
GLUING MANIFOLDS WITH BOUNDARY AND BORDISMS

OF POSITIVE SCALAR CURVATURE METRICS

by

DEMETRE KAZARAS

A DISSERTATION

Presented to the Department of Mathematics
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2017



DISSERTATION APPROVAL PAGE

Student: Demetre Kazaras

Title: Gluing Manifolds with Boundary and Bordisms of Positive Scalar Curvature
Metrics

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Mathematics
by:

Dr. Boris Botvinnik Chair
Dr. Micah Warren Core Member
Dr. Vadim Vologodsky Core Member
Dr. James Isenberg Core Member
Dr. Spencer Chang Institutional Representative

and

Scott L. Pratt Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded June 2017

ii



c© 2017 Demetre Kazaras

iii



DISSERTATION ABSTRACT

Demetre Kazaras

Doctor of Philosophy

Department of Mathematics

June 2017

Title: Gluing Manifolds with Boundary and Bordisms of Positive Scalar Curvature
Metrics

This thesis presents two main results on analytic and topological aspects of scalar

curvature. The first is a gluing theorem for scalar-flat manifolds with vanishing mean

curvature on the boundary. Our methods involve tools from conformal geometry and

perturbation techniques for nonlinear elliptic PDE. The second part studies bordisms

of positive scalar curvature metrics. We present a modification of the Schoen-Yau

minimal hypersurface technique to manifolds with boundary which allows us to prove

a hereditary property for bordisms of positive scalar curvature metrics. The main

technical result is a convergence theorem for stable minimal hypersurfaces with free

boundary in bordisms with long collars which may be of independent interest.

This dissertation includes unpublished co-authored material.
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CHAPTER I

INTRODUCTION

1.1. Background

Let M be a smooth compact oriented n-dimensional manifold. If its boundary

is non-empty, we will denote it by ∂M . Let Riem(M) denote the space of smooth

Riemannian metrics on M . For a metric g ∈ Riem(M), we will study its scalar

curvature Rg : M → R and the boundary’s mean curvature Hg : ∂M → R with

respect to the outward-pointing normal vector. In this manuscript, we will explore

issues related to the impact of the topology of M on various properties of these two

curvature functions.

For 2-dimensional manifolds, this relationship is well-studied. If (Σ, g) is a

Riemannian surface, the Gauss-Bonnet theorem relates Rg and Hg to the Euler

characteristic χ(Σ) of the underlying surface according to the formula

∫
Σ

Rgdµg + 2

∫
∂Σ

Hgdσg = 4πχ(Σ). (1.1)

In this equation, dµg denotes the volume element associated to g and dσg denotes the

induced volume element on the boundary. Let us consider some first examples.

Example 1.1.1. The torus T 2 has Euler characteristic χ(T 2) = 0. Since T 2 has no

boundary, equation (1.1) implies that the average value of the scalar curvature of any

metric must be 0. We can conclude that T 2 does not admit a metric of strictly positive

or strictly negative scalar curvature. Similar logic implies that the sphere S2 is the

only orientable closed surface which admits a metric of positive scalar curvature.
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Example 1.1.2. Consider the surface with boundary Σ = S2 \ {B1, B2} obtained by

deleting two disjoint balls from the 2-sphere and notice that χ(Σ) = 0. Unlike the

case of the torus, there is no obstruction to Σ admitting a metric of positive scalar

curvature since the boundary term in (1.1) may be non-zero. We can find an example

of this phenomenon by considering the restriction of the usual round metric on S2.

However, we can ask whether or not Σ admits a positive scalar curvature metric

with minimal boundary conditions i.e. a metric which satisfies Hg ≡ 0. Clearly,

(1.1) implies this is impossible. In fact, the only compact orientable surface with

non-trivial boundary which admits a positive scalar curvature metric with minimal

boundary conditions is the disk.

The interaction between metrics satisfying certain curvature conditions and the

topology of the underlying manifold is an old and well-studied field in differential

geometry. For conditions on the scalar curvature of a Riemannian manifold, there

is the classical result of Kazdan-Warner which provides some clarity. Consider the

following three classes of closed manifolds:

(A) Those which admit a metric with non-negative and non-vanishing scalar

curvature.

(B) Those which admit a metric with vanishing scalar curvature and are not in class

(A).

(C) Those which are not in classes (A) or (B).

It is worth noting that, in dimensions n ≥ 2, the classes (A), (B), and (C) are all

non-empty. For n ≥ 2, (A) contains Sn, (B) contains the n-torus T n, and (C) contains

hyperbolic manifolds i.e. manifolds admitting metrics of constant negative sectional

curvature. The following fact, called the Trichotomy Theorem, can be thought of
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as describing how flexible the above classes are in terms of their possible scalar

curvatures.

Theorem 1.1.1. [1] Let M be a closed connected manifold of dimension at least 3.

1. If M is in class (A), any function can be realized as the scalar curvature of some

metric.

2. If M is in class (B), f ∈ C∞(M) is the scalar curvature of a metric if and

only if either f(x) < 0 somewhere, or f ≡ 0. Moreover, if the scalar curvature

vanishes identically, the manifold is Ricci-flat.

3. If M is in class (C), a function is the scalar curvature of some metric if and

only if it is negative somewhere.

Example 1.1.3. Since the standard round metric on the 3-sphere lies has positive

scalar curvature, S3 lies in class (A). Theorem 1.1.1 shows that S3 also admits a metric

of negative scalar curvature and a metric with identically vanishing scalar curvature.

Similar logic implies that any manifold of dimension greater than 2 admitting a metric

of positive scalar curvature also admits a metric of vanishing scalar curvature and a

metric of negative scalar curvature.

In light of the above remarks, requiring a manifold to admit a metric of positive

scalar curvature, which we will abbreviate by psc from now on, is the strongest

condition one can impose on the sign of the scalar curvature of a metric. We also see

that requiring a manifold to admit a scalar flat metric is a weaker, yet still non-trivial

condition. Finally, we see that requiring a manifold to admit a metric of negative

scalar curvature is no condition at all, at least in dimensions n ≥ 3.
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1.2. Tools for Studying Scalar Curvature Conditions

In dimensions 2 and 3, there is a complete answer to the question of which closed

manifolds admit a psc metric. In dimensions n ≥ 4, however, it is an open problem

to find smooth-topology invariants which answer this question. There are three main

approaches which we will briefly mention.

(1) If n = 4 and M has a spinc-structure with a non-trivial Seiberg-Witten invariant,

then M cannot admit a psc metric. The Seiberg-Witten invariant is well-defined

only under certain extra assumptions on M such as b+
2 (M) ≥ 2.

(2) If n ≥ 5 and M is simply connected, there is a complete answer: M admits a psc

metric so long as M is not spin with non-zero Â-genus [2].

(3) If, for every metric g on M , there is a 2-sided, stable-minimal hypersurface which

does not admit a psc metric, an argument due to Schoen-Yau [3] implies that M

itself cannot be psc. This is most useful if the dimension of M is less than 8 and

the integral homology group Hn−1(M ;Z) is non-trivial.

Each of the above items represents a topological obstruction to a manifold admitting

a psc metric. They often overlap – for instance, both (2) and (3) can be used to show

that T n has no psc metric for n ≤ 7.

In addition to the above obstructive tools, there are two main constructive

techniques for studying scalar curvature that are relevant to us. The first comes

from conformal geometry and originates from the Yamabe problem. It states that

a manifold admits a psc metric if and only if it admits a metric whose conformal

Laplacian is positive definite. This technique is described later in Section 1.4. The

second constructive tool is a large class of results which could all be described as

gluing constructions. One of the most fundamental gluing constructions is due to

4



Gromov-Lawson [2] which we will now briefly describe. Suppose we are given two n-

dimensional manifolds M0 and M1 each containing an embedded k-dimensional sphere

with trivial normal bundle. One can then remove neighborhoods about the sphere in

M0 and M1 and identify the resulting boundaries to form a new manifold M . If M0

and M1 both admit psc metrics one can ask whether or not M also admits such a

metric. If the embedded sphere has codimension n − k ≥ 3, then one can glue the

psc metrics on M0 and M1 to produce a third one on M . We will discuss a similar

construction in Section 1.4.

1.3. The Structure of This Thesis

This thesis consists of two main parts – composing two separate chapters – each

presenting generalizations of techniques mentioned in Section 1.2. The remainder of

this chapter is devoted to introducing these two parts and stating the main results

contained in each. In Part One, we will present a new gluing result for scalar-flat

manifolds with minimal boundary conditions. This chapter will also serve as an

introduction to the Yamabe problem on manifolds with boundary and other boundary

value PDE we will study in the rest of this thesis. The material in Part One appears

in a preprint written by the current author. Part Two begins by establishing a

novel version of the Schoen-Yau minimal hypersurface technique (see Section 1.2)

which is adapted to manifolds with boundary. We will then introduce the notion of

positive scalar curvature bordism and use our new minimal hypersurface technique

to study them. The material in Part Two appears in a preprint co-authored by

the present author and Boris Botvinnik. The Appendix contains some details on

Geometric Measure Theory and technicalities of representing hypersurfaces as graphs.

The material in the Appendix is primarily used in Part Two.
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1.4. Introduction to Part I

The main result of Part One can be described as a gluing construction for the

Yamabe problem on manifolds with boundary. To present this result in context, let

us first recall some basic background for the Yamabe problem.

Given an n-dimensional manifold M equipped with a Riemannian metric g, the

conformal class of g is the set of metrics given by

[g] = {g̃ ∈ Riem(M) : g̃ = f · g for some function f : M → R+}.

The function f in the above definition is called a conformal factor. Given a conformal

class of Riemannian metrics C = [g] on a closed manifold M , the classical Yamabe

problem asks if there is a metric in C of constant scalar curvature. Such metrics are

critical points of the Einstein-Hilbert functional restricted to the class C

C → R, g 7→
cn
∫
M
Rgdµg

Volg(M)
n−2
n

(1.2)

where cn = n−2
4(n−1)

is a dimensional constant. Critical points of this functional are

called Yamabe metrics.

Finding critical points of 1.2 is equivalent to solving a non-linear partial

differential equation (PDE) called the Yamabe equation. In dimension n = 2,

the problem of finding critical points of the total scalar curvature functional (in

this setting we remove the dimensional constant cn from (1.2)) is equivalent to the

Uniformization problem which has long since been solved. For n ≥ 3, however,

finding a Yamabe metric in a general class C on a closed manifold M was a long-

standing problem for decades, eventually solved by R. Schoen in [4] by showing that
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the infimum of the functional (1.2) is always achieved by some metric in C. When the

solution of this problem was nearly a decade old, J. Escobar introduced and solved

generalizations of this question to compact manifolds M with non-empty boundary.

1.41. The Yamabe Problem on manifolds with boundary

The natural functional to consider in the context of a non-trivial boundary is the

total scalar curvature plus total mean curvature; see [5] for a detailed study of this

functional. In order to make this quantity scale-invariant, it must be renormalized.

In the case of the classical Yamabe problem for closed manifolds, this is accomplished

in equation (1.2) by dividing the total scalar curvature by Volg(M)
n−2
n . For manifolds

with boundary, however, one may choose to renormalize with respect to the volume

of the interior, the boundary, or some combination of the two volumes.

In [6], Escobar studies the following family of functionals

C → R, g 7→
cn
∫
M
Rgdµg + 2cn

∫
∂M

Hgdσg

aVolg(M)
n−2
n + (1− a)Volg(∂M)

n−2
n−1

(1.3)

where a is a parameter in the interval [0, 1]. For any fixed value of a, critical points of

this functional are metrics of constant scalar curvature with constant mean curvature

on the boundary. For a = 1, critical points of (1.3) are scalar-flat and for a = 0

critical points have vanishing mean curvature on the boundary. These extremal cases

are studied, respectively, in [6] and [7, 8] where critical points are found for a large

class of M and C by showing the infemum of 1.2 is achieved. Similar analysis of (1.3)

for general values of a was carried out in [9]. Notice that scalar-flat metrics with

vanishing mean curvature on the boundary are critical points of this functional for

any value of a. Conformal classes which contain such metrics are calledYamabe-null.
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Let us introduce the objects and notations we will require. For a smooth

Riemannian n-dimensional manifold (M, g) with boundary ∂M , we will write Ricg

for its Ricci tensor and Ag for the second fundamental form of the boundary with

respect to the outward unit normal vector ν. The scalar curvature of (M, g) is given

by Rg = trgRicg and its boundary mean curvature is Hg = trgAg. Notice that Hg is

the sum of the principle curvatures at a point p ∈ ∂M , as opposed to their average

(usually denoted by hg) which is used in Escobar’s original work.

As usual, the class of metrics conformal to g will be denoted by [g]. We will often

write the conformal factor in the form f = ψ
4

n−2 . A standard computation shows that

the scalar curvature of g̃ = ψ
4

n−2 g is given by

Rg̃ =
Lgψ

cnψ
n+2
n−2

(1.4)

where Lg is the conformal Laplacian defined by Lg = −∆g+cnRg. The mean curvature

of the boundary with respect to g̃ is given by

Hg̃ =
Bgψ

2cnψ
n
n−2

(1.5)

where the first-order boundary operator Bg is given by Bg = ∂ν + 2cnHg on ∂M.

In [6] Escobar studied and addressed the following question: Does a given

conformal class [g] contain a scalar-flat metric with constant boundary mean

curvature? Inspecting formulas (1.4) and (1.5), this task is equivalent to solving

the following elliptic problem with non-linear boundary conditions


∆gψ = cnRgψ in M

∂νψ = 2cn(λψ
n
n−2 −Hgψ) on ∂M

(1.6)
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where λ is a constant. If ψ is a smooth solution to (1.6), then g̃ = ψ
4

n−2 g has vanishing

scalar curvature and constant boundary mean curvature equal to λ. As mentioned

above, equation (1.6) can be viewed as the Euler-Lagrange equations for the total

scalar curvature plus total mean curvature functional, renormalized with respect to

the volume of the boundary and restricted to the class [g]. In terms of the conformal

factor ψ, this functional takes the form

Q(ψ) =

∫
M

(|∇ψ|2g + cnRgψ
2)dµg + 2cn

∫
∂M

Hgψ
2dσg

(
∫
∂M
|ψ|

2(n−1)
n−2 dσ)

n−2
n−1

where dµg and dσg denote the Riemannian measure on M and ∂M induced by g.

1.42. Connected sum constructions

Let (M1, g1) and (M2, g2) be two n-dimensional closed Riemannian manifolds

with constant scalar curvature. If M1 and M2 share a common embedded k-

dimensional submanifold K with isomorphic normal bundles, one can form the

generalized connected sum along K by deleting small neighborhoods around K and

identifying the two boundaries

M1#KM2 := (M1 \K) t (M2 \K)/ ∼ .

One can ask to what extent the metrics g1 and g2 can be used to produce a third

constant scalar curvature metric on M := M1#KM2 and how the signs of Rg1 and

Rg2 effect the sign of this new scalar curvature. Such gluing constructions have a rich

history in geometric analysis, too extensive to satisfactorily survey here.

For the new construction we will present in Part One, we will adopt a particular

scheme first introduced by Mazzieri in [10] for gluing closed manifolds with non-zero
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constant scalar curvature. His work generalizes results of Joyce [11] on connected sums

of closed manifolds of non-zero constant scalar curvature (see also [12]). Later, in [13],

Mazzieri considers the delicate problem of gluing two closed scalar flat manifolds to

produce another scalar-flat manifold. In general, this process may be obstructed if

one of the two original manifolds is Ricci-flat. In particular, he proves the following.

Theorem 1.4.1. [13] Let M be the generalized connected sum of two closed

Riemannian scalar flat, non Ricci flat manifolds (M1, g1) and (M2, g2) along a

common isometrically embedded submanifold (K, gK) of codimension n−k ≥ 3. Then

there exists a number ε0 > 0 and a family of metrics {ḡε}ε∈(0,ε0) such that ḡε is scalar

flat and ḡε → gi on compact subsets of Mi \ K for i = 1, 2 in the C2-topology as

ε→ 0.

Example 1.4.1. Let us show that it is necessary to assume both of the starting

manifolds (M1, g1) and (M2, g2) are non Ricci-flat. Consider the case where (M1, g1)

and (M2, g2) are both the flat 2-dimensional torus T 2. These are closed, scalar-flat

Riemannian manifolds, but their connected sum is the surface of genus 2 and has

negative Euler characteristic. Hence, by (1.1), M1#M2 cannot admit a metric with

vanishing scalar curvature. The same result also holds for higher dimensional tori.

The main result of Part One is an analog of Theorem 1.4.1 for manifolds with

boundary. Our generalization not only allows for M1 and M2 to have non-trivial

boundary, but we also consider situations where K is embedded into the interiors of

these manifolds, their boundaries, and even when K itself has a non-trivial boundary.

See Figure 1.1.. Each of these three settings requires geometric modifications to the

gluing argument which are quite technical. For this reason, we will first state our

analog informally and provide three separate and precise statements later.
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FIGURE 1.1. The generalized connected sum construction for interior, boundary,
and relative embeddings.

Theorem 1.4.2. Let (M1, g1) and (M2, g2) be two compact n-dimensional manifolds

with boundary, each scalar-flat with minimal boundary conditions. Assume neither

(M1, g1) nor (M2, g2) are Ricci-flat with vanishing second fundamental form of the

boundary. Let M be the generalized connected sum of M1 and M2 along a common

isometrically embedded submanifold (K, gK) of codimension n − k ≥ 3. Then there

exists a number ε0 > 0 and a family of metrics {ḡε}ε∈(0,ε0) such that ḡε is scalar-flat

with minimal boundary conditions and ḡε → gi on compact subsets of Mi \ K for

i = 1, 2 in the C2-topology as ε→ 0.

1.5. Introduction to Part II

In Part Two of this manuscript, we will first present a modification of the classical

Schoen-Yau minimal hypersurface technique mentioned in Section 1.2 to manifolds

with boundary. Next, we present an application of this technique to the study of

11



psc-bordisms. Before we state our new results, let us first recall the details of the

Schoen-Yau technique.

Theorem 1.5.1. [3, Proof of Theorem 1] Let (Y, g) be a compact Riemannian

manifold with Rg > 0, and dimY = n ≥ 3. Let X ⊂ Y be a smoothly embedded

stable minimal hypersurface with trivial normal bundle. Then X admits a metric

h̃ with Rh̃ > 0. Furthermore, the metric h̃ can be chosen to be conformal to the

restriction g|X .

We note that Theorem 1.5.1 is proven by analyzing the conformal Laplacian of

the hypersurface X. It it crucial that X is stable minimal. For arbitrary (Y, g) it is

a non-trivial problem to find a stable minimal hypersurface. For instance, if (Y, g)

has positive Ricci curvature, then it cannot support a stable minimal hypersurfaces.

However, in low dimensions, geometric measure theory can provide a source of stable

minimal hypersurfaces.

Theorem 1.5.2. (See [14, Chapter 8], [15, Theorem 5.4.15]) Let (Y, g) be a compact

orientable Riemannian manifold with 3 ≤ dimY = n ≤ 7. Assume α ∈ Hn−1(Y ;Z)

is a nontrivial element. Then there exists a smoothly embedded hypersurface X ⊂ Y

such that

(i) up to multiplicity, X represents the class α;

(ii) X minimizes volume among all hypersurfaces which represent α up to

multiplicity. In particular, the hypersurface X is stable minimal.

There are several important results based on Theorems 1.5.1 and 1.5.2. In

particular, this gives a geometric proof that the torus T n does not admit a metric of

positive scalar curvature for n ≤ 7; see [3]. This method was also crucial to provide

the first counterexample to the Gromov-Lawson-Rosenberg conjecture; see [16].
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1.51. The Schoen-Yau technique for manifolds with boundary

Let (M, ḡ) be a Riemannian manifold with non-empty boundary ∂M andW ⊂M

be an embedded hypersurface. We say that a hypersurface W is properly embedded

if, in addition, ∂W = ∂M ∩ W . Such a hypersurface W ⊂ M is stable minimal

with free boundary if W is a local minimum of the volume functional among properly

embedded hypersurfaces, see Section 3.11. We establish the following analogue of

Theorem 1.5.1 for manifolds with boundary in Section 3.13.

Theorem 1.5.3. Let (M, ḡ) be a compact Riemannian manifold with non-empty

boundary ∂M , Rḡ > 0, Hḡ ≡ 0, and dimM = n + 1 ≥ 3. Let W ⊂ M be an

embedded stable minimal hypersurface with free boundary and trivial normal bundle.

Then W admits a metric h̃ with Rh̃ > 0 and Hh̃ ≡ 0. Furthermore, the metric h̃

could be chosen to be conformal to the restriction ḡ|W .

The proof of Theorem 1.5.3 is similar to the case of closed manifolds. In

particular, we have to analyze the conformal Laplacian on W with minimal boundary

conditions. This boundary condition works well with the free boundary stability

assumption.

For a compact oriented (n+1)-dimensional manifold M , we consider the relative

integral homology group Hn(M,∂M ;Z). Let ᾱ ∈ Hn(M,∂M ;Z) be a non-trivial

class which we may assume to be represented by a properly embedded hypersurface

W ⊂M . We notice that the boundary ∂W (which may possibly be empty) represents

the class ∂(ᾱ) ∈ Hn−1(∂M ;Z), where ∂ is the connecting homomorphism in the exact

sequence

· · · → Hn(∂M ;Z)→ Hn(M ;Z)→ Hn(M,∂M ;Z)
∂−→ Hn−1(∂M ;Z)→ · · · (1.7)
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There is an analog of Theorem 1.5.2 which relies on a different regularity result, see

Appendix A.3 for more details.

Theorem 1.5.4. (See [17, Theorem 5.2]) Let (M, ḡ) be a compact orientable

Riemannian manifold with non-empty boundary ∂M and 3 ≤ dimM = n + 1 ≤ 7.

Assume ᾱ ∈ Hn(M,∂M ;Z) is a nontrivial element. Then there exists a smooth

properly embedded hypersurface W ⊂M such that

(i) up to multiplicity, W represents the class ᾱ;

(ii) W minimizes volume with respect to ḡ among all hypersurfaces which represent

ᾱ up to multiplicity. In particular, W is stable minimal with free boundary.

1.52. Positive scalar curvature bordism and minimal hypersurfaces

The main result of this paper is an application of Theorems 1.5.3 and 1.5.4 to

provide new obstructions for psc-metrics to be psc-bordant.

Definition 1.5.1. Let (Y0, g0) and (Y1, g1) be closed oriented n-dimensional manifolds

with psc-metrics. Then (Y0, g0) and (Y1, g1) are psc-bordant if there is a compact

oriented (n+ 1)-dimensional manifold (Z, ḡ) such that

• the manifold Z is an oriented bordism between Y0 and Y1, i.e., ∂Z = Y0 t−Y1;

• ḡ is a psc-metric which restricts to gi + dt2 near the boundary Yi ⊂ ∂Z for

i = 0, 1.

We write (Z, ḡ) : (Y0, g0) (Y1, g1) for a psc-bordism as above.

Sometimes we consider bordisms (Z, ḡ) : (Y0, g0) (Y1, g1) as above where the metrics

do not necessarily have positive scalar curvature. However, we always assume that

the metric ḡ restricts to a product metric near the boundary.
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Now we would like to enrich the psc-bordism relation with an extra structure,

namely with a choice of homology classes αi ∈ Hn−1(Yi;Z), i = 0, 1. Recall the

following elementary observation. Let α ∈ Hn−1(Y ;Z), where Y is an oriented closed

n-dimensional manifold. Then the cohomology class Dα ∈ H1(Y ;Z) Poincare-dual

to α can be represented by a smooth map γ : Y → BZ = S1. Furthermore, we can

assume that a given point s0 ∈ S1 is a regular value for γ. It is easy to see that the

inverse image Xγ := γ−1(s0) ⊂ Y is an embedded hypersurface which represents the

homology class α.

If M is an oriented (n + 1)-dimensional manifold with a map γ̄ : M → S1, let

γ : ∂M → S1 be the restriction γ̄|∂M . There is a simple relation between the classes

[γ̄] ∈ H1(M ;Z) and [γ] ∈ H1(∂M ;Z):

Lemma 1.5.5. Let ᾱ ∈ Hn(M,∂M ;Z) and α ∈ Hn−1(∂M ;Z) be Poincare dual to

the classes [γ̄] ∈ H1(M ;Z) and [γ] ∈ H1(∂M ;Z). Then ∂(ᾱ) = α, where

∂ : Hn(M,∂M ;Z)→ Hn−1(∂M ;Z)

is the connecting homomorphism. In particular, if W = γ̄−1(s0) ⊂ M is a smooth

properly embedded hypersurface representing ᾱ, then the boundary ∂W represents the

class α.

Definition 1.5.2. Let (Y0, g0) and (Y1, g1) be closed oriented n-dimensional

Riemannian manifolds with given maps γ0 : Y0 → S1 and γ1 : Y1 → S1. We

say that the triples (Y0, g0, γ0) and (Y1, g1, γ1) are bordant if there exists a bordism

(Z, ḡ) : (Y0, g0) (Y1, g1) and a map γ̄ : Z → S1 such that γ̄|Yi = γi for i = 0, 1.
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If the metrics g0, g1 and ḡ are psc-metrics, we say that the triples (Y0, g0, γ0) and

(Y1, g1, γ1) are psc-bordant. In both cases we use the notation

(Z, ḡ, γ̄) : (Y0, g0, γ0) (Y1, g1, γ1)

for such a bordism.

Theorem 1.5.6. Let (Y0, g0) and (Y1, g1) be closed oriented connected n-dimensional

manifolds with psc-metrics, 3 ≤ n ≤ 7, and maps γ0 : Y0 → S1 and γ1 : Y1 → S1.

Assume that (Y0, g0, γ0) and (Y1, g1, γ1) are psc-bordant.

