
GEOMETRY AND COMBINATORICS PERTAINING

TO THE HOMOLOGY OF SPACES

OF KNOTS

by

KRISTINE ENGEL PELATT

A DISSERTATION

Presented to the Department of Mathematics
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2012



DISSERTATION APPROVAL PAGE

Student: Kristine Engel Pelatt

Title: Geometry and Combinatorics Pertaining to the Homology of Spaces of Knots

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Mathematics
by:

Dev Sinha Chair
Daniel Dugger Member
Arkady Vaintrob Member
Marcin Bownik Member
Nathalie Hester Outside Member

and

Kimberly Andrews Espy Vice President for Research & Innovation/
Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded June 2012

ii



c© 2012 Kristine Engel Pelatt

iii



DISSERTATION ABSTRACT

Kristine Engel Pelatt

Doctor of Philosophy

Department of Mathematics

June 2012

Title: Geometry and Combinatorics Pertaining to the Homology of Spaces of Knots

We produce explicit geometric representatives of non-trivial homology classes in

Emb(S1,Rd), the space of knots, when d is even. We generalize results of Cattaneo,

Cotta-Ramusino and Longoni to define cycles which live off of the vanishing line of

a homology spectral sequence due to Sinha. We use configuration space integrals to

show our classes pair non-trivially with cohomology classes due to Longoni.

We then give an alternate formula for the first differential in the homology

spectral sequence due to Sinha. This differential connects the geometry of the cycles

we define to the combinatorics of the spectral sequence. The new formula for the

differential also simplifies calculations in the spectral sequence.
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CHAPTER I

INTRODUCTION

The study of knot theory concerns the components of the space Emb(S1, S3), as

well as its zeroth cohomology – that is knot invariants. Alternatively, one studies the

closely related space Kd of smooth embeddings R ↪→ Rd which are fixed outside of

the unit interval I, for d = 3. Also of topological interest is the full homotopy type

of Emb(S1, S3). The first results in this area are due to Gramain in [11], where he

studies the fundamental groups of the path components of K3. Hatcher proves in [14]

that the component of K3 containing the unknot is contractible, which is equivalent

to the Smale conjecture. Hatcher also proves in [12] that each component of K3 is a

K(π, 1), and with McCullough [13] that each path component has the homotopy type

of a finite CW-complex. We focus on the study of the topology of the embedding

spaces Emb(S1,Rd) and Emb(I, Id) for d ≥ 4.

In [25], Vassiliev constructs a spectral sequence for each dimension d, and asserts

that this spectral sequence converges to the homology of Emb(I, Id) when d ≥ 4.

Vassiliev also analyzes the combinatorics of this spectral sequence when d = 3 without

any knowledge of its convergence. This analysis initiated the study of finite type

invariants, also called Vassiliev invariants.

The study of finite type invariants was continued by Birman and Lin [3], Bar-

Natan [2], Bott and Taubes [4], and many others. Using ideas from the work of

Bott and Taubes, the group of Cattaneo, Cotta-Ramusino and Longoni [7] combine

the idea of finite type invariants with the de Rham cohomology of Emb(S1,Rd). We

give a summary of these results in Section 2.2. Briefly, they produce explicit, non-

trivial, k(d−3)−dimensional cycles and cocycles in Emb(S1,Rd). They define a chain
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map from a graph complex to the de Rham complex of Emb(S1,Rd), and produce

cocycles as images of graph cocycles consisting of trivalent graphs. To produce cycles,

they use families of resolutions of singular knots with k transverse double points. To

establish non-triviality, they show the pairing between certain cycles and cocycles is

nonzero. Their techniques produce many more cocycles, whose (non)-triviality is an

open question.

In [16], Longoni defines a cocycle which is the image of a non-trivalent graph and

proposes that this cocycle is non-trivial. These results of Longoni were very influential

for our work. We extend the results of [7] and [16] by giving an example of a cycle in

H3(d−1)(Emb(S1,Rd)), and showing that this cycle (and Longoni’s cocycle) are non-

trivial by evaluation. Furthermore, instead of focusing on the de Rham cohomology

and its formal linear dual as in [16], we treat homology from a geometric viewpoint.

