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We investigate Cesaro summability of the Fourier orthogonal expansion of

functions on Ed X Im, where Ed is the closed unit ball in }Rd and Im is the m-fold

Cartesian product of the interval [-1, 1], in terms of orthogonal polynomials with

respect to the weight functions (1 - z)O«l + z),6(l - IxI 2)A-l/2, with z E Im and

x E Ed. In addition, we study a discretized Fourier orthogonal expansion on the

cylinder E 2 x [-1,1], which uses a finite number of Radon projections. The

Lebesgue constant of this operator is obtained, and the proof utilizes generating

functions for associated orthogonal series.
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CHAPTER I

INTRODUCTION

The study of Fourier orthogonal expansions of a function in terms of an

orthogonal basis is a classical topic. The most well-known example is the Fourier

series of a function on 'II', the unit circle in lR2
, which is an expansion in terms of

the orthogonal basis {einx : n E Z}. An orthogonal polynomial sequence is a basis

of polynomials with an added structure, that polynomials of different degrees are

orthogonal with respect to an inner product. For orthogonal polynomials in one

variable, Fourier orthogonal expansions have been studied extensively; see, for

example, [15]. However, for orthogonal polynomials in several variables, there are

open questions and active research in the area of expansions and approximations,

and orthogonal polynomials in general.

It is frequently the case that Fourier orthogonal expansions will not

converge for all functions in a function space. For example, it is well known that

the Fourier series of a continuous function converges in V('II'), for 1 < p < 00, but

for p = 1 and uniform convergence, the Fourier series is not necessarily convergent.

Different summability methods must be employed in these function spaces to

achieve convergence. In general, Fourier orthogonal expansions may not converge

to the original function, and different summability techniques, such as Cesaro

means, can be used to achieve convergence. The Cesaro summability of Fourier
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orthogonal expansions has been studied on B d in [17] and 1m , the m-fold Cartesian

product of the interval [-1, 1], in [9]. We will generalize these results and

investigate the Cesaro summability of the Fourier orthogonal expansion of a

function defined on the cylinder, B d X 1m , where B d is the closed unit ball in :!Rd,

and 1m is the m-fold cartesian product of the interval [-1, 1], in terms of the

orthogonal polynomials for the space, with respect to the weight function

i = 1,2, ... , m, and x E B d with A > -1/2.

Another interesting field in approximation theory is the study of discretized

Fourier orthogonal expansions. For example, if we consider the Fourier series of a

function on 11', the Fourier coefficients of a function f are given by the integrals

r21r

in = Jo f(t)e-
int

dt,

for n E Z. The data from the function f is continuous data; that is, it relies on the

values of f on its entire domain. This integral may be discretized by a quadrature

rule, so that the discretized expansion only requires values of f at a finite set of

points, rather than values of f on the entire circle. This method of discretizing the

coefficients of an expansion by means of a quadrature is called hyperinterpolation,

and was first suggested by Sloan in [14]. For expansions of functions defined on

higher dimensional regions, another approach uses approximation by a finite

number of Radon projections, or integrals over hyperplanes intersected with the

region. The basis for this approach relies on the connection between orthogonal

polynomials and Radon projections of functions on B 2 , which was first studied in

[11] and [10]. This connection was generalized to B d in [13]. Using the original

relationship on B 2 , a discretized Fourier orthogonal expansion on B 2 involving
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finite Radon projections was found in [18]. We will study the convergence of a

discretized Fourier orthogonal expansion on the space B 2 x [-1, 1], where the

discrete data is a finite set of Radon projections of f taken on parallel disks which

are perpendicular to the axis of the cylinder. This particular discretization has

application in the field of computerized tomography (CT), as Radon projections of

f correspond with X-ray data in CT.

The dissertation is organized as follows. In chapter 2, we will present

information on orthogonal polynomials, Fourier orthogonal expansions in terms of

orthogonal polynomials, and the Cesaro summation technique for orthogonal

expansions. In chapter 3, we will present the theorem and proof of the result on

the convergence of the Cesaro means of the Fourier orthogonal expansion on

B d X 1m . In chapter 4, we will introduce the Radon transform, and discuss its

connection to orthogonal polynomials and Fourier orthogonal expansions. We will

then derive the discretized Fourier orthogonal expansion on B 2 x [-1, 1], and we

will prove a result on the Lebesgue constant of this discretized expansion.
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CHAPTER II

ORTHOGONAL POLYNOMIALS AND EXPANSIONS

11.1 Definitions and General Theory

II.l.l Definitions

We first present basic information about orthogonal polynomials. The

standard references are [5] for orthogonal polynomials in several variables, and [15]

for orthogonal polynomials in a single variable. VVe let x = (Xl, X2, ... ,Xd) ElR?d

and say that a polynomial P is of total degree n if

n

P(x) = L L cax(t,

i=O lal=n

where C(t are real coefficients, and at least one of the coefficients Cn with lal = n is

non-zero. For this dissertation, when we say a polynomial is of degree n in d

variables, it is meant that P is a polynomial of total degree n. We define TId to be

the space of polynomials in d variables, and rr~ to be the space of polynomials in d

variables of total degree less than or equal to n.
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Let (-,.) be an inner product on rrd. A polynomial P of degree n is an

orthogonal polynomial with respect to (-, .) if (P, Q) = 0 whenever Q is a

polynomial of degree less than n. A polynomial P is orthonormal with respect to

(-,.) if P is an orthogonal polynomial, and (P, P) = 1. We let V~ denote the space

of orthogonal polynomials in d variables of degree n.

This inner product is often given in the form

(P, Q) = 1P(x)Q(x) dp,(x),

where n is a subset of]Rd and p, is a Borel measure on n. In this case, the space of

orthogonal polynomials of degree n is denoted Vn(n; p,). In the case that p, is the

Lebesgue measure, we will denote the space of orthogonal polynomials by Vn(n).

A natural question is whether a basis of orthogonal polynomials exists for a given

space n and measure p,. For the situations dealt with in this dissertation, the

answer to the question is given by the theorem below; see [5, Cor 3.1.9].

Theorem ILL Let p, be a Borel measure on n which satisfies

1. In (P(X))2 dp,(x) > 0 for all P E rrd with P =1= 0, and

2. In XCi dp,(x) < 00 for all aENg.

Then there exists an basis of orthogonal polynomials for rrd.

If the second condition is satisfied, we say that p, has finite moments. If p, is

a positive measure, and p, has finite moments, the theorem ensures that a basis of

orthogonal polynomials exists. In the specific situations we will study, these

conditions will be satisfied. For the remainder of the chapter, we will assume we

are working with a space n and measure p, which satisfy the conditions of this

theorem.
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In the case where d = 1, the space V~ has one basis element. We may order

the orthogonal polynomials by degree to obtain an orthogonal polynomial sequence,

which is an ordered basis of orthogonal polynomials. In several dimensions,

however, the space V~ is spanned by several polynomials. Specifically, it is

well-known that

(
n +nd -1).dim V~ = r~:=

By summing this up, we conclude that

There are several different bases that may be chosen for V~. We choose one basis,

Pf, P:;:, ... , P~, and define the column vector lPn by
Tn

pn
1

p,n
lPn =

2
(II.l.1)

pn
T d

n

This vector notation, introduced in [7] and [8], and further investigated in [16],

allows for the generalization of several properties of orthogonal polynomials of one

variable, independently of the choice of basis for V~, as we will see below.

II. 1. 2 Properties of Orthogonal Polynomials of One Variable

Assume that /1 is a Borel measure on n that satisfies the conditions of

Theorem (11.1), and let {Po, PI,·· .}, where the degree of Pn is n, be the orthogonal

polynomial sequence guaranteed by the theorem. The following properties hold.
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Theorem II.2. (15, Thm 3.2.1) For n > 0, there exist constants An' En' and Cn

which satisfy the the recurrence relation

where P-I and P-2 are defined to be the zero polynomial. Furthermore, if kn

denotes the leading coefficient of Pn (x), then An and Cn satisfy

A kn en = An = kn~n-2.
n = -k-' A k

n-I n-I n-I

We next define the reproducing kernel. We define the value hn by

hn :=1p~(x)dw(x). (II. 1.2)

Definition ILL The reproducing kernel of degree n, Kn(x, y) of the orthogonal

polynomial sequence Po, PI, P2, ... is a function defined on n x n, given by the

formula
n

Kn(x, y) = ~ h;lpk(X )Pk(Y)'
k=O

The reproducing kernel "reproduces" polynomials of degree less than or

equal to n; that is,

1Kn(x, y)P(x) df1(x) = P(y),

if P E IIn . The three-term recurrence relation allows one to write the reproducing

kernel in a compact form.
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Theorem 11.3. [15, Thm. 3.2.2} For n ~ 0,

for x =I- y; if x = y, then

One of the most useful properties of orthogonal polynomials is the

quadrature rule known as Gaussian quadrature. A quadrature rule is a numerical

integration technique. For an m-point quadrature rule, a set of points,

Xl, X2, .. ·, X m , and a set of weights, AI, A2,"" Am, are fixed, and the rule is given

by

In the case where the rule gives equality for a function f, we say the quadrature is

exact for f. Often, the effectiveness of a quadrature is gauged by the largest

integer n for which the quadrature is exact for all polynomials of degree less than

or equal to n. For an m-point quadrature, the largest possible value of n is 2m - 1;

an m-point quadrature is said to be a Gaussian quadrature if the quadrature is

exact for all polynomials of degree less than or equal to 2m - 1. A Gaussian

quadrature is fundamentally related to orthogonal polynomials, but before we

state this relationship, we present a theorem about the zeroes of an orthogonal

polynomial sequence.

Theorem 11.4. Let {Po, PI, ...} be an orthogonal polynomial sequence on 0 with

respect to p,. The polynomial Pn has n real, distinct zeroes, Xn,l < X n ,2 < ... < xn,n'

Moreover, for any two adjacent zeroes of Pn, Xk,n and Xk+l,n, there is a zero of
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Pn+l, Xk+l,n+l, with Xk,n < Xk+l,n+l < Xk+l,n'

The relationship between an orthogonal polynomial sequence and a

Gaussian quadrature is given in the following theorem.

Theorem 11.5. Let f-L be a weight function on n c ]R that satisfies the conditions

of Theorem (ILl). Let Xl,m, X2,m,"" xm,m denote the zeroes of the degree m

orthogonal polynomial with respect to f-L on n. The quadrature rule given by

is exact for all polynomials of degree less than or equal than 2m - 1.

The Gaussian quadrature is considered to be the best quadrature for

integration over subsets of]R, because of its high level of exactness.

II.1.3 Properties of Orthogonal Polynomials of Several Variables

(IL1.3)

(II. 1.4)

Assume that f-L is a Borel measure on n c ]Rd, with d ~ 2, such that the

conditions of Theorem (II. 1) are satisfied. Some of the properties of orthogonal

polynomials of one variable generalize to orthogonal polynomials of several

variables.

Theorem 11.6. (5, Thm 3.2.1) Let n ~ 0, and let JlDn denote the column vector of

orthogonal polynomials on n with respect to f-L, where n c ]Rd with d ~ 2. The

polynomials satisfy the three-term recurrence relation
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where P-1 = 0) and An,i is an n x (n + 1) matrix) Bn,i is a n x n matrix) and Cn,i

is an n x (n - 1) matrix.

Much more can be said about the matrices in the three-term recurrence

relation; see Chapter 3 in [5]. The three term relation also enables one to derive a

compact form for the reproducing kernel for orthogonal polynomials in several

variables. For an orthogonal polynomial sequence in several variables, the

reproducing kernel, Kn(x, y), with x, y E JRd, is defined by

n

Kn(x, y) = L pf(X)H;lPk(y),
k=O

with the matrix H k defined by

Theorem 11.7. (5) Thm 3. 5.3} Let n 2:: 0 and let Pn denote the column vector of

orthogonal polynomials as described in the previous theorem. For x, y E JRd) the

reproducing kernel may be written in the form

1 :::; i :::; d,

While the properties above generalize from the theory of orthogonal

polynomials of a single variable to orthogonal polynomials of several variables,

other properties do not generalize well. Among the properties that do not

generalize well are those concerning the zeroes of orthogonal polynomials and

Gaussian quadratures. While zeroes of polynomials of a single variable are points,



11

zeroes of orthogonal polynomials of several variables may be algebraic curves, a

fact which does not lend itself to easy generalization. There is much that can be

said in this direction, but it is removed from the problems we will be investigating,

so we direct the reader to [5].

11.2 Examples of Orthogonal Polynomials

II. 2. 1 Examples in One Variable

Jacobi Polynomials

On the interval [-1,1], the Jacobi polynomials are given by the formula

This type of formula is called a Rodriguez type formula. The Jacobi polynomials

are orthogonal with respect to the weight function w(Q,{3) (x) = cQ,t1(l - x)Q(l + x)t1

on [-1, 1], with a, /3 > -1, and

r(a+/3+2)
C

Q ,t1 = f(a + l)f(/3 + 1)2Q +t1+1 '

where f(x) is the the gamma function, defined on (0,00) by

The value hn defined in (II.1.2) is given by

22nn! f(a + /3 + 2)
h = (a + 1) (/3 + 1)

n 2n+a+/3+1f(n+a+/3+1) n n,
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where the shifted factorial, (a)n' is defined by

( ) = r(a + n)
a n r(a)' (II.2.5)

We will be working with the orthonormal Jacobi polynomials, which will be

denoted by

Gegenbauer Polynomials

A special subcase of the Jacobi polynomials are the Gegenbauer, or

Ultraspherical, polynomials, C~. These polynomials are defined by the formula

The Gegenbauer polynomials are orthogonal with respect to the weight

(1 - X 2)A-l/2. The value hn is given by

21- 2An r(n+ 2A)
hn = (r(A))2 (n + A)r(n + 1)'

and the orthonormal Gegenbauer polynomials, C~, are defined by

C~(x) = h;;1/2C~(X). The orthonormal Gegenebauer polynomials and regular

Gegenbauer polynomials are also be related by the equation

(II.2.6)
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Another useful equation the Gegenbauer polynomials satisfy is

t k: AC~(X) = C~+l(X) + c~~i(x).
k=O

This relationship plays a key role in deriving a compact formula for the

reproducing kernel for orthogonal polynomials on Ed.