Then there exists a psc-bordism (Z, ḡ, γ̄) : (Y0, g0, γ0) (Y1, g1, γ1) and a properly

embedded hypersurface W ⊂ Z such that

(i) the hypersurface W represents the class ᾱ ∈ Hn(Z, ∂Z;Z) Poincare-dual to

[γ̄] ∈ H1(Z;Z);

(ii) the hypersurface Xi := ∂W ∩ Yi ⊂ Yi represents the class αi ∈ Hn−1(Yi;Z)

Poincare-dual to [γi] ∈ H1(Yi;Z), i = 0, 1;

(iii) there exists a metric h̄ on W such that Rh̄ > 0 and Hh̄ ≡ 0 along ∂W , and

Rhi > 0, where hi = h̄|Xi, in particular, (W, h̄) : (X0, h0)  (X1, h1) is a

psc-bordism;

(iv) the metric h̄ on W could be chosen to be conformal to the restriction ḡ|W .

Remark 1.5.1. The psc-bordism (Z, ḡ, γ̄) and hypersurface W may be chosen

so that ∂W is arbitrarily Ck-close to a desired homologically volume minimizing

representative of α0 − α1 for any k and i = 0, 1.

Recall a few definitions. We say that a conformal class C of metrics is positive if it

contains a metric with positive scalar curvature. It is equivalent to the condition that
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the Yamabe constant Y (X;C) > 0. Now let W be a bordism with ∂W = X0 tX1,

and C0, C1 be positive conformal classes on X0, X1 respectively. Then we say that the

conformal manifolds (X0, C0) and (X1, C1) are positively conformally cobordant if the

relative Yamabe invariant Y (W,X0 tX1;C0 tC1) > 0, see Section 3.3 for details. In

these terms, the remark following Theorem 1.5.6 can be used to show the following:

Corollary 1.5.1. Let (Y0, g0, γ0) and (Y1, g1, γ1) be as in Theorem 1.5.6. Assume

Xi ⊂ Yi are volume minimizing hypersurfaces representing homology classes Poincarè-

dual to [γi] ∈ H1(Xi;Z), i = 0, 1. Then the conformal manifolds (X0, [g0|X0 ]) and

(X1, [g1|X1 ]) are positively conformally cobordant.

The first step in the proof of Theorem 1.5.6 is to apply Theorem 1.5.4 to ᾱ,

obtaining a minimal representative W . The main difficulty is that ∂W is, in general,

not a minimal representative of ∂ᾱ and so we may not apply Theorem 1.5.1 to conclude

that ∂W even admits a psc-metric. However, in Section 3.2 we prove the Main Lemma,

which states that ∂W becomes closer to minimizing ∂ᾱ as longer collars are attached

to the psc-bordism Z. This is the key step which allows us to produce the bordism

in Theorem 1.5.6.

17



CHAPTER II

PART I: GLUING SCALAR-FLAT MANIFOLDS WITH BOUNDARY

In this chapter, we will more explicitly state and prove Theorem 1.4.2. Let us

describe the main result, first in the case where gluing occurs along a submanifold

embedded away from the boundary which we call an interior embedding. Let (M1, g1)

and (M2, g2) be n-dimensional compact manifolds which are scalar-flat and have

vanishing boundary mean curvatures. Moreover, suppose that each is equipped

with an isometric embedding of a closed k-dimensional manifold (K, gK), denoted

by ι∗ : K → M̊∗ (∗ = 1, 2). Assuming that the isometry ι1 ◦ ι−1
2 extends to

an isomorphism of the normal bundles of K, we may form M := M1#KM2, the

generalized connected sum along K by removing small tubular neighborhoods and

using the bundle isomorphism to identify annular regions (see Figure 1.1.).

In Section 2.1, we begin the construction by producing and studying a 1-

parameter family of metrics gε on M transitioning between g1 and g2 on a

neighborhood of the surgery site. The metrics gε can be thought of as attaching

M1 and M2 by a thin, short K-shaped tube which becomes thinner as ε decreases.

This family serves as a starting point for an iterative construction which produces

a family of metrics conformal to gε, each scalar flat and of constant boundary mean

curvature. More formally, we prove the following.

Theorem 2.0.7. Let (M1, g1), (M2, g2) be compact n-dimensional manifolds with

non-empty boundaries. Assume that

Rg1 ≡ 0, Hg1 ≡ 0, Rg2 ≡ 0, Hg2 ≡ 0, and Volg1(∂M1) = Volg2(∂M2).
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Given isometric embeddings ι1 : K → M̊1, ι2 : K → M̊2 of a closed k-dimensional

manifold (K, gK) of codimension m := n − k ≥ 3 with isomorphic normal bundles,

there exists a family of scalar-flat metrics {g̃ε}ε∈(0,ε0) (for some ε0 > 0) on M =

M1#KM2 with constant boundary mean curvature |Hg̃ε| = O(εm−2). Moreover, for

each ε, g̃ε is conformal to g∗ away from a fixed tubular neighborhood of ι∗(K) in M∗

and g̃ε → g∗ on compact sets of M∗ \ ι∗(K) in the C2 topology as ε→ 0 for ∗ = 1, 2.

The above codimension restriction allows spheres in fibers of the normal bundles

to carry curvature, which will be required in our construction. If neither of the original

manifolds (M1, g1), (M2, g2) are Ricci-flat with vanishing second fundamental form of

the boundary, more can be accomplished – we may alter this construction in an ε-

small non-conformal manner, so that the resulting metrics have vanishing boundary

mean curvature.

Theorem 2.0.8. Assume, in addition to the conditions in Theorem 2.0.7, that both

manifolds (M1, g1) and (M2, g2) are not Ricci-flat with vanishing second fundamental

form of their boundaries. Then there exists a second family of scalar-flat metrics

{ĝε}ε∈(0,ε0) on M = M1#KM2 with vanishing boundary mean curvature. Moreover,

ĝε → g∗ on compact sets of M∗ \ ι∗(K) in the C2 topology as ε→ 0 for ∗ = 1, 2.

As mentioned earlier, we additionally consider gluing along boundaries i.e. when

the embedding of K has a non-trivial intersection with ∂M1 and ∂M2. Carrying out

the construction in this case requires substantial changes and new estimates. It is

convenient to break into two further cases: that in which K is closed and embedded

into the boundaries ∂M∗ and that in which K itself has a boundary ∂K with K̊

and ∂K embedded into M̊∗ and ∂M∗, respectively. We will refer to the former as a

boundary embedding and the latter as a relative embedding.
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For boundary embeddings, we naturally require that the isometry ι2◦ι−1
1 extends

to an isomorphism of the boundary normal bundles N (ι∗(K)) ⊂ T∂M∗. Under this

assumption, there is well-defined boundary connected sum along K, still denoted by

M = M1#KM2.

Theorem 2.0.9. Let (M1, g1), (M2, g2) be as in Theorem 2.0.7 and suppose (K, gK)

is a closed manifold with isometric embeddings ι1 : K → ∂M1, ι2 : K → ∂M2 with

m = n−k ≥ 3. Assume that ι2◦ι−1
1 extends to an isomorphism of the normal bundles

N (ι∗(K)) ⊂ T∂M∗. Then there exists a family of scalar-flat metrics {g̃ε}ε∈(0,ε0) with

constant boundary mean curvature Hg̃ε = O(εm−2). Moreover, the metrics g̃ε are

conformal to g∗ away from a fixed tubular neighborhood of ι∗(K) in M∗ and converge

to the original metrics on compact sets of M∗ \ ι∗(K) in the C2 topology as ε→ 0 for

∗ = 1, 2.

Theorem 2.0.10. Assume, in addition to the conditions in Theorem 2.0.9, that both

manifolds (M1, g1) and (M2, g2) are not Ricci-flat with vanishing second fundamental

form of their boundaries. Then there exists a second family of scalar-flat metrics

{ĝ}ε∈(0,ε0) on M = M1#KM2 with vanishing boundary mean curvature. Moreover,

ĝε → g∗ on compact sets of M∗ \ ι∗(K) in the C2 topology as ε→ 0 for ∗ = 1, 2.

The construction for a relative embedding, however, is a bit more delicate and

we require additional assumptions on the embeddings ι∗.

Definition 2.0.3. We say that the isometric embeddings ι∗ : K →M∗, ∗ = 1, 2, are

surgery-ready if

(i) ι∗ is a proper embedding, i.e., ι∗(K̊) ⊂ M̊∗ and ι∗(∂K) ⊂ ∂M∗;

(ii) the mean curvature HgK vanishes;
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(iii) there is a neighborhood, V ⊂ K, of ∂K such that the embedding ι∗(K) agrees

with the g∗-exponential map on ι∗(∂K) (see Figure 2.4.);

(iv) the map ι2◦ι−1
1 extends to an isomorphism of the normal bundlesN1(K), N2(K)

which restricts to an isomorphism of the boundary normal bundles N1(∂K),

N2(∂K).

Assuming the embeddings ι∗ : K →M∗ are surgery-ready, there is a well-defined

generalized connected sum M = M1#KM2 along K, see Section 2.1 for details.

Precisely, we have the following pair of theorems.

Theorem 2.0.11. Let (M1, g1), (M2, g2) be as in Theorem 2.0.7 and (K, gK) be a

compact manifold with boundary. Assume ι1 : K → M1, ι2 : K → M2 are surgery

ready isometric embeddings as above with m = n− k ≥ 3. Then there exists a family

of scalar-flat metrics {g̃ε}ε∈(0,ε0) on M = M1#KM2 with constant boundary mean

curvature Hg̃ε = O(εm−2). Moreover, the metrics g̃ε are conformal to g∗ away from

a fixed tubular neighborhood of ι∗(K) in M∗ and converge to the original metrics on

compact sets of M∗ \ ι∗(K) in the C2 topology as ε→ 0 for ∗ = 1, 2.

Theorem 2.0.12. Assume, in addition to the conditions in Theorem 2.0.11, that both

manifolds (M1, g1) and (M2, g2) are not Ricci-flat with vanishing second fundamental

form of their boundaries. Then there exists a second family of scalar-flat metrics

{ĝε}ε∈(0,ε0) on M = M1#KM2 with vanishing boundary mean curvature. Moreover,

ĝε → g∗ on compact sets of M∗ \ ι∗(K) in the C2 topology as ε→ 0 for ∗ = 1, 2.

2.1. Construction of gε and Main Technical Results

In this section, we construct the generalized connected sum M = M1#KM2 and

define a family of metrics {gε}ε∈(0, 1
2

) on M . At this point, it is convenient to consider
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the cases of interior, boundary, and relative embeddings separately. The next step is

to give pointwise and integral estimates for the scalar and boundary mean curvatures

of the new metrics {gε}ε∈(0, 1
2

). Finally, we study the family of operators ∆gε , giving

a local a priori estimate for solutions of the ∆gε-Poisson equation.

In Section 2.11, we describe the process for interior embeddings, revisiting the

construction in [10]. In this case, the g∗-exponential map identifies, for some small

r > 0, the distance neighborhood

V r
∗ := {y ∈M∗ : distg∗(y, ι∗(K)) < r}

with the portion of the normal bundle {w ∈ N∗(K) : ||w||g∗ < r}. On V r
∗ , these

Fermi coordinates yield good asymptotic expressions for the metric tensor g∗. These

local expressions are then used to transition from g1 to g2 on annular regions about

ι1(K) and ι2(K), in turn yielding a globally-defined metric gε on the sum, M , for

each ε ∈ (0, 1
2
).

In the case of boundary and relative embeddings, however, there are two sorts

of geodesics which must be used to visit all of the neighborhood V r
∗ from ι∗(K) –

those of g∗ and those of g∗|∂M∗ . This complicates matters and we must provide new

geometric constructions and estimates for a Poisson problem with mixed Dirichlet-

Neuman boundary conditions. This analysis for boundary and relative embeddings

is carried out in sections 2.12 and 2.13, respectively.

2.11. Interior embeddings

Throughout this section we will only consider the case of interior embeddings;

when K is closed and embedded entirely within the interior M̊∗. By uniformly
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rescaling the metrics g1 and g2, we may assume that

expg∗ : {w ∈ N∗(K) : ||w||g∗ < 1} →M∗

is a diffeomorphism onto its image. For a fixed ε ∈ (0, 1
2
), we will give a local

description of a gluing metric gε on the disjoint union

(
M1 \ V ε2

1

)
t
(
M2 \ V ε2

2

)
.

This description will, in fact, immediately yield a globally defined metric gε on the

above disjoint union. We will then construct the connected sum M1#KM2 in such a

way so that the metric gε descends to it.

Let U ⊂ K be a trivializing neighborhood for the normal bundles N1(K) and

N2(K) with local coordinates z = (z1, . . . , zk). Denote the open unit m-ball by

Dm = {x = (x1, . . . , xm) ∈ Rm : |x| < 1}.

The map

F∗ : U ×Dm →M∗, F∗(z, x) := expg∗ι∗(z)(x)

gives Fermi coordinates (z, x) on a neighborhood of ι∗(U) in M∗ for ∗ = 1, 2. Abusing

notations, we write (z, x) for the coordinates on both M1,M2 and suppress the use of

the bundle isomorphism in identifying the trivializations over U . These coordinates

give the following local expression for the metric g∗

g∗ = g
(∗)
ij dz

idzj + g
(∗)
iα dz

idxα + g
(∗)
αβdx

αdxβ
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with the well-known expansions

g
(∗)
ij (z, x) = gKij (z) +O(|x|), g

(∗)
iα (z, x) = O(|x|), g

(∗)
αβ (z, x) = δαβ +O(|x|2).

Setting x = εe−tθ on M1 and x = εetθ on M2, we introduce modified polar coordinates

(z, t, θ) on a neighborhood about ι∗(U) in M∗ for ∗ = 1, 2 where θ = (θ1, . . . , θm−1)

are spherical coordinates for the unit sphere Sm−1 and t ∈ (log ε,− log ε). Notice

that t ranges between the values log ε and − log ε as |x| ranges between ε2 and 1. We

define two functions u
(1)
ε , u

(2)
ε : (log ε,− log ε)→ R by

u(1)
ε (t) := ε

m−2
2 e−

m−2
2
t and u(2)

ε (t) := ε
m−2

2 e
m−2

2
t.

Using the coordinates (z, t, θ), the local expression for g∗ can be reorganized in the

form

g∗ = g
(∗)
ij dz

idzj +
(
u

(∗)
ε

) 4
m−2

(
g

(∗)
tt dt

2 + g
(∗)
λµdθ

λdθµ + g
(∗)
tλ dtdθ

λ
)

+g
(∗)
it dz

idt+ g
(∗)
iλ dz

idθλ.

The asymptotics now take the form

g
(∗)
ij (z, t, θ) = gKij (z) +O(|x|), g

(∗)
λµ (z, t, θ) = g

(θ)
λµ (θ) +O(|x|), g

(∗)
tt (z, t, θ) = 1 +O(|x|2)

g
(∗)
iλ (z, t, θ) = O(|x|2), g

(∗)
it (z, t, θ) = O(|x|2), g

(∗)
iλ (z, t, θ) = O(|x|2)

where g
(θ)
λµ denotes a component of the standard round metric on the unit sphere Sm−1

in the spherical coordinates (θ1, . . . , θm−1).

We are now ready to perform the interpolation between g1 and g2. Fix a cut-off

smooth function ξ : (log ε,− log ε) → [0, 1] which is non-increasing and takes the

value 1 on (log ε,−1] and 0 on [1,− log ε). Similarly, let η : (log ε,− log ε)→ [0, 1] be
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a non-increasing, smooth function which takes the value 1 on (log ε,− log ε− 1] and

the value 0 on (− log ε− 1
2
,− log ε).

ξ η

log ε −1 1 − log ε

FIGURE 2.1. The cut-off functions ξ and η

Define a function uε : (log ε,− log ε)→ R by

uε(t) = η(t)u(1)
ε + η(−t)u(2)

ε .

Finally, for each ε ∈ (0, 1
2
), define a metric gε by

gε(z, t, θ) = (ξg
(1)
ij + (1− ξ)g(2)

ij )dzidzj + u
4

n−2
ε

(
(ξg

(1)
tt + (1− ξ)g(2)

tt )dt2

+(ξg
(1)
λµ + (1− ξ)g(2)

λµ )dθλdθµ + (ξg
(1)
tλ + (1− ξ)g(2)

tλ )dtdθλ]
)

+(ξg
(1)
it + (1− ξ)g(2)

it )dzidt+ (ξg
(1)
iλ + (1− ξ)g(2)

iλ )dzidθλ.

This defines a metric gε on the tubular annuli

V 1
∗ \ V ε2

∗ = {y ∈M∗|ε2 < distg∗(y, ι∗(K)) < 1}

for ∗ = 1, 2. We set gε = g∗ on M∗ \ V 1
∗ . This gives well-defined metric gε on the

disjoint union (M1 \ V ε2

∗ ) t (M2 \ V ε2

∗ ).

Now we are ready to describe the generalized connected sum M = M1#KM2. See

Figure 2.3. for a picture in the boundary embedding case. Let Φ : N1(K)→ N2(K)

be the isomorphism of the normal bundles given in the hypothesis of Theorem 2.0.7.
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For each ε ∈ (0, 1
2
), consider the auxiliary fiber-wise mapping Ψε given by

Ψε : (N1(K) \ {0}) t (N2(K) \ {0})→ (N1(K) \ {0}) t (N2(K) \ {0})

Ψε(z, t, θ) :=


Φ(z,−t, θ) if (z, t, θ) ∈ N1(K)

Φ−1(z,−t, θ) if (z, t, θ) ∈ N2(K).

Notice that, in the Fermi coordinates (z, x), this mapping can be expressed as

Ψε(z, x) = Φε(z,
ε2

|x|2x). We define

Mε :=
(

(M1 \ V ε2

∗ ) t (M2 \ V ε2

∗ )
)
/ ∼ε

where we introduce the equivalence relation ∼ε on the disjoint union

(
V 1

1 \ V ε2
1

)
t
(
V 1

2 \ V ε2
2

)

as follows: If y ∈ V 1
1 \ V ε2

1 , then y ∼ε (F2 ◦Ψε ◦ F−1
1 )(y).

Observing that gε is invariant under Ψε, the metric descends to Mε. We will

continue to denote this metric by gε. Since its diffeomorphism type does not depend

on ε, we will drop the subscript when referring to the generalized connected sum

and simply write M = Mε. This finishes the definition of the family of Riemannian

manifolds (M, gε). The coordinates (z, t, θ) which were originally used on M1 will

continue to be used as coordinates on M . We will require a piece of notation for

certain subsets of the gluing region in M : For each ε > 0 and a, b ≥ 0, we denote by

T ε(a, b) = {(z, t, θ) ∈M : log ε+ a ≤ t ≤ − log ε− b}.
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Before we approach the problem of producing a solution to the system (1.6) on

(M, gε), we will require two geometrical properties of the family {gε}ε∈(0, 1
2

). In the

present case of interior embeddings, these properties are identical to those found in

[10]. Propositions 2.1.1 and 2.1.2 summarize the results of [10, Section 4].

Proposition 2.1.1. (cf. [10, Proposition 2]) There is a constant C > 0 such that

|Rgε| ≤ Cε−1 cosh1−m(t)

on T ε(0, 0) and ∫
M

|Rgε|dµgε = O(εm−2).

Moreover, the constant C depends only on (K, gK), (M1, g1), and (M2, g2).

The other feature of gε we will need is an ε-uniform a priori estimate for solutions

of the ∆gε-Poisson equation on the neck. Indeed, the family of operators {∆gε}ε∈(0,ε0)

is not uniformly elliptic and the estimate is tailor made for the family of metrics gε.

To state it, we will fix a family of weighting functions ψε : M → R satisfying

ψε =


ε cosh(t) on T ε(1, 1)

1 on M \ T ε(0, 0)

and varying smoothly between the values on T ε(0, 0)\T ε(1, 1) ⊂M (see Figure 2.2.).

For a given parameter γ ∈ (0,m− 2) consider the following weighted Banach spaces

C0
γ(M) := {v ∈ C0(M) : ||v||C0

γ(M) := sup
M
|ψγε v| <∞}.
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Note that, for fixed ε, γ, the two norms || · ||C0
γ(M) and supM | · | are equivalent, though

the equivalence is not uniform in ε.

Proposition 2.1.2. (cf. [10, Proposition 4]) Given γ ∈ (0,m−2), there are constants

α1, α2 > 0 and C > 0 satisfying the following statement for all ε ∈ (0, e−max{α1,α2}).

If v, f ∈ C0(T ε(α1, α2)) satisfy ∆gεv = f , then

v ≤ Cψ−γε

(
sup

T ε(α1,α2)

|ψγ+2
ε f |+ sup

∂T ε(α1,α2)

|ψγε v|

)

pointwise on T ε(α1, α2) and

||v||C0
γ(T ε(α1,α2)) ≤ C

(
||f ||C0

γ+2(T ε(α1,α2)) + ||v||C0
γ(∂T ε(α1,α2))

)
.

Moreover, the constants α1, α2, and C depend only on γ, (K, gK), (M1, g1), and

(M2, g2).

log ε − log ε

1
ψε

ε

FIGURE 2.2. The weighting function ψε

2.12. Boundary embeddings

In this section, we consider the setting of Theorems 2.0.9 and 2.0.10 – when

ι∗(K) lies entirely within ∂M∗. As in Section 2.11, we begin by defining the family of

metrics {gε}ε∈(0, 1
2

). After uniformly rescaling the metrics g1 and g2, we may assume
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that both

expg∗|∂M∗ :{w ∈ N ∂
∗ (K) : ||w||g∗ < 1} → ∂M∗

expg∗ :{w ∈ N (∂M∗) : ||w||g∗ < 1} →M∗

are diffeomorphisms onto their images for ∗ = 1, 2.

Let U ⊂ K be a trivializing neighborhood for the bundles N ∂
1 (K) and N ∂

2 (K)

with local coordinates z = (z1, . . . , zk). The map

F ′∗ : U ×Dm−1 → ∂M∗, F ′∗(z, x
′) := exp

g∗|∂M∗
ι∗(z)

(x′)

gives Fermi coordinates (z, x′) for the boundary ∂M∗. We denote the upper unit

m-ball by

Dm
+ := {(x′, xm) ∈ Dm−1 × R : |(x′, xm)| < 1 and xm ≥ 0}.

We identify the last component of Dm
+ with the inward normal N (∂M∗). Now the

map

F∗ : U ×Dm
+ →M∗, F (z, x′, xm) := expg∗F ′∗(z,x′)(x

m)

gives coordinates (z, x′, xm) on a neighborhood of ι∗(U) in M∗ for ∗ = 1, 2. We will

write x = (x′, xm) and |x| :=
√
|x′|2 + |xm|2. In the coordinates (z, x), the metric can

be written as

g∗ = g
(∗)
ij dz

idzj + g
(∗)
kγ dz

kdxγ + g
(∗)
αβdx

αdxβ
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with the following well-known expansions

g
(∗)
ij (z, x) = gKij (z) +O(|x|), g

(∗)
kγ (z, x) = O(|x|), g

(∗)
αβ (z, x) = δαβ +O(|x|).

We again introduce modified polar coordinates (z, t, θ) by setting x = εe−tθ on

M1 and x = εetθ on M2. Here θ = (θ1, . . . , θm−1) are spherical coordinates on the

unit upper hemisphere

Sm−1
+ := {θ ∈ Sm−1 : 0 ≤ θ1 ≤ π

4
}

and t ∈ (log ε,− log ε). Notice that the boundary ∂Sm−1
+ can be identified with the

set {θ ∈ Sm−1 : θ1 = π
4
}. Using the coordinates (z, t, θ), the local expression for g∗

can be reorganized in the form

g∗ = g
(∗)
ij dz

idzj +
(
u

(∗)
ε

) 4
m−2

(
g

(∗)
tt dt

2 + g
(∗)
λµdθ

λdθµ + g
(∗)
tλ dtdθ

λ
)

+g
(∗)
it dz

idt+ g
(∗)
iλ dz

idθλ

where u
(∗)
ε are defined as in Section 2.11. The asymptotics now take the form

g
(∗)
ij (z, t, θ) = gKij (z) +O(|x|), g

(∗)
λµ (z, t, θ) = g

(θ)
λµ (θ) +O(|x|), g

(∗)
tt (z, t, θ) = 1 +O(|x|)

g
(∗)
iλ (z, t, θ) = O(|x|), g

(∗)
it (z, t, θ) = O(|x|), g

(∗)
iλ (z, t, θ) = O(|x|)

where g
(θ)
λµ denotes a component of the standard round metric on the upper unit

hemisphere Sm−1
+ in the spherical coordinates (θ1, . . . , θm−1).
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Using the same cutoff functions ξ and η we introduced in the case of interior

embeddings, define the function uε as in Section 2.11. For each ε ∈ (0, 1
2
), set

gε(z, t, θ) = (ξg
(1)
ij + (1− ξ)g(2)

ij )dzidzj + u
4

n−2
ε

(
(ξg

(1)
tt + (1− ξ)g(2)

tt )dt2

+(ξg
(1)
λµ + (1− ξ)g(2)

λµ )dθλdθµ + (ξg
(1)
tλ + (1− ξ)g(2)

tλ )dtdθλ]
)

+(ξg
(1)
it + (1− ξ)g(2)

it )dzidt+ (ξg
(1)
iλ + (1− ξ)g(2)

iλ )dzidθλ.

This defines a metric gε on the tubular annuli V 1
∗ \V ε2

∗ for ∗ = 1, 2. We set gε = g∗ on

M∗\V 1
∗ . This gives well-defined metric gε on the disjoint union (M1\V ε2

1 )t(M2\V ε2

2 ).

Now we are ready to describe the generalized connected sum M = M1#KM2.

