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CHAPTER I

INTRODUCTION

Superprocesses, originally studied by Watanabe [29] and Dawson [6],[7] were first

shown by Dynkin [9] to have a self-intersection local time (SILT). In particular, Dynkin

was able to show existence of the self-intersection local time for super Brownian motion

in JRd, d :s; 7, provided the SILT is defined over a region that is bounded away from the

diagonal. When the region contains any part of the diagonal, through renormalization,

the SILT for super Brownian motion has been shown [2] to exist in d :s; 3, and further

renormalization processes have been found to establish existence in higher dimensions by

Rosen [22] and Adler & Lewin [1]. In regards to non-Gaussian superprocesses, the SILT

has been shown to exist for certain a-stable processes by Adler & Lewin [1], and more

recently, encompassing more a values, by Mytnik & Villa [20]. Of important note, as

the L2-limit of an appropriate approximating process, Adler & Lewin have shown the

existence of a class of renormalized SILT's (indexed on A > 0) for the super Brownian

motion in dimensions d = 4 and 5 and for the super a-stable processes for dE [2a,3a). As

one removes Dynkin's restriction of bounding away from the diagonal, a singularity arises

from "local double points" (that is t-ts x t-tt where t = s) of the process (cf. [2]). The true

self-intersection local time should not be concerned with such local double points, and

thus a heuristic approach to renormalization is naturally observed in the construction. It

should be noted that though this is the method used in [t] and [2], a quite different method

for renormalization was developed in [22]. Both methods are legitimate renormalizations,

and lead to existence in equivalent dimensions, but for this dissertation, due to the natural
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occurrence of the term involving local double points, the initial of the two methods will

be employed. Moreover, the real beauty of this constructive proof of existence, as seen in

[1] & [2], is the aforementioned approximating process is "Tanaka-like" in form. Thus the

limit gives a (quite simple) "Tanaka-like" representation for the renormalized SILT.

A major drawback in each of the previous superdiffusions is the requirement of

independent spatial motion. Existence as a weak limit of a branching particle system, and

uniqueness as the solution to a martingale problem, of the superprocess with dependent

spatial motion (SDSM), as a measure-valued Markov process with state space M(IR),was

shown by Wang [28]. It was later shown by Dawson, Li, & Wang [5] to exist uniquely

as a process in M(JR), and then extended by Ren, Song, & Wang [21] to M(JRd). G.

Skoulakis & R.J. Adler [26] suggested a different model incorporating dependent spatial

motion by replacing the space-time white noise of Wang's SDSM with a Brownian flow of

homeomorphisms from JRd to JRd , which was referred to as a Superprocess over a Stochastic

Flow (SSF).

As of yet, very little work has been done with regard to the self-intersection local

time for superprocesses with dependent spatial motion. Of important note is the work

of He [14], in which the existence of the SILT for a superprocess with dependent spatial

motion, similar to the model of Vyang but discontinuous, is shown to exist in one dimen­

sion as a probabilistic limit. Though this was known to be true, since the local time of

the superprocess with dependent spatial motion was known to exist in one dimension (cf.

[5]), He was able to give a similar "Tanaka-like" representation for the SILT. This disser­

tation will investigate the existence and further properties of a generalized SILT for the

d-dimensional SSF, where the generalization refers to the shift of the support of the Dirac

measure away from the origin, to a point U E JRd. Note that if X t is a Markov process,

then Yt ~ X t + u is a second, dependent Markov Process. The generalized SILT at u can

be realized as the intersection local time of the Markov processes X t and Yt.

This body of this work is constructed as follows. Beginning with needed back­

ground and definitions, we conclude the first chapter with a vital SPDE describing the
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superprocess over a stochastic flow as a solution to a particular martingale problem. As in

.the majority of proofs of existence of SILT for superprocesses, higher moment calculations

are needed. This is accomplished through the calculation of certain moment formulas

for the branching particle system, then limiting to the moments of the superprocess. A

similar method was first employed by Skoulakis & Adler [26] for the first and second

moments. Though their method worked well for smaller moments, the number of cases

to consider for any higher moments of the branching process are too many to make this

practical. To get around this difficulty, the moment formulas for the branching process

are found at one fixed point in time (for example, with the third moment, instead of cal­

culating IE [1-l~7)(¢dl-l~~)(¢2)1-l~;)(¢3)]' we would find IE [1-l~n)(¢dl-l~n)(¢2)I-l~n)(¢3)])' thus

greatly reducing the number of cases to consider. By taking limits, the resulting formulae

are then used to find the corresponding formulae for the superprocess. Finally, the Markov

property is used to extend to moments on varying time parameters. For any ¢ E CK'(lRd
),

taking the £2(IP) norm of

these moment formulae bound the above by C 1I¢11£l' with the constant C depending only

upon T.

Chapter three begins with defining the SILT, which leads to the desire for under­

standing the expression (C;,u, I-lsl-lt) , where C;,u is a CK' (lRd) sequence (in E), converging

in £1 to the Green's function. Since the SPDE of [26] is of the form (¢, I-lt/, this is em­

ployed, along with Ito's Lemma, to construct an Ito formula for (¢, I-lsl-lt/. This, along

with the £1 bound for the £2 norm

shows £2 convergence to the desired "Tanaka-like" formula.
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1.1 The Branching Particle System And The Superprocess

The SSF is constructed as the weak limit of an ffi,d branching particle system. Much

of the work that will follow involves using properties of the branching particle system, and

thus we will briefly review this construction. This section follows very closely to the work

of Skoulakis & Adler [26], and the reader is referenced to this work for further questions.

We will let ffi,d = ffi,d U {6.} denote the one-point (Alexandroff) compactification of ffi,d,

where 6. denotes the "cemetery". Vie extend measurable functions ¢ E B(ffi,d) to B(ffi,d)

by setting ¢(6.) = O.

Let N = {I, 2, ...} and set

and for any a = (aD, ...aN) E I, let lal = N, and a - i = (aD, ... , alai-i)' In addition, we

will write a "'n t exactly when t E [I~I, la~+l). Let M(n) be the number of particles alive

at time zero, where the spatial position of each particle is written as (x'l,x2, ... ,X1.r(n»)'

and define the initial (atomic) measure by

M(n)

tt6n
) ~ L: 6xi'

i=l

For each n E N, {Ba,n : aD ~ M(n), lal = O} is defined to be a family of inde-

pendent ffi,d Brownian motions, stopped at time t = n-1, with Ba,D = x~o' A recursive

definition then gives a tree: for each kEN, let {Ba,n : aD ~ M(n), lal = k} be a collec­

tion of ffi,d valued Brownian motions, stopped at time t = (Ial + 1)n-1, and conditionally

independent given the a-field generated by {Ba,n : aD ~ M(n), lal < k} and for which

B a,n _ Ba-1,n
t - t ,

In regards to branching, for n EN let {Na,n : aD ~ M(n)} be a family of iid copies
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of Nn , where Nn is an N-valued random variable such that

{
!, k = 2

IP'(Nn = k) = 1 _.

2' k - 0

Note that it is implicit in the above that the branching is assumed to be binary,

and that for each n E N,

IENn = 1,

JEN 2 - (lEN )2 = 1n n ,

and

Moreover, it is assumed that the families {Bc>,n : aD :; M(n)} and {Nc>,n : aD :; M(n)}

are independent.

The final component is that of the stochastic flow. Let b : JRd ---+ JRd and c : JRd ---+

M(d,m), where M(d,m) is the space of d x m matrices, mEN, satisfying the following:

(i) the global Lipschitz condition

Ib(x) - b(y)1 + Ic(x) - c(y)1 :; 0 Ix - YI,

for any x, y E JRd;

(ii) the linear growth condition,

Ib(x)1 + Ic(x)1 :; 0(1 + Ixl),

for any x E JRd;

(iii) for all i = 1,2, ... , d, j = 1,2, ... , m bi and Cij are bounded with bounded and

continuous first and second partial derivatives.
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Assume that t H F~t(x) is the solution of the stochastic differential equation

for all t 2: s and x E JRd , where W n is a JRm-valued Brownian motion, independent of

the families {B',.,n} and {Na,n}. This defines a unique Brownian flow of homeomorphisms

from JRd -+ JRd [26].

Set an = n- I and kn = kn- I . Then the tree of Brownian motions over the flow is

given by the family of processes ya,n, defined by: Let 0' ""'n kn for some kEN. Over the

time interval [0, kn +an], ya,n is defined to be the solution of the d-dimensional stochastic

differential equation:

Note that existence and strong uniqueness of the aforementioned solution is en­

sured due to the assumed conditions on band c. Now set yta,n = Yk:'~an for t > kn + an

and note that due to construction,

va,n _ va-I,n
Lt - Lt

We now define the stopping times Ta,n as follows: for each 0' E I, let

0,

min {i¥ :0 S; is; 10'1, Nali,n = O}, if this set is not 0 and 0'0 S; M(n),

1+\al otherwise
n '

The stopped tree of processes, with branching, is the family of processes xa,n
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defined by

The measure-valued process for the finite system of particles is

J.L~n)(U) = #{a "'"'n t : xf,n E U},
n

for U E B(JRd) , where for a topological space E, B(E) denotes the CT-field of Borel

measurable sets in E.

We define the corresponding filtration P by

for t E [kn, kn + an), k = 0, 1, ....

Let Ck(E) be the space of continuous functions on E having continuous partial

derivatives up to order k, and for ¢ E Ck(Rd ) let

For ¢ E C2 (JRd) define the second-order operators L and A by

1 d

(L¢)(x) = 2 L aij(x,x)8;j¢(x)
i,j=l

and

d

(A¢)(x,y) = L (Jij(X, y)8i¢(x)8j ¢(y) ,
i,j=l

(1.1)
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where

and

m

(jij(X, y) = L Cie(X)Cje(Y)
bl

X,Y E )Rd, i,j = I, ... ,d,

Furthermore, for each n E N, ¢ E C 2 ()RnXd) define the second-order operator L n

by

where

n d

(Ln¢)(x) = ~ :L :L afJ(x)8pi 8qj ¢(x),
p,q=l i,j=l

(I.2)

{

Ii = j
x = (Xl, ... ,Xn ), xp E )Rd, P = I,.",n, and 6ij =' . For any operator A on

0, i -I j

a Banach space H, such that A¢ = limHoC1{Tt¢ - ¢} for some semigroup Tt, we will

denote by V(A) C H the domain of A. That is

V(A) = {¢ E H: lim C1{Tt¢ - ¢} exists},
t-tO

where the limit is in the strong sense.
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Definition 1.1.1. The operator

d d

A = L Cl'.ijO;j + L /3i Oi
i,j=l i=l

is said to be uniformly elliptic if for each N ~ 1, there exists 'f]N > 0 such that

d N N d

L L ~fCl'.ij(Xp,Xq)~J ~ 'f]N LL~f,
i,j=l p,q=l p=l i=l

(1.3)

for all Xl, X2, ... , XN E jRd and (~L ~~, ...,~~)0(~f, ~§, ... ,~d)0" '®(~i", ~fY, ...,~f) E jRdxN.

Assumption 1. For the remainder of this paper, the assumption will be made that L is

uniformly elliptic.

Definition 1.1.2. For x E jRd and ¢ EVe V(A), we say that a jRd-valued process

X = {Xt : t ~ O} solves the (A, V, x) martingale problem if X o = x and

is a martingale for each ¢ E V. When V = V(A), we say that X solves the (A, x)-

martingale problem.

For each kEN and metric space E, we will denote by C~(E) the subspace of

functions in Ck(E) which vanish at infinity.

Lemma 1.1.3. If L n is defined as 1.2, then L n is the generator of the diffusion which

describes the joint motion of n particles in the aforementioned branching particle system.

Proof: For p = 1,2, ... , n let Yf = (}f,p,l, ... , }f,p,d) , where

m

dYl'i = bi(}f,P)dBf,i + L cik(}f,P)d~k, i = 1,2, ... , d.
k=l
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If yt = (y,?, "" yt) and ¢ E cg(lRnd), then Ito's Lemma implies

n d t n d t

¢(yt) - ¢(Yo) = LL1°Pi¢(Ys)dy!,i + ~ L L 1°PiOqj¢(Ys)d(yp,i, yq,j)s
p=l i=l a p,q=l i,j=l a
nd t ndm t

= L L 1°Pi¢(Ys)bi(Yf)dBf,i + L L L 1°Pi¢(Ys)Cik(Yt)dWt
k

p=l i=l 0 p=l i=l k=l a

1 n d ft
+ 2" L L in °piOqj¢(Ys)(5pq(5ijbi(Yf)bj(ynds

p,q=l i,j=l 0

1 n d m t

+ 2" L .L L 1OpiOqj¢(Ys)Cik(Yf)Cjk(~q)ds
p,q=l',]=l k=l

Since 0Pi¢' bi, and Cik are bounded for i = 1, ,." d, k = 1, .", m, and p = 1, ... , n, it

follows that J~ oPi¢(Ys)bi(Y!)dB~,iand J~ 0Pi ¢(Ys)Cik (Yt)dWt
k are martingales, and so

Therefore,

lim IE¢(yt) - ¢(Yo) = ~IE ~ ~ lim C 1 rt a~q(Ys)a .8 .¢(Ys)ds
t~O t 2 L....J L....J t~O in '] P, qJ

p,q=l i,j=l a
1 n d

= 2" L L afJ(Y'O)oPiOqj¢(Y'O)
p,q=l i,j=l

o

Lemma 1.1.4. For each nEW, there exists a transition function q'[' for the Markov

process yt = (Y?, ... , yt). Furthermore, {Qi : t 2 a}, defined by
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is a strongly continuous contraction semigroup on Co (JRd).

Proof: Since it is assumed that Assumption 1 holds for L, it follows that for each n E N,

L n Assumption 1 also holds. Theorem 5.11 in [8] then completes the proof.

Lemma 1.1.5. With qr and Qr, defined as above, the following are satisfied:

1. For any t > 0, x,y E JRnd, qr(x,y) > °

o

2. On the set {t > 0, x, Y E ]Rnd}, qr(x, y) is jointly continuous in t, x, y; qr(·, y) E

C 2 (]Rnd); and Otqr(x, y) = Lnqr(x, y).

lim r dy qf(x, y)¢(y) = ¢(x)
t--+O J'Rd

4. For any 0 > 0, qr(x,y) is bounded in the domain t + Ix - yl ~ o.

5. qr(x, y) ~ CPr:t(x, y).

10. (t,y) --t qr(x,y) satisfies

n d

Otqn = L L oioj(afJ(y)qn).
p,q=l i,j=l

(1.4)

(1.5)
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and

i, j = 1, ... , nd.

Where i, il, i2, II and C, Cl, C2 are positive constants and p~(x, y) is the joint transition

density of n independent d-dimensional Brownian motions.

Proof: This follows immediately from Assumption 1 upon L n (see the appendix (p.228)

of [8], or alternatively [12]). o
For any topological space E, let Mp(E) denote the space of finite Borel measures

on E, CE[O, (0) the space of continuous paths in E, and for any e E N, Ck(E) the

subspace of Cf'(E) for which the elements have compact support. Endmv Mp(E) with the

topology of weak convergence, that is, /-len) E Mp(E) converges to /-l E Mp(E) provided

limn-too \¢, /-l(n)) = (¢, /-l) for any ¢ E Cb(E), and let =} denote weak convergence. In

addition, for any /-l E Mp(E) and £ E N, denote by /-If' the product measure /-l x /-l x . x /-l E

Mp(Rf'Xd). Under these assumptions, and Assumption 1 upon L, we arrive at the following

theorem.

Theorem 1.1.6. Let /-l(n) be defined as above with /-l~n) =} /-la, then /-len) =} /-l, where

/-l E CMp(E.d) [0, (0) is the unique solution of the following martingale problem:

For all ¢ E Ci«Rd
),

(1.6)

is a continuous square integrable {Ft}-martingale such that Zo(¢) = 0 and has quadratic

variation process

Proof: See Theorem 2.2.1 in [26].

(1. 7)

o
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Assumption 2. For the remainder of this work, it will be assumed that {.La E MF(lRd )

has compact support and satisfies
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CHAPTER II

MOMENT FORMULAS

ILl Preliminary Results

As in most existence proofs for self-intersection local time of a superprocess, higher

moments of the superprocess are required (cf. [1], [9]). Through finding the first and

second moments of the branching process, and passing to the limit as n ----* 00, Skoulakis

& Adler [26] found the first and second moments for the SSF. A variation of this method

will now be employed to find higher moments of the SSF.

