear that (g).i(a) = (¢1)wi(a) in K;(pAp) for all a € K,;(T; x Ty). Since we
know that 7.;: K;(pAzp) — Ki(pAp) is injective, it follows that (pg).{a) = (v1)ila) in K;(pA,p)

for all a € K;(T; x Ty).

For a C*-algebra B, recall from Section 1.2 that T(B) denotes the convex set of all tracial

states on B. For all 7 € T(pAp) and g € C(D x T x Tg), it is clear that

Mwl) =1(g).

T(wi‘uMgu_

As T(pAp) = T(pA,p), it follows that for every tracial state v/ € T(pAzp), we have

7! (wi‘uMgu_Mwl) = 1'(g).

It is then clear that for all 7/ € T(pA,p) and f € C(T; x Tq),

™ (po(f)) = 7'(p1(f)).

Recall from Definition 1.2.3 the maps
ol 1" U(C(T1 x T2))/CU(C(Ty x Ty)) — U(pAzp)/CU(pAsp).
We will show that pg(z1 ® 17,) - p1(21 ® 17,) "1 € CU(pA,p). If that is done, then we can show

that wo(ly, ® 22) - w1(l7y, ® 22)7 ' € CU(pA,p) in a similar way.

In fact,

o1(z1® 1) =w} - u  (1p @21 ® 1y,) - u™ - wy

= ’U)I . (1aM(D) ® 21 - 627”3 ® 1’11'2) Wi
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for some s € C(X,R). As w; = Zu"'lnq(k) and wilpw? = uMpu=M we get
kez

P1(21 ®1p,) = wi - (Lam(py @ (21-€7™) ® 1r,) - wy

keZ kez

D Lnmgyxmxrs 4 (Lamp) @ (21 €)@ 11,)) -0+ Lmaywr, x,
k,jEZ

= Z L=ty xTyixTy -8 (Lasr(py ® (21 €™) @ 11,)) - u* - Lum1 gy wryxTs
kEZ

=1p ® (21 ") @ 1r,
for some h € C(X,R). Then we have
wo(z1® 1) -p1(z1®11,) ' =1p @ e ™ ® 1,
with h € C(X,R), and we also have
1p ® e @ 1y, € pAp N pC*(Z, X, a)p.

Note that pA,p N pC*(Z, X, a)p = pC*(Z, X, a),p, which is an infinite dimensional simple AF
algebra by [HPS]. By Lemma III.1.3, it follows that

U(pAzp NpC*(Z, X, a)p) = CU(pAzp N pC*(Z, X, a)p).

Then we get

wo(z1 ® 11,) - p1(z21 ® 1y, )71 €
U (pAzp NpC*(Z, X, 0)p) = CU (pAzp N pC*(Z, X, a)p) C CU(pA;p).

So far, we have shown that cpg(zl ® lr,) = cpti(zl ® 1r,). In the same way, it follows that cpg(lqu ®
2) = ¢ (lr, ® 22).

According to [Linl, Theorem 10.10], we conclude that ¢g and ¢, are approximately
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unitarily equivalent. Then there exists a unitary we € pA,p such that

®, M M

wiu™ z;u~ M
1

wi — wazipwy|| < & — [[uM zipu™™ — zg]|.

Let w = wj;wse. Then

uM zipu™™ — 2| < € for i =1,2.

We can easily check that

W = wywiwiwe = Wowg =P

and

* * *
ww = W)W wy = wWipw, = ¢q,

which finishes the proof.

Lemma TI1.1.13, We write X X T x T as X x Ty x Ty to distinguish the factors. Let A be the
crossed product C*-algebra C*(Z, X x T1 x Tq,a x Re x R;) and let u be the implementing unitary
of A. Letz € X. For any N € N, any € > 0 and any finite subset G C C(X x T x T), we have
a natural number M > N, a clopen neighborhood U of x and a partial isometry w € A, (with A,

defined as in Lemma I11.1.9) satisfying the following:

(1) o= NtHUY, "N, . .., U, a(U),...,aM(U) are mutually disjoint, and u(U) <

e/M for all a-invariant probability measure p,
(2) ww = 1y and ww* = LMy,
(3) v twut € Ay fori=0,1,...,M —1,
(4) lwf — fwl| <€ forall f €G.

Proof. By abuse of notation, we identify f € C(X) with f®idy, ®idr,, g € C(T;) with idx ®g®idr,
and h € C(Ty) with idx ® idy, ® h.
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Without loss of generality, we can assume that

G={f1,-.., fx,21, 22},

where f; € C(X) C C(X x Ty xTy) fori=1,...,k and 2;(t;) = ¢t; for t; € Ty, i = 1, 2.

There exists a neighborhood E of x such that

|filz) = fily)| < e/2

for all y € E and ¢ = 1,...,k. It then follows that for any y;,y2 € E and ¢ such that 1 <1 <k,

we have

|fily1) — fily2)l < e.

As (X, @) is minimal, there exists M > N such that o™ (z) € E. Let
K:max{M,ngl}.

It is clear that the points a=V+1(z),a V*2(z),2,a(z),...,a™ (z) are distinct. Then there exists
a clopen set U containing z such that U C E, a™(U) C E and o~ N+Y(U), a=N12(U), U, a(U),

.., of(U) are disjoint.

As o~ NTYDY, a=NT2(U), U, a(U), . .., o (U) are disjoint, for every a-invariant probability

measure u, we have u(U) < e/M.

By Lemma II1.1.12, there exists a partial isometry w € A, such that w*w = 1y and
ww* = ].QA/I(U).

As U C E and o™ (U) C E, it follows that ||wf; — fiw]| < & for 0 < i < k. The fact that

M

bvipu—l\/l

|| — zq]| < € implies ||lwz; — z;w|| < e for i = 1,2. So far, (4) is checked.

From our construction of U, we have (1). The assertion (2) follows from our construction
of w. Note that U,a(U),...,aM(U) are mutually disjoint. We can check that u™*wu® € A, for

i=0,...,m — 1, thus finishing the proof.
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Definition II1.1.14. Let C be a category of unital separable C*-algebras. A separable simple
C*-algebra A is called C-Popa if for every finite subset F C A and € > 0, there exists a nonzero

projection p € A and a unital subalgebra B of pAp (with 1g = p) such that B € C and
) |, plll <€ foralla e F,

2)p-z-p&. B forallx € F.

Lemma II1.1.15. Let C be a category of unital separable C*-algebras. Let A be a separable simple
C*.algebra. If for every finite set F C A and € > 0, there exists a nonzero projection p € A and a

unital subalgebra B of pAp such that B is C-Popa and
D |z.plll <€ forallz e F,
2) pxp € B for allx € F,
then A is C-Popa.
Proof. For any € > 0 and any finite subset 7 C A, we can find a subalgebra B such that B is
C-Popa and
1) Iz, 18]|| <¢ for all x € F,
2)1lg-ax-1lgC. Bforallxz e F.

Use 1pF1p to denote the set {lpzlp:xz € F}. Aslp -z -1p €. B, for every z € F,
choose an element y, € B satisfying |y, —1p -z -1g|| <e. Use G to denote {y,: z € F} with y,

as described.
As B is C-Popa, we can find ' C B such that £ € C and
a) [1g,yz]| <€ forall y, € G,
b)1g -y, 1g € 1g for all y, € G.

We then check that

g yz —yz - 1gl| =e lg-1p-x-1g—1p-2-1p-lg|| = [|[lg -z -2 1g|.
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It then follows that
g z—2z 1g|| =4 115 Yz — Yo - LEI.
As [[1g, y.]l| <&, we get ||z, 15]|| < Be.

Tor any z € A, we have

dist(lg -z -1g, E) =dist(lg - (1p cz-1g)-1g, F)
ree dist(ly - ys - 15, E))

~, 0.

Then it is clear that 1g -z -1 €9, E.

Thus for every finite subset F C A and ¢ > 0, we can find the subalgebra E of A as

described above such that £ € C and
1) [z, 1£]|| < 5e for all z € F,
2)1lg-z-1g €9, Efor all z € F,

which shows that A is C-Popa.

This following is a technical result, and the proof is essentially the same as that of [Lin4,

Lemma 2.5.5].

Proposition I11.1.16. Let A be a C*-algebra. For every a € Ay, such that |ja — a?| < 6 < i,

there exists a projection p € C*(a) such that |p — a|| < V8.

Proof. According to continuous functional calculus,
lla —a?|| = max{|]A — A%|: X € sp(a)}.

The fact that || —a?| < § < L implies that sp(a) C [-V/5, VO U1 — 38,1+



53

Define f € C(sp(a),R) by

0 x €spa)N[—v38,V4]

fla) = .
1 zespn[l—+6,1+4]

Then f(a) is a projection in C*(a), and it is easy to check that ||p — a|| < V3.

Theorem I11.1.17. Let X be the Cantor set and let o xRe xR, be a minimal action on X xT xT.
Use A to denote the crossed product C*-algebra of the minimal system (X x T x T,a x R¢ x Ry,)).
Then TR(A) < 1.

Proof. According to [HLX, Lemma 4.3], for simple C*-algebra A, if for every € > 0, c € A4 \ {0}
and finite subset F C A, there exists a nonzero projection p and a unital subalgebra B of pAp

such that TR(B) < 1 and
1) |z p]l] <€ forall xz € F,
2y dist(p-z-p,B) <eforalzeF,
3) 1 — p <X ¢ as in Definition 1.2.2. That is, 1 — 15 is Murray-von Neumann equivalent to
a projection in Her(c),
then it follows that TR(A) < 1.

Let A, be as defined in Lemma 1.2.1. According to Lemma [1.2.11, TR(A,) = 1. If we
can find a projection e € A, such that B = eA_ e satisfies the previous three conditions, then we

are done.

As A is generated by C(X x T x T) and the implementing unitary u, we can assume that

the finite set is F U {u} with F Cc C(X x T x T).
Choose N € N such that 27/N < £ and let
N-1

g= U wFu~.

=0
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According to Lemma II1.1.13, with respect to G and ¢ above, we can find M > N, a clopen
neighborhood of z and a partial isometry w € A, satisfying w*w = ly, ww* = lymyy and

l[w, ]l < ¢ for all f € F.

Let p = 1y and ¢ = L,myy. For t € [0,7/2], define
P(t) = pcos®t + sint cos t(w + w*) + gsin? t.

As pg = 0 and p, ¢ are Murray-von Neumann equivalent via w, it follows that ¢ — P(¢) is a path

of projections with P(0) = p and P(n/2) = q.
Define
M-N ON-1 _
e=1-— ( Z wpu”t 4 Z u_ZP(iTr/QN)M) .
i=0 i=1
According to Lemma I11.1.13, v wu? € A, for i = 0,...,m — 1. It is clear that e € A,. It follows
that e is a projection.
We first show that for e € A, above, the following hold.
D [z e]|| <€ forall z € FU{u}; (C1)

2) dist(exe,eA e) < ¢ for all z € F U {u}. (C2)
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For the part of (C1) involving u, note that

=0 i=1

( (Mz”upu +zui (/2N ))

M-N N-1
ueu" —e=1-—u ( Z u'pu”" + Z u’lP(z'7r/2N)uz> u

0
M-N+1

Z upu” +Zupu +Zui (im/2N)u

——Zui z+17r/2N)

=p —uM N Fp)M-NFL L (9 YN=1Pp((N — D /2N)uN~1 — P(n/2N)

N-2
+ Z wHP(ir/2N) — P((i + 1)7/2N))u?

=p— P/2N) +u V= DPUN — 1)1 /2N)ul¥ 71 — M=Vl py ~(M=N+D)
N-2

+ > uwTH(Plim/2N) ~ P((i + 1)m/2N))u*
=1
As 21 /N < g, we get |lueu* — e|| < . It then follows that |ue — eu|| < €. By Lemma II1.1.13,

Ife—efll <eforall f € F. So far, we have checked (C1).

For fe FCC(X xTxT), as f € A, we get efe € eAze. As eu € A, it is clear that

eue = e(eu)e € eAze. Thus we have checked (C2).

Let C be the set of all the unital separable C*-algebras C such that there exist N € N and

one dimensional finite CW complexes X; and d; € N with 1 <1 < N and

N
¢ = @ My, (C(X,).

n=1

Note that € can be chosen to be arbitrarily small, and also note that eA,e has tracial rank no

more than one, which implies that eA e is C-Popa.

By Lemma I11.1.15, A is also C-Popa. According to [Lin4, Lemma 3.6.6], A has property
(SP). For the given element ¢ € A, there exists a non-zero projection g € Her(c). Let 6y =

inf{r(q): 7 € T(A)}. As A is simple and ¢ # 0, we get 7(¢g) > 0 for all 7 € T(A4). As T(A) isa
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weak™ closed subset of the unit ball of A*, noting that the unit ball of A* is weak® compact by

Alaoglu’s Theorem, it follows that T'(A) is also compact. Thus dg > 0.
Without loss of generality, we can assume that & < min{1, §do, @#0)2} and g € F.

It remains to show that 1 —e is Murray-von Neumann equivalent to a projection in Her(e).

As g € F, we have
Ilg,e]ll <e and dist(ege, eAze) < e.

We can find b € (eAze€)s, such that |ege — b < e. Note that ||[g, ]| < ¢ implies that ||(ege)? —
eqe|| < e. According to Proposition III.1.16, there exists a projection ¢’ € A such that [|¢' —egel| <

€ and ¢’ < ege as in Definition 1.2.2,

Note that we have

162 = bll < [16% —~ (eqe)?|| + [|(eqe)® — egel| + llege — b]|
<3e+e+e

= be.

By Proposition III1.1.16 again, there exists a projection p € eA e such that
Ilp — bll < v/5¢ and [p] < [B].