Chebyshev Polynomials

(II.2.7)

The Chebyshev polynomials of the first and second kinds are special cases

of the Gegenbauer polynomials. The Chebyshev polynomials of the first kind are

defined by

Tn(x) = cos nO, x = cos 0,

and they form an orthogonal polynomial sequence with respect to the weight

function w(x) = ;(1 - X2)-1/2. The value of hn is 1 if n = 0 and 1/2 if n :::: 1. We

denote by Tn the orthonormal Chebyshev polynomials of the first kind, defined by

- 1/2Tn(x) = h:;; Tn(x). The zeroes of Tn (x) are

(
2l + 1 )

Zl n := COS(r1 n) := cos --7f, , 2n , l = 0,1, ... n - 1 (II.2.8)

and the n-point Gaussian quadrature associated with the Chebyshev polynomials

of the first kind is given by

111 dx 1 n-1
- f(x) ~ - z= f (Zl,n).
7f -1 ,,!l - x 2 n 1=0

The Chebyshev polynomials of the second kind are defined by

Un(x)
= sin(n + 1)0 Ll

()
, x = cos fl,

sin 0

(II.2.9)
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and are orthogonal with respect to the weight ~(1- X 2 )1/2 on [-1,1]. The value of

hn is 1/2 for all n. The zeroes of Un(x) are given by

jn
cosBJ· n := cOS--, j = 1,2, ... n,, n+ 1

(11.2.10)

and the Gaussian quadrature associated with the Chebyshev polynomials of the

second kind is given by

II.2.2 Examples in Several Variables

Product Jacobi Polynomials

On 1m , the Jacobi polynomials are given by the product of the one

dimensional Jacobi polynomials; that is,

m

P~Ci,(3) (x) = II P~~i ,(3i) (Xi)
i=l

(II.2.11)

multi-indices, and cti, {3i > -1 for 1 :::; i :::; m. They are orthogonal with respect to

the weight function
m

W(Ci,(3)(X) = IIw(Cii,(3i) (Xi)'

i=l

Recall that p~Ci,(3)(X) is of degree n if h'1 = n, where h'1 = 1'1 + 1'2 + ... + I'm. The

orthonormal Jacobi polynomials are given by

m

p~Ci,(3)(X) = IIp~~i,(3i)(xi)'

i=1
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Given this basis, we denote the column vector of an orthonormal basis of

JP~a,{J) (x) =

A~,{J)(x)

p\~,{J) (x)
(II.2.12)

Orthogonal Polynomials on B d

On B d , we denote the orthogonal polynomials with respect to the weight

wf-t(x) := (1 - IlxI1 2)J.t-1/2, for j.J > 0 and Ilxll denoting the usual Euclidean norm,

by S~(x), where a ENg. There are several different bases for Vn(Bd
, wf-t); we give

an explicit basis below.

Theorem II.B. (5) Prop. 2.3.2}. Let a E Ng with laJ = n. An orthonormal basis

of polynomials for Vn(Bd , wf-t) is given by

Another explicit basis can be given for Vn (B2
). This basis is given by

Un(x cos Bj,n + Y sin Bj,n) , j = 0,1, ... , n (11.2.13)

with Bj,n := :::1' These polynomials were shown to form an orthonormal basis for

Vn (B2
, W1/2) in [10] and play an important role in relating the Radon transform to
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the Fourier orthogonal expansion on B 2 .

Given an orthonormal basis for Vn(Bd
, w/-L), s~ (y), s~ (y), ... ,s~ (y), with

1 2 rg.

y E B d , we write

§~(y) =

s~ d (y)
r n

(II.2.14)

One very useful tool when working with orthogonal polynomials on B d is the

product formula. For M> 0, the formula is given by

[§~(x)f [§~(y)] = n + M~_~11

C~+d21) (x. Y + VI -lx l2 Vl -lyI2t)
M+ -2- -1

(II.2.15)

x W/-L-1/2(t) dt,

while if M= 0, we have

[§~(x)n§~(y)] = n~'¥ [C~";') (x. y + ,h -lx l2V1 -IYI 2
)

+ C~d21) (x. Y - VI -\x[2V1 -lyI2) ]. (11.2.16)

Indeed, this formula provides a compact form for the reproducing kernel of degree

n for polynomials on B d , Kf::(x, y), which is a necessary tool when studying the

convergence properties of expansions in term of orthogonal polynomials. If M> 0,
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then using (11.2.7) with (II.2.15), we obtain

n 1 [( )T (J-t+ d+1
) 2 2K~(x, y) := {; [§~(x)] §~(y) = 11 en -2 x· Y + V1- Ixl V1 -Iyl t

(II.2.17)

(II.2.18)

and a similar formula can be obtained for the case of jj = O.

Orthogonal Polynomials on B d X 1m

For the weight function WJ-t(y)W(a,{3) (x), with y E B d , X E 1m , jj> -1/2 and

a, {J multi-indices with ai, (Ji > -1 for 1 ::; i ::; m, the orthogonal polynomials are

given by the product of the orthogonal polynomials with respect to WJ-t on B d and

the orthogonal polynomials on 1m with respect to w(a,{3). Specifically, the

polynomials

form a basis for the space Vn(B d x 1m ; WJ-t x w(a,{3)). These polynomials will be

studied in Chapter 3.

For jj = -1/2, d = 2, m = 1 and a = (J = -1/2, a basis for

Vn (B 2 x [-1, l];wz), where wz(x,y,z) = ~(1- Z2)-1/2 for (x,y) E B 2 and

Z E [-1, 1], is given by the polynomials

k=O,l,oo.,n, (x,y)EB 2
, ZE[-l,l]. (11.2.19)
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This basis will playa role in our discretized expansion in Chapter IV.

11.3 Fourier Orthogonal Expansion and Cesaro Summability

II. 3.1 Fourier Orthogonal Expansion

If the conditions in theorem (11.1) are satisfied, then an orthonormal basis

of orthogonal polynomials can be obtained for the space rrd. Moreover, with the

inner product defined by

(1, g) = 1f(x)g(x) df-L(x)

this orthogonal polynomial sequence also forms a basis for the Hilbert space

Theorem II. 9. The function space L 2 (0; f-L) J defined as the set of functions f with

can be decor,nposed as

00 00

L 2 (0; f-L) = EB Vn(O, f-L), f = L proh f,
k=O k=O

For orthogonal polynomials in one variable, projk f may be written in the

form

(11.3.20)
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and for orthogonal polynomials of several variables,

(II.3.21)

The best approximation to a function f is L 2 (0,; /1) by polynomials of degree less

than or equal to n is the Fourier partial sum, Snf, defined by

n

Snf = L projk f.
k=l

Using the formulas for proh in (11.3.20) and (II.3.21),

II.3.2 Cesaro Summability

While Snf converges to f in L 2 (0,; d/1), Snf may not necessarily converge in

other normed spaces, such as V(0,; /1) or C(0,). For these spaces, different

summability techniques may be used. One such technique is Cesaro summability,

which we define below.

Definition 11.2. Given a sequence {aI, a2," .}, the Cesaro means of order 15, s~,

are defined to be

where (-nh is defined in (11.2.5). We say that the sequence Cn (or the series LCn )

is Cesaro summable of order 15, or (C, (5) summable, to a if

1· {)
1m Sn = a.

n->oo
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It is known that if a series aI, a2, ... is (C, 5) summable to a for some 5 > 0,

then the series is (C, 5 + h) summable to a for any h > 0 [19, Thm 1.21, Vol. 1].

For a classical application of Cesaro summation, the Fourier series of a

continuous function f may not converge to f in the function spaces L l ('IT') or C ('IT').

However, the (C, 1) means of the Fourier series will converge to f in these spaces.

For orthogonal polynomials, the Cesaro means of order 5 take the form

8 ~ (-nh .
Snf := 6 (-n _ 5h proJk f.

k=O

Recall that Snf may be written in the form of an integral of f against the

reproducing kernel Kn(x, y). We adopt similar notation for the Cesaro means of

order 5. Define

8( ) ~ (-nh -1 () ()
K n x, y = 6 (-n _ 5)k hk Pk X Pk Y

k=O

for orthogonal polynomials of one variable, and

8( ) ~ (-nh [ ()]T -1 ()K n x,y = 6 (-n _ 5)k IP\ X Hk IPk Y
k=O

for orthogonal polynomials in several variables. We may then express the (C, 5)

means as an integral operator,

S~f(x) = 1f(y)K~(x, y) dp,(y).

Frequently, Cesaro summability is first established for the function spaces

c(n) and Ll(n), and then a special case of the Riesz-Thorin theorem [19, Thm

1.11, Vol. 2] is used to extend the result to the spaces V(n; p,), for 1 < P < 00.

Theorem 11.10. Suppose that T is a bounded linear operator on Ll(n; p,) and
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C(O). Then T is also a bounded linear operator on the spaces LP(O;J-l) for

1 < p < 00.

To establish (C,o) convergence for the spaces L1 (0; J-l) and C(O), the

following theorem is used. We only prove this theorem for the case when 0 is a

compact set, since we will be dealing with situations of this type. However,

generalizations to non-compact domains can be proven.

Theorem 11.11. Let 0 be a compact set) and let J-l satisfy the conditions of (11.1),

and the additional condition that J-l(X) > 0 for every set X C 0 with positive

Lebesgue measure. The (C, 0) means S~f converge to f for fELl (0; J-l) or

f E C(O) if there exists a constant M so that

for all yEO and n 2: O.

Proof. Following the proof of [4, Thm 4.2]' we first prove the following claim.

Claim ILL The norm of the operator S~ as an operator on C(O) and L1(0; J-l) is

given by

Proof. Treating S~ as an operator on C(O), we first note that the norm of S~,

IIS~ 1100, satisfies

IIS~lloo = sup sup I rK~(x, y)f(y) dp,(y) I
fEC(n) XEn in
Ilfll==l

:::; sup r IK~(x, y)1 dp,(y)
xEnin
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by moving the absolute value inside the integral and bounding If(x)1 by Ilflloo. For

the other inequality, we note that since the function

is continuous in x, it achieves its maximum, N, at some point xo. Let

(II.3.22)

h(y) = sign K~(xo, y), and note that h may not be continuous. Let E> 0, and

define a new function h* which is equal to h on the set

A = {y EO: IK~(xo,y)1 > C},

is continuous on 0, and satisfies Ih*(y) 1 ::; 1. It follows that

IIK~lloo 2: 11 h*(y)K~(xo, y) dfL(y)1
= 1IK~(xo, y)1 dfL(y) + 11\A (h*(y) - h(y))K~(xo, y) dfL(y) I

2: N - 2EfL(0).

Since E was arbitrary, this proves the claim for 0(0).

We now consider S~ to be an operator on L1(0; fL). By moving the absolute

value inside of the integral and applying Fubini's theorem, we obtain

IIS~II£l = sup r I r K~(x, y)f(x)dfL(X) I dfL(Y)
1ELl(njJl) in in

1111h=1

::; 1IK~(x, y) IdfL(Y) ,
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where

Ilflll = i If(x)ldfL(x).

For the other inequality, we again let Xo be the point where the function in

(II.3.22) achieves its maximum. Let E > O. Since K~(x, y) is uniformly continuous

on 0, there is a number <5 > 0 such that IK~(xl'Y) - K~(x2,y)1 < E for

IXI - x21 < <5. Hence, if f = XB 8(XO) (fL(Bo(xo)t l , then f has a norm of 1 in

Ll(O; fL), and we obtain

IIS~IIL1 ~ i Ii K~(x, y)f(x)dfL(x)IdfL(Y)

~ i IK~(xo, y) I dfL(Y) - EfL(O).

Since E was arbitrary, this proves the claim for £1(0; fL). This concludes the proof

of the claim. o

We next prove a proposition concerning the Cesaro means of polynomials.

Proposition ILL Let P(x) be a polynomial of total degree nand <5 ~ O. Then

S:n(P)(x) -t P(x) uniformly as m -t 00.

Proof. Since projk P(x) = 0 if k > n,

The claim follows from the fact

lim (-m)k = 1.
m->oo ( -m - <5h

o
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Finally, we may prove the Theorem II.ll. We let 1 E 0(0) and

g E L 1(0; fJ,). Since polynomials are dense in the spaces O(D) and L 1(0; p,), we let

E> 0 and choose polynomials P and Q so that 111 - Plloo ::; E and Ilg - QI11 ::; E.

We choose n large enough so that IIS~(P) - Plloo < E and IIS~(Q) - QI11 < E. It

then follows that

IIS~(j) - 11100 ::; IIS~(j) - S~(P)lloo + IIS~(P) - Plloo + liP - 11100

::; ME + 2E,

and

::; ME + 2E,

This proves the theorem.