We denote by COO(E) the space of infinitely differentiable functions on E and by

C'K(E), the subspace of COO(E) of which the elements have compact support.

By a test function, we are referring to any ¢ E C'K(JRd ). We denote by D'(JRd )

the space of distributions on C'K(JRd ). Suppose u, v E Ltoc(JRd ) , the space of locally

L1 -integrable functions on JRd, and a = (0'1,0'2, ...ad) is a multiindex of order 10'1. We

say that v is the ath-weak partial derivative of u, written

provided

Ju(x)(DO:¢)(x)dx = (_1)10:1Jv(x)¢(x)dx

for all test functions ¢. Note that a differentiable function will have a weak derivative

that agrees with the functions derivative, and thus we will at times use a slight abuse in
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notation and write the weak derivative as

We denote by Sd the Schwartz space of rapidly decreasing functions on JRd. That

is,

The sequence ¢n converges to ¢ in Sd if

for any N EN (cf. [32]).

If i : CK(JRd) --+ Sd is the identity mapping, if L is a continuous linear functional

on Sd, and if

UL = L oi

then the continuity of i (Theorem 7.10 of [25]) shows that UL E V'(JRd). Again from

[25], L H UL describes a vector space isomorphism between the dual space Sd of Sd

and a subspace of D'(JRd). Distributions that arise as such are called tempered, and are

precisely those U E V'(JRd) that extend continously to an element in Sd ([25]). Thus, if UL

is identified with L, the space of tempered distributions is precisely Sd'

For any two functions ¢ : El --+ JR, 'l/J : Ez --+ JR denote by ¢ 0 'l/J the concatenation

of ¢ and 'l/J. That is, ¢ 0'l/J : E l x E2 --+ JR is the map defined by (Xl, xz) H ¢(Xl)'l/J(XZ).

Lemma 11.1.1. Let ¢ E Sex d, then there exists {¢n : n E N} such that

and

(ii) ¢n converges to ¢ in Sexd as n --+ 00.
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Proof: Taylor's Theorem implies the above holds for any ¢ E GK(lRd ) (cf. [23], [24]) .

From Theorem 7.10 of [25] there exist {¢n : n E N} C GK(lRfXd
) such that ¢n converges

to ¢ in Sd, and the result thus follows.

Given ¢ E B(lR(nH)xd), n, £, E N, define the projection 1ff by

where

For any function ¢ having as its domain lR7nxd , define <J)ij by

for i,j = 1,2, ...m - 1, i 1= j.

The next Lemma comes from Skoulakis & Adler [26].

Lemma II.1.2. Let ¢,¢1,¢2 E Gi«lRd
) and t > 0, then

and

with the convention that Qo¢ = ¢, n E N.

Proof: See [26], Proposition 3.2,1.

o

o
Before our moment calculations, some needed definitions and Lemmas will be
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presented. In what follows (S, d) will refer to a metric space, in which it is assumed S is

separable.

Definition 11.1.3. The Prohorov metric p on MF(S) is defined by

p(j.L, v) = inf{c > 0: j.L(A) :::; v(Ac) +c, VA E C},

for j.L, v E MF(S) where C denotes the family of closed subsets of S, and Ac = {x E S :

infaEA d(x, a) :::; c}.

Definition 11.1.4. Given j.L, v E MF(S), a marginal for j.L and v is a measure A on

MF(S x S) such that for any A c S, A(A x S) = j.L(A)v(S) and A(S x A) = j.L(S)v(A).

The collection of marginals corresponding to j.L and v will be denoted by M(j.L, v).

Lemma II.1.5. Let {j.L(n) : n E N} C MF(S), then a necessary and sufficient condition

for j.L(n) =? j.L E MF(S) is limn -+oo p(j.L(n), j.L) = O.

Proof: See Theorem 3.1 in chapter 3 of [10].

Lemma II. 1.6. For any j.L, v E MF(S), with M(j.L, v) defined as above,

p(j.L,v) = inf inf{c > 0: A{(X,y): d(x,y) 2 c}:::; c}.
AEM(J.l,v)

Proof: See Theorem 1.2 in chapter 3 of [10].

Lemma II. 1.7. For ¢ E Cb(S) define 11¢llbL by

II II I
' I¢(x) - ¢(y)1

¢ bL = sup ¢(x)1 V sup d( ) ,
x x~y x,y

and for j.L, v E MF(S) such that j.L(S) = v(S) = 1, let

11j.L - vllu = sup I(¢, j.L) - (¢, v)1 .
114>llbL=l

o

o
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then

Proof: See Ethier & Kurtz [10], p.150.

for all eE N.

Proof: Define

M = {¢ =@¢k: e~ 1,¢k E CK(lRd
) U {1},k = 1,2, ... ,e}.

k=l

From Proposition 4.4 of chapter 3 in [10], for any v, vCn) E MF(lRd ), n = 1,2, '" such that

lim / ¢, vCn») = (¢, v)
n-too \

for all ¢ E CK(lRd) , it follows that vCn) ::::} v. For any £ E N, since

limn-too (¢, (J-LCnl)f) = (¢,J-Lf), for any ¢ = ®~=l ¢k with ¢k E CK(Rd ) or ¢k E {I},

k = 1, ... ,£. Thus, for any ¢ = ®~=l¢k E M, limn-too(¢,(J-LCn»)f) (¢,J-Lf ), which

implies, by Proposition 4.6 of chapter 3 in [10], (J-LCn»)f ::::} J-Lf. 0

Definition II.lo9. The Skorohod space Ds[O,oo) on (S,d) is defined by

Ds[O, (0) = {x: [0, (0) -+ S : lim x(s) = xU), and lim x(s) £ x(s-) existS} .
s-tt+ s-tt-

That is, Ds[O,oo) is the space of all cadlagmappings from [0, (0) to S.
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Note that under the assumption that 8 is separable, Ds[O,oo) with the metric

defined by (5.2) in Chapter 3 of [10], is a separable metric space. Moreover, if (8, d) is

complete, Ds[O,oo) is complete (cf. [10] Theorem 5.6, Chapter 3). The next two Lemmas

are essential in the moment proofs for the superprocess.

Lemma II.1.ID. For k, £ E N, let'l/J : JR,+- x JRt' -t JR in Cb(JRd ) satisfy

sup 11'l/J(s,') IlbL < 00
sEJR~

and let p,o be an a.s. finite measure having compact support with P,6nJ
::::} P,o. Then

[ntJ-l Tk T2

nl~~ n-k L L ... L \'l/J(rn-l, '), (P,6
nJ )t')

Tk=k Tk-l=O q=O

Proof: We have

[ntJ-l Tk T2 rt rSk r S2

n-k L L ... L \'l/J(rn-l, '), (P,6
nJ )t') - io dS k io dS k - 1 '" io dS 1 \ 'l/J(s, '), p,&)

Tk=k Tk-l=O q=O

[ntJ-l Tk T2 [nt]-l Tk T2

:5: n-k L L'"L \'l/J(rn- 1
, '), (P,6nJ )t') - L L ... L \'l/J(rn-l, '), p,&)

Tk=k Tk-l=O q=O Tk=k Tk-l=O Tl=O

[nt]-l Tk T2 rt rSk r S2

+ n-k L L ... L \'l/J(rn-l,.),p,&) - in dS k
io

dS k - 1 '" in dS 1 \'l/J(s,.),p,&)
Tk=k Tk-l =0 q =0 a a

[ntJ-l Tk T2

:5:n-k L L "'L 1\'l/J(rn-\·),(P,6
nJ )t') - \'l/J(rn-\·),p,&)1

Tk=k Tk-l=O q=O

By assumption sups 11'l/J(s, ·)llbL < 00, and thus Lemma 11.1.7 implies the first of
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the above terms converges to zero. Since 'l/J is continuous and bounded, and f-l6 is finite

with compact support, it follows that the second term is also convergent towards zero. 0

Lemma II.l.ll. For any ¢i E Cj{(JRd
), i = 1,2, ... , e, eEN, 0 < t < 00,

Proof: Let f-l(n) = {fL~n) : t 2: O} be a branching process as defined above, let f-l be a

weak limit point of f-l(n) 1 and let {nd be the subsequence along which f-l(n k ) =? fL. From

Theorem 3.1, Chapter 3, of [10], there is a Skorohod representation for f-l,f-l(n k ), kENo

That is, there exist random variables X, Xk, kEN, defined on the same probability space,

such that X :b f-l, X k :b f-l(n k ), kEN, and X k -+ X a.s. as k -+ 00.

For X E DMF(JRd) [0, (0), define lP'X(¢i)-l to be the distribution of X(¢i) E

DJR [0,(0) then, by dominated convergence

}~~ sup_ / 'l/J, IT lP'Xk(¢i)-l) - / 'l/J, IT lP'X( ¢i)-l)
Ilvlll bL -1 \ t=l \ t=l

= lim sup IIE'l/J(Xk (¢1), ... , Xk(¢e)) - IE'l/J(X(¢1), ... , X(¢e)) I
k-4oo IlvlllbL=l

=0.

It then follows from Lemma II.1.7 that

or equivalently,
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in D~dO, 00). Therefore, from Theorem 1.1.6,

in D~e[O, 00). Thus, from Lemma A.3.9 [26], for i = 1,2, ... , J-L(cPi) is continuous. Therefore,

the open mapping theorem ([10], Corollary 1.9, Chapter 3) implies that

in JRl', which further implies that

in R Note that (cf. (3.1) in [26]) for any t ~ 0, lEJ-L~n)(I) = J-L~n)(I), and thus {J-L~n)(I) :

t ~ o} is an ;:r-martingale. It follows from Doob's maximal inequality ([16], Theorem

3.8) that for any T ~ 0,

S
. (n)
IIIce J-Lo =?- J-Lo,

and thus,

sup J-L~n) (1) < 00.
n2:1

Since J-L~n) (1) is the total mass process of the branching particle system, and is absent

of influence by the stochastic flow, [j.t~)(1W is equivalent in distribution to a total mass

process with an initial M(n).e particles, which implies lE[J-L~)(lW = [J-L~n)(lW. Thus,

suplE sup [J-L~n)(I)].e <00.
n2:1 OS:t$T

(ILl)
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Theorem 25.12 of [3] implies

and thus,

o

II.2 lVloment Calculations For The Branching Particle System

In Skoulakis & Adler the first and second moment calculations are done via first

finding

and

then passing to the limit as n -+ 00.

This works well when the number of cases to consider are small, but due to the

rapid growth in cases to consider as the moments increase, the following method will vary

slightly. The method first calculates
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and

for ¢ E CK'(JR3Xd ),1/J E CK'(JR4Xd
), t ~ 0, then passes to the limit before utilizing the

Markov property to find

and

where ¢i, 1/Jj E CK'(JRd
), 'i = 1,2,3, j = 1,2,3,4, and 0 < t1 :::; t2 :::; t3 :::; t4.

Note that

e
IE, (¢, (p,~n))e) = n-e L IE,¢(yt 1,n, ~Q2,n, ... , ~Q£,n)IE,n1Qi ,n(t), (II.2)

Q1 ~nt,.. ·,cx£~nt i=l

where 1Qi ,n(t) is the indicator on the event that the particle Cti is alive at time t. Thus,

for the third moment, if Cti "'n t, i = 1,2,3, and N = [tn], we will have the following cases

to consider:

(I) Each particle resides on its own tree.

Figure 1: Third Moment, Case 1.

_____________• Ct1

_----------__• Ct2

_----------__• Ct3
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(II) Two particles reside on one tree, and the third particle on its own tree. Thus, two

particles share a common ancestor /3 with 1/31 = r, r E {O, 1, ... , N - I}.

Figure 2: Third Moment, Case II.

____________• 0'1

(III) All three particles are on one tree. Thus there exists a common ancestor /31 for all

three particles, and a common ancestor /32 for two of the particles such that /31 is an

ancestor of /32, and 1/311 = 1'1, 1/321 = 1'2, with 1'1 E {O, 1, .. ·,1'2 - I}, 1'2 E {l, ... , N - I}.

Figure 3: Third Moment, Case III.

The cases for the third moment are thus exhausted. For the fourth moment, we

obtain:
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(I) Each particle resides on its own tree.

Figure 4: Fourth Moment, Case 1.

_----- • a1

_____________• a2

_____________• a3

_-- , a4

(II) Two particles reside on one tree, the other two reside on their own trees. Thus,

the two particles on the common tree share a common ancestor /3 with 1/31 = rand

r E {O, 1, ... , N - I}.

Figure 5: Fourth Moment, Case II.

_________---_. a1

_________- • a2

(III) Two particles reside on one tree, the other two on a second tree. Thus, the two

particles on one tree share a common ancestor /31 with 1/311 = r1, the two particles on the

second tree have a common ancestor /32 with 1/321 = r2, and r1, r2 E {a, 1, ... , N - I}.
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Figure 6: Fourth Moment, Case III.

(IV) Three particles reside on one tree, the fourth on its own tree. Thus, two of the

three particles share a common ancestor f32 with 1f321 = 7'2, and all three share a common

ancestor f31 with 1f311 = 7'1, such that 7'1 E {O, 1, ... ,7'2 -I} and 7"2 E {I, ... , N - I}.

Figure 7: Fourth Moment, Case IV.

______________+_. (t1

(V) All four particles reside on one tree. This gives the following two sub-cases:

(A) Two of the particles share a cammon ancestor f33 with 1f331 = 7'3, the other two

share a common ancestor f32 also with 1f321 = 7'2, all four share a common ancestor f31 with

1f311 = 7'1, f32 and f33 are both descendants of f31' and 7'1 E {O, 1, ... , (7'2 -1) 1\ (7"3 -I)} and

7"2,7'3 E {I, ... , N - I}.
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Figure 8: Fourth Moment, Case YeA).

(B) Two of the particles share a common ancestor (33, another particle shares a

common ancestor (32 with (33, all four particles share a common ancestor (31, and (31 is

an ancestor of (32 which is an ancestor of (33, with 1(311 = rl, 1(321 = r2, 1(33\ = r3 and

rl E {a, 1, ... ,r2 -I}, r2 E {I, ... ,T3 - I}, r3 E {2, ... , N - I}.

Figure 9: Fourth Moment, Case V(B).

We now proceed with the third moment calculations. Much of what follows will

be a consequence of the Markov property, and the reader is referred to Skoulakis & Adler

[26] for a similar calculation for the first and second moments. Note that if t 2: °and

r E N, we define N E Nand r(n) E [O,r] by

N=[nt]
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and

r
r(n) = -.

n

Recall,

3

lE(¢'(f1~n))3) =n-3 L lE¢(yt<:>1,n,Yt"'2,n,Yt<:>3,n)JEI11<:>i,n(t), (11.3)
<:>1 ~nt,<:>2~nt,<:>3~nt i=l

In case (I), given 0:1(0),0:2(0),0:3(0), we have

and

3 3

JE IT l<:>i,n(t) = IT JEl<:>i,n(t)

i=l i=l

= (~) 3N

-3=n

Since the number of possible triples (0:1,0:2,0:3) corresponding to the three initial ancestors

is equal to 23N , case (I) gives the contribution:

n-
3 L Q~¢(X<:>l(O)' X<:>2(0) , X<:>3(0))

<:>1 (0),<:>2(0),<:>3(0)=1
<:>i(O)#<:>j (0) ,ifej

L Q~¢(X<:>1(0)' X<:>2(0), X<:>3(0))

<:>1 (0),<:>2(0),<:>3 (0)=1

3

- n-
3 L L Q~¢(X<:>1(0)' X<:>2(0) , X<:>3(0))

i,j=l <:>1(0),<:>2(0),<:>3(0)=1
ifej <:>i(O)=<:>j(O)

_n-3 L Q~¢(X<:>1(0),X<:>2(0),X<:>3(0))
<:>1 (0),<:>2(0),<:>3 (0)=1
<:>1(0)=<:>2(0)=<:>3(0)
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3

_ IQ3,.;, (n))3) -1 '" I ffi Q3,.;, (n))2) -2 I 3,.;, (n))- \ t'+', !-Lo -n L...... \'¥ij t'+', !-Lo -n \<I> 12 <I>12Qt,+,,!-LO .
i,j=l
ih

Note that from Lemma IL1.S, (<I>ijQr¢, (JL6n ))2) and ( <I>12<I>12Qr¢, !-L6
n

)) converge to finite

limits and thus

n-3 L Qr¢(xC>1(0),XC>2(0),xC>3(0)) = (Qr¢, (JL6
n

))3) + 0(1), (IL4)
C>1 (0),C>2(0),C>3(0)=1

C>i(O)oIC>j(O),ih

where for any function 'l/J we write 'l/J = 0(1) exactly when limn-too 'l/J(n) = O.