As
lp—d'll <llp = bll + [1b — egel| + llege — ¢'l| < V5e + ¢ + Ve,

it follows that [p] = [¢/]. As

¢’ < ege and eqe < q,

we conclude that p < g in A.

Note that

g=-=cqe+ (1 —e)ge+eq(l —e)+ (Ll —e)g(l —e).
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For every 7 € T(A), we have
7(q) = 7(ege) + 7((1 — e)q(1 — e)) + 7((1 — e)ge -+ eq(1 — €)).
According to (C1) and our choice of €, we have

T(ege) +7((1 —€e)g(l —e)) > 7(q) —€ > %T(q).

As 7 is a tracial state and e is a projection,
T((1—e)g(l—e)) <7((1 —e)1(1 —¢)) =7(1 —¢).
Note that 7(1 —€) < 37(g) for all 7 € T(A) (because 7(1 — e) < 70p). We can conclude that

7(q) —7(1—~e) > %T(q) > %50 > 0.

[N

r(eqe) > 57(a) (1 - e)a(l —€)) 2

In our construction, note that
lp — eqell < [lp— bl + [|b — egell < v5e + .

It follows that
1
7(p) > Zéo — (Ve 4¢) > ééo for all 7 € T(A).

According to our construction, we have
(1—)<M6—<15<()
= z (4
T ¢ MTE=g=TY

for all 7 € T(A), which then implies that 1 —e < p. As [p] < [¢] (as in Definition 1.2.2), we get

[1 —e] <] (as in Definition 1.2.2), which finishes the proof.
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II1.2 THE RIGID CASE

Proposition T111.2.1. Let A be the crossed product C*-algebra of the minimal dynamical system
(X xT x T, x Re x Ryy). Then

Ko(A) = C(X,2%)/{f — foa ™ fe C(X,Z)} 0 22

and

K\(A)=C(X,2%/{f —foa™t: feC(X,2)} 0 Z*

Proof. Use j: C(X x T?) — A to denote the canonical embedding of C(X x T2) into A. We have

the Pimsner-Voiculescu six-term exact sequence:

Ko(C(X x T?)) —2%0 o g (C(X x T?)) — 2= Ko(A)
K1(A) L R(C(X X T?)) =222 K (O(X % T2)).

We know that

Ko(C(T?)) = 2%, K,(C(T?)) = z2?

and

Ko(C(X)) = C(X,Z), K1 (C(X))) = 0.

According to the Kiinneth theorem, Ko(C(X x T?)) = C(X,Z?) and K,(C(X x T?)) = C(X,Z?).

For 1 = 0,1, consider the image of id.; — @.s. They are both isomorphic to

{f—foa™t: feC(X,Z%}.

The kernel of id,; — @y for 2 = 0,1 is

{(feC(X,Z%: f = foal.

Assume that f is in the kernel of id.; — au; for 4 = 0,1. Fix 2o € X. We have f(a"(z0)) = f(zo)
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for all n € Z. As o is a minimal homeomorphism of the Cantor set X and f is continuous, f must

be a constant function from X to Z2. Now we conclude that

ker(ide; — o) = 22,

As the six-term sequence above is exact, we have the short exact sequence:

0 — coker(id.o — axo) — Ko(A) — ker(idy; — ap1) — 0.

As ker(id,; — o) = Z2 and Z2 is projective, it follows that
Ko(A) = coker(idyo — cup) © Z2.
As coker(idsp — awo) 2 C(X,Z2)/{f — foa: f € C(X,Z?)}, we get
Ko(A) = C(X,ZH)){f — foa: f € C(X,Z)} & Z%

Similarly, we get that K1(A) = C(X,Z3)/{f — foa: f € C(X,Z%)} @& 72

If we require a certain “rigidity” condition on the dynamical system (X xTxT, axR¢ xR,,),

then the tracial rank of the crossed product will be zero.

Definition II1.2.2. Let (X x T x T, x Re x Ry) be a minimal dynamical system. Let p be an
a x Re % Ry-tnvariant probability measure on X x T x T. It will induce an o-invariant probability
measure on X defined by w(u)(D) = uw(D x T x T) for every Borel set D C X. We say that
(X X T xT,a x Re x Ry) is rigid if m gives a one-to-one map between the o x Re¢ x R, -invariant

probability measures and the a-invariant probability measures.

Remark: For minimal actions on X x T x T of the type o x R¢ X Ry, it is easy to see that m

always maps the set of o X R¢ x Ry -invariant probability measures over X x T x T onto the set of
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o-invariant measures over X.

According to Theorem 4.6 in [Lin-Phillips], the “rigidity” condition defined above implies

that the crossed product C*-algebra has tracial rank zero.
Proposition I11.2.3, Let (X x T x T, a x Re x Ry) be a minimal dynamical system. If it is rigid,

then the corresponding crossed product C*-algebra C*(Z,X x T x T, a X Rg x Ry)) has tracial rank

ZET0.

Proof. Use A to denote C*(Z, X x T x T,a x R¢ X Ry)). We will show that

p: Ko(A) — AR(T(4))

has a dense range, which will then imply that TR(A) = 0 according to [Lin-Phillips, Theorem 4.6].

For the crossed product C*-algebra B = C*(Z, X, ), we know that B has tracial rank
zero and pp: Ko(B) — T(B) has the dense range. According to [Putnam, Theorem 1.1], Ko(A) &
C(X,Z)/{f — foa™!}. For every x € Ko(A), we can find f € C(X,Z) such that #(r) := 7(x)

equals 7(f) = [ fdu,.

As axR¢ xR, is rigid, there is a one-to-one correspondence between (ax R¢ xR, )-invariant
measures and a-invariant measures. In other words, T'(A4) is homeomorphic to T'(B) (as two convex

compact sets). Let i € C(X) be a projection. Then h ® 1¢(rxT) is a projection in A.

As pp has a dense range in Aff(T(B)), we have that p has dense range in Aff(T(A)). As
X x T x T is an infinite finite dimensional metric space and o x R¢ x R,; is minimal, according to

[Lin-Phillips, Theorem 4.6], C*(Z,X x T x T, x R¢ x R,;) has tracial rank zero.

1I1.3 EXAMPLES

We start with a criterion for determining whether a dynamical system of (X x T x T, & x
Re¢ x R;) is minimal or not. This result is a special case of the remark of page 582 in [Furstenberg].

The proof here essentially follows that of Lemma 4.2 of [LM1].
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Lemma ITL.3.1. LetY be a compact metric space, and let xRy, be a skew product homeomorphism

of Y x T with § € Homeo(Y), n: Y — T and
(B x Ry)(y,t) = (Bly),t +n(y)) with T identified with R/Z.

Then 8 x R,, is minimal if and only if (Y,B) is minimal and there exist no f € C(Y,T) and

non-zero integer n such that

nn=fof~f

Proof. Proof of the “if” part:

If (V,3) is minimal and there exist no f € C(Y,T) and non-zero integer n such that

nn = fofB — f, we will prove that 8 x R,, is minimal.

If 8 x R, is not minimal, then there exists a proper minimal subset E of ¥ x T. Let
my: Y x T — Y be the canonical projection onto Y. Note that my o (8 x Ry) = fomy. It follows
that 7wy (E) is an invariant subset of Y. As Y is compact, so is my (E). Since (Y, ) is minimal,

the closed invariant set 7y (E) must be Y.
Let’s consider
D:={teT: (idy x R)(E) = E}.
As (idy x id7)(E) = E, the set D is not empty. Note that D is a subgroup of T. It follows that
D is a non-empty subgroup of T (with T identified with the quotient group R/Z).

1f we have {t,}nen C D such that t, — ¢, then for any w € E, we have (id x Ry Jw € E.

Then t,, — t implies that (id x Ry, )w — (id x Ry)w. As E is closed, (id x Ry)w € E.

So far, we have shown that if t, € D for n € N and ¢, — ¢, then ¢t € D. Note that
Ytnlnen C€ D and t, — ¢” is equivalent to “{—t,}pen C D and —t, — —t”. It follows that

—t € D. In other words, we have
(id x Ry)(F) C F and (id x R_4)(E) C E.

Then we get

E = (id x R)((id x R_)(E)) C (id x R,)(E) C E,
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which implies that (id x R;)E = E. In other words, D is closed.

As E is a proper subset and 7y (E) =Y, D must be a proper subgroup of T. Otherwise,
for any (y,t) € Y xT, as ny (E) =Y, there exists ' € T such that (y,t') € E. Since t—-t' € D =T,
(y.t) = (id x Ry—y)(y,t") € E, which indicates that E =Y x T, contradicting the fact that F is a

proper subset.

As a proper closed subgroup of T, D must be

k
{—} with n = |D|.
) o<k<n—1

Let 7y be the canonical projection from Y x T onto T. For y € Y, use Ey to denote np(E N
Ty ({y}).
Using the fact that E is a minimal subset of (8,R,), we will show that E, must be n

points distributed evenly on the circle for all y € Y.

We claim that if ¢,t’ € Ey, then for any m € Z, t+m(t’ —t) must be in E,. To prove this
claim, if ¢,#' € E,, then there exists {ky, }nen such that k, — oo and dist((8x Ry,)* (y, ), (y,t')) —

0. Note that

dist((8 x Rp)* (y,1), (y,2) = dist((8 x Ry)*" (3, '), (y,t + 2(¢' — 1))).

It follows that (y,t+ 2(t' —t)) € Orbitgyr,((y,t)). By induction, we conclude that if ¢,t' € E,,

then for any m € Z, t + m(t’ — t) is also in £}, proving the claim.

For any y € Y, consider Ey, which is a non-empty closed subset of T. Let

l, = inf dist(¢1,%2).
Y U heE, (t1,12)

Note that if ¢,¢ € Ey, then t + m(t’ ~ t) € E,. The fact that E, C T implies that {, > 0. It is

then clear that E; is made up of 1/l, points distributed evenly on T.

Claim: For every y € Y, 1/, = |D|.

For given y € Y, as (id X R)}(E) = E for all t € D, we get that E, is invariant under R,
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for all t € D. It then follows that 1/I, = kn with k € N and n = |D|.
If £ > 1, write
El/ = {(y’tl)v ) (yatkn)}'
Use Orbitgyg, (Ey) to denote Jo,_; (8 x Ry)™(E,).

As (3 is minimal, for every y’ € YV, there is a sequence (my)gen such that

BT (y) — v

The fact that Orbitgxr, (E,) is dense implies that there exists ¢ € T such that (y',¢') is in the
closure of Orbitgyr, (Ey). Note that for every m € N, (8 x R,)™(E,) consists of kn points
distributed evenly on the circle. It follows that E,s contains at least nk points distributed evenly

on the circle,

Now we have shown that for every a € Y, E, is made up of at least nk evenly distributed
points on the circle, which then implies that D contain at least nk elements. The assumption that

k > 1 gives a contradiction.

We then conclude that k& = 1, which proves the claim.

By the claim above, for all y € Y, the set E, is made up of n points distributed evenly on
T. If we define
nE = {(z,nt): (z,t) € E},

then nFE is the graph of some continuous map g: ¥ — T. As FE is closed, so is nE, which implies

that g is continuous. As F is (8 x R,)-invariant, for every (z,t) € E, it follows that

(6 % Ry)(@,t) = (B(z), ¢ +n(x)) € E.

In other words, we have n(t + n(z)) = g(f(z)). As nt = g(z), it follows that nn = go f — g, which

finishes the proof of “if” part.

Proof of the “only if’ part:
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Suppose § x R, is minimal. Then it is clear that (Y, 5) is a minimal system.

Suppose that there exists nonzero n € Z such that nn = go 8 — g for some g € C(X,T).
Let
E={(yt)eY xT:nt=g(y)}.

For (y,t) € E, we have (8 x R,))(y,t) = (B(y),t + n(y)). As

n(t +n(y)) = nt +nn(y) = g(y) + nnly) = g(By)),

it follows that £ is (8 x R,)-invariant.

As g is continuous, F is closed. And it is clear that F is a proper subset of Y x T. Now

we have a proper closed (8 x R,)-invariant set in ¥ x T, contradicting the minimality of 8 x R,,.

O

Lemma II1.3.1 provides an inductive approach to determine the minimality of some dynamical

systems. Following this lemma, we get the proposition below.
Proposition I11.3.2. Let a x R¢ x R, be a homeomorphism of X x T x T. Then a x R¢ x R, is
minimal if and only if

1) (X, a) is minimal,

i) € is not a torsion element in C(X,T)/{foa— f},

iii) Forj € C(X x T, T) defined by 7(x,t) = n(z), the map 7] is not a torsion element in
C(X xT,T)/{fo(axReg)— f: fe C(X xT,T)}.

Proof. Proof of the “if” part:
If i), ii) and iii}) are true, we need to show that & x R; x R, is minimal.

Note that (X x T x T, x Re x Ry;;) is a skew product of a x Rg and R,, where fi; is
defined by
R,: X x T — Homeo(T), with (R, (z,t))(t') = ¢’ + ().
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From i) and ii), using Lemma 4.2 of [LM1], (X x T, o x R¢) is minimal.
According to Lemma I11.3.1, and by iii), we conclude that a x R¢ x Ry, is minimal.
Proof of the “only if” part:

As (X x T x T,a x R¢ x Ry) is the skew product of (X x T,a x R¢) and f{;: XxT—
Homeo(T), with f{v,, defined as above, the minimality of (X x T x T,a x R¢ x R,;) implies the

minimality of (X x T, @ x Re). By Lemma 4.2 of [LM1], that implies (i) and (ii).

For (iii), suppose that 7} is a torsion element, that is, there is non-zero n € Z and f &
C(X T, T) such that nfj = fo(axR¢)—f. By Lemma II1.3.1, it follows that (X xTxT,axR¢ xR,,)

is not minimal, a contradiction.
O
Proposition II1.3.2 enables us to construct minimal dynamical systems on X x T x T
inductively. In fact, we have the following lemma.