See Figure 2.3. for a visual description. Let Φ : N1(K)→ N2(K) be the isomorphism

of the normal bundles given in the hypothesis of Theorem 2.0.9. For each ε ∈ (0, 1
2
),

consider mapping Ψε given by

Ψε : (N1(K) \ {0}) t (N2(K) \ {0})→ (N1(K) \ {0}) t (N2(K) \ {0})

Ψε(z, t, θ) :=


Φ(z,−t, θ) if (z, t, θ) ∈ N1(K)

Φ−1(z,−t, θ) if (z, t, θ) ∈ N2(K).

We define

M :=
(

(M1 \ V ε2

∗ ) t (M2 \ V ε2

∗ )
)
/ ∼ε

where we introduce equivalence relation ∼ε on the disjoint union

(
V 1

1 \ V ε2
1

)
t
(
V 1

2 \ V ε2
2

)

as follows: If y ∈ V 1
1 \ V ε2

1 , then y ∼ε (F2 ◦Ψε ◦ F−1
1 )(y).
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Observing that gε is invariant under Ψε, the metric descends to M . This finishes

the definition of the family of Riemannian manifolds (M, gε).

M1 M2

M

t = log ε

∂M
T ε(α1, α2)

T ε(0, 0)

t = log ε+ α1
t = 0

t = − log ε− α2

t = − log ε

FIGURE 2.3. The construction of (M, gε) and the neck region T ε(α1, α2)

2.121. The scalar and boundary mean curvatures of gε

The next step is to produce analogs of Propositions 2.1.1 and 2.1.2 for the case

of boundary embeddings. In addition to the estimate for the scalar curvature Rgε , we

will require a similar estimate for the boundary mean curvature Hgε .

Proposition 2.1.3. There is a constant C > 0, independent of ε, such that

|Rgε| ≤ Cε−1 cosh1−m(t), |Hgε | ≤ C cosh2−m(t)
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on T ε(0, 0) and

∫
M

|Rgε|dµgε = O(εm−2),

∫
∂M

|Hgε|dσgε = O(εm−2).

Proof. The estimate on Rgε can be obtained by an argument identical to the one

found in [10] so we will only present the estimate on Hgε .

Let us first restrict our attention to the portion of T ε(0, 0) where log ε+ 1 ≤ t ≤

−1. On this portion of the neck the cut off function ξ takes take the value 1 and gε

take the form

gε(z, x) =g
(1)
ij (z, x)dzidzj + (1 + εm−2|x|2−m)

4
m−2 g

(1)
αβ (z, x)dxαdxβ

+ g
(1)
iγ (z, x)dzidxγ.

We will drop the upper indices and write gij = g
(1)
ij , unless otherwise mentioned.

It will be useful to introduce a new formal parameter φ > 0 and introduce the

following two metrics on the neck T ε(0, 0)

g(z, x, φ) = g
(1)
ij (z, x)dzidzj + (1 + φ)

4
m−2 g

(1)
αβ (z, x)dxαdxβ + g

(1)
iγ (z, x)dzidxγ

g̃(z, φ) = gKij (z)dzidzj + (1 + φ)
4

m−2 δαβdx
αdxβ

If we choose φ = εm−2|x|2−m in the formula for g(z, x, φ), observe that we recover

the gluing metric gε. Furthermore, we obtain the original metric g1 if we take φ = 0

in the formula for g(z, x, φ). Our goal is to compute the boundary mean curvatures

of the product metrics g̃(z, φ) and g̃(z, 0) then compare them to the corresponding

curvatures of g(z, x, φ) and g(z, x, 0) in order to arrive at the desired estimate.
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The Taylor expansions for the metric components now take the form

gij(z, x, φ) = g̃ij(z, φ) +O(|x|), gαβ(z, x, φ) = g̃αβ(z, φ) +O(|x|),

giα(z, x, φ) = O(|x|)

Inspired by [10], it will be convenient to adopt the following variant of big-o notation.

Definition 2.1.1. Let a ∈ N0 and let f be a function of z, x, and φ. We say f belongs

to the class Aa if

|f(z, x, φ)| ≤ C|x|a and |f(z, x, φ)− f(z, x, 0)| ≤ C|x|a|φ|

for some constant C > 0.

Notice that the product of an Aa function with an Ab function lies in the class

Aa+b. For the coefficients of the inverse of gφ, we may write

gij(z, x, φ) = g̃ij(z, φ) +A1, gαβ(z, x, φ) = g̃αβ(z, φ) +A1, giα(z, x, φ) = A1.

Continuing, for any derivative of a component of g(z, x, φ), we have

∂agrs(z, x, φ) = ∂ag̃rs(z, φ) +A0 + |∇φ|A1

where grs(z, x, φ) may be any component of g(z, x, φ) in the coordinates (z, x) and ∂a

may be any derivative with respect to zi (i = 1, . . . , k) or xα (α = 1, . . . ,m). Writing

Γ for a Christoffel symbol of g(z, x, φ) and Γ̃ for the corresponding symbol of g̃(z, x),
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one may use the above computation with the Kozul formula to find

Γ = Γ̃ +A0 + |∇φ|A1.

Now consider the product metric g̃(z, φ). We have Hg̃(z,0) = 0 since the boundary

mean curvature of (Bm
+ (0), δαβ) vanishes. Using the formula for boundary mean

curvature under conformal change,

Hg̃(z,φ) =
1

2cn
(1 + φ)

−m
m−2∂νφ

= −m− 2

2cn
lim
xm→0

(1 + φ)
−m
m−2 εm−2|x|−m(xm)

= 0,

where xm is the last coordinate of x. Next we compute Hg(z,x,φ) in terms of Hg̃(z,φ)

using the above expressions for the Christoffel symbols

Hg(z,x,φ) = grs(z, x, φ)Γlrsglm(z, x, φ)

= (g̃rs(z, φ) +A1)(Γ̃lrs +A0 + |∇φ|A1)(g̃lm(z, φ) +A1)

= Hg̃(z,φ) +A0 + |∇φ|A1.

Taking φ = 0 in the above equation and subtracting from Hg(z,x,φ) yields

|Hg(z,x,φ) −Hg(z,x,0)| ≤ |Hg̃(z,φ) −Hg̃(z,0)|+ C1(|φ|+ |X||∇φ|)

for some positive constant C1 independent of ε, coming from the definition of A0 and

A1. Now setting φ = εm−2|x|2−m and recalling that Hg̃(z,φ) and Hg̃(z,0) both vanish,
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we find

|Hgε −Hg1 | ≤ C1e
(m−2)t

concluding our work for t ∈ (log ε+ 1,−1).

Next, we move on to the portion {log ε ≤ t ≤ log ε+1}. On this part of the neck

ξ is still constant, but the normal conformal factor uε is effected by the cutoff function

η. However, since η and its derivatives are uniformly bounded, it is straightforward

to check that the estimate |Hgε| ≤ C2e
(m−2)t holds here, where C2 is a constant

independent of epsilon.

On the portion of the neck {−1 ≤ t ≤ 0}, η vanishes and now the cutoff function

ξ effects all components of gε. However, we can still write

gε(z, t, θ) =(g
(1)
ij +O(|x|))dzidzj + (1 + εm−2|x|2−m)

4
m−2 (g

(1)
αβ +O(|x|))dxαdxβ

+ (g
(1)
kγ +O(|x|))dzkdxγ.

In general, if two metrics are related by g′ = g +O(|X|), we have Γ′ = Γ +O(1) for

any Christoffel symbol Γ′ of g′ and corresponding symbol Γ of g. Hence the boundary

mean curvatures satisfy |Hg′ −Hg| = O(1). Applying this fact to compare gε and g1,

we find that the mean curvature Hgε is uniformly bounded in ε. Since t is small in

absolute value on this portion of the neck, we may choose C3 > 0, independent of ε,

so that

|Hgε −Hg1| ≤ C3e
(m−2)t,

To summarize our efforts, for t ∈ (log ε, 0] and taking C4 = max(C1, C2, C3), we

have

|Hgε −Hg1| ≤ C4e
(m−2)t.
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Repeating these computations for the portion of the neck {0 ≤ t ≤ − log ε}, one can

show that there is a constant C5, independent of ε, satisfying

|Hgε −Hg2 | ≤ C5e
(2−m)t

for such t. Recalling thatHg∗ ≡ 0 for ∗ = 1, 2, these two inequalities give the pointwise

estimate claimed in Proposition 2.1.3 where the constant is given by C = max(C4, C5).

We conclude the proof by using our pointwise estimate to obtain the L1 estimate

on the boundary mean curvature

∫
∂M

|Hgε|dσgε ≤ C ·
∫
∂M∩T ε(0,0)

cosh2−m(t)dσgε

= C · VolgK (K)ωm−2ε
(m−2)

∫ − log(ε)

log(ε)

e(2−m)t cosh(2−m)(t)dt

≤ C ′ · VolgK (K)ωm−2ε
m−2

where ωm−2 denotes the volume of the unit sphere Sm−2 and C ′ is another positive

constant independent of ε.

2.122. Local Expression for ∆gε and the Barrier Function φδ

Before we can state our analogue of the a priori estimate Proposition 2.1.2 for

the boundary embedding case, we will need to construct a particular barrier function.

First we define a function on the unit upper hemisphere Sm−1
+ in spherical coordinates

β(θ) := (L+ 1)− L cos(θ1) where L > 0 is a constant to be determined. Notice that

β satisfies 
∆θβ(θ) = −(m− 1)L cos(θ1) in Sm−1

+

∂θ1β(θ) = β(θ) on ∂Sm−1
+
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and 1 ≤ β(θ) ≤ L+ 1 in Sm−1
+ . Now, for a fixed parameter δ ∈ (2−m

2
, m−2

2
), we define

the function on the gluing region by

φδ(z, t, θ) :=


coshδ(t)
uε(t)

β(θ) if δ ≤ 0

cosh(δt)
uε(t)

β(θ) if δ ≥ 0

which is a version of the barrier function used in [10], modified for the present case

of boundary embeddings. The following lemma states the key properties of φδ which

we will need for the a priori estimate.

Lemma 2.1.4. Let δ ∈ (2−m
2
, m−2

2
). There exists a choice of parameters α1, α2 > 1,

L > 0, and a constant C > 0 so that

∆gεφδ ≤ −Cu
−4
m−2
ε φδ in T ε(α1, α2)

∂νφδ ≥ 1
2
u
−2
m−2
ε φδ on ∂M ∩ T ε(α1, α2)

is satisfied for all ε ∈ (0, e−max(α1,α2)).

Proof. Our first step is to obtain a useful local expression for the gε-Laplacian. We

will only need to consider the portion of the neck T ε(1, 1) where the cut off function

η is constant and the components of gε take the form

gεij = gKij +O(|x|), gεit = O(|x|2)

gεiλ = O(|x|2), gεtt = u
4

m−2
ε (1 +O(|x|))

gεtλ = u
4

m−2
ε O(|x|), gελµ = u

4
m−2
ε (g

(θ)
λµ +O(|x|))

where g
(θ)
λµ denotes a component of the standard round metric on the upper unit hemi-

sphere Sm−1
+ in spherical coordinates θ = (θ1, . . . , θm−1). As for the volume form, we
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have

√
gε =

√
gK
√
gθu

2m
m−2
ε (1 +O(|x|))

where we write
√
gθ =

√
det
(
g

(θ)
λµ

)
. One can use the above expressions with Cramer’s

rule to compute the following expansions for components of the inverse matrix g−1
ε

gijε = gijK +O(|x|), gitε = O(|x|2)

giλε = O(|x|2), gttε = u
−4
m−2
ε (1 +O(|x|))

gtλε = u
−4
m−2
ε O(|x|), gλµε = u

−4
m−2
ε (gλµ(θ) +O(|x|)).

Recall the following general fact: for a local coordinate system y = (y1, . . . , yn)

of a Riemannian manifold (N, g), the g-Laplacian can be expressed as ∆g· =

1√
g
∂ya(
√
g gab∂yb·). Using this, a straight-forward computation gives us the following

expression

∆gε = u
−4
m−2
ε

(
∂2
t + (m− 2) tanh

(
m− 2

2
t

)
∂t + ∆θ + u

4
m−2
ε ∆K +O(|x|)Φ1

)

where ∆θ is the Laplace operator of the standard round metric on Sm−1, ∆K is the

Laplace operator of (K, gK), and Φ1 is a linear second-order operator with ε-uniformly

bounded coefficients. Now notice that one can conjugate ∆gε by uε to find

∆gε· = u
−m+2
m−2

ε Dε(uε·) (2.1)

where Dε is an operator of the form

Dε = ∂2
t −

(
m− 2

2

)2

+ ∆θ + u
4

m−2
ε ∆K +O(|x|)Φ2.
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In the above, Φ2 is another linear second order operator with ε-uniformly bounded

coefficients.

Let us first consider the case δ ∈ (2−m
2
, 0). One can use the conjugation formula

(2.1) to find

∆gεφδ = u
−m+2
m−2

ε Dε(coshδ(t)β(θ))

= u
−4
m−2
ε φδ

(
δ2 −

(
m− 2

2

)2

+
(m− 1)L cos(θ1)

β(θ)
+O(|x|) + (δ − δ2) cosh−2(t)

)
.

Evidently, we have δ − δ2 ≤ 0. If we choose the positive constant L :=
(m−2

2 )
2
−δ2

m
,

then the inequality

δ2 −
(
m− 2

2

)2

+
(m− 1)L cos(θ1)

β(θ)
≤ δ2 −

(
m− 2

2

)2

+ (m− 1)L

< 0

for all θ. Now, in order to deal with the above O(|x|) term in the expression for

∆gεφ
∂
δ , observe that we can find α1, α2 such that

δ2 −
(
m− 2

2

)2

+
(m− 1)L cos(θ1)

β(θ)
+O(|X|) ≤ 1

2

(
δ2 −

(
m− 2

2

)2

+ (m− 1)L

)

on T ε(α1, α2) for all ε ∈ (0, e−max(α1,α2)). Now setting C := 1
2

(
δ2 −

(
m−2

2

)2
+ (m− 1)L

)
,

∆gεφδ ≤ −Cu
−4
m−2
ε φδ

on T ε(α1, α2). As similar argument for δ ∈ (0, m−2
2

) yields the desired estimate for

∆gεφδ.
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Next, we consider the outward normal derivative of φδ. Recall the following

general fact: if {∂y1 , . . . , ∂yn−1} span the boundary tangent space of a Riemannian

manifold (N, g) and ∂yn points outwards, then the outward normal unit vector to ∂N

with respect to g is given by the formula
gna∂ya√
gnn

. In our present situation, observe

that {∂z1 , . . . , ∂zk , ∂t, ∂θ1 , . . . , ∂θm−2} span the tangent space of ∂M ∩ T ε(1, 1) and ∂θ1

points outwards. Using this formula with the expressions for components of g−1
ε ,

observe that the outward normal derivative on ∂M ∩ T ε(1, 1) with respect to gε can

be written as

∂ν = u
2

m−2
ε (u

− 4
m−2

ε ∂θ1 +O(|X|)Φ3)

where Φ3 is a linear first-order differential operator on ∂M ∩T ε(1, 1) with ε-uniformly

bounded coefficients. Applying this to the barrier function φδ, we have

∂νφδ = φδu
− 2
m−2

ε (1 +O(|x|)).

By choosing yet larger α1, α2, we may assume that the above term satisfies 1+O(|x|) ≥
1
2
. we may assume

∂νφδ ≥
1

2
u
− 2
m−2

ε φδ

on ∂M ∩ T ε(α1, α2) for all ε ∈ (0, e−max(α1,α2)), as claimed.
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2.123. The local a priori estimate

In order to state the a priori estimate, we will decompose the boundary of the

region T ε(α1, α2) into two portions ∂T ε(α1, α2) = ∂1T
ε(α1, α2) ∪ ∂2T

ε(α1, α2) where

∂1T
ε(α1, α2) = {(z, t, θ) ∈ T ε(α1, α2) : t = log ε+ α1 or t = − log ε− α2}

∂2T
ε(α1, α2) = {(z, t, θ) ∈ T ε(α1, α2) : θ1 =

π

2
}.

Note that ∂1T
ε(α1, α2) ⊂M , ∂2T

ε(α1, α2) ⊂ ∂M , and the two meet at a corner.

Proposition 2.1.5. Given γ ∈ (0,m − 2) there are ε-uniform constants α1, α2 > 1

and C > 0 satisfying the following statement for all ε ∈ (0, e−max{α1,α2}). If v, f ∈

C0(T ε(α1, α2)) satisfy ∆gεv = f , then

v ≤ Cψ−γε

(
sup

T ε(α1,α2)

|ψγ+2
ε f |+ sup

∂1T ε(α1,α2)

|ψγε v|+ sup
∂2T ε(α1,α2)

|ψγ+1
ε ∂νv|

)

pointwise on T ε(α1, α2) and

||v||C0
γ(T ε(α1,α2)) ≤ C

(
||f ||C0

γ+2(T ε(α1,α2)) + ||v||C0
γ(∂1T ε(α1,α2)) + ||∂νv||C0

γ+1(∂2T ε(α1,α2))

)
.

Proof. Set δ = γ − m−2
2

and let C ′, α1, α2 be the constants given by Lemma 2.1.4.

Now consider the function

ṽ = aφδ − v

where the constant a > 0 is given by

a := max(2, C ′−1)
(

supT ε(α1,α2) |u
4

m−2
ε φ−1

δ f |+ sup∂1T ε(α1,α2) |φ−1
δ v|

+ sup∂2T ε(α1,α2) |u
2

m−2
ε φ−1

δ ∂νv|
)
.
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Our goal is to show that ṽ ≥ 0. First note that ṽ is superharmonic – applying the

inequalities of Lemma 2.1.4, we have

∆gε ṽ ≤ −aC ′u
−4
m−2
ε φδ − f

≤ −u
−4
m−2
ε φδ sup

T εα

|u
4

m−2
ε φ−1

δ f |u− f

≤ 0.

Also observe that ṽ ≥ 0 on ∂1T
ε(α1, α2). So far, we have found

∆gε ṽ ≤ 0 in T ε(α1, α2)

ṽ ≥ 0 on ∂1T
ε(α1, α2).

The maximum principle for ∆gε tells us the minimum of ṽ occurs somewhere

on the boundary of T ε(α1, α2). Suppose the minimum of ṽ occurs at a point y0 ∈

∂2T
ε(α1, α2). We may then apply the Hopf lemma and the estimate on ∂νφδ from

Lemma 2.1.4 to obtain a contradiction

0 > ∂ν ṽ(y0)

≥ aC ′φδu
−2
m−2
ε − ∂νv(y0)

≥ 0.
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We conclude that the minimum of ṽ must occur on ∂1T
ε(α1, α2). Since ṽ is non-

negative there, ṽ ≥ 0 on all of T ε(α1, α2). In other words,

v ≤ max(2, C ′−1)φδ

(
sup

T ε(α1,α2)

|u
4

m−2
ε φ−1

δ f |+ sup
∂1T ε(α1,α2)

|φ−1
δ v|

+ sup
∂2T ε(α1,α2)

|u
2

m−2
ε φ−1

δ ∂νv|
)

(2.2)

on T ε(α1, α2).

One can repeat the above argument, replacing ṽ with aφδ + v, to arrive at a

similar lower bound on v. Together, we arrive at

sup
T ε(α1,α2)

|φ−1
δ v| ≤ C ′

(
sup

T ε(α1,α2)

|u
4

m−2
ε φ−1

δ f |+ sup
∂1T ε(α1,α2)

|φ−1
δ v|

+ sup
∂2T ε(α1,α2)

|u
2

m−2
ε φ−1

δ ∂νv|
)
, (2.3)

noting that the constant max(2, C ′−1) is independent of ε.

To phrase our estimate in terms of the weighted Banach spaces C0
γ , we need to

compare the functions uε and φδ to the weighting functions ψε. Recall the following

basic fact of the hyperbolic cosine function: For every λ > 0, there is a positive

constant Cλ so that

C−1
λ coshλ(s) ≤ cosh(λs) ≤ Cλ coshλ(s)

holds for all t ∈ R. For instance, recalling that ψε = ε cosh(t) on T ε(α1, α2), there is

a constant Cδ depending only on δ such that

C−1
δ ψ

m−2
2
−δ

ε ≤ εδφ−1
δ ≤ Cδψ

m−2
2
−δ

ε .
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Recalling that γ = m−2
2
− δ, one may replace φ∂δ and uε with appropriate powers of

ψε to reorganize the estimates (2.2) and (2.3) to the one claimed in Proposition 2.1.5

where C = max(2, C ′−1, Cδ).

2.13. The relative embedding

We will now consider the relative embedding case. Now K itself has non-empty

boundary ∂K. Let U → ∂K be a coordinate chart for the boundary of K with

coordinates z′ = (z1, . . . , zk−1) and, letting zk ∈ [0, 1] be the inward normal direction,

form Fermi coordinates z = (z′, zk) on a neighborhood of U in K. We will split the

chart U × [0, 3] into three parts

U− := U × [0, 1], UT := U × [1, 2], U+ := U × [2, 3].

On U+, we give Fermi coordinates given by

∂M∗

M∗

ι∗K

Im(F−∗ ) Im(F T∗ ) Im(F+
∗ )

F∂
∗ (z′, x) F+

∗ (z′, 2, x)2V (z′, x)

−2ν(F ∂∗ (z′, x))

FIGURE 2.4. The coordinate charts F−∗ , F
T
∗ , F

+
∗ and the vector fields V and −ν
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F+
∗ : U+ ×Dm →M∗, (z, x) 7→ expg∗ι∗(z)(x)

which we originally saw in the interior embedding case from Section 2.11. As for U−,

we first have boundary Fermi coordinates (z′, x) for ∂M∗ given by

F ∂
∗ : U × {0} ×Dm →M∗, (z′, x) 7→ exp

g∗|∂M∗
ι∗(z′)

(x).

Now, similar to the boundary embedding construction from Section 2.12, we get

coordinates on M∗ by the mapping

F−∗ : U− ×Dm →M∗, (z′, zk, x) 7→ expg∗
F∂∗ (z′,x)

(−zkν),

where ν is the outward-pointing normal vector to ∂M∗ with respect to g∗. In order

to transition between the two coordinate systems F−∗ and F+
∗ , we first define a vector

V (z′, x) ∈ TF∂∗ (z′,x)M∗ by solving the equation

expg∗
F∂∗ (z′,x)

(2V (z′, x)) = F+
∗ (z′, 2, x).

Now we fix a non-increasing cutoff function α : [0, 3]→ [0, 3] which takes the value 1

on [0, 1] and 0 on [2, 3] and form a transitioning normal vector by

ν(z′, zk, x) := −ν(F ∂
∗ (z′, x))α(zk) + (1− α(zk))V (z′, x).

The coordinate system on UT is given by the mapping

F T
∗ : UT ×Bm →M∗, (z′, zk, x) 7→ expg∗

F∂∗ (z′,x)
(zkν(z′, zk, x)).
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Noting that F+
∗ = F T

∗ when zk = 2, F−∗ = F T
∗ when zk = 1, and z = (z′, zk), we

have well-defined coordinates (z, x) on a neighborhood of the boundary of ι∗(K) in

M∗ (see Figure 2.4.). As for an interior neighborhood of ι∗(K), we have the Fermi

coordinates from Section 2.11 and refer to both coordinate systems with (z, x).

On either interior or boundary charts, we introduce the coordinates (z, t, θ) by

setting x = εe−tθ on M1 and x = εetθ on M2. Here θ = (θ1, . . . , θm−1) are spherical

coordinates on the unit sphere Sm−1 and t ∈ (log ε,− log ε). The metric g∗ can be

expressed in the form

g∗ = g
(∗)
ij dz

idzj +
(
u

(∗)
ε

) 4
m−2

(
g

(∗)
tt dt

2 + g
(∗)
λµdθ

λdθµ + g
(∗)
tλ dtdθ

λ
)

+g
(∗)
it dz

idt+ g
(∗)
iλ dz

idθλ

where u
(∗)
ε is defined as in Section 2.11. The asymptotics now take the form

g
(∗)
ij (z, t, θ) = gKij (z) +O(|x|), g

(∗)
λµ (z, t, θ) = g

(θ)
λµ (θ) +O(|x|), g

(∗)
tt (z, t, θ) = 1 +O(|x|)

g
(∗)
iλ (z, t, θ) = O(|x|), g

(∗)
it (z, t, θ) = O(|x|), g

(∗)
iλ (z, t, θ) = O(|x|)

where g
(θ)
λµ denotes a component of the standard round metric on Sm−1 in the spherical

coordinates (θ1, . . . , θm−1).

Using the same cutoff functions ξ and η we introduced in the case of interior

embeddings, define the function uε as in Section 2.11. For each ε ∈ (0, 1
2
), set

gε(z, t, θ) = (ξg
(1)
ij + (1− ξ)g(2)

ij )dzidzj + u
4

n−2
ε

(
(ξg

(1)
tt + (1− ξ)g(2)

tt )dt2

+(ξg
(1)
λµ + (1− ξ)g(2)

λµ )dθλdθµ + (ξg
(1)
tλ + (1− ξ)g(2)

tλ )dtdθλ]
)

+(ξg
(1)
it + (1− ξ)g(2)

it )dzidt+ (ξg
(1)
iλ + (1− ξ)g(2)

iλ )dzidθλ.
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This defines a metric gε on the tubular annuli V 1
∗ \V ε2

∗ for ∗ = 1, 2. We set gε = g∗ on

M∗\V 1
∗ . This gives well-defined metric gε on the disjoint union (M1\V ε2

∗ )t(M2\V ε2

∗ ).