For case (II), given 0'(0), ;3(0), and r,

and

3 _ (1)N (1)N (1)N-r-1
IE II 1C>i,n(t) - 2 2 2

i=l

= (~) 3N-r-1

For any a(O), ;3(0) ,and r, there are 2N·2N·2N-r-1corresponding (aI, a2, (3) which

result from binary branching over N steps, 2 . (~) possible arrangements for (aI, a2, (3),

and r E {O, 1, .... , N - 1}. We thus arrive at the following contribution from case (II):
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N-1 3

n-
3 L L L Q;(n)<1>ijQLr(n)¢(XQ (O)' XJ3(O))

r=O i,j=l Q(O),J3(O)=l
ih Q(O)#(O)

N-1 3

= n-
3 L L L Q;(n)<1>ijQ;_r(n)¢(XQ (O),XJ3(O))

r=O i,j=l Q(O),J3(O)=l
ih

N-1 3

- n-
3 L L L <1>12Q;(n)<1>ijQLr(n)¢(XQ (O))

r=O i,j=l Q(O)= 1
ih

N-1 3

= n-
1 L L (Q;(n) <1>ij QLr(n)¢' (p,6

n
))2)

r=O i,j=l
ih

N-1 3

- n-2 L L (<1> 12Q;(n) <1>ijQLr(n)¢' P,6
n
)) .

r=O i,j=l
ih

With regards to the above two terms, Lemma 11.1.10 implies that the second term

will vanish as n -+ 00. Therefore, case (II) gives

N-1 3

n-
3 L L L Q;(n)<1>ijQLr(n)¢(XQ (O), .TJ3(O))

r=O i,j= 1 Q(O) ,13(0)=1
ih Q(O)#(O)

N-1 3

= n-1 L L (Q;(n)<1>ijQLr(n)¢' (p,~n))2) + 0(1) (II.5)
r=O i,j=l

ih

Finally for case (III), given r1, r2, and ,81(0)

E,f.,(y:Q1 ,n y:Q2 ,n y:Q3 ,n) = JEJE [JE [,f.,(Y:Q1 ,n y:Q
2,n y:Q3 ,n) IF'. ]F'. ]

'f' t ,t , t 'f' t ,t ,t r2(n) q(n)

= ~ ,t JEJE [(<1>ijQLr2(n))(~~(~), y~(;;))I.r;:(n)]
t,)=l
ih
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and

For any Tl,T2, and ,61(0), there are 2N- r1 - l . 2. 2N - r2 - l . 2N - r2 - l . 2r2 - r1 ·2r1 +l

corresponding (aI, a2, (3) which result from binary branching over N steps and 2· (;)

possible arrangements for (aI, a2, (3). We thus arrive at the following contribution from

case (III):

N-l r2 3

n-
3 I.: I.: I.: I.: (QT1(n) <P12Q;2(n)-T1(n)<PijQLr2(n) ¢) (XjJ(O))

rFO T1 =0 i,j=l jJ(O)=l
i¥j

N-l r2 3

= n -2 I.: I.: I.: ((QTI(n) <P12Q;2(n)-TI (n) <PijQLr2(n)¢) ' fL~n)) . (11.6)
r2=0 TI =0 i,j=l

i¥j
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Consequently, from 11.4, II.5, and 11.6,

N-1 3

E(¢,fJr) =(Qr¢,(fJ~n))3) +n-1 2.: 2.: (Q;(n)ifJijQ~_r(n)¢'(fJ~n))2)
r=O i,j=l

iioj

N-1 r2 3

+ n-
2 2.: 2.: 2.: ((Qr1(n)ifJ12Q;2(n)-Q(n)ifJijQLr2(n)¢)' fJ~n)) + 0(1) (11.7)

r2=0 r1 =0 i,j=l
ifoj

In regards the fourth moment, if a1 (0), a2(0), a3(0), and a4(0) are given, case (I)

gives

and

which result from binary branching over N steps. We thus arrive at the following contri-

bution from case (I):

n -4 2.: Qt¢(X0;1 (0), X0;2(0) , XO;s(O) , X0;4(0))

0;1 (0) ,0;2 (O),as (0) ,0;4 (0)= 1
O;i(O) ioO;j (O),ifoj

= n-
4 2.: Qt¢(X0;1(0),X0;2(0), X0;3(0), X0;4(0))

0; 1(0) ,0;2(0) ,0;3 (0) ,0;4 (0) =1

- n -4 2.: (ifJijQt¢)( X0;1(0), X0;2(0) , XO;s(O))

0;1 (0) ,0;2 (0) ,O;s (0) =1

-4-n 2.: (ifJ i212 ifJid1 Qt¢) (X0;1 (0)' X0;2 (0)) - n-4 2.: (ifJ 12 ifJi2Jz ifJ i1J1 Qt¢) (X0;1 (0))

0;1(0),0;2(0)=1 0;(0)=1
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= (Q4¢, (f-L6
n

»)4) - n-1 ((fJijQi4J, (f-L6
n

»)3)

- n -2 ( (fJi212 (fJidl Qi¢, (f-L6
n

»)2) - n -3 ( (fJ12(fJi2j2 (fJidl Qi¢, f-L6
n
))

Again, from Lemma 11.1.8 all but the first term on the right hand side will vanish

as n ---+ 00, and thus the above implies

n-4 L Qi¢(XCLI(0),XCL2(0),XCL3(O),X0<4(O)) = (Q4¢,(f-L6
n

))4) +0(1).
CLI (0) ,CL2 (0),CL3 (0) ,CL4 (0)= 1

O<i(O)iCLj (0) ,ih

(11.8)

For case (II), given 0'1(0),0'2(0),13(0) and 7',

IE,/,(Y;CL I,n y;CL2,n y;CL3,n Y; CL4,n) = IEIE [,/,(Y;C>I,n y;0<2,n y;0<3,n Y;0<4,n) IF:!; ]
If! t ,t ,t , t If! t ,t , t , t r(n)

4

~ ~ '"' IE((fJ"Q4 ,/,)(YO<I,n yCL2,n y,B,n)- 12 L.J tJ t-r(n)1f! r(n) , r(n) , r(n)
i,j=l
iij

4

= 112 L (Q~(n)(fJijQtr(n)¢)(XO<I(0),XCL2(O)'X,B(0»)'
i,j=l
ih

and if for any distinct i,j E {1,2,3,4} we define i ' ,)' to be the exhaustive elements of

{1,2,3,4} \ {i,j},

= 2-(4N-r-1).

For any 0'1(0),0'2(0),131(0), and r, there are 24N - r - 1corresponding (0'1,0'2,0'3,0'4)

which result from binary branching over N steps and 2 . (~) possible arrangements for

(0'1,0'2,0'3,0'4), We thus arrive at the following contribution from case (II):
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N-1 4

n-4
. L L L (Q~(n)<PijQi_1'(n)¢)(X("I(0),XC>2(0),X{3(0))

1'=0 i,j= 1 C>1 (0),C>2 (0) ,{3(0)=1
ih C>1 (0)',iC>2 (O)pe(O)',i{3(O)

£=1,2

N-1 4

= n-
4

. L L L (Q~(n)<PijQL1'(n)¢)(XC>l(O)' XC>2(0) , X{3(O))

1'=0 i,j=l C>1(0)P2(0),{3(0)=1
ih

N-1 4 3

_n-4
. L L L L (<Pi2hQ~(n)<Pid1Qi-1'(n)¢)(Xc>(0),X{3(0))

1'=0 i1,j1=1 i2,12=1 c>(0),{3(0)=1
idh idh

N-1 4 3

- n-
4

. L L L L (<P12<Pi2hQ~(n)<Pid1Qi-1'(n)¢)(Xc>(0))
1'=0 i1,h=1 i2,h=1 c>(0)=1

idh idh

3

L (<Pi2hQ~(n)<Pid1 Qi-1'(n)¢' (06
n

))2)

1'=0 i1,h=1 i2,h=1
idj1 i2h2

N-1 4 3

_n-
3 L L L (<P12<Pi2hQ~(n)<Pid1Qi-1'(n)¢'(06n))).

1'=0 i1,h=1 i2,j2=1
idh i2',i12

N-1 4

= n-
1 L L (Q~(n)<PijQi-1'(n)¢, (06

n
))3)

1'=0 i,j=l
ih

N-1 4

-n-2 L L

Again from Lemma II.l.I0, all but the first term on the right hand side will vanish

as n -+ (X) and thus,

N-1 4

n-
4

. L L L (Q~(n)<PijQi_1'(n)¢)(XC>1(0),XC>2(0),X{3(0))
1'=0 i,j=l C>1 (0) P2 (0) ,(3(0)=1

ih C>1(0)',iC>2(0),c>e(0)i{3(0)
£=1,2

N-1 4

= n-1 L L (Q~(n)<PijQi-1'(n)¢' (06
n

))3) + 0(1). (11.9)
1'=0 i,j=l

ih

Cases (III) and (IV) will now be considered together. For case (III), given ,81(0),
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1E"'(y:C>:I,n y:C>:2,n y:C>:3,n y:C>:4,n) = 2IEIE [",(Y:C>:I,n y:C>:2,n y:C>:3,n Y:C>:4,n), < ITn ]
'f' t , t , t , t 'f' t , t , t , t , 7'1 7'2.rr2 (n)

4

- ~ " IEIE [(<P' .Q4 "')(yC>:il,n yC>:j',n yp'1,n) Ir: ]- 6 ,0 t] t-r2(n)'f' r2(n)' r2(n)' r2(n) q(n)
t,]=l
ih

4 3

= /2 L L 1E(<Pi2]2Q;2(n)-q(n)<Pil]IQLr2(n)¢)(Y~(~' y~(;:;)
il,]I=l i2,]2=1
i11"11 i2'P12

i2,12"'il
1 4 3

12 L L (Q;I(n)<Pi2]2Q;2(n)-rl(n)<Pil]1 QLr2(n)¢) (Xth(O)' X.B2(O))
il,]1 =1 i2,]2=1
ilhI i2h2

i2,]2",il

and,

4

IE IT 1C>:i,n(t) = (1E1C>:i,n(t)1C>:j,n(t)) (1E1c>:;I,n(t)1C>:j',n(t))
i=l

For case (IV), given a(O), ;)1(0), 7'1, and 7'2,

1E"'(y:C>:I,n y:C>:2,n y:C>:3,n y:C>:4,n) = IEIE [",(Y:C>:I,n y:C>:2,n y,C>:3,n y,C>:4,n)IFn ]
'f' t , t ,t , t 'f' t ,t , t , t r2 (n)

_~ ~1E1E[(<P"Q4 ",)(YC>:I,n YC>:2,n y.B2,n)lr:: ]- 12 .~ t] t-r2(n)'f' r2(n)' T2(n)' r2(n) n(n)
t,]=l
ih

1 4

= 48 L
i1,]1=1 i2,12=1
il"'11 i2"'12

i2=i1 or 12=i1
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3

L (Q;l (n) <Pi2h Q~2(n)-rl (n) <Pilil Qi-r2(n) ¢) (Xa(O) ' X,81 (0))'

i2,h=1
i2i-h

i2=il or h=il

and,

4 3

IE II lai,n(t) = TNIE II lai,n(t)

i=l i=l

Given two initial ancestors, there are 24N-T1-r2-2 possible trees, and a possible

2 . (~) arrangements for 0'1, 0'2, 0:3, 0:4 upon each tree (requiring r1 < r2) that result in

case(III). Furthermore, there are 24N-T1-r2-2 possible trees, and a possible 2· (i).@.(~)

arrangements for 0'1, 0'2, 0'3, 0'4 upon each tree that result in case(IV). It follows that the

contribution coming from the sum of case(III) and case(IV) is given by

N-1 r2 4 3

n-
4 L L L L L (Q;1(n)<Pi2hQ~2(n)-T1(n)<PidlQi-r2(n)¢)(Xa(0)'X,8(0))

r2=0 T1 =0 il,jl =1 i2,h=1 a(O),,8(O)=l
idjl i2i-h a(O)i-,8(O)

N -1 r2 4 3

= n-
4 L L L L L (Q;1(n)<Pi2hQ~2(n)-rl(n)<PidlQi-r2(n)¢)(Xa(0)'X,8(0))

r2=0 T1 =0 il,il =1 i2,h=1 a(O),,8(O)=l
idjl i2i-h

N -1 r2 4 3

- n-
4 L L L L L (<P12Q;1(n)<Pi2hQ~2(n)-rl(n)<Pidl Qi-r2(n)¢) (Xa(O))

r2=0 T1=Oil,il =1 i2,h=1 a(O)=l
idjl i2i-h

N-1 r2 4 3

=n-
2 L L L L (Q;1(n)<Pi2hQ~2(n)_rl(n)<PidlQi-r2(n)¢,(f.L~n))2)

r2=0 T1=0 il,il =1 i2,h=1
idil i2i-h

N-1 r2 4 3

_n-
3 L L L L (<P12<P12Q;1(n)<Pi2hQ~2(n)-T1(n)<PidlQi-r2(n)¢,f.L~n)).

r2=0 rl=O il,h=l i2,h=1
idjl i2i-h

Thus, again from Lemma II.l.lO, the second term vanishes as n --+ 00, and we
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have the contribution

N-1 T2 4 3

n-
4 L L L L L (Q;1(n)<I>i2hQ~2(n)-Tl(n)<I>id1 Qi-T2(n)¢)(XQ(0), Xt'(O))

T2=O Tl =0 i1,h =1 i2,h=1 Q(0),t'(0)=1
idh i2fh Q(O)ft'(O)

N-1 T2 4 3

= n-
2 L L L L (Q;1(n)<I>i2hQ~2(n)-Tl(n)<I>id1Qi-T2(n)¢' (/-L~n))2) + 0(1).