Another approach to the study of the topology of spaces of knots was initiated

by Goodwillie starting with ideas from his thesis [8]. This approach, now known as

the calculus of embeddings (or the calculus of isotopy functors) was fully developed

by Weiss, Goodwillie and Klein [9, 10, 27]. We summarize their results specialized to

knots below, following Volic [26] and Sinha [23].

The space of embeddings Emb(I, Id) can be approximated by the space of

“punctured knots.” Specifically, we fix a sequence of disjoint closed subintervals

of I, namely Ji = [ 1
2i
, 1

2i
+ 1

10i
].

Definition 1.1. For every subset S ⊂ n = {1, 2, . . . , n}, let ES = Emb(I−∪i∈SJi, Id).

If S1 ⊂ S2 then there is an embedding ES1 ↪→ ES2 . For a fixed n, the set of

spaces {ES : S ⊆ n, S 6= ∅} forms a cubical diagram, which we denote En. Define

PnEmb(I, Id) to be the homotopy limit of En.
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For every non-empty subset S ⊆ n, there is also an embedding Emb(I, Id) →

ES, and thus a canonical map Emb(I, Id) → PnEmb(I, Id). Furthermore, En−1 is

a sub-cubical diagram of En, so a choice of inclusion gives a map PnEmb(I, Id) →

Pn−1Emb(I, Id).

Definition 1.2. The Taylor tower for Emb(I, Id) is

P0Emb(I, Id)← P1Emb(I, Id)← · · · ← Pn−1Emb(I, Id)← PnEmb(I, Id)← · · · .

The Taylor tower together with the following result of Goodwillie and Klein, has

led to many results in the study of the topology of spaces of knots.

Theorem 1.1. [9] If d ≥ 4 the canonical map Emb(I, Id) → PnEmb(I, Id) is (n −

1)(d− 3)−connected. Thus the map from Emb(I, Id) to the homotopy inverse limit of

the Taylor tower induces isomorphisms on homotopy and homology.

In [21, 23], Sinha establishes conjectures of Bott and Goodwillie that the Taylor

tower for knot spaces has a natural cosimplicial description involving compactified

configuration spaces. As a result, he obtains spectral sequences converging to the

homology, cohomology and homotopy of Emb(I, Id) and closely related spaces [20].

We briefly summarize these results for the homology spectral sequence below and

study the first differential of this spectral sequence further in Chapter III.

Let Ed be the subspace of Emb(I, Id) consisting of pairs of an embedding with

the endpoints and tangent vectors at the endpoints fixed on opposite faces of Id and

an isotopy through immersions to the unkot. Sinha shows in [21] that this space is

homotopy equivalent to Emb(I, Id)× ΩImm(I, Id).

Let Od be the d-th Kontsevich operad defined in [21], whose entries are

compactified configuration spaces. In [17], McClure and Smith present a method
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for associating a cosimplicial object to an operad. Let O•d be the cosimplicial object

associated to the Kontsevich operad. The following is Theorem 6.9 of [21].

Theorem 1.2. The k-th stage of the Taylor tower for Ed, or PkEd, is weakly

equivalent to Totk of a fibrant replacement of O•d.

Using the homology spectral sequence for cosimplicial spaces, developed by

Bousfield in [6], Sinha [22] shows that there is a spectral sequence with E1
−∗,∗ =

H∗(O•d). Furthermore, H∗(O•d) = Poisd−1, so the E1 page of this spectral sequence

can be expressed in terms of the Poisson operad. For d ≥ 4, this spectral sequence

converges to homology of Ed. There are similar spectral sequences, also due to Sinha

[23], which converge to the homotopy and cohomology of Ed. By work of Arone,

Lambrechts, Turchin and Volic [1, 15], the rational cohomology and homotopy spectral

sequences collapse at the E2 page.