Lemma IIL.3.3. Given any minimal dynamical system (X x T,a x R¢), there exist uncountably
many 0 &€ [0,1] such that if we use 8 to denote the constant function in C(X,T) defined by 0(x) = 0
for all x € X (identifying T with R/Z), then the dynamical system (X x T x T,a x Re¢ x Ryg) is

still minimal.

Proof. Note that the dynamical system (X x T, a x R¢) is minimal. According to Lemma II1.3.1,

(X, o) must be a minimal dynamical system, and £ is not a torsion element in

C(X,T)/{f - foa: f € C(X,T)}.

This implies that conditions i) and ii) in Proposition I11.3.2 are already satisfied.

According to Proposition I11.3.2, for (X x T x T, & x R¢ X Rg) to be minimal, we just need
to find & € R such that for every n € Z \ {0} and f € C(X x T, T), we have

nf # f— fo(axRe).
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If this is not true, then we have

nf=f—fo(axRe)

Let F: X x T — R be a lifting of f. That is, F' € C(X x T,R) and the following diagram

cominutes:

XXxT————

f

with 7(¢) = ¢ for all ¢ € R (identifying T with R/Z).
We use [F] to denote mo F.

It follows that

n = [F] — [F o (o x Re)]

=[F — Fo(axRg)
In other words, there exists g € C(X x T,Z) such that
nd—(F-—Fo(axRe))=g.
For every (o x R¢)-invariant probability measure u, we have
p(nd) = p(g),

with p(nf) = /

ndu and p(g) =/ gdu
XxT

XxT

Since p(nd) = nu(d), it follows that
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Let A be the crossed product C*-algebra of (X x T, x R¢). Define
p:Asa — AI(T(A))
by p(a)(7) = 7(a) for all a € Az, and 7 € T(A). Then we have
p(8) =p (%)

in Aff(T(A)).

Now we have show that if § (as a constant function) is a torsion element in
C(XxT,T)/{f—foa: feC(X xT,T)}

with order n, then there exists g € C(X x T, Z) such that p(8) = p (2)
n

As T is connected, we have C(X x T,Z) = C(X,Z). Note that the set

{g g€ C(X x T, 2) %C(X,Z),neZ\{O}}

” :

contains countably many elements. It follows that its image under p contains at most countably
many elements. The fact that [0, 1] contains uncountably many elements and p(8) = 0 if and only
if & = 0 implies that there exists (uncountably many, in fact) § € R such that 8 (as a constant

function) is not a torsion element in
C(XxT,TV/{f-foa: feC(X xT, T},

which then implies that (X x T x T, a x Reg X Ry) is still minimal.

We now give exammples of rigid and non-rigid minimal actions of on X x T x T.

Let po: T — T be a Denjoy homeomorphism (see [PSS, Definition 3.3] or [KatokHasselblatt,
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Prop 12.2.1]) with rotation number () = & for some § € R\ Q. 1t is known that g has a unique
proper invariant closed subset of T, which is a Cantor set, and that g restricted on this Cantor

set is minimal.
Let X be the Cantor set and use ¢: X — X to denote the restriction of ¢y to X.

According to the Poincare Classification Theorem (see [KatokHasselblatt, Theorem 11.2.7]),
there is a non-invertible continuous monotonic map h: T — T such that the following diagram

commutes:

Using the restriction of ¢ to the invariant subset (which is the Cantor set X}, we get a

commutative diagram:

X 4 X
h|xl lh|x
T—= T
8

It is known that for a Denjoy homeomorphism, h|x maps X onto T.

Recall that for £,n: T — T, the action

v:(8,ty1,t2) v {8+ 0,t1 + &(8),ta + n(s))

is called a Furstenberg transformation. Consider the action

a X Reoh X Rypop 1t X X TxT— X xTxT.
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It is clear that we have the commutative diagram below :

axReop XRyon

XXTXxT——XxTxT (I11.1)
hlx Xid'j)(id"l/ lh]x X id-xid~
TxTxT TxTxT .

In this case, if v is minimal, then a X Reop X Ryop is also minimal, as will be shown in the

next proposition.

Proposition I11.3.4. For the minimal dynamical systems as in diagram (IIL.1), if (T x T x T, )
is a minimal dynamical system, then (X X T x T, X Reon X Ruon) s also a minimal dynamical

system.

Proof. Assume that (T x T x T,~) is minimal and (X x T x T, X Reon X Ryor) is not minimal.
It then follows that there exist (z,?),t2) € X x T x T, nonempty open subset D C X and open

subsets U,V C T such that

{(a X Rfoh X Rngh)n(ﬂf,tl,tg)}neN N (D x U x V) =, (1112)
Define
w7 X XTXxT—TxT

by

m{x,t1,t2) = €1 and mo(z, t1,t2) = to.

As « is a minimal action on the Cantor set X, the statement II1.2 implies that for every & € N

such that o*(z) € D, we have

m1 ((@ X Reon ¥ RT,oh)k(a:)) ¢ U and 73 (( X Reop ¥ Rnoh)k(a:)) ¢V. (111.3)

Note that if we regard the Cantor set X as a subset of T, then h|x : X — T is a

noninvertible continuous monotone function. For the open set D C X, without loss of generality,
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we can assume that (by identifying X as a subset of T and identifying T with R/Z)

D = (a,b) N X with a,b € (0,1) and a < b.

It then follows that there exists ¢,d € (0,1) with ¢ < d (without loss of generality, we can assume

that 0 ¢ h|x (D) such that h|x (D) is one of the following:

(c,d), (¢, d], [c,d) or [e,d].

In either case, there exists ¢/, d" € (0,1) with ¢/ < d’ such that

(c,d) C h|x (D).

Lett, =h

x {z). It is then clear that
hix ((a X Reon X Rpon) (2, t1,t2)) = y™(tz, t1, t2)

for all n € N. As h|x (D) is monotone, for every k € N, if R&(¢t,) € (c/,d’), then we have

aF(z) € D, which implies (see (I11.3)) that

m ((OZ X Rfoh X Rnoh)k(xrtlat2)) ¢ U and m2 ((O{ X Rfoh X Rnoll)k(z1t1,t2)) ¢ V.

Define
p1,p2: TXTxT—TxT

by p1(to,t1,t2) = t1 and pe(to,t1,t2) = ta. It is easy to check that for all n € N, we have
i ((@ % Reop X Roon)*(z,t1,12)) = ps (Wk(tz,tl,b)) .
Then we have that for every k € N such that R§(¢,) € (¢, d'),

P1 (’Yk(tdz,tl,tz)) ¢ U and po (Vk(tz,thtz)) ¢V
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According to the definition of the Furstenberg transformation =, it follows that
{’Yn(tza t19t2)}7’1€N n ((C/)d/) X U X V) = 67

contradicting the minimality of v, which finishes the proof.

The proposition below shows that if the two dynamical systems in Prop III.3.4 are minimal,

then there is a one-to-one correspondence between the invariant measures on them.

Proposition II1.3.5. If the dynamical systems (T x T x T,~) and (X x T x T, o X Reon X Raon)
(as in diagram (III.1)) are minimal, then there is a one-to-one correspondence between the o x

Reon X Ryon-tnvariant probability measures and the vy-invariant probability measures.

Proof. First of all, we will define the correspondence between the o x Rgon x Ryop-invariant

probability measures and the vy-invariant probability measures.

For simplicity, we use H to denote the function h|x in diagram (III.1). We use
Mo xReon xRyon 10 denote the set of o x Reopn X Ryop-invariant probability measures on X x T x T

and M, to denote the set of v-invariant probability measures on T x T x T.

Define

noh

¢ MaxReonxRyon — My and ¢ : My — Maxre,, xR

o(u)(D) = p ((H x idy x idy)"*(D)) and $(v)(E) = v ((H x idy x idy)(E))

for all Borel subsets D of T x T x T, Borel subsets £ of X X T x T, tt € MaxReonxR,0n a0d v € M.

noh

We need to show that the ¢ and v above are well-defined.

As every (1 € MoxR,,, xR,., 18 @ probability measure, it follows that o(u)(T x T x T) = 1.

noh

For every Borel subset D C TxTx T, as both arx Reop, X Rpon and v are homeomorphisms,

it follows that

(H x idr x id7) 7' (v(D)) = (a X Reon X Rpor) ((H x idr x idy) ™' (D)),
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which implies that @(u) is y-invariant.

For a sequence of Borel subsets Dy, Dy,... of T x T x T such that D; N D; = @ if ¢ # 3,
it is clear that (H x idp x idy)~ (D)), (H x idy x idy)~!(Dy), ... are Borel subsets of X x T x T
(as H x idr x idy is continuous) satisfying (H x idy x idp) ™ (D;) N (H x idy x idy)~H(D;) = @ if

i # j. Then we have that

o(p) (I_I Dn) =Y o(u)(Dn).
n=1

n=1
So far, we liave shown that ¢ is a well-defined map from MuxR, o) xRpon 10 My
Now we will check the map .

As every v € M, is a probability measure, it follows that

YW X XTxT)=v(TxTxT)=1.

For every Borel subset E C X xT x T, we will show that ¢(v}(F) is well-defined. According

to the definition of ¥ (v}, we just need to show that (H X idy X idy)}{(F) is v-measurable.

For any two open subsets S; and Sz of X X T x T, we have
(H x idyp x id7)(S; U S2) = (H x idy x idp)(S)) U (H X idy x idy)(S2),
(H x idy x idg)(S5) = ((H x idy x idp}(S;))¢ fori=1,2.
As H is not one-to-one, we cannot get
(H x idt x idr)(S1 N S2) = (H x idy x id7)(S1) N (H x idy x idy)(Sz),
but we still have
(H x idp x idy)(S1 N Sz) € (H x idy x idp)(S1) N (H x idp x id7)(S2).

We will consider ((H x idr x id’]r)(sl) N (H xidr x idT)(Sg)) \ (H x idy x idr)(51 N Ss).

Note that H is just the restriction of A to X, where h is a noninvertible continucus
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monotone map from T to T (see [KatokHasselblatt, Theorem 11.2.7]). It follows that H : X — T
is one-to-one except at countablely many points of X. Use Xy to denote this subset consists of

countably many points. Then we have that

((H x idg x id7)(S1) N (H x idg x idp)(S2)) \ (H x idp x idr)(S1 N S2) € H(Xe) x T x T.

As v(T x T x T) =1 and the minimal action <y has the skew product structure, it follows
that for every t € T, v({t} x T x T) = 0, which then implies that v(H(Xo) x T x T) = 0. Then we
get that

((H x idy x idg)(S1) N (H x idy x id71)(S2)) \ (H x idg x id)(S1 N Sy)

is of measure zero for all y-invariant measure v.
For two sets A and B, we use A A B to denote (AN B)U (A°N B).

For every Borel subset F' of X x T x T, as F is generated by open sets via taking
complements, countably many unions and intersections, it follows that there exists a Borel set
F’, such that

(H x idy x idp)(F) & F!

is of measure zero for all y-invariant measure v, Note that F is a Borel set. For every y-invariant
measure v, F” is both v-measurable. It then follows that (H X idyxT)(£) is measurable. Recall
that

Y)(F) = v ((H x idr x idy)(F)) .

It follows that for 1(v) is well-defined on all the Borel subsets of X x T x T.

For a sequence of Borel subsets F, E3,... of X x T x T such that D; N D; = @ if { # 7,

and for every «v-invariant probability measure v, we will show that

n=1 n=1

w(l’) (Ll En) = Zw(l’)(En)
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According to the definition, we have

’L/)(l/) <lj En) =V <(H X idg x id'g') (lj En))

((H x idr x idr) ( En)> = (G(H x idp x id']]')(En))

(H x idy x idy)(E:) N (H x idp x idy)(E;) € H(Xo) x T x T for i # j.

Note that

8

and

Recall that H(Xg) x T x T is a set of measure zero for every y-invariant probability measure. It

follows that

o0

() (l_l En> = > p(V)(En).

For every Borel subset £ C X x T x T, according to the commutative diagram (111.1), we

have

(yo (H xidp x idr))E = ((H x idr x idr) o (@ X Reon X Ryon)) (E).

It then follows that

’L/)(V)(E) = l/((H X id']]‘ X ld']]‘)E)

v(y ((H x idy x idy)E))

=V ((H x idr x id'ﬂ‘)((a X Rth X Rnoh)E))

i

P(v) ((a X Reon X Ryon) E)

which implies that (v) is @ X Reop X Rpop-invariant.

So far, we have shown that ¢ is a well-defined map from M, to MaxReon xRpon -

Now we will show that for every o x Reop X Ryon-invariant measure p and +-invariant
measure v, we have

(po)(v) =vand (Y op)(u) = p.

In fact, we just need to show that for every Borel subset D of T x T x T and every Borel
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subset K of X x T x T,
v ((H x idy x idr)((H % idy x idg)"'(D)) A D) =0 (111.4)

and

n((H x idr x idp) 7' ((H % idy x id7)(E)) A E) = 0. (111.5)

As
(H x idy x ide)((H x idy x idg)"Y(D)) = D,

the equation (II11.4) holds.

Note that
((H x idr x idp) "' ((H X idy x id7)(E)) A E) € Xo x T x T,

The fact that X¢ consists of countably many points and the minimal action o X Rgop % Rypop has

skew product structure implies that
wWXoxTxT)=0.

It then follows that the equation (II1.5) holds, which finishes the proof.

By Proposition II1.3.5 above, there is a one-to-one correspondence between the a X Rgop %
Ryon-invariant probability measures and the +-invariant probability measures (because if two

measures coincide on all the Borel sets, they must be the same measure).

It follows that a minimal Furstenberg transformation on T? that is uniquely ergodic will
yield an example of a rigid minimal action on X x T x T, and a minimal transformation on T® that

is not uniquely ergodic will yield an example of a non-rigid minimal action on X x T x T.

