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CHAPTER I

INTRODUCTION

The subject of this dissertation lies in the theory of tensor categories. Let us begin by

considering the collection of all finite dimensional complex representations of a finite (or affine

algebraic) group G. These representations along with the maps among them form the category

Rep(G). The tensor product of representations gives the category Rep(G) extra structure, making

Rep(G) a basic example of a tensor category (see definition II.l.I). Many people have contributed

to the theory of tensor categories, most notably Tannaka, Krein, Grothendieck, Saavedra Rivano,

and Deligne. If we restrict ourselves to working over the complex numbers then one of the biggest

results on tensor categories is due to Deligne, and states that any tensor category satisfying certain

"mild" conditions can be realized as a category of representations of some supergroupl (see [8]).

This result is quite remarkable since tensor categories with no clear underlying group arise in many

areas of mathematics (e.g. algebraic geometry, differential Galois theory, algebraic quantum field

theory). There do, however, exist tensor categories which do not satisfy the "mild" conditions in

Deligne's result, and therefore cannot be realized as a category of representations of a supergroup.

The purpose of this dissertation is to give a detailed description of a family of tensor categories

which cannot be realized as categories of representations of any supergroup.

In this dissertation we study the tensor categories denoted Rep(St) indexed by t which

is not necessarily a nonnegative integer (for the purposes of this introduction, assume t is an

arbitrary complex number; see definition III.2.9). Deligne introduced the category Rep(St) in [9];

the notation was chosen because Rep(Sd "interpolates" representations of the symmetric group St

when t is a nonnegative integer (see section IV.3). It is shown in [9] that fup(St) is semisimpIe if and

only ift is not a nonnegative integer. Loosely speaking, this means that the structure of Rep(St) is

more complicated, and thus more interesting, when t is a nonnegative integer. The main result of

1 A supergroup is a generalization of an affine group (see example II.1.2.3).
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this dissertation is the complete description of the category Rep(St) in the non-semisimple cases.

More precisely, we completely describe the blocks of &P(St) as additive categories (see theorems

VI.O.6, VILl.4, and VII.3.1).

The category &P(St) has been studied prior to Deligne's work in [9] in different guises. In

the mid 1900's, Murnaghan and Littlewood worked on the problem of decomposing tensor products

of symmetric group representations (see for example [23] and [17]). Their resulting formulae often

involved "meaningless representations" which were discarded. These formulae are actually telling

one how to decompose tensor products in ~(St), and the "meaningless representations" can be

explained by the precise connection between the symmetric groups and Rep(St) (see section IV.3).

Moreover, Rep(St) is intimately related with the partition algebras introduced by Martin in [19]

and [20] (see definition III.2.3). The partition algebras have been studied by many people including

Doran and Wales (see [10]) as well as Halverson and Ram (see [14]).

This dissertation is organized as follows. In chapter II we recall the notions of tensor

categories and pseudo-abelian envelopes. We give all necessary definitions and a few basic results

which will be useful later in the text. In chapter III we carefully define the tensor category Rep(St)

with emphasis on motivation. In chapter IV we classify indecomposable objects in Rep(St) and

prove some basic properties of Rep(St). In chapter V we construct endomorphisms of the identity

functor on &P(Sd which playa key role in proving our description of blocks of Rep(St). In

chapters VI and VII we give a complete description of the blocks in ~(St), the main result of

this dissertation. In chapter VIII we use our results on blocks along with a classical formula due

to Littlewood to decompose tensor products in &peSt). Finally, in chapter IX we classify tensor

ideals in Rep(St).

Lastly, there are other families of tensor categories which, like Rep(St), are generically

semisimple. There exists such families which "interpolate" complex general linear and orthogonal

groups (see for example [9, sections 9 and 10)). Also, Knop defined many more examples including

tensor categories related to finite general linear groups in [15] and [16J. Some work has been done

towards the description of blocks in these categories in the guise of studying Brauer algebras (see

for example [6], [7], [5], and [22]). However, to this point in time, Rep(St) is the only family for

which a complete description exists in the non-semisimpIe cases. Hopefully, the methods used in

this text will be useful in furthering our understanding of these other families of tensor categories.
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CHAPTER II

PRELIMINARIES

In this chapter we give a brief introduction to tensor categories, blocks of additive cat­

egories, and pseudo-abelian envelopes. We present basic definitions and results relevant to this

dissertation. For a more complete treatment of tensor categories, see [1] or [8]. For more on

pseudo-abelian envelopes, we refer the reader to [9, §1.7-8]. We close the chapter by fixing Young

diagram conventions.

11.1 Tensor Categories

The main topic of study in this paper is the structure of certain tensor categories. In this

section we will define the term tensor category and give a few examples.

Let F be a field.

Definition 11.1.1. A tensor category is an F-linear1 category 7 equipped with

• an F-linear bifunctor ® : 7 x 7 ---> T.

• (associativity) a functorial isomorphism aABC (A ® B) ® C ~ A ® (B ® C) for each

A, B, C E ob(T).

• (commutativity) a functorial isomorphism f3AB : A ® B ~ B ® A for each A, BE ob(T),

which satisfies f3BAf3AB = idA0B .

• (unit) an object 1 E ob(7) and functorial isomorphisms AA : 1 ® A~ A, PA : A® 1~ A

for each A E ob(T).

IAn F-linear category is a category in which all Hom's are F-veetor spaces and composition is F-bilinear.



4

satisfying:

• (triangle axiom) For any objects A, B, the following diagram commutes.

• (pentagon axiom) For any objects A, B, C, D, the following diagram commutes.

(A 18> B) 18> (C 18> D)

~~
A 18> (B 18> (C 18> D)) ((A 18> B) 18> C) 18> D

IidA0"BCD "ABC0id DI
A 0 ((B 0 C) 18> D) ......---"A-.B-Qil-C,-D--- (A 18> (B 18> C)) 0 D

• (hexagon axiom) For any objects A, B, C, the following diagram commutes.

(A 18> B) 18>C

~~
A 0 (B 0 C) (B 0 A) 0 C

!.8A,BQilC ! "BAC

(B 0 C) 0 A B 0 (A 0 C)

~~
B 18> (C 18> A)

Furthermore, a tensor category is assumed to be rigid. In other words, for any object A, there is a

dual object AV and morphisms eVA: AV 18> A ---> 1, coeVA : 1 ---> A0Av such that the compositions

A coe'~idA A 18> AV 0 A id~VA A and AV idAv~evA AV 0 A 0 AV eVA~Av AV are equal to

identity morphisms (here I am skipping the associativity and unit isomorphisms). Finally, in a

tensor category we require End(l) = F.

Example 11.1.2. The following are all examples of tensor categories. In each example the tensor

product as well as the associativity, commutativity, unit, and dual constraints are the usual ones.
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(1) The category Vee of finite dimensional vector spaces over F.

(2) The category Rep(G) of finite dimensional representations of Gover F, where G is an affine

algebraic group.

(3) An affine supergroup G consists of data (O(G), i-L, 7],~, c, S) where O(G) = O(G)o EEl O(Gh

is a supercommutative super Hopf algebra with multiplication i-L : O(G) ® O(G) ---> O(G),

unit 7] : F ---> O(G), comultiplication ~ : O(G) ---> O(G) ® O(G), counit E : O(G) ---> F,

and antipode S : O(G) ---> O(G). By a representation of a supergroup G, we mean a super

comodule of O(G). Let e : O(G) ---> F be any map satisfying

. • the morphism m 0 (e ® e) 0 ~ : O(G) ---> F (Where m : F ® F ---> F is multiplication) is

equal to the counit c .

• the automorphism (e ® ido(Gl ® (e 0 S)) 0 (~181 ido(Gl) 0 ~ : O(G) ---> O(G) is equal to

the map h f-t (_l)deg(hl h.

If V is a representation of G with comodule structure ~ : V ---> O(G) ® V, then e acts on

V by the composition V ---..L, O(G) ® V i~e F ® V = V. Let Rep(G, e) denote all finite

dimensional representations of the supergroup G where e acts as the parity automorphism

v f-t (-1)degv. Given any supergroup G and any such e, Rep(G, e) is a tensor category. 0

Remark 11.1.3. Deligne has shown that any tensor category satisfying certain "mild" constraints

is equivalent as a tensor category to Rep(G, e) for some supergroup G (see [8]). In this paper

we will study tensor categories which are not equivalent as tensor categories to Rep(G, e) for any

supergroup G.

We close this section with definitions involving tensor categories relevant to this paper.

Definition 11.1.4. A tensor functor between tensor categories T and T' is a functor 9 : T ---> T'

along with an isomorphism 1 ~ 9(1) and functorial isomorphisms 9(A) ® 9(B) ~ 9(A ® B)

which are compatible with the associativity, commutativity, and unit constraints.

Definition 11.1.5. A tensor ideal I in a tensor category T is a subspace I(X, Y) c HomT(X, Y)

for each pair of objects X, Y in T such that

(a) ghk E I(X, W) for each k E HomT(X, Y), hE I(Y, Z), g E HomT(Z, W).
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(b) 9 0 idz E I(X 0 Z, Y 0 Z) for every object Z and every 9 E I(X, Y).

A tensor ideal I is said to be proper if I(X, Y) "# Homr(X, Y) for some objects X, Y. The tensor

ideal consisting of all zero morphisms is called the zero tensor ideal.

Definition 11.1.6. Given a tensor category 7 and a tensor ideal I, the quotient category, 7 II,

is defined to be the tensor category with

• objects: ob(7II) = ob(7) .

• morphisms: HomT/Y(X, Y) := Homr(X, Y)II(X, Y).

Property (a) of a tensor ideal guarantees that composition in 71I is well defined, whereas

property (b) guarantees that 7 II is in fact a tensor category.

II.2 Linear Algebra in Tensor Categories

In this section we will extend the definitions of some common linear algebra terms to

arbitrary tensor categories. We begin with dual maps.

Definition II.2.1. Given a morphism 9 : A -. B in a tensor category, define the dual map

gV : BV -. AV to be the composition

The following familiar property of dual maps will be important for us in later chapters.

Proposition 11.2.2. (gh)V = hV gV for any morphisms 9 : A --> Band h : B -. A. In particular,

if e : A -. A is an idempotent then so is ev .

Proof. We will use graphical calculus for morphisms in a tensor category (see [25] or [1D.

B gAB hV B

B o
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Next, we define the trace of an endomorphism as well as the dimension of an object.

Definition 11.2.3. Given an endomorphism 9 : A ---t A in a tensor category T, define its trace

tr(g) E EndT(l) = F to be the composition

Given an object A in T, define its dimension dim A := tr(idA ).

Just as with dual maps, there are familiar properties of trace which will be useful later.

For a proof of the following proposition we refer the reader to [25, lemma 1.5.1].

Proposition 11.2.4. (1) tr(gh) = tr(hg) for any morphisms 9 : A ---t Band h: B ---t A.

(2) tr(g 18> h) = tr(g)tr(h) for any endomorphisms 9 : A ---t A and h : B ---t B.

11.3 Blocks and Semisimple Categories

The main results of this dissertation concern the blocks of a specific tensor category. In

this section we define the terms "block" and "semisimpIe" and say a few words on their connection.

Let A denote an arbitrary F-linear category which satisfies the Krull-Schmidt property2.

Definition 11.3.1. Consider the weakest equivalence relation on the set of isomorphism classes

of indecomposable objects in A where two indecomposable objects are equivalent whenever there

exists a nonzero morphism between them. We call the equivalence classes in this relation blocks.

We will also use the term block to refer to a full subcategory of A which is EEl-generated by the

indecomposable objects in a single block. We will say a block is trivial if it contains only one

indecomposable object (up to isomorphism) and its endomorphism ring is F.

It follows that A is equivalent to the direct sum of its blocks. Hence, to understand the

structure of A it suffices to understand the structure of all the blocks in A. The following definition

is closely related to blocks.

Definition 11.3.2. A is called semisimple if the following two conditions are satisfied.

• The only nonzero morphisms between indecomposable objects in A are isomorphisms.

2Every object can be decomposed as a direct sum of indecomposable objects. Moreover, the isomorphism types
of the indecomposable summands are unique up to reordering.
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• EndA(X) is a division algebra which is finite dimensional over F for each indecomposable

object X.

If one wishes to study the structure of an F-linear category A, it is common to ask "is A

semisimple?" If the answer is no, one may ask "by what amount does A fail to be semisimple?"

One way to answer this question is to describe the blocks in A. This is precisely what we aim to

do with a specific tensor category in subsequent chapters.

11.4 Pseudo-abelian Envelopes

In this section we will define the "pseudo-abelian envelope" of an arbitrary pre-additive

category. We then prove a Krull-Schmidt-type proposition concerning indecomposable objects in

pseudo-abelian envelopes. With hopes of making the definitions a bit more comprehensible, there

will be the running example.

For this section assume A is a pre-additive category (Le. a category such that all Hom's

are abelian groups and composition is bilinear).

Example 11.4.1. Given a ring R, the category with one object whose endomorphism ring is R is

a pre-additive category. We denote this category simply by R.

Definition 11.4.2. The additive envelope of A is the category A add with

<)

• objects: Finite tuples of objects in A written as Al ill· ., ill A k for A1 , ... , A k E ob(A), k > O.

We also include the empty tuple which is the zero object in Aadd.

• morphisms: HomAadd (E97=1 Ai, E9;=1 B i) is the set of all l x k-matrices whose (i, j)-entry

is a morphism A j ----> Bi in A. Composition in Aadd is given by matrix multiplication along

with the induced composition from A.

Composition in A add is clearly associative. The identity morphism in EndAadd (E9:=1 Ai)

is the diagonal matrix diag(idA1 , ... , idAk ).

Informally, Aadd is the smallest additive category containing A. More precisely, it is easy

to check that Aadd along with the functor A ----> A add which takes objects to I-tuples has the

following universal property.

Universal Property of Aadd. If C is an additive category and A ----> C is an additive functor (Le.

a functor where the induced maps on Hom's are abelian group homomorphisms), then there exists
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a functor Aadd -+ C, unique up to natural equivalence, making the following diagram commute.

Example II.4.3. Let A = R where R is a ring. Then Aadd is isomorphic as a category to the

category of free right R-modules of finite rank.

Next, we need the notion of a "Karoubian category."

o

Definition II.4.4. A category K is called Karoubian if for every object A and every idempotent

e E Endx:(A) there is an object Band morphisms i : B -+ A and p : A -+ B such that poi = ids

and i 0 p = e.

Definition II.4.5. The Karoubian envelope of A is the category AKaI' with

• objects: (Afe) for each A E ob(A) and idempotent e E EndA(A) .

• morphisms: HomAKar((A,e),(B,f)).- jHomA(A,B)e. Composition in AKaI' is induced

from composition in A.

Composition in AKaI' is clearly associative. The identity morphism in EndAKar ((A,e)) is

the morphism e.

Just as Aadd is the smallest additive category containing A, AKaI' is the smallest Karoubian

category containing A. More precisely, it is easy to check that AKaI' along with the functor

A -+ AKaI' which takes an object A to (A, idA) has the following universal property.

Universal Property of AKar. If K is a Karoubian category and A -+ K is a functor, then there

is a functor AKaI' -+ K, unique up to natural equivalence, making the following diagram commute.

We are now ready to define the pseudo-abelian envelope.

Definition II.4.6. The pseudo-abelian envelope of a pre-additive category A is defined to be

APS ab := (Aadd )Kal'.
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Example 11.4.7. Let A = R where R is a ring. Then APs ab is equivalent to the category of

finitely generated projective right R-modules. <>

We close this section with a proposition concerning indecomposable objects in pseudo­

abelian envelopes.

Proposition 11.4.8. Suppose A is an F-linear category such that all Hom spaces are finite di­

mensional. An object in APs ab is indecomposable if and only if it is isomorphic to an object of

the form (A, e) where A is an object in A and e E EndA(A) is a primitive3 idempotent.

Proof. Suppose (X, f) is an object in APs abo We will first show that (X,1) is indecomposable if

and only if f is a primitive idempotent. To do so, suppose f = !l+12 where !l and 12 are orthogonal

idempotents. Let Pj : (X,!l) EB (X, h) ----> (X, fj) and ij : (X, fj) ----> (X,!l) EB (X, h) for j = 1,2

be the usual biproduct maps. Then id1 + i2 12 is an isomorphism from (X, 1) ----> (X,!l) EB (X, h)

with inverse !lP1 + 12p2. It follows that (X, 1) is indecomposable if and only if f is primitive.

Now suppose (X, 1) is an indecomposable object in APs ab and write

idx = f + !l + ... + fr

where f,!l, , fr are mutually orthogonal primitive idempotents. If X = EB;':l A; and

idA, = ei,l + + ei,r, is an orthogonal decomposition of idA; into primitive idempotents for each

i, then

idx = L L ei,j
1:O;i:O;", 1:O;j:O;r;

is another orthogonal decomposition of idx into primitive idempotents. Thus, by the Krull-Schmidt

theorem (see for example [2]), f is conjugate to ei,j for some i,j. If we let U E EndAadd(X) be

such that f = Uei,jU-l, then fUei,j : (Ai, ei,j) ----> (X, 1) is an isomorphism with inverse ei,jU- 1j.

o

Remark 11.4.9. Suppose A is an F-linear category with all Hom spaces are finite dimensional.

Then using proposition 11.4.8 one can show the categories (Aadd )Kar and (AKar)add are equivalent.