By work of Turchin in [24], the E1
−∗,∗ term of Vassiliev’s spectral sequence

agrees with the E2
−∗,∗ term of Sinha’s spectral sequence. These approaches allow

one to combinatorially understand the ranks of the homology groups of the closely

related space Emb(S1,Rd), but do not immediately give geometric understanding or

representing cycles and cocycles in knot spaces.

The cycles defined by Cattaneo et al. in [7] live along the (−2q, q(d−1))−diagonal

in the first page of the homology spectral sequence, and thus in degree q(d− 3). This

diagonal also serves as a vanishing line. For d odd, Sakai [18] produces a (3d −

8)−dimensional cocycle in the space of long knots coming from a non-trivalent graph

cocycle. To establish the non-triviality of this cocycle, he evaluates it on a cycle

produced using the Browder bracket coming from the action of the little two-cubes

operad on the space of framed knots.
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1.1. Main Results

We produce a non-trivial cycle which lives off of the vanishing line of the

homology spectral sequence for d even by generalizing the methods of Cattaneo,

Cotta-Ramusino and Longoni to families of resolutions of singular knots with triple

points. In particular, we first define a topological manifold Mβ and an embedding of

Mβ into Emb(S1,Rd), extending and correcting the results in the preprint of Longoni

[16]. Longoni also defines a cocycle which is the image of a non-trivalent graph when d

is even. We show that the pairing between Longoni’s cocycle and our cycle is nonzero,

and thus both are non-trivial.

We also give a new formula for the first differential in Sinha’s spectral sequence

in Chapter III. Our techniques were motivated by the search for geometric

representatives. Building on ideas from Chapter II, we immediately have conjectured

recipes for representatives of all cycles in Sinha’s spectral sequence. This is in contrast

to Sakai’s approach, which would require new input for any Browder-indecomposible

classes off of the (−2q, q(d − 1))−diagonal. We plan to develop these conjectured

representatives in future work.
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CHAPTER II

GEOMETRIC REPRESENTATIVES OF NON-TRIVIAL CYCLES

2.1. Definition of the Cycle

The idea at the heart of our method to produce homology classes in knot spaces

goes back to Vassiliev’s seminal work [25]. In finite type knot theory, one defines the

derivative of a knot invariant by taking an immersion with transverse double-points

and evaluating the knot invariant on the resolutions of that immersion. We require a

generalization of such immersions.

Definition 2.1. An immersion γ : S1 ↪→ Rd has a transverse intersection r-singularity

at t̄ = (t1, t2, . . . , tr) ∈ I×r with 0 < t1 < t2 < · · · < tr < 1, if all of the γ(ti) coincide

and the derivatives γ′(ti) are generic in the sense that any d or fewer of them are

linearly independent.

To connect with the language naturally produced by the embedding calculus

spectral sequence, we use bracket expressions to encode singularity data. Sinha

calculates in [23] that the subgroup of Poisd(p), the p−th entry of the Poisson operad

(see [19]), generated by expressions with q brackets such that each xi appears inside

a bracket pair and the multiplication “ · ” does not appear inside a bracket pair, is

also a subgroup of E1
−p,q(d−1) in the reduced homology spectral sequence. This is the

full E1
−p,q(d−1) in the spectral sequence converging to the homology of the homotopy

fiber of the inclusion map Emb(I, Id) ↪→ Imm(I, Id). On this subgroup, the differential

d1 : E1
−p,q(d−1) → E1

−p−1,q(d−1) is d1 =
∑p

i=0(−1)i(δi)∗, where (δ0)∗ is defined by adding

x1 in front of the expression and replacing each xj by xj+1, (δp+1)∗ is defined by adding

xp+1 to the end, and for 1 ≤ i ≤ p, the map (δi)∗ is defined by replacing xi by xi ·xi+1

6



and xj by xj+1 for j > i. In [24], Tourtchine does further calculations in this spectral

sequence.