Example I11.3.6. This is an example of rigid mintmal dynamical system (X xTxT,axRe¢ XR,).
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Let (X, «) be a Denjoy homeomorphism with rotation number #; € R\ Q.

Choose 62,83 such that 1,6),02,03 € R are linearly independent over @. That is, if
A0, A1, Ag, Az € Q and satisfy
Ap + A0y + Agfs + 383 =0,
then \; =0 fori=20,...,3.
The dynamical system (T x T x T, Rg, xRy, xRy, ) is minimal and uniquely ergodic.

Define ¢: X — Homeo(T?) by

p(@)(z1,22) = (212772, 2pe™™%).

As (T x T x T,Rg, x Ry, x Rg,) is uniquely ergodic, so is (X x T?, & x ¢). This gives an

example of a rigid minimal dynamical system (X x T x T,a x Re x Ry).
Example I11.3.7. We will give an ezample of minimal dynamical system (X x TxT,axRe xR,)
such that it is not rigid.

According to [Furstenberg] (see page 585), there exists a minimal a Furstenberg

transformation

Yo: T? — T?

such that

Yo(z1,22) = (zleQ’”‘g, f(z1)22) for some § € R\ Q and contractible f € C(T,T),

and -yp is not uniquely ergodic.

Let (T, ) be a Denjoy homeomorphism with rotation number 6. Let (X, &) be the minimal

Cantor dynamical system derived from (T,¢) which factors through (T,Rg). In other words,



77

a = ¢|x and we have the commutative diagram

X
T

with 7: X — T being a surjective map.

—X (I11.6)

- >
Rs

Define £: X — Homeo(T) by £(z)(z) = f(m(x))z. We can then check that the following

diagram commutes:

QXR&
XxT XxT
ind»:l l‘"xid'j
T2 Yo T2

As 7 is surjective, so is 7 x idy. Minimality of o then implies minimality of a x R¢. As 7y
is not uniquely ergodic, similarly to the proof of Proposition III.3.5, it follows that (X x T, a x R¢)

is not uniquely ergodic.

In the commutative diagram (II1.6), note that 7 is onto, and (T, Ry) is uniquely ergodic.

It follows that (X, @) is also uniquely ergodic.

As (X x T,a x R¢) is not uniquely ergodic, there exist more than one (« x R¢)-invariant
probability measure. Let yu and v to be two such measures on X x T that are different from each

other.

According to Lemma I11.3.3, there exists § € R such that if we use Ry to denote the

function in C'(X, Homeo(T)) defined by

Ry(z)(z) = 2™ for all z € X and z € T,

then the dynamical system (X x T x T, x Rg X Ryg) is still minimal.

Use m to denote the Lebesgue measure on T. For the (o x R¢)-invariant probability
measures p and v, as Ry is a rotation of the circle, we can check that both p x m and v x m are

a X R¢ X Rg)-invariant probability measures on X x T x T.
3
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As p and v are different measures, it is clear that u x m is different from v x m.

Now we have at least two (@ x Re x Rg)-invariant measures. Note that (X, «) is uniquely

ergodic. We have that the dynamical system (X xTx T, a x R¢ x Rg) is not uniquely ergodic.

Remark: For this example, the corresponding crossed product C*-algebra has tracial rank one

and the dynamical system (X x T x T, x Re X Ryp) is not rigid. The reason is as follows,

Counsider the dynamical system (X x T1,a x Re). It is not uniquely ergodic. As (X, a) is

uniquely ergodic, it follows that (X x Ty, X Re) is not rigid.

Use A to denote the crossed product C*-algebra C*(Z, X x T1,a x Re¢). According to
Theorem 4.3 of [LM2], the algebra A has tracial rank one. By Proposition 1.10 (1) of [Ph2],

pa(Ko(A)) is not dense in Aff(T(A)).

Note that A is an AT-algebra. According to Theorem 2.1 of [EGL], A is approximately
divisible. By Theorem 1.4 (e) of [BKR], and noting that real rank of A is not zero (as tracial rank
of A is one and A is AT-algebra), we have that the projections in A does not separate traces of A.

In other words, there exist two (a X R¢)-invariant measures 4 and v such that

w#£ v, and p(z) = v(z) for all z € Ko(A).

Define measures px,vx by

ux(D)=p(DxT) and vx(D)=v(DxT)

for all Borel sets D C X. It is clear that both px and vx are a-invariant probability measures on

X.

Note that C(X,Z) is generated by the projections in C(X). Also note that the C-linear
span of C(X,Z) is dense in C(X,R). The fact that the projections in A do not separate y and v

implies that C(X,Z) do not separate ux and vx, which then implies that ux = vx.

Use B to denote C*(Z, X x Ty x T, x Re x Rg). Let m be the Lebesgue measure on T.

It is clear that pu x m and v x m are two (@ X Re x Rg)-invariant probability measures.

We will show that the projections in B do not separate u x m and v X m.
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From Proposition III.2.1,

Ko(B) = C(X,Z*)/{(f,9) — (f.g)oa ' f,g € C(X,Z)} ®Z D Z. (IIL.7)

The two copies of Z correspond to the two generalized Rieffel projections e; and eq, given
by e1 = g1u* + f1 + ugy, and ez = gou* -+ fo - uge, where e;, fi, g; are defined similarly to the
functions defined in Section 6 of [LM1], f1(z, 21, 22) = fi1(x, 21, 25) and folz, z1,22) = fi(z, 2], 22)

for all z1,2] € Ty, 22,24 € Ta.

As the projections in A do not distinguish u and v, it follows that the elements in Ko(B)

that correspond to the first two summands of II1.7 do not separate . x m and v x m.

For the generalized Rieffel projection eq, as fo(z, 71, 22) is independent of z), we have

f(x, z1,22) = Fa(z, z9) for some F € C(X x Tq, R).

Recall that for a measure o on X and f ¢ C(X), we use o(f) to denote [y f(z) du (see

Section 1.2). We check that
(uxm)(ez) = (1 x m)(f2)

- / fal@, 21, 22) d( x m)
(XXTl)XTQ

:/ Fy(z, z0) d(pux x m)
X xTy

:/ Fy(z, z5) d(vx x m)
X xTa

:/ f2(z, z1, 22) d(v x m)
(X xT1)xTy

= (v xm)(fs)

— (v x m)(ey).

Then we have shown that ey does not separate u x m and v x m either, which then implies

that the projections in B cannot separate traces of B.

According to Theorem 1.4 of [BKR], the real rank of B is not zero. Then it follows that

the tracial rank of B is not zero.

By Theorem I11.1.17, the tracial rank of B must be one.
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According to Proposition 111.2.3, the dynamical system (X x T x T, x Re x Rg) is not
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CHAPTER 1V

APPROXIMATE K-CONJUGACY

In this chapter, we start with a sufficient condition for approximate K-conjugacy between
two minimal dynamical systems (X x T x T,a x R¢g; x Ry,) and (X x T x T, 8 X Re, x Ry,).
Then we give an if and only if condition for weak approximate conjugacy of these two dynamical
systems, showing that weak approximate conjugacy just depends on « and S. In Section IV.3,
an if and only if condition for approximate K-conjugacy between these two dynamical systems is

given.

In [LM3|, several notions of approximate conjugacy between dynamical systems are
introduced. In |[LM1], it is shown that for rigid minimal systems on X x T (with X being
the Cantor set and T being the circle; see Definition 3.1 of [LM1]), the corresponding crossed
product C¥*-algebras are isomorphic if and only if the dynamical systems are approximately

K-conjugate.

For two minimal rigid dynamical systems (X x T x T,a x R¢ x Ry)) and (X x T x T, 3 x
Re, x Ryy,), we study the relationship between approximate K-conjugacy and the isomorphism of

crossed product C*-algebras.
We start with basic definitions and facts about conjugacy and approximate conjugacy.

Definition IV.0.1. Let X|Y be two compact metric spaces, and let & € Homeo(X) and 8 €
Homeo(Y) be two minimal actions. We say that (X,a) and (Y,[) are conjugate if there exists
o € Homeo(X,Y) such that c oa = foo. We say that (X,«) and (Y,B) are flip conjugate if
(X, ) is congugate to (Y, 3) or (Y, 571).

Definition IV.0.2. Let X,Y be two compact metric spaces, and let o € Homeo(X) and 8 €
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Homeo(Y) be two minimal actions. We say that (X,«) and (Y,0) are weakly approzimately

conjugate if there exist o, € Homeo(X,Y) and v, € Homeo(Y, X) for n € N such that

dist(foopoa, fofoo,) — 0 and dist{igoaoy,,govmof) =0 asn — oo

forall f € C(X) and g € C(Y), where dist(f1, f2) is defined to be sup,¢p dist(f1(x), f2(z)) for all

continuous functions fi1, fa on the metric space D.

It is clear that if two minimal dynamical systems are conjugate, they are weakly

approximately conjugate. Generally speaking, the inverse implication does not hold.

IV.1 C*-STRONG APPROXIMATE CONJUGACY

Given minimal dynamical systems (X, ) and (Y, 8), if they are flip conjugate, then it is
easy to check that the corresponding crossed product C*-algebras C*(Z, X, ) and C*(Z,Y, 3) are

isomorphic.

According to [Tomiyama] (Corollary of Theorem 2), for two minimal dynamical systems

(X,a) and (Y, 3), there exists an isomorphism

¢: C*(Z,X,0) — C*(Z,Y, )

satisfying o(C(X)) = C(Y) if and only if these two dynamical systems are flip conjugate.

In view of Tomiyama’s result above, C*-strong approximate flip conjugacy is defined as

below.

Definition IV.1.1. Let (X, o) and (X, 3) be two minimal dynamical systems such that
TR(C*(Z,X,a)) = TR(C*(Z,X,3)) = 0, we say that (X,a) and (X,3) are C*-strongly

approzimately flip conjugate if there exists a sequence of isomorphisms

ont C*(Z, X, @) = C*(Z, X, ), Yp: C*(2,X, ) — C*(Z, X, a)
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and a sequence of isomorphisms Xn, An: C(X)} — C(X) such that
1) [l = lpm] = ;) in KL(C*(Z, X, a),C*(Z, X, )) for all m,n € N,

2) lm [lpn 0 Ja(f) ~ 5 © xalH)| = 0 and lm [ Go(f) — Ja © Ma(Hl| = O for al
f € C(X), with ja, jg being the injections from C(X) into C*(Z, X,a) and C*(Z, X, 3).

Some notation will be introduced before the next result about C*-strong approximate
conjugacy.

Let A be a separable amenable C*-algebra that satisfies UCT. For § € KL(A, B), there
are induced homomorphisms I'(8);: K;(A) — K;(B) fori =0,1. Define ps: A, — Aff(T(A)) by
pa(a)(t)=7(a) forall a € A,, and 7 € T(A). Suppose A and B are two unital simple C*-algebras
with tracial rank zero and y: Ko(A) — Kp(B) is an order preserving homomorphism. As A has

real rank zero, v will induce a positive homomorphism ~v,: Aff(T'(4)) — Aff(T(B)).

The theorem below ([Lin4, Theorem 2.5]) gives one necessary condition for C*-strong

approximate flip conjugacy between two crossed product C*-algebras.

Theorem IV.1.2. Let (X,a) and (X,B) be two minimal dynamical systems such that the
corresponding crossed product C*-algebras A, and Ag both have tracial rank zero. Then o and
B are C*-strongly approximately flip conjugate if the following holds: There is an isomorphism

x: C(X) — C(X) and there is 6 € KL(A,, Ag) such that T'(8) gives an isomorphism
I(6): (Ko(Aa), Ko(Aa)+, [1], K1(Aa)) — (Ko(Ap), Ko(Ag)+, 1], K1(Ap)),

and such that
[Ja] X 0 =[jgox] in KL(C(X), Ap)

and

pag ©Js o X(f) = ((T(0)o)p) © pa. © Jalf)
forall f € C(X)sq.

If K;(C(X)) is torsion free, then a simplified version of this result holds ([Lin4, Corollary
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2.6)).

Corollary IV.1.3. Let X be a compact metric space with torsion free K-theory. Let (X,a) and
(X, 5) be two mintmal dynamical systems such that TR(Aq) = TR(Ag) = 0. Suppose that there is

an order isomorphism that maps [14,] to [1a,]:
7: (Ko(Aa), Ko(Aa)+, [14,], K1(Aa)) = (Ko(Ap), Ko(Ap)+ [Lag], K1(Ag)),
such that there exists an isomorphism x: C(X) — C(X) satisfying
Y0 (Ja)wi = (Jp o X)wi fori=0,1 and v, 0ja = pay 0jpox on C(X)sa.
Then (X, a) and (X, ) are C*-strongly approzimately flip conjugate.

In the rest of this chapter, for a minimal homeomorphism o on the Cantor set X, we will

use KY(X, ) to denote the ordered group
C(X,Z%)/{f ~ foa™': f € C(X,Z%)}
with the positive cone being (denoted by K°(X,a),)
C(X,D)/{f — foa™l: f € C(X,2%)}
where D is as defined in Lemma I11.2.9. In K°(X, ), we define the unit element to be
[(1,0)c(xz2)) € C(X,Z*)/{f — foa™': f € C(X,Z%)},

with (1,0)c(x,z2) being the constant function in C(X,Z?) that maps every z € X to (1,0) € Z2,

We use 1xo(x,q) to denote this unit element.