Let Φ : N1(K)→ N2(K) be the isomorphism of the normal bundles given in the

hypothesis of Theorem 2.0.11. For each ε ∈ (0, 1
2
), consider mapping Ψε given by

Ψε : (N1(K) \ {0}) t (N2(K) \ {0})→ (N1(K) \ {0}) t (N2(K) \ {0})

Ψε(z, t, θ) :=


Φ(z,−t, θ) if (z, t, θ) ∈ N1(K)

Φ−1(z,−t, θ) if (z, t, θ) ∈ N2(K).

For each ε ∈ (0, 1
2
), we construct the generalized connected sum

M =
(

(M1 \ V ε2

1 )t(M2 \ V ε2

2 )
)
/ ∼ε

where we introduce a relation ∼ε on the annuli (V 1
1 \V ε2

1 )t(V 1
2 \V ε2

2 ): If y ∈ V 1
1 \V ε2

1 ,

then y ∼ε (F2 ◦ Ψε ◦ F−1
1 )(y). Observing that gε is invariant under Ψε, the metric

descends to M . This finishes the definition of the family of Riemannian manifolds

(M, gε).

Recalling that we assume the mean curvature HgK vanishes on ∂K, the proof of

the following proposition is very similar to argument in Proposition 2.1.3 and so we

omit it.

Proposition 2.1.6. There is a constant C > 0, independent of ε, such that

|Rgε| ≤ Cε−1 cosh1−m(t), |Hgε | ≤ C cosh2−m(t)
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on T ε(0, 0) and

∫
M

|Rgε|dµgε = O(εm−2),

∫
∂M

|Hgε|dσgε = O(εm−2).

As for the local a priori estimate, we will need to again decompose the boundary

of ∂T ε(α1, α2) into two pieces

∂1T
ε(α1, α2) ={(z, t, θ) ∈ T ε(α1, α2) : t = log ε+ α1 or t = − log ε− α2}

∂2T
ε(α1, α2) ={(z, t, θ) ∈ T ε(α1, α2) : z ∈ ∂K}.

We will use the same notation for ∂1T
ε(α1, α2) and ∂2T

ε(α1, α2) as we did in the case

of boundary embeddings. There is also an analogue of the estimates in Propositions

2.1.2 and 2.1.5 for the present case of relative embeddings. Its proof is very similar

to that of Proposition 2.1.5 and we leave it to the reader.

Proposition 2.1.7. Given γ ∈ (0,m − 2) there are ε-uniform constants α1, α2 > 1

and C > 0 satisfying the following statement for all ε ∈ (0, e−max{α1,α2}). If v, f ∈

C0(T ε(α1, α2)) satisfy ∆gεv = f , then

v ≤ Cψ−γε

(
sup

T ε(α1,α2)

|ψγ+2
ε f |+ sup

∂1T ε(α1,α2)

|ψγε v|+ sup
∂2T ε(α1,α2)

|ψγ+1
ε ∂νv|

)

pointwise on T ε(α1, α2) and

||v||C0
γ(T ε(α1,α2)) ≤ C

(
||f ||C0

γ+2(T ε(α1,α2)) + ||v||C0
γ(∂1T ε(α1,α2)) + ||∂νv||C0

γ+1(∂2T ε(α1,α2))

)
.
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2.2. The Linear Analysis

Now that we have constructed the generalized connected sum (M, gε), we will

turn our attention to equation (1.6). At this point, there is no need to consider the

interior, boundary, and relative embedding cases independently as we did in Section

2.1. Unless otherwise mentioned, from now on we will speak of all three cases

simultaneously.

Our first task will be to study the family of linear operators (∆gε , ∂ν) for ε ∈

(0, 1
2
). Before we continue, now is a good time to make some informal remarks. The

first non-zero Steklov eigenvalue of (∆gε , ∂ν), which we write as λε, is the smallest

number such that the following equation admits a non-constant solution f


∆gεf = 0 on M

∂νf = λεf on ∂M.

In general, λε → 0 as ε→ 0. For this reason, there is no general result which would

provide us a useful ε-uniform C0(M) estimate for our linear problem.

This in mind, we take two measures to combat this degeneracy. In addition

to working in the weighted Banach spaces C0
γ(M) we introduced in Section 2.1, we

will initially solve (with estimates) a modification of the linear problem. Speaking

informally, this auxiliary problem is formulated by projecting the linear problem along

a hand-made model for the first non-constant eigenfunction. This model is a function

denoted by βε which takes the values 1 on M1 \ V ε
1 , −1 on M2 \ V ε

2 , and interpolates

between them on the neck so that
∫
M
βεdµgε = 0 (see Section 2.21).
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Given γ ∈ (0,m − 2) and suitable functions f ∈ C0
γ+2(M), ` ∈ C0

γ(∂M), we will

produce a function u ∈ C0
γ(M) satisfying


∆gεu = f on M

∂νu = `− λβε on ∂M

(2.4)

where λ is a real number depending on f and `. Notice that the functions f, ` must

satisfy ∫
M

fdµgε =

∫
∂M

`dσgε , (2.5)

which is simply Green’s formula applied to u. We will refer to (2.5) as the

orthogonality condition of equation (2.4). As we produce this solution, we also obtain

an ε-uniform C0
γ-norm a priori estimate for u using standard elliptic estimates on

(M∗, g∗) with the local a priori estimate of Propositions 2.1.2, 2.1.5, and 2.1.7.

2.21. The linear problem I

For each α1, α2 > 1, let us fix ρ1 and ρ2, two smooth functions on M1 t M2

satisfying

ρ1 =


1 on M1 \ T ε(α1, 0)

0 on M2 \ T ε(0,−2 log ε− α1 − 1)

ρ2 =


1 on M2 \ T ε(0, α2)

0 on M1 \ T ε(−2 log ε− α2 − 1, 0)

and ∂νρ1 ≡ 0, and ∂νρ2 ≡ 0 on ∂M1 t ∂M2. Understanding that ρ1 and ρ2 descend

to the connected sum M , we then define βε : M → R by βε := ρ1 − ρ2.
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In the case of interior embeddings, where we have not altered the original metrics

on the boundary, it is immediate that

∫
∂M

βεdσgε = 0

since we assume Volg1(∂M1) = Volg2(∂M2). To arrange for βε to have vanishing

average value on the boundary in the case of boundary and relative embeddings

(where dσgε is affected by the gluing), we may have to choose α1 and α2 differently.

However, notice that this can always be achieved by only increasing either α1 or α2.

Since the estimates of Propositions 2.1.2, 2.1.5, and 2.1.7 also hold for these larger

parameters, from now on we will assume that α1 and α2 have been chosen

so that Propositions 2.1.2, 2.1.5, and 2.1.7 apply and
∫
∂M

βεdσgε = 0.

In this section we build an approximate solution to (2.4) which is straight-forward

to estimate, but accumulates many error terms in a gluing process. This construction

is summarized in the following lemma which will subsequently be applied iteratively

to establish a genuine solution to the linear problem (2.4), with estimates.

Lemma 2.2.1. Let γ ∈ (0,m − 2) and B ∈ (0, 1). There is an ε0 > 0 such that

the following statement is satisfied for all ε ∈ (0, ε0): Suppose f ∈ C0
γ+2(M) and

` ∈ C0
γ+1(∂M) satisfy ∫

M

fdµgε =

∫
∂M

`dσε.
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Then there is λ ∈ R, a function u ∈ C0
γ(M), and an error term E ∈ C0

γ+2(M)

satisfying 

∆gεu = f + E in M

∂νu = `− λβε on ∂M∫
M
udµgε = 0

Moreover, u, λ, and E satisfy the following estimates

||u||C0
γ(M) ≤ C(||f ||C0

γ+2(M) + ||`||C0
γ+1(∂M))

|λ| ≤ C(||f ||C0
γ+2(M) + ||`||C0

γ+1(∂M))

||E||C0
γ+2(M) ≤ CεBγ(||f ||C0

γ+2(M) + ||`||C0
γ+1(∂M))

where the constant C > 0 is independent of ε and B.

Proof. First we let ρT := 1− ρ1− ρ2 so that {ρ1, ρT , ρ2} forms a partition of unity on

M . We decompose f and ` with respect to this partition, writing

f1 = fρ1, fT = fρT , f2 = fρ2,

`1 = `ρ1, `T = `ρT , `2 = `ρ2.

Next, we produce an approximate solution on the neck T ε(α1, α2).

Claim 2.2.2. For the parameters γ,B and functions f, ` in Lemma 2.2.1, there is a

unique function ũT ∈ C0
γ(T

ε(α1, α2)) satisfying



∆gεũT = fT in T ε(α1, α2)

ũT = 0 on ∂1T
ε(α1, α2)

∂ν ũT = `T on ∂2T
ε(α1, α2).

(2.6)
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Moreover, there is a constant CT > 0, independent of ε, such that

||ũT ||C0
γ(T ε(α1,α2)) ≤ CT

(
||fT ||C0

γ+2(T ε(α1,α2)) + ||`T ||C0
γ+1(∂2T ε(α1,α2))

)
.

Proof. Notice that T ε(α1, α2) is a compact manifold with corners. This allows us to

apply the regularity theory in [18] – by [18, Theorem 1], there is a unique function

ũT ∈ C2 (T ε(α1, α2) ∪ ∂2T
ε(α1, α2)) ∩ C0(T ε(α1, α2))

solving equation (2.6). We may then apply Proposition 2.1.2, 2.1.5, and 2.1.7 with

the parameter γ from the hypothesis of Lemma 2.2.1 and the function ũT to arrive

at the estimates in the claim.

We extend the domain of ũT to all of M , which we will continue to call ũT ,

by declaring ũT = 0 on M \ T ε(α1, α2). While ũT may not be differentiable on

∂1T
ε(α1, α2), the function uT := ρT ũT is differentiable since the support of ρT is

contained in T ε(α1 + 1, α2 + 1). One can compute

∆gεuT = fT − q1 − q2

∂νuT = `T − q∂1 − q∂2

where q∗ := ∆gε(ρ∗ũT ) and q∂∗ := ∂ν(ρ∗ũT ). The quantities q∗ and q∂∗ will be accounted

for in the next step.

We now turn to the pieces of M which come from the original manifolds M∗. We

define λ according to the formula

λ :=
1∫

∂M
(ρ1 + ρ2)dσgε

(∫
∂M

(`βε + q∂1 − q∂2 )dσgε −
∫
M

(fβε + q1 − q2)dµgε

)
, (2.7)
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which can be interpreted as the projection of f and ` along βε. Observe that, for

∗ = 1, 2, this choice of λ implies

∫
M

(f∗ + q∗)dµgε −
∫
∂M

(`ρ∗ + q∂∗ + (−1)∗λρ∗)dσgε = 0, (2.8)

which we will use later.

Using standard elliptic techniques [19][20], we may consider a distributional

solution ũ∗ to the following system



∆g∗ũ∗ = f∗ + q∗ + b∗δι∗ in M∗

∂ν ũ∗ = `∗ + q∂∗ + (−1)∗λρ∗ on ∂M∗∫
M
ũ∗dµg∗ = 0

where δι∗ denotes the Dirac distribution supported on the submanifold ι∗(K).

Applying Green’s theorem to ũ∗, the constant b∗ is forced to be

b∗ =
1

VolgK (K)

(∫
∂M∗

(`∗ + q∂∗ + (−1)∗λρ∗)dσg∗ −
∫
M∗

(f∗ + q∗)dµg∗

)
.

Claim 2.2.3. There is a constant C ′ > 0 independent of ε such that

|ũ∗| ≤ C ′(||f ||C0(M) + ||`||C0(∂M))

on M∗ \ V 1
∗ ,

|ũ∗| ≤ C ′|x|2−m(||f ||C0
γ+2(M) + ||`||C0

γ+1(∂M))

on V 1
∗ , and

|λ| ≤ C ′(||f ||C0
γ+2(M) + ||`||C0

γ+1
).
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Proof. To estimate ũ∗, it will be useful to consider the decomposition ũ∗ = u∗ + û∗

where 

∆g∗u∗ = f∗ + q∗ + VolgK (K)b∗ in M∗

∂νu∗ = `∗ + q∂∗ + (−1)∗λρ∗ on ∂M∗∫
M∗
u∗dµg∗ = 0

∆g∗û∗ = −VolgK (K)b∗ + b∗δι∗ in M∗

∂ν û∗ = 0 on ∂M∗∫
M∗
û∗dµg∗ = 0

One can think of u∗ and û∗ as the finite and Green’s function parts of ũ∗, respectively.

Near the submanifold ι∗(K), one can use the Green’s function construction presented

in [19] to see that û∗ takes the form

û∗ =
b∗

(m− 2)ωm−1

(
|x|2−m +O(|x|3−m)

)
where ωm−1 is the volume of unit sphere Sm−1 and the term O(|x|3−m) depends only

on the geometry of (M∗, g∗). It follows that there is a constant C0, independent of ε,

such that

|û∗| ≤ C0b∗|x|m−2 (2.9)

on V 1
∗ .
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Next, we consider u∗. By taking p = n and k = 0 in the Lp estimate (A.1) from

Theorem A.1.1 in the Appendix applied to u∗, there is a constant C1 > 0 so that

||u∗||W 2,n(M∗,g∗) ≤C1

(∥∥∥∥f∗ + q∗ −
V olgK (K)

V olg∗(M∗)
b∗

∥∥∥∥
Ln(M∗,g∗)

+ ||`∗ + q∂∗ + (−1)∗λρ∗||W 1,n
∂ (M∗,g∗)

)

for ∗ = 1, 2 where C1 depends only on n and the geometry of (M1, g1), (M2, g2).

Now we may use the Sobolev Embedding Theorem [19, Theorem 2.30] and the Trace

Theorem [20, Theorem B.10] to obtain the following C0 estimate

||u∗||C0(M∗) ≤C2

(∥∥∥∥f∗ + q∗ −
V olgK (K)

V olg∗(M∗)
b∗

∥∥∥∥
C0(M∗)

+ ||`∗ + q∂∗ + (−1)∗λρ∗||C0(∂M∗)

)
(2.10)

where C2 is a constant depending only on n and the geometry of (M1, g1), (M2, g2).

To finish the proof of the claim, it suffices to estimate b∗, q∗, and q∂∗ . It will be

convenient to consider the cases ∗ = 1, 2 separately – in what follows, the statements

will be made for ∗ = 1, though analogous arguments hold for ∗ = 2 and this is left to

the reader. Subtracting (2.8) from b1 shows

b1 =
1

VolgK (K)

(∫
∂2T ε(0,0)\∂2T ε(α1,0)

(`1 + q∂1 − λρ1)

(√
g∂1 −

√
g∂ε√

g∂1

)
dσg1

−
∫
T ε(0,0)\T ε(α1,0)

(f1 + q1)

(√
g1 −

√
gε√

g1

)
dµg1

)
(2.11)

where
√
g∂1 and

√
g∂ε denote the Riemannian measures of g1|∂M1 and gε|M1 ,

respectively. Notice that we only integrate over T ε(0, 0) \ T ε(α1, 0) since it contains
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the supports spt(ρ1) ∩ spt(
√
g1 −

√
gε). We will inspect each term in the expression

(2.11).

On T ε(0, 0)\T ε(α1 +1, 0), notice that
√
g1−
√
gε = O(εm−2) and on this portion

of the boundary of M we have
√
g∂1 −

√
g∂ε = O(εm−2). Using this, we can find a

constant C3 which depends on γ and α1, though not on ε, such that the following

inequalities hold

∫
∂2T ε(0,0)\∂2T ε(α1,0)

∣∣∣∣∣`1

(√
g∂1 −

√
g∂ε√

g∂1

)∣∣∣∣∣ dσg1 ≤ C3ε
m−2||`||C0

γ+1(∂M)∫
T ε(0,0)\T ε(α1,0)

∣∣∣∣f1

(√
g1 −

√
gε√

g1

)∣∣∣∣ dµg1 ≤ C3ε
m−2||f ||C0

γ+2(M).

Next we require pointwise bounds on q1 and q∂1 in order to estimate (2.10). By

definition of q1 and q∂1 , we have the expressions

q1 = (∆gερ1)ũT + 2gε(∇ρ1,∇ũT ) + ρ1(∆gεũT ) and q∂1 = ρ1∂ν ũT

where we have used the fact that ∂νρ1 ≡ 0 on ∂M . It is worthwhile to note that the

support of ∇ρ1 satisfies

spt(∇ρ1) ⊂ {y ∈M1 : e−α1−1 ≤ distg1(y, ι1(K)) ≤ 1},

which we emphasize does not depend on ε. With this and the pointwise estimates of

gε in mind, notice that, for any α1 and α2, we may assume that ρ1 has been chosen

so that both |∆gερ1| and |∇ρ1|2gε are uniformly bounded in ε. Using this observation

and the estimates of Propositions 2.1.2, 2.1.5, and 2.1.7, one can show

||(∆gερ1)ũT ||C0
γ(M) ≤ C4(||f ||C0

γ+2(M) + ||`||C0
γ+1(∂M))
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for some C4 independent of ε. Inspecting (2.6), we can find a constant C5, depending

on γ and α1 but not ε, so that

||ρ1∆gεũT ||C0(M) ≤ C5||f ||C0
γ+2(M)

||ρ1∂ν ũ||C0(∂M) ≤ C5||`||C0
γ+1(∂M).

The final term we need to estimate is gε(∇ρ1,∇ũp). Let us define

Dα1 := T ε(α1, 0) \ T ε(α1 + 1, 0).

Since ũp is a solution to a Poisson equation on the region Dα1 , we may apply the

classical gradient estimate [19], along with the pointwise estimates of gε above, to

find an ε-uniform constant C6 satisfying

|∇ũT |2gε(y) ≤ C6

distg1(y, ∂Dα1)
(||ũT ||C0(Dα1 ) + ||fT ||C0(Dα1 ))

for all y ∈ Dα1 . Using this estimate with the Cauchy-Schwarz inequality, we can

estimate the final term in the expression for q1

|gε(∇ρ1,∇ũT )|(y) ≤ C7(||ũT ||C0
γ(Dα1 ) + ||fT ||C0

γ+2(Dα1 ))

for another ε-uniform constant C7.

Summarizing our work so far, we have found a constant C8, independent of ε,

such that

q1(y) ≤ C8(||f ||C0
γ+2(M) + ||`||C0

γ+1(∂M)) (2.12)

q∂1 (y) ≤ C8(||f ||C0
γ+2(M) + ||`||C0

γ+1(∂M)
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for all y ∈ Dα1 . Notice that C8 depends only on the geometry of (M1, g1), (K, gK),

γ, and α1. Integrating (2.12) yields the desired estimate of λ from the statement of

the lemma. In turn, this estimate on λ, (2.12), and the expression (2.11) gives an

estimate of the form

|b1| ≤ e(m−2)tC9(||f ||C0
γ+2(M) + ||`||C0

γ+1(∂M))

Finally, recalling (2.9) and (2.10), we have arrived at the desired estimate of |ũ1|.

Now we chose cut-off functions which will be used to glue together the functions

ũ1, uT , and ũ2 from the above claims. For the parameter B ∈ (0, 1) from the

hypothesis of Lemma 2.2.1, let φ1, φ2 : M → [0, 1] be smooth functions satisfying

φ1 =


1 on M1 \ T ε(−B log ε, 0)

0 on M2 \ T ε(0,−(2−B) log ε− 1)

φ2 =


1 on M1 \ T ε(0,−B log ε)

0 on M2 \ T ε(−(2−B) log ε− 1, 0)

which are monotone in t and have vanishing normal derivatives ∂νφ∗ ≡ 0. φ1 and

φ2 are not to be confused with the barrier functions φδ used in Section 2.12. Since

ε ∈ (0, e−max(α1,α2)), we may have spt(∇φ∗) ⊂ T ε(α1, α2). Next, we will define the

approximate solution

u := φ1ũ1 + uT + φ2ũ2.

Observe that the above claims, along with the choice of φ∗, imply the estimate on

||u||C0
γ(M) in Lemma 2.2.1. Our final task will be to inspect the error term.
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Since the cut-off functions have vanishing normal derivative, we have

∂νu = `1 + `T + `2 = `

and so we have accumulated no error term on the boundary. Moving on the the

laplacian of u, it is straight-forward to compute (keeping the support of ∇φ∗ in

mind)

∆gεu =∆gε(φ1ũ1) + ∆gεup + ∆gε(φ2ũ2)

=∆gε(φ1)ũ1 + gε(∇φ1,∇ũ1) + φ1fρ1 + φ1q1 + φ1b1δι1(K)

+ ∆gε(φ2)ũ2 + gε(∇φ2,∇ũ2) + φ2fρ2 + φ2q2 + φ2b2δι2(K)

+ fρT − q1 − q2

=f + E1 + E2

where E∗ = (∆gεφ∗)ũ∗ + gε(∇φ∗,∇ũ∗). And so the error in the statement of Lemma

2.2.1 is given by E := E1 + E2.

By symmetry, it suffices to estimate the term E1. Observe that E1 is supported

in the annular region

{(z, t, θ) ∈ T ε(0, 0) : t ∈ [(1−B) log ε, (1−B) log ε+ 1]}.

By a careful choice of φ1 and applying the same gradient estimate used above (see

[19] and [18]), one can find a constant C10, independent of ε, such that

||E1||C0
γ+2(M) ≤ C10ε

Bγ(||f ||C0
γ+2(M) + ||`||C0

γ+1(∂M)).
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This finishes the proof of Lemma 2.2.1

2.22. The linear problem II

Lemma 2.2.1 can be refined by solving (2.4) without accumulating the error term

E.

Lemma 2.2.4. Let γ ∈ (0,m − 2). There exists a choice of parameters α1, α2 > 1,

ε0 > 0, and a constant C > 0 such that the following statement is satisfied for all

ε ∈ (0, ε0). Given f ∈ C0
γ+2(M) and ` ∈ C0

γ+1(∂M) satisfying
∫
M
fdµgε =

∫
∂M

`dσgε,

there is a constant λ = λ(f, `) ∈ R and a function u ∈ C0
γ(M) satisfying



∆gεu = f in M

∂νu = `− λβε on ∂M∫
M
u dµgε = 0

with the estimates

||u||C0
γ(M) ≤ C(||f ||C0

γ+2(M) + ||`||C0
γ+1

)

|λ| ≤ C(||f ||C0
γ+2(M) + ||`||C0

γ+1
)

Moreover, the constant C > 0 depends only on (M1, g1), (M2, g2), (K, gK), γ.

Proof. We will iteratively construct sequences

f (j) ∈ C0
γ+2(M), `(j) ∈ C0

γ+1(∂M), u(j) ∈ C0
γ ,

λ(j) ∈ R, E(j) ∈ C0
γ+2(M)
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and show they converge in appropriate senses. Setting f (0) := f and `(0) := `, Lemma

2.2.1 supplies a triple u(0), λ(0), and E(0) solving


∆gεu

(0) = f (0) + E(0) on M

∂νu
(0) = `(0) − λ(0)βε on ∂M

with estimates. Observe the assumption on f, ` implies that
∫
M
E(0)dµgε = 0.

Next set f (1) := −E(0), `(1) := 0 and again apply Lemma 2.2.1 to obtain u(1), λ(1),

and E(1) satisfying the appropriate equations and estimates. In general, for j ≥ 1,

apply Lemma 2.2.1 with f (j) = −E(j−1), `(j) = 0, and B ∈ (0, 1) (to be chosen later)

to obtain functions u(j), λ(j), and E(j) upon noting that
∫
M
E(j−1)dµgε = 0. In other

words, for each j ≥ 1, we have


∆gεu

(j) = f (j) + E(j) in M

∂νu
(j) = −λ(j)βε on ∂M

along with a constant C > 0, independent of ε and j, such that

||u(j)||C0
γ(M) ≤ C||f (j)||C0

γ+2(M) ≤ C(CεBγ)j−1(||f ||C0
γ+2(M) + ||`||C0

γ+1
)

|λ(j)| ≤ C||f (j)||C0
γ+2(M) ≤ C(CεBγ)j−1(||f ||C0

γ+2(M) + ||`||C0
γ+1

)

||E(j)||C0
γ+2(M) ≤ CεBγ||f (j)||C0

γ+2(M) ≤ (CεBγ)j(||f ||C0
γ+2(M) + ||`||C0

γ+1
)

Now consider the partial sums

v(N) :=
N∑
j=0

u(j), µ(N) :=
N∑
j=0

λ(j)
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and observe that only one error term remains when computing ∆gεv
(N)


∆gεv

(N) = f + E(N) in M

∂νv
(N) = `− µ(N)βε on ∂M.

Now choose B ∈ (0, 1) so that CεBγ for all ε ∈ (0, ε0). One can inspect the above

estimates from Lemma 2.2.1 and conclude that the partial sums v(N), µ(N) form

Cauchy sequences in their respective Banach spaces. In fact, the error term vanishes

as we take j →∞

||E(N)||C0
γ+2(M) ≤ (CεBγ)j(||f ||C0

γ+2(M) + ||`||C0
γ+1

)→ 0.

This gives us a real number λ and a function u ∈ C0
γ such that

E(N) → 0, v(N) → u, µ(N) → λ,

the convergence being in the appropriate space. As for the estimates of u and λ,

observe that

||v(N)||C0
γ+2(M) ≤

N∑
j=0

||u(j)||C0
γ+2(M)

≤
N∑
j=0

C(CεBγ(||f ||C0
γ+2(M) + ||`||C0

γ+1
)

→ C

1− CεBγ
(||f ||C0

γ+2(M) + ||`||C0
γ+1

),

which gives the estimate in Lemma 2.2.4. The desired bound on λ follows from a

similar computation.
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2.3. Returning to the Fixed Point Problem

The aim of the next two sections is to finish the proofs of Theorems 2.0.7, 2.0.9,

and 2.0.9 by producing a function ψ ∈ C∞(M) which solves the equation (1.6) on

(M, gε) for each ε ∈ (0, ε0). Since we are seeking a small conformal change to gε, we

will write the conformal factor as ψ = 1 + u. In terms of u, equation (1.6) becomes


∆gεu = Fε(u) in M

∂νu = F ∂
ε (u) on ∂M

(2.13)

where we have introduced the sort-hand notation

Fε(u) := cnRgε(1 + u)

F ∂
ε (u) := 2cn(Q(1 + u)

n
n−2 −Hgε(1 + u))

for some constant Q. The convergence statements in Theorems 2.0.7, 2.0.9, and 2.0.11

will follow as consequences of our construction of u. Upon producing a solution u to

(2.13), observe that (1+u)
4

n−2 gε will be scalar-flat and have constant boundary mean

curvature Q.