In the next chapter, we will investigate the Cesaro means of the Fourier

orthogonal expansion on Ed X 1m using these techniques.

D
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CHAPTER III

CONVERGENCE OF THE CEsARO MEANS ON B d X 1m

In this section we will prove the result on the convergence of the orthogonal

expansion of functions in V(Bd X 1m
; /1; Ct, (3), 1 :s p < 00 and C(B d X 1m ). The

proof of this theorem uses Theorem 5.3 in [17]. In addition, the following theorem

will play a key role in the proof.

Theorem I1LI. !9, Thm i.i} Let Cti > -1, (3i > -1, and Cti + (3i ::::: -1 for

1 :s i :s m. The Cesaro means Sfnf of the orthogonal expansion of f in the product

Jacobi polynomials on I mconverge to f in V(Im; w(a,(3») for 1 :s p < 00 and

Using the notation from chapter 1, we may write the reproducing kernel on

the cylinder as

n j T

Kn(x,x',y,y') = I:I: [lP;~~)(x)] lP;~~)(x') [§t(y)r§t(y')·
j=O k=O

For a function f E C(B d
X 1m ), the Fourier partial sum is given by

Sn(f)(x', y') = r r Kn(x, x', y, y')f(x, y) w(a,(3) (x )wJl-(Y) dy dx.
JIm JEd

(IILO.l)

(IILO.2)
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The Cesaro means of order 5, or the (0, 5) means, are given by

n j T

K~(x,x,y,y') = I:c~,j I: [JP>;~~)(x)] JP>;~~)(x') [§~(y)f§~(y'),
j=O k=O

(III.O.3)

h 0 - (-n)j N h h C ' b' 1were cn,j - (-n-o)j' ote t at t e esaro means cannot e wntten as a simp e

product of two series, one which is written in terms of x and x', and one which is

written in terms of y and y'. These is due to our choice of defining the degree of a

polynomial as its total degree, and does not allow the problem to be reduced to a

trivial result of separate estimates on Ed and 1m . We now state the theorem

concerning the convergence of the Cesaro means on Ed X 1m .

Theorem 111.2. Let f be a continuous function on Ed X 1m , and let /-L 2:: 0 and

ai > -1, {3i> -1 and ai + (3i 2:: -1 for 1 :::; i :::; m. Then (0,5) means of the

orthogonal expansion of f in terms of orthogonal polynomials S~f converge to f if

Proof. The theorem will follow from the fact that the (0,5) means of the kernel

are bounded; that is,

for some constant M which is independent of n, x', and y'. Throughout the proof,

and the rest of the dissertation, C will refer to a constant that may change values

from line to line.
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We first show that it is enough to consider x' = e := (1,1, ... ,1).

Lemma 111.1. In order to prove the convergence of (0, b) means of the orthogonal

expansion, it suffices to prove

for M independent of nand y'.

(IILO.4)

Proof. The proof of the lemma follows from results in [6]. We state these results

below.

Theorem 111.3. Let 0:, {3 > -1 and 0: ~ {3. An integral representation of the form

satisfying

exists for -1 < x, y < 1.

This result is for single variable Jacobi polynomials, but easily extends to

the product Jacobi polynomials as

p~a,{3) (x )p~a,{3)(y) = r p~a,{3) (e)p~a,{3) (z )K(a,{3) (x, y, z)w(a,{3) (z )dz,
JIm

where x, y E 1m
, and

m

K(a,{3)(x y z) = II K(ai,{3i) (x. y. z·)
, , 1" t, t ,

i=l
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and K(a,,B)(.,.,.) satisfies

where !VI is a constant given by the product of the constants in the single variable

theorem. By this result,

A~ := J r IK~(x, x', y, y') Iwp,(x )dy w(a,,B) (x )dx
1m JBd

J
r n j T

= 1
m
JBd f; C~,j £; [lPj~~) (X) ] lPj~~) (X') [§t (y)f §t (y')

X Wp,(y )dy W(a,,B) (X )dx

:s; J r J tC~,jt [lPj~~)(e)]T lPj~~)(Z) [§t(y)f§t(y')
1m JBd 1m j=O k=O

IK(x, X', Z) IW(a,,B) (Z )dzwp, (y )dy W(a,,B) (X) dx.

Applying Fubini's theorem gives

r J n j T
A~ :s; JBd 1

m
f; C~,j £; [lPj~~) (e)] IPj~~) (z) [§t (y)f §t(y')

X J IK(x, X', z) I w(a,,B) (x) dx w(a,,B) (z) dz Wp,(y) dy
1m

:s; cJ r IK~(e,z,y,yl)1 wp,(y)dy W(a,,B) (z)dz,
1m JBd

which proves the lemma. D

Our next lemma reduces the integral over B d to an integral over [-1, 1] of a
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Gegenbauer polynomial. We define

g2:.,(3)(y'):= r IK~(1,z,y,y')IWtt(y)dyJBd

and
n j k + + d-1 d 1 T

FO (.):=~ CO ~ f-L -2 C(tt+-i-)(.) [IP\~(3)(x)] IP\~(3)(e).
n,tt L..t k,n L..t + d-1 k J k J k

j=O k=O f-L 2

Lemma 111.2. For f-L ;:::: 0,

(1II.O.5)

Proof. We first consider f-L > °and consider the case of f-L = °later. Let x' = e and

substitute (11.2.15) into (II1.O.4) to obtain

g~a,(3) (y') = Ld 11: F~ ((y, y') + VI - lyl2 VI - ly' 12t) (1 - t2y-1 dtl wtt(y)dy.

(II1.O.6)

Applying the change of variable y = r71, where 71 E Sd-1, °::; r ::; 1, gives

g~a,(3)(y') = 11

rd- 1ld-l 11: F~ (r(71' y') + V1-ly'1
2
y'1- r2t) (1- t2y-1 dtl

(1 - r2 )tt-1/2 dW(71) dr,

where dw is the surface measure on Sd-1. Now let A be the rotation matrix such

that A(y') = (0,0, ... ,0, ly'I), and apply the change of basis 71 I---t AT71 to obtain

g~a,(3)(y') = 11

rd- 1ld-l 11: F~ (r71d Iy'l + V1-lyI2y'1- r2t) (1- t2y-1 dtl

x (1 - r2 )tt-1/2 dw(y') dr
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where "7 = ("71,'" ,'TJd). If we let "7d = s, then "7 = (Vl- S2" s) for some, E Sd-2,

and changing variables gives

g~Q,{3)(y') = Wd_ 21
1

rd- 1I: II: F~ (rs Iy'l + VI - ly'I 2 Vl - r2t) (1 - t2t-1 dtl

(III.O.7)

where Wd-2 is the surface area of Sd-2. Let s f---* p/r so ds = dp/r and move the

absolute value inside the inner integral to obtain

g~Q,~) (y') ::; Wd_211 l~ I: IF~ (p Iy'l + VI - IY'I2Vl - r2t) (1 - t2t-11 dt

x (1- r2)p,-1/2r (r2 - p2) d;3 dp dr.

Switching the order of integration of rand p and applying the change of variable

q f---* VI - r2t, dq = VI - r2dt gives

g~a,{3)(y') ::; Wd_2j1 j1jJ1-r2IF~ (p Iy'l + VI - ly'1 2q) I (1 - r2 - q2t-1 dq
-1 Ipl -J1-r2

X r(r2 - p2) d;3 dr dp.

Switching the order of integration of q and r gives

Applying the change of variable r2 = u (1 - q2 - p2) + p2 shows the inner integral
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d-3
is ~(1 - q2 - p2)tL+-2-B(/-l, d;l), were B(x, y) is the beta function, defined by

(III.O.8)

Hence, we have the inequality

Next, we apply the change of variable q = Jl - p2S to obtain

(IILO.9)

d-2+ d-3+
X (1 - p2) -2 tL (1 - S2) -2 tL ds dp.

(III.O.I0)

(IILO.11)

Changing variables once again, we let u = p Iy'l + J1 - ly'I 2Jl - p2S to obtain

Now we employ the function D>..(u,v,p) introduced in [17], which is defined
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as

for 1 - V 2 - p2 - U2+ 2upv ~ 0 and 0 otherwise. It is readily verified that

where B(x, y) is the beta function. Hence, substituting D>.. into the integral and

switching the order of integration, we have

(III.O.12)

This proves the lemma for f.t > O.

Turning our attention now to the case when f.t = 0, we substitute (II.2.16)

into the left side of (III.O.4) and ignore the integral over 1m as before to obtain

9bQ ,(3)(y') := L)F~ ((y,yl) + VI-lyI2VI-lyI12)

+ F~ ((y,yl)VI- lyI2Vl -lyI 12) Iwo(y)dy.

We perform the same change of variables from the case when f.t > 0 to obtain the

equivalent of (IlI.O. 7),
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Now we substitute p = \11 - r2 and let v = J1 - ly'12 to obtain

g~a,f3)(y') = Wd_2j1 t IF~ (J1 - p2\/1 - v 2s + pv)
-1 Jo

+ F~ (J1- p2V1- v 2s - pv) 1(1- p2) d;2 (1- S2) d;3 dpds

= Wd- 21:1: IF~ (J1 - p
2V1 - v

2
s + pv) I

d-2 d-3
x (1 - p2)-2 (1 - S2)-2 dpds. (IILO.13)

The right side of (IILO.13) is the right side of (IILO.9), with v in place of Iy'l.

Following the same steps of the proof for M> 0, we obtain the equivalent of

(IILO.12),

which proves the case for M= o.

To finish the proof, we substitute (IILO.5) into (IILO.4) to obtain

o
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After substituting in the identity (11.2.6), we arrive at the following inequality.

Since the Gegenbauer polynomials are a subset of the Jacobi Polynomials, this

expression is equivalent to proving the Cesaro summability of the product Jacobi

polynomials on Im+l, with respect to the weight dp,(a,{3)(x)(l- X~+lt;2+fldu,

where x = (Xl, X2,'" ,xm). The theorem then follows from Theorem 111.1. 0
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CHAPTER IV

RADON PROJECTIONS AND DISCRETIZED EXPANSIONS

In this chapter, we will introduce the Radon transform and give an overview

of its role in the Fourier orthogonal expansion of a function on B Z
• We will derive

a discretized Fourier orthogonal expansion for functions on the domain B Z x [-1, 1}

in terms of Radon projections of f, which are taken on parallel disks that are

perpendicular to the axis of the cylinder B Z x [-1, 1}. Finally, we will show that

the Lebesgue constant of the discretized Fourier expansion is :::::: m(log (m + 1)) Z

where the notation a :::::: b means there are positive constants, Cl and Cz, such that

IV.! Radon Projections

The Radon transform, named after the mathematician Johann Radon,

maps an integrable function on ]Rd to the set of integrals of f over all hyperplanes

in ]Rd. The integrals of f are called the Radon projections of f. More specifically,

for f defined on ]Rd, we define the Radon projection of f, RE,(J; t), with ~ E 3 d-I,

the unit sphere in ]Rd, and t E ]R, to be

1 f(x)dx.
(x,E,)=t
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Radon's famous result is the following theorem.

Theorem IV.l. Suppose f is a continuous function on ]R2 satisfying the following

properties.

1. The integral

r If(x, y) I dx dy
JJR2 Jx2 + y2

is convergent.

2. If we define

- 1 121r

f(x,y;r):= - f(x+rcos¢,y+rsin¢)d¢.
27f 0

for a point (x, y) E ]R2 and r > 0, then for any choice of point (x, y) and r,

lim 7p(r) = O.
T--->OO

Then f can be competely reconstructed from its Radon projections.

Radon gave an explicit inversion formula for the function. This result can

be extended to ]Rd for d > 2; see chapter 2 in [12].

In practice, one often wants to approximate a function f by a finite number

of Radon projections. For example, in the two-dimensional setting, Radon

projections are closely related to the medical field of computerized tomography. In

computerized tomography (CT), the central problem is the reconstruction of

images from a finite set of X-ray data. The relative loss of intensity of an X-ray

passing through a body is directly related to the line integral of a function f (x),

the X-ray attenuation coefficient at a point x in the body. Hence, the problem is
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reconstructing f from a finite number of Radon projections. Since f can be

completely reconstructed from a complete set of its line integrals for suitably nice

functions, we expect that we should be able to approximate a suitably nice

function f well using a finite number of Radon projections. In order to do this, we

will focus on a relationship between Radon projections and orthogonal

polynomials, which was first investigated for functions defined on the domain B 2

in [11] and [10].

Theorem IV.2. (11, Thm. 1) If P E Vm(B 2 ), then

V1=t2no (P; t) = 2 Um (t) P (cos e, sin e) ,
m+l

where Um(t) is the Chebyshev polynomial of the second kind of degree m.

This relationship has been integral in obtaining further results involving

Radon projectiions. In [3], this relationship was used to find a polynomial on B 2

that interpolates the Radon projections of a function taken on sets of parallel lines

in directions given by equidistant angles along the unit circle, while in [2J, the

polynomial interpolating Radon projections on parallel lines in arbitrary directions

is considered. We will focus on the result in [18], in which an explicit

reconstruction algorithm for a function on B 2 was given in terms of finite Radon

projections. This result relies on the relationship (IV.2) and the Fourier

orthogonal expansion of a function on B 2 in terms of the orthogonal polynomials

given in (II.2.13). We will first introduce some notation, and then give the

relationship between Radon projections and the Fourier orthogonal expansion.