Lemma IV.1.4. Let X be the Cantor set. For every minimal action o € Homeo(X), if there is
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an order isomorphism

w1 (K%(X,0), K°(X,a)4, Lgogx,ay) — (KX, 8), KX, 8)+, 1xo(x.5),
then there is an order isomorphism

7 (C(X,2%),C(X,D),(1,0)c(x,22)) — (C(X,Z%),C(X,D),(1,0)cix 22)

such that the following diagram commutes:

(C(X,2%),C(X,D)) ———— (C(X,7?),C(X, D)) (IV.1)

(K°(X,a), KO(X, a)1) ——— (K°(X, §), K°(X, B)+)

where w,, T are the canonical projections from C(X, Z?) to K°(X,a) and K°(X, 3). In fact, there

ezists o € Homeo(X) such that p(F) = Foo™! for all F € C(X,Z?).

Proof. The proof is based on [LM3, Theorem 2.6].

Define K°(X, o) to be
C(X,Z)/{g —goa™": g € C(X, L)}

and KO(X,a)+ to be
C(X, 2T u{0N)/{g—goa™t: ge C(X,2)}.

We can check that (K9(X,a), K%(X,«a) ) gives an ordered group with order unit.

Define
h: K°(X,a) — K9(X, a) by h([f]) = [f1]

for every f = (f1, f2) € C(X,Z?), with fi1, fo € C(X,2Z).

From the definition, we can check that & is surjective and h(K°(X,a)y) = K°(X, o).



86

For the isomorphism
i (KX, 0), K°(X,0)4) — (K°(X, 8), K°(X, B)+),

define

©o . A’O(X,a) - KO(X7 6) by (»OO([fD = h((ﬁ([(f, O)]))

for all f € C(X, 7).

Suppose that there exist fi, f2,9 € C(X,Z) such that f; — fo = g —goa~!. Then it
follows that (f1,0) — (f2,0) = (g,0) — (g,0) oo™, which implies that ©([(f1,0)]) = ©([(f1,0)]). It

is now clear that g is well-defined.

Note that gﬁo([lc(xyz)]) = h((p([(l,O)C(X‘Zz)])). As @ is unital, (p(].KO(X,a)) = 1K0(X7ﬂ),
which then implies that o([lox,z)]) = R([(1,0)c(x.22)]) = [lox,zy]. We can now claim that ¢

is unital.

For any f € C(X,ZTU{0}), wol[f]) = h(w([(f,0)])). Asboth ¢ and h are order preserving,

o is also order preserving.

So far, we have that ¢g: K9(X,a) — K9(X, f) is untial and order preserving. According

to [LM3, Theorem 2.6], there exists a continuous order preserving map

%: (C(X,Z),C(X, Z)+71C'(X,Z)) - (C(X>Z)77C(sz)+vlc(X,Z)))

such that the following diagram commutes:

(C(X,2),C(X,2)4) = (C(X,2),C(X,2)y) (Iv.2)
(K9(X,a), K9(X,0), ) ——— (K°(X, §), K°(X, B),,)

Now we need to construct the unital positive linear map

@: (C(X,2%),C(X,D)) — (C(X,Z?),C(X, D)),
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such that diagram (IV.1) commutes.

For the @g we get, note that g is a unital positive isomorphism from Kqo(C(X)) to
Ko(C(X)). As C(X) is a unital AF-algebra, by the existence theorem of classification of unital
AF-algebras, there exists an isomorphism 9: C(X) ~» C(X) such that (identifying Ko(C(X)) with
C(X,Z) and Ko(C(X))4+ with C(X,Z),.)

Yeo: (C(X,2),C(X,2)4,[1]) — (C(X,2),C(X,Z)+,[1])

coincides with @o.
As 9 is an isomorphism, there exists o: X — X such that ¥(f) = foo™! forall f € C(X).

Define §: C(X,Z*) — C(X,Z%) by §((f.9)) = (W(f),¥(9)) for all f,g € C(X,Z). In
other words, 3((f,9)) = (f,g9) oo™} for all (f,g) € C(X,Z?).

For the @ above-defined, it is easy to check that it is unital and linear. It remains to show

that @ maps positive cone to positive cone, and makes the diagram commute.

For every (f,g) € C(X, D), we get 3((f,9)) = (f,g) oo™, As (f,g) € C(X, D), it is clear

that (f,g) oo™ € C(X, D). So far, we proved that ¢ is a positive map.

We can check that

m5 0 o((f,9)) = m(A(f), h(g))
= ma(po(f),¥o(9))
=m3(0(£),0) + 75(0, wo(9))
= (g0 20(£),0) + (0,75 0 u(9))
= (0 0 7, (£),0) + (0,00 © 74, (9))
=poma((f,0)) +¢om((0,9))

=poma((f9)),

which implies the commutativity of diagram (I'V.1).

As §((f,9)) = (f,g) oo~ for all f,g € C(X,Z), we get that @ is an isomorphism, which

finishes the proof.



88

Theorem I'V.1.5. Let (X xTxT,axRe, xRy,) and (X xTxT, BxRe, xRy, ) be two minimal rigid
Cantor dynamical systems. Use A, B to denote the two corresponding crossed product C*-algebras.
According to Proposition I11.2.1, K%(X,a) is a direct summand of Ko(A) and K°(X, ) is a direct
summand of Ko(B). Let

ja i KO(X,0) — Ko(A) = KO(X,0) 2% and jp : K°(X, ) — Ko(B) = K°(X,0) & Z°

be defined by

jalz) = (z,0} and jp(z) = (z,0).

If there is an order preserving isomorphism p from Ko(A) to Ko(B) that maps K°(X,a) onto

K% X, 3), then these two dynamical systems are C*-strongly approzimately conjugate.

Proof. We have the following commutative diagram:

Ko(A) £ Ko(B)

IJ'B
leO(x,u)

KO(X,0) —— % 5 gO(X,4) .

According to Lemma IV.1.4, we can lift

plrox,a) t KX, a) — K%X,B)

to

p: C(X,2% — C(X,Z7%),
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which will yield the commutative diagram

In fact, according to Lemma IV.1.4, there exists ¢ € Homeo(X) such that p(F) = Foo~L. Define

x: C(X x T?) = C(X x T?)

by x(f) = f o (o x idy2) for all f € C(X x T?).

According to the Kiinneth Theorem, we get that Ko(C(X x T?)) & C(X,Z?). By Lemma
11.2.1, if we identify Ko(C(X x T?)) with C(X,Z?), the positive cone will be identified with
C(X, D), with D as defined in Lemma 11.2.1. Choose z € X. According to Lemma 11.2.9, we know
that Ko(4;) 2 K% X,a) and Ko(B,) = K°(X, 8), with A, B, being the subalgebras of A and

B, as in Definition 1.2.1.

Now we have the commutative diagram

Ko(A) z Ko(B)

(.ia)wT T(jg)*o
5

Ko(C(X X Tz)) Ko(C(X X T2)) .

Note that g is induced by the x: C(X x T?) — C(X x T?) defined above. We have shown
that po (ja)w = (Jp o X)wi, 1 =0, L.

We will show that vy, 0 jo = pa, ©jgox on C(X ).

For every tracial state 7 € T(C*(Z, X, )), we know that it corresponds to a f-invariant

probability meausure pp (in such sense that 7{(a) = u(E(a)), with E being the conditional
expectation from C*(Z, X, 8) to C(X)).



90

For every f-invariant probability measure pug on X, if we use v to denote standard
Lebesgue measure on T, it is then clear that ugp x v x v is § x Rg, x Ry,-invariant. As the
dynamical system (X x T x T, 8 x Re, x Ry, ) is rigid, for every 8 x Re, x Ry, -invariant probability
measure, it must be p X v X v, with p being an S-invariant probability measure and v being the

Lebesgue probability measure.

Note that A denotes C*(Z, X x Tx T,a x Re¢, X Ry, ) and B denotes C*(Z, X x T x T, 3 x
Re, x Ry, ). According to Proposition II1.2.1, the fact that Ko(A) is isomorphic to Ko(B) implies
that K;(A) is also isomorphic to K (B). According to Proposition 111.2.3, the tracial rank of A

and B are both zero, thus classifiable via the K-data.

Let v: A — B be the C*-algebra isomorphism such that

Px0 - Ko(A) — Ko(B)

coincides with the p in the statement. Define

¢ T(B) — T(A4)

as 9*(7p)(a) = T(p(a)) for all a € A and 75 € T(B).

Note that a C*-algebra with tracial rank zero must have real rank zero. We can now claim

that for every a € C*(Z, X, )5 and 75 € T(B) given by pp X v x v,

(Vo 0 Ja(@))(7B) = ¢ (7B)(a).

Consider

a=fRgROheE C(X XT XT)se C Aga

with f € C(X)sa,9 € C(T)sq and h € C(T)y,, and use 74 to denote ¢*(75). As a X Re, X Ry, is
rigid, there exists an o-invariant measure pa such that 74(a) = (ua x v x v)(E(a)), with E being
the conditional expectation from A to C(X x T x T) and v being the Lebesgue measure on the

circle. It follows that (v, 0 jo(a))(78) = Ta(a) = pa(f) - v(g) - v(h).
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As for ((pa, © jg o x)(a))(7s), we know from the definition that

((pag o dpox)(@))(7) = Ta(X(f ®g® ) = (uB X v X V)(X(f ® g ® h)).

Recall the definition of y. We have

(1B x v x 0)(X(f ® g @ h)) = up(foo™") v(g) - v(h).

If we can show that up(foo™1) = ua(f), then it follows that

(B xvxv)(x(f®g®h)) =palf) v(g) v(h) = (ka xvxv)(f®g®h),

and we can then get

Yo © Ja = pay ©jsoxon C(X x T2)sa.

We will show that for all f € C(X,Z) and pa, up as given above, we have ug(foo™!) =

pa(f). 1If that is done, noting that the C-linear span of C(X,Z) is dense in C(X)sa, we get
up(foo ™) = pa(f) for all f e C(X).

According to our notation, for g € C(X), we have

pa(g) = (pa x vxv)(g®idr ®idr)
= 74(g ® idr ® idy)
= ¢*(75)(9 ® idr @ idy)

= 715(p(g ® idr ® idt)).

According to digram (IV.2) in the proof of Lemma IV.1.4, we have the commutative
diagram

Ko(C(X)) o Ko(C(X)) (IV.3)

’ i
T l l‘"ﬂ

Yo

Ko(C*(Z, X,a)) —— Ko(C*(Z, X, ) ,

where C*(Z, X,a) and C*(Z, X, ) are the crossed product C*-algebras of dynamical systems
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(X, «) and (X, B) respectively, o, @o are order preserving isomorphisms, and @ agrees with x as

a map from C(X,Z) to C(X,Z).

By the proof of Lemma 1V.1.4, for all f € C(X,Z), if we identify C(X, Z) with Ko(C(X)),
we get

Po(f)=foo .

From the commutative diagram (IV.3), we can conclude that (although we cannot claim

that o(f ® idr ® idy) = x(f) ® idr ® idy)

T8(p(f ® idr ® idr)) = 78(x(f) ® idr ® idy).

As x(f) = f oo™}, it follows that

pa(f) = (pa x v xv)(f ®idr ®idr)
=74(f ®idr ® idy)
= ¢"(78)(f ® idy ® idy)
= 7p(p(f @ idr ® idy))
= 78(x(f) ®idy ® idry)
= pB(x(f))

= pp(foo™?).

Now we have that pa(f) = ug(foo™!) for all f € C(X,Z). Note that the C-linear span
of C(X,Z) is dense in C(X), we get

pa(f) =pp(foo ) forall f € C(X)sa.

As both dynamical systems a x Re; x Ry, and 8 x Rg, x Ry, are rigid, by Proposition
I11.2.3, we have TR(A) = TR(B) = 0. According to Corollary IV.1.3, these two dynamical systems

(X xTxT,axRe xRy,) and (X x Tx T, 8 xRe, xRy, ) are C*-strongly approximately conjugate.

O
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IV.2 WEAK APPROXIMATE CONJUGACY

For minimal homeomorphisms o x Re; X Ry, and 8 x R, x Ry, the following lemma shows
that whether they are weakly approximately conjugate or not is determined by o and 3 only, and

has nothing to do with R¢, and R, for i =1,2.

Lemma IV.2.1. Let (X, &) and (X, 5) be two minimal Cantor dynamical systems. For continuous
maps €1,&2,m,M2: X = T, (X x TxT,axRe, xR,y ) and (X x T X T, 3 x Re, X Ryy,) are weakly

approzimately conjugate if and only if (X, a) and (X, 7)) are weakly approzimately conjugate.

Proof. The “if” part:

For every € > 0, we will show that there exists o, € Homeo{X x T x T) such that

dist(o, oo ot B) < e.

As (X, f) is a minimal Cantor dynamical system, there exists a Kakutani-Rokhlin partition
{Xok:1<s<n,0<k<h(s)}

such that ii(s) > 5/e, and diam (X5, ;) < €/5, where diam(X ;) is defined to be sup, ¢ x, ; dist(z,y).

For any two clopen sets X, ;, and Xj, j, in the Kakutani-Rokhlin partition, there exists
sy j1is2,5e > 0 such that if z,y € X, ;|| Xs,,5, and dist(z,y) < ds, j,;50,52, then either z,y €

Xslvjl orz,ye stsjz'

Let § = mind; ;4 5, where X ; and X, ; traverse through all pairs of distinct clopen

sets in the Kakutani-Rokhlin partition above.

As (X, a) and (X, 8) are weakly approximately conjugate, there exists v, € Homeo(X)
such that

dist(y o a0y~ !(z), B(z)) < 6.

According to the definition of §, it follows that for every X, ; in the Kakutani-Rokhlin partition
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above, we have

Yoa&@o 7—1(Xs,j) = ﬂ(Xs,j)-

Without loss of generality (replacing o with v o a0 y~!), we can assume that « and f
satisfies

a(Xs,j) = ﬂ(Xs,j)'

Identify T with R/Z, and define 7 by m: R — R/Z,t — t + Z. For all x € X, define
h(z) = 0. For x € X with 0 < k < h(s), define

k
= (& &)@ (@)

As €& and & are both in C(X,T), it follows that the above defined fy is a continuous function

from X to T.