In what follows, for a given γ ∈ (0,m − 2), we will restrict our attention to

u ∈ C0
γ(M) which lie in the ball of radius rε := ε2γ about 0 ∈ C0

γ(M). We will

denote this ball by Bγ
rε . Let us suppose for a moment that we have in hand a solution

u ∈ Bγ
rε to (2.13). Integrating by parts will tell us the mean curvature of the resulting

conformal metric

Q =
1
2

∫
M
Rgε(1 + u)dµgε +

∫
∂M

Hgε(1 + u)dσgε∫
∂M

(1 + u)
n
n−2dσgε

.
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Using the L1 estimates on Rgε and Hgε from Propositions 2.1.1, 2.1.3, and 2.1.6, one

finds |Q| = O(εm−2).

Before we solve (2.13), we will first use our linear analysis to establish a solution

to the following projected version of the problem


∆gεu = Fε(u) in M

∂νu = F ∂
ε (u)− λFε(u)βε on ∂M.

(2.14)

Later, we will arrange for the vanishing of term λFε(u), giving a genuine solution to

(2.13).

To phrase (2.14) as a fixed point problem, we introduce the following maps

Fε : C0
γ(M)→ C0

γ+2(M)× C0
γ+1(∂M), v 7→ (Fε(v), F ∂

ε (v))

Gε : C0
γ+2(M)× C0

γ+1(∂M)→ C0
γ(M), (v, w) 7→ Gε(v, w)

where Gε(v, w) is the solution to the boundary problem


∆gεGε(v, w) = v in M

∂νGε(v, w) = w − λGε(v,w)βε on ∂M,

whose existence is given by Lemma 2.2.4. Evidently, solving (2.14) is equivalent to

finding a fixed point of the composition

Pε : C0
γ(M)→ C0

γ(M), v 7→ Gε(Fε(v), F ∂
ε (v))

for some γ.
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Proposition 2.3.1. Let γ ∈ (0, 1
2
). There is an ε0 > 0 such that Pε(B

γ
rε) ⊂ Bγ

rε for

all ε ∈ (0, ε0).

Proof. As usual, Ck for k = 1, 2, 3 . . . will denote positive constants independent of

ε. For v ∈ Bγ
rε , we may apply Lemma 2.2.4 with the functions Fε(v), F ∂

ε (v)) to get a

solution, Pε(v), of the linear problem along with the estimate

||Pε(v)||C0
γ(M) ≤ C1

(
||Fε(v)||C0

γ+2(M) + ||F ∂
ε (v)||C0

γ+1(∂M)

)
.

It is suffices to dominate ||Fε(v)||C0
γ+2(M) and ||F ∂

ε (v)||C0
γ+1(∂M) by the product of rε

and some positive power of ε.

We begin with the first summand. Applying Propositions 2.1.1, 2.1.3, and 2.1.6

and the definition of ψε,

|Fε(v)ψγ+2
ε | ≤ C2(|Rgε|ψγ+2

ε + |Rgε| · |v|ψγ+2
ε )

≤ C3(εm−2 + rεε
m−2)

≤ C4rεε
m−2−2γ.

For the second summand in the estimate, we have

|F ∂
ε (v)|ψγ+1

ε ≤ C5(ψγ+1
ε |Q|(1 + v)

n
n−2 − ψγ+1

ε |Hgε|(1 + v))

≤ C6ε
m−2rε.

Together, we have shown

||Pε||C0
γ(M) ≤ C7rεε

m−2−2γ,
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as claimed.

It is a good time to observe a fact we will use later – the proofs in this section

hold if |Q| was only O(ε
m−2

2 ), so long as we restrict ourselves to γ ∈ (0, 1
4
). Now we

are ready to solve (2.14).

Proposition 2.3.2. Let γ ∈ (0, 1
2
). There exists an ε0 > 0 so that, for each ε ∈

(0, ε0), (2.14) has a smooth solution u ∈ Bγ
rε.

Proof. We will proceed by showing that the mapping Pε is contractive on the ball

Bγ
rε . In other words, we will show that there is a ε0 > 0 so that

||Pε(u)− Pε(v)||C0
γ(M) ≤ K||u− v||C0

γ(M)

for all ε ∈ (0, ε0) and u, v ∈ Bγ
rε . We begin by applying Lemma 2.2.4t

||Pε(u)− Pε(v)||C0
γ(M) ≤ C

(
||Fε(u)− Fε(v)||C0

γ+2(M) + ||F ∂
ε (u)− F ∂

ε (v)||C0
γ+1(∂M)

)
,

where C > 0 is independent of ε. By Proposition 2.3.1, all involved terms lie in Bγ
rε

for small ε.

For the first summand, keeping in mind the pointwise estimate on |Rgε| from

Propositions 2.1.1, 2.1.3, and 2.1.6, and the restriction on m, we find

ψγ+2
ε |Fε(u)− Fε(v)| ≤ C8ψ

γ+2
ε |Rgε(u− v)|

≤ C9ε cosh3−m(t)||u− v||C0
γ(M)

≤ C9ε||u− v||C0
γ(M).
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We can perform a similar estimate for the boundary term

ψγ+1
ε |F ∂

ε (u)− F ∂
ε (v)| = C10ε cosh(t)ψγε |Q((1 + u)

n
n−2 − (1 + v)

n
n−2 )−Hgε(u− v)|

≤ C11|Q| · ||u− v||C0
γ(∂M) + C12ε cosh(t)|Hgε | · ||u− v||C0

γ(∂M)

≤ ||u− v||C0
γ
(C13ε

m−2 + C14ε).

Since all the constants Ci are independent of ε, we can find an ε0 > 0 which makes

Pε a contractive mapping on Bγ
rε for ε < ε0.

The Banach fixed point theorem applied to Pε on Bγ
rε gives a fixed point of Pε,

which we call uε. Evidently, uε is a solution to equation (2.14), concluding the proof

of Proposition 2.3.2.

2.4. Vanishing of λFε(v)

In the last section we found, for all sufficiently small ε, a solution uε ∈ C0
γ(M) to


∆gεuε = Fε(uε) in M

∂νuε = F ∂
ε (uε)− λFε(uε)βε on ∂M.

The corresponding conformal metric (1 + uε)
4

n−2 gε will be scalar flat, but will have

boundary mean curvature equal to

Q− 1

2cn
(1 + u)

−n
n−2λFε(uε)βε

which is non-constant. Next, we will show that ε-small conformal changes can be made

to the original metrics g1 and g2 before applying the gluing procedure such that, after
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applying the above construction and fixed point argument, the new projection term

λF̃ε(uε) will vanish.

Fix w̃1 and w̃2, two non-zero smooth functions supported on the interiors of

M1 \ V ε
1 and M2 \ V ε

2 , respectively. For real parameters a∗ (∗ = 1, 2) which will be

chosen later, we consider the functions

w∗ := a∗ε
m−2

2 w̃∗

and use them to deform the original metrics

g̃∗ := (1 + w∗)
4

n−2 g∗.

Replacing g1 and g2 with g̃1 and g̃2 in the geometric gluing construction presented in

Section 2.1, we produce a new family of metrics g̃ε on the generalized connected sum

M . Of course, g̃ε only differs from gε on the supports of w1 and w2. Keeping in mind

that supM |w∗| = O(ε
n−2

2 ), all of the analysis we have done on the family of linear

operators (∆gε , ∂ν) also holds for the new family (∆g̃ε , ∂ν). Namely, the proof of the

a priori estimate in Lemma (2.2.4) also works for the metrics g̃ε. As usual, we will

assume that α1 and α2 have be chosen so that
∫
∂M

βεdσg̃ε = 0.

Next, we need to gather information about the new scalar curvature and

boundary mean curvature. Notice that the support of Rg̃ε has three disjoint

components – T ε(0, 0) and the supports of w∗. Since Rg̃ε agrees with Rgε on T ε(0, 0),

we still have the estimate of Propositions 2.1.1, 2.1.3, and 2.1.6 there. On the support

of w∗, the formula for scalar curvature under conformal change reads

Rg̃ε = Rg̃∗ = − 1

cn
(1 + w∗)

−n+2
n−2 ∆g∗w∗
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and we conclude that Rg̃ε = O(ε
m−2

2 ) on the supports of w∗. Hence, there is a constant

C > 0 such that

|Rg̃ε | ≤ Cε
m−2

2 ψ1−m
ε (t).

As for the mean curvature of the boundary, Hg̃ε does not differ from Hgε since w∗ is

supported away from the boundary.

Now, upon restricting our choice of γ to the interval (0, 1
4
), we may apply the

fixed point argument from Section 2.3 to produce a solution ũε ∈ Bγ
rε ⊂ C

0
γ(M) to


∆g̃εũε = F̃ε(ũε) in M

∂ν ũε = F̃ ∂
ε (ũε)− λF̃ε(ũε)βε on ∂M

where F̃ε(u) := cnRg̃ε(1 + u) and F̃ ∂
ε (u) := 2cn(Q̃(1 + u)

n
n−2 −Hg̃ε(1 + u)). Once this

is achieved, the conformal metric (1 + ũε)
4

n−2 g̃ε will be scalar flat and have boundary

mean curvature equal to

Q̃− 1

2cn
(1 + ũε)

− n
n−2λF̃ε(ũε)βε

where the constant Q̃ can be computed by integrating by parts

Q̃ =
1
2

∫
M
Rg̃ε(1 + ũε)dµg̃ε +

∫
∂M

Hg̃ε(1 + ũε)dσg̃ε∫
∂M

(1 + ũε)
n
n−2dσg̃ε

.

As before, the projection term λF̃ε(ṽε) may be non-zero, though it now (continuously)

depends on the parameters a∗. We will exploit this to establish the following

proposition, concluding the proof of Theorems 2.0.7, 2.0.9, and 2.0.11. The following
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properties of the metrics g̃∗ will be useful in our computations later this section

∆g̃∗· = −
1

2cn
(1 + w∗)

−n+2
n−2 g∗(∇w∗,∇·) + (1 + w∗)

−4
n−2 ∆g∗·

dµg̃ε = (1 + w∗)
2n
n−2dµgε .

Proposition 2.4.1. For small ε, there is a choice of the real parameters a1 and a2

such that the resulting rough projection λF̃ε(ũε) vanishes.

Proof. It suffices to show that the sign of λF̃ε(ũε) can be changed by manipulating a1

and a2. From the proof of Lemma 2.2.4, we may regard λF̃ε(uε) as the following sum

λF̃ε(uε) =
∞∑
j=0

λ
(j)

F̃ε(uε)

where each term has estimate

|λ(j)

F̃ε(ṽε)
| ≤ C(CεBγ)j(||F̃ε(ũε)||C0

γ(M) + ||F̃ ∂
ε (ũε)||C0

γ+1(∂M)),

where C > 0 is uniform in ε. From this expression we see that the sign of λF̃ε(uε), for

small ε and an appropriate choice of B, is determined by the first term in the sum.

We will need to recall the formula for λ(0) from the proof of Lemma 2.2.4

λ(0) :=
1∫

∂M
(ρ1 + ρ2)dσg̃ε

(∫
M

F̃ε(ũε)βεdµg̃ε −
∫
∂M

F̃ ∂
ε (ũε)βεdσg̃ε+

+

∫
M

(∆g̃ε(ρ1ũT )−∆g̃ε(ρ2ũT ))dµg̃ε −
∫
∂M

(∂ν̃(ρ1ũT )− ∂ν̃(ρ2ũT ))dσg̃ε

)

72



where ũT is the solution to



∆g̃εũT = F̃ε(ũε)ρT on T ε(α1, α2)

ũT ≡ 0 on ∂1T
ε(α1, α2)

∂ν ũT = F̃ ∂
ε (ũε)ρT on ∂2T

ε(α1, α2)

which originally appeared in the first step in the proof of Lemma 2.2.4. Next, we will

inspect each of the terms in this expression for λ(0).

Unpacking the notations in the first term, we have

∫
M

F̃ε(ṽε)βεdµg̃ε = cn

∫
M

(Rg̃1 +Rgε +Rg̃2)(1 + ũε)(ρ1 − ρ2)dµg̃ε .

Recalling that ũε lies in Bγ
rε ⊂ C

0
γ(M) and applying the pointwise estimate of Rgε , it

is straightforward to show

∫
M

Rgε(1 + ũε)ρ∗dµg̃ε = −4mVol(K)ωm−1 +O(e−α∗εm−2)

and ∫
M

Rg̃∗ρ∗dµg̃ε =
1

cn

∫
M∗

|∇w∗|2g∗dµg∗

where ωm−1 denotes the volume of the unit (m− 1)-sphere.

After integrating by parts, the remaining piece of the first term can be written

as ∫
M

Rg̃∗ũεdµg̃ε =

∫
M∗

w∗∆g∗ũεdµg∗ +

∫
∂M∗

w∗∂ν ũεdσg∗ +O(εm−2+γ).

73



Now we Taylor expand and rearrange the above expression for ∆g̃∗ and ∂ν̃

∆g∗ũε =

(
1 +

4

n− 2
w∗ +O(εm−2)

)
∆g̃∗ũε − 2g∗(∇w∗,∇ũε)+

+ 2w∗g∗(∇w∗,∇ũε) +O(εm−2+2γ)

∂ν ũε =

(
1 +

2

n− 2
w∗ +O(εm−2)

)
∂ν̃ ũε

and multiply by w∗ to find

∫
M

Rg̃∗ũεdµg̃ε =

∫
M∗

w∗F̃ε(ũε)dµg∗ +

∫
∂M

w∗(F̃
∂
ε (ũε)− λF̃ε(ũε)βε)dσgε +O(εm−2+γ)

=

∫
M

|∇w∗|2g∗dµg∗ − λF̃ε(ũε)O(ε
m−2

2 ) +O(εm−2+γ)

where we have used the formula for Rg̃ε in the expression for F̃ε(ũε) and integrated

by parts. To summarize our efforts so far, we have found

∫
M

F̃ε(ṽε)βεdµg̃ε = (cn − 1)

(∫
M1

|∇w1|2g1
dµg1 −

∫
M2

|∇w2|2g2
dµg2

)
− λF̃ε(ũε)O(ε

m−2
2 )+

+O(e−max(α1,α2)εm−2). (2.15)

Moving along to the next term in the expression for λ(0), we have

∫
∂M

F̃ ∂
ε (ũε)βεdσg̃ε = 2cn

∫
∂M

(Q̃(1 + ũε)
n
n−2 −Hg̃ε(1 + ũε))(ρ1 − ρ2)dσg̃ε .

Now since Hg̃ε ≡ Hgε , we have

∫
∂M

Hg̃ε(1 + ũε)ρ∗dσg̃ε = O(e−α∗εm−2)
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which can be seen by computing Hgε on this portion of the neck, noting that the cut

off functions ξ and η both take the value of 1 on the support of ρ1.

Now is a good time to comment on the convergence statements in the main

theorems. As we have mentioned already, we may apply the pointwise estimate of

Rg̃ε and the C0
γ-norm of ṽε to find that Q̃ satisfies the estimate

|Q̃| = O(ε
m−2

2 ).

Evidently, F̃ε(ũε) = O(ε
m−2

2 ) on the support of w∗ and λF̃ε(ũε) = O(ε(m−2)/2). Using

the computations made in this section, one can inspect the formula for Q̃ and improve

our estimate to |Q̃| = O(εm−2), as claimed in Theorems 2.0.7. 2.0.9. and 2.0.11. This

can be used to estimate the remaining term in the expression for
∫
∂M

F̃ε(ũε)βεdσg̃ε

and conclude ∫
∂M

F̃ ∂
ε (ṽε)βεdσg̃ε = O(e−max(α1,α2)εm−2). (2.16)

The final two integrals in the expression for λ(0) will be treated together.

Integrating by parts, we have

∫
M

∆gε(ρ∗ũT )dµg̃ε −
∫
∂M

∂ν(ρ∗ũT )dσg̃ε =

∫
M

(ρ∗∆gεũT + 2(gε(∇ρ∗,∇ũT ) + ũT∆gερ∗)−

ũT∆gερ∗)dµgε −
∫
∂M

ρ∗∂ν ũTdσgε

=

∫
M

ρ∗ρT F̃ε(ũε)− ũT∆gερ∗dµgε−∫
∂M

ρ∗ρT F̃
∂
ε (ũε)dσgε
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where we have used the fact that ∂νρ∗ ≡ 0. In order to proceed, we will need the

pointwise estimate of Propositions 2.1.2, 2.1.5, and 2.1.7:

ũT ≤ Cψγε

(
||F̃ε(ũε)||C0

γ+2(T ε(α1,α2)) + ||F̃ ∂
ε (ũε)||C0

γ+1(∂2T ε(α1,α2))

)
≤ C ′εm−2ψγε

for C,C ′ > 0 independent of ε. Keeping in mind that ρ∗ρT and ∆g̃ε(ρ∗) vanish outside

of T ε(α1,−2 log ε − α1 − 1) if ∗ = 1 and T ε(−2 log ε − α2 − 1, α2) if ∗ = 2, one can

use the pointwise estimate on ũT to find

∫
M

∆gε(ρ∗ũT )dµg̃ε −
∫
∂M

∂ν(ρ∗ũT )dσg̃ε = O(e−α∗εm−2).

Combining the above estimates, we have

λ(0) =(cn − 1)

(∫
M1

|∇w1|2g1
dµg1 −

∫
M2

|∇w2|2g2
dµg2

)
−

λ(0)O(ε
m−2

2 ) +O(e−max(α1,α2)εm−2).

Since ||∇w∗||L2 = a∗O(εm−2), we can choose α1, α2 so that the term ||∇w1||L2 −

||∇w2||L2 dominates the rest of the expression for λ(0). Evidently, one can vary the

parameters a1 and a2 so that the sign of λ(0) – and hence the sign of λF̃ε(ṽε) – changes.

As we previously noted, λF̃ε(ṽε) depends continuously on a1 and a2, so we conclude that

there are suitable values of a1 and a2 for which the projection term λF̃ε(ṽε) vanishes.

This finishes the proof of Theorems 2.0.7, 2.0.9, and 2.0.11.
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2.5. The Non-critical Case

So far, we have produced a family of metrics (1 + ũε)
4

n−2 g̃ε on M , each scalar-flat

and having constant boundary mean curvature of size O(εm−2). In this section we will

prove Theorems 2.0.8, 2.0.10, and 2.0.12, where we arrange for this mean curvature

to vanish entirely. To achieve this, we will need yet another alteration to the above

construction. From now on, we assume that neither of the original manifolds are

Ricci-flat with totally geodesic boundary , i.e. we assume that

max(sup
M∗

|ricg∗ |, sup
∂M∗

|Ag∗ |) > 0

for both ∗ = 1 and 2.

Let S∗ be a positive-definite symmetric 2-tensor with

spt(S∗) ⊂
(
(M∗ \ ι1∗) ∩ (spt(Ricg∗) ∪ spt(Ag∗))

)
.

For a real parameter r̃∗, set r∗ := r̃∗ε
m−2 and consider the following variation of gε

g̃ε := gε + r1S1 + r2S2, g̃∗ := g∗ + r∗S∗.

We apply the constructions of the previous two section to g̃ε in order to produce

a family of solutions, v = vε(r1, r2) ∈ Bγ
rε to


∆g̃εv = F̃ε(v, r1, r2) in M

∂νv = F̃ ∂
ε (v, r1, r2)− λF̃ε(v,r1,r2)βε on ∂M
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where

F̃ε(v, r1, r2) := cnRg̃ε(1 + v)

is defined as usual, but

F̃ ∂
ε (v, r1, r2) := −2cnHg̃ε(1 + v)

has been altered so that, supposing we can arrange for λF̃ε(v,r1,r2) = 0, the boundary

mean curvature of (1 + v)
4

n−2 g̃ε is exactly 0. As before, we will assume that∫
∂M

βεdσg̃ε = 0, which can be achieved for any r1 and r2 by an appropriate choice of

α1 and α2.

Notice that our choice of r∗ ensures Rg̃ε satisfies the same pointwise bounds as

in the previous sections. This will allow us to apply the results of Section 2.3 with

trivial modifications once we verify

∫
M

F̃ε(v, r1, r2)dµg̃ε =

∫
∂M

F̃ ∂
ε (v, r1, r2)dσg̃ε . (2.17)

The second and final step is to arrange for the vanishing of λF̃ε(v,r1,r2).

Let us take a moment to explain why simultaneous vanishing of the Ricci tensor

and second fundamental form can potentially be an obstruction to achieving the

conclusions of Theorems 2.0.8, 2.0.10, and 2.0.12. Briefly, (M, gε) may be in the

same conformal class as an Einstein metric with Neumann boundary conditions in

the sense of [21] and the total scalar curvature plus mean curvature functional Q(gε)

may stable under even non-conformal perturbations. For the metric g̃ε, we can follow
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the calculations of [5] to compute

Q(g̃ε) = Q(gε) + 2cn

2∑
∗=1

r∗

(∫
M

g∗(S∗,Ricg∗)dµg∗ −
∫
∂M

g∗(S∗, Ag∗)dσg∗

)
+

O(r2
1) +O(r2

2)

= Q(gε) + 2cn

2∑
∗=1

r∗

(∫
M

K∗dµg∗ −
∫
∂M

K∂
∗ dσg∗

)
+O(ε2(m−2))

where we have introduced the notation K∗ := g∗(S∗,Ricg∗) and K∂
∗ := g∗(S∗, Ag∗).

From this formula, we can see that if both Ricg∗ and Ag∗ vanish identically for

∗ = 1 and 2, the first variation of Q(gε) vanishes for all choices of S∗ and we will

be unable to correct the term F (gε) with a small (relative to ε) perturbation of gε

away from the gluing locus to achieve the desired vanishing mean curvature. This

reasoning heuristically explains why our construction may fail to produce scalar-flat

metrics with vanishing boundary mean curvature on M without assumptions on the

Ricci tensor and second fundamental form.

2.51. Achieving the orthogonality condition

In this subsection, we will give a description of the values r1 and r2 for which

(2.17) is satisfied.

Proposition 6. For small ε and v ∈ Bγ
rε , there is a smooth function fv defined on a

neighborhood U of εm−2

2
such that

∫
M

F̃ε(v, r1, fv(r1))dµg̃ε =

∫
∂M

F̃ ∂
ε (v, r1, fv(r1))dσg̃ε

for all r1 ∈ U .
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Proof. For any v ∈ Bγ
rε ⊂ C

0
γ(M), we introduce the function

Gv,ε(r1, r2) :=
1

cn

(∫
M

F̃ε(v, r1, r2)dµg̃ε −
∫
∂M

F̃ ∂
ε (v, r1, r2)dσg̃ε

)
=

∫
M

Rgεdµgε + 2

∫
∂M

Hgεdσgε +
∑
∗=1,2

r∗

(∫
M1

K∗dµg∗ −
∫
∂M∗

K∂
∗ dσg∗

)
+ Lv(r1, r2) +Qv(r1, r2)

where we have introduced the notation

Lv(r1, r2) :=

∫
M

vRgεdµgε +
∑
∗=1,2

r∗

(∫
M∗

vK∗dµg∗ −
∫
∂M∗

vK∂
∗ dσg∗

)
− 2

∫
∂M∗

vHgεdσgε

Qv(r1, r2) :=
∑
∗=1,2

∫
M∗

Rg̃∗(1 + v)dµg∗ − 2

∫
∂M∗

Hg̃ε(1 + v)

− r∗
∫
M∗

K∗(1 + v)dµg∗ + r∗

∫
∂M∗

K∂
∗ (1 + v)dσg∗ +O(ε2(m−2)).

Lv and Qv can be interpreted as the linear and quadratic parts, respectively, of Gv,ε.

We also introduce the function Hε(r1, r2) := Gv,ε(r1, r2)− Lv(r1, r2)−Qv(r2, r2).

For simplicity, we will pick S∗ to satisfying the following conditions. We assume

that S∗ has been chosen so that
∫
M
K∗dµg∗ −

∫
∂M∗

K∂
∗ dσg∗ = 1 and we will only

consider the case when

∫
M

Rgεdµgε + 2

∫
∂M

Hgεdσgε < 0,

though the argument is very similar if this quantity is positive. Since this term is

O(εm−2), we will scale the metric gε so that it is equal to −εm−2. Now Hε takes the

form

Hε(r1, r2) = −εm−2 + r1 + r2
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and the vanishing locus of Hε(r1, r2) is given by {(r1, r2) : r1 + r2 = εm−2}. We will

see that the zero set of Gv,ε(r1, r2) is uniformly close to this set.

It is straight forward to check that there is a constant C > 0, independent of ε

and v ∈ Bγ
rε , such that

Lv(r1, r2), Qv(r1, r2) ≤ C1ε
m−2+γ.

So, for any η > 0, there is sufficiently small ε so that

|Lv(r1, r2)|, |Qv(r1, r2)| ≤ η

2
εm−2.

It follows that

{Gv,ε(r1, r2) = 0} = {(r1, r2) : r1 + r2 = εm−2 − Lv(r1, r2)−Qv(r1, r2)}

⊂ {(r1, r2) : (1− η)εm−2 ≤ r1 + r2 ≤ (1 + η)εm−2} =: Zε.