T2=0 T1=O i1,j1=1 i2,h=1
i1',h1 i2fh

(Il.10)

Considering subcase(V) (A) , given 7'1,7'2,7'3, and ,81(0),

JE "'(~7("l,n ~7Q2,n ~7Q3,n ~7C'4,n) = 2JEJE ["'(~7Q1,n ~7Q2,n y:Q3 ,n y:Q4 ,n). < > ITTl l
'f' It, It, It, I t 'f' It, It, t , t , 7'2 r 3 J T3 (n)

4

_ ~ ~ JE(<I> . .Q4 "')(yQ1,n y Q2,n yt'3,n)
- 6 L.J t) t-T3(n)'f' T3(n)' T3(n)' T3(n)

i,j=1
ifj

= ~.t JEJE [(<I>ijQi-T3(n)¢)(Y;.~(~), y;'~(~), y!s(~))I~(n)l
t,)=1
if]

4 3

_ ~ ~ ~ JE(<I>' . Q3 <I> .. Q4 ",)(yt'2,n yt'3,n)
- 12 L.J L.J t2J2 T3(n)-T2(n) tl)l t-T3(n)'f' T2(n)' T2(n)

i1,j1=1 i2,j2=1
idh i2fh

i2,hfi1

/2. t .t JEJE [(<I>i2hQ~3(n)-T2(n)<I>id1Qi-T3(n)¢)(Y~(~), y~(~)I.r;:(n)l
t1 ,)1 =1 t2,J2=1
idh i2fh

i2,hfi1

1 4 3

12 L L JE( <I> 12Q;2 (n)-Tl (n) <I>i2h Q~3(n)-T2(n)<I>id1 Qi-T3(n) ¢)(Y~(~))
i1,h=1 i2,h=1
idh idh

i2,hfi1

1 4 3

12 L L (QT1 (n) <I>12Q;2(n)-T1 (n) <I>i2h Q~3(n)-T2(n)<I>id1 Qi-T3(n)¢) (Xt'l (0))'
i1,h=1 i2,h=1
idh i2fh

i2,hfiI

and
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IEDIo"n (t) ~ IEIE [g 10 "n(t) I~ (n) ]

=lE {lE [lai,n(t)laj,n(t)I~(n) J ·lE [l ail ,n(t)laj',n(t) I.r;:(n)J}

=lE{lE [lE [lai,n(t)laj,n(t)I~(n)J l~l(n)]·lE [lE [lail,n(t)laj',n(t)1~2(n)] I~l(n)]}

= 2-(2N-2T
3-

2) . 2-(2N- 2T
2-

2)lE {lE [1 (r (n)) IF:: J.lE [1 (r (n)) IF:: ]}(33,n 3 q(n) (32,n 2 q(n)

Then for subcase(V)(B), given r1, r2, r3, and ,6'1(0),

lEA,(y,a1,n y,a2,n Y,a3,n y,a4 ,n) =lElE [A,(y,al.n Y,a2,n Y,a3,n y,a4 ,n) IF:: ]
'+' t , t ,t , t '+' t , t , t , t T3 (n)

4
_~ '" lE(1) ..Q4 A,)(yal,n ya2,n y(33,n)
- 12 ~ tJ t-T3(n)'+' T3(n)' T3(n)' T3(n)

i,j=1
i-fj

- ~ ~ lElE [(1)'Q4 A,)(ya1,n ya2,n y(33,n)IF:: ]
- 12 .~ tJ t- r3(n)'+' T3(n)' T3(n)' T3(n) T2(n)

t,J=1
i-fj

1 4

= 48 L
il,jl=1 i2,h=1
idjl idh

i2=il or h=il

3

L
i2,h=1
i2-fh

i2=il or h=il
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3

L (Qrl(n) <PIZQ;2(n)-rl (n) <Pi2h Q~3(n)-r2(n) <Pili! Qtr3(n)¢) (X,ih(O))'
i2,h=1
i2i'h

i2=il or h=il

and

~ 1 4 I l
lE l{ IQi,n(t) = lElE lD IQi,n (t) I.r;:(n)J

= 2-(N-n-
l )lE { I,ih,n(rl(n)) olE [lQi,n(t)lQj,n(t)lQil,n(t) I.r;l(n)] }

= 2-(N-r l -l)lE { I,i31,n(rl(n)) ·lE [lE [lQi,n(t)lQj,n(t)lQil,n(t) [~(n)] [.r;l(n)] }

Given one initial ancestor, there are 24N-n-r2-r3-3 possible trees, and a possible

(i) . (i) . (~) arrangements for aI, az, a3, a4 upon each tree (requiring rz < r3) that

result in case(V)(A). Furthermore, there are 24N-n-r2-r3-3 possible trees, and a possible

(i)·(i)·(~)-(i) arrangements for aI, az, a3, a4 upon each tree that result in case(V)(B). It

follows that the contribution coming from the sum of subcase(V)(A) and subcase(V)(B)
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is given by

N-1 T3 T2 4 3

n-
4 LLL L L L

T3=0 T2=0 T1=0 i1,j1=1 i2,h=1 a(O)=l
idj1 i2cFh

T3=0 T2=0 T1 =0 i1 ,j1 =1 i2 ,h=l
idj1 i2¥j2

(Q
<I>'Q2 <I> . . Q3 <I> . . Q4 ,(n))

q(n) 12 T2(n)-q(n) '2)2 T3(n)-T2(n) '1]1 t-T3(n)1J, J10 .

(II. 11 )

Therefore, from II.7, II.8, II.9, 11.10, and 11.11, we conclude this section with the

following Lemma.

Lemma II.2.1. Given ¢ E cl(JR3Xd
) and'lj; E cl«(lR4Xd

), for all n E N, t > 0, it follows

that

N-1 3

(i) IE (¢, (J1~n))3) = (Q~¢, (J16
n

))3) + n-1 L L (Q;(n)<I>ijQLT(n)¢' (J16
n

))2)

T=O i,j=l
i¥j

and

N-1 T2 3

+ n-
2 L L L ((Qq(n)<I>12Q;2(n)-q(n)<I>ijQLT2(n)¢), J16

n
)) + 0(1),

T2=0 T1 =0 i,j=l
i¥j

(1I.12)
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. N-1 4

(ii)JE(W'(IL~n))4) = (Qtw'(IL~n))4) +n-1 L L (Q~(n)<PijQLr(n)W,(IL~n))3)
r=O i,j=l

iij

N-1 r2 4 3

+ n-
2 L L L L (Q;l(n)<Pi2j2Q~2(n)-rl(n)<PililQLr2(n)W' (lL~n))2)

r2=Oq=Oil,jl=1 i2,h=1
i l lejl i2#i2

r3=O r2=O q=O il,jl =1 i2,j2=1
illejl i2leh

+ 0(1). (II.13)

Thus a formula for both the third and fourth moment of the branching process has

been found. With the exception of a some small technicalities to mention, the moment

formulae for the superprocess will follow almost immediately from Lemmas 11.1.10, II.l.ll,

and 11.2.1.

II.3 Moment Calculations For The Superprocess

Since the preliminary calculations necessary for this section have already been

worked out, we go straight to the moment formulae.

Lemma 11.3.1. Given ¢k, Wj E CK'(lR.d), k = 1,2,3, j = 1,2,3,4, for any t 2: 0, the

following hold:
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(IT.14)

and

(11.15)

Proof: To begin, note that Lemma 11.1.8 implies (J.L~n))£ =? J.L5 for any £ E N, and thus

the first term of the right-hand sides of 11.12 and II.13 converge respectively to the first

term of the right-hand sides of 11.14 and 11.15 as n --+ 00. Since Qf is a strongly contin­

uous contraction semigroup for kEN (Lemma 1.1.4), for any ¢ E Cb(lRd ) which satisfies
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11¢llbL = 1,

~ 1,

and

sup IQ~¢(x) - Q~¢(y)1 ~ sup I¢(x) - ¢(y)1
xoly Ix - yl #y Ix - yl

~1.

Thus, for any kEN, 11¢llbL = 1 implies IIQ~¢llbL ~ 1. From Lemma II.1.l0, the remaining

terms on the right-hand sides of II.12 and IL13 converge respectively to the remaining

terms of the right-hand sides of II.14 and IL15 as n --t 00. It remains to show that the

left hand sides of II.12 and II.13 converge respectively to the left hand sides of II.14 and

IL15, but this follows immediately from Lemma II.loll o
To conclude this section, the above will be used to find the needed extensions to

moment formulae.

Theorem II.3.2. Let ¢ E CK(JR.3Xd ) and't/J E CK(JR.4Xd ) be respectfully defined by

and
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for <Pi, 'ljJj E Cj{(lRd), i = 1,2,3, j = 1,2,3,4. Then for all 0 ~ tl ~ t2 ~ t3 ~ t4 < 00,

(11.16)

and



3 (t2 r 2

+ L Jt dS
2Jt

d S1 (Q~11r1Qsl-t1if>12Q;2-S/.f>ijQr2-S21r1Q;3-t21r1Qt4-t37/;,f-L6)
i,j=1 tl t1
ifej

+ .."'J.3=112t3 dS2 IO·t
1

dS 1 IQ2 if> Q3 1r Q2 1r Q if> 2Q
2

1r Q ./, 1/
2

).L...... Jr \ S1 ij t1- s1 1 t2-t1 1 S2- t2 1 t3-s2 1 t4- t3'1-',rO

ifej

+ l t3

dS2 [t

2

dS l (Q~I1r1Q SI-t1 «1>12Q;2-S11r1 QS2-t2 if>12Q;3-S21r1 Qtrt3 7/;, f-L~)
t2 Jtl

+ .t .t i

t1

dS3iS3 dS 2 i

S2

dS 1

21,Jl=122,]2=1
idiI idh

45

Proof: Using the Markov property, and Lemma 11.1.2, it follows that
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= E J.Ltl (rPdJ.L;2 (rP2 181 Qt3-t2rP3)

= EJ.Lh(rP1)EJLt1 J.LZ2-tl(rP2 181 Qt3-t2rP3)

rt2 - h
= E J.Lt (rP1®QZ2-tl (rP2 181 Qt3-t2rP3)) +io ds E J.LU rP1 181 Qs1!12QZ2-tl-S( rP2 181 Qt3-t2 rP3))

= EJ.L~l (1r'lQZ2-tl1r'lQt3-t2rP) + l t2
ds E J.LZ1(1r'lQs-tl1!12QZ2_ S1r'lQt3-t2rP).

tl

From 11.14

E J.L~1 (1r'1 Q;2- tl1r'1Qt3 -t2 rP)

= J.Lg(Q~11r'lQZ2-tl1r'lQt3-t2rP)

3 rh

+ i~l io dSJ.L6(Q;1!12Q~1-S1r'lQZ2-tl1r'lQt3-t2rP)

ii-J

3 rh t 2

+ Lin dS2 in dS1J.LO(QSl1!12Q;2-s11!12Qt-S21r'lQZ2-h1r'lQt3-t2rP)
i,j=l 0 0
ii-J

and from Lemma II. 1.2,

thus showing 11.16.

The proof of II.17 while similar to the above, requires many more calculations. We

begin
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= IE /J,tl ('1h)fJ,~z ('l/J2 (0 Q;3-tZ('l/J3 (0 Qtrt3 'l/J4))

rt3 - tZ
+ Jo ds fJ,tl ('l/Jl)fJ,;2('l/J2 ® Qsc'J>12Q;a-t2-s('l/J3 (0 Qt4-tj'I/J4))

= IE fJ,tl ('l/Jl)fJ,~z (1r"1 Q;3 - t2 1r"1 Qtrt3 ('l/J2 (0 'l/J3 (0 'l/J4))

+it3
ds IE fJ,tl ('l/Jl)fJ,;2 (1r"lQs-t2c'J>12Q;3-S1r"lQt4-t3 ('l/J2 (0 'l/J3 (0 'l/J4))

t2

To make sense of the remained of the proof, each of the above five terms will now

be considered separately:

Let F1 = 1r"lQr2-tl1r"lQZ3-tz1r"lQtrta'I/J, then from 11.15

(II.18)



and

then

From Lemma 11.1.2, if

48

(lU9)

(II.20)
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(1L21)

and

Combining II.18,1L19,II.20,IL21, and II.22, the desired formula follows.

(1L22)

o
The following Corollary will be helpful in the construction of a needed Ito formula

(d. chapter III). For the remainder of this paper, any arbitrary constant value, dependent

only upon 0::; T, will be denoted by G = G(T).

Corollary II.3.3. For i,j = 1,2,3,4, let ¢j E GK'(lRd ) and define ¢i E GK'(lRiXd ) by
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and

Proof: Since Jdy q~(x, y) = 1 for any kEN and all x E JRkXd, and since f-Lo is a finite

measure having compact support, this follows immediately from the preceding lemma. 0

Corollary II.3.4. The equations II.i6 and II.i7 continue to hold for cP E S3xd and

'I/J E S4xd'

Proof: From Lemma 11.1.1 there exist {cPn ~ ~~=l cP1I2I cP~ 121 cP2 : kEN} and {'l/Jn A

~~=l 'l/J1I2I 'I/J~ 121 'I/J~ 121 'l/Jt : kEN} such that cP{, 'I/J~ E Cj{(JRd
), i = 1,2,3,4, j = 1,2,3,

k, mEN, and limn->oo cPn = ¢, limn->oo ?I'n = 'I/J, where the convergence is uniform. For

any n, mEN, from equations 11.16 and 11.17 it follows, respectively, that

and
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x (Q;l tf> i2j2 Qrl -Sl 7r1 Q;2 -t/Pidl Qr2-S2 7r1 Q;a-t2 7r1 Q t4-ta I'l/Jn - 'l/Jm I ,fL6)

3 l t2 lS2

+ L dS2 dS 1 (Q;17r1Qsl-tltf>12Q;2-sltf>ijQr2-S27r1Q;3-t27r1Qt4-tal'I/Jn -'l/Jml ,fL6)
i,j=l tl tl
ih

3 ita rtl

+ i~l t2 dS2Jo dS 1 (Q;l tf>ijQrl - Sl 7r1Q;2-h 7r1 Q S2-t2tf>12Q;a-s2 7r1 Qt4- ta I'l/Jn - 'l/Jml ,fL6)
ih

+ ita ds21t2

dS1 (Q;l 7r1 QSl-tl tf>12Q;2-Sl 7r1 Qta-s2 tf>12Q;2-t2 7r1 Qt4-ta I'l/Jn - 'l/Jml ,fL6)
t2 tl

+ .t .t l tl

ds31sa

ds 21s2

dS 1

'1,]1 =1 '2,)2=1
idh i2ii2



Using Corollary II.3.3, it follows that

and

52

hence convergent. Uniform convergence of cPn and 'ljJn implies

and

Since the L 1 and a.s. limits must agree when they both exist,
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and

Considering now the right hand sides of the above equations, by uniform convergence, and

since JLo is finite with compact support, the desired convergence is shown.

Lemma 11.3.5. Let ¢ E 3d, d ::; 3, and define for x = (Xl, X2, X3) E JR'.3Xd, Y

(YI,Y2,Y3,Y4) E JR'.4Xd,

and

o

Suppose that JL = {JLt : t 2: O} is a superprocess over a stochastic flow such that JLo E

MF(JR'.d) satisfies Assumption 2. Then, for any 0 ::; tl ::; t2 ::; t3 ::; T < 00,

(i)

and

(ii)

where C = C(T).

Proof: Throughout this proof, the norm On V' will be denoted by II· lip' From the mOment

equation 11.16, it follows that
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Thus, if we write

5

lE ('l/J, f.Ltlf.Lt2f.Lt3) = ~ Ik(tl, t2, t3)
k=l

as defined in equation 11.16, it suffices to show that

for k = 1,2,3,4,5.

The following arguments will rely heavily upon the Markov property, the Kol-

mogorov Chapmann equation, and Lemma 1.1.5.

To begin, note that for any s E [0, tIl, X E ~3xd

Q~l-S1r1Q;2 -tl 1r1 Q t3-t2 'l/J

:s; c Jdy P?(tl-S) (X, y)Jdz P~(t2-tl) ((Y2, Y3), z)Jdw Pi(t3-t2) (Z2' W)'l/J(YI, Z}, w)

3

:s; cJdalda2da3 II Pi(tq-S) (Xq,aq)'l/J(al l a2, a3),
q=l



2 2
QtI -Sl 7r1 Qt2-S2 <P12QS2 -t1 7r1 Qtg-t2 ¢

::; c Jdy P'Ct1 -Sl) (Xl, YdP'Ct1 -Sl) (X2, Y2)Jdz P,Ct2-S2) (Y2' z)

X Jdw P,Cs2-t1) (Z, WI )P,Cs2-t1) (Z, W2) Jdv P,Ctg-t2) (W2, V)1jJ(YI' WI, V)

::; cJdb P,Ct2+t1-s2-S1) (X2, b) Jdal da2da3 P,Ct1-S1) (Xl, al)

X P'Cs2-tI)(b, a2)p,Ctg-t2+S2-tI)(b, a3)1jJ(al, a2, a3)'

It thus follows that,

(Q~l7r} Q;2 -t1 7r} Qtg -t2 1jJ, J.L~)

::; c JJ.LO( dX3)JdY3 Pdg (X3, Y3) JdY2¢(Y2 - Y3)JdYI ¢(YI - Y3)

XJJ.LO( dX2) Pd2(X2, Y2)JJ.LO(dXI) Pd1 (Xl, YI)

::; C Ilmll~ 11¢lliJJ.Lo(dx)Jdy Pdg (X, y)

::; c Ilmll~ 11¢lli /10(1)

::; c 11¢lli ,

which implies that

Next,

55

(II.23)



56

:::; C.t l tl

ds j /-lO( dX 1)/-lO(dx2) j dYPis(X1, y) j dz1dz2dz3Pit6_i_j(X2, Z6-i-j)
1,1=1
i<j

x Pi(ti-S)(Y' ZdPi(tj-S) (y, Zj)'l/J(Zl, Z2, Z3)

<: c t,['ds JMO(dx,)Jdy p,,(Xr, y)Jdz, P,U,-,) (y, Z3)JdZi P,(t,-,) (y, Zi)¢(Zi - Z3)

X j dZ3-i ¢(Z3-i - Z3) j /-lO(dX2) Pit3-i (X2, Z3-i)

+ C i tl

ds j /-lO(dX2) j dZ1dz2dz3 Pit3(X2, Z3)¢(Zl - Z3)¢(Z2 - Z3)

X jdYPi(tl-S)(y,Zl)Pi(t2-S)(y,Z2) j /-lO(dX1)Pis(X1,Y)