For z € X, 1, define

g1(z) = D _ (62 — &) (@7 (" 7H(@))).

It is also clear that g; € C(X, T).

As X is totally disconnected, we can divide X into I_Jf:’: 1 Xk, with every Xy being a clopen
subset of X satisfying dist(h(z), h{y)) < ;11 for z,y in the same X;. For ¢ |x,, we can lift it to

continuous function Gy, : X — [0 — §, 1+ %] satisfying g1 |x, =m0 G .

Define G1: X — R by setting G1(z) to be Gy x(z) if € Xj. It is then easy to check that

G is a lifting of ¢g; satisfying

1 1
g =70G andG’l(:c)E[O—Z,l—}-Z] for all x € X.

For x € X, i, define
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Similarly, define fo(z) =0if x € X, o and
k
Z (12 —m) (a7 (z))
=1

for x € X, with 0 < k < h(s). Define
h(s)
Z M2 —m) ( (ah(s)—k(m))) :

As X is totally disconnected, we can find a lifting G2 € C(X,R) such that

1 1
g2 = moGy and Ga(z) € {O—Z,l—i-ﬂ

forall z € X.

For x € X, i, define

SQ(JL’) = fz(z) — % + Z.

For the s; and s; we have defined, it is easy to check that they are continuous function from X to

R/Z. According to our identification, we can regard s; and s; as functions in C(X,T).

We will show that (idx x Rs, x R,,) will approximately conjugate o x Re, x Ry, and

3 %X Re, X Ry,

For every (z,t1,t2) € X x T x T, we have

(ide x Ry, X Rsy) 0 (@ X Re, X Ry,) 0 (idy X Rg, X Ray) "z, 11, £2)

= (idg X Re, X Ray) 0 (@ X Re, X Ry )(@,t1 — 81(x), t2 — $2(x))

= (ids x Rs; X Rg,)(a(z), t1 — s1(x) + &i(2), t2 — s2(z) + m(z))

= (a(z).t1 + &1(x) — s1(x) + s1(a(x)), t2 + m(x) — s2(z) + s2(a())),

and it is clear that

(B x & x ma)(x,t1,t2) = (B(x), t1 + E2(x), t2 + n2(T)).
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As a(X,,;) = B(X;,;) and diam(X; ;) < /5, we have dist(a(z), B(z)) < /5 for all z € X.

Consider the distance between 1 + &1 (z) — s1(z) + s1(a(z)) and & + &(z). We get

11+ &1(2) = s1(z) + s1(ale)) — (b + &(2)] = [s1(a(z)) = si(z) + &i(z) — &2()].

According to the definition of sy, if € X, »(s) (that is, z is on the roof), then

h(s)
si(z) = Z(fz — &) (@7 (x)) — Gi(=)
}Jl(s) ' h(s) A
= Z(fz ~ &) (e (x)) - Z(fz —&)(a™ ()
j=1 §=0
= —(§2 — &) (=)
= 0.

We know that s; (a(z)) = 0 as (a™"®))(z) € X, 0. It is then clear that
|s1(a(z)) — s1(x) + &1(x) — &a(x)| = 0

if z is in the roof set.

If z is not in the roof, in other words, for z € X,  with 0 < k < h(s) — 1, we have

Gi(z

s1(a(e)) = s1(a) = (6 - )) ~ 2.

As Gi(z) € [0 — %,l + 211—] for all z, and we have h(s) > 5/¢ for all s, it then follows that
[s1{a(z)) — s1(x) + &1(x) — &x(2x)| < 2¢/5 for all x € X.

Similarly, we have

[t2 + m(2) = s2(2) + s2(a(z)) ~ (b2 + m2(2))| = [s2(e(2)) — s2(z) + () — M2(2)]
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and

|se(a(z)) — s2(x) + m1(z) — n2(z)| < 2¢/5 for all z € X.
So far, we have proved that

dist ((id; x Rs, X Ryy) 0 (@ x Re; X Ry ) 0 (idy X Ryy X Ry, )71, 8 x Re, x Ryy,)
<e/b+2e/5+2¢/5

= E.

As we can construct such conjugacy maps for all € > 0, it follows that o x R¢, x R, is weakly

approximately conjugate to 3 x Re, x Ry, if « is weakly approximately conjugate to 3.

The “only if” part.

If a sequence of o, in Homeo(X x T?) approximately conjugates & x Rg, X Ry, to 8 x
Re, X Ry, as X is totally disconnected, we can write o, as o X ¢, with v, € Homeo(X) and

©: X — Homeo(T?) being a continuous map.

Let P: X x T? — X be defined by P(x,(t1,t2)) = z (the canonical projection onto X).

We can easily check that
P((oy 0 (ax Re, X Ry ) 00, (2, (t1,2))) = (vn 0o a0y, P ){z).
As (0, 0 (@ X Rg; x Ryy) 00,7t) — B X Re, X Ry, we have
P({ono(axReg x Ryy) ooy )z, (t1,t2))) — P((B % Re, X Ry )(z, (t1,2))),

which then implies that

(Yn oao'y;l_l)(x) — f(z) for all z € X.

We have finished the proof of the “only if” part.
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IV.3 APPROXIMATE K-CONJUGACY

From Lemma IV.2.1, we know that the if and only if condition for a X R¢; x Ry, and
8 x Re, x Ry, to be weakly approximately conjugate is that ¢« and § are weakly approximately

conjugate.

One might be wondering whether we have weak approximate conjugacy between o x R¢, x
R,, and # X R¢, x R,;,, can we expect to have the isomorphism between C*-algebras C*(Z, X x

TxT,axRe xRy )and CHZ, X x T xT,8xRe, xRy, )?

Generally speaking, weak approximate conjugacy is not enough to imply that the
corresponding crossed product C*-algebras are isomorphic. Examples can be found in [M1], [LM1]

and [LM3].

As guessed by Lin in [L.M1], if we strengthen the definition of weak approximate conjugacy
{in the sense that those conjugacies will induce an isomorphism of K-data of these two crossed
product C*-algebras), this might be equivalent to the isomorphism of two crossed product

C*-algebras.

That “strengthened” version of weak approximate conjugacy is called approximate
K-conjugacy. Before the definition of approximate K-conjugacy is given, the definition of

asymptotic morphism will be given and a technical result needs to be mentioned.

Definition IV.3.1. A sequence of contractive completely positive linear maps {¢n} from C*-algebra

A to C*-algebra B is said to be an asymptotic morphism, if

lim ||, (ab) — @n(@)pn(b)|] = 0 for all a,b e A.

Proposition IV.3.2. [Ling]

Let (X, a) and (X, () be two dynamical systems. If there exists a sequence of homeomorphisms
on: X — X such that lim,_,o dist(cp 0o @001, B) = 0, theﬁ for a sequence of unitaries {z,} in
A, with

m [zna(f) = da(F)zall = 0 for all £ € C(X),
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there exists a unital asymptotic morphism {©S} from Ap to Ay such that
lim ||92(ug) — uazn| = 0 and
nh_lgonwg(]ﬂ(f)) —Ja(fo Un)n =0
for dll f € C(X).

Proof. This is Proposition 3.1 in [Lin4]. The main ingredient in the proof is to use weakly
approximate conjugacies to construct a C*-algebra homomorphism from Ag to [[7° Ao/ BT Aa,

and apply the lifting property of completely contractive positive linear maps.
It works like this:

Let 7: [[7° Aa — €D}° As be the quotient map. Define

\I/:Ag—»ﬁAa/éAa
1 1

by setting
\I’(],@(f)) =m({ja(foon): n€N}) and ¥(ug) = m7({uazn: n € N}).

To show that ¥ is a well-defined homomorphism, we just need to check that

[(tazn)" - Jalf 0 on) - (uazn) = Jalf o foon)| — 0.

As dist(o, oo 1, B) — 0, we have

nli—l}go”(uazn)* “Jal(foon) (Uazn) — Ju(foBooy)| = nh—»néo”f oopoa— fofooy| =0

Thus U: Ag — [[]° Aa/ DT Aa is a C*-algebra homomorphism.
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Consider
[ Aa

lw

Aﬂ H(l)o Aa/ EBTO Ay

v

As Ag is amenable, according to [CE, Theorem 3.10], there exists a sequence of contractive

completely positive linear maps ¢?: Ag — A, such that

T({on(b): n € N}) = (b) for all b € Ag.

As ¥ is a homomorphism, it follows that
lingo”a,ofL(ab) — o (a)ps(b)|| =0 for all a,b € Ag,
-

which indicates that {p2: Ag — A, :n € N} gives a unital discrete asymptotic morphism.

Now we can give the definition of approximate K-conjugacy between two dynamical

systems (X, a) and (X, 3).

Definition IV.3.3. For two minimal dynamical systems (X, a) and (Y, 8), with X and Y being
compact metrizable spaces, we say that (X,a) and (Y, ) are approzimately K-conjugate if there

exist homeomorphisms o, X =Y, 1,0 Y — X, and an isomorphism
p: Ki(C™(Z,Y,B)) — Ki(C™(Z, X, )
between K -groups such that
onoaoogl — 3, TnoﬂOTn“l - a,

and the associated discrete asymptotic morphisms ¥,: B — A and v,: A — B induce the

1

isomorphisms p and p~* respectively.
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Remark: According to Proposition 1V.3.2, the weak approximate conjugacy maps will induce
asymptotic morphisms. But it is not generally true that the asymptotic morphisms will induce
a homomorphism of Ky and K; data. In Definition IV.3.3, those approximate conjugacies must not
only induce a pair of homomorphisms between K;(A) and K;(B), in addition, these homomorphisms

must be a pair of isomorphisms that are inverses of each other.

For the classical case of minimal Cantor dynamical systems, it is shown in [LM3] that two
Cantor minimal dynamical systems are approximately K-conjugate if and only if the corresponding

crossed product C*-algebras are isomorphic.

For the case of (X x T, & x Re), with o € Homeo(X) being minimal homeomorphism and

€: X — T being a continuous map, similar results are obtained in Theorem 7.8 of [LM1].

Based on Theorem 1V.1.5 and Lemma IV.2.1, we will give an if and only if condition for

approximate K-conjugacy between a X Rg; x Ry, and 3 x Re, X Ry,

Theorem I1V.3.4. Let X be the Cantor set. Let o, 5 € Homeo(X) be minimal homeomorphisms,
and let £,&,m,n2: X — T be continuous map such that both o x Rg, x Ry, and 8 x Re, x Ry,
are minimal rigid homeomorphism of X X T x T (as in Definition I11.2.2). Use A to denote
the crossed product C*-algebra corresponding to the minimal system (X x T x T,a x Re; x Ryy,),
and B to denote the one corresponding to (X x T x T, x Re, X Ryp,). Use K%(X, ) to denote
C(X,Z)/{f—foa"': f € C(X,2%)} and K°(X, B) to denote C(X,Z)/{f—foB7': f € C(X,Z%)}.

The following are equivalent:
1) (X xTxT,axRe xRy, ) and (X xTxT,8xRe, xRy, ) are approzimately K-conjugate,

2) There is an order isomorphism p: Ko(B) — Ko(A) that maps K°(X,8) to K°(X, a).

Proof. 1) = 2):

If (X xTxT,axRe xRy),) and (X xTx T, FxRe, xRy, ) are approximately K-conjugate,
according to the definition of approximate K-conjugacy (Definition IV.3.3), there exists o, €

Homeo(X x T x T) such that

dist(ap o (@ x Re, X Ry )00t B x Re, X Rypy) — 0,
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and the discrete asymptotic morphism induced by {o,: n € N} will yield an isomorphism from

K.(B) to K.(A).
That is, there exists an isomorphism
do: (Ko(B), Ko(B)+, 18], K1(B)) — (Ko(A), Ko(A)+, [1a], K1(4)).
Define ¢ to be the restriction of ¢o on Kp(A). We just need to show that ¢ maps K%(X, ) to
KX, o).
According to the Pimsner-Voiculescu six-term exact sequence (as in the proof of Proposition

I11.2.1), we have

(J8)o(C(X x Tx T)) = KX, 8) = C(X,Z*)/{f - foa™t: f € C(X,Z%)}.

As a x Rg, X Ry, and 8 x Rg, x Ry, are approximately K-conjugate, for given projection

p € M (B), there exists N € N such that for all m,n > N, we have [po oy] = [poon] in Ko(A).

It is obvious that [p o g,] € (Ju)«(C(X x T x T)). Then we can conclude that the

isomorphism p induced by the conjugacy maps will map K°(X, 8) to K°(X, «).

2)=1):

It is easy to check that 2) implies the following commutative diagram:

Kyo(B) Ko(A)
(jﬁ)*oT Tw*o
KO(X,,B) KO(X,a).
leU(Xﬁ)

According to Theorem IV.1.5, the two minimal homeomophisms a x R¢, x R,, and 8 x Re, xRy,

are C*-strongly flip conjugate.

The map p above induces an order preserving isomorphism between K°(X,8) (which is
isomorphic to C(X,Z?)/{f — f o 87!}, with order described as in Lemma 11.2.9) and K°(X,a)

(which is isomorphic to C(X,Z?)/{f — f oa~1}, with order described as in Lemma 11.2.9). Note
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that

Ko(C*(Z,X,0)) = C(X,Z)/{g—goa': g€ C(X,Z)},

with

KO(C*(Z,X, a))+ = C(X7Z)/{g —4° aﬁl: g€ C(sz)»g = O}
It follows that there is an order isomorphism

P (Ko(C*(Z, X, 8)), Ko(C*(Z, X, 8)) 4, 1oz, x,8)])
— (KO(C*(Z7 X7 a))a KO(C*(Z’X’a))+, [10*(Z,X,oz)])'

According to Theorem 5.4 of [LM3], (X, @) and (X, ) are approximately K-conjugate. Thus they

are weakly approximately conjugate.