From these remarks, we can find many zeroes of Gv,ε. For instance, setting r′1 :=

εm−2/2, for any v ∈ Bγ
rε , there is a number r′2 = r′2(v) with (r′1, r

′
2(v)) ∈ Zε and

Gv,ε(r
′
1, r
′
2(v)) = 0. However, we will still need a degree of freedom to arrange for

λF̃ε = 0 in the next subsection. Fortunately, for each v ∈ Bγ
rε we will find a 1-

parameter family of solutions near (r′1, r
′
2) by applying the implicit function theorem

to Gv,ε.
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Computing the derivatives of Gε,v,

∣∣∣∣ ∂∂r∗Gε,v(0, 0)

∣∣∣∣ =

∣∣∣∣∫
M∗

K∗(1 + v)dµg∗ −
∫
∂M∗

K∂
∗ (1 + v)dσg∗

∣∣∣∣
≥
∣∣∣∣∫
M∗

K∗dµg∗ −
∫
∂M∗

K∂
∗ dσg∗

∣∣∣∣
− ||v||C0(M)

(∫
M∗

|K∗|dµg∗ +

∫
∂M∗

|K∂
∗ |dσg∗

)
≥ 1

2

for ∗ = 1, 2 and all v ∈ Bγ
rε . From this we can find a radius R > 0, uniform in ε and

v ∈ Bγ
rε , so that that

∣∣∣ ∂∂r∗Gv,ε

∣∣∣ ≥ 1
4

on BR(0) ⊂ R2.

r1

r2

R

R

{Hε(r1, r2) = 0}

fv

r′1 εm−2

Zε

FIGURE 2.5. The region Zε and the function fv in the r1r2-plane.

After perhaps restricting to smaller ε, the set Zε ∩ {r1, r2 ≥ 0} is contained in

BR(0). We may now apply the implicit function theorem on Gv,ε about the points

(r′1, r
′
2(v)) to obtain, for every v ∈ Bγ

rε , open neighborhoods U(v) and V (v) containing

r′1 and r′2(v), respectively, and a function fv : U(v)→ V (v) so that Gv,ε(r1, fv(r1)) = 0
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for all r ∈ U(v) (see Figure 2.5.). In fact, we know apriori that fv can be extended

to the interval (0, (1− η)εm−2), and so we may choose open sets U and V which are

independent of v ∈ Bγ
rε . Since the graph of each fv lies in Zε they may be extended

to fv : U → V .

Before we continue, we will need one more property of the family {fv}v∈Bγrε . By

construction, we have

fv(r1) =

∫
M

Rgεdµgε + 2

∫
∂M

Hgε(1 + v)dσgε − r1 + Lv(r1, fv(r1)) +Qv(r1, r2).

From this one can see, for small ε and any r1, r
′
1 ∈ U , that

|fv(r1)− fv(r′1)| ≤ 4|r1 − r′1|.

Now Ascoli-Arzela tells us that {fv}v∈Bγrε is precompact in the C0(U) norm. This

function f will have the same Lipschitz norm bound.

2.52. Vanishing of the rough projection

Paralleling Section 2.3, we introduce the map P̃ε : C0
γ(M) → C0

γ(M) sending a

function v to the solution of
∆g̃εP̃ε(v) = F̃ε(v, r

′
1, fv(r

′
1)) in M

∂νP̃ε(v) = F̃ ∂
ε (v, r′1, fv(r

′
1))− λF̃ε(v,r′1,fv(r′1))βε on ∂M

The arguments of that section can be repeated to show P̃ε is also a contraction

mapping on Bγ
rε for small ε and γ ∈ (0, 1

4
). This shows that {(P̃ε)j(0)}∞j=1 converges

to a fixed point ṽε ∈ Bγ
rε with respect to the C0

γ-norm. From the previous section,
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after passing to a subsequence, the functions f(P̃ε)j(0) also converge to a continuous

function f : U → V which verifies the orthogonality condition for ṽε. We conclude

that, for any r1 ∈ U , we have


∆g̃ε ṽε = F̃ε(ṽε, r1, f(r1)) in M

∂ν ṽε = F̃ ∂
ε (ṽε, r1, f(r1))− λF̃ε(ṽε,r1,f(r1))βε on ∂M.

(2.18)

The following proposition will complete the proof of Theorems 2.0.8, 2.0.10, and

2.0.12.

Proposition 7. There exists an ε0 > 0 so that for all ε ∈ (0, ε0) there is a choice of

r1 ∈ U for which λF̃ε(ṽε,r1,f(r1)) vanishes where ṽε is given by (2.18).

Proof. Since λF̃ε(ṽε,r1,f(r1)) is continuous in r1, it suffices to show that its sign can be

controlled by r1 ∈ U . Following Section 2.5, for small ε, the sign of λF̃ε(ṽε,r1,f(r1)) is

controlled by the sign of

λ(0) =
1∫

∂M
(ρ1 + ρ2)dσg̃ε

(∫
M

F̃ε(ṽε, r1, f(r1))βεdµg̃ε

−
∫
∂M

F̃ ∂
ε (ṽε, r1, f(r1))βεdσg̃ε +

∫
M

(∆g̃ε(ρ1ũT )

−∆g̃ε(ρ2ũT ))dg̃ε −
∫
∂M

∂ν(ρ1ũT )− ∂ν(ρ2ŨT )dσg̃ε

)
.

As before, we have

∫
M

∆g̃ε(ρ∗ũ
ε
p)dµg̃ε +

∫
∂M

∂ν(ρ∗ũT )dσg̃ε = O(e−α∗εm−2)
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for ∗ = 1, 2. For the first term appearing in the above expression for λ(0), we have

1

cn

∫
M

F̃ε(ṽε, r1, f(r1))dµg̃ε = r1

∫
M1

K1dµg1 − f(r1)

∫
M2

K2dµg2

+

∫
M

Rgεβεdvolgε +O(εm−2+2γ)

= r1

∫
M1

K1dµg1 − f(r1)

∫
M2

K2dµg2 +O(e−min(α1,α2)εm−2)

The boundary term has a similar estimate

1

cn

∫
∂M

F̃ ∂
ε (ṽε, r1, f(r1))βεdσg̃ε =− r1

∫
∂M1

K∂
1 dσg1 + f(r1)

∫
∂M2

K∂
2 dσg2

+O(e−min(α1,α2)εm−2).

Summing these three expressions together gives us the expression we are looking for

λ(0) = r1 − f(r1) +O(e−max(α1,α2)εm−2).

Hence, we can choose large α1 and α2 so that the sign of λF̃ε(ṽε,r1,f(r1)) is controlled

by r1 − f(r1). Evidently, the graph of f must intersect the line {r1 = r2} in Zε (see

Figure 2.5.) and we conclude that the sign of r1 − f(r1) changes as r1 varies over U ,

finishing the proof of Proposition 2.52.
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CHAPTER III

PART II: MINIMAL HYPERSURFACES WITH FREE BOUNDARY AND

PSC-BORDISM

This chapter contains material which appears in a preprint written by the

present author and Boris Botvinnik. The present author and Boris Botvinnik worked

collaboratively on the content and exposition of all sections in this chapter.

3.1. Preliminaries and Theorem 1.5.3

In this section, we will prove Theorem 1.5.3. Before we begin, let us prepare by

recalling the notion of stable minimality and the impact of the non-trivial boundary

of M .

3.11. Stable minimal hypersurfaces with free boundary

Let (M, ḡ) be a compact oriented (n+1)-dimensional Riemannian manifold with

nonempty boundary ∂M . Assume W ⊂M is a properly embedded hypersurface.

Let h̄ denote the restriction metric h̄ = ḡ|W and fix a unit normal vector field

νW on W which is compatible with the orientation. This determines the second

fundamental form AW on W given by the formula AWḡ (X, Y ) = ḡ(∇XY, ν
W ) for vector

fields X and Y tangential to W . The trace of AWḡ with respect to the metric h̄ gives

the mean curvature HW
ḡ = trh̄A

W
ḡ . We will often omit the sub- and super-scripts,

writing ν,A, and H if there is no risk of ambiguity.

Definition 3.1.1. Let W ⊂ M be a properly embedded hypersurface. A variation

of the hypersurface W ⊂ M is a smooth one-parameter family {Ft}t∈(−ε,ε) of proper

embeddings Ft : W → M , t ∈ (−ε, ε) such that F0 coincides with the inclusion
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W ⊂ M . A variation {Ft}t∈(−ε,ε) is said to be normal if the curve t 7→ Ft(x) meets

W orthogonally for each x ∈ W .

The vector field X = d
dt
Ft|t=0 is called the variational vector field associated to

{Ft}t∈(−ε,ε). For normal variations, the associated variational vector field takes the

form φ · νW for some function φ ∈ C∞(W ). Clearly, a variation {Ft}t∈(−ε,ε) gives a

smooth function t 7→ Vol(Ft(W )).

Definition 3.1.2. A properly embedded hypersurface W ⊂ (M, ḡ) is minimal with

free boundary if

d
dt

Vol(Ft(W ))
∣∣
t=0

= 0

for all variations {Ft}t∈(−ε,ε).

More notation: we denote by dσ and dµ the volume forms of (W, h̄) and (∂W, h),

where h = h̄|∂W is the induced metric. We denote the outward-pointing unit length

normal to ∂M by ν∂. Below, Lemmas 3.1.1 and 3.1.2 contain well-known formulas,

see [22].

Lemma 3.1.1. Let (M, ḡ) be an oriented Riemannian manifold and let W ⊂ M be

a properly embedded hypersurface. If {Ft}t∈(−ε,ε) is a variation of W with variational

vector field X, then

d

dt
Vol(Ft(W ))

∣∣∣∣
t=0

= −
∫
W

HW ḡ(X, νW )dµ+

∫
∂W

ḡ(X, ν∂M)dσ. (3.1)

In particular, a hypersurface W is minimal with free boundary if and only if HW
ḡ ≡ 0

and W meets the boundary ∂M orthogonally.
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Definition 3.1.3. A properly embedded minimal hypersurface with free boundary

W is stable if

d2

dt2
Vol(Ft(W ))

∣∣∣
t=0
≥ 0

for all variations {Ft}t∈(−ε,ε).

If a hypersurface W is minimal with free boundary, then any variational vector

field must be parallel to νW on ∂W since the variation must go through proper

embeddings. Hence, it is enough to consider only normal variations to analyze the

second variation of the volume functional.

Lemma 3.1.2. Let (M, ḡ) be an oriented Riemannian manifold and let W ⊂ M be

a properly embedded minimal hypersurface with free boundary. Let {Ft}t∈(−ε,ε) be a

normal variation with variational vector field φ · νW . Then

d2

dt2
Vol(Ft(W ))|t=0 =

∫
W

(
|∇φ|2 − φ2(Ricḡ(ν

W , νW ) + |AW |2)
)
dµ

−
∫
∂W

φ2A∂M(νW , νW )dσ, (3.2)

where Ricḡ denotes the Ricci tensor of (M, ḡ).

It will be useful to rewrite equation (3.2). The Gauss-Codazzi equations for a

minimal hypersurface W ⊂M imply

RM
ḡ = RW

h̄ + 2Ricḡ(ν
W , νW ) + |AW |2

on W . Here RM
ḡ and RW

h̄
are the scalar curvatures of (M, ḡ) and (W, h̄), respectively.

It follows that the inequality d2

dt2
Vol(Ft(W ))

∣∣∣
t=0
≥ 0 is equivalent to

∫
W

|∇φ|2dµ ≥
∫
W

1

2
φ2
(
RM
ḡ −RW

h̄ + |AW |2
)
dµ−

∫
∂W

φ2A∂M(νW , νW )dσ. (3.3)
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3.12. Conformal Laplacian with minimal boundary conditions

The proof of Theorem 1.5.3 will rely on some basic facts about the conformal

Laplacian on manifolds with boundary. Let (W, h̄) be an n-dimensional manifold

with non-empty boundary (∂W, h) where h = h̄|∂W . We consider the following pair

of operators acting on C∞(W ):

 Lh̄ = −∆h̄ + cnR
W
h̄

in W

Bh̄ = ∂ν + 2cnH
∂W
h̄

on ∂W,

where ν is the outward pointing normal vector to ∂W and cn = n−2
4(n−1)

.

Recall that if φ ∈ C∞(W ) is a positive function, then the scalar and boundary

mean curvatures of the conformal metric h̃ = φ
4

n−2 h̄ are given by

 Rh̃ = c−1
n φ−

n+2
n−2 · Lh̄φ in W

Hh̃ = 1
2
c−1
n φ−

n
n−2 ·Bh̄φ on ∂W.

(3.4)

We consider a relevant Rayleigh quotient and take the infimum:

λ1 = inf
φ 6≡0∈H1(W )

∫
W

(
|∇φ|2 + cnR

W
h̄
φ2
)
dµ+ 2cn

∫
∂W

H∂W
h̄

φ2dσ∫
W
φ2dµ

. (3.5)

According to standard elliptic PDE theory, we obtain an elliptic boundary problem,

denoted by (Lh̄, Bh̄), and the infimum λ1 = λ1(Lh̄, Bh̄) is the principal eigenvalue of

the minimal boundary problem (Lh̄, Bh̄). The corresponding Euler-Lagrange equations

are the following:  Lh̄φ = λ1φ in W

Bh̄φ = 0 on ∂W.
(3.6)
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This problem was first studied by Escobar [6] in the context of the Yamabe problem

on manifolds with boundary.

Let φ be a solution of (3.6). It is well-known that the eigenfunction φ is smooth

and can be chosen to be positive. A straight-forward computation shows that the

conformal metric h̃ = φ
4

n−2 h̄ has the following scalar and mean curvatures:

 Rh̃ = λ1φ
− 4
n−2

1 in W

Hh̃ ≡ 0 on ∂W.
(3.7)

In particular, the sign of the eigenvalue λ1 is a conformal invariant, see [6, 9].

3.13. Proof of Theorem 1.5.3

Let (M, ḡ) and W ⊂M be as in Theorem 1.5.3. From the assumption H∂M ≡ 0,

one can use the Gauss equations to show that A∂M(ν, ν) = −H∂W where H∂W is the

mean curvature of ∂W as a hypersurface of W . Now, using the condition RM
ḡ > 0,

the stability inequality (3.3) implies

∫
W

(
|∇φ|2 +

1

2
RW
h̄

)
dµ+

∫
∂W

φ2H∂Wdσ ≥ 0 (3.8)

for all functions φ ∈ H1(W ) with strict inequality if φ 6≡ 0. By simple manipulation,

the inequality (3.8) may be written as

∫
W

(
|∇φ|2 + cnR

W
h̄

)
dµ+ 2cn

∫
∂W

φ2H∂Wdσ > (1− 2cn)

∫
W

|∇φ|2dµ (3.9)

for all φ 6≡ 0 ∈ H1(W ). The right hand side of (3.9) is non-negative since 1− 2cn =

n
2(n−1)

> 0. Furthermore, the left hand side of (3.9) coincides with the numerator of

the Rayleigh quotient in equation (3.5). We conclude that the principal eigenvalue
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λ1 = λ1(Lh̄, Bh̄) is positive. Let φ be an eigenfunction corresponding to λ1. Then,

according to (3.7), the metric h̃ = φ
4

n−2 h̄ has positive scalar curvature and zero mean

curvature on the boundary. This completes the proof of Theorem 1.5.3.

3.2. Cheeger-Gromov Convergence of Minimizing Hypersurfaces

Here we introduce the notion of smooth convergence of hypersurfaces we require

for the proof of Theorem 1.5.6. First, we consider the case when the hypersurfaces

are embedded in the same ambient (n + 1)-dimensional manifold M . Below we

use coordinate charts Φj : Uj → M , where Uj is an open subset of Rn+1
+ =

{(x1, . . . , xn+1) ∈ Rn+1 : xn+1 ≥ 0}.

P
x

η
x+u(x)η

U

FIGURE 3.1. The hypersurface graph(u)

Let P ⊂ Rn+1 be a hyperplane equipped with a normal unit vector η, and

U ⊂ Rn+1
+ be an open subset. Then for a function u : P ∩ U → R, we denote by

graph(u) its graph, see Fig. 3.1.:

graph(u) = {x+ u(x)η | x ∈ P ∩ U }.

Definition 3.2.1. Let k ≥ 1 be an integer. Let (M, ḡ) be an (n + 1)-dimensional

compact Riemannian manifold and let {Σi}∞i=1 be a sequence of smooth, properly
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embedded hypersurfaces. Then we say that the sequence {Σi}∞i=1 converges to a

smooth embedded hypersurface Σ∞ Ck-locally as graphs if there exist

(i) coordinate charts Φj : Uj →M for j = 1, . . . , N ;

(ii) hyperplanes Pj ⊂ Rn+1 equipped with unit normal vectors ηj for j = 1, . . . , N ;

(iii) smooth functions ui,j : Pj ∩ Uj → R for j = 1, . . . , N , i = 1, 2, . . ., and i =∞,

which satisfy the following conditions:

(a)
N⋃
j=1

Φj(graph(ui,j) ∩ Uj) = Σi for i = 1, 2, . . . and i =∞;

(b) for each j = 1, . . . , N , ui,j → u∞,j in the Ck(Pj ∩ Uj) topology as i→∞.

We say the sequence {Σi}∞i=1 converges to a smooth embedded hypersurface Σ∞

smoothly locally as graphs if it converges Ck-locally as graphs for all k = 1, 2, . . ..

Next, we consider a sequence {(Mi,Σi, ḡi, Si)}∞i=1, where (Mi, ḡi) is a Riemannian

manifold, Σi ⊂ Mi is a properly embedded smooth hypersurface, and Si ⊂ Mi a

compact subset, playing a role of a base-point or a finite collection of base points.

Definition 3.2.2. Let k ≥ 1 be an integer, and {(Mi,Σi, ḡi, Si)}∞i=1 be a sequence

as above, where dimMi = n + 1. We say that {(Mi,Σi, ḡi, Si)}∞i=1 C
k-converges to

(M∞,Σ∞, ḡ∞, S∞) if there is an exhaustion of M∞ by precompact open sets

S∞ ⊂ U1 ⊂ U2 ⊂ · · · ⊂M∞, M∞ =
∞⋃
i=1

Ui

and maps Ψi : Ui → Mi which are diffeomorphisms onto their images for each i =

1, 2, . . ., such that

(1) distM∞H (S∞,Ψ
−1
i (Si))→ 0 as i→∞, where distM∞H is the Hausdorff distance for

subsets of the manifold M∞;
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(2) the sequence {Ψ∗i ḡi} converges to ḡ∞ in the Ck(Ui)-topology as i→∞;

(3) the sequence of hypersurfaces {Ψ−1
j (Σi)}∞i=1 converges Ck-locally as graphs in

the manifold M∞ to Σ∞ ∩ Uj as i→∞ for each j = 1, . . . , N .

Remark 3.2.1. We notice that the conditions (1) and (2) imply that the sequence

{(Mi, ḡi, Si)}∞i=1 C
k-converges to (M∞, ḡ∞, S∞) in the Cheeger-Gromov topology.

We say that {(Mi,Σi, ḡi, Si)}∞i=1 smoothly converges to (M∞,Σ∞, ḡ∞, S∞) if it

Ck-converges for all k ≥ 1. Then we say that {(Mi,Σi, ḡi, Si)}∞i=1 sub-converges to

(M∞,Σ∞, ḡ∞, S∞) if it has a subsequence which converges to (M∞,Σ∞, ḡ∞, S∞). In

this case we write

(Mi,Σi, ḡi, Si) −→ (M∞,Σ∞, ḡ∞, S∞).

3.21. Main convergence result

We are ready to set the stage for the main result of this section. Let (Y, g) be

a closed, oriented n-dimensional Riemannian manifold with a homology class α ∈

Hn−1(Y ;Z). As we discussed in Section 1.5, the class α gives the Poincarè dual class

Dα = [γ] ∈ H1(Y ;Z) represented by some map γ : Y → S1. Furthermore, we assume

that there is a bordism

(M, ḡ, γ̄) : (Y, g, γ) (Y ′, g′, γ′) (3.10)

for some triple (Y ′, g′, γ′). In the above, γ̄ : M → S1 represents a class [γ̄] ∈ H1(M ;Z)

Poincarè dual to a class ᾱ ∈ Hn(M,∂M ;Z).

93



Recall that Y ⊂ ∂M and ḡ = g + dt2 near Y . For a real number L ≥ 0, we

consider the following Riemannian manifold

(ML, ḡL) := (M ∪Y×{−L} (Y × [−L, 0]), ḡL),

where ḡL restricts to ḡ on M and to the product-metric g + dt2 on Y × [−L, 0]. We

obtain another bordism

(ML, ḡL, γ̄L) : (Y, g, γ) (Y ′, g′, γ′), (3.11)

where [γ̄L] is the image of [γ̄] under the isomorphism H1(M ;Z) ∼= H1(ML;Z). We

refer to the bordism (ML, ḡL, γ̄L) as the L-collaring of (M, ḡ, γ̄). Below we will take

L be an integer i = 1, 2, . . ., and write ᾱL ∈ Hn(M,∂M ;Z) for the class Poincarè

dual to [γ̄L].

Main Lemma. Let (M, ḡ, γ̄) : (Y, g, γ)  (Y ′, g′, γ′) be a bordism as in (3.10) and

denote by (Mi, ḡi, γ̄i) the i-collaring of (M, ḡ, γ̄) as in (3.11) for i = 0, 1, 2, . . .. Fix a

basepoint in each component of Y , denote their union by S, and let Si be the image

of S under the inclusion

Y ∼= Y × {0} ⊂ Y × [−i, 0] ⊂Mi.

Assume Wi ⊂ Mi is an oriented homologically volume minimizing representative of

ᾱi for i = 0, 1, 2, . . .. If X ⊂ Y is an embedded hypersurface which is the only volume

minimizing representative of α ∈ Hn−1(Y ;Z), then there is smooth subconvergence

(Mi,Wi, ḡi, Si) −→ (Y × (−∞, 0], X × (−∞, 0], g + dt2, S∞)
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as i→∞ where S∞ ⊂ Y × {0} is the inclusion of S.

Remark 3.2.2. In Main Lemma, we allow the manifold Y ′ to be empty.

3.22. Proof of the Main Lemma: outline

Consider the limiting space Y × (−∞, 0], with the exhaustive sequence Ui =

Y ×(−i−1, 0] and maps Ψi : Ui →Mi taking Ui identically onto Y ×(−i−1, 0] ⊂Mi.

Our choice of Ui and Ψi satisfy the conditions (1) and (2) from Definition 3.2.2 for

obvious reasons.

It will be useful to equip M with a height function F : M → [−1, 0] satisfying

Y = F−1(0) and Y ′ = F−1(−1). Extend this function to Mi by

Fi(x) =


t if x = (y, t) ∈ Y × [−i, 0]

F (x)− i if x ∈M.

Y

WR
i

Mi

0

−R

−R− 1

−i− 1

Fi

FIGURE 3.2. The hypersurface WR
i ↪→Mi. In this figure, Y ′ = ∅.
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For any positive integer i and heights 0 ≤ R < R′ ≤ i, we write

WR
i = F−1

i ([−R, 0]) and Wi[−R′,−R] = F−1
i ([−R′,−R]).

Let α ∈ Hn−1(Y ; Z) be the class from the statement of Main Lemma. For L > 0 let

α× [−L, 0] ∈ Hn(Y × [−L, 0], Y × {−L, 0}; Z)

be the product of α and the fundamental class of ([−L, 0], {−L, 0}). We will break

up the proof of Main Lemma into three claims.

Claim 3.2.1. Let L > 0. The hypersurface X × [−L, 0] ⊂ Y × [−L, 0] is the only

homologically volume-minimizing representative of α× [−L, 0].

Claim 3.2.2. For each R > 0, Vol(WR
i )→ R · Vol(X) as i→∞.

Claim 3.2.3. For each R > 0, there is a sequence {aRi }∞i=1 such that, for each j =

1, 2, . . ., the hypersurfaces {Ψ−1
j (WR

aRi
)}∞i=1 converge smoothly locally as graphs in Y ×

(−∞, 0].

Now we show how Main Lemma follows from Claims 3.2.1, 3.2.2, and 3.2.3.

Indeed, by Claim 3.2.3, for each k = 1, 2, . . ., there is a sequence {aki }∞i=1 such that,

for each j = 1, 2, . . ., the hypersurfaces {Ψ−1
j (W k

aki
)}∞i=1 converges smoothly locally as

graphs to some hypersurface

W∞,k ⊂ Y × (−∞, 0].
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We notice that the hypersurface W∞,k is contained in Y × [−k, 0] and represents the

class α× [−k, 0]. Since the convergence is smooth, we have

Vol(Ψ−1
j (W∞,k)) = lim

i→∞
Vol(Ψ−1

j (W k
aki

)) = k · Vol(X),

where the last equality follows from Claim 3.2.2. However, according to Claim 3.2.1,

the only volume minimizing representative of α×[−k, 0] is the hypersurfaceX×[−k, 0]

which has the volume k · Vol(X). Thus W∞,k must be X × [−k, 0]. Evidently, the

diagonal sequence {Φ−1
j (Waii

)}∞i=1 has the property that, for each k > 0, Φ−1
j (W k

aii
)

converges smoothly locally as graphs to X × [−k, 0]. This then completes the proof

of Main Lemma.

3.23. Proof of Claim 3.2.1

Let Σ ⊂ Y × [−L, 0] be a properly embedded hypersurface representing the class

α × [−L, 0]. Consider the projection function P : Σ → [−L, 0]. The coarea formula

[23, Theorem 5.3.9] applied to P yields

∫
Σ

|∇P |dµ =

∫ 0

−L
Hn−1(P−1(t))dt , (3.12)

where Hn−1 denotes the (n − 1)-dimensional Hausdorff measure associated to the

metric h+ dt2 on Y × [−L, 0]. Notice that P is weakly contractive in the sense that

|P (x)− P (y)| ≤ distΣ(x, y)
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for all x, y ∈ Σ. Thus we have the pointwise bound |∇P | ≤ 1. Furthermore, since

P−1(t) represents the class α ∈ Hn−1(Y × {t};Z) for each t ∈ [−L, 0],

Hn−1(P−1(t)) ≥ Vol(X)

with equality if and only if P−1(t) is X. Combining this observation with (3.12), we

conclude

Vol(Σ) ≥ L · Vol(X)

with equality if and only if Σ = X× [−L, 0]. This completes the proof of Claim 3.2.1.