This is not true for arbitrary A. For example, consider the category R = 71../671.. (see example

3 An idempotent e E A is primitive if there do not exist nonzero idempotents el, e2 E A with e = el + e2 and
ele2 = O.
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I1.4.3). Since RKar = R, (RKar)add is the category of free R-modules of finite rank. On the other

hand, (Radd)Kar is the category of finitely generated projective R-modules. But Z/2Z is a finitely

generated projective R-module which is not free.

11.5 Pseudo-abelian Envelopes of Tensor Categories

In this section we will show how to extend the structure of a tensor category to its pseudo­

abelian envelope. We will do so by showing that the additive and Karoubian envelopes of a tensor

category both inherit the structure of a tensor category.

Let Y be a tensor category (see definition II.1.i). First, we give yadd the structure of a

tensor category.

Definition 11.5.1. (the tensor structure for yadd)

• objects: Define the tensor product of two objects in yadd by requiring that 121 distributes

over EB and using the tensor product of objects in T.

• morphisms: The tensor product of two morphisms in yadd is induced from the tensor product

of morphisms in Y along with the usual matrix tensor product.

• associativity: (XE9i Ai,E9j Bj ,E9
k

Ok is the diagonal matrix whose diagonal entries are (XAi,Bj ,Ok'

• commutativity: (3E9i Ai,E9
j

Bj is the diagonal matrix whose diagonal entries are (3A i ,Bj'

• unit: The unit object in yadd is the i-tuple 1. AE9;Ai (resp. PE9i AJ is the diagonal matrix

whose diagonal entries are AAi (resp. PA;}

• duals: Set (E9i Ai) v := E9i At. eVE9, Ai (resp. coevE9i AJ is the matrix whose At 121 Ai ---71

(resp. 1 -7 Ai 121 An entries are eVAi (resp. coevA,) and all other entries are zero.

The following proposition is easy to check.

Proposition 11.5.2. With the constraints listed above, yadd is a tensor category.

Next we define a tensor structure on yKar.

Definition 11.5.3. (the tensor structure for yKar)

• objects: (A,e)@(B,f):=(A@B,e@f).
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• morphisms: The tensor product of two morphisms in TKar is defined to be the tensor product

of the morphisms viewed as morphisms in T.

• associativity: aCA,e),CB,f),CC,g) := (e@ (f @g))aABc((e @ f) @g).

• commutativity: {3CA,e),CB,f) := (f @ e){3AB(e @ f).

• unit: The unit object in TKar is (1, idd. Set ACA,e) := eAA(id1@e) and PCA,e) := epA(e@id1).

• duals: Set (A,e)V := (AV,eV) (see definition II.2.1). Set eVCA,e) := eVA(eV @ e) and

coevCA,e) := (e @ eV)coevA.

Proposition 11.5.4. With the constraints listed above, TKar is a tensor category.

Proof. The only axioms of a tensor category which are not obviously satisfied are the rigidity

axioms. To show (idCA,e) @ eVCA,e))(coevCA,e) @ idCA,e)) = idCA,e) in TKar, we need to show that

(e @ (evA(eV @ e)))(((e @ eV)coevA) @ e) = e in T. We will do this using graphical calculus for

morphisms in a T. All the arrows in the following diagrams are labelled A.

The proof that (evCA,e) @ idCA,e)v )(idCA,e)v @ coeVCA,e)) = idCA,e)v is similar.

11.6 Notation and Conventions for Young Diagrams

D

Throughout this dissertation, Young diagrams will be used to index indecomposable ob­

jects in various categories. In this section we will fix our notation and drawing conventions for

Young diagrams.

Definition 11.6.1. A Young diagram A = (AI, A2,"') is an infinite sequence of nonnegative

integers with Ai 2: Ai+! for all i, such that all but finitely many of the Ai are zero. Also, the size

of A is set to be IAI := 2::::1 Ai.
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We will identify a Young diagram with an array of boxes as follows: Label the rows of

the array 1,2,3, ... in increasing order from top to bottom. Place Ai boxes in the ith row so that

the number of boxes in each column decreases from left to right (gravity goes up and to the left).

With this identification, IAI denotes the number of boxes.

Example II.6.2. The Young diagram A = (4,4,3,3,1,0, ... ) has IAI = 15 and is pictured below.

Figure 1: A Young Diagram <>

Occasionally it will be useful to give a Young diagram by its multiplicities. We will write

(l'{" , 1;;'2, ... , l;."r) to denote the Young diagram with mi rows of length Ii for each i = 1, ... , r.

Example II.6.3. (42 ,32 ,1) denotes the Young diagram in example II.6.2.

Next, we define a total order on the set of all Young diagrams.

<>

Definition 11.6.4. Given Young diagrams A = (AI, A2,"') and X = (A~, Ai, ... ) write A --< A' if

IAI < IXI or if IAI = IXI and there exists i such that Ai < A; and Aj = AJ for all j < i.

Finally, let us fix the following notation concerning Young diagrams:

• Let W denote the set of all Young diagrams and set Wd := {A E W I IAI = d}.

• Let 0 denote the "empty" Young diagram (0, ... ).

• Given a Young diagram A, let LA denote the simple SIAl-module corresponding to A (see e.g.

[12, 4.2]).

• Given a Young diagram A

characteristic zero), set

(AI, A2,"') and an element t E F (where F is a field of
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CHAPTER III

THE TENSOR CATEGORY REP(St; F)

In this chapter we carefully define Deligne's category W(St; F). Our construction of

Deligne's category will be motivated by the connection between symmetric groups and partition

algebras introduced by Martin in [19] and [20]. We begin with an exposition of this connection.

111.1 Motivation: Representations of Sd and Partition Diagrams

Let d be a nonnegative integer, and let F be a field of characteristic zero. Let us consider

the tensor category Rep(Sd; F) of finite dimensional representations over F ofthe symmetric group

Sd. Note that we take So to be the trivial group whose one element is the identity permutation of

the empty set. Let Vd denote the natural d-dimensional representation of Sd with basis {VI, ... ,Vd},

so that Sd acts by permuting the basis elements (Va is taken to be 0). Setting Vd0
0 = F for all

d ~ 0, we have the following well known result:

Proposition 111.1.1. Any irreducible representation of Sd is a direct summand of Vd0
n for some

nonnegative integer n.

Proof. If d = 0 the statement is certainly true. Assume now that d > O. Let X denote the

character of Vd. Consider the virtual character

7jJ:= II (X - X(lT)).

Since Vd is a faithful representation, 7jJ(lT) i= 0 if and only if IT = 1. Hence d!7jJ is a nonzero

integer multiple of the character of the regular representation of 3d , which contains all irreducible

representations. As 7jJ is an integer linear combination of characters of the form Xn (n E Z;:o:o), the

result follows. o
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Remark 111.1.2. The proof of proposition 111.1.1 works for any faithful representation of any

finite group G.

As a consequence of proposition 111.1.1, one way to understand Rep(Sd; F) is to study

objects of the form Vd0
n and morphisms between those objects. We will now use set partitions to

construct some such morphisms. Our notation will be similar to that of [14].

By a partition 'Tr of a finite set S we mean a collection 'Trl, ... , 'Trn of disjoint, nonempty

subsets of S with S = Ui'Tri. The sets 'Tri will be called parts of 'Tr. Given a partition 'Tr of

{I, ... , n, 11, ... , ml}, a partition diagram of'Tr is a graph with vertices labelled {I, ... , n, 11, ... , ml }

whose connected components partition the vertices into the parts of 'Tr. We will always draw

partition diagrams using the following convention:

• Vertices 1, ... ,n (resp. 11, ... , m l
) are aligned horizontally and increasing

from left to right with i directly above i l
•

• Edges lie entirely below the vertices labelled 1, ... ,n and above the vertices

labelled 11, ... , mi.

We will identify a partition with its partition diagram and write 'Tr for both the partition and the

partition diagram.

Example 111.1.3. Figure 1 shows a partition diagram for the partition {{I, 3, 21
, 31

}, {2, 4}, {II}}.

1 234

~
II 21 31

Figure 1: A Partition Diagram

Notice that a partition diagram representing this partition is not unique, but its connected com-

ponents are. o

To each partition of {I, ... , n, 11, ... , m l
} we will associate a linear map Vd0

n ---. Vd0
m .

Before doing so, we introduce some notation.

• Let Pn.m denote the set of all partitions of {I, ... , n, 11, ... , m l
}, let Pn,o denote the set of

all partitions of {I, ... ,n}, let PO•m denote the set of all partitions of {II, ... , m l
}, and, by
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convention, let Po,o := {0} where 0 denotes the empty partition diagram. Finally, let F Pn,m

denote the F-vector space with basis Pn,m.

• For nonnegative integers nand d, let [n, d] denote the set of all functions from {j 11 :::: j :::: n}

to {j I 1 :::: j :::: d}. In particular, [0, d] = {0} for all d, and [n,O] = 0 for all nolO. Given

i E [n, d] and j E {j I 1:::: j :::: n}, write i j for the image of j under i.

• For i E [n, d] and i' E [m, d], the (i, i')-coloring of a partition 1r E Pn,m is obtained by coloring

the vertices of 1r labelled j (resp. j') by the integer i j (resp. ij). Saying an (i,i')-coloring

of 1r is good means vertices are colored the same whenever they are in the same connected

component of 1r. Saying an (i, i')-coloring of 1r is perfect means vertices are colored the same

if and only if they are in the same connected component of 1r.

• For nolO and i E [n,d], set Vi := Vi, 0··· 0Vin E Vd
0n

. Set V0 := 1 E Vd0
0 where 0 is the

unique element of [0, d].

We are now ready to associate partitions in Pn,m with linear maps Vd0
n

--t Vd0
m.

Definition 111.1.4. For n, m, d E Z;:::o, define the F-linear map f : F Pn,m --t Homsd (Vd0
n,Vd0

m)

by setting

f(X)(Vi) = L f(x)~'Vi'
i'Elm,d]

(x E F Pn,m, i E [n, dJ)

where

i {I, if the (i, i')-coloring of 1r is good,
f(1r) ., :=

~ h .0, ot erwlse.

Indeed, f(x) commutes with the action of 3d which merely permutes the colors.

Example 111.1.5. (1) f : FPo,o --t Endsd(F) sends the unique element of Po,o to the identity

map on F.

(2) Assume d > 0 and let
1 2 345 6

1r=:-~.-L
l' 2' 3' 4' 5' 6' 7'
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2: Vk 18> Vj 18> Vi4 18> Vj 18> Vi6 18> Vi6 18> Vi6 ,
l:50k,j:50d

otherwise.

for i E [6, d].

(3) Assume d > 0 and let

Then j (7[") : F --> Vd0
5 is given by

1r=
~
I' 2' 3' 4' 5'

j(1r)(I)= L vil8>Vjl8>vil8>vkl8>Vj.

l:50i,j,k:50d o

Next we wish to show that j is surjective. A proof of this fact when n = m can be found in

[14, theorem 3.6]. Their proof extends to the case n # m without difficulty. For completeness we

will give a modified version of their proof. Before doing so, we must introduce a bit more notation.

• Let ::; be the partial order on Pn,m defined by 1r ::; f-t whenever the partition I.l is courser

than the partition 7[" (i.e. rand s are in the same part of f-t whenever they are in the same

part of 7[" for each pair r, s E {I, ... ,n, 1', ... ,m'}) .

• Define the basis {x" I 7[" E Pn,m} of F Pn,m inductively by setting

x" :=7["- LX/J-'
/J-~"

Example 111.1.6. (1) x" = 7[" when 7[" is any partition consisting of one part.

(IILl )

(2) Let 7[" E P4,3 be the partition with the partition diagram given in example HI.1.3. Then

x" = 7[" - I.ll - I.lz - 1.l3 + 2f-t4 where

1234 1234

f-t3 = X::=r' f-t4 = I : 7
1 234

f-tl=~
I' 2' 3'

1 234

f-tz = :"'\:7
I' 2' 3' I' 2' 3' I' 2' 3' o
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We are now ready to prove the following:

Theorem 111.1.7. For integers n,m,d ~ 0, the map f FPn,m ---t Homsd (Vd0
n,Vd0

m) (see

definition 111.1.4) has the following properties:

(1) f is surjective.

(2) ker(f) = Spanp{x" 11l" has more than d parts}.

In particular, f is an isomorphism of F-vector spaces whenever d ~ n + m.

Proof. (compare with [14, proof of theorem 3.6(a)]) If d = 0 then the theorem is certainly true.

Now assume d > O. For 9 E Homsd (Vd0
n

, Vd0
m

) write

9(Vi):= L 9i,vi'
i'E[m,d]

(i E [n, d])

Since 9 commutes with the action of 3d , the matrix entries gt are constant on the 3d-orbits ofz

the matrix coordinates {(i,i')}iE[n,dJ,i'E[m,dj' Each 3d-orbit of {(i,i')}iE[n,dJ,i'E[m,dl corresponds

to a partition 1l" E Pn,m as follows: (i, i') is in the orbit corresponding to 1l" if and only if the

(i, i')-coloring of 1l" is perfect. A straightforward induction argument shows

i {I, if the (i, i')-coloring of 1l" is perfect,
f(x,,).,=z

0, otherwise.
(i E [n, d], i' E [m, d]) (II1.2)

Thus 9 is a F-linear combination of the f(x,,)'s. This proves part (1).

To prove part (2) notice that for 1l" E Pn,m, there exists i E [n, d] and i' E [m, d] such that

the (i, i')-coloring of 1l" is perfect if and only if 1l" has at most d parts. Hence, by (111.2), f(x,,) is

the zero map if and only if 1l" has more than d parts. Part (2) now follows since {x" 11l" E Pn,m}

is a basis for F Pn,m' o

We conclude our investigation of morphisms of the form f(1l") : Vd0
n

---t Vd0
m by studying

the composition of such morphisms. First we require the following:

Definition 111.1.8. Given partition diagrams 1l" E Pn,m and f.L E Pm,l, construct a new diagram

f.L * 1l" by identifying the vertices 1', ... , m' of 1l" with the vertices 1, ... , m of f.L and renaming them

1", ... ,m" as illustrated in figure 2.
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1 n
.-----~

1T = I \
I \e------- ..
I' m'
1 m
• ------;JJ

p,=1 ...
I
e-- ..
I' I'

1 n.- - - --~
I \
II" 1f \ m".. ------:,. ...
I p, .......- - ......
I' I'

Figure 2: Composition of Partition Diagrams

Now let E(p,,1T) denote the number of connected components of p, * 1T whose vertices are

not among 1, , n, 1', ... , t'. Finally, let p, . 1T E Pn,l be the partition obtained by restricting p, * 1T

to {I, ... , n, 1', , t'} (Le. rand s are in the same part of p" 1T if and only if rand s are in the

same part of p, * 1T).

We are now ready to state

Proposition 111.1.9. f(p,)f(1T) = df(p"rr) f(p, '1T) for any 1T E Pn,m, p, E Pm,l.

Before we give a proof of proposition 111.1.9 let us consider an example.

Example 111.1.10. In this example we will verify proposition III.1.9 when

1 2 3 4 1 2 3 4 5 6 7

1T=~ and p,=~
I' 2' 3' 4' 5' 6' 7' I' 2' 3' 4' 5'

On the one hand,
1 2 3 4

6" 7"
p,*7r

I' 2' 3' 4' 5'

Thus E(p" 1T) = 2 and
1 2 3 4

W
1T=X L

I' 2' 3' 4' 5'

Therefore we have df(p"rr) f (p, . 1T) (Vi, (9 Vi2 (9 Vi3 (9 Vi.) = d2oi , ,i3 Vi2 (9 Vi2 (9 Vi2 (9 Vi. (9 Vi. where bi,j

is the Kronecker delta function.
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On the other hand,

f(IJ)f(1r)(Vi) =f(IJ) (6i1,i3 L Vj@Vi4@Vj@Vk@VI@Vi2@Vi2)
l~j,k,l~d

= 6i,,;3 L f(IJ) (Vj@v;. @Vj@Vk@Vl@Vi2 @Vi2)
l~j,k,l~d

= 6iloi3 L 6j,k Vi2 @ Vi2 @ Vi2 @ Vi. @ Vi.
l~j,k,l~d

= 6i1,i3 L V;2 @Vi2 @Vi2 @Vi. @ Vi.
l~j,l~d

= d26i"i3 Vi2 @Vi2 @Vi2 @Vi4 @Vi•.

for any i E [4, d], as desired.

Now to show proposition III.1.9 holds in general.

o

Proof of proposition 111.1.9. Suppose 1r E Pn,m and IJ E Pm,l for some integers n, m, 1~ O. By

definition III.1.4 the matrix coordinates of f(IJ)f(1r) : Vd0
n

-+ Vd0
1 are given by

(f(IJ)f(1r))~' = != f(IJ)f' f(1r)~".
i"Elm,d]

(III.3)

Hence (f(J-L)f(1r))t is the number of i" E [m, d] such that the (i, i")-coloring of 1r and the (i", i')­
~

coloring of IJ are simultaneously good. These are exactly the i" E [m, d] such that coloring the

vertices j,j',j" of J-L*1r with integers ij,ij,i'j respectively, gives a good coloring of IJ*1r. Any

good coloring of J-L * 1r gives rise to a good coloring of IJ . 1r. Clearly any good coloring of IJ . 1r

anises in this way. Moreover, two good colorings of IJ * 1r give the same good coloring of IJ . 1r if

and only if the two colorings of IJ * 1r differ only at connected components whose vertices are not

among 1, ... , n, 1', ... , i'. Since there are d choices of color for each component, we see the number

of i" E [m, d] such that the (i, i")-coloring of 1r and the (i", i')-coloring of IJ are simultaneously

good is dl!(l'-,rr) f(IJ' 1r)t. The result follows.
~

o

Remark 111.1.11. From proposition III.1.9 the structure constants of the composition f(J-L)f(1r)

are polynomial in the integer d. We will exploit this fact in section III.2 when we define the

category Rep(St; F) which "interpolates" the category Rep(St; F) for nonnegative integer t, but is

defined for arbitrary t E F.
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III.2 Definition of Rep(St; F)

In this section we define Deligne's tensor category Rep(St; F) for arbitrary t E F following

[9, §8] (so our definition is different from the one given in [9, §2]). To construct Rep(St; F) we will

first use partitions to construct the smaller category fupo(St; F). We then obtain fup(St; F) from

RePo(St; F) using pseudo-abelian envelopes.