Tor any € > 0 and any finite subset 7 € C(X x T x T), as 8 is minimal, we can find

Kakutani-Rokhlin partition

P={X(s.k):s€81<k<H(s))

2
such that H(s) > 3{ for all s € S and diam(X (s, k)) < 15—6

As C(X x T} x Ty) is generated by
{1p,z1,22: D is a clopen subset of X, z; is the identity function on T},
without loss of generality, we can assume that

F={lxekrp2lxr: 22lxer: s €85,1 <k < H(s)}.

The fact that (X,a) and (X, 3) are approximately K-conjugate implies that there exist

{on € Homeo(X) : n € N} such that

gpnoaoag, s — [
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By choosing n large enough, just as in the proof of the “if” part of Theorem 1V.2.1, we get

(onoaoa, ) (X(s, k) = B(X(s,k)) for s € S,1 < k < H(s).

Without loss of generality, we can assume that

a(X(s,k)) = B(X(s,k)) for s € 5,1 < k < H(s).

As in the proof of “if” part of Theorem IV.2.1, there exist maps {idx x Ry, X Ra, }nen

such that

(idx X Rg, X Ry, )0 (@ x Reg, X Ry, ) o (idx X Ry, X Ry, )™ — (8 x R, X Ryy,),

with all the g,, h,: X — T being continuous functions as defined in the proof of Theorem IV.2.1.

We will show that the conjugacy maps {idx xRy, xRp,, : n € N} will induce an isomorphism

between K, (B) and K. (A).
The idea is like this:

We know that these two dynamical systemns a x Re, xRy, and fxRe, xRy, are C*-strongly
flip conjugate. Thus there exists 1,: B — A such that the following diagram approximately

commutes:

Yn

CX XTxT) —2" (X xTxT).

As we had assumed that (without loss of generality) a(X (s, k)) = 8(X (s, k)) for s € S, k =

1,...,H(s), the xn in the diagram above satisfies

dist(xn(z), z) < diam(X (s, k)) < e/M

for x € X(s,k). In other words, restricted on C(X x T x T), xyn, is close to the identity map.
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Note that {%,} are isomorphisms and [¢,,] = [¢n,] in KL(B, A) for m,n large enough. If
we can find W, € U(A) such that f oo, is close to Wry (f)W, in A, and Wiy (up)W, is close
to uaz, in A, where z, is a unitary element that “almost” commutes with C(X x T x T), then it

follows that the conjugacy maps {idx X Ry, x Ry, : n € N} will induce an isomorphism between

K.(B) and K,{A).
The complete proof is as below:

Let g1, 92, f1, f2 be as defined in the proof of Lemma IV.2.1, and let

Fr =10 Ix(spy fi Ix(s ) s €5, 1< k < H(s)}

We can further divide o= !(X(s,1)) into the disjoint union of clopen sets Y (s, 1), Y (s, 2),

..., Y(8,N(s)), and choose z;; € Y(s,7) such that
|f(z) = flzs ) <e/l6forall feF,1<j<N(s)seS

Let Gy, G2 be the same as the one defined in the proof of Theorem IV.2.1. That is, G is the lifting
h(s) h(s)

of g1(z) = Z({g—51)(a“j(ah(3)_k(m))), G is the lifting of go(x) = Z(ng—nl)(a“j(ah(s)—k(x))),

Jj=1 j=1
and Gi(z) € [0— %,1+ 7). As both G1, G are path connected to the zero function, it is clear that

o—127Gic/H(s)

[2i - Ly (s 9] = [2i - Ly (s,)]

in K1(A) for7=1,2 and k=1,2.

Let
tsj: Cly,; X TxT) — 1y, - A 1y,

¥

be the inclusion map. Let two homomorphisms
As,jy 6s,j : C(TZ) — C(le,j x T x T)

be defined by

Agj(f) =idyijy® f
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and

5S,j(f)(w7 Z1s Z2) = idYS.J (‘T) ’ f(zl : e'i27rG1(Is,j)/H(S),Z2 . eizﬂ-GZ(xSYj)/H(S))'

Consider the maps

Lsj 0 Ag gy ts 0055 1 C(T?) — ly, ;- A-ly, ;.
It is clear that these two maps are monomorphisms.
By Proposition 111.2.3, TR(A) = 0, and it follows that TR(1y,, - A -1y, ;) = 0.

As G4, Gy are contractible, we can claim that

[ts,5 0 Agj] = [ts,5 0 0s5] in KL(C(T?), 1y, - A- 1y, ,).

For every f € 1y, , - A- ly,,, and for every tracial state 7 on ly, , - A ly, ;, consider
T((ts,5 0 Do 5)(f)) and 7((es,5 0 d5,5)(f)). By Lemma II1.1.4, we can regard ly, ; - A ly, ; as the
crossed product C*-algebra of the induced minimal homeomorphism of ¥5 ; x TxT. AsaxRe xR,

Is rigid, it follows that the traces on ly, ; - A - ly, ; also corresponds to such measures like p X v,

with v being the Lebesgue measure on the torus.

Now we have

T ((ts,5 0 D5 5)(f)) = 7 (idy (5. ® f)
(Y (s,) - [ FlGar)) do

(¥ (s.3)- [

T2

=7 ((ts,5 ©0s,5)(f))-

¥ (Zl 2 C1(@s )/ H(S) oo €i27rG'2(:ts,j)/H(s)) dv

As TR(ly,, - A-1y,,) =0, [Ls:j oAy ;] = [1s,5 00,,;] and

(65,5 © Bs ) (F)) = 7((4s,5 © 05,5)(f))

for all 7 € T(ly,, - A+ ly, ;). According to Theorem 3.4 of [Lin3], the two monomorphisms

ts,;0 A ; and ¢, 068, ; are approximately unitarily equivalent. Thus there exists a unitary element
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vsj € by, - A+ ly, ; such that
[} 25 05,5 — zie” ZTEH N HEN s < e /(16K) forall s € S,1 < k < H(s),1 <5 < N(s).

N{s)
Let v, = Z Vsj- As Y51, Y5 2,..., Y N are mutually disjoint, we have
J=1

[08) 2 (@)L (x oyl — 26> E@IHE f()] | < €16+ Ke/(16K) +€/16

< ef4.

forall fe F1,5€ 5.

Let

Fo=FU {1Ys.j,Z/ilys‘j,zf1a~l(x(s,l)): feFi,se51<k< H(S)}

As a x R¢ x R;, is C*-strongly flip conjugate to o x R¢ x R, for any § > 0, and for the

Fo C C(X x T x T), there exists a C*-algebra isomorphism ¢: B — A such that

1¥(Js(f)) = Ja (NIl <6 and [[9p(uB)"ja(f)(uB) = jal(f o B)|| < for all f € Fs.

Note that 1x (), for s € S and 1 < k < H(s), are mutually orthogonal projections and
add up to 1p, and {Ixk: s € S,1 < k < H(s)} C Fp. According to the perturbation lemma
[Lin2, Lemma 2.5.7], by taking ¢ to be small enough, the fact that ||¢(js(f)) — jo(f)l < ¢ will

imply that there exists v € U(A) such that

v R (16K2) Y(uB)

and

v x5,V = lx(s.k) © B and |0 fv — f o Bl < e/(4K) for allf € Fy.
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H(s)
Define W = Z Z 1X(s,k)v‘kvfuk. Then we can check that
sES k=1

H(s) H(s)

W*W = Z Z 1)((5‘]9)’U_kvf’u,]g . Z Z 1x(s/,k1)v—k/1)§/lukl

sES k=1 €S k/=1
H{(s)
= Z Z (“_kvs._kvkl)((s,k)1X(s,k)v”kvfuk)
scS k=1
H(s)
S w e x eyt
s€S k=1
H(s)
=D D> w P lamixeayu”
s€S k=1
H(s)
= Z Z Lak(a=1(x(s,1)))
scS k=1
H(s)

= Z Z Ix (s,0)

s€S k=1

=14.

As TR(A) = 0, we have tsr(A) = 1. Thus W*W = 1, implies that WW™* =14. So far, it

is checked that W is a unitary element in A.

As

H(Uk)*zif(./l:)la“l(X(s,l))’uf — ZCEZW}CG":(Z)/H(S)f(l‘)la—l(x(s,l))H < 6/4

S

and

lv*fv— fop| <e/(4K) for all f € F, and for all f € F3,
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we have

H(sy) H(s2)

DD Wk MR | zilxer | D D Ix(sakn v 0GuM

$1€8 ki1=1 $2€8 k=1

W zilx (s W =

H(Sl) H(SZ)

k. —ky K kg ko k
Z Z U U U L k) | ZilX (k) Z 2 : Lx(og,ke)¥ Vg U
S1€S8 k=1 92€ S5 ko=1

TN TN
*

-k, —k, k -k, k, k
=u vy v 1x(s,k)z7;1x(s‘k.)1xs'k’u Vg U

—k, —k, k —k, k k
= U g 0 (2l x s k) VT VG

Reyarey UV (2l x s )) © BF) vEUF

ResaK)+e/a (2lx(s k) © 0,

where

O—("r,tl,tQ)

k
(m,h + Zfz (@7 H(B ")) — & (B77(2)) | — kGi(x)/H(s),

k
tot | Dom (T ETH@)) —m (57() | - kGu(@)/H(s) |

forz € X(s,k) withse€ Sand 1 <k < H(s).

Then it follows that

HW*Zilx(S’k)VV — (Zilx(s,k)) oo| < K(e/4K)+¢e/4 < e.

Similar to the proof of Theorem IV.2.1, we have

dist(c o (a x R, x Ry, )07, 8 X Re, X Rp,) < e.

Consider the map adW o 1, we have that

[(adW o ¢)(ja(£)) — Ja(f o o)l <€+
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If (adW o) maps up to usg or ua -y such that ||yf — fy|| < € for all f € F, then it
follows that the K-map induced by approximate conjugacy map o (restricted to JF) will coincide

with [adW o] € KL(B, A).

In fact, we can check that

W0 Wzl x (5, ) W OW =g euly 2l x (s ) Ua,

which then implies that ||yf — fy|l < € if we define y = u%(W*vW) € U(A).

As
(adW o) (up) = Wop(up)W ~¢/a6x2) W OW = uay,

we may claim that the K-map induced by approximate conjugacy map o (restricted to F) will

coincide with [adW o] € KL(B, A).

As C(X x T x T) is separable, by taking F to be large enough and € — 0, it follows that
the weak approximate conjugacy map ¢ will induce an isomorphism from K;(B) to K;(A), which

finishes the proof.
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CHAPTER V

THE CASES WITH COCYCLES BEING FURSTENBERG TRANSFORMATIONS

We had studied properties of dynamical systems and the corresponding crossed product
C*-algebras if the action on X x T x T is o x R¢ x R,,. That is, in the skew product, the actions

on the torus are just rotations.

If the actions on torus are Furstenberg transformations, do we have similar results? This
chapter studies weak approximate conjugacy between two such systems and the K; of such crossed
product C*-algebras (which might be different from the case in the previous chapter), and shows
that there are two types of such minimal dynamical systems that will yield different K-theory for

the crossed product C*-algebras.

A definition of Furstenberg transformation on T? is given below.

Definition V.0.1. 4 map F: T? — T? s called o Furstenberg transformation of degree d if there
exist @ € T and continuous function f: R — R satisfying f(z + 1) — f(z) = d for all z € R such
that (idenlifying T with R/Z)

F(ty, t) = (ty + 0,12 + f(t1)).

For the F above, d is called the degree of Furstenberg transform F, and 1s denoted by deg(F'). The
number d is also called the degree of f, und denoted by deg(f).
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V.1 WEAK APPROXIMATE CONJUGACY BETWEEN TWO FURSTENBERG
TRANSFORMATIONS

Use FT(T?) to denote the set of all Furstenberg transformations on T?. We will consider

the relationship between o x ¢ and 3 x ¥, with o, 8 € Homeo(X), and ¢,: X — FT(T?).

Proposition V.1.1. Let F,G be two Furstenberg transformations on T? (as defined above). If the
degree of F is m, and the degree of G is n, then F o G is still a Furstenberg transformation, and

the degree of F o G is m + n.

P’I“OOf, Let F(tl,tg) = (tl + 9,t2 + f(tl)) and G(tl,tg) = (tl + 5, to +g(t1)) It follows that

FoG(ty,ta) = F(ty + 8,ta + g(t1))

=(ty +0+6,ta+g(t1) + f(t1 +9)).

According to definition V.0.1, F' o G is a Furstenberg transformation.

As deg F = m and deg G = n, it follows that

gltr + 1)+ fta +146) — (g(t1) + f(t1)) = g(t1 + 1) — g(t1) + f(t1 +1+0) — f(t1)

=m-+n.

Thus the degree of F o G is m + n.

In this chapter, we identify T with R/Z. For t;,t2 € R/Z, we define the distance between
them by

dist(t1,t2) = min{|t; — t2 +n|: n € Z}.

The following observation will be used.
Proposition V.1.2. Let f,g € C(T,T), and define dist(f, g) = sup dist(f(¢), g(t)). Ifdist(f,g) <
teT
1/2, then deg(f) = deg(g).
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Proof. Suppose that dist(f,g) < 1/2 and deg(f) # degg.

Note that f—g € C(R/Z,R/Z) is of degree deg(f) — deg(g), which is not zero. According

to the Intermediate Value Theorem, there exists t € R and n € N such that

1F(&) —g(&) +n| =1/2.

It then follows that dist(f — ¢) = 1/2, contradicting with our assumption. So far, we have finished

the proof.