3.24. Proof of Claim 3.2.2

Before we begin, we will construct particular (in general, non-minimizing)

properly embedded hypersurfaces NL ⊂ ML representing αL with which to compare

Vol(WL) against.

Let X ⊂ Y and W0 ⊂ M0 be as in Main Lemma. Since ∂W0 ∩ Y and X

represent the same homology class, they are bordant via a smooth, properly embedded

hypersurface ι : U ↪→ Y × [0, 1]. We identify [0, 1] ∼= [−L,−L + 1] to obtain the

embedding

ιL : U ↪→ []ιY × [0, 1] ∼= Y × [−L,−L+ 1] ↪→ML.

Clearly the embedding ι : U ↪→ Y × [0, 1] may be chosen so that

NL := W0 ∪∂W0 UL ∪ (X × [−L+ 1, 0]),

where UL = ιL(U), is a smooth properly embedded hypersurface of ML.
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Evidently, Vol(NL) = Vol(W0) + Vol(UL) + (L − 1)Vol(X) and NL represents

the same homology class as WL. Since WL is homologically area-minimizing, we have

Vol(WL) ≤ Vol(NL). In other words, we obtain the inequality

Y

WR
L

NL

UL

ML

0

−R

−L+ 1

−L

Y × (−∞, 0]

FIGURE 3.3. The hypersurface NL ↪→ML.

Vol(WR
L ) + Vol(WL \WR

L ) ≤ Vol(W0) + Vol(UL) + (L− 1)Vol(X) (3.13)

for any 0 < R < L− 1.

Now we are ready to prove Claim 3.2.2. Assume it fails. Then there exist ε0, R0 >

0 and an increasing sequence of whole numbers {ai}∞i=1 such that the inequality

Vol(WR0
ai

) > R0 · Vol(X) + ε0 (3.14)

holds for all i. Combining the inequality (3.13) with the assumption (3.14), we have

Vol(W0) + Vol(Uai) + (ai − 1)Vol(X) > Vol(Wai \WR0
ai

) + ε0 +R0Vol(X). (3.15)

99



Now we will inspect the first term in the right hand side of (3.15):

Vol(Wai \WR0
ai

) = Vol(Wai [ai−1 − ai,−R0]) + Vol(Wai [−ai − 1, ai−1 − ai])

≥ (ai − ai−1 −R0)Vol(X) + Vol(Wai−1
)

> (ai − ai−1)Vol(X) + ε0 + Vol(Wai−1
\WR0

ai−1
). (3.16)

Here we use Claim 3.2.1 in the first inequality and the assumption (3.14) in the

second.

Combining (3.15) with (3.16), we obtain

Vol(W0)+Vol(Uai)+(ai−1)Vol(X) > (ai−ai−1+R0)Vol(X)+2ε0+Vol(Wai−1
\WR0

ai−1
).

We iterate the argument to find

Vol(W0) + Vol(Uai) + (a1 −R0 − 1)Vol(X) > i · ε0 + Vol(Wa1) (3.17)

for every i = 1, 2, . . .. Since the left hand side of (3.17) is independent of i, we arrive

at a contradiction by taking i to be sufficiently large.

3.25. Proof of Claim 3.2.3

While the proof of Claim 3.2.3 is rather technical, it is essentially a consequence

of standard tools used in the study of stable minimal hypersurfaces. For instance, see

[24] for a similar result in a 3-dimensional context. We divide the proof into three

steps, referring to Appendix A when necessary.

To begin, we require the following straight-forward volume bound.
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Step 1. For each R > 0, there is a constant VR > 0 such that

Vol(Wi[−λ−R,−λ]) ≤ VR

holds for all i and all λ ∈ [0, i − R]. In particular, Vol(Wi ∩ BMi
R (x)) ≤ VR for all i

and x ∈Mi.

The next key ingredient is the following uniform bound on the second

fundamental form AWL .

Step 2. There is a constant C1 > 0, depending only on the geometry of (M, ḡ), such

that

sup
x∈WL

|AWL(x)|2 ≤ C1 for L ≥ 0.

Step 2 is a consequence of [25, Corollary 1.1]. See Appendix, Section A.32 for

more details.

Step 3. For each R > 0 and j = 1, 2, . . ., the sequence of hypersurfaces Ψ−1
j (WR

i )

sub-converges smoothly locally as graphs as i→∞.

Proof of Step 3. We restrict our attention to the tail of the sequence {WR
i }∞i=1, where

i ≥ R + 1. This allows us to consider each WR
i and WR+1

i as hypersurfaces of

Y × (−∞, 0] which is where we will show the convergence. By rescaling the original

metric ḡ, we will assume that injg ≥ 1 and the bounds

supx∈B1(y) |ḡij(x)− δij| ≤ µ0, supx∈B1(y)

∣∣∣∂ḡij∂xk
(x)
∣∣∣ ≤ µ0

hold for 1 ≤ i, j, k ≤ n + 1 in geodesic normal coordinates centered about any y ∈

Y × (−∞, 0] where µ0 is the constant from Lemma A.2.1. Let r = min( 1
24
, 1

6
√

20C0
)

where C0 is the constant from Step 2.
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We cover Y × [−R, 0] by a finite collection of open balls U = {Br(yl)}Nl=1. Notice

that each Br(yl) ⊂⊂ Y × [−R − 1, 0]. Consider a ball Br(yl) in U with the property

that

WR+1
i ∩Br(yl) 6= ∅

for infinitely many i. Unless explicitly stated, we will continue to denote all

subsequences by WR+1
i . Our next goal is to show that the sequence of hypersurfaces

{WR
i ∩Br(yl)}∞i=1 sub-converges smoothly locally as graphs.

We choose a subsequence of WR+1
i and points xi ∈ WR+1

i ∩Br(yl) which converge

to some point x∞ ∈ Br(yl). Now it will be convenient to work in the tangent space

to the point x∞. We use the short-hand notation φ = expḡx∞ and let

B = φ−1(B1(x∞)) ⊂ Tx∞(Y × [−L− 1, 0]).

Consider the properly embedded hypersurfaces Σi ⊂ B with base points pi ∈ Σi,

given by

Σi = φ−1(B1(x∞) ∩WR
i ), pi = φ−1(xi).

We also write Z = φ−1(yl) Since WR
i ⊂Mi are minimal, Σi are minimal hypersurfaces

in B with respect to the metric ḡB = (φ−1)∗(ḡ).

Notice that the choice of r allows us to apply Corollary A.2.1 to each Σi ⊂ B at

pi with s = 3r. For each i = 1, 2, . . . , we obtain an open subset Ui ⊂ TpiΣi∩B, a unit

normal vector ηi ⊥ TpiΣi, and a function ui : Ui → R satisfying the bounds (A.5) and

such that graph(ui) = BΣi
6r (pi). Moreover, the connected component of BḡB

3r (pi) ∩ Σi

containing x0 lies in BΣi
6r (pi).

We use compactness of Sn and pass to a subsequence so that the vectors ηi

converge to some vector η∞ ∈ Sn. Let P∞ ⊂ Tx∞(Y × [−L− 1, 0]) be the hyperplane
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perpendicular to η∞. For large enough i, we may translate and rotate the sets Ui to

obtain open subsets U ′i ⊂ P∞ and functions u′i : U ′i → R such that

1. graph(u′i) = BΣi
4r (pi);

2. the ball BP∞
2r (0) ⊂ U ′i ;

3. for each k ≥ 1 and α ∈ (0, 1) there is a constant C ′ > 0, depending only on n,

k, α, and the geometry of g, such that

||u′i||Ck,α(U ′i)
≤ C ′,

see Fig. 3.4.. In particular, writing u′′i = u′i|BP∞2r (0), the sequence {u′′i }i is uniformly

bounded in Ck,α(BP∞
2r (0)). Moreover, the connected component of B2r(pi) ∩ Σi

containing pi is contained in graph(u′′i ). It follows that Σ′i, the connected component

of Br(Z) ∩ Σi containing pi, lies in graph(u′′i ).

B2r(0)
x′

U ′i

Ui

Σ′i

TpiΣi

P∞

x

pi

0

ui(x)

u′i(x)

B

FIGURE 3.4. The functions u′i and hypersurfaces Σ′i

By Arzela-Ascoli, one can find a subsequence of u′′i converging in Ck(BP∞
2r (0))

to a function u∞ : BP∞
2r (0) → R. In particular, u∞ is a strong solution to the
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minimal graph equation on BP∞
2r (0) with respect to ḡB and Σ′i converge as graphs to

graph(u∞). To summarize our current progress, the components of WR+1
i ∩ Br(yl)

containing xi sub-converge smoothly to φ(graph(u∞)). This finishes our work with

the hypersurfaces Σ′i.

Now suppose that there is a second sequence of connected components within

WR+1
i ∩ Br(yl). We can repeat the above process to obtain a second limiting

hypersurface. Observe that the number of components of WR+1
i ∩ Br(yl) uniformly

bounded in i. Indeed, using the notation above, for any component Σ̄i ⊂ WR+1
i ∩

Br(yl), we have

VolḡB(Σ′i) ≥ VolḡB(BP∞
r (0)),

which is uniformly bounded below in terms of r and the geometry of g. However,

Step 1 implies that Vol(WR
i ∩Br(yl)) is bounded above uniformly in i so the number

of connected components WR
i ∩ Br(yl) is uniformly bounded in i. Hence the above

process terminates after finitely many iterations. We conclude that the sequence

{WR
i ∩Br(yl)}∞i=1 sub-converges smoothly locally as graphs to a minimal hypersurface

Σ∞,l.

Now, restricting to this subsequence, we turn our attention to another ball Br(yl′)

in the cover U . We repeat the above argument to obtain a further subsequence

and limiting minimal hypersurface Σ∞,l′ . Repeating this process for each element

of U produces a subsequence converging to a minimal hypersurface WR
∞ =

⋃N
l=0 Σ∞,l

smoothly locally as graphs. This completes the proof of Claim 3.2.3, and consequently,

the proof of Main Lemma.
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3.3. Proof of Theorem 1.5.6

In order to prove Theorem 1.5.6, we have to use fundamental facts relating

conformal geometry and psc-bordism. We briefly recall necessary results, following

the conventions in [26]. Let Y be a compact closed manifold with dimY = n given

together with a conformal class C of Riemannian metrics. Then the Yamabe constant

of (Y,C) is defined as

Y (Y ;C) = inf
g∈C

∫
Y
Rgdµg

Volg(Y )
n−2
n

.

We say that a conformal class C is positive if Y (Y ;C) > 0. It is well-known that C

is positive if and only if there exists a psc-metric g ∈ C.

Now let Z : Y0  Y1 be a bordism between closed manifolds Y0 and Y1. Suppose

we are given conformal classes C0 and C1 on Y0 and Y1, respectively. Let C̄ be a

conformal class on Z, such that C̄|Y0 = C0 and C̄|Y1 = C1, i.e. ∂C̄ = C0 t C1.

Denote by C̄0 = {ḡ ∈ C̄ : Hḡ ≡ 0} the subclass of those metrics with vanishing

mean curvature of the boundary. Then the relative Yamabe constant of ((Z, C̄), (Y0t

Y1, C0 t C1)) is defined as

YC̄(Z, Y0 t Y1;C0 t C1) = inf
ḡ∈C̄0

∫
Z
Rḡdµḡ

Volḡ(Z)
n−2
n

.

This gives the relative Yamabe invariant

Y (Z, Y0 t Y1;C0 t C1) = sup
C̄, ∂C̄=C0tC1

YC̄(Z, Y0 t Y1;C0 t C1).

Now we assume that the conformal classes C0 and C1 are positive. Then we say that

positive conformal manifolds (Y0, C0) and (Y1, C1) are positive-conformally bordant if

there exists a conformal manifold (Z, C̄) and a bordism Z : Y0  Y1 between Y0 and
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Y1 such that ∂C̄ = C0 t C1 and YC̄(Z, Y0 t Y1;C0 t C1) > 0. In this case, we write

(Z, C̄) : (Y0, C0) (Y1, C1).

We need the following result which relates the above notions to psc-bordisms.

Theorem 3.3.1. [26, Corollary B] Let Y0 and Y1 be closed manifolds of dimension

n ≥ 3, Z : Y0  Y1 be a bordism between Y0 and Y1, and g0 and g1 be psc-metrics on

Y0 and Y1, respectively. Then Y (Z, Y0 t Y1; [g0]t [g1]) > 0 if and only if the boundary

metric g0tg1 on Y0tY1 may be extended to a psc-metric ḡ on Z such that ḡ = gj+dt
2

near Yj for j = 0, 1.

3.31. Long collars

We are ready to prove Theorem 1.5.6 for n ≤ 6. The adjustments required to

adapt the following proof to the case n = 7 are provided in Appendix A.33.

Let (Y0, g0, γ0) and (Y1, g1, γ1) be the manifolds from Theorem 1.5.6 and let

α0 ∈ Hn−1(Y0; Z) and α1 ∈ Hn−1(Y1; Z) be the classes Poincarè dual to γ0 and γ1,

respectively. It is convenient to use the notation 1 Y = Y0 t −Y1 and

α = (ι0)∗α0 − (ι1)∗α1 ∈ Hn−1(Y ; Z),

where ιj : Yj ↪→ Y is the inclusion map for j = 0, 1. Then we consider hypersurfaces

X0 ⊂ Y0 and X1 ⊂ Y0 which are homologically volume minimizing representatives

of the classes α0 and −α1. The existence of such smooth X0 and X1 is guaranteed

in this range of dimensions, see [3]. Notice that, by a small conformal change which

does not effect the assumptions on (Yj, gj, γj), we may assume that Xj is the only

1 Here we emphasize a proper orientation on Y0 and Y1
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representative of αj with minimal volume for j = 0, 1, see [27, Lemma 1.3]. We write

(X, hX) for the Riemannian manifold (X0 tX1, g0|X0 t g1|X1).

Now we choose a psc-bordism (Z, ḡ, γ̄) : (Y0, g0, γ0)  (Y1, g1, γ1). We will use

(Z, ḡ, γ̄) to construct a psc-bordism which satisfies the conclusion of Theorem 1.5.6.

We denote by ᾱ ∈ Hn(Z; Z) the homology class Poincarè dual to γ̄. Then ∂ᾱ = α,

see Lemma 1.5.5.

Now for each i = 1, 2, . . ., we consider the i-collaring of the bordism (Z, ḡ, γ̄),

denoted by (Zi, ḡi, γ̄i), as in Section 3.21. By Theorem 1.5.4, there exists properly

embedded hypersurfaces Wi ⊂ Zi which are homologically volume minimizing and

represents ᾱi. The restrictions of ḡi to Wi and ∂Wi are denoted by h̄i and hi,

respectively.

In preparation to apply Main Lemma, we fix basepoints xj ∈ Xj for each j = 0, 1

and set S = {x0, x1} ⊂ X. Naturally, the set S is identified with the subsets Si in

(X × {0}) ⊂ ∂Zi for i = 1, 2, . . . and with S∞ in the boundary of the cylinder

(X × {0}) ⊂ (Y × (−∞, 0]). According to Main Lemma we may find a subsequence

{ai}∞i=1 such that

(Zai ,Wai , ḡai , Sai) −→ (Y × (−∞, 0], X × (−∞, 0], g + dt2, S∞)

smoothly as i → ∞ and the Riemannian manifolds (∂Wai , hai) converge to (X, hX)

in the smooth Cheeger-Gromov topology as i→∞.

Remark 3.3.1. We note that the manifolds (∂Wai , hai), (X, hX) are compact and so

there is no need to specify base points for this convergence.

The following is a special case of a much more general fact on the behavior of

elliptic eigenvalue problems under smooth Cheeger-Gromov convergence (see [28]).
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Lemma 3.3.2. Let {(Mi, g
′
i)}∞i=1 be a sequence of compact Riemannian manifolds

smoothly converging to a compact Riemannian manifold (M∞, g
′
∞) in the Cheeger-

Gromov sense. If Y (M∞; [g′∞]) > 0, then, upon passing to a subsequence,

Y (Mi; [g′i]) > 0 for all sufficiently large i.

Proof. For each i = 1, 2, . . ., we denote by λ1,i = λ1(Lg′i) the principal eigenvalue of

the conformal Laplacian on (Mi, g
′
i). Let φi ∈ C∞(Mi) be the eigenfunction satisfying

Lg′iφi = λ1,iφi, sup
Mi

φi = 1. (3.18)

Since {(Mi, g
′
i)}∞i=1 is converging in the Cheeger-Gromov topology to a compact

manifold, the coefficients of the operator Lg′i are bounded in the C1-norm uniformly

in i. In particular, there is a constant C1 > 0, independent of i, such that |Rg′i
| ≤ C1

on Mi. An obvious estimate on the Rayleigh quotient (3.5) shows that the sequence

{λ1,i}∞i=1 is uniformly bounded above and below.

This allows us to apply the Schauder estimate Theorem A.1.2 to φi uniformly

in i. Using Arzelá-Ascoli, we can find a subsequence, still denoted by {(Mi, g
′
i)}∞i=1,

{φi}∞i=1, and {λ1,i}∞i=1, a function φ∞ ∈ C∞(M∞), and a number λ1,∞ such that

φi → φ∞ λ1,i → λ1,∞

where the former convergence is in the C2,α-topology. This allows us to take the limit

of equation (3.18) as i→∞. Namely, φ∞ is a non-zero solution of the equation

Lg∞φ∞ = λ1,∞φ∞
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and so λ1,∞ ≥ λ1(Lg∞). On the other hand, we have assumed that λ1(Lg∞) > 0.

Hence λ1,i > 0 for all sufficiently large i.

Now we return to the proof of Theorem 1.5.6. Since X is a stable

minimal hypersurface of Y with trivial normal bundle, Theorem 1.5.1 implies that

Y (X, [gX ]) > 0. Now we may apply Lemma 3.3.2 to find Y (∂Wai , [hai ]) > 0 for

sufficiently large i. Fix such an i and let h′ai ∈ [hai ] be a psc metric on ∂Wai . Since

each Wai is a stable minimal hypersurface with free boundary and trivial normal

bundle, Theorem 1.5.3 states that Y (Wai , ∂Wai ; [h̄ai ]) > 0 for all i ∈ N. Finally, we

use Theorem 3.3.1 to find a psc-metric h̃ai on Wai which restricts to h′ai + dt2 near

∂Wai . This completes the proof of Theorem 1.5.6 for n ≤ 6.
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APPENDIX

GEOMETRIC ANALYSIS BACKGROUND

Let us first describe the structure of this Appendix. In Section A.1, we state

the basic regularity facts for solutions of elliptic equations both with and without

boundary conditions. These facts are used in both Part One and Part Two. In

Section A.2, we recall relevant facts on the minimal graph equation and provide the

Schauder estimates we use in the proof of Main Lemma from Part Two. Section A.3

is dedicated to Theorem 1.5.4. Here we recall necessary results on currents and state

well-known facts on their compactness and regularity, adapted to our setting. Section

A.31 describes a simple doubling method which is a convenient technical tool in the

remaining sections. In Section A.32, we justify Step 2 from the proof of Claim 3.2.3.

In Section A.33, we discuss regularity issues in dimension 8 and prove Theorem 1.5.6

for n = 7.

A.1. Elliptic Estimates

In Part One, we use a regularity result for solutions of linear elliptic problems

which is suited for the linear analysis in Section 2.21. The following theorem is a

version of elliptic Lp estimate, tailored to the Neumann problem.

Theorem A.1.1. cf. [20, Theorem 3.2] Let (N, gN) be a compact Riemannian

manifold with boundary ∂N . Assume that v ∈ W k+2,p(N, gN) for some k, p ∈ N0

satisfies
∫
N
v dµgN = 0. Then there is a constant C depending only on the geometry

of (N, gN), k, and p such that

||v||Wk+2,p(N,gN ) ≤ C
(
||∆gNv||Wk,p(N,gN ) + ||∂νv||Wk+1,p

∂ (N,gN )

)
. (A.1)
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where the norm || · ||Wk,p
∂ (N,gN ) is defined by

||F ||Wk,p
∂ (N,gN ) := inf{||G||Wk,p(N,gN ) : G ∈ W k,p(N, gN), G|∂N = F}.

In Part Two, we will need the following standard Schauder estimate for solutions

of linear elliptic propblems.

Theorem A.1.2. [29, Corollary 6.3] Let Ω ⊂ Rn be an open set and let α ∈ (0, 1).

Suppose u ∈ C2,α(Ω) satisfies a uniformly elliptic equation

Lu = aij(x)uij + bi(x)ui + c(x)u = 0

with aij, bi, c ∈ Cα(Ω) and ellipticity constant λ > 0. If Ω′ ⊂⊂ Ω with distΩ(Ω′, ∂Ω) =

d, then there is a constant C > 0, depending on d, λ, ||aij||Cα(Ω), ||bi||Cα(Ω), ||c||Cα(Ω), n,

and α, such that

||u||C2,α(Ω′) ≤ C||u||C0(Ω). (A.2)

A.2. The Minimal Graph Equation

This section is concerned with local properties of hypersurfaces in Riemannian

manifolds. Throughout this section we will consider the unit ball in Euclidian space

B = B1(0) ⊂ Rn+1 equipped with a Riemannian metric g and a hypersurface Σn ⊂ B.

The balls of radius s > 0 centered at x ∈ Σ induced by g and g|Σ are denoted by

Bg
s (x) ⊂ B and BΣ

s (x) ⊂ Σ, respectively. Assume there is a point x0 ∈ Σ ∩B1/4(0).

The following straight-forward Riemannian version of [30, Lemma 2.4] allows us

to consider Σ locally as a graph over Tx0Σ.

111



Lemma A.2.1. There is a constant µ0 > 0 so that if g satisfies

sup
x∈B
|gij(x)− δij| ≤ µ0, sup

x∈B

∣∣∣∂gij∂xk
(x)
∣∣∣ ≤ µ0 (A.3)

for 1 ≤ i, j, k ≤ n + 1 in standard Euclidian coordinates, then the following holds: If

s > 0 satisfies

distΣ(x0, ∂Σ) ≥ 3s, supΣ |Ag|2 ≤ 1
20s2

,

then there is an open subset U ⊂ Tx0Σ ⊂ Rn+1, a unit vector η normal to Tx0Σ, and

a function u : U → R such that

1. graph(u) = BΣ
2s(x0);

2. |∇u| ≤ 1 and |∇∇u| ≤ 1
s
√

2
hold pointwise.

Moreover, the connected component of Bg
s (x0) ∩ Σ containing x0 lies in BΣ

2s(x0).

Now we will give a useful expression for the mean curvature of a graph. Let

U ⊂ Rn be an open set with standard coordinates x′ = (x1, . . . , xn) and let g be a

Riemannian metric on U × R ⊂ Rn+1. For a function u : U → R, consider its graph

graph(u) = {(x′, u(x′)) ∈ Rn+1 : x′ ∈ U}.

For i = 1, . . . , n, we have the tangential vector fields Ei = ∂
∂xi

+ ∂u
∂xi

∂
∂xn+1 and the

upward-pointing unit vector field ν normal to graph(u). Writing hij = g(Ei, Ej) for
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the restriction metric, the mean curvature of graph(u) can be written

Hg = hijg(ν,∇EiEj)

=
(
gij − ∇iu∇ju

1+|∇u|2

) [
∂2u

∂xi∂xj
+ Γn+1

ij + ∂u
∂xi

Γn+1
n+1 j + ∂u

∂xj
Γn+1
n+1 i + ∂u

∂xi

∂u
∂xj

Γn+1
n+1 n+1

− ∂u
∂xr

(
Γrij + ∂u

∂xi
Γrn+1 j + ∂u

∂xj
Γri n+1 + ∂u

∂xi

∂u
∂xj

Γrn+1 n+1

) ]
,

(A.4)

see [30, Section 7.1] for a detailed exposition in the 3-dimensional case.

Next, we will apply the Schauder estimates to the geometric setting in Section

3.2.

Corollary A.2.1. Suppose the unit ball B = B1(0) ⊂ Rn+1 is equipped with a

Riemannian metric g satisfying

sup
x∈B
|gij(x)− δij| ≤ µ0, sup

x∈B

∣∣∣∣∂gij∂xk
(x)

∣∣∣∣ ≤ µ0

in Euclidian coordinates for all 1 ≤ i, j, k ≤ n + 1 where µ0 is the constant from

Lemma A.2.1. Let C > 0 be given and set r = min(1
8
, 1√

80C
). Assume that Σ ⊂ B is a

properly embedded minimal hypersurface with respect to g such that supB |Ag|2 ≤ C

and there is a point x0 ∈ Br(0) ∩ Σ. Then there is a smooth function u : U → R on

U ⊂ Tx0Σ and a unit normal vector to Tx0Σ such that

1. graph(u) = BΣ
2r(x0);

2. |∇u| ≤ 1 and |∇∇u| ≤ 1
s
√

2
hold pointwise;
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3. for each k ≥ 1 and α ∈ (0, 1) there is a constant C ′ > 0, depending only on

n, k, α, and ||g||Ck,α(B), such that

||u||Ck,α(U) ≤ C ′. (A.5)

Moreover, the connected component of Br(x0) ∩ Σ containing x0 is contained in

BΣ
2r(x0).