:::; Cllmll oo 11¢111itdsj/-lO(dx)j dy PiS(X, y) j dZ3Pi(t3-S)(y, Z3) j dZi Pi(ti- S)(y, Zi)¢(Zi - Z3)

+ CIlmlloo i
tl

dsJ/-lO( dx) j dZ1dz2dz3Pit3 (X, Z3)Pi(t2+tl-2s) (Zl, Z2)¢(Zl - Z3)¢(Z2 - Z3)

rt l

:::; C11¢lli Jo ds [(t3 + t1 - 2S)-d/2 + (t2 + t1 - 2s)-d/2]

rt l

:::; C11¢lli Jo ds (t2 + t1 - 2S)-d/2,

and since d :::; 3,

And,

l T
dt3it3 dt2it2 dt1 h(t1, t2, t3)

:::; C11¢lli iTdt31t3 dt21t2 dt1 l tl
ds (t2 + t1 - 2s)-d/2

:::; C(T) 11¢lli. (II.24)
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'" C,tIl'cL"l"d.'IJl"D(dx)Jdyp,,, (x, y)Jdz P'C.,-"J (y, z)

i<j

x JdWI dW2dw3 P~(ti-S2) (z, Wi)p~(tj-S2)(Z, Wj )P~(t6-i-j-sd (y, W6-i-j )'IjJ(WI, W2, W3)

a rt
l

t
2 J J J~ G i'j;JO dS2Jo ds1(t6-i-j - Sl)-d/2 f1O(dx) dYP~sl (x, y) dz P~(S2-Sl)(Y'z)

i<j

x JdWidWj P~(ti-S2) (z, Wi)p~(tj-S2)(Z,Wj) JdW6-i-j¢(WI - W3)¢(W2 - W3)

::; G t i tl

ds2iS2
ds l (t6-i-j - SI)-d/2(tj - S2)-d/2Jf-lo(dx) JdYP~sl (x, y)

i,j=l a a
i<j

x JdZP~(S2-Sl)(Y' z) JdWiP~(ti-S2)(Z, Wi) / dWj dW6-i-j¢(WI - W3)¢(W2 - W3)

::; G 11¢lli t itl
ds 2iS2

dS I (t6-i-j - SI)-d/2(tj - S2)-d/2
i,j=l a a
i<j

Since d ::; 3, it follows that

iTdt31t3 dt21t2 dtl f 3(tl' t2, t3)

::; G 11¢llilT

dt31t3 dt21t2 dtl l tl

dS2

Xl s2
dSI [(t3 - SI)-d/2(t2 - S2)-d/2 + (tl - SI)-d/2(t3 - S2)-d/2]

::; G(T) 11¢lli .

Now,

I
t2

G ds (Q;l'7rIQs-tl (J)12Q;2-S'7rIQt3-t2'IjJ, f-l6)
tl

::; G llt2

dsJf-lO( dX I)f-lO(dx2)JdYPdl (Xl, y) Jdz p~s(X2, z)

x JdWldw2 P~(t2-.S) (z, WI)p~(t3-S)(Z,W2)'IjJ(y, WI, wz)

(11.25)



:S C 1:2

ds j J-LO(dX2) j dZp,s(X2, z) j dWldw2P,Ct2-S)(Z,WI)

x P'Ct3-S)(z, W2)¢(WI - W2) j dy ¢(y - W2) j J-LO( dXI) Pd1 (Xl, y)

:S C Ilmll oo II¢III 1:2

ds j J-L0(dX2) j dz p,s(X2, z)

X j dWldw2 P'Ct2-S)(Z, WI)p,Ct3-S)(Z, W2)¢(WI - W2)

:S C Ilmlloo 11¢ lll 1:2

ds (t3 - s)-d/2 j J-L0(dX2) j dZp,s(X2, z)

X jdwI P'Ct2-S)(Z, wI)JdW2 ¢(WI - W2)

1
t2

:S C 11¢lli ds (t3 - s)-d/2
h

And since d :S 3, it follows that

:S C(T) 11¢lli .

Finally,

X P'CS2-Sl) (y, W)P'Ct2-S2) (W, VI )P'Ct3 -S2) (W, V2)1./J( z, VI, V2)

:S C 1:2

ds21t1
dS I (t3 - S2)-d/2 j J-Lo(dx) j dy P'Sl (x, y)

x jdzdVIP'Ct1-SI)(y,Z)PLCt2-SI)(y, VI) jdV2¢(Z- V2)¢(VI-V2)

1t2 {t1 j:S C t1 ds
210

dSI (t3 - S2)-d/2(t2 - SI)-d/2 J-Lo(dx)

x j dy PLS1 (x, y) j dz PLCt1-sI)(Y, z) j dV2 ¢(Z - V2) j dVI ¢(VI - V2)
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(11.26)
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Since d :::; 3, it follows that

:::; C(T) 11<plli .

Therefore, by 11.23,11.24, 11.25, II.26, and 11.27, it follows that

(II.27)

and (i) is thus shown.

The proof of (ii) is very similar to that of (i), but clearly involves more calculations.

From the moment equation 11.17 and the preceding corollary, it follows that

where the definition of each Jk is implicit in equation II.17.

To begin, note that

Qil-S1rIQ~2-h1rIQ;3-t2CP(X)

:::; CJdy P.Ctl-S) (Xl, YI)P.Ctl-S) (X2, Y2)P.(tl-S) (X3, Y3)P.Ctl -s) (X4, Y4)

XJdz P.Ct2-tl)(Y2, ZI)P.Ct2-tl)(Y3, Z2)P.Ct2-tl)(Y4, Z3)

x Jdw P.Ct3-t2) (Z2, WI )P.(t3-t2) (Z3' W2)cp(YI, Zll WI, W2)

~ C Jdap,Ch-s)(XI, al)p.(t2-S)(X2' a2)p.Ct3-S)(X3, ~3)PL(t3-S)(X4' a4)cp(al' a2, a3, a4),

(11.28)



for all x E jR4xd, S E [0, tl]'

Using the inequality II.28, it follows that

3

::; C j {-L6(dx) jdaPd3(X4,a4) rrp~dXi,ai)<p(al,a2,a3,a4)
2=1

::; C j /-LO(dX3)f-LO(dx4) j da3da4Pd3(X3, a3)Pd3(X4, a4) j dal ¢(al - a3)

X j da2¢(a2 - a4) j {-LO(dXl)Pdl (Xl, al) j {-LO( dX2) PLi2(X2, a2)

::; C Ilmll~ f-Lo(l)211¢lli

= C II,plli ,

and thus, since d ::; 3,

Let {i',j'} = {1,2,3,4} \ {i,j}, i' < j', then again from 11.28,

4 t 1

.~ Jo ds (Q~cI>ijQt _s7l"l Qr2-tl 7l"1 Q;3-t2<P, f-L5)
t,J=l
iefj

:s C i~,l'ds J~(dx)Jdyp, .• (Xj, y)Jda] da,da3da< P,(t,-.• )(y, 0.;)

i<j

X PL(tj1\3 -s) (y, aj )Pdil (X2, ai' )Pdjl 1\3 (X3' aj' )¢(al - a3)¢(a2 - a4)

::; C .t l t1
ds j {-Lo( dXl)Jdy p~s(Xl, y)Jdaidaj PL(ti-S) (y, ai)p~(tjI\3-S) (y, aj)

t,J=l
i<j,li-jl~2

X Jdaildaj'¢(al - a3)¢(a2 - a4) J{-LO( dX2) PL(ti/) (X2, ail) j {-LO( dX3) PL(tj'1\3) (X3, aj')
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+ct['dsJ"'0 (dx,)!,o(dX2) Jdy p,,(x" Y)Jdaida" 2 p,(t, -.,/Y, "i)p,(t,-.,) (y, "i+2)

x ¢(ai - ai+2) Jdai' Pdi, (X2' ai')Jdai'+2 ¢(ai' - ai' +2) J110 (dX3) Pd3 (X3, ai'+2)

~ C(T) Ilmll~ 110(1) 11¢lli

+Cllmllool1o(l) 11¢lll (Ids (110(dXl) (dYPiS(Xl,Y)
JO J J

X Jdaidai+2Pi(ti-S)(Y' ai)Pi(t3-S)(Y' ai+2)¢(ai - ai+2)

~ C(T) 11¢lli +Cit l

ds (t3 - s)-d/2,

and since d ~ 3, it follows that

~ C(T) II¢IIi.

This next case becomes quite a bit more complicated, so we explain with more

detail. Consider

wherein the presence of both <Pnm and <Pij greatly increase the number of cases. In

bounding, we again may assume, with the addition of a multiplicative constant to the
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bound, that i < j. Note first that when m + n -16 - i it will follow that either

Q;l <PnmQ;2 -Sl <PijQt -s211"1 Q~2 -t111"1 Q;3 -t2 <p(Xl, X2)

::; c JdYP~Sl(Xl'Y) JdZP~(S2-Sd(Y'Z)

X JdWl dW2dw3dw4 P~(ti-S2) (z, Wi)p~(tj/\3-s2) (z, Wj )p~(ti,-sIl (y, Wi' )Pdj,/\3 (X2, Wj' )<p(w),

or

Q;l <PnmQ;2 -Sl <PijQt1-S2 11"1 Q~2 -t111"1 Q;3 -t2 <p(Xl, :r2)

::; C JdYP~Sl(Xl,y)JdzPL(S2-sd(Y'Z)

x J dWl dW2dw3dw4 P,(ti-S2) (z, Wi)P,(tj/\3-s2) (z, Wj )p,(tj' /\3 -sd (y, Wj' )Pdi, (X2, Wi' )<p(w),

where again {i',)'} = {l,2,3,4} \ {i,j}, with i' < j',

In the case that m + n = 6 - i, we have the bound

Q;l <PnmQ;2-s1 <PijQt -S2 11"1 Qt2-t111"1 Q;3-t2 <p(Xl, X2)

::; c J dy P'Sl (Xl, y) J dz P'S2 (X2' z)

X J dWl dW2dw3dw4 P,(ti -S2) (z, Wi)P,(tj/\3-S2) (z, Wj )p,(ti,-sd (y, Wi' )p~(tj' /\3 -sd (y, Wj' )<p(w).

It thus follows that

4 3 [t1 t 2

L L io ds2io dS l (Q;1<PnmQ;2-s1<PijQt-S211"lQ~2-t111"lQ;3-t2<P,f.l6)
i,j=l n,m=l 0 0
ii-j ni-m

-:; C iJ.to! "~! 1" dS2/," ds[J/'Q(dXl)/4J(dx2)Jdy P", (Xl, y) Jdz P,(,,-'d (y, z)

i'i-i,J'i-j n<m.. . "< ., 6-n-mi-tt<J,t J

X J dWI dW2dw3dw4 Pdj' /\3 (X2, Wj' )p,(ti,-sIl (y, Wi' )P,(ti-S2) (z, Wi)

x P,(tj/\3-S2) (z, Wj )<p(WI, W2, W3, W4)



+c
4 3

L L
i,j,i' ,j'==l n,rn=l
i'cjci,J'cjcj n<m.
'< . "< ., 6-n-mcjc•.],' ]
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x j dWldw2dw3dw4 Piti, (X2, wdp'Ctj' 1\3-S1) (y, Wj' )P,Cti-S2) (Z, Wi)

X P,CtjI\3-S2) (Z, Wj )<p(WI, W2, W3, W4)

4 3 riI t 2
j j j::;C ..~ ~ Jo dS2

JO
dS l /-lO(dXl) dYP'Sl(Xl,y) dZP,CS2-S1)(Y'Z)

',],' ,] =1 n,m-l
i' cjci,J' cjcj n<m.
i<j,i' <]' 6-n-mcjc.

X j dWidWjdWi' P,Cti,-sIl (y, Wi' )P,Cti-S2) (Z, Wi )P,CtjI\3 -S2) (Z, Wj)

X j dWj' ¢(Wl - W3)¢( W2 - W4) j /-lO(dX2),Pitj'1\3 (X2, Wj')

+C .. t: t ltldS21S2dslj/-lO(dXl)jdYP,sl(Xl,Y) jdZ P'CS2-S1)(Y'Z)
',],' ,] =1 n,m-l
i'cjci,J'cjcj n<m .
i<j,i' <]' 6-n-mcjc.

X j dWidWjdwj' PL(tj'1\3- sIl(Y' w]' )PLCti-S2)(Z, Wi)PLCtjI\3-S2)(Z, Wj)

X jdWi'¢(Wl-W3)¢(W2 -W4) j/-lO(dX2)Pdi,(X2,Wi')

+ C" "t t l t1

dS21s2
dS l j /-lO( dX l)/-lO( dx2) j dYPLs1(Xl, y) j dZPLS2(X2, Z)

.,],.' ,/=1 n,.m=l
i'#i,J'cjcj n<m_.
"< " "< ., 6-n-m-•.],' ]

For the first of the above three terms, the process is as follows. Bound /-lo( dX2)
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by Ilmlloodx2, integrate Pdj'1\3(X2,wj) with respect to dX2, then ¢ with respect to dWjl.

In doing so, we may then integrate out one of the remianing Wi, Wj, or wj. In what

remains, if (i,j) cI (1,2) there will be the term P,Ct3-S2)(Z, w.), or if (-i,j) = (1,2), the

term P,Ct3- S 1)(y,W3). In either case, bound the respective term by C(t3 - s.)-d/2. This

allows for the integration of the second ¢.

For the second of the two above terms, Bound J-.LO(dX2) by ilmiloo dX2, integrate

Pd
i
'1\3(X2,wD with respect to dX2, then ¢ with respect to dWi" In doing so, we may

then integrate out one of the remianing Wi,Wj, or wj. In what remains, if (i,j) E

{(1,2),(1,4),(2,3)} there will be the term P'Ct3- s d(Y''lL'j'), otherwise there will exist the

term P,Ct3- S 2)(Z,W.). In either case, bound the respective term by C(t3 - s.)-d/2. This

allows for the integration of the second ¢.

For the third and final term, if (i,j) ~ {(1,2),(3,4)}, there will exist the terms

P,Ct3- S 2)(Z, Wj) and P,Ct3-S1)' which are bounded respectively by C(t3 - S2)-d/2 and C(t3­

Sl)-d/2. When (i,j) = (1,2) we bound P,Ct3-S1)(Y' W3) and P,Ct2-S2)(Z, W2) respectively

by C(t3 - Sl)-d/2 and C(t2 - S2)-d/2. Finally, when (i,j) = (3,4), bound the terms

P,Ct3- S 2) (z, W3) and P,Ct2- S 1) (y, W2) respectively by C(t3 - S2)-d/2 and C(t2 - Sl)-d/2. This

allows for the desired integration of ¢(Wl - W3)¢(W2 - W4).

Combining the above, and since d :s; 3, we arrive at the bound

:s; C 11¢lli l
t3

dt21t2 dtlltl dS1l
s1

dS 2[(t3 - Sl)-d/2 + (t3 - S2)-d/2

+ (t3 - S2)-d/2(t3 - Sl)-d/2 + (t3 - Sl)-d/2(t2 - S2)-d/2 + (t3 - S2)-d/2(t2 - Sl)-d/2]

:s; C(T) 11¢lli .

Considering the next case, note first the similarities in the respective corresponding
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particle pictures of this and the previous case. This case can be seen as a modification

of the previous case in which the two original paricles were both born from a common

ancestor. Thus, arguing as before, we arrive at the bound

4 3 (tl t3 t 2

L L in dS3 in ds zin dS 1
i,j=l n,m=l a a a
if:j n=!=m

x JdZ1dzz P.(S2- s l) (y, Zl)P.(S3- Sl) (y, zz)JdV1dvzdv3dv4 P.(ti-S3) (ZZ, Vi)

x P.(tjI\3-S3)(ZZ, Vj)PL(ti'-S2)(Zl' Vi' )PL(tj'1\3-S2 )(Zl, Vj' )¢(V1 - V3)¢(VZ - V4)

:; c II¢lli l tl
ds31S3

ds zl S2
dS1 [(t3 - sZ)-d/Z(tz - sZ)-d/Z + (t3 - sZ)-d/Z(t3 - S3)-d/Z

+ (tz - sZ)-d/Z(t3 - S3)-d/Z + (t3 - sZ)-d/Z(tz - S3)-d/Z] ,

where the above bounds are obtained similar to the previous case.
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And so, since d ~ 3,

---- CfTT'\ 11.+.1 12
:::::: \J) 11'1-' 11 .