As in the previous section, assume d is a nonnegative integer and that F is a field of

characteristic zero. Let Repo(Sd; F) denote the full subcategory of Rep(Sd; F) whose objects

are of the form Vd
0n for n 2: O. Clearly the objects in Repo (Sd; F) are indexed by nonnegative

integers, and by theorem III.I.? the morphisms in RePO(Sd; F) are given (albeit not uniquely) by

F -linear combinations of maps f (Jr) indexed by set partitions. Moreover, the structure constants of

compositions of the f(Jr)'s are polynomials in d (see proposition IILI.9). Using this data, we now

define a tensor category similar to RepO(Sd; F) replacing the integer d with an arbitrary element

of F.

LettEF.

Definition 111.2.1. The category RePo(St; F) has

Objects: [n] for each n E Zzo,

Morphisms: HOmRepO(St;F) ([n], [m]) := FPn,m.

Composition: F Pm,l X F Pn,m ~ F Pn,l is defined to be the bilinear map satisfying /.LOJr = t f (IJo,1f) J.L.Jr

for each Jr E Pn,m, J.L E Pm,l'

To see that composition is associative, it is enough to show 1I 0 (J.L 0 Jr) = (ll 0 J.L) 0 Jr for all

Jr E Pn,m, J.L E Pm,t, 1I E Pt,k. To do so, consider the partition

1 n
,-----------------.
I '
'I" Jr , "

~-_---------------+m
I J.L I
I~ I F
~-----------------,
I 1I I

I '
.-----------------,
I' k'

Notice that 1I . (J.L . Jr), (ll' J.L) . Jr E Pn,k are both obtained by restricting the partition 1I * J.L * Jr to
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the set {I, ... ,n, 1', ... ,k'}. Furthermore, e(p"n) +e(v,{t'n) and e(v,p,) +e(v. p"n) are both the

number of connected components of v * p, *n whose vertices are not among {I, ... ,n, 1', ... ,k'}.

Hence composition is associative.

One can easily check that the partition in Pn,n whose parts are all of the form {j,}'} is

the identity morphism idn : [n] -> [n].

Example III.2.2. The identity morphism id7 : [7J -> [7J is given by

1 2 345 6 7

id7 = I I I I I I I
I' 2' 3' 4' 5' 6' 7' o

Before giving .B&Po(St; F) the structure of a tensor category, we pause to give the following

definition which will play an important role in later sections.

Definition III.2.3. (compare with [19], [20]) The partition algebra F Pn(t) is defined to be the

endomorphism algebra EndRepo(s,;F) ([n]).

Remark III.2.4. We identify each element of the symmetric group Sn with a partition in Pn,n as

follows: u <--+ { {i, u(i)'} 11 ::; i ::; n}. This identification extends linearly to an inclusion of algebras

FSn '---+ F Pn(t) for each t E F (here FSn denotes the group algebra of Sn).

Now to define tensor products. While reading the following definitions, the reader may

find it helpful to keep in mind the analogy studied in section 111.1 between the objects [n] (resp.

morphisms n) in RePo(St; F) and the objects Vd
0n (resp. morphisms f(n)) in Rep (Sd; F).

Definition III.2.5. For objects [n], [m] in Repo(St; F) set [n] 18> [m] := [n + m]. For morphisms

we let 18> : F Pn, ,m, X F Pn2 ,m2 -> F Pn,+n2,m, +m2 be the bilinear map such that

n 18> P, :=

1 nl
.. ---------,
I n I
I I

.---------*
I' m~

nl + 1 nl + n2.. ---------,
I P, I
I I

.---------*
(ml + 1)' (ml + m2)'



23

Example III.2.6. Suppose

123

n=~
I' 2' 3' 4'

Then

j.t=

1 234

~

123

V=A
I' 2' 3' 4'

12345678910

'J/,~~~.n@j.t0v=~

I' 2' 3' 4' 5' 6' 7' 8'

Proposition 111.2.7. The following constraints make Repo(St; F) a tensor category.

o

• (associativity) an,m,l : ([n] 13> [m]) ® [I] ---. [n] @ ([m] @ [I]) is the identity morphism idn+m+l.

• (commutativity) {3n,m : [n] @ [m] ---. [m] @ [n] is the partition in Pn+m,n+m whose parts are

of the form {j, (m+ j)'} or {n+ j,j'}. That is to say

• (unit) Set 1 := [0]. Both unit morphisms [0] 0 In] ---. In] and [n] @ [0] ---. [n] are the identity

morphism idn .

• (duals) Set [n]V := [n] with the morphism eVn : [n]V @ [n] -7 1 (resp. coevn : 1 -7 [n] 0 [n]V)

given by the partition in Hn,o (resp. PO,2n) whose parts are of the form {j, n + j} (resp.

{j', (n + j)'}). That is to say

1 n n + 1 2n

eV
n

= t -\-- \- "\-"\ '-.}- ~r ~l-J
~""",,~~S""~
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coevn = //;/,/j5X~\~
,-[-~~---, ~-~-~-)-~
I' n' (n + 1)' (2n)'

Proof. The triangle and pentagon axioms are easily satisfied, as all morphisms in both diagrams

are identity morphisms. Figure 3 illustrates the hexagon axiom.

Figure 3: The Hexagon Axiom

Figure 4 shows that the choice of dual objects as well as the evaluation and coevaluation morphisms

make Rwo(St; F) into a rigid category.

Figure 4: The Rigidity Axioms

Finally, EndRepo(S,;Fj(l) = F as Po,o contains only the empty partition. Thus RePo(St;F) is a

tensor category. o

Remark 111.2.8. For d E Z~o, the connection between Rep(Sd; F) and Rep(Sd; F) can be made

more precise as follows. The functor Fo : RePo(Sd; F) -. RePO(Sd; F) defined on objects by

[n] f-+ Vd
0n , and on morphisms as the F-linear map 1r f-+ f(1r) is a tensor functor. Fo is certainly

surjective on objects. Moreover, by theorem IIL1.7.1, Fo is surjective morphisms. However, by

theorem IILl. 7.2, Fo does not give an equivalence of categories.

Now we are ready to use pseudo-abelian envelopes studied in sections II.4 and II.5 to

define Deligne's category.
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Remark III.2.10. (1) Rep(St; F) inherits the structure of a tensor category from Repo(St; F)

(see propositions 11.5.2, II.5.4, and III.2.7).

(2) Speaking informally, studying the category Repo(St; F) is a way to simultaneously study the

partition algebras FPn(t) for all n 2': 0 (see definition IIL2.3 along with example II.4.I).

In this line of thinking, studying Rep(St; F) is a way to simultaneously study all finitely

generated projective right FPn(t)-modules for all n 2': 0 (see example VIL2).

III.3 The Trace of an Endomorphism in Repo(St; F)

We close this section by examining the trace of a morphism in .8&Po(St; F). First, notice

that tr : EndRepo(s,;F) ([n]) ---> F is an F-linear map. Furthermore, if 1r : [nJ ---> [n] is a partition

diagram (not equal to ido) then, by the definition of trace (see definition IlL3), tr(1r) = tf where

eis the number of connected components of the leftmost diagram in figure 5. Clearly eis also the

Figure 5: The Trace of 1r (Left) and the Trace Diagram of 1r (Right)

number of connected components in the trace diagram of 1r shown on the right in figure 5.

Example III.3.l. (1) The only endomorphisms in fuIJo(So; F) with nonzero trace are nonzero

scalar multiples of ido.

(2) In .8&Po(St; F), dim([O]) = tr(ido) = 1 and dim([n]) = tr(idn ) = tn for all positive n.

(3) Consider 1r : [7] ---> [7] given by

1 234 5 6 7

1r=~~
I' 2' 3' 4' 5' 6' 7'
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tr(1r) = t4 since there are 4 connected components in the the trace diagram of 1r, as shown

in figure 6.

Figure 6: An Example of a Trace Diagram

o
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CHAPTER IV

INDECOMPOSABLE OBJECTS

This chapter is organized as follows. In section IV.l we give a classification of indecompos-

able objects in B&P(St; F) in terms of Young diagrams. In section IV.2 we show that B&P(St; F)

is semisimple for generic t. In section IV.3 we explain the connection between Rep(Sd; F) and

Rep(Sd; F) when d is a nonnegative integer. Finally, in section IVA we study a hook length

formula which gives the dimension of a generic indecomposable object.

IV.! Classification of Indecomposable Objects in Rep(St; F)

In this section we will classify indecomposable objects in Rep(St; F) for arbitrary t E F.

It will be convenient for us to let K denote the field of fractions of F[[T - t]] where T is an

indeterminate.

We start with the following

Lemma IV.I.l. For n > 1 let e denote the following idempotent in FPn(t)

1

e= I
I'

2

I
2'

nr nO
(n-2)' (n-l)' n'

Then for each n > 1 we have the following algebra isomorphisms:

(2) FPn(t)/(e) ~ FSn.
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Proof. To prove (1) notice we can embed FPn- 1(t) into FPn(t) as the F-span of

{1r E Pn,n I n(resp. n') is in the same part of 1r as n - 1 (resp. (n - I)')}.

This span is exactly eFPn (t) e.

To prove (2) recall (Remark 111.2.4) that we can embed FSn into FPn(t) by identifying

a E Sn with the partition {{I,a(I)'}, ... ,{n,a(n)'}}. Since FSn n (e) = 0, it suffices to show a

partition 1r E Pn,n has 1r E (e) whenever 1r rJ- Sn. Notice for fixed j and k, the partition

1 j k n

1rj,k = !... ! I==F=I=:I !... !
I' f W n'

is in (e). Indeed, 1ri,k = aea where a E Sn C Pn,n is the product of transpositions (j,n-l)(k,n).

Now suppose It E Pn,n \Sn' Then either It has a part of the form {i} for some i E {I, ... ,n} or there

exist j, k E {I, ... , n} which are in the same part of It. If the latter is true, then It = lt1rj,k E (e).

If the former is true, then It = lt1ri,jVi,j E (e) where j =I- i and

1 i j n

Vi,j=!"'!~ !... !
I' i' f n' D

Remark IV.1.2. In fact the proof shows that the composition of the embedding FSn C F Pn(t)

and the projection FPn(t) ----; FPn(t)/(e) ~ FSn is the identity map.

In view of Lemma IV.1.1.2 we can consider any irreducible representation of Sn as an irre­

ducible representation of FPn(t). Now suppose>. is a Young diagram. Let E).. be an irreducible rep­

resentation of SI)..I corresponding to >. (see e.g. [12, 4.2]) considered as a representation of F PI)..I (t)

and let P(E)..) be the projective cover of E)... Then P(E)..) is isomorphic to F PI).. I(t)-module of

the form FPI)..I(t)e).. where e).. E FPI)..I(t) is a primitive idempotent. The idempotent e).. is not

unique but it is unique up to conjugation1; hence the object L(>') = (11)'1], e)..) E Rep(St; F) is an

indecomposable object (see proposition 11.4.8) which is well defined up to isomorphism.

1 Recall that two idempotents e, e' in a finite dimensional algebra A are conjugate if and only if the modules Ae
and Ae' are isomorphic.
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Theorem IV.1.3. The assignment A I-) L(A) induces a bijection

{

Young diagrams Of} <-->

arbitrary size

This bijection enjoys the following properties:

{

indecomposable objects in }

Rep(St; F) up to isomorphism

(1) Except for the case t = a,A = 0, there exists an indecomposable object of the form ([nl,e)

corresponding to the Young diagram A if and only if n ;:::: IAI.

(2) (Lifting Idempotents) Suppose e E FPn(t) is a primitive idempotent such that ([nl, e) ~ L(A)

in Rep(St; F) .. Then there is an idempotent e E KPn(T) with elT=t = e2
• Moreover, if

e = el + ... + er is an orthogonal decomposition of e into primitive idempotents, then

there is a unique i such that ([nl, ei) ~ L(A) in Rep(ST; K). Finally, if ([nl, e) and ([n'l, e'l

are isomorphic in w(St; F) and e, e' lift to e, e' respectively, then ([n], e) and ([n'l, e' ) are

isomorphic in Rep(ST; K)

The remainder of section IV.1 is devoted to the proof of theorem IV.1.3. With proposition

11.4.8 in mind, we start by classifying primitive idempotents (up to conjugation) in partition

algebras. We will use the following well known lemma (see e.g. [2]):

Lemma IV.lA. Suppose A is a finite dimensional F-algebra and e is an idempotent in A. Let

(e) denote the two-sided ideal of A generated bye. There are bijective correspondences

primitive simple simple simple

idempotents bij. A-modules bij. eAe-modules A/(e)-modules
<-> <-> U

in A up to up to up to up to

conjugation isomorphism isomorphism isomorphism

satisfying the following properties.

(1) Suppose I is a primitive idempotent in A and L is a simple A-module. I corresponds to L

in the leftmost bijection above if and only if I L =1= a. Moreover, if I corresponds to L, then

the F-linear map L ----> L given by x I-) Ix has trace3 equal to 1.

2Evaluating T = t does not give a well-defined map K Pn(T) -+ F Pn(t). Part of the theorem is that we can find
such an e E K Pn(T) so that elT=t makes sense.

3This refers to the trace in the category VecF, I.e. the usual trace of an F-linear map.
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(2) In the rightmost bijection above, the simple A-modules which correspond to simple A/(e)-

modules are exactly the simple A-modules for which e acts as zero.

We start with classifying the primitive idempotents of partition algebras. Part (1) of the

following theorem is originally due to Martin (See [21]). However, his proof does not extend to the

case t = O. Our proof is similar to one found in [IOJ.

Theorem IV.1.5. (1) When t =I- 0 we have the following bijection.

{

primitive idempotents in } 2:!L {
FPn(t) up to conjugation

(2) When n > 0 we have the following bijection.

{

primitive idempotents in } 2:!L {
F Pn(O) up to conjugation

Young diagrams A }

with IAI :S n

Young diagrams A }

with 0 < IAI :S n

Proof. Part (1) is true when n = 0 since FPo(t) = F. To show part (1) holds for n = 1, let

1
•

7r=
•
I'

and let f denote the idempotent i7r. It is easy to show that 1 = f + (1 - j) is a nontrivial

decomposition of 1 into primitive idempotents in F Pn(t) when t =I- o. Thus part (1) holds when

n = 1. Now we proceed by induction on n. For n > 1 let e E F Pn(t) denote the idempotent

in lemma IV.l.l. Then by lemma IV.l.l we have FPn(t)/(e) ~ FSn and eFPn(t)e ~ FPn-1(t).

Since the simple FSn-modules up to isomorphism are in bijective correspondence with all Young

diagrams A with IAI = n, part (1) will follow by induction along with lemma IV.1.4.

The proof of (2) is similar, except FP1(0) ~ F[7rJ/(7r2 ) has no nontrivial idempotents. 0

We are now in position to prove part (1) of theorem IV.1.3.

Proof of Theorem IV.1.3 part (1). Let us first consider the case when t =I- o. By proposition

11.4.8 we know every indecomposable object in &P(St; F) is isomorphic to one of the form ([n], e)



31

for some nonzero primitive idempotent e E F Pn(t). By theorem IV.1.5 it suffices to show that

for every integer n ~ 0 and every nonzero primitive idempotent e E F Pn(t), there exists and

idempotent 1 E F Pn+l (t) such that ([n]' e) is isomorphic to ([n + 1], 1). When n = 0, the only

primitive idempotent is the empty partition ida. Let /1 and /1' be the only elements of Pa,1 and

PI,a respectively, and let 7r be the idempotent in the proof of theorem IV.1.5. Then the morphism

t7r/1ida: ([O],ida) ---> ([I],7r) is an isomorphism with inverse tida/1'7r. Now suppose n > 0 and

consider the partition diagrams

1 2 n-l

~n = I I ... I
I' 2' (n - I)'

n

~
n' (n + I)'

1 2 n-l n n+l

~~= I I ... I V
I' 2' (n - I)' n'

Notice that the morphism (<Pne<p~)<Pne : ([n], e) ---> ([n + 1], <Pne<p~) is an isomorphism with inverse

e<p~ (<Pne<p~).

When t = 0 the argument above shows for every integer n > 0 and every nonzero primitive

idempotent e E FPn(t), there exists an idempotent 1 E FPn+1(t) such that ([n],e) is isomorphic

to ([n+ 1], 1). However, there is no nonzero composition [0] ---> [n] ---> [0] in Repa(Sa) for any n > O.

Thus there is no integer n > 0 and idempotent 1 E F Pn(O) such that ([n], 1) is isomorphic to the

indecomposable object ([0], ida). The case when t = 0 now follows from theorem IV.1.5.2. 0

To prove part (2) of theorem IV.1.3 we will use the following well known lemma (see for

example [2, theorem 1.7.3]).