Example 2.1. The bracket expression β = β1 + β2 where β1 = [[x1, x4], x3] · [x2, x5]

and β2 = [x1, x4] · [[x2, x5], x3] is a cycle in E1
−5,3(d−1).

Definition 2.2. A pair (γ, t̄) of an immersion and a sequence t̄ = 0 < t1 < t2 < · · · <

tp < 1 respects a bracket expression β ∈ Poisd(p) if γ has a transverse r-singularity at

the sequence 0 < ti1 < . . . < tir < 1 whenever xi1 , . . . , xir appear inside of a bracket

in β.

For example, the knots K1 and K2 in Figure 2.1 respect β1 and β2, respectively.

A knot can respect a bracket expression but have higher singularities; for example

K1 also respects [x1, x3] · [x2, x4].

Definition 2.3. We will denote the subspace of all pairs (γ, t̄) ∈ Imm(S1,Rd) ×

I×r respecting a bracket expression by Imm≥β(S1,Rd), with the convention

Immφ(S1,Rd) = Imm(S1,Rd). The subspace of Imm≥β(S1,Rd) consisting of

immersions which do not have higher singularities will be denoted by Imm=β(S1,Rd).

Figure 2.1. The singular knots K1 and K2.

In the spectral sequence, bracket expressions of the form
∏k

m=1[xim , xjm ] are

E1-cycles. Submanifolds representing these cycles are well known and described in

7



Section 2 of [7]. Informally, we start with a singular knot K ⊂ Rd with k double

points which respects
∏k

m=1[xim , xjm ], and resolve each double point by moving one

strand passing through the double point off of the other. For each vector in Sd−3

we have a possible direction in which to move the strand, and therefore a possible

way to resolve the double point. The subset of Emb(S1,Rd) consisting of all such

resolutions of K is a submanifold parameterized by
∏

m S
d−3, and its fundamental

class corresponds to the cycle
∏k

m=1[xim , xjm ] of the spectral sequence.

For higher singularities, we start with ideas of Longoni [16] and produce

resolutions of transverse intersection singularities by moving one strand at a time

off the intersection point. Assume the rank of the singularity r is less than d, so

the (tangent vectors of the) strands in question span a proper subspace. There are

two cases - resolving a double point and resolving a higher singularity. If r ≥ 3,

we are moving a strand off the intersection point. The complementary subspace to

the (tangent vector of the) strand has a unit sphere Sd−2 which parametrizes the

directions to move one strand off the intersection point. If r = 2, we consider a

unit sphere Sd−3 in the complimentary subspace which parametrizes the directions to

move one strand off another.

Resolutions of triple point singularities (and higher singularities) can produce

further singularities (see Figure 2.4). By restricting away from neighborhoods of

those “additional singularity” resolutions, we produce submanifolds with boundary

which we show can be pieced together to build representatives of E1-cycles in the

spectral sequence. We formalize as follows.

Definition 2.4. If β is a bracket expression, let β(̂i) denote the bracket expression

obtained from β by removing xi and the minimal set of other symbols as required to

have a bracket expression, and replacing xk by xk−1 for all k > i.

8



Remark 2.1. This will be called the restriction (and relabeling) of the bracket

expression in Chapter III.

For example, with β1 = [[x1, x4], x3] · [x2, x5], we have β1(4̂) = [x1, x3][x2, x4]. For

each strand through a transverse intersection r-singularity, we can define a resolution

map which moves that strand off of the singularity. To accommodate the two cases,

we let

d(r) =

 d− 2 if r > 2

d− 3 if r = 2
.

By the rank of xi in a bracket expression β, we will mean the number of variables

in β (counting xi) which appear inside of common brackets with xi. In β1, x3 has

rank three and x5 has rank two.