This takes care of four of the fourteen Jk, we consider now the next three integrals

which are dependent upon the expression

Q~l -Sl 711Q;2 -t1 iJ!ijQ~2-s2711Q;3-t2 'P( X)

~ C JdYP,(t1- S1)(X1,Y1)p,(t1- S1)(X2,Y2)p,(t1-S1)(X3,Y3)

x JdZP'(S2-t1) (Y2, Zl)p'(S2-t1) (Y3, Z2)

x Jdw P,(t2-S2) (zfj, W1)p,(t2-S2) (zY, W2)p,(t2-S2) (z~j, W3)

x JdVP,(t3-t2)(W2,V1)p,(t3-t2)(W3,V2)'P(Y1,W1,V1,V2)

~ CJdb P'(S2-S1) (X3, b)Jda1 da2da3da4 P,(t1-S1) (Xl, a1 )P,(t4-i-S1) (X2, a7-i-j)

(11.29)

for all x E JR3Xd, 0 ~ 81 ~ tl, tl ~ 82 ~ t2, and i,j = 1,2,3, i -I- j. In the above z~j refers

to the particular arrangement of ZI, Z2 given the pair (i, j).

Applying 11.29 now gives,



50 Citl' dsJ~!(dx) JdYP,,(X3, y)

i<j

x j dz P'h (Xl, Zl)Pa4_i(X2, Z7-i-j)P,,(ti+l-S)(Y' Zi+l)

x P,,(t3- S)(Y' Zj+l)¢(Zl - Z3)¢(Z2 - Z4)

< ~ ~ r
t2

, r (' ) 'd )jd ' , jd d ' ,- G' .~ it dsJ!-Lo dX2 !-LO( X3 YP"s(X3, y) Z7-i-j Zi+l Pa4_;(X2, Z7-i-j)
',J=l tl
i<j

x P"Cti+l-S)(Y' Zi+l) jdzj+l P,,(t3-S)(Y' zj+d

x j dZl ¢(Zl - Z3)¢(Z2 - Z4) j !-LO(dXl) Pal (Xl, Zl)

50 C II m 1100 11,111,i~ 1:'dsJ1"0 (dx, )1"0 (dX3)Jdy p" (X3, Y)

i<j

x j dz2dz3dz4Pd4_i(X2, Z7-i-j)P"Cti+l- S)(Y' Zi+l)p"Ct3-S)(Y' Zj+l)¢(Z2 - Z4)

50 C 11,111,~1:'dsJ~O(dX3)Jdy P,,(X3, y) JdZ;lldZiI2P'llm -.,)(Y, Zi+Il

x P,,(t3-S)(Y' Zi+2) j dZ6-2i ¢(Z2 - Z4) j !-LO(dX2)Pd4_i(X2, Z6-2i)

+ c 11¢lll 1:2

ds (t3 - s)-d/2 j !-LO(dX2)!-LO(dx3) j dy p"s(x, y)

x jdZ2P"Ct3-S)(y,Z2) jdz3Pd3 (X2,Z3) jdZ4¢(Z2-Z4)

~CII¢lli rt2dS[1+(t3_S)-d/2].
itl

And so, since d ~ 3,
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Again from 11.29,

x ! dWI dW2dw3dw4 Pi(tl-Sl) (y, WI )Pi(ti+l-S2) (Z, WHl)Pi(t3- S2) (Z, Wj+l)

x Pi(tC7_i_j)A3)(X2, W7-i-j)¢(WI - W3)¢(W2 - W4)

+C t lt2ds21tldSl!J10(dXl)J10(dX2)jdYPiSl(Xl,Y) jdZPi(S2-Sl)(Y'Z)
i,j=1 tl a
i<j

x !dWI dW2dw3dw4 Pi(tC7-i-j)A3-Sl) (y, W7-i-j)Pi(ti+l- S2) (z, WHl)

x Pi(t3-S2)(Z, Wj+l)Pd l (X2, Wd¢(WI - W3)¢(W2 - W4)

+C itl['dS2l" dS1 I,o(dxIlJ1{J(dx2 )Jdy P", (XI, y) Jdz p", (X2, z)

i<j

x !dWldw2dw3dw4 Pi(tl-Sl) (y, WI )Pi(tC7-i-j)A3-Sl) (y, W7-i-j )Pi(ti+l-S2) (z, WHl)

x Pi(t3-S2)(Z,Wj+l)¢(WI - W3)¢(W2 - W4)

::;C t lt2ds21tldSl!J10(dXl)!dYPiSl(Xl,Y) !dZPi(s2-S!l(Y'Z)
i,j=l tl a
i<j

x !dWl dWHl dWj+l Pi(tl-Sl) (Y, Wl)Pi(ti+l-S2) (Z, WHl)Pi(t3- S2) (Z, Wj+l)

x !dW7-i-j ¢(Wl - W3)¢(W2 - W4)!J10(dX2) Pi(tC7-i-j)A3) (X2, W7-i-j)

+ C t l
t2

ds 21tl
dSl ! J10(dXl) j dy PiSl (Xl, y)!dz Pi(S2-s !l (y, z)

i,j=l tl a
i<j

x JdW2dw3dw4 Pi(tC7-i-j)A3-Sl) (y, W7-i-j )Pi(ti+l-S2) (z, WHl)

x Pi(t3-S2)(Z, Wj+l)¢(W2 - W4) JdWI ¢(Wl - W3) JJ10( dx2) Pill (X2, WI)
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+ C t l t2
ds 21h

dS lJf.J,O( dX1)f.J,O(dx2)Jdy PLS1(Xl, y) Jdz PLS2 (X2, Z)
i,j=l h 0
i<j

X JdWl dW2dw3dw4 PL(h -Sl) (y, WI )PL(t(7-i-j)1\3 -Sl) (y, W7-i-j )PL(ti+1 -S2) (Z, Wi+ 1)

X PL(t3-S2)(Z,Wj+1)¢(Wl - W3)¢(W2 - W4)

{ t2 {t1
~ C 11911 1 J dS2J dSl (t3 - sz)-d/2

t1 0

+ C 11¢111 l t2
dS2 {t

1
dS l [(t3 - Sl) -d/2 + (t3 - S2)-d/2]

t1 Jo
+ C 11¢llll

t2
dS2 {h dS1 [(t3 - Sl)-d/2(t3 - S2)-d/2 + (t3 - SZ)-d/2]

h Jo
~ C 11¢lli 1:2

dS21t1ds1 [(t3 - sI}-d/2 + (t3 - Sl)-d/2(t3 - S2)-d/2 + (t3 - S2)-d/2J,

Thus, since d ~ 3,

~ C(T) 11¢lli .
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After one final application of II.29,

s c ;f;ll'dS'[' ds,['dS1!"O(dx) JdVp", (x, V) Jdz p,("-,, )(V, z)

i"#j

X J dw Pi(S3-S2) (z, w) JdVldV2dv3dv4 Pi(tl-S2) (z, Vl)Pi(t(7_i_j)1I3 -sr) (y, V7-i-j)

x Pi(ti+I-S3)(W,Vi+l)Pi(t3-S3)(W,Vj+I)¢(Vl -V3)¢(V2 - V4)

3 rt2 rh
t

2 J J J+CLJt dS3Jn dS2Jn dS 1 110 (dx) dYPiSI(X,y) dZPi(S2- S1)(Y'Z)
i,j=1 t1 a 0
i#j

x JdW Pi(S3 -S2) (z, w) JdVl dV2dv3dv4 Pi(t(7-i-j)1I3 -S2) (z, V7-i- j )Pi(tl-Sr) (y, VI)

x Pi(tH1-S3) (w, Vi+I)Pi(t3- S3) (w, Vj+l)¢( VI - V3)¢(V2 - V4)

3 rt
2 rt1

t
2 J J J+CLJt ds3Jo dS2Jn dS 1 110 (dx) dYPiS1(X,y) dZPi(S2-S1)(Y'Z)

i,j=l t1 0 0
i#j

X J dw Pi(S3 -Sl) (Y, w) JdWl dW2dw3dw4 Pi(t1-S2) (z, Vl)Pi(t(7_i_j)IIS- S2) (z, V7-i-j)

X Pi(ti+l -S3) (w, Vi+l )Pi(t3-S3) (w, Vj+ 1)¢(VI - V3)¢(V2 - V4)

::; C 11¢lli 11
t2

ds31
t1

dS21S2 dS 1 [(t3 - Sl)-d/2(t3 - S3)-d/2 + (t2 - SI)-d/2(t3 - S3)-d/2]

+ C 11¢lli1lt2 ds31
tl

ds21
S2

dS 1 [(t3 - S2)-d/2(t3 - S3)-d/2 + (t2 - S2) -d/2(t3 - S3)-d/2]

+ C 11¢lli 1lt2 ds31t1
ds21

S2
dS1 [(t3 - S2)-d/2(t3 - S3)-d/2 + (t2 - S2)-d/2(t3 - S3)-d/2]

2 I t2 l t1 l S2

[ ]::; C 11¢lli L dS3 dS2 dS1 (t3 - S3)-d/2 ((t3 - Sk)-d/2 + (t2 - Sk)-d/2) .
k=l t1 0 a
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Therefore, since d ::; 3,

::; C(T) ii¢iii .

Thus seven of the fourteen Jk are now shown to have the desired bound, we continue

with three more of the Jk.

Qt -Sl 7f1 Q;2-t1 7f1 Qs2-t2'1>12Q;3 -S2 cp(x)

::; cJdb P~(S2-S1) (X3 , b)Jdal da2da3da4 P~(t1 -Sl) (Xl, al )P~(t2-S1)(X2, a2)

x P~(t3 -S2) (b, a3)p~(t3-S2) (b, a4)cp( aI, a2, a3, a4),

Now, from the inequality 11.30

(11.30)

rt
3
ds (Qt 7f1Q;2-t1 7f1 Qs-t2'1>12Q;3-SCP, /1~)

Jt2

::; c 1:3

ds J/10(dXI)/1o(dx2)/1o(dx3) Jdy p~s(X3, y)

x JdZIdz2dz3dZ4Pill (Xl, Zl )Pil2 (X2, Z2)p~(t3-S) (y, Z3)p~(t3-S) (y, Z4)¢( Zl - Z3 )¢(Z2 - Z4)

::; c 1:3

dsJ/10 (dX3)Jdy PI,s(X3, y) Jdz3dz4P~(t3-S)(Y' Z3)p~(t3-S)(Y' Z4)

x JdZI ¢(Zl - Z3) JdZ2¢(Z2 - Z4) J/10 (dXI) P~t1 (Xl, Zl) J/10 ( dX2) PLt2 (X2, Z2)

::; C(T) 11¢lli .



It thus follows that

Again from 11.30, we have that

<: c~ .I.:'dS2l' dS1J"0(dxIl"o(dx2) Jdy p",(Xl , y) Jdz p,C"-,,) (y, z)

x JdWl dW2dw3dw4 Pdk (X2, wk)p~(t3_k-sIl (y, W3-k)P~(t3-S2) (Z, W3)

X P~(t3-S2)(Z,W4)¢(WI - W3)¢(W2 - W4)

+C 1:3ds21tldslj/Lo(dXl)/Lo(dX2) jdYP~Sl(Xl'Y)jdZP~S2(X2'Z)

x j dWl dW2dw3dw4 P~(tl-St! (y, Wdp~(t2-S1)(y, W2)P~(t3-S2)(Z, W3)

X P~(t3-S2)(Z,W4)¢(WI - W3)¢(W2 - W4)

<: C~ .1.:' dS2l' <1.'1J,'o(dxJlJdy p,." (Xl, y) Jdz P'C"-,,j(Y, Z)

x j dW3-kdw5_k P~(t3-k-Sl)(y, W3-k)P~(t3-S2)(Z, W5-k)

x j dWk+2P~(t3-S2)(Z, Wk+2) j dWk ¢(WI - W3)¢(W2 - W4) j /LO(dX2)Pdk (X21 Wk)

+ c 12
t3

dS 2 1
t1

dS I (t3 - S2) -d/2 j /Lo (dXI) /Lo (dX2) j dWl dW3 ¢(WI - W3)

x j dy P~Sl (Xl, Y)P~(h -Sl) (y, WI) j dz P~S2 (X21 Z)P~(t3-S2) (Z, W3)

X jdW4P~(t3-S2)(Z,W4) j dW2¢(W2- W4)

72



Since d::; 3, it follows that

::; C(T) 11¢lli .

With one final application of II.30, we have

x Pi(t3-S3)(W, V3)Pi(t3- S3)(W, V4)¢(Vl - V3)¢(V2 - V4)

+ C 1:3ds31tlds21S2dsl!f10(dX)!dy PiSl (x, yifdz1dz2Pi(S2-S1)(y, Zl)Pi(S3-sd(y, Z2)

x !dVl dV2dv3dv4 Pi(tl -S2) (Zl' VdPi(t2-S2) (Z2' V2)Pi(t3-S3) (Z3' V3)

73
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~ C 1:3

ds31t1
ds21s2

dS 1 (t2 - Sl) -d/2 j J-Lo(dx) j dz P'S2 (x, z) j dw P,CS3-S2) (z, w)

x j dVl dV3 P,Ctl-S2) (z, Vdp,Ct3-S3) (w, V3)¢(VI - V3) j dV4 P,Ct3-S3) (W, V4) j dV2 ¢(V2 - V4)

+ C 1:3

dS31t1
ds21s2

dS 1 (t2 - S2)-d/2 j J-Lo(dx) j dy P'Sl (x, y) j dw P'CS3-stl (y, w)

x (dVl dV3 P'Ctl -SI) (y, Vl)p,Ct3-S3) (w, V3)¢(VI - V3) !dV4 P,Ct3-S3) (W, V4) !dV2 ¢(V2 - V4)
" ""

+ C 1:3

ds31tl
ds21s2

dS 1 (t2 - S2)-d/2 j J-Lo(dx) j dYP'SI (x, y) j dw P,CS3-S1)(Y' w)

X jdvldV3P'Ctr-Sl)(y,vdp*3-S3)(W,V3)¢(Vl-V3) jdv4P'Ct3-S3)(W,V4) jdv2¢(V2 -V4)

1
t3

{tl (S2 I j
~CII¢lll t2 ds3}o ds2}o ds1(t2 -s1)-d/2. J-Lo(dx) dZP'S2(X,Z)

x /dVldV3P'Ctl-S2)(Z,Vl)P'Ct3-S2)(Z,V3)¢(Vl - V3)

+ C11¢lll 1:3

ds31tl
ds21s2

dS 1(t2 - S2)-d/2 j J-LO( dx) j dy P'S2 (x, y)

x jdvldV3P'Ctl-S2)(y,Vl)P'Ct3-Sr)(y,V3)¢(Vl -V3)

1
t3

ltl l
s2

]~ C11¢lli dS3 dS2 dS 1 [(t2 - Sl)-d/2(t3 - S2)-d/2 + (t2 - S2)-d/2(t3 - Sl)-d/2 .
t2 0 0

Therefore, since d ~ 3,

~ C(T) 11¢lli .

As a total count of the original fourteen Jk, the desired bound has now been shown

for ten. We continue now with
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Q;l-Sl '7fl QS2-tl «!>12Q;3 -S2 «!>ijQ~2-S3 '7fl Q;3 -t2 <p(X)

:::; cjdh db2P«S2- S1) (X2, bdp«S3-S2)(bl , b2ifdal da2da3da4 P«tl-Sl) (Xl, al)

(11.31 )

for any X E lR2xd , 0:::; 81:::; tl :::; 82:::; 83:::; t2, and i,j = 1,2,3, i < j.

We now apply the inequality II.31 to show

3 l t2 l S2
'"' ( 2 2 3 2 2)D d82 dS l Qtl'7flQsl-tl«!>12Qs2-S1«!>ijQt2-s2'7flQt3-t2<P,/LO

i,j=1 tl tl
i/j

:::; c t l t2
d821S2 d81 j fJ,O( dX 2) j dYP<Sl (X2, y) j dZP«S2- s I)(Y, z)

i,j=l tl tl
i<j

x j dW2dw4 ¢(W2 - W4) j dW3 P«ti+l- S2)(Z, Wi+l)P<(t3- S2)(Z, Wj+d

x P«t(7-i-j)/\r s I) (y, W7-i-j) j dWl ¢(WI - W3) j fJ,O( dXl) Pdl (Xl, WI)

'" C IIm lloo 11<p11, ,tIl:'dS2.f'dS IJ~"(dx2)Jdy P", (X2, y) .fdz P,(,,-,,)(y, z)

i<j

x jdW2dW4¢(W2 -W4) jdW3P«ti+1-S2)(Z,Wi+l)P«t3-S2)(Z,Wj+l)
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Therefore, since d ::; 3, we have

::; C(T) 11¢lli .