Lemma IV.lo6. Suppose A is an algebra and N c A is a nilpotent ideal. If e is an idempotent

in A/N, then there is an idempotent 1 in A lifting e (i.e. the quotient map A ---» A/N sends

1 f-> e). Moreover, if e and e' are conjugate idempotents in A/N lifting to idempotents 1 and I'

in A respectively, then 1 and I' are conjugate.

We are now ready to prove part (2) of theorem IV.1.3.

Proof of Theorem IV.lo3 part (2). Let e and A be as in the statement of theorem IV.1.3(2).

Set Ri := F[T]/(T - t)i for each positive integer i, and Roo := F[[T - t]]. By lemma IV.1.6 we

can lift idempotents from the partition algebra Ri-1Pn(t) = RiPn(t)/(T - t)i-I to the algebra

RiPn(t) for each i > O. Set el = e and recursively pick ei E R;Pn(T) to be an idempotent which

lifts ei-l for i > 1. Finally, let E E RooPn(T) be the unique element such that E f-> ei under the
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quotient map RooPn(T) -» RiPn(T) for each i > O. Then e is an idempotent in KPn(T) such

that elT=t = e. Suppose that e = el + ... + er is an orthogonal decomposition of e into primitive

idempotents. We will show by induction on n that there is a unique i such that the indecomposable

object ([n], ei) in Rep(ST; K) corresponds to A.

If n = IAI, then by parts (2) of lemmas IV.1.4 and IV.1.1, e corresponds to the simple

F Sn-module LA labelled by the Young diagram A. Furthermore, e acts on LA via the quotient

map F Pn(t) -» FSn along with the action of FSn. Similarly, e acts on K @p LA, the simple K Sn­

module corresponding to A, through the quotient map K Pn(T) -» K Sn' Since e is an idempotent,

the trace of the K -linear map K @p LA -> K @p LA given by x f-> e' x is a nonnegative integer. But

elT=t = e, and by lemma IV.1.4.1 we know the F-linear map LA -> LA given by x f-> e·x has trace

equal to 1. Hence the trace of the map K @p LA -> K @p LA given by x f-> e' x must also equal 1.

By lemma IV .1.4.1, this is only possible if there exists a unique i with ([n], ei) corresponding to A.

If n > IAI, set e' = ¢~-le¢n-l where ¢n-l, ¢~-l are as in the proof of theorem IV.1.31.

Since ([n]' e) and Un - 1], e') are isomorphic, inductively we we can find an e' E K Pn- 1 (T) so that

the pair e', e' satisfies part (2) of theorem IV.1.3. Set e = ¢n-le'¢~-l'

Finally, assume ([n],e) and ([n'],e') are isomorphic in &P(St;F) and e,e' lift to e,e'

respectively. Without loss of generality assume n 2: n' and set

if n = n'

ifn > n'

if n = n'

if n> n'

Then e is conjugate to ¢e'¢' in FPn(t). Hence, by lemma IV.1.6, e and ¢e'¢' are conjugate in

KPn(T). Thus ([n],e) and ([n'],e') are isomorphic in&p(ST;K). o

We close this section with an observation concerning field extensions and idempotents.

The following proposition will be quite useful in subsequent sections.

Proposition IV.I. 7. Suppose FeE is a field extension and e is a primitive idempotent in

FPn(t). Then e is also a primitive idempotent in EPn(t).

Proof. The assumption implies that the object Un]' e) E &P(St; F) is indecomposable. Thus by

Theorem IV.1.3 it is isomorphic to the object L(A) = ([\AI], eA)' The representation EAof F PIAl (t)

is absolutely irreducible (since the corresponding representation of SI>'I is), so the idempotent eA
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is primitive in EP1>-1 (t). Hence the object ([n], e) ~ ([IAI], e>-) E Rep(St, E) is indecomposable and

we are done. D

Corollary IV.l.8. Every indecomposable object in Rep (ST; K) is isomorphic to one of the form

([n], E) where E = ~7TEPn,n a 7T 7[" with a 7T E F(T) for all 7[" (here F(T) denotes the field of fractions

of the polynomial ring F[T]). In particular, if E corresponds to the Young diagram A, then for all

but finitely many integers d, clT=d is a primitive idempotent in F Pn(d) corresponding to A.

Proof. Applying proposition IV.I.? to the field extension F(T) C K shows that every primitive

idempotent in K Pn(T) is conjugate to one with coefficients in F(T). D

IV.2 On ~(St;F) for Generic t

In this section we will show that Rep(St; F) is semisimple for "generic" values of t. Deligne

showed that Rep(St; F) is not semisimple if and only if t is a nonnegative integer (see [9]). That

result will follow from our description of the blocks in Rep(St; F) (see corollary VI.4.5). For now

we will confine ourselves to prove the following, weaker theorem.

Theorem IV.2.l. &P(St; F) is semisimple for all but countably many values of t. Moreover, if

Rep(St; F) is not semisimple, then t is an algebraic integer.

We will use the following well known lemma in our proof of theorem IV.2.I.

Lemma IV.2.2. Suppose A is a finite dimensional F-algebra. For a E A, let rPa denote the

F-linear map A ---> A given by x f-t ax. Define the trace form on A by (a, b) := tr(rParPb). Then A

is a semisimple algebra if and only if the trace form on A is non-degenerate.

Proof. Let S:= {a E A I (a,b) = 0 for all bE A}. We will show that S is equal to J(A) (the

Jacobson radical of A). Suppose a E J(A). Since J(A) is a nilpotent ideal, ab is nilpotent for every

bE A. Hence (a, b) = 0 for all b E A, so J(A) c S. On the other hand, if a E S then tr(rP~) = 0

for all integers n > O. This implies rPa, and thus a, is nilpotent. Hence S is a nilpotent two sided

ideal. As J(A) is the largest nilpotent two sided ideal in A, we conclude S C J(A). D

Before proving theorem IV.2.1 we give two examples illustrating the usefulness of lemma

IV.2.2. The reader may find these examples helpful when reading the proof of theorem IV.2.I.
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Example IV.2.3. (1) Consider the partition algebra FPl (t). Let 'if be as in the proofoftheorem

IV.1.5 and fix the ordered basis Pl,l = {idl,'if} for FPl(t). Under this ordered basis the

matrix with entries (x, y) for x, y E Pl,l is

(: ,: )
Since the determinant of the matrix above is t 2 , we conclude (by lemma IV.2.2) that FPl(t)

is semisimple if and only if t i= 0.

(2) Consider the partition algebra FP2 (t). Using the ordered basis

P 2,2 ={: :J 1• • I,:-:):-:,~,/:,I I,::,X,:J,L:,r:,:l,D}.J.

the matrix with entries ('if, JL) for 'if, JL E P 2,2 is

2t4 2t3 2t3 2t3 2t3 2t3 2t3 2t2 2t 2 2t2 2t2 2t2 21' 2t2 2t

2t3 5t2 2t2 2t2 2t2 2t 2 2t2 5t 2t 2t 2t 5t 5t 2t 5

2t3 2t 2 5t2 2t2 2t2 2t2 2t2 5t 2t 2t 5t 2t 2t 5t 5

2t3 2t2 21' 2t2 2t3 2t2 2t2 2t 2t2 2t 2t2 2t2 2t 2t 2t

2t3 2t 2 21' 2t3 2t2 2t2 2t2 2t 2t2 2t 2t 2t 2t2 2t2 2t

2t3 2t2 2t2 2t2 2t2 21' 51' 2t 2t 5t 5t 2t 5t 2t 5

2t3 2t 2 2t2 2t2 2t2 5t2 2t2 2t 2t 5t 2t 5t 2t 5t 5

2t 2 5t 5t 2t 2t 2t 2t 15 2t 7 5 5 5 5 5

2t 2 2t 2t 2t2 2t' 2t 2t 2t 2t2 2t 2t 2t 2t 2t 2t

2t2 2t 2t 2t 2t 5t 5t 7 2t 15 5 5 5 5 5

2t2 2t 5t 21' 2t 5t 2t 5 2t 5 5 5 2t 5t 5

2t2 5t 2t 21' 2t 2t 5t 5 2t 5 5 5 5t 2t 5

21' 5t 2t 2t 2t2 5t 2t 5 2t 5 2t 5t 5 5 5

2t2 2t 5t 2t 2t2 2t 5t 5 2t 5 5t 2t 5 5 5

2t 5 5 2t 2t 5 5 5 2t 5 5 5 5 5 5

The determinant of the matrix above is 1259712t14(t - 1)4(t - 2)6. Hence, by lemma IV.2.2,

F P 2 (t) is semisimple if and only if t i= 0, 1,2. 0

Now to prove theorem IV.2.1.

Proof of theorem IV.2.1. Suppose L 1 and L2 are indecomposable objects in @(St;F). By

theorem IV.1.3.1 there exists n E ZgeqO and idempotents e1,e2 E FPn(t) so that L1 and L2 are

isomorphic to ([n], e1) and Un], e2) respectively. Whence HomRep(s,;F) (L l , L 2) = e2FPn(t)el'
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Thus, in order to show HOmRep(S,;F) (L 1 , L 2 ) is either zero or a finite dimensional division algebra

over F, it suffices to show F Pn(t) is a semisimple algebra. Therefore, for a fixed t E F, Rep(St; F)

is semisimpIe whenever FPn(t) are semisimple for all n 2: O.

Let Mn(t) denote the matrix whose rows and columns are labelled by the elements of Pn,n

(in some fixed order) with the x,y-entry equal to (x,y) (the trace form on FPn(t), see lemma

IV.2.2). Then the entries of Mn(t) are in Z[tJ. Hence detMn(t) E Z[tJ. It follows from lemma

IV.2.2 that F Pn(t) is semisimple if and only if det Mn(t) -# O. However, from theorem IILl.7,

we know that F Pn(d) is semisimple for integers d 2: 2n. Hence, det Mn(t) is a polynomial in t

which is not identically zero. Thus, for each n 2: a there are only finitely may values of t for

which det Mn(t) = O. Therefore there are only countably many values oft for which FPn(t) is not

semisimpIe for all n 2: O. D

Remark IV.2.4. 1ft E F is not an algebraic integer, then by theorem IV.2.1 we know Rep(St; F)

is semisimple. However, given an arbitrary t E F, neither theorem IV.2.1 nor its proof allow us

to determine if &P(St; F) is semisimple. As mentioned at the beginning of this section, we will

eventually show that Rep(St; F) is semisimple if and only if t is not a nonnegative integer.

We close this section with one final observation.

Corollary IV.2.5. Rep(ST; K) is semisimple.

Proof. This follows from theorem IV.2.1 as T is not an algebraic integer.

IV.3 The Interpolation Functor Rep(Sd; F) -> Rep(Sd; F)

D

Throughout this section we assume d is a nonnegative integer. In this section we will

explain how &P(Sd; F) "interpolates" the category Rep(Sd; F). More precisely, we will show

Rep(Sd; F) is equivalent to the quotient of Rep(St; F) by the so called "negligible morphisms." To

start, let us define the interpolation functor.

Definition IV.3.1. F : Rep(Sd; F) -> Rep(Sd; F) is the functor defined on indecomposable

objects by F([nl, e) = !(e) (Vd
0n) , and on morphisms a : ([nJ, e) -> ([nil, e' ) by F(a) = f(a). Here

f and Vd are as in section IILl.
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Notice that F is clearly a tensor functor. Moreover, from the discussion in section IILI

we have the following.

Proposition IV.3.2. F is surjective on objects and morphisms.

Proof. This follows from proposition III.1.1 and theorem III.1.7.1. o

However, by theorem IIL1.7.2 we know that F does not induce an equivalence of tensor

categories. To illustrate the amount by which F fails to induce an equivalence of categories we

need the following definition.

Definition IV.3.3. A morphism g : X ---t Y in a tensor category is called negligible if tr(gh) = 0

for all h: Y ---t X. Set N(X, Y) := {g: X ---t Y I f is negligible}.

Example IV.3.4. (1) The only morphisms in Repo(So; F) which are not negligible are nonzero

scalar multiples of ido (see example IIL3.1.1).

(2) Let 1r : [1] ---t [1] be as in the proof of theorem IV.1.5. Then X-rr : [1] ---t [1J, defined by

equation (III.1) , is given by XlI' = 1r - id l . Since tr(1r) = t = tr(idd, we have tr(xlI') = o.

Moreover, X-rr1r = (t - 1)1r so that tr(xlI'1r) = t(t - 1). We conclude that X-rr is negligible if

and only if t = 0, 1.

(3) Consider the morphism 1r E HOmRepo(St;F)([lJ, [2]) given by

1
•

1r=
• •
I' 2'

From equation (IlL1) we get X-rr = 1r - ILl - IL2 - IL3 + 2IL4 where

1 1 1 1

ILl = I •
IL3=~ IL4= hIL2 =

• ..-
I' 2' I' 2' I' 2' I' 2'

If we set

1 2 1 2 1 2 1 2 1 2
• •

1/1 = I • ..-
1/3= :,/ 1/4 = VI/o = 1/2 =

• •
I' I' I' I' I'
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then one can compute tr(x".lIo) = t(t - l)(t - 2), and tr(x".lIi) = 0 for i = 1,2,3,4. Thus x".

is negligible if and only if t = 0,1,2.

Remark IV.3.5. Each of the examples IV.3.4 follow from the following fact: In &Po(St; F)

{

SpanF{x". I 7l" E Pn m has more than t parts}, if t E !Z>o
N([n], [m])=' -

0, otherwise.

<>

For t E !Z:c:o this fact follows from theorem III.1.7.2, remark III.2.8, along with the following

proposition IV.3.6.2. For t ¢ !Z:c:o we will eventually show that the larger category &p(St; F) is

semisimple (see corollary VI.4.5). It is well known that there are no nonzero negligible morphisms

in a semisimple category.

Proposition IV.3.6. The following statements hold in any tensor category.

(1) N is a tensor ideal.

(2) The image under a full tensor functor of a morphism 9 is negligible if and only if 9 is negligible.

Proof. Statement (1) follows from proposition II.2.4. Statement (2) follows from the fact that a

tensor functor preserves the trace of a morphism. D

Since there are no nonzero negligible morphisms in Rep(Sd; F), by proposition IV.3.6.2 we

conclude the functor F : Rep(Sd; F) -> Rep(Sd; F) sends all negligible morphisms to zero. Thus

F induces a functor :F: Rep(Sd; F)jN -> Rep(Sd; F).

Theorem IV.3.7. :F induces an equivalence of categories Rep(Sdi F)jN ~ Rep(Sd; F).

Proof. This follows from proposition IV.3.2 and proposition IV.3.6.2. D

We finish this section with the following proposition concerning the functor F. For proof

of the proposition we refer the reader to [9, proposition 6.4].

Proposition IV.3.8. Suppose d is a nonnegative integer and A= (AI, A2,"') is a Young diagram.

If d -IAI ~ AI, then F(L(A)) = L>'(d)' If d -IAI < AI, then F(L(A)) = O.
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IV.4 Dimensions

In this section we study a hook length formula which gives the dimension of indecomposable

objects in Rep(ST; K). Let us start by defining the hook length formula.

Definition IV.4.1. The hook length of a fixed box in a Young diagram A is the number of boxes

in A which are either directly below or directly to the right of the fixed box, counting the fixed box

itself once. Given a Young diagram A let P>. denote the unique polynomial such that

P>.(d) = d!
IT (hook lengths of A(d))

for every integer d ;:::: 21AI.

Example IV.4.2. Let A = E£:P and suppose d ;:::: 10 is an integer. In figure 1 each box of A(d) is

labeled by its hook length.

d-3 d-4 d-6 d- 8 I d - 9 1

4 3 1

2 1

...02J

Figure 1: An Example of Hook Lengths

Thus P>.(d) = 24(d 3)(d t;(d-6)(d 8)! = f4d(d -l)(d - 2)(d - 5)(d - 7). o

First, we show how P>. is related to the indecomposable object in !lw(ST; K) correspond­

ing to A.

Proposition IV.4.3. dimRep(sT;K) L(A) = P>.(T)

Proof. By proposition 11.4.8 there exists and idempotent c E K Pn(T) with ([n], c) ~ L(A)

in the category !lw(ST; K). Since dimRep(ST;K) L(A) = tr(c), it follows from corollary IV.1.8

that dimRep(sT;K) L(A) is an element of F(T). Moreover, for all but finitely many integers d,

evaluating T = d in dimRep(sT;K) L(A) gives dimRep(S</;F) L(A) (again by corollary IV.1.8). Since

:F is a tensor functor, dimRep(s</;F) L(A) = dimRep(s</;F) L>'(d) whenever d is a sufficiently large

integer (see proposition IV.3.8). Furthermore, it is well know that dimRep(sd;F) L>'(d) = P>.(d) (see
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e.g. [12,4.12]). Thus, the rational function dim&!JcsT;K) L(A) agree with the polynomial P)..(T)

whenever T is a sufficiently large integer. Hence they must always agree. D

Next, we wish to determine the roots of P)... The following combinatorics will be useful

towards that endeavor.

Definition IV.4.4. Given a Young diagram A and an integer d :::: 21AI, create the (A,d) grid

marking as follows: Start with a grid of (IAI + 1) x (d -IAI) black boxes. Place the Young diagram

A(d) (with white boxes) atop the grid so that the upper left corner of A(d) is atop the upper left

corner of the grid. Now place the numbers 0,1, ... , d - 1 into the boxes of the grid using the

following rules:

• Begin by placing the number 0 in the lower left box of the grid.

• If the number i is in a black box, place i + 1 into the box directly above i.