Proof. The choice of radius r allows us to apply Lemma A.2.1 to obtain an open

subset U ⊂ Tx0Σ ⊂ Rn+1, a unit vector η normal to Tx0Σ, and a smooth function

u : U → R such that graph(u) = BΣ
2s(x0), |∇u| ≤ 1, and |∇∇u| ≤ 1

s
√

2
on U . Since Σ

is minimal, u solves equation H = 0. Now since ||u||C1,α(U) is bounded for any fixed

α ∈ (0, 1), one can inspect the expression A.4 to see that u solves a linear elliptic

equation with coefficients bounded in Cα in terms of µ0 and r. This allows us to

apply Theorem A.1.2 to obtain the estimate ||u||C2,α(U ′) ≤ C||u||C0(U) for some C > 0

depending only on µ0 and r. Standard elliptic estimates [29, Section 6] give a similar

estimate in the Ck,α-norm for any k.

A.3. Details on Theorem 1.5.4

Let us recall some basic notions from theory of integer multiplicity currents. The

main reference for this material is [15, Chapter 4].

For an open subset U ⊂ Rn+k, let Ωn(U) denote the space of all n-forms on Rn+k

with compact support in U . An n-current on U is a continuous linear functional

T : Ωn(U)→ R and collection of such T for a vector space Dn(U). The boundary of
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an n-current T is the (n− 1)-current ∂T defined by

(∂T )(ω) = T (dω), ω ∈ Ωn−1(U).

The mass of T ∈ Dn(U) is given by M(T ) = sup{T (ω) : ω ∈ Ωn(U), |ω| ≤ 1}. For

example, if T is given by integration along a smooth oriented submanifold M , then

M(T ) = Vol(M).

Let Hn denote the n-dimensional Hausdorff measure on Rn+k. A current T ∈

Dn(U) is called integer multiplicity rectifiable (or simply rectifiable) if it takes the

form

T (ω) =

∫
M

ω(ξ(x))θ(x)dHn(x), ω ∈ Ωn(U), where (A.6)

1. M ⊂ U is Hn-measurable and countably n-rectifiable, see [15, Section 3.2.14];

2. θ : M → Z is locally Hn-integrable;

3. forHn-almost every x ∈M , ξ : M → ΛnTRn+k takes the form ξ(x) = e1∧. . .∧en

where {ei}ni=1 form an orthonormal basis for the approximate tangent space

TxM , see [15, Section 3.2.16].

Remark A.3.1. The above definition of integer multiplicity rectifiable currents can

also be extended to Riemannian manifolds (M, g) – one defines the mass of a current

using the Hausdorff measure given by the metric g.

The regular set reg(T ) of a rectifiable n-current T is given by the set of points x ∈

spt(T ) for which there exists an oriented n-dimensional oriented C1-submanifold M ⊂

U , r > 0, and m ∈ Z satisfying

T |Br(x)(ω) = m ·
∫
M∩Br(x)

ω, ∀ω ∈ Ωn(U).
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The singular set sing(T ) is given by spt(T ) \ reg(T ). The abelian group of n-

dimensional integral flat chains on U is given by

Fn(U) = {R + ∂S : R ∈ Dn(U) and S ∈ Dn+1(U) are rectifiable}.

Now we consider subsets B ⊂ A ⊂ U . We have the group of integral flat cycles

Cn(A,B) = {T ∈ Fn(U) : spt(T ) ⊂ A, spt(∂T ) ⊂ B, or n = 0}

and the subgroup of integral flat boundaries

Bn(A,B) = {T + ∂S : T ∈ Fn(U), spt(T ) ⊂ B, S ∈ Fn+1(U), spt(S) ⊂ A}.

The quotient groups Hn(A,B) = Cn(A,B)/Bn(A,B) are the n-dimensional integral

current homology groups .

There is a natural transformation between the integral singular homology

functor and the integral current homology functor which induces an isomorphism

Hn(A,B; Z) ∼= Hn(A,B) in the category of local Lipschitz neighborhood retracts,

see [15, Section 4.4.1]. This isomorphism can be combined with a basic compactness

result for rectifiable currents to find volume minimizing representatives of homology

classes.

Lemma A.3.1. Let (M, ḡ) be a compact (n + 1)-dimensional Riemannian manifold

with boundary and consider an integral homology class α ∈ Hn(M,∂M ; Z). Let α̃ ∈

Hn(M,∂M) be the image of α under the isomorphism Hn(M,∂M ; Z)→ Hn(M,∂M).

Then there exists a homologically volume minimizing integer multiplicity rectifiable

current T ∈ α̃.
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Proof. By the Nash embedding theorem there is an isometric embedding ι : M →

Rn+k for some sufficiently large k. Let M̂ be the image of this embedding and set

α̂ = ι∗α̃ ∈ Hn(M̂, ∂M̂). Applying the compactness result in [15, Section 5.1.6], we

obtain a homologically volume minimizing current T̂ ∈ Cn(M̂, ∂M̂) representing α̂.

Since ι is an isometry, (ι−1)∗T̂ is the desired current.

Since Lemma A.3.1 guarantees the existence of homologically volume minimizing

representative for the homology class α from the hypothesis of Theorem 1.5.4, the

final ingredient is regularity theory for volume minimizing rectifiable currents with

free boundary. The following is a regularity theorem due to M. Grünter [17, Theorem

4.7] adapted to the context of an ambient Riemannian metric. See [18, 22, 31] for

Riemannian adaptations of similar results.

Theorem A.3.2. Let S ⊂ Rn+1 be an n-dimensional smooth submanifold, U ⊂

Rn+1 an open set with ∂S ∩ U = ∅, and g a Riemannian metric on U with bounded

injectivity radius and sectional curvature. Suppose T ∈ Fn(U) with spt(∂T ) ⊂ S

satisfies Mg(T ) ≤Mg(T+R) for all open W ⊂⊂ U and all R ∈ Fn(U) with spt(R) ⊂

W and spt(∂R) ⊂ S. Then we have

– sing(T ) = ∅ if n ≤ 6

– sing(T ) is discrete for n = 7

– dimH(sing(T )) ≤ n− 7 if n > 7

where dimH(A) denotes the Hausdorff dimension of a subset A ⊂ U .

We will briefly explain how Theorem 1.5.4 follows from Theorem A.3.2. Let

T be the volume minimizing representative of ᾱ from Theorem 1.5.4. For a point
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x ∈ spt(T ), set φ = expḡx and consider

U = φ−1(Bḡ
r′(x)) ⊂ TxM, S = φ−1(∂M ∩Bḡ

r (x)),

T ′ = (φ−1)∗T ∈ Dn(U), g = (φ−1)∗ḡ,

where 0 < r′ < r ≤ inj(ḡ). By Theorem A.3.2, the singular set of T ′ is empty and so

there is a neighborhood V of 0 ∈ U such that T ′|V is given by an integer multiple of

integration along a C1-submanifold M ⊂ V . Locally, M can be written as the graph

of a C1-function which weakly solves the minimal surface equation. Standard elliptic

PDE methods imply that M is smooth, see, for instance the proof of Lemma A.3.3

below.

A.31. Doubling minimal hypersurfaces with free boundary

In this section we consider the reflection of a free boundary stable minimal

hypersurface over its boundary. To fix the setting, let (M, ḡ) be an (n+1)-dimensional

compact oriented Riemannian manifold with boundary ∂M and restriction metric

g = ḡ|∂M . Assume that there is a neighborhood of the boundary on which

ḡ = g∂M + dt2. The double of (M, ḡ) is the smooth closed manifold MD given by

MD = M ∪∂M (−M). Notice that the double MD comes equipped with an involution

ι : MD → MD which interchanges the two copies of M and fixes the doubling locus

∂M ⊂ MD. Since ḡ splits as a product near the boundary, one can also form the

smooth doubling of ḡ, denoted by ḡD, by setting ḡD = ḡ on M and ḡD = ι∗ḡ on −M .

Lemma A.3.3. Let (M, ḡ) be a compact oriented Riemannian manifold with

boundary with ḡ = g + dt2 near ∂M . If Σ ⊂ M be a properly embedded minimal
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hypersurface with free boundary, then double of Σ, given by ΣD = Σ ∪∂Σ ι(Σ) is a

smooth minimal hypersurface of (MD, ḡD). Moreover, if Σ is stable, then so is ΣD.

Proof. First, we will show that ΣD is a smooth hypersurface. Clearly, ΣD is smooth

away from the doubling locus ∂Σ ⊂MD. Let x0 ∈ ∂Σ and let r > 0 be less than the

injectivity radius of ḡD. Set φ = expḡDx0
and consider

Σ̂ = φ−1(Σ ∩Br(x0)), Σ̂D = φ−1(ΣD ∩Br(x0)), ĝ = φ∗ḡD

and ν, the unit normal vector field to Σ̂ with respect to ĝ. Evidently, Σ̂ is a minimal

hypersurface in Tx0MD with free boundary contained in Tx0∂M ⊂ Tx0MD with respect

to ĝ. We choose an orthonormal basis for Tx0MD so that, writing x ∈ Tx0M as

(x1, . . . , xn+1) in this basis,

1. Tx0∂Σ̂ = {(x1, . . . , xn−1, 0, 0)};

2. Tx0Σ̂ = {(x1, . . . , xn, 0)};

3. Tx0∂M = {(x1, . . . , xn−1, 0, xn+1)}.

This can be accomplished since Σ meets ∂M orthogonally. In these coordinates, the

involution ι now takes the form (x1, . . . , xn, xn+1) 7→ (x1, . . . ,−xn, xn+1). Notice that,

because the second fundamental form of ∂M vanishes, φ−1(∂M ∩Br(x0)) is contained

in the hyperplane {(x1, . . . , xn+1) : xn = 0}.

For a radius r′ < r, we consider the n-dimensional ball

Bn
r′(0) = {x ∈ Tx0M : xn+1 = 0, ||x|| < r′},
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the n-dimensional half-ball Bn
r′,+(0) = {x ∈ Bn

r′(0) : xn ≥ 0}, and the cylinder

Cr′(0) = {x ∈ Tx0M : (x1, . . . , xn, 0) ∈ Bn
r′(0)}.

For small enough r′, we may write Σ̂ ∩ Cr′(0) as the graph of a function

u : Bn
r′,+(0)→ R, graph(u) = Σ̂ ∩ Cr′(0)

where graph(u) = {(x1, . . . , xn, u(x1, . . . , xn)) : (x1, . . . , xn, 0) ∈ Bn
r′(0)}. Now we may

form the doubling of u to a function uD : Bn
r′(0)→ R, setting

uD(x1, . . . , xn) =


u(x1, . . . , xn) if xn ≥ 0

u(x1, . . . , xn−1,−xn) if xn < 0.

To show ΣD is smooth at x0, it suffices to show that uD is smooth along {x ∈

Bn
r′(0) : xn = 0}.

From the free boundary condition, we have ∂u
∂xn
≡ 0 on {xn = 0} and so uD has a

continuous derivative on all of Bn
r′(0). Since Σ̂ is smooth and minimal, uD is smooth

and solves the minimal graph equation (A.4) with respect to the metric ĝD in the

strong sense on {x ∈ Bn
r′(0) : xn 6= 0}. Moreover, it follows from ∂u

∂xn
≡ 0 on {xn = 0}

and the ι-invariance of ḡD that uD solves the minimal graph equation weakly on the

entire ball Bn
r′(0).

From this point, the smoothness of uD is a standard application of tools from

nonlinear elliptic PDE theory, so we will be brief (see [30, Lemma 7.2]). Standard

estimates for minimizers implies uD ∈ H2(Bn
r′(0)) (see [32, Section 8.3.1]). Writing
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the equation (A.4) in divergence form, we have

∂

∂xi

(
aij
∂uD
∂xj

+ biuD

)
= 0 (A.7)

where the coefficients aij and bi depend on uD and are only differentiable. Since uD

weakly solves equation (A.7),

∫
Bn
r′ (0)

(
aij
∂uD
∂xj

+ biuD

)
∂ψ

∂xi
dx = 0,

for any test function ψ ∈ C∞0 (Bn
r′(0)) Taking ψ to be of the form − ∂w

∂xk
for some

function w and integrating by parts, one finds ∂uD
∂xk

is a weak solution of a uniformly

elliptic linear equation with L∞ coefficients for each k = 1, . . . , n.

Now we may apply the DeGiorgi-Nash theorem (see [29, Theorem 8.24]) to

conclude that, for each r′′ < r′ there is an α ∈ (0, 1) such that ∂uD
∂xk
∈ C0,α(Bn

r′′(0))

for each k = 1, . . . , n. Now uD ∈ C1,α(Bn
r′′(0)) and the functions ∂uD

∂xk
solve a

uniformly elliptic linear equation with Hölder coefficients. The Schauder estimates

from Theorem A.1.2 allow us to conclude that ∂uD
∂xk
∈ C2,α(Br′(0)). This argument

may be iterated, see [29, Section 8], to conclude uD ∈ Ck,α(Bn
r′′(0)) for any k. This

finishes the proof that uD is a smooth solution to the mean curvature equation across

the doubling locus {xn = 0} and hence ΣD is a smooth minimal hypersurface.

The last step is to show that ΣD is stable. Let φ ∈ C∞(ΣD) define a normal

variation and write φ = φ0 + φ1 where φ0 is invariant under the involution and φ1 is

anti-invariant under the involution. Now we will consider the second variation of the
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volume of ΣD with respect to φ.

δ2
φ(ΣD) =

∫
ΣD

|∇φ|2 − φ2(Ric(ν, ν) + |A|2)dµ

=

∫
ΣD

|∇φ0|2 + 2g(∇φ0,∇φ1) + |∇φ1|2 − (φ2
0 + 2φ0φ1 + φ2

1)(Ric(ν, ν) + |A|2)dµ

= δ2
φ0

(ΣD) + δ2
φ1

(ΣD) +

∫
ΣD

2g(∇φ0,∇φ1)− 2φ0φ1(Ric(ν, ν) + |A|2)dµ

= 2δ2
φ0|Σ(Σ) + 2δ2

φ1|Σ(Σ) ≥ 0

where the last equality follows from the fact that g(∇φ0,∇φ1) and φ0φ1 are anti-

invariant under the involution. This completes the proof of Lemma A.3.3.

A.32. Second fundamental form bounds

In this section, we will prove Step 2 in Section 3.25. Let (Mi, ḡi) and Wi be

as in Main Lemma. The uniform second fundamental form bounds for the stable

minimal hypersurfaces Wi ⊂ Mi can be reduced to a classical estimate due to

Schoen-Simon [25] for stable minimal hypersurfaces in Riemannian manifolds. In the

following, (M, ḡ) is a complete (n + 1)-dimensional Riemannian manifold, x0 ∈ M ,

ρ0 ∈ (0, injḡ(x0)), and µ1 is a constant satisfying

supBρ(0)

∣∣∣∂ḡij∂xk

∣∣∣ ≤ µ1, supBρ(0)

∣∣∣ ∂2ḡij
∂xk∂xl

∣∣∣ ≤ µ2
1, (A.8)

on the metric ball Bρ0(x0) in geodesic normal coordinates (x1, . . . , xn+1) centered at

x0.

Theorem A.3.4 (Corollary 1 [25]). Suppose Σ is an oriented embedded C2-

hypersurface in an (n + 1)-dimensional Riemannian manifold (M, ḡ) with x0 ∈ Σ,

µ1 satisfies (A.8), and µ satisfies the bound ρ−n0 Hn(Σ ∩ Bρ0(x0)) ≤ µ. Assume that
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Hn(Σ ∩ Bρ0(x0)) <∞ and Hn−2(sing(Σ) ∩ Bρ0(x0)) = 0. If n ≤ 6 and Σ is stable in

Bρ0(x0), then

sup
Bρ0 (x0)

|AΣ| ≤ C

ρ0

,

where C depends only on n, µ, and µ1ρ0.

Proof of Step 2. By Lemma A.3.3, the doubling (Wi)D is a smooth stable minimal

hypersurface of (Mi)D. In particular, the singular set of (Wi)D is empty. Moreover,

the manifolds (Mi)D have uniformly bounded geometry so that the injectivity radius

is uniformly bounded from below by some ρ0 > 0, and there is a constant µ1 so that

the bounds (A.8) hold in normal coordinates about any x ∈ (Mi)D, any ρ ∈ (0, ρ0),

and all i = 1, 2. . . .. According to Step 1, there is a constant µ such that

ρ−n0 Vol(Wi ∩Bρ(x)) ≤ µ

for all i = 1, 2, . . .. Hence, we may uniformly apply Theorem A.3.4 on any ball

Bρ0(x0) ⊂ (Mi)D intersecting Wi to obtain the bound in Step 2.

A.33. Generic regularity in dimension 8

It is well known that codimension one volume minimizing currents, in general,

have singularities if the ambient space is of dimension 8 or larger. However, in

[27] N. Smale developed a method for removing these singularities in 8-dimensional

Riemannian manifolds by making arbitrarily small conformal changes. In this section,

we will describe the modifications necessary to adapt his method to the case of

Theorem 1.5.6 with n = 7.

First, we will describe the perturbation result we will use. Let M be a compact

(n+ 1)-dimensional manifold. For k = 3, 4, . . ., letMk
0 denote the class of Ck metrics
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on M which split isometrically as a product on some neighborhood of ∂M . Fix a

relative homology class α ∈ Hn(M,∂M ;Z). We will show the following.

Theorem A.3.5. Let g0 ∈ Mk
0 and n = 7. For ε > 0, there exists a metric g ∈ Mk

0

and a g0-volume minimizing current T representing α such that ||g − g0||Ck < ε and

spt(T ) is smooth.

The proof of Theorem A.3.5 follows by showing the constructions in [27] can

be performed on the doubled manifold MD (see Appendix A.31) in an involution-

invariant manner. We proceed in two lemmas. The first lemma holds in any

dimension.

Lemma A.3.6. Let g0 ∈ Mk
0 and suppose T is a homologicly g0-volume minimizing

current representing α. For ε > 0, there is a metric g ∈Mk
0 such that ||g−g0||Ck < ε

and T is the only g-volume minimizing current representative of α.

Proof. Let A, dµ = θdHn, and ξ be the underlying rectifiable set, measure, and

choice of orientation for the approximate tangent space of A associated to the current

T (see Section A.3). We may write A = ∪Nj=1Aj where each Aj are connected. Choose

pj ∈ reg(Aj) \ ∂M and ρ > 0 so that

(Bρ(pj) ∩ Aj) ⊂ (reg(A) \ ∂M) , j = 1, . . . , N.

Perhaps restricting to smaller ρ, let x = (x1, . . . , xn) be geodesic normal coordinates

for Bρ(pj) ∩ Aj and let t be the signed distance on Bρ(pj) from Aj determined by ξ.

This gives Fermi coordinates (t, x) on Bρ(pj). Now fix a bump function η : A→ [0, 1]

satisfying

η(x) =


1 for x ∈ Bρ/2(pj) ∩ Aj

0 for x ∈ Bρ(pj) \B3ρ/4(pj)
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for each j = 1, . . . N . Also fix a smooth function φ : R→ R with spt(φ) ⊂ [−3/4, 3/4],

φ(t) ≥ 0 on [−1, 1], φ(0) = 1, and φ(r) < 1 if r 6= 0.

Consider the function φε̄ : M → R given by

φε̄(y) =


1− ε̄k+1φ(t/ε̄)η(x) if y = (x, t) ∈ Bρ(pj) for some j

1 otherwise

for ε̄ > 0 satisfying spt(φε̄) ⊂ ∪Nj=1B3ρ/4(pj). We have the perturbed metrics gε̄ =

φ
2
n
ε g0 ∈ Mk

0. It is straight-forward to show that there exists ε1 ∈ (0, ε) such that,

for any ε̄ ∈ (0, ε1], T is the only gε̄-volume minimizing representative of α (see [27]).

Perhaps restricting to smaller values of ε̄, we may also arrange for ||g − gε̄||Ck < ε.

This completes the proof of Lemma A.3.6.

Lemma A.3.7. Let n = 7, k ≥ 3, g0 ∈ Mk, and ε > 0. Suppose T is the

only g0-volume minimizing representative of α, then there exists g ∈ Mk such that

||g − g0||Ck < ε and α may be represented (up to multiplicity) by a smooth g-volume

minimizing hypersurface.

Proof. Following [27], we construct a conformal factor which will slide the minimizing

current off itself in one direction and appeal to a perturbation result for isolated

singularities which allows us to conclude that this new current has no singularity.

Write (MD, g0,D) for the doubling of (M, g0) (see Section A.31) with involution ι :

MD → MD. The current T may also be doubled to obtain an involution-invariant

current TD on MD. Similarly to Section A.31, TD is locally g0,D-volume minimizing.

Let A = ∪Nj=1Aj, dµ = θdH7, and ξ be the underlying set, measure, and orientation

associated to T , as in the proof of Lemma A.3.6.
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Let ρ0 > 0 and fix a smooth function φ : R→ R satisfying

1. φ(−t) = −φ(t),

2. φ(t) ≥ 0 for t ≥ 0,

3. φ(t) = t for t ∈ [0, ρ0

4
],

4. φ(t) = ρ0

2
for t ∈ [ρ0

2
, 3ρ0

4
],

5. φ(t) = 0 for t ≥ ρ0.

Let {Bρ(pj)}Nj=1 be a collection of disjoint metric balls in M̊ centered at regular

points pj ∈ Aj. Choose ρ0 > 0 small enough to ensure that, in Fermi coordinates

(t, x) for Aj with ξ pointing into the side corresponding to t > 0, the function (t, x) 7→

φ(t)η(x) is supported in ∪Nj=1Bρ(pj). For a fixed s ∈ (0, 1) and a parameter ε̄ ∈ (0, 1),

consider the functions uε̄ : Σ→ R given by

uε̄(y) =


1− ε̄sφ(t)η(x) if y = (t, x) ∈ ∪Nj=1Bρ(pj)

1 otherwise.

The conformal metrics gε̄ = u
2
n
ε̄ g0 will be used to find the desired smooth

representative. Since gε̄ splits as a product near ∂M , we may consider the

corresponding ι-invariant metric gε̄,D on MD.

For sake of contradiction, suppose that there is a sequence ε̄i → 0 and

homologically gε̄i-volume minimizing currents Ti representing α with sing(Ti) 6= ∅

for all i = 1, 2, . . . . Since M(Ti) is uniformly bounded in i, Ti weakly converges to

some homologically g0-volume minimizing current T∞ which also represents α. Since

T is assumed to be the unique such current, we must have T∞ = T . Write Pi, dµi,
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and ξi for the set, measure, and orientation corresponding to Ti for i = 1, 2, . . .. Let

Qi be a connected component of Pi with sing(Qi) 6= ∅ for each i = 1, 2, . . .. Now

Qi converges in the Hausdorff sense to some sheet Q of T . By the Allard regularity

theorem [33], this convergence is smooth away from sing(Q). Hence, after passing to

a subsequence, yi converges to some y ∈ sing(Q).

In terms of the doubled manifold, the ι-invariant currents Ti,D are homologically

gε̄i,D-volume minimizing, Ti,D weakly converge to T0,D, and the doubled sets Qi,D

converge to QD smoothly away from sing(QD). Now let N ⊂MD be a small distance

neighborhood of QD so that N \QD consists of two disjoint, open sets N− and N+ on

which the signed distance to QD is negative and positive, respectively. In the doubled

manifold, we may directly apply the following results from [27].

Lemma A.3.8. [27, Proposition 1.6] For large i, we have

1. Qi,D ∩N− = ∅

2. Qi,D ∩N+ \ spt(φεiη)D 6= ∅.

In light of Lemma A.3.8, the Simon maximum principle [34] shows

(Qi,D \ spt(φiη)D) ⊂ (N+ \ spt(φiη)D)

for each i = 1, 2, . . .. Recalling thatQi,D converges toQD in the Hausdorff distance, we

may apply the perturbation result [35, Theorem 5.6] to conclude that Qi,D is smooth

for sufficiently large i. This contradiction finishes the proof of Lemma A.3.7.

Theorem A.3.5 follows by first applying Lemma A.3.6 to approximate g0 with

a metric g1 supporting a unique minimizing representative of α then applying

127



Lemma A.3.7 to approximate g1 with a metric g2 and obtain a g2-volume minimizing

representative of α.

Proof of Theorem 1.5.6 for n = 7. We will closely follow the argument presented in

Section 3.3. Let (Z, ḡ, γ̄) : (Y0, g0, γ0)  (Y1, g1, γ1) be a psc-bordism and let

(Zi, ḡi, γ̄i) be the corresponding i-collaring for i = 1, 2, . . .. As usual, we denote

by ᾱi ∈ H7(Zi, ∂Zi;Z) the Poincaré dual to γ̄i.

For each i = 1, 2, . . ., we apply Theorem A.3.5 to obtain a metric ĝi on Zi so that

||ĝi − ḡi||Ciḡi ≤
1

i

and ᾱi can be represented by a smooth ĝi-volume minimizing hypersurface Wi. It

follows from the proofs of Lemmas A.3.6 and A.3.7 that ĝi can and will be chosen

so that {ĝi 6= ḡi} ⊂ M1 ⊂ Mi for i = 1, 2, . . .. Indeed, the perturbations required

to form ĝi are supported on balls centered about chosen regular points of ḡi-volume

minimizing currents and one can always find regular points of minimizers of ᾱi in

M1 ⊂Mi. Evidently, ĝi has positive scalar curvature for all sufficiently large i. Since

ĝi = ḡi on Y × [−i, 0] ⊂ Zi, the proof of the Main Lemma shows that there is a

subconvergence

(Zi,Wi, ĝi, Si)→ (Y × (−∞, 0], X × (−∞, 0], g + dt2, S)

where Y,X, g, Si, and S∞ are defined as in Section 3.3. One can now directly apply

the argument from 3.31 to finish the proof of Theorem 1.5.6 for n = 7.
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