With a second, and final application of 11.31, it follows that

3 1t2 1S3 it1
L dS3 dS 2 dS 1 (Qs1<I>12Q;1-Sl7flQs2-t/f>12Q;3-s2<I>ijQ~2-S31rlQ;3-t2ip,fLo)

i,j=1 t1 t1 a
felj

s; C;tl1>·<31," dS,!o" ds1f /UJ (dx) Jdy p,." (x, y)Jdz P'C,,-,,) (y, z)

i<j

x J dw P~(S3-S2) (z, w) J dVI dV2dv3dv4 P~(t1 -Sl) (y, VI )P,.(t(7-i-i)/\3 -S2) (z, V7-i-j)

X P~(ti+1 -S3) (w, Vi+ I )P,(t3- S3) (w, Vj+ I )¢(VI - V3)¢(V2 - V4)

::; C 11
t2

ds 311
S3

ds 21h
dS I (t3 - S2) -d/2 J fLo (dx) J dy P,S1 (x, y)

x J dV3 J dz P~(s2-sd(y, z) J dw P~(S3-S2) (z, W)P~(t3-S3)(w, V3)

X JdVIP~(h-S1)(y,VI)¢(VI-V3) JdV2P~(S3-h)(W,V2) J dV4¢(V2 -V4)

+ C 11
t2

ds 311
S3

ds21h
dS I (t3 - S3)-d/2 J fLo (dx) J dy P~Sl (x, y)

x J dVI P~(t1-sd (y, VI) J dV3 ¢(VI - V3) J dz P~(S2-S1)(Y'Z)P~(t3-S2)(z, V3)

X JdWP~(S3-S2)(Z,W) JdV2P~(t2-S3)(W,V2) J dV4¢(V2 -V4)

+ C 11t2

ds 311
S3

ds21t1
dS 1(t3 - S3)-d/2 J fLo (dx) J dy P~Sl (x, y)

x J dV3 J dz P~(S2-S1)(Y'z) J dw P~(S3-S2)(Z, W)P~(t3-S3)(W, V3)

X JdVIP~(t1-S1)(y,VI)¢(VI-V3) JdV2P~(t3-S2)(Z,V2) J dV4¢(V2- V4)
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And so, since d:::; 3,

i~'l" dt21" dill' dS31," <1.'21" <1."
ih

x (Qs1cI>12Q;1 -S1 7["1 QS2-t1 cI>12Q;3- s2cI>ijQr2 -S3 7["1 Q;3-t2<P, fLO)

:::; C(T) 11<plli .

It thus remains to show the desired bound on two of the fourteen original Jk. As

in the previous steps, the bounds will result from the following simpler bound.

Q;1 -S1 7["1 QS2-il cI>12Q;2-S2 7["1 Q S3 -t2 cI>12Q;3-S3 <p(x)

:::; C Jdb1PI-(S2- sI) (X2, b1)Jdb2PI-(S3- S2) (b1, b2)Jda1 da2da3da4

Using the inequality 11.32, it follows that



'S C 1:3

ds21:
2
dS IJ !LO(dX I)!LO(dx2) J dy P~Sl (X2' y)

X j dz P~(S2-S1)(y, z) j dWI dW2dw3dw4 Pdl (Xl, WI)p~(t2-sll (y, W2)

X P~(t3-S2)(Z, W3)P~(t3-S2)(Z, W4)¢(WI - W3)¢(W2 - W4)

'S C 1:3

ds2l t2
dS IJ !LO(dX2) j dy P~Sl (X2, y) J dW2 P~(t2-S1) (y, W2)

X jdw4¢(W2 -W4) jdZP~(S2-S1)(y,Z)P~(t3-S2)(Z,W4)

X jdw3P~(t3-S2)(Z,W3) j dwI¢(WI-W3) J!Lo(dxdp~h(XI,WI)

'S C 11¢II1 12
t3

dS21:2 dS IJ !LO(dX2) J dYP~Sl (X2, y) J dW2 P~(t2-S1)(Y' W2)

X jdw4P~(t3-S1)(y,W4)¢(W2-W4)

'S C 11¢lli l t3
dS2 {t

2
dSI (t3 - Sl)-d/2.

t2 Jtl

And so, since d 'S 3,

'S C(T) 11¢lli .

Finally, once again by II.32,

l
t3

It2 l h

dS3 dS2 dS I (Qsl <P12QZl-sl 'lfl Qs2-h <P12QZ2-s2 'lfl QS3-t2 <P12QZ3-s3 <p, !Lo)
t2 tl 0

'SC 1:3dS311t2ds21tldsljfLo(dX)JdYP~sl(X,y)jdZP~(S2-SIl(Y'Z)

X jdWPt(S3-S2)(Z,W) jdVldV3Pt(tl-Sl)(y,vdpt(t3-S3)(W,V3)¢(VI-V3)

X j dV2dv4P~(t2-S2)(Z, V2)Pt(t3- S3)(W, V4)¢(V2 - V4)
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It thus follows,

~ C(T) 11¢lli.

Therefore, from the bounds established above for each Jk, k = 1, ... , 14, it follows

that

D

Using the above moment formulas, and knowledge of the transition function qt,
existence of GSILT can now be shown in a constructive manner.
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CHAPTER III

EXISTENCE OF GENERALIZED SELF-INTERSECTION LOCAL TIME

The proof of existence is now completed as follows:

III.1 Preliminary Results

Generalized self-intersection local time (GSILT) at u E }Rd, over B C B(}R2), is

defined formally as

where

{

00,
6u (X) ~

0,

is the Dirac point-mass measure at u.

X=U

Note that in the above, and throughout the remainder of this paper, if <p : JRd ~ JR,

the convention

is made.

Since /1s/1t = fLt/1s, it makes sense to restrict GSILT either above or below the

diagonal, and so we set

£(u,T) = £(u;{(s,t): °S sst S T}),
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for fixed T E [0, (0).

The above definition is clearly formal, and thus to make sense of this a limiting

process will be constructed. For fixed A > 0, define

then in the sense of distributions,

LGA,U(x) = 100

dte-AtLqt(u,x)

= 100

dte-AtOtqt(U,x)

= e-Atqt(u,X)I:o + Altdte-Atqt(u,x)

= -ou(x) + AGA,u.

Or equivalently, in the sense of distributions,

The above implies that GA,u is the resolvent to L at A, and thus

which implies GA,U can be regarded as the element of S~ which sends ¢ E Sd to (¢,GA,U).

Thus, Theorem 7.10 of [18] implies the existence of a family {G;'u : E > O} C CJ< such

that G;'u -t GA,U as E -t 0, in S~.
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From [13], L is a continuous operator on S~, and it is concluded that

lim(>.. - L)CA,U = 8
O

€ u,
€-f

where convergence is in the sense of distributions, and so a limiting process is defined by

>.. > 0, E > 0, 0 ::; T < 00.

The goal now is to make sense of the operator L appearing in the integrand.

III.2 An Ito Formula

As in the independent case, the derivation of the evolution equation is accomplished

through the construction, and careful application, of an appropriate ItO formula. This

construction will mimic that of Adler & Lewin (1991), which begins with application of

Ito's Lemma to the non-anticipative functional f, given by

where'lj; E Ck(lRd), and x is a lR-valued random variable. Note that from the SPDE 1.6,

if ¢ E CK'(lRd), f-Lt(¢) is a continuous semi-martingale with decomposition

where

Theorem III.2.1. If ¢ E Sd then f-Lt( ¢) is an a.s. continuous semimartingale.



83

Proof: From Doob's maximal inequality for martingales and Theorem 1.1.6 we have that

for ¢ E CK'(JRd ), 0 :::; T < 00,

lE( sup f1t(¢))

2
:::;2f10 (¢)2+ 2lE ( sup Zt(¢))

2
+2lE( (T dsf1s (L¢))

2

Og:ST 0:St:ST 10

:::; 2f10(¢)2 + 8lEZT(¢)2 + 2lE ( rT
ds f1s(L¢)] 2

\Jo )

For the second term, from equation 11.1.2

IEZT(¢)2 = lE (Z(¢))T

= iTds IEf1s(cp2) + iTds IEf1;(A¢)

{T {T (T t 1

= 10 ds f10(Qs¢2) + 10 ds f16(Q;A¢) + 10 ds 110 dS2 f10(Qs2if>12Q;1-S2 A¢)

:::; IImlloo iTds IIQs¢21I£1 + Ilmll~ iTds IIQ;A¢II£1

(T t 1

+ Ilmll oo 10 dS1
10

dS 2 11<I>12Q;1-s2A¢II£1
d

:::; C(T) 11¢1112 +C(T) IIA¢II£1 +C(T) L: II(S.(Sl-S2)8i¢)(S.(Sl-S2)8j ¢) 11£1
i,j=l

where in the above {St : t 2:': O} is the Brownian transition semigroup. Thus, from HOlders

inequality

d d

lEZT (¢)2 :::; C(T) 11¢1112 + C(T) L: 118i ¢II£1 118j¢llL,1 + C(T) L: 118i ¢II L 2118j¢llp ·
i,j=l i,j=l
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With regards to the third term above,

IE (lTdSfLS(L¢)) 2 = iTdS1iTdS2 EfLsl (L¢)fLs2(L¢)

S iTds1i
T

dS2(EfLsl (L¢) 2EfLs2 (L¢) 2) 1/2

S T 2 sup EfLs(L¢)2
05.s5.T

S T 2 sup (fL6(Q;(L¢0L¢)) + t dTfLO (Qr(J>12Q;_r(L¢0L¢)))
05.s5.T Jo

S T 2 (C IIL¢ 0 L¢II£l + sup t dTJdY (SL(s-rl L¢) (y)2)
05.s5.T Jo

S C(T) IIL¢111l + C(T) IIL¢1112
d

::; C(T) ~ (118i 8j¢ll£l 118p8q¢ll£l + 118i8j¢llpI18p8q¢IIL2) .
i,j,p,q=l

Therefore,

IE (O~~~T I'M) ) 2 :<; C(Y) II flli, I it! (iloifil J} IIOjfllL' + IIOifllL' II OjfllL')

d

+ ~ (118i8j¢ll£l 118p8q¢ll£l + 118i 8j¢llp I18p8q¢llp)·
i,j,p,q=l

(IlL 1)

If ¢ E Sd, from Theorem 7.10 of [25], there exists a Cauchy sequence {¢n} C

Cj((Rd) converging to ¢ in Sd' Thus, from IILl, Chebychev's inequality, and a sub­

sequence argument from the Borel-Cantelli Lemma (cf. Theorem 4.2.3 of [4]), there is

a subsequence {¢n,J such that fLt(¢nk) converges uniformly in t E [0, T] to fLt(¢) with

probability one. Therefore, fLt( ¢) is an a.s. continuous semimartingale for Sd' D
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Fix T ?: 0, and set ¢ E CK(JRd), then from Ito's Lemma (cf. [15]),

Equivalently,

l
T

dt ('l/J ® ¢, fJ,tfJ,T) = l
T

dt ('l/J ® ¢, fJ,tfJ,t) + l
T

dt I t
ds ('l/J ® L¢, fJ,sfJ,t)

+ l
T

dZt(¢)1t
ds (<t" fJ,s) .

Lemma III.2.2. For any ¢, 'l/J E CK(JRd ))

Proof: Let °:::; t :::; T. It follows from 1.6 and Corollary II.3.3 that

lE (l tdZs (¢) l
s
dVfJ,v('l/J)) 2

=lE ltd (Z(¢).)s (lSdVfJ,v('l/J))2

= lEI t
ds (fJ,s (¢2) + fJ,s (A¢) 2) (l S

dv fJ,v ('l/J) ) 2

= I t
dsisdV11s dV2lEfJ,s (¢2) fJ,Vl ('l/J )/.LV2 ('l/J) + itds l

s
dV11s dV2lEfJ,s (A¢)2 fJ,vl ('l/J) fJ,v2 ('l/J)

:::; C(T) (II¢II~ 1I'lj;II~ + IIA¢II~ 11'l/J11~) .

By assumption on A and since ¢, 'l/J E CK(JRd),

IIA¢lloo < 00, IIA'l/Jlloo < 00,
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which, since 1I1/Jll oo ' 11¢ll oo < 00, implies by the definition of the stochastic integral (cf.

[16], chapter 3) that

In addition, it is clear from Lemma 11.3.3 that

and thus, again from the definition of the stochastic integral, 18

dv f-Lv(1/J) can be approx­

imated in L 2 (1P') by simple functions of the form

n

L L CA)A(n) (w)lCt(n) ,ti~)}s),
i Ai t 1.

where Ui A~n) = n, A~n) n Ajn) = 0 if i cJ j, Ui(t~n), t~~)l] = [0, (0), and (t~n), t~~)l] n

(t~'), t~~l] = 0 if i cJ k.

It follows that an L 2 approximation to 1t

dZ8 (¢)18

dv f-Lv(1/J) is given by

n

= LLCAi1A~n)(w)1co,t](ti) (Zti+1(¢) - ZtJ¢))·
i Ai '

Clearly f (s, ¢(x)) = ¢(x)18

dv f-Lv (1/J) is also in L2 (IP'), and thus we have the simple

functions of the form
n

~~ CA) Ain)(W)\tin),ti~)l](s)¢(x),

converging to f(s, ¢(x)) in L 2 (1P').

From Walsh's construction of the stochastic integral with respect to a martingale



i Ai

measure ([27]), an £2 approximation to

is then given by

n

= LL CA)A(n)(W)lCO,tj(ti) (Zti+l(¢) - Zd¢))·
J

Since any t\VO £2 limits of a sequence must agree, it follows that

j 'T it lT l itdZt (¢) dS/Ls('IjJ) = Z(dt, dx) ds¢(x)/Ls('IjJ),
a a a ~d a

Immediately, we arrive at the Corollary:

Corollary III.2.3.
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o

This will now lead to the following Lemma.

Lemma III.2.4. Given I.jJ E S2d,



88

where

d

(L2 1I!)(x,y) ~ ~ L aij(y)82Jh/JJ (x,y).
i,j=l

Proof: Assume that W E S?d, then from Lemma 11.1.1 we can choose {wn ; n E N} such

that
n

wn(x, y) = L(1/Jk @ ¢k)(X, y),
k=l

for some {?/Jk: kEN}, {¢k: kEN} c CX(IRd), and wn converges to W in S2d as n --+ 00.

It is clear from 11I.2 that

From Corollary 11.3.3,

{
T }2 T T

IE 1dt (Wn-Wm,!-Lt!-LT) =1dtl dsIE((Wn-Wm)@(Wn-Wm),!-Lt!-LT!-Ls!-LT)

::; C(T) IIWn- wmll~,

IE {iTdt (Wn - Wm, /-Lt/-Lt) } 2 = iTdtiTds JE ((W n - wm) @ (Wn - wm), /-Lt/-Lt!-Ls!-Ls)

::; C(T) IIWn- wmll~ ,

Since Wn converges in Sd to W,

lim Ilwn- wlloo
n-+oo
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and both of the above two terms are L 2 convergent. It remains to show that the conver­

gence it to the desired limit'.

For any t, s :::: 0, since J.L. E CMF(lRd) [0, 00), and Wn ---+ W uniformly,

Since the L 2 limit must agree with the a.s. limit,

Thus,

and

Consider next the stochastic integral term and term involving the generator L.