• If the number i is in a white box, place i + 1 into the box directly to the right of i.

Label the rows of the grid 0, ... , IAI (from top to bottom) and the columns of the grid 1, ... d -I~I

(from left to right).

Example IV.4.5. Set A = (4,3,1,1,0, ...) and d = 25. Figure 2 shows the (A,d) grid marking.

o I"""'i N M -.:t' It:l to
I"""'i N M ~ It:l to ~ 00 ~ I"""'i I"""'i I"""'i ~ ~ ~ ~

8 8 8 8 888 8 ] 8 8 8 8 888
row 0

row 1

row 2

row 3

row 4

row 5

row 6

row 7

row 8

row 9

•- 11112__1110_7
6

4
3
2
1
0

Figure 2: The (A, d) Grid Marking o

The following proposition records the properties of the (A, d) grid marking which will be

useful for determining the roots of P)...
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Proposition IVA.6. The (A, d) grid marking has the following properties:

(1) If II appears in the ith row, then k = IAI + Ai - i.

(2) If [&J appears in the ith column, then d - k is the hook length of the row 0, column i box in

the Young diagram A(d).

Proof. (1) If II appears in the ith row, then II must be in column J1,i + 1. Hence k is the

number of up/right moves it takes to get from the lower left corner to the upper right corner in a

(IAI - i) x (Ai + 1) grid. The result follows.

(2) Let Ci denote the number of boxes in the ith column of A. Notice there are Ci boxes

below, and d-IAI-i boxes to the right of the row 0, column i box in A(d). Hence the hook length

of that box is d - IAI - i + Ci + 1. On the other hand, if [&J appears in the ith column, then [&J

must be in row Ci. Hence k is the number of up/right moves it takes to get from the lower left

corner to the upper right corner in a (IAI - Ci) x i grid. Thus k = IAI - Ci + i - 1.

Using proposition IVA.5, we can determine all the roots of the polynomial P)...

o

Proposition IVA.7. P).. is a degree IAI polynomial with IAI distinct, integer roots given by

IAI + Ai - i for each i = 1, ... ,\AI.

Proof. Suppose d is an integer with d> 21AI. It follows from definition IV.4.I that the roots of

P).. are exactly the integers 0 ~ k < d such that d - k is not a hook length of a box in the top

row of A(d). By proposition IVA.5.2, those are exactly the values of k for which II appears in the

(A, d) grid marking. The result now follows from proposition IVA.5.1. 0
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CHAPTER V

ENDOMORPHISMS OF THE IDENTITY FUNCTOR

In this chapter we study endomorphisms of the identity functor on RePo(St; F) constructed

using certain central elements in group algebras of symmetric groups. These endomorphisms of the

identity functor will playa key role in describing the blocks in .B&P(St; F). This role is analogous

to the role the CaBimir element plays in Lie theory.

V.I Interpolating Sums of r-cycles

In this section we define morphisms in RePo(St; F) which "interpolate" the action of the

sum of all r-cycles on representations of symmetric groups. To begin, let rand d be positive

integers with r :::; d.

Definition V.1.1. Let [l,r,d E F Sd denote the sum of all r-cycles in Sd.

Since [l,r,d is in the center of FSd, the action of [l,r,d on Vd<8ln gives and element of

Endsd (Vd<8ln) for each integer n 2: O. This, along with theorem 111.1.7, shows the following definition

is valid.

Definition V.1.2. For nonnegative integers r,n, and d with r :::; d and 2n:::; d, let C~(d) denote

the unique element of FPn(d) with f(C~(d)) E Endsd (Vd<8ln) given by the action of [l,r,d'

The first goal of this section is to define elements of F Pn(t) for arbitrary t E F which agree

with C~(t) when t is a sufficiently large integer. We are able to do this because, as we will show,

C~ (d) depends polynomially on d. The fact that C~ (d) depends polynomially on d boils down to

the following combinatorial proposition.
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Proposition V.l.3. Suppose n is a nonnegative integers and 1l" E Pn,n. Fix the following notation.

• Let a denote the number of parts of 1l".

• Let b denote the number of parts 1l"k of 1l" such that j, j' E 1l"k for some 1 S j S n.

• Let c denote the number of connected components in the trace diagram of 1l" (see section

III.3).

• Suppose rand d are positive integers with d 2: r, and i,i' E [n,d] are such that the (i,i')­

coloring of 1l" is perfect. Let S(1l",r,d) denote the number of r-cycles, !7 E Sd, such that

l7(i j ) = ij for aliI S j S n.

Fix a positive integer r. If S(1l",r,d) is nonzero for some integer d 2: r, then S(1l",r,d) is nonzero

for all d 2: r + b. Moreover, if S(1l",r,d) is nonzero, then

( )
r+b-a

r-a+c-1! 1
S(1l",r,d)= (r-a+b)! II (d-r-b+k).

k=l

(V.1)

The proof of proposition V.1.3 is a simple counting argument which we leave to the reader.

However, a proof can be obtained by simply generalizing the following example.

Example V.l.4. Let n = 15 and

1l"=

l'

45678 10 11 12 13 14 15

9' 10' 11' 12' 13' 14' 15'

Then a = 14, b = 3, and c = 7. For d 2: 14, let i, i' E [n, d] be the functions which give the perfect

(i, i')-coloring of 1l" shown in figure 1.

5

3 4 564

5 3

89810910

869610910

Figure 1: A Perfect (i, i')-coloring of 1l"

r+b-a
1If r = a - b then the empty product TI (d - T - b+ k) is equal to 1, and (V. 1) gives S(7r, T, d) = (c - b -I)!.

k=l
If l' < a - b or T :::: a - c then S(7r, T, d) is zero for all d, so (V.l) does not apply.



43

For an r-cycle CY E Sd to satisfy CY(i j ) = ij for j = 1, ... ,n, CY must fix the 3 = b numbers 3,9,10,

and map

1 --> 5 --> 13, 2 --> 14, 4 --> 11, 7 --> 8 --> 6 --> 12. (V.2)

Clearly, such an r-cycle exists if and only if r 2:: 11 = a - band d 2:: r + 3 = r + b. In that case, the

number of such r-cycles can be counted as follows. There are (r - 8)! = (r - a + c - I)! ways to

arrange the 4 = c - b "chains" listed in (V.2) along with the r - 11 = r - a + b other entries within

the cycle. Moreover, there are d - 14 = d - a choices for the remaining r - 11 = r - a + b entries

within the r-cycle after the "chains" in (V.2) have been taken into account. Hence the number of

desired r-cycles is given by (r - 8)!(~=ii) = (r - a + c - l)!(r~:~b) which agrees with (V.1). 0

With proposition V.1.3 in mind, we are now ready for the following definition.

Definition V.1.5. For t E F and integers r > 0, and n 2:: 0, define w~(t) E FPn(t) as follows.

Using the basis {x7r } for FPn(t) defined in (111.1), set

w~(t) = L q7r,r,t X 7r

7fEPn ,n

where, using the notation set up in proposition V.1.3,

{

a,
Q7r,r t = r+b-a

, (r-a+c-l)! IT (t - r - b+ k)
(r-a+b)! '

k=l

if S(7r,r,d) = a for all integers d > 1,

otherwise.

Although the definition of w~ (t) may seem a bit complicated, for the rest of this paper we

will only be concerned with the following (less complicated) properties of w~ (t).

Proposition V.1.6. (1) Fix integers r > a and n 2:: a. Whenever d is a sufficiently large2

integer, w~(d) = C~(d). In other words, when d is a sufficiently large integer, the map

f(w~(d)) : Vd
0n

--> Vd
0n is given by the action of nr,d E Sd.

(2) Fix t E F and an integer r > a. The morphisms w~(t) : [n] --> [n] for each nonnegative

integer n form an endomorphism of the identity functor on Repo(St; F). In particular, w~(t)

is in the center of FPn(t) for every t E F and integer n 2:: a.

2The statement is certainly true for d;:::: 2n + r, although this bound is not sharp.
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Proof. For i, i' E [n, d], let 'Tr( i, it) E Pn,n denote the unique partition which has a perfect (i, i')­

coloring. Then the action of Dr,d on Vd
0n maps the basis vector vi >-> L::i' E[n,d] S('Tr(i, it), r, d)vi"

On the other hand, (III.2) shows that j(w~(t)) maps vi >-> L::i' E[n,d] q",(i,i'l,r,dvi" By proposition

V.1.3, S('Tr(i,i'),r,d) = q",(i,i'l,r,d for sufficiently large d. This proves part (1).

To prove part (2), choose /1- E Pn,m. For an integer d > r, we know that j(/1-) : Vd0
n -+ ~0m

commutes with the action of Dr,d E Sd. Hence, by part (1), j(w';,.(d)/1-) = j(/1-w~(d)) when dis

a sufficiently large integer. Thus, by part (2) of theorem III.1.7, w';,.(d)/1- = /1-w~(d) when d is a

sufficiently large integer. If we set w';,.(t)/1- =: L::"'EP
n

.
m

a",(t)'Tr and /1-W~(t) =: L::"'EP
n

.
m

a~(t)'Tr for

each t E F, then we have shown the polynomials a",(t) and a~(t) are equal when t is a sufficiently

large integer. Hence they are always equal.

V.2 Frobenius' Formula

o

This section will be devoted to studying how w~(t) interacts with indecomposable objects

in B&P(St;F). We start with the following proposition.

Proposition V.2.1. Fix t E F along with integers r > 0 and n ~ O. If e is a primitive idempotent

in FPn(t), then there exists ~ E F and a positive integer m such that (w~(t) - ome = O.

Proof. Let P denote the algebraic closure of F and write w := w~(t). Let a(x) (resp. a'(x))

denote the monic polynomial of minimal degree in F[x] (resp. P[x]) with a(w)e (resp. a'(w)e)

equal to zero. 3 First we will show that a(x) is a power of an irreducible polynomial in F[xJ. To

do so, suppose b(x) and c(x) are relatively prime monic polynomials in F[x] with a(x) = b(x)c(x).

Then there exist polynomials g(x),h(x) E F[x] with degg(x) < degc(x), degh(x) < degb(x), and

g(x)b(x) + h(x)c(x) = 1. Hence g(w )b(w)e + h(w)c(w)e = e is a decomposition of e into orthogonal

idempotents (here we are using the fact that w is in the center of FPn(t), see proposition V.1.6.2).

Since e is primitive, this implies g(w)b(w)e = 0 or h(w)c(w)e = O. The minimality of a(x) implies

that either g(x) = 0 or h(x) = 0, which implies c(x) = 1 or b(x) = 1. Thus a(x) is a power of an

irreducible polynomial in F[x]. Since e is primitive in P Pn(t) (see proposition IV.1.7), the same line

of reasoning shows a'(x) is a power of an irreducible polynomial in P[xJ. Hence a'(x) = (x _ ~)m

for some positive integer m and ~ E P. Since a(x) is a power of an irreducible polynomial in F[x]

and (x - om divides a(x) in P[x], we conclude ~ E F.

3The polynomial a(x) (resp. alex)) exists since FPn(t) (resp. FPn(t)) is finite dimensional over F (resp. F).

o
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Next, we use a classical result of Frobenius to produce a formula for the scalar e in

proposition V.2.2. The study of this formula will be the key to describing the blocks of fup(St, F)

in section VIA. First we state Frobenius' result on the symmetric group:

Theorem V.2.2 (Frobenius' formula4 ). Fix positive integers d ::::: r. Given a Young diagram

A = (AD, A1,"') of size d, set Mi = Ai - i for each i ::::: o. Then Dr,d, (definition V.L1), acts on the

simple Sd-module corresponding to A by the scalar

k
>. 1 ""' IT Mi - Mj - rer,k:= - LJ (Mi+k-1)(Mi+k-2)"'(Mi+k-r)

r i=O 0<;j9 Mi - Mj
j::pi

where k is any positive integer such that Ak+1 = O.

(V.3)

The result of theorem V.2.2 was first appeared in [11]. A modern proof of theorem V.2.2

is outlined in [12, exercise 4.17], (see also [18, example 7 in section 1. 7]).

To close this section we show that ein proposition V.2.2 is given by Frobenius' formula.

Proposition V.2.3. Fix t E F and a positive integer r. Suppose ([n]' e) is an indecomposable

object in Rep(St, F) corresponding to the Young diagram A. If k is a positive integer such that

Ak+1 = 0, then (w~(t) - e;,~»)me = 0 for some positive integer m.

Proof. By theorem IV.L3.1 we may assume n = IAI. Let eand m be as in proposition V.2.2,

so that (w~(t) - ome = O. Applying the quotient map 'Ij; : FPn(t) -» FSn (lemma IV.LL2) to

this equation yields ('Ij;(w~(t)) - e)me>. = 0 in FSn where e>. is a primitive idempotent in FSn

corresponding to A. Since 'Ij;(w~(t)) is central in FSn, this implies 'Ij;(w~(t))e>. = ee>.. Hence, by

definition V.L5, edepends polynomially on t.

Now, assume d is a positive integer such that d ::::: A1 + IAI. By proposition IV.3.8, applying

the functor :F to the equation (w~(d) - ome = 0 yields (Dr,d - e)me>'(d) = O. Thus, by theorem

V.2.2, e= e;~) whenever t = d is a sufficiently large integer. Since edepends polynomially on

t, e;,~) is a rational function in t, and e= e;,~) for infinitely many values of t, we conclude that

e= e;~) for all t E F. D

4We take formula (V.3) to be the definition of E;,k even if A = (AD, AI, ... ) is not a Young diagram.
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CHAPTER VI

BLOCKS OF INDECOMPOSABLE OBJECTS

Consider the following equivalence class on the set of Young diagrams of arbitrary size.

Definition VI.O.4. For t E F and a Young diagram A= (AI, A2, .. .), set

P,>..(t) ;= (t -IAI, Al - 1, A2 - 2, ...).

For Young diagrams A and A' write /-l>..(t) = (p,0,p,I, ... ) and /-l>..,(t) = (p,'o,p,i, ...). We write

A!:., X whenever there exists a bijection T : 1::::::0 -> 1::::::0 with P,i = P,~(i) for all i 2: O.

Example VI.O.5. Let

A' = ffif
Then /-l>..(7) = (3,1,0, -3, -4, -5, ...) and P,N(7) = (-3,3,1,0, -4, -5, ...). Hence A2, X. 0

Clearly, for each t E F, !:., defines an equivalence relation on the set of all Young diagrams.

The main goal of chapter VI is to prove the following theorem.

Theorem VI.O.6. L(A) and L(X) are in the same block of &P(St; F) if and only if A!:., X.

VI.l What Does Frobenius' Formula Tell Us About Blocks?

In this section we use Frobenius' formula (V.3) to show !:.,-equivalence classes correspond

to unions of blocks in Rep(St; F).

Lemma VI.l.l. Suppose A and X are Young diagrams and k E 1::::::0 with Ak+1 = A~+I = O.

(1) If L(A) and L(X) are in the same block in &P(St; F), then ~;,~) = ~;,'~t) for every r > O.

() >"(t) >..'(t) t I
2 If ~r,k = ~r,k for every r > 0, then A rv A .
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Proof. To prove part (1), let us first fix some notation. Let n, n' be nonnegative integers and

e E FPn(t),e' E FPn,(t) be idempotents with L(>") ~ ([nl,e) and L(A') ~ ([n'Le'). Fix rand

write ~ := ~;~), e := ~;'k(t), w := w~(t), w' := W~/(t). Finally, let m be a positive integer with, ,

(w - ome = 0 and (w' - e)me, = 0 (such an m exists by proposition V.2.3). Now, suppose ~ =I e.
Then there are polynomials p(x), q(x) E F[x] with p(x)(x - om + q(x)(x - e)m = 1. Hence, given

any morphism ¢ : ([n'l, e') ---> ([nl, e) in R.@(St;F), we have

By proposition V.1.6.2, the right hand side of the equation above is equal to

p(w)(w - ane¢ + ¢q(w')(w' - ere' = o.

Thus, if there exists a nonzero morphism ([n'l, e') ---> ([nl, e) in fup(Sti F), then ~ = e.
To prove part (2), notice ~;,~) is symmetric in ~o, ... ,~k. Thus ~;,~) 110:':i<j:':k (~i - ~j) is

an antisymmetric polynomial in ~O, ... , ~k. However, every antisymmetric polynomial in ~O, ... , ~k

is divisible by 110<i< '<k (~i - ~j). Thus ~;~) is a symmetric polynomial in ~o, ... , ~k. Moreover,_ J_ ,

from equation (V.3) it is apparent that as a polynomial in ~o, ... , ~k,

k

~;~) = ~ "" ~i + (terms of total degree less than r) ., r LJ
i=O

Thus, if ~;,~) = ~;,~(t) for every r > 0 then 2:7=0 ~i = 2:7=0(~;r for every r > O. This is only

possible if the list ~O, ... ,~k is a permutation of ~~, ... '~k'

VI.2 On the Equivalence Relation ,!.,

o

In this section we prove some elementary properties of the equivalence relation'!" and give

examples. We say a ,!.,-equivalence class is trivial if it contains only one Young diagram. Soon we

will see that the rS-equivalence classes are all trivial unless t is a nonnegative integer (see corollary

VI.2.2.1). First, we prove the following easy proposition.



48

Proposition VI.2.1. Suppose A is a Young diagram and write Ap.(t) = (/10, /11, ... ). Suppose

further that T : Z::::o ---> Z::::o is a bijection and set /1' = (/1~,/1~, ... ) where /1; = /1r-1(i)' There

exists a Young diagram A' such that /1' = /1>.,(t) if and only if /1; E Z with /1; > /1;+1 for all i > O.