Let f be an integrable function defined on IR2 . We define L(e, t), for

() E [0,27fJ and t E IR, to be the line {(scose + tsine, ssine - tcose) : s E IR}.
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Then R(}(J; t) can be written in the form

R(}(J; t) := J f(x, y) dxdy.
L«(};t)

By restricting the domain of f to B 2 , we only need to consider line segments in B 2

in the definition of R(}(J; t). For this reason, we define 1(8; t) to be the intersection

of L(8; t) and B 2
; that is,

1(8;t) = {(scos8+tsin8,ssin8-tcos8) lsi :S Vf=t2 },

and so R(}(J; t) can be re-written with the integral taken over 1(8; t) instead of

L(8; t),

R(}(J; t) = J f(x, y) dxdy.
I«(};t)

Recall the orthogonal polynomials in (II.2.13) form an orthonormal basis

for Vk (B2). The Fourier coefficients of the Fourier orthogonal expansion of f in

terms of this basis of orthogonal polynomials may be written in terms of the

Radon projections of f.

Theorem IV.3. [18, Prop. 3.1} Let m > a and f E L 2(B 2
). For O:S k:S 2m and

a :S j :S k,

h A. 2nv
were 'f'v = 2m+l'

As a result of this relationship, the orthogonal projection of a function f in
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L2(B2) onto Vk(B2) can be written in terms of the Radon projections of f.

Theorem IVA. [18, Thm. 3.2} For m > 0 and k ::; 2m, the projection operator

projk from L2(B2) to Vk(B2) can be written in the form

As a consequence of this theorem, the Fourier partial sum of f, S2mf, can

also be written in terms of the Radon projections of f,

1 2m 2m 111
S2mf(x, y) = 2: 2: - Rc/>v(J; t)Uk(t) dt (k + I)Uk(¢v; x, y). (IV.1.1)

2m + 1 1r 1
k=O v=O -

Recalling (IV.2), the expression

is a polynomial of degree 2m if f is a polynomial of degree 2m. Hence, by

multiplying and dividing by a factor of .JI=t2 in (IV.1.1), and then using the

2m- point Gaussian quadrature rule given in (II. 2.11) to replace the integral with a

sum, a discretized Fourier orthogonal expansion which preserves polynomials of

degree less than or equal to 2m - 1 is obtained. This discretized expansion, A2m ,

is given by

1 2m 2m 2m

A2m (J) (x, y) = (2m + 1)2~~ Rc/>v(J; cos Bj ,2m) {;(k+l) sin( (k+l)Bj ,2m)Uk(¢v; x, y).

The upper limit of the sum in v is chosen to be 2m to eliminate redundancy in the

Radon data. With the choice of 2m, the Radon projections are taken along

parallel lines in (2m + 1) directions, given by equally spaced points on the unit

circle. If the Radon projections were taken along parallel lines in 2m directions,
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then for v < m, and ¢v = ;:;,

7r + ¢v = ¢v+m,

and the identity

shows these two Radon projections are actually the same. In practical settings,

more Radon projections are desirable, so we choose to take Radon projections in

an odd number of directions.

As an operator on C(B2
), the discretized expansion has a Lebesgue

constant of m log (m + 1). In the next section, we will study a version of this

algorithm adapted for the cylinder, B 2 x [-1,1].

IV.2 Construction of the Discretized Partial Sum Expansion on the

Cylinder

We first introduce notation to adapt the Radon projection on B 2 to the

cylinder B 2 x [-1,1]. For an integrable function on B 2 x [-1,1], we will take the

regular two-dimensional Radon projection of j on disks perpendicular to the axis

of the cylinder at position z on the axis of the cylinder. Hence, we use the notation

Ro(J(·, " z); t):= r j(x, y, z) dxdy,
JI(O;t)

where (x,y) E B 2 and z E [-1,1]' to denote the Radon projection of a function j

at position z on the axis of the cylinder, along the line segment 1(8; t).
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With this defintion in mind, Theorem (IV.2) can be adapted to the domain

B 2 x [-1,1].

Lemma IV.1. If P is a polynomial of degree k on B 2 x [-1, 1], then for

eE [0,21f],
Re(P(·,·, s); t)

Vf=t2

is a polynomial of degree k in t.

Proof. If P is a polynomial of degree k, we may write

k

P(x, y, z) = I:CiZipk_i(X, y),
i=O

where Pk-i(X, y) is a polynomial of degree k - i in x and y. Following the proof of

[18, Lem. 2.2], we write

k
Re(P(·,·, z); t) '""" i 1 1 ()
~ = LJ Ci Z ~ Pk-i x, Y dxdy.

vI - t 2
i=O vI - t 2

I(e;t)

Rewriting the integral and changing variables,

h r Pk-i(X, y) dxdy
1 - t2 JI(e;t)

1 jv'f=t2= Vf=t2 Pk_i(tcose + ssine, tsine - s cos e) ds
1 - t2 -v'1~t2

= 11

Pk_i(tcose + Vf=t2ssine, tsine - J1=t2scose) ds.
-1

After expanding Pk-i(X, y) in the integrand, we note that each odd power of

Vf=t2 is accompanied by an odd power of s, which becomes 0 after integrating.
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Hence,

for some coefficients bj . The lemma follows. D

Recall the definition of Pj,k,n from (11.2.19). We let proh be the projection

operator from the space L2 (B 2 x [-1, l];wz) onto Vk (B 2 x [-1, l];wz), and prove

the equivalent of theorem (IVA).

Theorem IV.5. Let m 2:: 0 and let n :s; 2m. Define ¢v := 2~~1' and

av(x,y):= arccos(xcos(¢v) +ysin(¢v)). The operatorprojn can be written as

. 1 2m 11 11
dsproJn f(x, y, z) = - L RrjJ,)f(',', s); t)wv(x, y, z; s, t) dt ,

7f v=O -1 -1 VI - S2

(IV.2.2)

wvn(x, y, z; s, t) = 1 ~(k + I)Uk(t)Uk(cos(av(x, y)))Tn-k(s)Tn-k(z)
, 2m+1 6

k=O

Proof. Since the polynomials Pj,k,n in (11.2.19) form an orthonormal basis for

n kIll r
projn(J)(x, y, z) = L L;- iF f(x, y, Z)Pj,k,n(X, y, z)wz(x, y, z).

k=O j=O -1 B2

After expanding Pj,k,n(X, y, z), Theorem IVA gives the result. D

This relationship between the projection operator and the Radon projection

again yields a connection between the partial sum operator 82m and the Radon

projection.
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Corollary IV.6. Let m ~ 0. The partial sum operator S2m may be written as

2m 111 11
dsS2m(J) (x, y, z) = L -; R¢)f(·,·, s); t)<pv(x, y, z; s, t)..; _ 2 dt, (IV.2.3)

v=O -1 -lIs

where
2m

<pv(X, y, Z; s, t) = L Wv,n(X, y, Z; s, t).
n=O

To discretize this Fourier orthogonal expansion, we discretize the two

integrals by 2m-point Guassian quadratures. Using Lemma (IV.I), we divide and

multiply the integrand in (IV.2.3) by a factor of~. For the integral in t, we

use the quadrature formula (II.2.11), while for the integral in s, the quadrature

formula (II.2.9) is used. The discretized partial sum operator, B2m , is given below.

Definition IV.l. For m ~ 0, (x,y) E B 2 and z E [-1,1], we define

2m 2m 2m-l
B2m (J)(x, y, Z) := L L L R¢v (J(., " ZI,2m; cos (()j,2m))Tv,j,l (X, y, Z), (IV.2.4)

v=O j=l 1=0

where

1 2m n

Tv,j,I(X, y, Z) = (2m + 1)3~ f;(k + 1) sin ((k + I)()j,2m) Uk (cos(oAx, y)))

x Tn-k(ZI)Tn-k(z). (IV.2.5)

As a result of Lemma IV.I and the fact that 2m-point Gaussian

quadratures are exact for polynomials of degrees up to 4m - 1, we obtain the

following theorem.

Theorem IV.7. The algorithm B2m preserves polynomials of degree less than or
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equal to 2m - 1; that is, for (x, y) E B 2 and Z E [-1,1]'

8 2m (J)(x, y, z) = f(x, y, z)

for f E 112m- I .

The proof of the following theorem is contained in the next section.

Comparing this with the result in [18], we see that the extension of the algorithm

to the cylinder introduces a factor of log(m + 1).

Theorem IV.8. For m ::::: 0, the norm of the operator 8 2m on C(B2 x [-1,1]) is

given by

1182m ll oo ~ m (log(m + 1))2.

The proof of this theorem is not trivial. Since we have defined the degree of

a polynomial to be its total degree, the series in the definition of T,/,j,I(X, y, z),

2m n

I: I:(k + 1) sin Uk + l)ej,2m) Uk (cos(oAx, y))) x Tn-k(ZIYTn-k(z),
n=O k=O

cannot be written as the product of a two series, one in terms of Z and Zl, and one

in terms of ej and oAx, y). As a result, the estimate of the Lebesgue constant

cannot be trivially reduced to an estimate on B 2 and an estimate on [-1,1]. In

particular, for the upper bound of the estimate, a different approach from that in

[18] is used to obtain this result.

As a result of Theorems (IV.8) and (IV.7), we obtain the following corollary.

Corollary IV.9. For f E C2(B2 x [-1,1]), 8 2m (J) converges to f in the uniform

norm.
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Proof. If f E C 2(B2 x [-1,1]), then by Theorem 1 in [1], there exists a polynomial

Pn of degree n on B 2 x [-1, 1], and a constant C > 0, so that

where

Wf,2 (~) = sup ( sup IDlf(x) - DI(Y)I) .
n 1,1=2 x,yEB2 x [-1,1]

Ix-y/9/n

We let n = 2m - 1 to obtain

IIB2m (J) - flloo ::; IIB2m (J - P2m-d 1100 + Ilf - P2m-11100

::; Ilf - P2m-11100 (1 + IIB2m II 00 )

1
::; c (2m _ 1)2 (m(1og(m + 1))2 + 1),

which converges to zero as m approaches infinity.

Before proceeding to the proof of Theorem IV.8, we make one comment.

D

We believe that the Lebesgue constant of the Fourier partial sum of the orthogonal

expansion 1152m ll is mlog(m + 1), although we have yet to prove it. If this is true,

the discretization of the expansion adds a factor of log(m + 1).

IV.3 Proof of Theorem IV.8

We first derive an expression with which we may estimate IIB2m II 00 .

Proposition IV.l. The norm of B2m as an operator on C(B2 x [-1,1]) is given

by
2m 2m 2m-1

IIB2m li 00 = 2 max L L L sin Bj ,2m /TI/,j,I(X, Y, z)j
1/=0 j=l 1=0

(IV.3.1)
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where the maximum is taken over all points (x, y, z) in B 2 x [-1,1].

Proof. By definition,

R¢v(j(-,·, zz), cos Bj,2m) = j f(i, y, zz) didy
I(cos()j,2m,¢v)

= jSin()j,2m f( cos ej,2m cos cPv - s cos cPv, cos ej,2m sin cPv + s cos cPv, zz) ds. (IV.3.2)
-sm()j,2m

Taking absolute value of both sides and using the triangle inequality, we

immediately have

2m 2m 2m-1
IIB2m ll oo ::; 2maxLL L sinBj,2mITv,j,z(x,y,z)1

v=O j=1 1=0

On the other hand, if we define

2m 2m 2m-l

T(x, y, Z) := 2L L L sinej ,2m ITv,j,l (x, y, z)\,
v=o j=1 1=0

then T (x, y, z) is a continuous function on B 2 x [-1, 1], and hence achieves its

maximum at some point (xo, Yo, zo) on the cylinder. We would like to choose a

function f so that f(x, y, z) = sign(Tv,j,l (xo, Yo, zo)) on the set of lines

{(I(cos ej,2m, cPv), Zl)}, for 1 ::; j ::; 2m, 0 ::; v ::; 2m, and 0 ::; l ::; 2m - 1, since this

would immediately give us the result. However, such a function may not be

continuous at the points of intersection of these lines. To allow for continuity, we

instead take neighborhoods of volume [ around each point of intersection of the

lines, and define a function 1* which is equal to sign(Tv,j,I(XO, Yo, zo)) on the lines

{(I(COsBj,2m, cPv), Zz)h,v,l except on the [-neighborhoods at the points of

intersection; on the rest of the cylinder, 1* is chosen so that it takes values
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between 1 and -1 and is continuous. It then follows that

2m 2m 2m-1

1182m ll oo :::: 182m (j*(xo,Yo,zo))I:::: 2LL L sinBj ,2mITv,j,I(Xo,Yo,zo)I-CE,
v=O j=l 1=0

where Cdenotes the number of points of intersection of the lines

{(I(COsBj,2m,cPv),ZI)h,v,l. Since E is arbitrary, this proves the proposition. D

For the remainder of the proof, the number n in (II.2.8) and (II.2.10) will

be fixed as 2m. For this reason, we define

J7f 2l + 1
Bj = Bj ,2m = 2m + l' ,I = '1,2m = ~7f, Zl = ZI,2m = cos ,I,

27fv
cPv = , O"v(x,y) = arccos(xcoscPv + ysincPv).

2m+1

The proof will be separated into two parts: a lower bound, to show

(IV.3.3)

1182m ll :::: clm(log(m + I)? for some constant CI; and an upper bound, to show

8 2m ::; C2m(1og(m + I)? for some constant C2.