For two minimal homeomorphisms a X ¢ and a x ¢ (with ¢,9%: X — FT(T?)), a necessary
condition for weak approximate conjugacy between them (with conjugacy maps having cocycles in

Furstenberg transformations) is given:

Proposition V.1.3. Let a x ¢ and 8 x ¢ be two minimal homeomorphisms on X X T? with
0,9 X — FT(T?). If there exists v, X ¢, € Homeo(X x T?) with ¢,: X — FT(T?) continuous

such that (yn X ¢n) o (@ X ) 0 (v X ¢n) ™1 — B x 9, then
1) {vn: n € N} approzimately conjugates & to (3,

2) there exists N € N such that

deg(p(yn(2))) + deg(¢n(z)) = deg(p(z)) + deg(¢n(alz)))

foralln > N.

Proof. As (7, X ¢n) 0 (o x 9) 0 (Yo X ¢n) "1 — B Xx 9, we have

('Yn X ¢n) o (a X 90) © ('Yn X ¢n)_1(x, (t17t2)) - (ﬂ X 1,/))(1?, (tl,tQ))a

which is equivalent to

dist((vn X ¢n) o (@ X ©)(z, (t1,%2)), (B X ) o (vn X ¢n)(x, (t1,2))) — O.



114

Assume that ¢, 1, ¢, : X — FT(T?) are defined by
e(x)((t1,t2)) = (t1 + 61(x), t2 + fz(t1)),

P(x)((t1,t2)) = (t1 + O2(x), t2 + g (t1)),
¢n($)((tlat2)) = (tl + fn(x)at? + hn,z(tl))y

with fz, gz, he just like the function f in definition V.0.1.

Note that

(Yn X ¢n) o (o x @)(z, (t1,£2)) = (Y X @dn) 0 (a(x), (t1 + O1(x), t2 + f(t1)))

= (n(a(2)), (t1 + 01(2) + &n(a(z)), t2 + f2(t1) + hn,atz) (81))),
and

(B x 1) o (1 X du)(z, (t1,2))) = (B x ) (wn(), (t1 + £(2), t2 + ha(t1)))

= (ﬂ('}’n(l'))’ (tl + fn(m) + 92(711(-'1:))’ to + hn,x(tl) + g'y”(z)(tl)))'

It follows that dist(y,(a(z)), B(va(z))) — 0 and dist{(Hp (t1), Gnz(t1)) — 0, where

Hn.z(tl) == f:L (tl) + hn,a(:{r)(tl) and Gn,m(tl) = hn,x(tl) + g'yn(ar)(tl)'
Choose N € N such that if n > N. Then dist(Hp, :(t1), Gn,:(f1)) < 1/2.

As fz, hna(z), Pne and gy, (o) can be regarded as maps from T to T, we can identify H,
and G, as functions in C(T, T). According to Proposition V.1.2, it follows that for all n > N,

we have

deg(Hy..) = deg(Gp o).

Note that deg(fs) = deg(i2(z)), deg(gs) = deg(1(z)), and deg(fins) = deg(¢n(x)). We
then have

deg(p(z)) + deg(¢n(clz))) = deg(dn(x)) + deg(P(yn(2))),

which finishes the proof.
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V.2 K-THEORY OF THE CROSSED PRODUCT C*-ALGEBRA

For the minimal dynamical system (X xT?, ax ), let A be the crossed product C*-algebra.

We will use the Pimsner-Voiculescu six-term exact sequence to get the K-data of A.

We use K°(X,a) to denote C(X,Z)/{f — foa: f € C(X,Z)}. Note that deg(p(z)) €
C(X.,Z). Let m: C(X,Z) — K°(X,a) be the canonical projection, and use [deg(¢(z))] to denote

7(deg(ip(x))).

Proposition V.2.1. For the minimal dynamical system (X x T?,a x ©) with cocycles being
Furstenberg transformations, use A to denote the crossed product C*-algebra of this dynamical

system.

1) If [deg(p(z))] # 0 in K9(X, ), then

Ko(A) = C(X, Z)/{f - foa: fe C(X, 2} 0 Z

and

K1(A) = C(X,Z*)/{(f,9) = (f.9) o a — (deg(p) - (g0 a),0): fg € C(X,Z)} & Z°.

2) If [deg((z))] = 0 in K°(X, ), then

Ko(A) = C(X,ZH)){f — foa: f € C(X,2%)} & 2*

and

Ky (A) = C(X,2Z3) {(f,9) = (f,9) 0 a~ (deg() - (90 @),0): f,g € C(X,Z)} & 2,



116

Proof. According to the Pimsner-Voiculescu six-term exact sequence, we have

JA w0

id—(axw)s0
-

Ko(C(X x T%) Ko(C(X x T?) Kg(A)

| |

K (A) o K, (C(X x T?) A (axe) K, (C(X x T?).
It then follows that we have the exact sequences
0 — coker(id — (@ x ¥)x0) —> Ko(A) ——= ker(id - (& X ¢)s1) — 0 (V.1)
and
0 — coker(id — (@ x ¢)x1) — K1 (A) —ker(id — (@ X ¢)w) —0. (V.2)

We will study K;(A) by looking at the kernel and co-kernel of id — (& X ¢)4; (for 1 =0,1).

From Lemma I1.2.1, we know that K;(C(T?)) is isomorphic to Z? for ¢ = 0,1. Note that
Ko(C(X)) =2 C(X,Z) and K;(C(X)) = 0. According to the Kiinneth Theorem,

Ko(C(X x T?) 2 Ko(C(X)) ® Ko(C(T?) @ K1 (C(X)) ® Ki(C(T?)) = C(X,Z%)
and
K (C(X x T?) 2 Ko(C(X)) ® K (C(T) €D K1 (C(X)) ® Ko( C(T?)) = C(X, 22),

We will identify both Ko(C(X x T?) and K, (C(X x T?) with C(X,7Z?).

According to Example 4.9 of [Phl], for every z € X,

p(z)w0: Ko(C(T?)) — Ko(C(T?))
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is the identify map, and ¢(z).1: K1(C(T?)) — K,(C(T?)) is given by

9 s | ™ 1 0 m m
W(I)*l Y/ Y/ . — . .
n deg(p(z)) 1 n deg(p(z)) - m+n

For (f,g) € C(X, 7% = K,(C(X x T?)), we can consider H € U(C(X x T?)) defined by
H(z,z1,20) = z{(x) . zg(z),

with z; € T;, and each T; is identified with the unit circle in the complex plane C. It is then clear

that this H corresponds to (f,¢) in K,(C(X x T?)).

Let o(z)((21, 22)) = (21 - €7@ 25 . 2% . 5(z,)) such that § € C(X,R) is continuous, and

s € U(C(T;)) is path connected to 1oy, for all z € X. We can check that

Ho(ax )z, 21, 2) = H(a(z), 2, - €27 2, zf)(z) - $z(21))

- (Zl .ei27r9(a:))f(a-(a:)) . (Z2 . 2111!(.7:) . Sz(zl))g(a(a:))‘

In U(C(X x T?)), it is clear that H o (a x ) is path connected to G, with G defined to be

G(.Z‘,ZI,Zz) - z{(&'(m)) . (22 . Ziu(l))g(oz(x)) _ Z{(a(z))+w(m)g(a(m)) . Zg(a(x)).

Noting that w(z) = deg(p(x)), it then follows that

@a1((f,9)(2) = (f(a(2)) + deglp(2)) - 9(z)), g(ex(2)))-

Now we will study ker(id—{axp).«). For f,g € C(X,Z), we use ([, g) to denote a function
in C(X,Z2). If (f,g) satisfies (id — (& x @.0))((f,9)) = 0, as p(z)uxo: Ko(C(T?)) — Ko(C(T?)) is
the identify map, we get

foa=f and goa=g.

The minimality of o then implies that both f and ¢ are constant functions in C(X,Z). So far, we

have shown that ker(id — (o X ¢).0) & Z2.
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As for ker(id—(ax ¢),,), if there exists (f, g) € C(X, Z?) such that (id—(ax ). )((f,9)) =

0, it follows that

f(z) = fa(z)) + deg(p(z)) - g(a(z)) and g(z) = g(e(z)).

As o is minimal, we conclude that g € C(X,Z) must be a constant function, say, g(z) = C for all

zeX.

To further study the kernel of id — (& x )., we will consider two cases.
Case One: |deg(p(x))] # 0in K%(X, a).

In this case, if g(z) = C # 0, we will show that there is no solution for

f(z) = fa(z)) + C deg(p(2)).

In fact, if such f € C(X,Z) exists, it follows that Cldeg(¢(z))] = 0 in K°(X,«). Similar
to the proof of Corollary I1.2.10, we can show that K°(X,«) is torsion free, which then implies

that {deg(p(2))] = 0, a contradiction.

If g(x) = 0, note that « is a minimal action on X. It is then clear that f(z) = f(a(z)) +

deg(p(z)) - g(a(z)) implies f(z) is a constant function.

So far, we have proved that if [deg(¢(z))] # 0 in K%(X, a), then

ker(id — (o X @)«1) 2 {(f,0): f=C for C € Z} 2 Z.

Case Two: [deg(p(z))] = 0 in K9(X,a)

In this case, there exists & € C(X,Z) such that h(z) — h o a(z) = deg(p(z)).

For (f,g) € ker(id — (@ x ¢)«1), if g =0, similar to Case One, we can still get that f = C
(with C € Z).
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If g = M # 0, then f need to satisfy

f(x) = fedz)) + M deg(p(2))-

If there are two functions fi, fo € C(X,Z) satisfying
fi(z) = filalz)) + M deg(p(x)) for i =1, 2,

then it follows that
(fi = f2)(@) = (fL = f2)(a2)),
which implies that f; — fo is a constant function.

According to our assumption, there exists h € C(X,Z) such that h(z) — h o a(z) =

deg(p(x)), it is clear that Mh(z) — M - ho alz) = M deg(p(z)).

It then follows that any f € C(X,Z) satistying f(z) — f oa(z) = M deg(y(z)) must be in
(M- h+N:N ez}

So far, we conclude that
ker(id — (& x ¢),1) = {(C,0): C € Z} | J{(M -h+ N,M): M #0,N € Z},

which is isomorphic to

{(M-h+N,M): M,N € Z}.

So far, we showed that in this case,

ker(id — (a X @)y) = Z2.

For either of the cases, as ¢(z)s«0: Ko(C(T?)) — Ko(C(T?)) is the identify map for all

z € X, we have

coker(id — (@ X @).0) = C(X,Z*)/{f — foa: f € C(X,Z%)}.
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For (f,g) € C(X,Z?), note that (o x @)1 (f,9)(z) = (f(a(z)) + deg(p(z)) - g(a(z)), g(e(z))). It
follows that

coker(id — (o x @)u1) = C(X,Z%)/{(f,9) — (f,9) 0 a — (deg(p) - (90 ), 0): f,9 € C(X,Z)}.

For either case, note that ker(id — (& x ¢).1) is a free Z-module. It follows from short exact

sequences V.1 and V.2 that

Ko(A) = coker(id — (a X ¢).o) @ ker(id — (@ X ©)41)

and

K1 (A) = coker(id — (@ X @)4) @ ker(id — (@ X ¢)40).

For both cases, as we know the kernel and co-kernel of id — (& % ¢),; (for ¢ = 0,1), the

K-data of A follows easily, which finishes the proof.

V.3 RIGIDITY

Similar to the idea of rigidity as in Definition II1.2.2, we can define the rigidity condition

for the case that cocycles are Furstenberg transformations.

Definition V.3.1. Let (X x T?,a X ¢) be a minimal dynamical system with each ¢(zx) being a
Furstenberg transformation. Let u be an o X @-invariant probability measure on X x T2, It will
induce an a-invariant probability measure on X defined by m(u)(D) = u(D x T?). We say that
(X xT?, axp) is rigid if T gives a one-to-one map between the o X p-invariant probability measures

and the a-invariant probability measures.
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V.4 EXAMPLES

Several examples of rigid minimal dynamical systems (X x T?, a x ) are given, with ¢(z)

being a Furstenberg transformation for all z € X.

a) The examples of rigid (or non-rigid) minimal dynamical systems (X xTxT,axR¢ xR,;)
are definitely the examples of rigid (or non-rigid) minimal dynamical systems of type (X xT?, a:x ).

For example, Example I11.3.6 and Example III1.3.7 in Section III.3.

b) The example of a rigid minimal dynamical system (X x T? o x ), with ¢(z) being a

Furstenberg transformation for all x € X, and [deg(p(z))] # 0 in K°(X,a).

Let (T3,v) be a topological dynamical system on T®, with v defined by

2wl

(21, 22, 23) = (2167, 2122, 2223)

for some 6 € R\ Q.

According to Theorem 2.1 of [Furstenberg], the dynamical system (T3,v) is uniquely
ergodic. Then there is only one «-invariant probability measure on T3 (in fact, this measure

is the standard Lebesgue measure on T3).

Let (T, ¢) be a Denjoy homeomorphism of rotation number é. Let (X, «) be the minimal
Cantor dynamical system derived from (T, ) such that it factors through (T, Rg). In other words,

we have the following commutative diagram

=) x
X————X
T — =R, T

with 7: X — T being a surjective map.
Regard 7(z) as a unitary element in C (as m(z) C T), and define p: X — Homeo(T?)
by

o(x)(z1, 22) = (7(z)21, 21 22).
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It is then clear that the following diagram commutes:

axe

X x T2 X xT?
7 X id-2 l/ l‘nxid,:g
T3 P T3

According to Proposition I11.3.5, there exists a one-to-one correspondence between the invariant
probability measure of (T3,7) and that of (X x T?,a x ¢). Thus (X x T?,a x ¢) is an example of
rigid dynamical system with cocycles being Furstenberg transformations, and [deg(¢(z))] # 0 in

K9%X,a).
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