Proof. Suppose A' satisfies /1' = /1v(t). Then /1; = A; - i > A;+1 - i-I = /1;+1 for all i > O.

On the other hand, suppose /1; > /1;+1 for all i > O. Set A; = /1i + i for all i ~ 0

and A' = (A~, A~, .. .). Since /1i > /1i+1 and /1; > /1;+1 for all i > 0, T(i) must equal i for all

i> max{T(0),T- 1(0)}. Thus A; = Ai for all i > max{T(0),T-1(0)}. This shows A; = 0 for all but

finitely many values of i. Moreover, /1i > /1i+1 for i > 0 implies A; ~ A;+l for all i > O. Thus X

is indeed a Young diagram. Finally, choose k > max{T(O), T-
1 (O)} with Ak = O. Then A~ = 0 as

11 Fu th t - ",k \ . - ",k . k(k+1) - ",k , k(k+1) - ",k \I h' h' I'we. r ermore, - 6i=0 A, - 6i=0 /1, + -2- - 6i",0 /1i + -2- - 6i=0 Ai' w lC Imp 1es

A~ =t-IA'I. o

Corollary VI.2.2. (1) The ,s-equivalence classes are all trivial unless t E Z>o.

(2) Suppose d E Z>o and A is a Young diagram. The Lequivalence class containing A is

nontrivial if and only if the coordinates of /1>. (d) are pairwise distinct.

Proof. Suppose A is a Young diagram. It follows from proposition VI.2.1 that the ,s-equivalence

class containing A is nontrivial if and only if the coordinates of /1>. (t) are all integers which are

pairwise distinct. This proves part (2). Also, this implies the ,s-equivalence classes are all trivial

unless t E Z. Finally, if t is a negative integer, then AI>.I-t = 0 which implies /11>.I-t = /10, This

proves part (1). o

Example VI.2.3. (1) Let A = (2,1,0, ...). Then /1>.(t) = (t - 3,1, -1, -3, -4, ...). Thus, by

corollary VI.2.2, A is in a nontrivial ,s-equivalence class if and only if t E Z::::o and t =f. 0,2,4.

(2) If we let 0 denote the Voung diagram (0, ... ), then /10(t) = (t, -1, -2, -3, ...). Thus,

by corollary VI.2.2, A is in a nontrivial 's-equivalence class if and only if t E Z::::o. o

The following proposition gives a complete description of nontrivial 's-equivalence classes.

Proposition VI.2.4. Suppose d is a nonnegative integer. Each nontrivial ~-equivalence class is

infinite. Moreover, a Young diagram A is the minimal element in a nontrivial ~-equivalenceclass if

and only if A(d) is a Young diagram of size d. In particular, the number of nontrivial ~-equivalence

classes is equal to the number of Voung diagrams of size d. Finally, suppose {A (0) -< A(1) -< ... }
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is a nontrivial ~-equivalence class with A(O) (d) = (l;:"', ... , l;:'r). If we set m := L~=1 mj, then

A(i) = ((h + l)m" ... , (IT + l)mr , li-m) for all i 2: m.

Proof. Suppose A is a Young diagram in a nontrivial ~-equivalence class. Label the coordinates

of /-L),(d) by /-La, /-Ll, ... so that /-Li > /-Li+l for all i 2: 0 (such a labeling is possible by corollary

VI.2.2.2). For each nonnegative integer 'i, set A(i) = (Ali), A~i), ... ) where

(i) {/-Lj_l + j if j :::; 'i,
Aj :=

/-Lj + j if j > i.

for each j > O. Then A(i) is a Young diagram with /-L),Ul (d) = (/-L~i), /-Lli), ... ) where

{

/-Li if j = 0,
(,)

/-LJ = /-Lj-l if 0 < j :::; i,

/-LJ if j > i.

(VI.1)

Hence A(i) ~ A for all i 2: o. Moreover, it follows from proposition VI.2.1 that A(O), A(1), A(2), ... is

a complete list of Young diagrams which are ~-equivalent to A. Furthermore,

(i)
= Lj>1 \

= L~'=1 (/-Lj-l + j) + /-Li+l + i + 1 + Lj>i+l (/-Lj + j)

< LJ=1 (/-Lj-l + j) + /-Li + i + 1 + Lj>i+l (/-Lj + j)

= Lj>1 AJi+l) = IA(i+l)l·

Next, given a Young diagram A = (AI, A2, ... ), d - [AI 2: Al if and only if /-Li > /-Li+l for

all i 2: 0 where /-L),(d) = (/-La, /-Ll," .), which occurs if and only if A is the minimal element of a

nontrivial ~-equivalenceclass.

Finally, If A(0) (d) = (l;:"', ... , l;:'r) and i 2: m = L~= 1 mj, then by (VI.1)

. {d-!A(O)\+l ifj=l,
A(,) '= \ (0) + 1 'f . < .
J' Aj_l 1 J _ ~,

o if j > i.

Thus A(i) = ((h + l)m" ... ,(IT + l)m r , 1i-m) whenever i 2: m. o
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Example VI.2.5. (1) The only nontrivialZ-equivalence class is {0, (1), (12), (13), ...}.

(2) Below are the three nontrivial ~-equivalence classes of Young diagrams.

ITIIJ

ITIJ

g:IIJ

EE

rrrrl
, r r rl
~ , f r 1

o

Next we show how the polynomials P), defined in section IVA can be used to determine

when a Young diagram is in a trivial ~-equivalence class.

Proposition VI.2.6. Suppose A is a Young diagram and d is a nonnegative integer. A is in a

trivial Lequivalence class if and only if P), (d) = O.

Proof. By corollary VI.2.2, A is in a trivial ~-equivalence class if and only if the coordinates

of f-l),(d) are not distinct, which occurs if and only if d -IAI = Ai - i for some i > O. However,

d - IAI > Ai - i when i > IAI, so A is in a trivial Lequivalence class if and only if d = IAI + Ai - i

for some 0 < i ::; IAI. The result now follows from proposition IV.4.7. 0

We conclude this section by defining a total order on the nontrivial ~-equivalenceclasses.

This ordering will be useful in section VI.4.

Definition VI.2.1. If Band B' are nontrivial Lequivalence classes with minimal diagrams A

and A' respectively, we write B -< B' if A(d) -< A'(d) (see definition 11.6.4).

Example VI.2.8. (1) The nontrivial ~-equivalence classes in example VI.2.5.2 are listed in

decreasing order.
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(2) Below are the seven nontrivial Lequivalence classes with Bo -< ... -< B6 •

Bo ~ {~ r f til mm; ~}

B'~{~ §" W~ r!lf W}
B 2 = {EP EfD Em W , , "'}

VI.3 The Functor - 181 L(D)

B 3 = {B EfID ffiD [IF r r '''}
B4 = {rn OIl] ffiP EfEP F ''}
B 5 = {o

CIIIlJ ffiIlJ w=o r}
B6 = {0 [I]DIIJ a=o:m wrro "}

<>

In this section we explain how to decompose the tensor product L(>..) I8IL(D) where>.. is an

arbitrary Young diagram. The following lemma will be our main tool in our study of decomposing

tensor products.

Lemma VI.3.10 Fix Young diagrams >.., p,. If L(>..) 181 L(p,) = EBv L(v)EIlav in the category

W(ST,K), then L)"(d) ® LJ1.(d) = EBvL~t~) in the category Rep(Sd;F) whenever d is a suffi­

ciently large integer!.

Proof. Suppose c; and c;' are primitive idempotents in K Pn (T) corresponding to >.. and p, re-

spectively. Then a v is the number of primitive idempotents corresponding to v in an orthogonal

decomposition of c; ® c;' into primitive idempotents. By corollary IV.1.8, for all but finitely many

integers d, evaluating T = d in a decomposition of c; 181 c;' gives a decomposition of e 181 e' E F P2n (d)

where e and e' are primitive idempotents in F Pn(d) corresponding to>.. and p, respectively. Hence,

L(>") 181 L(p,) = EBvEIli L(v) EIlav in the category Rep(Sd, F) whenever d is a sufficiently large integer.

As long as d is chosen large enough so that >"(d) , p,(d) , as well as all v(d) (when av i= 0) are Young

diagrams, applying the tensor functor :F gives the desired result (see proposition IV.3.8). 0

I In [17], Littlewood showed for sufficiently large d, the decomposition of LA(d) 0 LI'(d) in Rep(Sd; F) depends
only on.\ and J.l, not on d. Hence, even though v(d) is only a Young diagram when d ~ VI + lvi, we can choose d large

enough so that av = 0 whenever d < VI + Ivl. Thus, if we set L~(~) = 0, the formula L>'(d) 0 LI'(d) = EBvE >!' L~td)
makes sense when d is sufficiently large.
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From lemma VI,3.1, along with the well known algorithm for decomposing L)..0L(d-l,1,0, ... )

in Rep(Sd; K) (see e.g. [17]), we have the following algorithm for decomposing L(>') 0 L(O) in the

category Rep(ST; K).

Proposition VI.3.2. L(>') 0 L(O) = €By L(I/)EIJav where ay is the number of times the Young

diagram 1/ is obtained from step 2 in the following algorithm.

Step 1: Delete zero or one box from>' wherever doing so results in a Young diagram.

Step 2: Add one box to >. wherever doing so results in a Young diagram. To every Young

diagram not equal to >. obtained from step 1, add zero or one box wherever doing so

results in a Young diagram.

Example VI.3.3. In this example we will apply proposition VI,3.2 to L(>') 0 L(O) in Rep(ST; K)

where>. = (2,1,0, ...). Figure 1 illustrates the algorithm in proposition VI.3.2 as follows: At the

top of the figure is >.; the middle level lists all Young diagrams obtained in step 1 of the algorithm;

the bottom level lists all Young diagrams obtained from step 2; the arrows indicate adding or

deleting zero or one box as prescribed by the algorithm.

EP
/1~

B EP rn

///)( X \~
B§ EF EB EP. EFD ITO rn

Figure 1: DecomposingL(2,1,0, ...)0L(0).

Hence, the multiplicity of L(I/) in the decomposition of L(>') 0 L(O) is the number of paths from

the top>. to 1/ (in the bottom level) in figure 1. o

We conclude this section with a technical lemma concerning tensoring with L(O) which

we will need in section VIA.

Lemma VI.3.4. Fix a nonnegative integer d and suppose B = {>.(0) --< >.(1) --< ... } is a nontrivial

~-equivalence class.
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(1) If B is minimal with respect to --<, then for each integer i > 0 there exists a Young diagram

p, in a trivial Lequivalence class, with L(p) 0 L(O) = EEl" L(v)ElJa" in Rep(ST; K) where

ifjE{i,i-1},

ifj~{i,i-1}.

if j = i,

(2) If B is not minimal with respect to --<, then there exists a nontrivial ~-equivalence class

B' = {p(O) --< p(1) --< ... } such that for each integer i ~ 0, L(p(i)) 0 L([]) = EEl" L(v)ElJa" and

L()..(i)) 0 L(O) = EEl" L(v)ElJb" in Rep(ST; K) where

a),(j) = bp(j) = { 1
o if j =I i.

Moreover, B' can be chosen with B' --< B.

Proof. (1) Assume B is the minimal ~-equivalence class. Then

if 0:::; i < d,

if i ~ d.
(VI. 2)

Now fix i > 0 and set

(l d) if i = 1,

(3, 2i- 2, 1d-i) if 1 < i < d,
p'-.-

(2d-1, 1) if i = d,

(3, 2d-1, 1i-d-l) if i > d.

If we set !-tp (d) = (!-to,!-tl, ... ), then it is easy to check that

{

!-ti
!-to =

!-ti+l

if 1 :::; i :::; d,

if i > d.

Hence p is in a trivial Lequivalence class (see corollary VI.2.2). Finally, comparing p to the Young

diagrams in (VI.2) and using proposition VI.3.2.2, it is easy to check that p satisfies part (1).
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(2) Suppose B is not minimal so that )JO)(d) is a Young diagram of size d distinct from

(ld). Let prO) be the Young diagram with p(O)(d) obtained from >-(0) (d) by adding one box to the

first row with zero boxes and removing a box from the last row containing more than one box

(such a row exists since >-(O)(d) i= (ld)); see figure 2.

x x

Figure 2: Constructing prO) From >-(0)

Since p(O) (d) is a Young diagram of size d with p(O)(d) -< >-(O)(d), prO) is the minimal element in

a nontrivial ~-equivalence class B' = {prO) -< p(l) -< ... } which satisfies B' -< B (see proposition

VI.2.4). Moreover, given an integer i 2 0, it follows from the construction of prO) that the coordi­

nates of >-(i)(d) - p(i)(d) are all zero except for one 1 and one -1. Thus, by proposition VI.3.2, B'

satisfies part (2).

VI.4 Lift of Idempotents

o

In this section we examine the idempotents in KPn(T) lifted from FPn(t) (see theorem

IV.1.3.2). Then, our results on lifted idempotents along with lemma VI.1.1 will be used to prove

theorem VI.0.5. We begin with the following proposition.

Proposition VI.4.1. Suppose e is a primitive idempotent in F Pn(t) corresponding to the Young

diagram >-. Suppose further that e lifts to an idempotent e E K Pn (T) and e = el + ... + em is an

orthogonal decomposition of e into primitive idempotents with ei corresponding to Young diagram

>-(i) for each i = 1, ... ,m. Then >-(;)!:- >- and I>-(;)\:S 1>-1 for all i = 1, ... ,m.

Proof. By part theorem IV.1.3 we can assume n = 1>-1, so that I>-(i) I:S 1>-1 for all i = 1, ... ,m. To

( ') t ,X(i)(t) 'x(t)
show >-' '" >- for all i = 1, ... ,m it suffices to show ~r,k = ~r,k for all r > 0 and i = 1, ... , m

where k is an integer such that >-~;) = >-k = 0 for all i (see lemma VI.1.1.2). Fix positive integers

rand k with >-~i) = >-k = 0 for all i and let A(x) E K[x] be the minimal monic polynomial with
(')

A(w~(T))e = O. Then A(x) is the product of linear terms of the form x - ~;,~ (T) (see proposition
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V.2.3). Let B(x), C(x) E K[x] be the unique monic polynomials with A = BC such that B(x)
),(i)(T) ),(i)(t)

(resp. C(x)) is the product of linear terms of the form x - ~r,k with ~r,k equal to (resp. not

equal to) ~;~). Suppose for a contradiction that C(x) of- 1. Since B(x) and C(x) are relatively

prime polynomials of positive degree, there exist nonzero polynomials G(x), H(x) E K[x] with

degG(x) < degC(x), degH(x) < degB(x) and

G(x)B(x) + H(x)C(x) = 1. (VI.3)

Let N be the minimal nonnegative integer such that all coefficients of both G' (x) := (T - t)NG(x)

and H'(x) := (T - t)NH(x) lie in F[[T - t]]. Then from equation (VI.3) we have

G'(x)B(x) + H'(x)C(x) = (T - t)N. (VIA)

Let b(x), c(x), g(x), h(x) E F[x] be the polynomials obtained by evaluating T = t in the polynomials

B(x),C(x),G'(x),H'(x) respectively. If N > 0, then equation (VIA) implies b(x) (resp. c(x))

divides h(x) (resp. g(x)). On the other hand, degb(x) = degB(x) > degH(x) > degh(x).

Similarly degc(x) > degg(x). Thus h(x) = g(x) = 0 which contradicts the minimality of N.

Hence N = 0 which implies the coefficients of H(x) = H'(x) and G(x) = G'(x) are in F[[T - t]].

Thus evaluating T = t, x = w~(t) in equation (VI.3) and multiplying by e gives

g(w~(t))b(w~(t))e + h(w~(t))c(w~(t))e = e. (VI.5)

Since w~ (t) is in the center of F Pn(t) (proposition V.1.6.2) and b(w~(t))c(w~(t))e = 0, the two sum­

mands on the left side of equation (VI.5) are idempotents. As e is assumed to be primitive, either

g(w~(t))b(w~(t))e= 0 or h(w~(t))c(w~(t))e= O. This implies that either G(w~(T))B(w~(T))E= 0

or H(w~(T))C(w~(T))E= 0 (see theorem IV.1.3.2) which contradicts the minimality of A(x). This

completes the proof. o

Among other things, proposition VI.4.1 implies that the lifting a primitive idempotent

in FPn(t) corresponding to Young diagram in a trivial 'z'-equivalence class yields a primitive

idempotent in K Pn (T). The following lemma describes the result of lifting a primitive idempotent

in FPn(t) which corresponds to Young diagram in a nontrivial 'z'-equivalence class.
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Lemma VI.4.2. Fix a nonnegative integer d. Suppose B = {>JO) --< A(I) --< ... } is a nontrivial

~-equivalence class, and e E F Pn(d) is a primitive idempotent corresponding to A(i). Suppose

further that e lifts to an idempotent c E K Pn (T).

(1) If i = 0, then c is a primitive idempotent in KPn(T) corresponding to A(i).

(2) If i > 0, then there is an orthogonal decomposition of c given by c = Ci +Ci-l where Ci (resp.

ci-I) is a primitive idempotent in KPn(T) corresponding to A(i) (resp. A(i-I)).