IV. 3. 1 Lower Bound

We will establish there exists a constant C> 0 so that

1182m ll oo :::: cm(1og(m + I)? for all m > O. By (IV.3.1), it suffices to show

2m 2m 2m-1

LL L sinBj ITv,j,l(XI,YI,ZI)I:::: cm(1og(m+ I)?
v=O j=l 1=0

for the point (Xl, YI, zd = (COS 4:+2' sin 4:+2' 1) for some c > O. We begin by

deriving a compact formula for Tv,j,I(XI, YI, 1). Using the Christoffel-Darboux
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formula for Tn, letting cos ,z = z,

11 2m

ITvjz (x,y,z)I=(2 1)3' ( ) Lsin((k+l)(}v(x,y))sin((k+l)Oj), , m + sm ()v x, Y
k=O

cos((2m - k + 1hz) cos((2m - khz) - cos((2m - k + 1hz) cos((2m - khz) I
X cos(rz) - cos(rz). .

Substituting in z = 1 and applying the identity for the difference of cosines,

IT,. (x 1) I _ 1 1 1
V,J,Z ,y, - (2 + 1)3' ( ). 'Ylm sm ()v x, y sm"2

2m

X L(k + 1) sin((k + 1)(}v(x, y)) sin((k + I)Oj) sin ((2m - k + 112hz)
k=O

Applying the product formula for sine and the product formula for sine and cosine,

1 1 1 1
ITv,j,z(x, y, 1) I = -4 (2 + 1)3 . 'Yl' ( )m sm "2 sm ()v x, y

x 1 ~(k + 1) [sin((k + l)(Bj - oAx, y) + "II) - h - ~)

- sin((k + 1)(Oj - (}v(x, y) -,z) + ~'z + ~)

- sin((k + 1)(Oj + (}v(x, y) + IZ) - ~'z - ~)

+sin((k + 1)(Oj + (}v(x,y) -,z) + ~'z + ~)J I·

Next, apply the formula

2m

L(k + 1) sin((k + 1)0 + ¢)
k=O

(IV.3.4)

1 (2m + 2) sin((2m + 1)0 + ¢) - (2m + 1) sin((2m + 2)0 + ¢) + sin(¢)
-

2 sin2 (~)

1 sin((2m + 1)0 + ¢) - (4m + 2) cos((2m + 3/2)0 + ¢) sin(Oj2) + sin(¢)
- 2" sin2 (~)
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to (IV.3.4). Under our choice of Xl and YI, COSO"v(XI,YI) = cos 2;~~27f, so

O"v(XI' yd = 2;~~27f if 1 ::; v ::; m. We will only be considering v within this range,

d fi '- 2v-I/2 D fiso we e ne (Jv·- 2m+1 7f. e ne

Taking into account

where the subscripts indicate the signs of ±l and ±2 are not related (a convention

we will adopt for the remainder of the dissertation), we are able to write

I
'T' ( 11" • 11" 1) I 1 1-1, . I cos -- sm -- = --,------,-----,- ---------:,--

V,J, 4m+2' 4m+2' (2m + 1)3 8 sin (Jv sin ~ (IV.3.5)

We will show the lower bound is attained if we restrict the summation in (IV.3.1)

to the set of indices where 7f/4::; Bj ::; 37f/8, 7f/4::;,1 < Bj , and 0::; (Jv < Bj -,I,

so we only take the sums over the following range of indices:

-lWJ+1::;Z::;j-4

We assume m ;::: 24, so that these inequalities make sense. With this restriction of

summation, sin Bj and sin ~ are bounded away from zero by a positive constant.
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Hence, we are left with proving the estimate

(IV.3.6)

:::: cm(1og(m + 1))2

Also note that, under this restriction of summation,

(). - (J - "II < ()j + (Jv + "II 3o< J v < -7f
2 2 - 8 '

so

where we have used the fact

sin () ~ ()

if -157f/16 :::; () :::; 157f/16, a fact we will use repeatedly throughout the proof.

The dominating terms in the summation will be the terms

(4m + 2) sin (~)

. (()j±(TV-II)sm 2

the middle term in the numerator of F/'j(()j, ±(Jv, -"II). We first prove two lemmas

to eliminate the non-dominating terms. The first lemma eliminates the first and

third terms in the numerators of Fj~l (()j, ±2(Jv, ±3'YI).
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Lemma IV.2. Recalling (IV.3.3),

Proof. First, considering OJ ± 0"v + "II, apply the inequalities

to obtain

::; cmlog(m).

3l¥J j-4
1 1

J1(±1, +) ::; ~ ~
(2m + 1)3 L.J L.J . 2 (B i +'Yl-7r/8)

j=l-TJ+51=l-TJ+l sm 2

3l.!?!J l:i.=lJ-l
4 1 j-4 2 1

< Cj=~+5 P l=~+l ~ 2v - 1/2

::; cm log (m + 1).

For J(+, -), using the inequality OJ + o"v - "II > OJ - "II,

19J-l
1

L sinO"v
v=l

3l rn J lb2
l J-l1 "4 j-4 1

h(+,-)::; ~ ~ ~
(2m + 1)3 L.J L.J . 2 (B'-II) L.J

j=l-TJ+51=l-TJ+ISm V v=l

lrnJ' l:i.=lJ 13 "4 )-4 1 2 - 1

::; Cj=~+51=~+1 (j - l - 2)2 ~ 2v - 1/2

::; cm log (m + 1).

1

sin(0"v)
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For the remaining case of J(-, -), we split the sum in v,

(
l~J-l l~J-l)42 1
L + L . . 2 (}r(]"v-il .

Y=l Y=l~J sm(O"y)sm ( 2 )

We are only considering values of v 2: 1, so we ignore any instances of v = 0, -1 in

the sums. For the first sum, ()j - O"y -II> (()j -11)/2, so a bound of cmlog(m + 1)

is found as in the case of J (+, - ). For the second sum,

2v - 1/2 > (j - l - 3)/2 > _1_
2m + 1 - 2m + 1 - 4m + 2 '

so it readily follows that

3l~J j-4 1 19J-l 1

Jl(-'-)~c L L '-l-3 L ---------,,-
j=l~J+51=l~J+lJ y=l (j - 2v -l- 1- 4~)2

+ cmlog(m + 1)

~ cmlog(m + 1).

o

The next lemma eliminates the parts of Fj~ ((), =f0"y, II) with 4m + 2 in the

numerator.

Lemma IV.3. Recalling (IV.3.3))

1 3l~J j-4 19J-l(4m+2)sin((}j~(]"v)

J2 (±) :~ (2m + I)' L L L. . (',±a"+o<) <:: cmlog(m + 1).
j=l~J+51=l~J+l Y=l smO"ysm 2

Proof. Since 311)4 2: ()j + O"y + 112: ()j - O"y 2: 1f/4, both sin ((}j~(]"v) and
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sin (OJ±a;+l'l) are bounded away from zero by a positive constant. The lemma

then follows from

::; em log(m + 1).

D

By applying the triangle inequality to (IV.3.6), we obtain

1 3lTJ j-2 l¥J-l 1

IIB2m li oo
2:: (2m + 1)3 j=~+ll=~+l ~ sin(O"v)

x (IFjj(ej'O"V,-'Yl) - ~)(ej,-O"v,-'Yl)I-IFjj(ej,-O"v,'Yl)I-IFJ:z(ej,O"v,'Yl)I).

The two lemmas show that

::; em log (m + 1).

We also have

sin(~)

sin (Orl'rav )
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Lemma (IV.2) shows that

:::; cmlog(m + 1).

Hence, we obtain

3L!1l4 J L~J-l1 j-2 2 1

IIB2m li oo ~ (2m + 1)2 L L L sin((j)
j=L~J+51=L~J+l v=l v

- cmlog(m + 1).

sin (~)

sin (OJ-Ira,, )
(IV.3.7)

We now show the dominant part achieves the bound of cm(log(m + 1))2.

Using the formula for the product of sines,

. (~)sm 2



. (~)sm 2

and it follows that

3l-¥J j-4 19J-1 1

j=~+11=~+1 ~ sin(o-v)

3l-¥J j-4 19J-1 1

2': eLL L (ej - "(I - o-v)(ej - "(I + O-v)
j=l~J+1l=l~J+1 v=1

3l -¥ J j-4 1 19J-1 (1 1)
= eLL e· - "(I L e· - "(I - 0- + e· - "(I + 0-

j=l~J+1l=l~J+1 J v=1 J v J v

3l!!lJ li=lJ-1
4 j-4 1 2 1

2': eLL e. - "(I L e· - "(I - 0- .
j=l~J+1l=l~J+1 J v=1 J v

Dividing by (2m + 1)2, we have

3l!!l4J li=lJ-11 j-4 1 2 1
(2m + 1)2 L L e· - "(I L e· - 0- - "(I

j=l~J+1l=l~J+1 J v=1 J v

3l -¥ J j -4 l9 J-1
1 1

2': Cj=~+ll=~+l j - (2l + 1)(~) ~ j - 2v - (2l + 1)(~)
3l-¥J j -4 1 l9 J-1 1

2': eLL j _ l _ 1/2 L j - 2v - l - 1/2
j=l~J+11=l~J+1 v=1

3l -¥ J j-4 log (j _ l)
2': eLL ._l - 1/2

j=l~ J+ll=l~J+l J

2': cm(log(m + 1))2,

which completes the proof of the lower bound.

55
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IV.3.2 Upper Bound

As mentioned previously, the estimate of the Lebesgue constant on

B 2 x [-1, 1] does not trivially reduce to separate estimates on B 2 and [-1, 1].

Moreover, a straightforward estimate of the upper bound of the Lebesgue

constant, as done in [18] for the case on B 2
, would be extremely difficult, if not

impossible. We instead use a different approach, by deriving generating functions

for the series in the definition of Tv,j,I(X, y, z), and then writing Tv,j,l(x, y, z) as the

Fourier coefficient of the product of the generating functions. The idea for this

approach comes from [9], and provides an alternative proof for the upper bound of

[18, Theorem 5.2].

Lemma IVA. For 0 < Irl < 1 and m~ 0,

1 1
Tv,j,l(x, y, z) = -(2-+-1)-3. ( )m SlnO"v x, y

1 127r

1 G (ie )G ( ie 8 ( )) -2mied8 -2m- 0e 1 re ,Z, Zl 2 re , j,O"v X, Y e r,
21f 0 1 - re~

where
00

G1 (r, Z, Zl) :=~ Tk(zyh(ZI)r k
,

k=O

and

00

G2(r, 8j, O"v(X, y)) := ~(k + 1) sin((k + 1)(8j)) sin((k + l)(O"v(x, y)))rk.
k=O
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N n

:= 2:= 2:=(k + 1) sin((k + 1)Oj) sin((k + l)oAx, y))Tn - k (zl)'Tn - k (z)
n=O k=O

in Tv,j,l (x, y, z). Since the coefficient of rN in

00 n 00

2:= 2:= sin( (k + 1)OJ) sin((k + 1)oAx, y) )rn 2:= Tj(z)Tj(zl)r j

n=O k=O j=O

is precisely RN(ej , oAx, y), z, Zl), and

1 00

--~ sin((k + 1)Oj) sin((k + l)oAx, y))rk

1-rL..,..
k=O

00 n

= 2:= 2:= sin( (k + 1)ej ) sin( (k + 1) (Tv (x, y) )rn
,

n=O k=O

it follows that

Since both sides of the above equation are analytic functions of r for Ir\ < 1, we

may replace r with reiB to obtain analytic, complex-valued functions of r. Since
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it follows that

R2m (ej , oAx, y), z, Zl)

=
2

11f 1211" 1 G ( i(J )G ( i(J e ( )) -2mi(Jde -2m'(J 1 re ,Z,ZI 2 re , j,O'v x,y e r.
1 - re~

The lemma follows from the fact that

D

We next obtain compact formulas for G1 (re i(J, Z, Zl) and

G2 (rei (J, ej ,O'v(x, y)), and obtain estimates for these functions.

Lemma IV.5. For m ;::: 0, and r = 1- ~,

1 1 1 12
11" 1

ITv,j,I(X,y,z)l:::; (2 + 1)3' ( ) -2 11 i(J1m SlllO'vx,y 1fo -re

x (I At(x, y) - A;:- (x, y) I+ IAt (x, y) - A2(x, y) I)
x (jP(rei(J, 'Yz + 'Yl) 1+ !P(rei(J, 'Yz - 'Yl) I) de.

where

and

(IV.3.8)

(IV.3.9)

± (1 - r 2e2i(J) (re iB - cos (ej ± O'v(x, y)))
A2 (x, y) = (1 _ 2reiB cos (()j ± O'v(x, y)) + r 2e2iB )2'

(IV.3.1O)
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Proof. First, it follows from Lemma (IVA) that

We next derive estimates for IG1(reiO,z,zz)1 and IG2 (re iO
, OJ, O"v(x,Y)I· The

compact formula for the generating function G1 (re iO , z, zz) is well-known,

where P(r, ¢) is the Poisson kernel, defined by

00 1 2

P(r, ¢) := 1 + 2L cos(n¢)rn
= 1 2 - r¢ 2' O:S r :S 1.

- rcos + r
n=l

(IV.3.11)

(IV.3.12)

For G2 (re iO , OJ, O"v(x, y)), we use the identity for the product of sines to obtain

Using the formula

~P r ¢ = -2 ( r + (r - cos ¢)(1 - r
2
))

dr (, ) 1- 2rcos¢+r2 (1- 2rcos¢+r2 )2 '
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we obtain

iB 1
G2(re ,ej , 0"1/) = -4

[
reiB [re iB - cos(ej - O"I/(x, y))](l - r 2e2iB )

x 1 - 2reiB cos(ej - O"I/(x, y)) + r 2e2iB + [1 - 2reiB cos(ej - O"I/(x, y)) + r 2e2iB ]2

_ "re
iB

" + [re
iB

- cos(ej + O"I/(x, y))](l - r2e2iB~].