From Lemma II.3.3 it follows that

IE {lTdtI t ds (L2wn _ L2wm , J.LSJ.Lt)} 2

::::; C(T) IIL2 (wn- wm)ll~

d

::::; C(T) L II 02J72j(Wn - wm)lloo II02p02q(Wn - wm)lloo
i,j,p,q=l

and
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x IE (Oi(Wn - Wm)(X1, Y1) . OJ(Wn - Wm)(X2, Y2), /1S1 (dX1)/1s2(dx2)/1t(dY1)/1t(dY2))

d

~ C(T) Ilwn- wrnll~ + C(T) L Il o2.(Wn- Wm)ll oo II 02j(Wn - Wm)lloo'
i,j=l

Lemma 11.1.1 implies wn converges in the Schwartz space S2xd, and thus

and

for all i, j = 1,2, ... , d, are uniformly Cauchy sequences. For any t, S 2: 0, since /1. E

CMF(~d)[O, (0), and DCl:wn -t DCl:w uniformly for any multiindex a,

Since the £2 limit must agree with the a.s. limit,

and so
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Finally,

is a Cauchy sequence in £2. Now, for each y E JRd, and t E [O,T], (w n (·,y),!1t) is Cauchy

in £2, and so there exists an a.s convergent subsequence (w nk (·,Y),!1t). Since!1t is almost

surely finite and wn -+ W uniformly,

a.s., as k -+ 00.

Furthermore, both (w n (-, y). !1t) and (\ff(., y), JLt) are uniformly continuous in y E

JRd and t E [0, T], and so,

lim rT r Z(dt, dy) rt
ds (wnJ, y), !1s) = rT r Z(dt, dy) rt

ds (w(', y), !1s) a.s.
k-+oo Jo J~d Jo Jo Jrif.d Jo

Since the £2 limit must agree with the a.s. limit,

L2 _ lim rT r Z(dt,dy) t ds (wn (-,y),!1s) = rT r Z(dt,dy) rt
ds (w(·,Y),!1s).

n-+oo Jo Jrif.d Jo Jo Jrif.d Jo

o

Our much needed Ito formula has thus been developed, and existence of GSILT

will follow shortly.

III,3 Existence

Using lemma III,3 with G~'u in place of W, we now have
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As in Rosen [22] and Adler & Lewin [1] & [2] the issue of "local double points"

must be addressed, that is, the set of points lying on the diagonal in JR2, which will be

(falsely) counted as points of self-intersection when 7.1 = 0, and will lead to singularities

in dimensions greater than one. Due to this we follow the idea first proposed by Adler

& Lewin, and renormalize our GS1LT via subtraction of the term involving "local double

points". It is easy enough to see that the term involving the "local double points" is given

by

and thus we define our renormalized limiting process to generalized self-intersection local

time at 7.1 E JRd, over the set {(5, t) : 0::; 5 < t ::; T} by

.c.;(7.1,T)
l'

= ,;(7.1, T) - 1dt (C;"", /1t/1t)

= ArT
dt rt

ds (C;,u, l.ts/1t ) _ rT
dt ( C;,u, /1t/1T )

~ ~ . ~

+11'ldZ(dt,dy)ltds (C;,U(.-y),/1s).

Using Lemma 11.3.5 existence follows almost immediately.

Theorem IlL3.I. Suppose that /1 = {/1t : t ~ O} is ad-dimensional superprocess over

a stochastic flow such that /10 E MF(JRd), d ::; 3, satisfies Assumption 2. Fix T E [0, (0)

and define .c.~ (7.1, T) as above, then for 0 ::; s < t ::; T,
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uniformly in u E ]Rd, where £/\(u, T) is defined by

£/'(u, T) = A ITdt It ds \ GA,u, I1sl1t) -ITdt \ GA,u,l1tI1T)

+ iTldZ(dt, dy) itds \ GA,U(. - y), I1s) .

Proof: Let {GE} C COO(lRd) be any sequence such that GEand OiGE converge respectively

in £1 to GA,u and fJiGA,u, and for E1, E2 > 0, x E ]Rd, define

Then for the two non-stochastic integral terms, it is clear that

(IlL5)

and

(IlL6)

where
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For the stochastic integral term, we have

IE [I T kd Z(dt,dy)l tds (cPcI,c2(' - y)'JLSlf

~ f dllE ([ldS (¢",,,( -),1"('))]'.1')

rT
. /. r rt

. " , ) " ,1 \
+ io at V\ lio as ,qJCj,c2\'-" ,JLs\"J}J ,JLtJLt)

<, c 11'dt" l'dl,l' dl, [IE (<p" ,0" I'" ~"I") +p~, IE ("':';,0, ,1",1",1",1", )] , (III.7)

where

Thus, from IlL5, III.5, III.7, and lemma II.3.5, it follows that

and

[

T t ] 2
IE 1kd Z(dt, dy)1ds (cPCj,C2(' - y), JLsl

d

::; C(T) II¢cV21Ii + C(T) L IlopcPcI,c21111Ioq¢CI,c2111·
p,q=l

Since Gc and OiGc converge respectively to GA,u and OiGA,u in £1, i = I, ... , d, we

have that



95

and

Since the choice of the {Ge } is arbitrary, it may be assumed that Ge = G;'"U for

each E > 0, and the result follows. o
Existence of GSILT for the SSF is thus shown to exist, in a Tanaka-like form, for

dimensions d :S 3. A desired, yet still open result is to show that the mapping

(u, T) H d'(u, T)

is continuous for each fixed ,\ > O. The progress made so far follows in some Lemmas and

Theorems with extend Kolmogorov's continuity criterion (cf. [16]).
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CHAPTER IV

CONTINUITY LEMMA

IV.l Stochastic Fields and Continuity

In order to show joint continuity of the map (7.1, t) ----0' £},(7.1, t), we will now prove

an extension of Kolmogorov's continuity criterion from a stochastic process to a stochastic

field. We begin with some definitions.

Definition IV.l.l. A stochastic field is a collection of random variables {Xa; a E A},

where A is a partially ordered set.

Definition IV.l.2. Given two stochastic fields X = {Xa; a E A} and Y = {Va; a E A}

defined on the same probability space. If for each a E A,

then Y is called a modification of X.

Definition IV.l.3. A stochastic field X

continuous on B C A with exponent 5 if

{Xa; a E A} is said to be locally Holder

where N is an a.s. positive random variable and E > a is an appropriate constant.

The following lemma extends Kolmogorov's continuity criterion to a stochastic
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field indexed on JP&d x [0, (0) x (0, (0). A similar result was shown first by Meyer [19],

which this extends through an independent proof.

Lemma IV. 1.4. Fix T E (0, (0) and set UT ~ [-T, T] x [0, T] x (0, T). Let X = {Xu; U E

UT } be a stochastic field defined on the probability space (D, F, 1P'), such that

for some positive constants 1,13, and C. Then, their exists a continuous modification

X = {Xu; U E UT } of X, which is locally Holder continuous with exponent <5 for every

<5 E (O,13h).

Proof: For simplicity, assume T == 1, and write U ~ U1 . For any n E N, by Cebycev's

inequality,

Thus,

1P'(IXuj - X U2 ! ~ T"n) ~ 2,"nlE IXU1 - X u2 1'

~ C2,"n lUI - u2Id+2+,B . (IV.l)

Define

(IV.2)

for each n E N,
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and write UI~U2 exactly when UI,U2 E Dn and IXI - x21 = 2-n.

If UI ~U2, then (IV.I) implies

JP>(IX - X I> 2-on ) < C2-n(d+2+!3-,<5).
Ul U2 - -

Since

IDnl = (2n+1 + l)d(2n + 1)(2n- 2)

::; (2 .3d)2n(d+2)

= C 2n (d+2)

and each U E Dn has at most 2(d + 2) neighbors,

JP> (m~x IXU1 - X u2 1 :2 Ton) = JP> (U U!XU1 - X u2 1 :2 T<5n)
Ul"'U2 Ul EDn U2 EDn

n
U2"'UI

::; L L JP> (IXU1 - X u2 1 :2 2-<5n; UI ~U2)
UIEDl7. U2EDl7.

n
U2"'UI

Since j3 - ,6 > 0, the Borel-Cantelli Lemma implies the existence of no E F such

that JP>(n \ no) = I and for any w ~ no, UI ~U2,

V n :2 no(w), (IV.3)

where no is a positive, integer-valued random variable.

Consider the claim.

Claim IV.1.5. Fix w ~ no and n :2 no(w). For any m > n, and any UI, U2 E Dm with



m

IXU1 (W) - X u2 (w)1 :s; 2(d + 2) L 2-0j
.

j=n+1
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(IV.4)

Proof of Claim IV.1.5: The proof will follow from an induction on m > n. If it is first

assumed that m = n + 1, then UI, U2 E Dn+1 and lUI - u21 < 2-n imply UI n;!:}U2, and so

by (IV.3),

IXU1(W) - Xu2 (w)1 < To(n+l)

< 2(d + 2)2-0(n+I j .

Assume now that for some m > n,

m-I

IXU1 (w)-XU2 (w)I:S;2(d+2) L TOj,
j=n+1

(IV.S)

for any UI,U2 E Dm - I with IUI-U21 < 2-n , For p = 1,2, define vp = (v~, .."v~+2) as

follows, Given each pair (uLu~), i = 1,2, ... ,d+2, ifu~ ~ u~, set

Vi = max {kT(m-I), kT(m-l) < ui }p , - p ,

and

V~ = min {k2-(m-l); kT(m-l) ~ un '
For each i = 1,2, "', d + 2, define

( ') (I i) to-. ( HI d+2)U '/, = VI' ... , VI '01 UI , .. " U 1 ,

U(O)=Ul,



and

( ") _ (I i) ('J, ( i+ I d+2)
V ~ - t/.2'" "", t/.2 'U V2 , ... , V2 ,

v(O) = V2,

and note that

t/.(i)~t/.(i -1)

v(i) ;,::;v(i - 1).

It follows from (IV.3) that

and

Since IVI - v21 < 2-n , (IV.S) implies

m-I

IXV1 (w) -Xv2 (w)l::; 2(d+2) L T<5j.
j=n+1

100
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Finally,

~z d~

:s; L IXu(i)(W) - X U (i-1)(W) I +L IXv(i)(W) - X V (i-l)(W) I + IXV1(W) - X v2 (w)1
i=1 i=1

rn-l

:s; 2(d + 2)T5rn + 2(d + 2) 2:= 2-5j

j=n+l
Tn

=2(d+2) L TOj,
j=n+l

thus proving the claim. o
(Continuation o/pro%/lemma.) Now, iful, Uz E D with 0 < lUI - 'uzl < 2-no (w),

there exists a unique n 2: no(w) such that 2-(n+l) :s; lUI - uzl < 2-n . If'rJ > 0 is defined

A 2(d+2) . .
by '11 = 0 ' It follows from the claIm that'( 1- 2-

00

j=n+l

= 2(d + 2) (2-(n+l))0
1 - 2-0

:s; 'rJ lUI - ul . (IV.6)

Thus, U H Xu(w) is uniformly continuous for any W~ no.

Define X as follows. For W E no,u E U, set Xu(w) = O. If w ~ no, U E D, set

Xu(w) = Xu(w), and forw ~ no, U E UnDc, choose a sequence {un;n E N} cD such

that limn-too Un = u. For m, n large enough,

which implies limn-too XUn(w) exists, and is dependent only upon u (independent of the
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choice of sequence). Thus set

By construction it thus follows that Xtt = Xu a.s. for all U E D. If u E Un DC,

and {un} C D with Un --+ u, it has been shown that

From (IV.2)

and since the a.s. and probabilistic limits must agree, Xu = Xu a.s ..

Thus, it is shown that Xu = Xu a.s. for all U E U, and so, X is the desired

modification of X.

Finally, by (IV.6),

showing the desired Holder continuity.
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CHAPTER V

FINAL REMARKS

V.l Open Questions

\Ve conclude this work with some open questions.

Assume for fixed A > 0 that t./'(z, T) is jointly continuous in (z, T), and write

O!T(dz) = t/\(z, T) dz. Then, for any bounded Borel measurable rP,

Thus,

£/'(z, T) = d;:
gives the local time for Vs,t = f.lt - f.ls over {(s, t) : 0 S; s S; t S; T} (cf. [22]). The first

question follows naturally.

Question 1: For fixed A > 0, is the process L>'(u, T) jointly continuous in (u, T)?

It is likely that some difficulties will arise when attempting to use Lemma rV.1.4
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to prove continuity. Namely, it is clear that moments at least as great as the sixth must

be calculated, which will be at the very least quite tedious. From the work on the third

and fourth moments, it is conjectured that a general moment formula could be employed

to bound

IE {iTdtltds (¢, I-£Sl-£t)} n,

IE {iTdt (¢, I-£tl-£T) } n ,

and

{

T t }n
IE lldZ(dt, dy)1ds (¢(- - y), I-£s) ,

in a manner that allows Lemma IV.1.4 to show the desired continuity. Thus, a new

method for calculating moments is desired. It was conjectured in [1], and shown in [30]

and [31] that a conditional log-Laplace functional can be defined for the superprocess over

a stochastic flow. Let ~t be the diffusion process described by

for independent Brownian motions BD: and W, let JEw denote the conditional expectation

given the Brownian motion Wand let J1 = a(~s : s :::; t), then we have the following

lemma.

Lemma V.I.I. ~ = {~t : t ~ O} satisfies:

for all s < t, ¢ E Cb(~d). That is, ~ is a conditional Markov process given W.

Proof: See Lemma 1 of Xiong [31].

Given W, denote the conditional transition function by

o
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and the associated transition semigroup by

Q~¢(x) = r q~(x, dy)¢(y).
J~d

Let dWr represent the the backward Ito integral:

where ~ = {ro, rl, ... ,rn} is a partition of [8, t] and I~I is the maximum length of its

subintervals. Furthermore, for ¢ E Ck(JR.d ), let Ys,t be defined as the solution to the

following SPDE:

iT it2 T ~

Ys,t(X) = ¢(x) + s dr (LYr,t(x) - Yr,t(X) ) + s \l Yr,t(x)c(x)dWr. (V.1)

It was shown in [30] and [31] that the SPDE V.1 has a unique L 2 (JR.d) +-valued solution

in the following sense: for any 1./) E CK'(JR.d), for any 8 :s; t,

where for any space of real valued functions A, A+ C A is the subset of positive valued

functions and L * is the dual operator to L given by

d

L*¢ = ~ L 8[j(aij¢).
i,j=1

Furthermore, it was shown that
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where axYr,t is the derivative in the weak sense, and that

o :::; Yr,t(x) :::; 11¢ll oo '

The following log-Laplace functional was conjectured first in [26], then shown to

hold (under certain nice conditions) by Xiong in [30] and [31].

Theorem V.1.2. FOT any ¢ E CJ«JRd)+,

If Yt is defined by

Xiong [31] has shown that

and that

Therefore, by taking expectations, it follows that

If y't is defined by
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it thus follows that

or equivalently, we have the log-Laplace transform given by

And so it is now theoretically possible to use this method to calculate any higher moments

of the superprocess. This leads to the next question.

Question 2. Using the above log-Laplace transform, for any even m and some! > 0,

can the following bounds be established?

(i) IE [.c;(u, T) - L;(u, T')J
m

::; CIT - T'll'm,

where the constant C depends only upon m.

Under the assumption that the above can be shown, Lemma IV.1.4 would further

imply the property of Holder continuity, with Holder exponent J for every J E (O,! _ d~l).

Since the assumption of Question 2 holding implies the bounds hold for every even m, the

HOlder continuity follows for any exponent J E (O,!).

Question 3. Given the above, can a maximal! be found. Failing this, is it

possible to find 0 < a < b < 00 such that I E (a, b).

Xiong examined the long-term behavior for superprocesses over a stochastic flow

in [31], and produced the following two theorems.
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Theorem V.1.3. Suppose that d::; 2]

Jflo (dx) q~j(x,.) =: fLo(-), flo « A, and 0 < Cl < dfL < C2 < 00- d)"-

for constants Cl, C2. For any bounded Borel set B C JRd] we have

IP'-lim fLt(B) = O.
t-tOO

Theorem V.1.4. Suppose that d 2:: 3]

and that flo has a density that is bounded by cleC2 /xl where Cl and C2 are constants. Then

fLt ::::} fLoo for some fLoo as t ---+ 00. Furthermore] lEfLoo = flo.

Since "local double points" are excluded from the SILTSSF, it thus seems reason-

able that when d ::; 2,

P-lim L).,(u, t) = O.
t-tOO

This gives the next question.

Question 4. Using the above Theorem, does it follow that for d::; 2,

P-lim L).,(u, t) = O?
t-tOO

Will this also hold if the limit is taken in L 2?

The more interesting case occurs when d = 3, and leads to the final question.

Question 5. Since when d = 3 the SSF converges in distribution to a random

measure, having expecta.tion flo, what is the behavior of L).,(u, t) as t ---+ oo?
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