Proof. Part (1) follows from theorem IV.l.3.2 and proposition VI.4.l. To prove part (2) we will

first show that C = Ci + &i-l where 0 E {O, 1}. To do so, it suffices to find a positive integer m and

an idempotent in e E F Pm (t) which lifts to an idempotent in € E K Pm (T) such that the number

of primitive idempotents corresponding to A in any orthogonal decomposition of € into primitive

idempotents is one if A = A(i). at most one if A = A(i-I)· and zero if A E B \ {A(i) A(i-l)} Indeed, • 1 ).,

if such an eexists, then by proposition VI.4.1, an orthogonal decomposition of e must contain an

idempotent corresponding to A(i) whose lift in K Pm (T) (and hence C (see theorem IV.l.3.2)) is the

orthogonal sum of one idempotent corresponding to A(i) and at most one idempotent corresponding

to A(i-l). We now proceed by induction on--<.

For our base case, assume that B is the minimal ~-equivalenceclass. Let p be as in lemma

VI.3.4.1, m = Ipl + 1, and e := e' ® id1 E FPm(t) where e' E FPlpl(t) is a primitive idempotent

corresponding to p. Since p is in a trivial ~-equivalence class, by proposition VI.4.1 along with

theorem IV.l.3.2, e' lifts to a primitive idempotent c' E K Plpl (T) corresponding to p. Hence

€;= c' ® id1 E KPm(T) is a lift of the idempotent e. By theorem IV.l.5.1, id1 E KP1(T) is the

sum of a primitive idempotent corresponding to 0 and a primitive idempotent corresponding to 0.

Thus, by lemma VI.3.4.1, an orthogonal decomposition of € into primitive idempotents will contain

exactly one idempotent corresponding to each A(i) and A(i-I) and no idempotents corresponding

to A(j) when j of- i, i - l.

Now assume B is not minimal and let B' = {pea) --< p(1) --< ... } be as in lemma VI.3.4.2.

Set m = Ip(i)) I+ 1 and e := e' ® id1 E F Pm (t) where e' E F P1p(i) I(t) is a primitive idempotent

corresponding to p(i). Since B' --< B, by induction e' lifts to an idempotent c; + &;-1 E KPlp/(T)

where c;, C;_1 are mutually orthogonal primitive idempotents corresponding to p(i), p(i-l) respec-

tively, and 0 E {0,1}. Hence, e lifts to the idempotent € := (c; + OC;_I) ® id1 E KPm(T). By

lemma VI.3.4.2, an orthogonal decomposition of € into primitive idempotents will contain exactly
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one idempotent corresponding to A(i) , 8 idempotents corresponding to A(i-1) , and zero idempotents

corresponding to AU) when j i= i, i - 1.

It remains to show 8 = 1. First, since :F (see definition IV.3.1) is a tensor functor,

dimRep(Sd;F) ([n], e) = dimRep(Sd;F) :F([n], e) which, by proposition IV.3.8, is equal to O. On the

other hand, dimRep(Sd;F) ([n], e) = (dimRep(ST;K) ([n], c)) IT=d which, by proposition IVA.3, is equal

to Pw) (d) + <5P).,(i-l) (d). By corollary VI.2.6 we know Pw )(d) i= 0, hence 8 = 1. D

Before proving our description of blocks in Rep(St, F), we need one more proposition

concerning idempotent lifting.

Proposition VI.4.3. Ife,e' E FPn(t) are idempotents which lift to c,c' E KPn(T) respectively,

Proof. Set R = FPn(t) and S = KPn(T). Also, let h,h,h,!4,T}1,T}2,T}3,T}4 denote the

idempotents e,l - e, e', 1 - e', E, 1 - E, E', 1 - E' respectively. Since T}i !T=t = Ii for 1 ::::: i ::::: 4,

dimF !iR!j ::::: dimK T}iST}j for each 1 ::::: i,j ::::: 4. Hence

dimF R = dimF EB fiR!J ::::: dimK EB T}iST}J = dimK S.
j=1,2 j=1,2
i=3,4 i=3,4

However, dimF R = IPn,n I = dimK S. Thus dimF f;Rfj = dimK T}iST}j for each 1 ::::: i, j ::::: 4. D

We are now ready to prove the main result section VI, which we restate now.

Theorem VI.O.6. L(A) and L(X) are in the same block of Rep(St; F) if and only if A /v X.

Proof. If L(A) and L(X) are in the same block ofRw(St; F), then lemma Vr.1.1 implies A /v X. To

prove the converse, by corollary VI.2.2.1, we may assume t = d E Zzo, Suppose {A(O) --< A(l) --< ... }

is a nontrivial Lequivalence class. It suffices to show HomRep(St;F)(L(A(i)),L(A(i+l))) i= 0 for all

i ~ O. Since HomRep(St;F)(L(0),L(D)) = FPO,l, we may assume we are not in the case where

t = 0 and A(i) = 0. Now, fix i ~ 0 and set n = max{IA(i)I, IA(i+i)I}. By theorem IV.1.3.1 we

can find primitive idempotents e,e' E FPn(t) with ([n]'e) (resp. ([n],e')) isomorphic to L(A(i))

(resp. L(A(i+i))). Hence, it suffices to show e'FPn(t)e is nonzero. Suppose E,E' are idempotents

in K Pn(T) lifting e, e' respectively. By proposition VI.4.3, dimF(e' F Pn(t)e) = dimK(E' K Pn(T)E).

Moreover, it follows from lemma VI.4.2 that dimK(E'KPn(T)E) i= O. D
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We close this section by examining the dimensions of the Hom spaces between indecom-

posable objects in &P(St; F).

Proposition VI.4.4. (1) dimp EndRep(S,;P) (L(A)) = 1 whenever A is in a trivial Lequivalence

class. In particular, the block corresponding to a trivial ~-equivalence class is trivial.

(2) Given a nontrivial block {A(O) --< A(l) --< ... } in Rep (St; F),

if i = j > 0,

if Ii - jl > 2,

otherwise.

Proof. By lemma VI.4.2 and propositions VIAl and VI.4.3, it suffices to prove

if A = A',

if A =I A'.

By proposition IV.1.7 it suffices to consider the case when K is algebraically closed. As Rep(ST; K)

is semisimple (corollary IV.2.5), the result follows from Schur's lemma.

Corollary VI.4.5. !1gp(Sti F) is semisimple if and only if t is not a nonnegative integer.

o

Proof. This follows from proposition VI.4.4.1 along with corollary VI.2.2.1 and proposition VI.2.4.

o
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CHAPTER VII

QUIVER DESCRIPTION OF A NON-SEMISIMPLE BLOCK

In this chapter we give a complete description of nontrivial blocks in &P(Sd; F) for all

dE Z2:o. In particular, we prove that all nontrivial blocks are equivalent as additive categories. We

begin by describing the nontrivial block in Rep(So; F). Next, we show that for fixed d E Z2:0, the

nontrivial blocks in &P(Sd; F) are all equivalent. We then state a conjecture which would allow us

to compare blocks in Rep(Sd; F) with those in &P(Sd-l; F) using a "restriction" functor. Finally,

we use Martin's results on the partition algebras to give a complete description of nontrivial blocks.

VII. 1 The Nontrivial Block in Rep(So;F)

In this section we give a complete description of the one nontrivial block in Rep(So; F). In

this particular case the constructions of all idempotents are easy enough that we are able to fully

describe the block by brute force computations. We expect this method is too computationally

complicated in other cases. Throughout this section we consider the group algebra ofthe symmetric

group FSn as a subalgebra ofthe partition algebra F Pn(O) (see remark III.2.4). With this in mind,

we have the following idempotents:

(n 2: 0).

Proposition VII.I.I. In Rep(So; F), ([n], sn) ~ L((ln)) for all n 2: O.

Proof. The proposition is certainly true when n = 0, so we assume n > O. Since the projection

FPn(O) c-» FSn maps Sn >-t Sn, and in FSn the idempotent Sn is primitive corresponding to (In),

we know any orthogonal decomposition of Sn into primitive idempotents in FPn(O) must contain

a summand corresponding to L((ln)) in &P(So; F). Thus, by example VI.2.5.1 and proposition

VI.4.4 it suffices to show dimF snFPn(O)sn = 2.
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Suppose f.l E Pn,n has the property that Tf.l = 1r for some transposition T E Sn C Pn,n.

Then Snf.lSn = SnTf.lSn = -Sn1rSn, which implies Snf.lSn = O. Similarly, if f.lT = f.l for some

transposition T, then Snf.lSn = O. The only elements of f.l E Pn,n such that Tf.l # f.l and f.lT # f.l for

all transpositions T E Sn are either elements of Sn or of the form axa' for some a, a' E Sn with

x = idn - l ® 1r where 1r E Pl,l is as in the proof of theorem IV.1.5. If f.l E Sn, then Snf.lSn = ±sn'

If f.l = axa' for some a, a' E Sn, then Snf.lSn = ±snxsn' Hence, Sn and SnXSn span snFPn(O)sn'

D

As a consequence of example VL2.5.I and proposition VILLI, describing the nontrivial

block in Rep(So; F) amounts to describing morphisms among the objects ([n], sn) for n ::::: O. To

describe such morphisms, let X6 denote the unique element of Pl,o and let x~+l = idn ® X6 for all

n> O. Finally, let X~+l = (x~+l)V for all n ::::: 0 as pictured below.

n

I
1

x~+l = I
I'

2 nI ... I
2' n'

n+I
•

2

I
2'

•
n' (n+I)'

The following lemma records a couple properties useful in forthcoming calculations.

Lemma VII.1.2. The following identities hold in R&P(So; F):

(3) x~_l x~+l Sn+l = 0 for all n > O.

Proof. To prove part (1), let s~ := Sn ® id1 E FPn+l(O) for all n ::::: O. It IS easy to see

To prove part (2), notice that for a E Sn+l there are exactly (n - I)! pairs (Tl,T2) with

TI, T2 E Sn such that TlX~-lX~_lT2 = x~+lax~+l' Moreover, for such a pair sgn(Tl T2) = -sgn(a).

Conversely, given any Tl, T2 E Sn, either TIX~-lX~_lT2 = 0 or there exists a unique a E Sn+l with

which is equivalent to the identity in part (2).

To prove part (3), let T E Sn+l denote the transposition n ..... n+1. Then it is apparent that
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Next, defin~ the following morphisms:

(n :2: 0),

The next lemma contains all calculations needed to describe the nontrivial block in Rep(So; F).

Lemma VII.1.3. The following equations hold in @(So; F):

(1) an i= 0 for n :2: O.

(2) (3n i= 0 for n :2: O.

(3) "'tn i= 0 for n > O.

(4) (3oao = O.

(5) (3nan = "'tn for n > O.

(6) a n -1(3n-1 = "'tn for n > O.

(7) a n a n -1 = 0 for n > O.

(8) (3n-1(3n = 0 for n > O.

Proof. Up to a nonzero scalar multiple, an and (3~ are equal. Hence, parts (1) and (7) will follow

from parts (2) and (8) respectively.

(2) Write (3n = '"-E n b1f J['. Then b n+l = I( 1+1)1'L...J II rn+l,n Xn n. n .

(3) Write "'tn = '" En C1f J['. Then C n-l
x n = (-l,ln.L...J1r rn+l,n Xn n-l n.

(4) (3oCto = -X6X~ = 0 in@(So;F).

(5) (3nCtn = (-1)n+ 1(n + 1)snX~+lSn+1X~+1Sn = "'tn, (lemma VII.1.2.2).

(6) Ctn-1(3n-1 = (_1)nnsnx~-lsn_1X~_lSn = "'tn, (lemma VII.1.2.1).

(8) (3n-1(3n = (n_hn!Sn-1X~_lSnX~+lSn+1> which (by lemma VII.1.2.1) is equal to the expression

(n_hn!Sn-1X~_lX~+lSn+1'which (by lemma VII.1.2.3) is equal to zero. D

The following theorem describes the nontrivial block in @(So; F).



62

Theorem VILl.4. Let Ln := L((ln)) for all n 2: O. The nontrivial block in Rep(So;F) has the

following associated quiver

with relations: (300'0 = 0, O'nO'n-l = 0, (3n-l(3n = 0, and (3nO'n = O'n-l(3n-l = In for all n > O.

Proof. The objects in the block follow from example VI.2.5.1. The fact that the arrows (along

with the identity maps) form bases of the appropriate Hom spaces follows from lemma VI.4.4 and

lemma VII.1.3.1-3. The relations follow from lemma VII. 1.3.4-8. o

Remark VII.1.5. The block described in theorem VILl.4 is equivalent to the nontrivial blocks

in the category of tilting modules of Uq (sI2) (when q is a root of unity).

VII.2 Comparison of Non-semisimple Blocks in Rep(Sd; F)

In this section we show that for fixed dE Z2:0, the non-semisimple blocks in Rep(Sd; F) are

all equivalent as additive categories. Thereafter we conjecture that a restriction functor induces an

equivalence of categories between certain non-semisimple blocks in Rep(Sd; F) and Rep(Sd-l; F).

First, let us fix some notation. Given a block B in &P(Sd; F), let IncB : B -> Rep(Sd; F) and

ProjB : Rep(Sd; F) -> B denote the inclusion and projection functors respectively.

Proposition VII.2.1. Suppose B is a nontrivial block in .!3&P(Sd; F). There exists a block B' in

.!3&P(Sd; F) with B' -< B such that ProjB o(- 0 L(O)) 0 IncB' : B' -> B is an equivalence of additive

categories. Hence, all nontrivial blocks in Rep(Sd; F) are all equivalent as additive categories.

Proof. Let B denote the set of Young diagrams corresponding to indecomposable objects in B.

Let B' be the set of Young diagrams given by lemma VI.3.4.2, and B' the corresponding block. It

follows from lemma VI.3.4.2 that ProjB o(-0L(0))oIncB' and ProjB' o(-0L(0))oIncB are inverse

to one another on objects. Moreover, since (- 0 L(O)) is self adjoint and ProjB is both right and

left adjoint to IncB, it follows that ProjB o(- 0L(0)) oIncB' is adjoint to ProjB' o(- 0L(0)) oIncB.

The result follows. o
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Next, we use the universal property of Rep(St; F) (see section 8.3 in [9]) to define a

restriction functor.

Definition VII.2.2. Let Res~:_, : .&p(St; F) -> .&p(St-lj F) denote the functor given by the

universal property of Rep(Stj F) which sends ([1], idd f-> ([1], id1 ) El1 ([0], ida).

Conjecture VII.2.3. For d E 1:;:::0, let 13d denote the nontrivial block in Rep(Sd; F) containing

the object £(0). Then the functor Projsd oRes~:+' oIncsd+, induces an equivalence of additive

categories 13d+1 ~ 13d.

Remark VII.2.4. It is not hard to show that Projsd oRes~:+' oIncsd+1 is bijective on objects.

Hence, to prove conjecture VII.2.3 it suffices to show Projsd oRes~:+l oIncsd +1 is either full or

faithful.

VII.3 Description of Blocks Via Martin

In this section we give a general description of the nontrivial blocks based on the results

of Martin. We start by reviewing the main result in [21].

Assume d of:- 0 and let A(O) -< A(1) -< ... denote the Young diagrams associated to a fixed

nontrivial block in .&p(Sd;F). For each m 2': IA(n)l, let E;:) denote the simple FPm(d)-module

associated to A(n) (see theorem IV.1.5.1), and let pin) denote its projective cover. According to

[21, proposition 9], these modules have Loewy structure

(m 2': IA(1) I),

(n > 0, m 2': IA(n+I) I).

In other words, for m > 0, pj;!) has a maximal simple submodule Eo ~ E~) with pj;!) / B o ~ E~).



64

Moreover, for each m ~ IA(n+l)1 there exists a chain of submodules

with P/nn)I An ~ Et;), AniB:; ~ Et;'fl) , B:; ICn ~ Et;±1), and Cn ~ Et;) for n > O. Using the

notation above, define the following maps1 :

_ . (0) P(O)IB ~ C (1)ao - aO,m . Pm -» m 0 = 1 '-; Pm

{30 = (30,m : pg) -» p(l)IBt ~ pJ:!)

P (n) p(n)IB- ~ B- p(n+l)
O~n == O~n,m: m ---» m n == n+l L....+ m

{3 - (3 . p(n+l) p(n+l)IB+ "" B+ p(n)
n - n,m' m ---» m n+l - n <'----7 m

_ . p(n) p(n)IA ~ C p(n)In - In l m' m ---» m n == n ""---7 m

(n> 0)

(n > 0)

(n > 0)

(VII.1)

We are now ready to give a general description of the nontrivial blocks in Rep(Sd; F).

Theorem VII.3.l. Suppose d is a nonnegative integer and B is a nontrivial block in &P(Sd; F).

Then B is equivalent as an additive category to the nontrivial block described in theorem VILl.4.

Proof. We may assume d -=I- O. Notice

whenever m ~ IA(n)\, !A(n'l Hence, by proposition VI.4.4.2, it suffices to prove the maps defined

by (VILl) satisfy equations (1)-(7) in lemma VII.1.3. Equations (1)-(5) are clearly satisfied. The

fact that equations (6) and (7) are satisfied follows from the observation that the compositions

B%±1 '-; p/nn±l) -» p/nn±l)I B:;±1 ~ B:; factor through B%±1 -» B%±l/Cn±1~ Cn '-; B:;. D

Remark VII.3.2. Our proof of Theorem VII.3.1 is a bit unsatisfactory since it is based on

rather deep results from [21]. On the other hand Theorem VII.3.1 follows from theorem VILl.4,

IThe equations in (VII.I) are only defined when m is sufficiently large.
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proposition VII.2.1, along with conjecture VII.2.3. Hence a proof of conjecture VII.2.3 would

complete a proof of theorem VII.3.1 which is independent from [21].
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CHAPTER VIII

DECOMPOSING TENSOR PRODUCTS

In this chapter we first show how a classical result of Littlewood can be used to decompose

tensor products in Rep(ST; K). We then give an example illustrating how lemma VI.4.2 along with

knowledge of tensor decomposition in Rep(ST; K) can be used to decompose tensor products in

W(St; F). First, we introduce some notation which will simplify decomposition formulas.