1 - 2retB cos(ej + O"I/(x, y)) + r 2e2tB [1 - 2reiB cos(ej + O"I/(x, y)) + r 2e2iB]

It follows that

Finally, since the inequality in (IVA) holds for all values of r with 0 < r < 1, we

set r = 1 - ~. With this choice of r, r- 2m converges to e-2 as m approaches

infinity, and so r-2m is bounded by a constant for all m.

Before beginning the estimate, we make several reductions in the range of

the sums and values of x, y, z that need to be considered.

D

1. First, we can reduce the interval of integration to [0,7T]. To see this, replace e

with 27T - e. This change of variable amounts to conjugation of the complex

number reiB , and hence the norms of the expression are unchanged.

2. We may also restrict '"'Iz to the interval [0, 7T12m]. To see this, replace '"'Iz with

'"'Iz + 2~ in P(reiB,'"'Iz + ej ) and P(reiB,'"'Iz -'"'II). We see that, upon changing

the summation index from l to 2m - 1 - l,

2m-l 2 2"B1 - ret

L 1 - 2reiB cos ('"'I +..lE...- + '"'II) + r 2e2iB
1=0 z 2m

2m-l 1 _ r 2e2iB 1 _ r 2e2iB

~ 1 - 2reiB cos hz + '"'II) + r 2e2iB + 1 - 2reiB cos ('"Yz - ~7T) + r 2e2iB '
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and

2m-1 2 2'(J1- ret

L 1 - 2rei (J cos ("I +.lI..- - "II) + r 2e2i(J
1=0 /z 2m /

2m-2 1 2 2i(J 1 _ r 2e2i(J-re

~ 1 - 2rei (J cos (ryz - "II) + r 2e2ie + 1 - 2rei (J cos (ryz + 4:J + r 2e2i(J'

It follows that the expression

2m-1

L IP(rei(J, 'Yz + "II) + P(rei(J, 'Yz - "II) 1

1=0

is invariant under translations of 'Yz by 1r12m, so we only need to consider

'Yz E [0, 2:J·

3. The sum in j may be reduced to 1 ::; j ::; m. Replacing j with 2m + 1 - j,

sine2m+ 1- j = sinej , and coS(e2m+1- j ± (Jv(x, y)) = cos(ej =f (1r - (Jv(x, y))). It

follows from the definition of (Jv(x, y) that 1r - (Jv(x, y) = (Jv( -x, -y), which

implies that sin (Jv(-x, -y) = sin(Jv(x,y). Hence,

2m

L . sint
j

) (IAi(x,y) - A1(x,y)1 + IAt(x,y) - A2(x,y)l)
, sm (Jv X, y

J=m+1

~ sinej

- L.J sin (J (-x -y)
j=l v ,

x (IAi( -x, -y) - A1(-x, -y) 1+ IAt( -x, -y) - A2(-x, -y) I) ,

which shows we only need to consider 1 ::; j ::; m.

4. We also only need to consider (x, y) in the region
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To see this, let x = pcosr; and y = psinB, so that cos (Jv(x, y) = pcos(r; - cPv).

Note that the collection of points pcos(r; - cPv), for II = 0,1, ... , 2m, is

unchanged by a rotation of r; by cPv. Moreover, every expression involving

(Jv(X, y) in the right side of (IV.3.8) can be written in terms of cos (Jv(x, y).

Since 0::; (Jv(x,y)::; 7[, sin(Jv(x,y) = V1- cos2(Jv(x,y), and the expressions

cos(Bj ± (Jv(x, y)) can be expanded using the cosine addition identity. Hence,

every expression involving (Jv(x, y) in

2m 1
L. ( )(IAi(x, y) - A1(x, y)! + IAt(x, y) - A2(x, y) I)
v=o SIn (Jv x, y

is the same at the points (p cos r;, psin r;) and (p cos(r; + cPv), psin(r; + cPv)).

5. Finally, we may also reduce the sum in II to 0 ::; II ::; m. First note that

cos (J2m+l-v(X, y) = cos (Jv(x, -y), and sin (J2m+l-v(X, y) = sin (Jv(x, -y).

Hence, we obtain

2m 1
L . ( ) (IAi(x, y) - A1(x, y) 1+ IAt(x, y) - A2(x, y) I)

Slll(Jv x, y
v=m+1

m 1
= L. ( )(IAi(x, -y) - A1(x, -y)1 + !At(x, -y) - A2(x, -y)l) ,

v=1 SIn (Jv x, -y

and since rm is symmetric with respect to y, we only need to consider

o::; II ::; m.
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From these reductions, it follows that

1 2m 2m 1 . e
""" """ sm >

X (2m + 1)2~ f:t 11 - reiBl sinav(~, y)

X (IAf(x, y) - A1(x, y) 1+ IAi(x, y) - A2(x, y) I) de.

The proof of Theorem IV.8 will follow from the following three lemmas.

The proofs are contained in the next chapter.

Lemma IV.6. For Z E [0, >71-j2m],

for some c which is independent of e, z, and m.

Lemma IV.7. For (x,y) E f m ,

1 rr 1 ~~ sin(ej ,2m) I +( ) -( )1
(2m + 1)2 Jo "--ll-_-re-Ci07:"1~ f:t sin(av(x, y)) Al x, Y - Al x, y de

::; cmlog(m + 1),

for some c which is independent of x, y, and m.



Lemma IV.8. For (x, y) E r mJ

1 rr 1 ~~ sin(ej ,2m) I +( ) -( )1
(2m+1)2Jo "--11---re-i"""'el~~sin(oAx,y))A2 x,Y -A2 x,y de

:s; cm(log(m + 1)),

for some constant c which is independent of x, YJ and m.

64
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CHAPTER V

PROOFS OF LEMMAS IV.6, IV.7, AND IV.8

Proof of Lemma IV. 6. Fix Z E [a, 2~J. We first note that we may factor

and, recalling r = I - ~, we may estimate

to obtain

IP(re iB
, 1z + 11) I+ IP(re iB

, 1z - 11) I

(

( Isin (7r~B) I + m -1) (I sin (~) I + m -1)
<c
- (lsin(B+'Y~+'Yl)1 +m-1) (lsin(B-'Y~-'Yl)1 +m-1)

(Isin (~) I + m -1) (I sin (~) I + m -1) )
+ (Isin (B+1~-'Yl)1+ m-1 ) (Isin (B-1~+11)1+ m- 1 )

:= c(W1 (e,1 z , 11) + w2 ( e, 1 z, 11) )

We will consider two separate cases, a:::; e :::; n)2 and n)2 :::; e :::; 7r.

(V.a.l)

(V.a.2)

Case 1: a:::; e :::; 7r /2. Since sin (7r~B) ?: V'i/2, we may ignore this factor in
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the numerator. We also have

I
() + ()Z + IZ I < 3n ~

2 - 4 + 4m'

so that sin((() ±l IZ ±2Iz)/2) ~ () ±l IZ ±2Iz, Fixing (), we have

Since

we let dm,z() = 2 - 2;;(() -,z) and split the sum in l in two pieces, so

::; clog(m + 1).

This type of estimate will be very common throughout the proof, and we will omit

the repetitive details.

For W2((), IZ' IZ)' we first consider the sum starting from l = 1, so that
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e+ '"II - '"Iz > e, and consider the case when l = 0 later. We obtain

1 2m-1 lei + m-1

2m + 1 ~ (Ie + '"Iz - '"Izi + m-1
) (Ie - '"Iz + '"Ill +m-1

)

1 2m-1 1

~ 2m + 1 L Ie + '"Iz - '"Izi + m-1
1=1

~clog(m + 1).

For the term corresponding to l = 0, either '"Iz 2 Jr / 4m or '"Iz ~ Jr /4m; assuming,

without loss of generality, the former, it then follows that

1 e+ m- 1

2m + 1 (Ie +'"Iz - 4:1 + m-1
) (Ie - '"Iz + 4:1 + m-1

)

1 1< ---'c---------,-----

- 2m + lie - '"Iz + 4: 1+ m-1

~ 1,

which shows that

1 2m-1

2m + 1 L \If2(e, '"Iz, '"II) ~ clog(m + 1)
1=0

for the case when eE [0, Jr/2].

Case 2: Jr /2 ~ e~ Jr. For this case, sin(e/2) 2 ...}2/2, and so this factor

may be ignored. For \If1(e, '"Iz, '"II), note that

Jr 2Jr - e- '"Iz - '"II 3Jr Jr Jr e- '"Iz - '"II Jr- - < < - -- - - < < -
4m - 2 - 4' 4 8m - 2 - 2'
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so we may approximate the sine functions accordingly and obtain

1 2m-1

2m+1 L \lf1(e, I'z, 1'1)
1=0

C 2m-1 In - el + m- 1

::; 2m + 1 ~ (12n - e -I'z -I'd + m-1) (Ie -I'z -I'd + m-1)

c 2m-1 In - el + m- 1

2m + 1 L (In - e -I'z + I'd + m-1) (In - e + I'z -I'd + m-1)'1=0

where we have substituted 2m - 1 - l for l in the last equality. This estimate is

very similar to the estimate of \lf2(e, I'z, 1'1) in Case 1, and hence for n /2 ::; e ::; n,

2n-e+l'z-1'1 3n n n e+l'z-1'1 n no< < - + - -- < < - + -
- 2 - 4 4m' 2 - 2 - 2 4m'

so we may approximate the sine functions, to obtain

1 2m-1

2m + 1 L \lf2(e, I'z, 1'1)
1=0

C 2m-1 In - el + m- 1

::; 2m + 1 L (12n - e + I'z - I'd + m -1) (I e + I'z - I'll + m -1 )1=0

C 2m-1 In - el + m- 1

2m + 1 ~ (In - e + I'z + I'll + m-1Hln - e -I'z -I'll + m-1)'

which is very similar to our estimate for \If 1(e, I'z, 1'1) in Case 1, and we again get a

estimate of clog(m + 1).

Proof of Lemma IV. 7. The proof of the remaining two lemmas will proceed by

o
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separating the integral into three different regions, then dividing the sums in j and

v into several sections, and performing estimates on each resulting section.

Frequently, obtaining an estimate consists of bounding quotients by a constant,

and then estimating similar types of sums and integrals. For the sake of brevity,

we list these types here, and then direct the reader to the type of estimate that

arises in the each piece. The symbols (PI, (h and ~ refer to values that are specific

to the section under investigation. For two different expressions II and 12, the

notation {II, fd indicates that either expression satisfies that type. Finally, we

note that these estimates also hold for sums whose range of indices are a subset of

those listed below.

Type 1:

1 rq,2 1 m m 1

(2m + 1)2 Jq,l {Ie - <PI I, 1<P2 - el} + m-I~~ Ie} + ~I + m-I de

~ e(log(m + l)f

Type 2:

1 lq,2 m m 1
de < em.

(2m + 1)2 q,1 ~~ (Ie) + ~I + m- I)2 -

Type 3:

1 rq,2 1 m m 1

(2m + 1)2 Jq,l ({Ie - <PI I, 1<p2 - el} + m-I)2 ~~ Ie} + ~I + m-I de

~ emlog(m + 1).



Type 4:

1 f<P2 1 m m 1

(2m + 1)2 J<Pl {1<p2 - el, Ie - <Pll} + m-1~~ (lei + ~I + m-1)2 de

::; em log(m + 1).

Type 5:
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1 f<P2 1 m 1

(2m + 1)2 J<Pl {1<p2 - el, Ie - <Pll} + m-1~ {Io'v(x, Y)I, In - o'v(x, y)l} + m-1

x ~ 1 de
~ Ie· +~I +m-1
J=l J

Type 6:

1 f<P2 m 1 m 1

(2m + 1)2 J<Pl ~ {Io'v(x, y)1 , In - o'v(x, y)l} + m-1~ lei + ~I + m-1 de

::; e(log(m + 1))2.

Type 7:

1 f<P2 m 1 m 1

(2m + 1)2 J<Pl ~ {Io'v(x, Y)I, In - o'v(x, y)l} + m-1~ (lei + ~I + m-1)2 de

::; em log(m + 1).

The above estimates are easily obtained with the following lemma and

propositions.
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Proposition V.l. For any real number ~J

t 1 _1k::;{C(2m+1)log(m+1)

j=1 (Iej + ~I + m) c(2m + 1?

Proof By the definition of ej ,

k=1

k=2

~ 1 (2 1)k~ 1
~ (Ie j + ~1 + m-1)k = m + ~ Ij7f + (2m + 1)~1 + 2 + ~

m 1
::; (2m + 1)k 2 L (' 1)k'

j=1 J +

from which the proposition easily follows.

Lemma V.l. For (x, y) E r mJ

m 1
L I ( )1 -1 ::; cmlog(m + 1)

0"// x,y +m
//=0

m 1
LI ()I -1 ::;cmlog(m+1).7f-0"// x,y +m
//=0

D

(V.O.3)

(V.O.4)

Proof Recall that (x,y) = (rcos(¢),rsin(¢)). If we restrict v to 0::; v::; m/2,

then ¢// - ¢::; 7f/2, and 100//(x,y)1 ~ I¢// - ¢I, since cos(O"//(x,y))::; cos(¢// - ¢). On

the other hand, if ¢// - ¢ > 7f/2, then O"//(x, y) > 7f /2. The first inequality follows,

since

m 1 l~J 1 m 2
L I ( )1 -1 ::; L I¢ _ ¢I -1 + -- ::; cmlog(m + 1).
//=0 0"// x, Y + m //=0 // + m 2 7f

The proof of the second inequality is similar to the first. Recall that

7f - O"//(x, y) = 0"//(-x, -y), and write (-x, -y) = (r cos(¢), r sin(¢)), where
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rP E ('if - 4:+2' 'if + 4:+2)' A similar argument shows o"v( -x, -y) > 'if/2 for

v:::; m/2, while o"v( -x, -y) > IrP - rPvl for m/2 < v :::; m, and the remainder of the

proof is identitical to the proof of the first ineqality.

Proposition V.2. For a:::; rPl < rP2 :::; 'if)

1(/>2 1 { elog(m + 1)
-----------:-k de :::;

4>1 ({le-rPll,lrP2- el}+m-1
) em

k=1

k=2

D

Proof. The proposition follows from a change of variables in the integral. D

We introduce new notation to simplify the proof of the remaining

estimates. The notation Iv(rPl, rP2) denotes the set of indices v such that

rPl :::; O"v(x, y) :::; rP2' and the symbol Ij(rPl' rP2) denotes the equivalent set of indices

such that rPl :::; ej :::; rP2.

Combining At(x, y) and A1(x, y), we obtain

IAt(x, y) - A1(x, y) I
4reiB sin ej sin 0"v(x, y)

Upon substituting this into (IV.3.8) and using (V.a.l) and (V.a.2), we are left with
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estimating

1 l 1r 1 2m. e
(2m+1) 2 0 1 ie L L . sm(j ) IAt(x,y)-A1(x,Y)1

-re 2' smO"lIx,Y
11=0 m J=1

1 l 1r
m m 1< c ~~ sin2 e·

- (2m+ 1)2 0 ~~ sine+m-1 J

1
x---,-,--------;---- ,-------------;-----;,-----------;--------,;-;---~

(Isin (e+(}i+;v(X,y)) 1+ m-1) (Isin (e-er;v(x,y)) 1+ m-1)

1

(V.a.5)

(V.a.6)

In order to estimate the sine functions, the integral over [a,1T] is divided into

integrals over three subintervals: [a,~], [~, 3;], and [3;, 1T]. We will use the

notation 'Hi, 'Hi, and 'Hr to denote the left side of the inequality (V.a.5) restricted

over these respective sub-intervals.

Case 1: a:s; e :s; 1T /4. With this restriction on e, the sine functions in

(V.a.5) are estimated by

(V.a.7)

(V.a.8)

(v.a.g)

(V.a.1a)
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to obtain

First, use the inequality

If v E Iv (0, e), we use the inequality

e·
e e t) -1 < 1,j+ -av x,y +m

and then note that if j E I j (0, e),

1 1

(V.O.ll)

e+ m-1 (Ie - ej - av(x, y) 1+ m-1)(Ie - ej + av(x, y)1 + m-1 )

111< -:-------,- "------;---,----------=- -----,------,-------- e+ m-1 av(x, y) + m-1 Ie - ej - av(x, y)1 +m-1

1 1

e+m-1 (Ie - ej - av(x, y)1 +m-1)(le - ej + av(x, y)1 +m-1)

< 1 1 1
- e+m-1 av(x, y) +m-1 Ie - ej + av(x, y)1 + m-1

so by splitting the sum in j in this way, we obtain two estimates of Type 5. For
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v E 'Iv (0, 1f), use the inequality

O·
J < 1

OJ+a'v(x,y)-0+m-1 '

and then note that if j E 'Ij (a, (Tv(x, y)),

1 1

0+ m-1 (10 + OJ - (Tv(x, y)1 + m-1)(10 - OJ + (Tv(x, y)1 + m-1)
1 1

~ (0+m-1FI0+Oj-(Tv(x,y)l+m-1'

1 1

0+ m-1(10 + OJ - (Tv(x, y)1 + m-1)(10 - OJ + (Tv(x, y)1 + m-1)
1 1< -------,-:-- .,.---------,-------,----

- (0 + m-1)210 - OJ + (Tv(X, y)1 + m-1 '

so splitting the sum in j in this way yields two estimates of Type 3.

Case 2: 1f/ 4 ~ 0 ~ 31f/ 4. In this case, the factor of sin(O) + m- 1 in the

denominator of (V.a.5) is greater than V2/2 and may be ignored. The sine

functions in (V.a.5) are approximated by (V.a.7), (v.a.g), (V.a.8), and

(V.a.12)
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to obtain

1 3; m m

'}{2 < c r '"'" '"'" e2

1 - (2m+ 1)2 J!£ ~~ j,2m
(V.O.13)

1
x--,-----------,------,--------,------,---------,------,--------,--

(127f - e- ej - (jv(x, y) 1+ m-1) (Ie - ej - (jv(x, y) 1+ m-1)

1

x (Ie+ej - (jv(x, y) I+m -1) (Ie- ej + (jv(X, y) I+ m -1) de.

First consider v E Iv (0, e). Under this restriction,

and

e·
e e t) -1 < 1.j+ -(jv x,y +m

If j E I j (0, e), then

1 e·J
~7f - e+ m-1 (Ie - ej - (jv(x, y)1 +m-1) (Ie - ej + (jv(x, y)1 = m-1 )

111

while if j E I j (e, ~),

1 ~

~7f - e+m-1 (Ie - ej - (jv(x, y) I+m-1 ) (Ie - ej + (jv(x, y) I = m-1 )

1 1 1< -;;------ ---,------,--------,- -,--------,------,------,------
- ~7f - e+m-1 (jv(x, y) + m-1 Ie - ej + (jv(x, y)1 +m-1 '
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so we obtain two estimates of Type 5. If v E Iv (e, n), we use the inequalities

e·
J < 1

ej + a'v(x, y) - e+ m-1 - ,

and

e- ej + o'v(x, y) 2: 2(e - n /4).

Substituting 2m + 1 - j for j, note that if j E I j (~, e) ,

1 n-~

e- ~ +m- 1 (In - e+ej - o'v(x, y) 1+ m- 1) (In +e- ej - o'v(x, y) I = m-1 )

111

::; e- ~ + m-1 n - a'v(x, y) + m-1 In - e+ej - o'v(x, y)1 +m-1 '

and if j E I j (e, n) ,

1 n-~

e- ~ + m- 1 (In - e+ej - o'v(x, y) 1+ m-1 ) (In +e- ej - o'v(x, y) I = m-1 )

111

::; e- ~ + m-1 n - a"v(x, y) + m-1 In +e- ej - o'v(x, y)1 +m-1 '

so we obtain two estimates of Type 5.

Case 3: 3n/4::; e::; n. We may again ignore the factor of sin(e) + m-1 in the

denominator of (V.O.5). The sine functions are approximated by (V.O.12), (V.O.7),

(V.O.g) and

(
e- e· + (J (x y))

sin J 2 v , ~ 2n - e+ ej - (Jv (x, y) (V.O.14)
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to obtain

(V.O.15)

1
x....,..,----------,------,--------,------,---------,------,------.,...,--

(121T - e- ej - oAx, y) 1+ m-1Hie - ej - O"v(x, y) 1+ m-1)

1

x (Ie+ ej - 0"v (x, y) I+ m-1) (121T - e+ ej - 0"v (x, y) I+ m-1 )de.

First observe that e+ O"v(x, y) :::; 21T, so that

For v E Iv (0, e), we use the inequality

and substitute 2m + 1 - j for j. For j into I j (~, O"v(x, y)),

1

(I1T - e+ ej - O"v(x,Y)1 + m-1 )(I1T - e- ej + O"vl + m-1)

1 1< ---_..,-----------,-------,-------,----
- 1T - e+ m-1 11T - e+ ej - O"v(x, y) 1+ m-1 '

while if j E I j (0"v (x, y) ,1T) ,

1

(11T - e+ ej - O"v(x, y)1 + m-1)(I1T - e- ej + O"vl + m-1)

1 1
< ,
- 1T - e+ m-1 j1T - e- ej + O"v(x, y) I + m-1
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so two estimates of Type 1 are obtained. For v E Iv (8, Jr), use the inequality

8·
8 () 8 -1 < 1,j+(Tv x,y - +m

substitute 2m + 1 - j for j, and note that if j E I j (~, 8),

1

(IJr - 8 + 8j - (Tv(x,Y)1 + m-1)(IJr + 8 - 8j - (Tv I + m-1 )

1 1

while if j E I j (8, Jr),

1

(IJr - 8 + 8j - (Tv(x, y)1 + m-1)(IJr + 8 - 8j - (Tv I + m-1 )

1 1

so we obtain two estimates of Type 6. This concludes the proof of Lemma

IV.7.

Proof of Lemma IV.S. First, we let ( = reiB . As in the proof of Lemma IV.7, we

combine terms to obtain

IAt(x, y) - A2(x, y) I

o

= 2sin8j sin(Tv(x,y) 11 - r2e2iB
I

IP((, 8j , (Tv(x, y))1
x--------------'-----'------':....,,-----'------'----------------,,-

(1 - reiB cos(8j + (Tv(x, y)) + (reiB )2)2 (1 - reiB cos(8j - (Tv(x, y)) + (reiB )2)2'



(V.a.16)
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where

P((, Bj , O"v(x, y))

= 1- 3(4 - 2(2(3 - 2sin2(Bj ) - 2sin2 (O"v(x,y)))

+ 8(3 (1 - 2 sin2(O"v(x, y) /2) - 2 sin2(Bj /2) + 4 sin2(0"v(x, y) /2) sin2(Bj /2)) .

Substituting this into (IV.3.8) and using (V.a.l) and (V.O.2), it remains to estimate

We will again split this integral into three sub-integrals over [a,~], [~' 3;],

and [3;,7f], and denote the part of (V.a.17) associated with these subintervals by

1{~, 1{~, and 1{~, respectively. The crucial part of the estimate is suitably

approximating /P((, Bj , O"v(x, y))I. Several different approximations will be used.

These approximations are given in the following lemma, and are referenced as

needed.

Lemma V.2. The function P((, Bj , O"v(x, y)) satisfies the following inequalities.
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(El) For a :s; B :s; n /2,

IP((, Bj , av(x, y))1 (V.a.18)

:S;c ((B+B j +m-1)2(IB_Bj l+m-1
)

+(av(x, y))2(B + (av(x, y))2 + B; + m- 1
)) .

(E2) For a :s; B :s; n /2,

IP((, Bj , av(x, y)1 (V.a.19)

:s; c ((B + m-1 )3 + (B j + av(x, y))2(IBj - av(x, y) 1)2

+ (B + m-1)(B; + (av(x, y))2)).

(E3) For n/ 4 :s; B :s; 3n/4,

IP((, Bj , av(x, y))1 :s; c ((IB + Bjl + m-1
) (IB - Bjl + m- 1

) + (av(x, y))2) .

(V.a.2a)

(E4) For n / 4 :s; B :s; n,

IP((, Bj , av(x, y))1 (V.a.21)

:s; c ((In - B+ Bjl + m-1)2 (In - B- Bjl + m-1
) + (n - av(x,y))2).

Proof. We first prove the estimate (V.a.18). We define

P1 ((, Bj ,2m) := 1- 2(2(3- 2sin2Bj ) +8(3cosBj - 3(4,

P:f((,Bj,av(x,y)):= 4(2 sin2av(x,y) ± 16(3 sin2 av(;,y) cosBj,

(V.a.22)
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so we may write P((, Bj , o"v(x, y)) = PI ((, Bj ) + P2- ((, Bj , (Jv(x, y)). It is possible to

factor PI ((, Bj ) as

(V.O.23)

The second factor of (V.O.23) is approximated by (V.O.l) and (V.O.2) as before,

and the first factor may be further factored as

(1 + 2(cosBj - 3(2) = -3 (( + ~ ( J4 - sin2Bj - COSB j ))

x (( - ~ ( J4 - sin2 Bj + cos Bj ) ) .

(V.O.24)

The first factor of (V.O.24) will not be used. Using the double angle identity for

cosine, the second factor of (V.O.24) is approximated by

I( - ~ (J4 - sin
2 Bj+ cos Bj) I

::; C (3 sin B+ '3 cos B- cos Bj - J4 - sin2 Bj I+ m -1 )

::; C(B + B; + 12 - J4 - sin2Bj 1+ m-1) .

Now considering P2-((, Bj ), the double angle indentities for sine and cosine are
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used to obtain

IP2- ( (, Bj, ~v (x, y) I

::; C(~V(X,y))2ICOS2 av~,Y) - zcosBjl

::; c(~v(x, y))2(B + (~v(x, y))2 + BJ + m-1
).

(V.O.26)

Adding the estimates (V.O.25) and (V.O.26) , we arrive at the estimate (V.O.18).

The proof of the estimate (V.O.20) follows from replacing B with a constant

in (V.O.18).

We next prove the estimate (V.O.19). We first re-write P((, Bj , ~v(x, y)) as

P((, Bj , ~v(x, y)) = 1- 3(4 - 6(2 + 8(3

+ 4(2 [sin2Bj + sin2~v(x, y)

+ 4 (2 sin2 OJ sin2 av(x,y) _ sin2 OJ _ sin2 av(x,y))
2 2 2 2

+ 4(( - 1) (2 sin2~ sin2 av(;,y) - sin2~ - sin2 av(;,y)) ].