Definition VIII.O.3. Set Y := EB AEW ZA. We now define multiple ring structures on Y.

• For A,f-L E Wd set A * f-L := 2:vE Wd a~llv where a~1l are the nonnegative integers defined by
Ella"

LA 0 L il = EBvEWd Lv A" in Rep(Sd;F). If A,f-L E W have IAI i-If-LI, set A* f-L = O.

• For A, f-L E wand t E F, set A (f) f-L := 2:vE wb~llv where b~1l are the nonnegative integers

defined by L(A) 0 L(f-L) = EBvEw L(v)EIlb~" in Rep(St; F).

• For A, f-L E W, set A . f-L := 2:vEwc~llv where c~1l are the Littlewood-Richardson coeJficients

d fi d b I dSIAI+II'1 (L L) ffi LEIlc~"e ne y n S xS A 0 11 = IJ7vEw v .IAI 11,1

Example VIII.O.4. (1) Given Young diagrams A and f-L, if A(V f-L = 2:vEw b\llv then, by lemma

V1.3.1, A(d) * f-L(d) = 2:vEw b~,llv(d) whenever d is a sufficiently large integer.

(2) From example VI.3.3 we have

<>
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VIlLI The Generic Case

The following theorem gives a method for decomposing tensor products in .!1@(ST;K).

The result is a direct consequence of lemma VL3.1 and a classical formula due to Littlewood (see

theorem IX in [17]). For a more modern proof of Littlewood's formula, see theorem 1.1 in [24].

Theorem VIILl.l. For Young diagrams ex, /3, TI, and A, let r~l37) be the nonnegative integer

defined by

ex· /3 . TI = L r~I37)A.
AE'lT

Then for Young diagrams A and f-L,

A ® f-L = L r~l37)r~I3'7)'TI . TI' . (/3 * /3').
a,I3,I3',7),7)'E'lT

(VIII.1)

Example VIILl.2. The Littlewood-Richardson rule can be used to compute the numbers r~l37)

(see [18, §L9] or [12, A.I]). Table 1 lists nonzero r~l37) when A = (1,1,0, ... ), (2, 1,0, ... ), (2,2,0, ...)

respectively.

{a,,8,77} 8 {a,,8,77} r!r,6'1) {a,,8,77} E8r a,6'1) r a,6'1)

{EJ,0,0} 1 {EP,0,0} 1 {EE,0,0} 1

{o,o,0} 1 {EJ,o,0} 1 {EP,o,0} 1

{rn,o,0} 1 {EJ,EJ,0} 1

{o,o,o} 2 {B,o,o} 1

{rn,rn,0} 1
{rn,o,o} 1

Table 1: Nonzero r~l37) for Various A 0

Example VIII.l.3. In the following examples we use theorem VIII.1.1 to compute A CD f-L for

various Young diagrams A and f-L. In each example, we use example VIIL1.2 along with the

Littlewood-Richardson rule to compute all nonzero terms of the right hand side of equation (VIlLI).
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(1) In this example we will compute B® EP. Table 2 gives all nonzero terms of the right hand

side of equation (VIII.1).

~ TJ • TJ' • ((3 * (3') Ir~Bnr~'n' I

0 0 B 0 BJ EEP+EF+§3+rf 1

0 0 0 rn (TIIH 2a=o +B3 +~ 1

0 0 0 B a=o+EE+2~+~ 1

B 0 rn 0 BJ +§ 1

B 0 B 0 ITIJ +BJ 1

0 0 0 0 B BJ +§ 1

0 0 0 rn ITIJ + BJ 1

0 0 0 0 rn +B 2
B 0 0 0 0 0 1

Table 2: Calculations for Computing (1 2
) ® (2, 1)

Hence

B®BJ = EEP+EF+§3 +f+rn:o+3a=o+2ffl+3~+~+2ITIJ+4BJ+2§+2rn+2B+D.

(2) In this example we will compute B® EEl. Table 3 gives all nonzero terms of the right hand

side of equation (VIII.l).

~ r,..,/ . ((3 * (3') Ir~Bi~8'n' I

0 0 B 0 ffl BEE+W+f 1

0 0 0 BJ g:rn+2EEP +2§3 +f 1

B 0 B B a=o +~ 1

B 0 rn rn a=o +~ 1

0 0 0 0 BJ a=o+83+~ 1

B 0 0 0 a a 1

Table 3: Calculations for Computing (1 2 ) ® (22
)

Hence B®tE= Em+§T+ ~+EfITI +2 B:P+2§3 +f+3BTI+tE +3 ~+B.
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(3) In this example we will compute BJ ® BJ. Table 4 gives all nonzero terms of the right hand

side of equation (VIII.1).

I a I § I 1) I {t I 1)1 I !J . !JI . ((h §I) Irre3vfre!,v' I
0 0 BJ 0 EP E£fD+F+EEB+2 W+!f\E§+f 1

0 B 0 B E!P+~+2Ef3+21f+ ~ 1

0 B 0 rn F+E!P+2~+Ef3+1f 1

0 rn 0 B F+E!P+2~+Ef3+1f 1

0 rn 0 rn ITIIIJ+2F+2E!P+~+§3 1

B 0 B 0 CIIIJ+2EjJ=l+EE+~ 1

B 0 rn 0 EjJ=l+EE+2~+~ 1

rn 0 B 0 EjJ=l+EE+2~+~ 1

rn 0 rn 0 CIIIJ+ 2EjJ=l+ EE +~ 1

EP 0 BJ 0 OTI+BJ+§ 1

0 0 B 0 B EE+~+~ 1

0 B 0 rn EjJ=l+~ 1

0 rn 0 B EjJ=l+~ 1

0 OJ 0 rn rnrn+EjJ=l+EE 1

0 0 0 0 0TI+2BJ+§ 4

B 0 B 0 rn 1

B 0 rn o B 1

rn 0 B 0 B 1

rn 0 rn 0 rn 1

B 0 0 0 0 rn + B 1

0 0 0 0 0 1

rn 0 0 0 0 rn + B 1

0 0 0 o 0 1

BJ 0 0 0 0 0 1

Table 4: Calculations for Computing (2,1) ® (2, 1)

Hence

tp ® tp=EtfD+F+EEE+2 W+r+§3+~+ITIIIJ+3tpIJ+5EEP+6EfD+5§3
+4f+~+3o::m+9fFJ+6EE+9~+3~+50IJ+9tp+5§+4rn+4EJ+2D+0.
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(4) In this example we will compute BJ ® B3. Table 5 gives all nonzero terms of the right hand

side of equation (VIII.1).

I a I {3 I 11 I {3' I r,' I 11' rl' . ((J • (3') Ir~nr!!'n' I
0 0 BJ 0 B3 EHP+WO+EfE+EIf+W+IJ 1

0 B 0 BJ EEfD+F+B3B+3§P+2r+§3+2f+f 1

0 rn 0 BJ EfIID+2EEfD+2F+B3B+3W+r+§3+f 1

B 0 B B a=rn+ EEP+2EF+ 133+If 1

B 0 rn rn a=rn+EEP+2EF+ 133+If 1

rn 0 B B a=rn+EEP+EF+2§3+21f+~ 1

rn 0 rn rn [IIIIH2a=rn +2EEP +EF+133 1

BJ 0 BJ 0 rnrn+2BTI+B3+2EF+~ 1

0 0 B 0 BJ EEP+EF+§3+1f 1

0 rn 0 BJ a=rn+ EEP +EF+133 1

0 0 0 B BTI+B3+2EF+~ 2
0 0 0 rn rnrn+2BTI+B3+EF 2
B 0 B 0 [II] + BJ 1

B 0 rn 0 BJ+ § 1

rn 0 B 0 BJ+ § 1

rn 0 rn 0 [II] + BJ 1

B 0 0 0 B BJ+ § 1

0 0 0 0 rn +B 1

rn 0 0 0 rn [II] + BJ 1

0 0 0 0 rn +B 1

BJ 0 0 0 o 0 1

Table 5: Calculations for Computing (2,1) ® (22 )

Hence

BJ®EE=EEEP+§¥+EfE+§f+W+~+a:rr:o+3ffiTI+3F+2EtE+6W

+3r+2~+3f+r+ITIIIJ+6Efill+7EEP+8EfD+7§3+5r+~+3ITIJJ

+8BTI+5EE+8~+3~+3ITIJ +6BJ+3§+2CO+2B+o. 0
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VIII. 2 The Non-semisimple Case

In this section we Illustrate how to use lemma VI.4.2 along with theorem VIII.I.1 to de-

compose tensor products in Rep(St; F) in non-semisimple cases. First, we introduce some notation.

Notation. Fix t E F and suppose A is a Young diagram and e E F Pn(t) is a primitive idempotent

corresponding to A. Suppose further that e lifts to the idempotent E E J(Pn (T) and E = I:~1 Ei

is an orthogonal decomposition of E into primitive idempotents. Finally, suppose A(i) is the Young

diagram corresponding to Ei for i = 1, ... , m. Let Liftt : Y -> Y denote the &!'-linear map which

sends A f-7 I:~1 ACi).

By proposition VIAl and lemma VI.4.2, Lift t is a bijection for all t E F. Moreover, it is

easy to see

(VIII.2)

We are now ready to give an example illustrating how to decompose tensor products in &!J(St; F)

in non-semisimple cases.

Example VIII.2.10 In this example we will compute BJ ® ffi. By lemma VI.4.2 and example

VI.2.5.2, Lift3 (BJ) =B+BJ and Lift3 (ffi) =BJ+ffi. Hence, by (VIII.2) and example VIII.1.3,

Lift3 (B ® BJ) = EHP+~+§33+§f+r+~+EfIIIl+4ffiD+4F+4Em+9W

+4r+3E§+5f +§+2 ITIIIH10a:m+ 15EEP+l5EfD+1S§=J+l1f+2~

+7ITITJ+23 BTI+14EEl+23If+7~+lOITIJ+19EP+1O§ +8ITJ+9B+4D + 0.

Thus, by lemma VI.4.2 and example VI.2.5.2,

B ® BJ= EHP+~+§33+§f+r+~+EfllTI+4ffiD+4F+4Em+8W

+4r+2E§+sf +f+2 ITIIIH6a:m +7 EEP+1SEfD+15§3 +l1f+2~

+ ITITJ+23 BTI+12 EEl+231f+7~+3ITIH 7EP+10§+8rn+2B+D.

o
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CHAPTER IX

TENSOR IDEALS

In this chapter we use our results on blocks along with an argument of Deligne's to classify

tensor ideals in &P(St; F). More precisely, we will prove the following theorem.

Theorem IX.O.2. If t f/. Z;::o, then Rep(St; F) has no nonzero proper tensor ideals. If t E Z;::o,

then the only nonzero proper tensor ideal in Rep(St; F) is the ideal of negligible morphisms.

IX.! Deligne's Lemma

Suppose n is a nonnegative integer and consider Xid n E FPn(t) (see (111.1)). Xidn is an

idempotent. Indeed, if t E Z;::o then by (I1I.2) j(XidJ : ~0n ---+ ~0n maps

{

V.
Vi f--> ~

, 0

if ij =I- ik for j =I- k,

otherwise.

Thus j(XidJ is an idempotent whenever t E Z;::o. Hence, by theorem 111.1.7.2 and the fact that

j : F Pn(t) ---+ Ends, (~0n) is an algebra homomorphism, Xidn E F Pn(t) is an idempotent whenever

t E Z;::n. Since the condition Xfdn = Xidn in F Pn(t) is polynomial in t, it follows that Xidn E FPn(t)

is an idempotent for all t E F.

Now suppose d is a nonnegative integer and let b denote the object ([d + l],Xidd+') in

&P(Sd; F). The content of the following lemma concerning b is contained in a hand written letter

from P, Deligne. A proof of lemma IX.1.1 will appear in [3].

Lemma IX. I. I. The endofunctor -®b on Rep(Sd; F) factors through the category &P(S-I; F).

In other words, there exist functors Rep(Sd; F) ---+ Rep(S-I; F) and Rep(S-I; F) ---+ Rep(Sd; F)
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making the following diagram commute.

Corollary IX.1.2. Every nonzero tensor ideal in &P(Sd; F) contains a nonzero identity endo-

morphism.

Proof. Suppose 7 is a nonzero tensor ideal in Res(Sd; F). Since tensor ideals are closed under

composition, it suffices to show that 7 contains a morphism which has a nonzero isomorphism as a

direct summand. Let f be a nonzero morphism in 7. Then f I2i idl:, is also a nonzero morphism in

7. By lemma IX.l.1 there exists a functor Q : &P(S-l; F) ----> &P(Sd; F) such that fl2iidl:, = Q(¢)

for some nonzero morphism ¢ in Rep(S_l;F). By corollary VI.4.5, &P(S_l;F) is semisimple.

Hence ¢ (and therefore Q(¢)) is the direct sum of isomorphisms and zero morphisms.

IX.2 Proof of Theorem IX.O.2

o

The following proposition, which holds in any tensor category, will be useful in the proof

theorem IX.O.2.

Proposition IX.2.10 All morphisms in a proper tensor ideal are negligible.

Proof. (compare with [13, proposition 3.1D Suppose 7 is a tensor ideal in a tensor category

T. Suppose further that there exist objects X, Y in T and a morphism f E I(X, Y) which is not

negligible. Then tr(fg) =I afor some 9 : Y ----> X. Thus tr(fg) = evyo(idYl2ifg)ocoevy is a nonzero

morphism in 7(1,1). Since all nonzero elements of EndT(l) = F are invertible, id1 E 7(1,1).

Finally, any morphism h : A ----> B in T is equal to the composition A = A I2i 1 h~l B I2i 1 = B.

Hence 7 must contain all morphisms in T.

Next, we introduce an equivalence relation on Young diagrams.

o

Definition IX.2.2. Consider the weakest equivalence relation on the set of all Young diagrams

such that>' and p are equivalent whenever L(>') is a direct summand of L(p) I2i ([1]' id1) in

&P(Sd; F). When>. and p are in the same equivalence class we write >. ~ p.
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The following proposition consists of all remaining information used in our upcoming proof

of theorem IX.O.2.

Proposition IX.2.3. Assume d is a nonnegative integer and A, f.l are Young diagrams.

(1) idL(>.) is a negligible morphism in &P(Sd; F) if and only if A is not the minimal Young

diagram in a nontrivial ~-equivalence class.

(2) A g, f.l whenever A and f.l are in trivial ~-equivalence classes.

(3) A g, f.l whenever A is a non-minimal element of a nontrivial ~-equivalenceclass and f.l is in a

trivial ~-equivalenceclass.

(4) A g, f.l whenever neither A nor It is a minimal Young diagram in a nontrivial ~-equivalence

class.

(5) If I is a tensor ideal in &P(Sd; F) containing idL(>.) and A g, f.l, then idL(/L) is also in I.

Proof. Part (1) follows from propositions IV.3.8 and VI.2.4. Part (2) follows from propositions

VI.3.2 and VI.4.1 along with equation VIII. 2. Part (4) follows from parts (2) and (3). Part

(5) is easy to check. Hence, it suffices to prove part (3). To do so, let B denote the nontrivial

~-equivalence class containing A. We will proceed by induction on B with respect to -<.

If B is the minimal with respect to -<, then we are done by lemma VI.3.4.1 along with

lemma VI.4.2.2 and equation VIII. 2. Now suppose B is not minimal with respect to -<. Then, by
d

lemma VI.3.4.2 along with lemma VI.4.2.2 and equation VIII.2, A >:::J X where X is a non-minimal

Young diagram in a nontrivial ~-equivalence class B' such that B' -< B. By induction X g, f.l for

some Young diagram It in a trivial ~-equivalenceclass. 0

We are now ready to prove our classification of tensor ideals.

Proof of theorem IX.O.2. If t rf- Z2:o then by corollary VI.4.5, &P(St; F) is semisimple. Hence

Rep(St; F) contains no nonzero negligible morphisms and we are done by proposition IX.2.1.

Now assume d is a nonnegative integer and I is a nonzero proper tensor ideal of Rep(Sd; F).

Suppose A is a Young diagram which is not the minimal Young diagram in a nontrivial L

equivalence class. By propositions IX.2.1 and IX.2.3.1 it suffices to show that idL(>.) is contained

in T By corollary IX.1.2, there exists a nonzero identity morphism in T It follows that I contains
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idL(/-L) for some Young diagram J-L. By proposition IX.2.1, idL(/L) is negligible. Hence, by proposi­

tion IX.2.3.1, f.1 is not the minimal Young diagram in a nontrivial ;:'-equivalence class. Thus by
d

proposition IX.2.3.4, A~ J-L. Finally, by proposition IX.2.3.5, idL ().) is contained in I. D
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trace form 33

equivalence of Young diagrams related to tensor products 73

equivalence of Young diagrams related to J-l>..(t) 46

"stack" partition diagrams 18

concatenation of partition diagrams 19

multiplication on Y related to Littlewood-Richardson coefficients 66

*

v

multiplication on Y related to tensor products in Rep(Sd; F)

multiplication on Y related to tensor products in Rep(St; F)

dual object .

66

66

4

dual map.............................................................. 6
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