It is easily checked that 1 - 3(4 - 6(2 + 8(3 = - (( - 1)3 (3( + 1), and applying the

double angle identity for sines,

sin2Bj + sin2~v(x, y) + 4 (2 sin2 °t sin2 av(;,y) - sin2 °t - sin2 av(;,y))

= -4 (sin2~ _ sin2 av(;,y)) 2 .

Finally, we may approximate the sine functions to obtain (V.O.19).

Finally, we prove the estimate (V.O.21). First, replace sin2~v(x, y) with
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sin2(1f - O"v(x, y)) and sin2 O"I/(;,y) with 1 - sin2 7r-O";(x,y) in (V.O.16) to obtain

IP((, Bj , O"v(x, y))1

::; 11 - 3(4 - 4(2(3 - 2sin2Bj ) + 8(3(2sin2 (id - 1)1

+ C IP2+ (( ,Bj, 1f - 0"v (x, y) ) I.

(V.O.27)

The inequality IPi((, Bj , 1f - O"v(x, y))1 < c(1f - O"v(x, y))2 follows easily from the

definition of Pi- The first term in (V.O.27) becomes IH((,1f - Bj)l, after replacing

3 - 2 sin2Bj with 3 - 2 sin2(1f - Bj ) and 2 sin2 (id - 1 with 1 - 2 sin2 (7r~(ij).

H((,1f - Bj ) factors as in (V.O.23). The factor of 1 + 2 COS (B j )( - 3(2 can be

factored further, as

1 + 2( cos(1f - Bj ) - 3(2

= 1- 2(cosBj - 3(2

= -3 (( + ~ (cos Bj - V 4 - sin2Bj )) (( + ~ (cos Bj + V 4 - sin2Bj ) ) .

The first factor will not be used, but the absolute value of the second factor may

be approximated by

I( + ~ (cos Bj + V 4 - sin
2

Bj ) I

::; C (I sinBI + ICOSB + ~ (COSBj + V4 - sin
2

Bj ) 1+ m-
1

)

::; C (1f - B+ 16sin2 7r;(i - 2sin2~ + V4 - sin2Bj - 21 + m-1
)

and we are able to obtain the estimate (V.O.21). o
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Case 1: a::; e::; 7f/4. Approximating the sine functions in (V.a.17) with (V.a.lO),

(V.a.7), (V.a.8), and (v.a.g), we obtain

We first consider 1/ E Iv (a, e) and let H~(oAx, y) ::; e) denote H~ with this

restriction on 1/, a notation we will adopt for the rest of this proof. Note that

eJj(e + ej - ov(x, y) + m-1)2 < 1, and approximate IP((, ej , o"v(x, y)1 using

(V.a.18), to obtain

For the first term in the sum in (V.a.18), first use the inequality

and then note that for j in I j (a, e),

(Ie - ej - ov(x, y)1 + m-1)2 (Ie - ej + ov(x, y)1 + m-1)2
1 1
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while, if j E I j (e, ~),

(Ie - ej - all(x, y) I+ m-1)2 (Ie - ej + all(x, y)1 + m-1)2
1 1

::; lall(x, y)1 + m- 1 Ie - ej + all(x, y)1 +m- 1 '

so by splitting the sum in j in this way, two estimates of Type 7 are obtained. For

the second term in (V.0.18), first use the inequality

e+ (all(x, y))2 + eJ +m-1 1

(e + ej + all(x, y) +m-1 )2 < Ce+ m-1 .

Note that if j E I j (0, e), then

while if j E I j (e, ~),

so by splitting the sum in j as above, we obtain two estimates of Type 4.

For v E III (e, 'iT), first use the inequality
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and then approximate !P(, 19j , (}v(x, y))1 using (V.0.19) to obtain

For the first term of the sum in (V.0.19), use the inequality

and then note that if j E I j (0, (Jv(x, y)),

(119 - 19j + (Jv(x, y)1 +m-1)2(119 + 19j - (Jv(X, y)1 + m-1)2
1 1

(119 - 19j + (Jv(x, y)1 + m-1)2(119 + OJ - (Jv(X, y)1 + m-1)2
1 1

:::; 19 + m-1 (119 - 19j + (Jv(x, y)1 + m- 1)2'

so we obtain two estimates of type 4. For the second term of the sum in (V.0.19),

first use the inequality

(19j + (Jv(x, y))2 1
(19+19 j +(Jv(x,y)+m-1 )2 < ,

and then split the sum in j into I j (0, (Jv(x, y)) and I j ((Jv(x, y), %). For the first
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sum, use the inequality

and for the second sum, use

and we obtain two estimates of Type 2. Finally, for the third term in (V.0.19), use

the inequality
(av(x, y)? + eJ

e+ ej + av(x,y) + m-1)2 < 1,

and then use the fact that if j E 'Ij (0, av(x, y)),

while if j E 'Ij (av (x, y), ~),

so we obtain two estimates of Type 4.

Case 2: 7r/4::; e::; 37r/4: If av(x,y)::; 7r/2, the sine functions in (V.0.17)
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may be approximated as in Case 1, while if av(x, y) 2:: 7r /2, the sine functions may

be approximated by (V.0.12), (V.0.7), (V.0.8), and (V.0.9). Hence, we obtain

We consider first v E Tv (0, min (%,8)). With this restriction on v, we may

use the inequality 8 + 8j + av(x, y) 2:: 7r/4, so this factor may be ignored. We may

also use the inequality

and approximate P((,8j ,av (x,y)) by (V.0.20) to obtain



If j E I j (0, B), then

(IB - Bj + o"v(x, y)1 + m-1)2 (IB - Bj - o"v(x, y)1 + m-1)2
1 1

:::; (Jv(x, y) + m-1 (IB - Bj - (Jv(x, y)1 + m-1)2'

which yields an estimate of Type 7, and

(IB - Bj + (Jv(x, y)1 + m-1)2 (IB - Bj - (JV(X, y)1 + m-1)2
1

which yields an estimate of Type 2.

Next, we consider lJ E Iv (B, ~). We again have

B+ Bj + (Jv(x, y) + m- 1 > 1f/4, so this factor may be ignored, and the inequality

is used. We only need to approximate P((,Bj,(Jv(x,y)) by a constant, and we

obtain

1
x 2 dB.

(IB + Bj - (Jv(x, y)1 + m-1)
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If j E I j (0, a"v(x, y)), then

1

while if j E I j ((}v(x,y), ~),

1

so in both cases, estimates of Type 2 are obtained.

Now we consider v E Iv (~,O). For this range of v, we may use the

inequalities 0 - OJ + (}v(x, y) 2: 7r/4 and

We again approximate IP((, OJ, (}v(x, y)1 by a constant, and then substitute

2m + 1 - j for j to obtain

91
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If j E I j (~,oAx,y)),

1

while if j E I j (av(x, V), 1f),

1

both of which produce estimates of Type 2.

To complete this case, we consider v E Iv (max (0, ~) ,1f). Under these

restrictions, 0 - OJ + av(x, y) + m-1 ~ 0 + m-1 and hence may be ignored, and

Use the estimate for IP((, OJ, av(x, y) I in (V.O.21), and substitute 2m + 1 - j for j,

to obtain



If j E I j (~, e), then

so we obtain an estimate of Type 4, while

which yields an estimate of Type 2. If j E I j (e, 1r), then

(11r - e+ ej - av(x, y)1 + m-1)2 (11r + e- ej - av(x, y)1 + m-1)2
1 1

:S c 1r - av(x, y) (11r + e- ej - av(x, y)1 + m- 1)2'

which gives an estimate of Type 4, and the inequality

(11r - e+ ej - av(x, y)1 + m-1)2 (11r + e- ej - av(x, y)1 + m-1)2
1< --,-,-------------

- (11r + e- ej - av(x, y)1 + m-1)2'

yields an estimate of Type 2.

Case 3: 31r/4:S e :S 1r. Recall from (IV.3.10) that a factor of 1r - e+ m-1 is

present in the numerator. After approximating the sine functions in (V.O.17) by
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(V.a.12), (V.a.7), (V.a.14) and (V.a.9), we obtain

We first consider v E Iv (a,~). Note that 12n - e- (Jv(x, y) + ej I ~ n /2, and

Ie - (Jv(x,y) + ejl > n/2, so we may ignore those factors. Also, note that

constant to obtain

which immediately gives an esimate of type 4.

We next consider v E Iv (~, e). First use the inequality
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and approximate IP((, (), ()j, a"v{x, y))1 with (V.O.21) to obtain

For the first term in the sum in the numerator, we use the inequality

If j E I j (O,7f - O"v(x,y)),

so we obtain an estimate of type 2. If j E I j (7f - O"v(x, y), ~),

so we obtain an estimate of type 4. For the second term of the sum in the

numerator, use the inequality

(7f - O"v(x, y)? < 1.
(27f - () + ()j - O"v(x, y) + m-1)2
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If j E I j (0,7f - O"v(x, y)),

(127f - 8 - 8j - 0"v (x, y) I+ m-1)2 (18 - 8j - 0"v (x, y) I + m-1)2
1 1

while if j E I j (7f - O"V(X, y), ~),

(127f - 8 - 8j - 0"v (x, y) I+ m-1)2 (18 - 8j - 0"v (x, y) I + m-1)2

1 1
< C I ) ,- 7f - 8 + m -1 (127f - 8 - 8j - 0"v (x, y) + m -1 2

so two estimates of type 4 are obtained.

Finally, we consider 1/ E Iv (8, 7f). Use the inequality

and approximate IP((, 8j , O"v(x, y))1 using (V.0.21) to obtain
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For the first term in the sum in (V.0.21), use the inequality

(7f + 8j - 8 + m-1)2 1
(27f - 8 - O"v(x, y) + 8j + m-1)2 < ,
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and then note that if j E I j (0, n - e),

(12n - e - ej - aAx, y) 1+ m-1)2 (Ie + ej - aAx, y) I+ m-1)2
1

so we obtain an estimate of type 2. If j E I j (n - e, ~),

so we obtain an estimate of type 7. For the second term in the sum in (V.O.21),

use the inequality

(n-aAx,y))(n-e+m- 1
) 2 <1

(2n - e - aAx, y) + ej + m- 1 )

and then note that if j E I j (0, n - e),

(12n - e - ej - aAx,y)1 + m-1)2 (Ie + ej - aAx,y)1 + m-1)2
1 1

::; n - aAx, y) + m-1 (Ie + ej - al/(x, y) I+ m-1 )2'

(12n - e - ej - a1/ (x, y) I+ m-1)2(I e + ej - a1/ (x, y) I+ m-1)2
1 1

::; n - a1/(x, y) + m-1 (12n - e- ej - a1/(x, y) I+ m-1) 2 '

so two estimates of type 7 are obtained. This completes the proof of Lemma (IV.8)

and Theorem (IV.8). D



98

REFERENCES

[1] T. Bagby, L. Bos, and N. Levenberg, Multivariate simultaneous
approximation, Constr. Approx. 18 (2002), 569-577.

[2] B. Bojanov and LK. Georgieva, Interpolation by bivariate polynomials based
on Radon projections, Studia Math. 162 (2004), 141-160.

[3] B. Bojanov and Y. Xu, Reconstruction of a polynomial from its Radon
projections, SIAM J. Math. Anal. 37 (2005), 238-250.

[4] R.A. DeVore and G.G. Lorentz, Constructive approximation, Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], vol. 303, Springer-Verlag, Berlin, 1993.

[5] C.F. Dunkl and Y. Xu, Orthogonal polynomials of several variables,
Encyclopedia of Mathematics and its Applications, vol. 81, Cambridge
University Press, Cambridge, 2001.

[6] G. Gasper, Banach algebras for Jacobi series and positivity of a kernel, Ann.
of Math. (2) 95 (1972), 261-280.

[7] M.A. Kowalski, Orthogonality and recursion formulas for polynomials in n
variables, SIAM J. Math. Anal. 13 (1982),316-323.

[8] , The recursion formulas for orthogonal polynomials in n variables,
SIAM J. Math. Anal. 13 (1982), 309-315.

[9] Z. Li and Y. Xu, Summability of product Jacobi expansions, J. Approx.
Theory 104 (2000), 287-301.

[10] B.F. Logan and L.A. Shepp, Optimal reconstruction of a function from its
projections, Duke Math. J. 42 (1975), 645-659.

[11] R.B. MaTT, On the reconstruction of a function on a circular domain from a
sampling of its line integrals, J. Math. Anal. Appl. 45 (1974), 357-374.

[12] F. Natterer, The mathematics of computerized tomography, Classics in
Applied Mathematics, vol. 32, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2001.



99

[13] P.P. Petrushev, Approximation by ridge functions and neural networks, SIAM
J. Math. Anal. 30 (1999), 155-189.

[14] I.H. Sloan, Polynomial interpolation and hyperinterpolation over general
regions, J. Approx. Theory 83 (1995), 238-254.

[15] G. Szego, Orthogonal polynomials, fourth ed., American Mathematical
Society, Providence, R.I., 1975, American Mathematical Society, Colloquium
Publications, Vol. XXIII.

[16] Y. Xu, On multivariate orthogonal polynomials, SIAM J. Math. Anal. 24
(1993), 783-794.

[17] , Summability of Fourier orthogonal series for Jacobi weight on a ball
in R d , Trans. Amer. Math. Soc. 351 (1999), 2439-2458.

[18] , A new approach to the reconstruction of images from Radon
projections, Adv. in Appl. Math. 36 (2006), 388-420.

[19] A. Zygmund, Trigonometric series. Vol. I, II, third ed., Cambridge
Mathematical Library, Cambridge University Press, Cambridge, 2002.