Definition 2.5. If β is a bracket expression in which xi has rank r (with r > 0)

define the resolution map

ρi : Imm≥β(S1,Rd)× Sd(r) × I× I→ Imm≥β(̂i)(S
1,Rd)

by

ρi(γ, t̄, v, a, ε)(t) =

 γ(t) + a · v exp
(

1
(t−ti)2−ε2

)
if t ∈ (ti − ε, ti + ε)

γ(t) otherwise
.

We call the triple (v, a, ε) ∈ Sd(r) × I× I the resolution data. We often fix a and

ε so that the resolutions do not have unexpected singularities and by abuse denote

the restriction by ρi as well. The resolution map produces immersions in which the

strand (between times ti − ε and ti + ε) is moved in the direction of v, as shown in

Figure 2.2.

9



Figure 2.2. The resolution of a double point.

Definition 2.6. Let S = {xi1 , xi2 , . . . , xik} be an ordered subset of the variables in

β. Define ρβ,S to be the composite

ρik◦(ρik−1
×id)◦· · ·◦(ρi1×id) : Imm≥β(S1,Rd)×

∏
m

(
Sd(rm) × I× I

)
→ Imm≥∅(S1,Rd).

Let x̃im be xim after the relabeling needed to define β(î1, . . . , îm−1), and let rm is the

rank of x̃im in β(î1, . . . , îm−1).

The set S encodes which strands get moved in the resolution defined by ρβ,S.

We now specialize. Let β1 = [[x1, x4], x3] · [x2, x5], β2 = [x1, x4] · [[x2, x5], x3] and

choose the ordered subset of variables for each to be S = {x3, x4, x5}. We choose

embeddings K1 and K2 of S1 in R3 ↪→ Rd as shown in Figure 2.1, as well as a

sequence 0 < t1 < t2 < · · · < t5 < 1 so that (K1, t̄) respects β1 and (K2, t̄) respects

β2.

We restrict the directions in which the singularities are resolved to ensure

we produce not just immersions but embeddings. We assume that in the disk of

radius 1/10 centered at each singularity, both K1 and K2 consist of linear segments

intersecting transversely, as shown in Figure 2.3. Fix ε > 0 so that the intervals

[ti − ε, ti + ε], i = 1, 2, . . . , 5, are disjoint and K1([ti − ε, ti + ε]) is contained in

10



B 1
10

(K1(si)) for i = 1, 2, . . . , 5. These intervals are the strands we will move to

resolve the singularities.

Figure 2.3. B 1
10

(K1(t1)) ∩K1 and B 1
10

(K1(t2)) ∩K1.

Let w1, . . . , w5 be the unit tangent vectors to each line segment at the singular

points of K1. Fix δ > 0 so that {v ∈ Sd−2 : ‖ v − w1 ‖< δ} and {v ∈ Sd−2 : ‖

v−w4 ‖< δ} are disjoint. As mentioned above, we avoid moving the third strand off

of the triple point in these directions to prevent the introduction of a double point.

We produce a manifoldMβ as the image of a topological manifold Mβ embedded

in Emb(S1,Rd) by resolving singular knots with triple and double points. The

manifold Mβ decomposes as the union
⋃6
i=1Mi, where each Mi is the image in

Emb(S1,Rd) of a resolution map defined below. The domains of the resolution maps

for the main pieces,M1 andM2, are denoted M1 and M2 and are homeomorphic to(
Sd−2 \ ∪4Bδ

)
×Sd−3×Sd−3. The domains of resolution maps defining the remaining

four families are denoted Mi × I, where Mi is homeomorphic to Sd−3 × Sd−3 × Sd−3

for i = 3, 4, 5, 6.

11



Definition 2.7. For any triple (ε3, ε4, ε5) with each εi ≤ ε for ε as above, define

M1(ε3, ε4, ε5) ⊂ Imm≥β1(S
1,Rd)×

5∏
k=3

(Sd(rk) × I× I)

as the subspace of all K1 ×
∏

(vi, ai, εi), where a3 = 1
10

, a4 = a5 = δ
10

, and v3 is such

that the distances between v3 and the vectors ±w1 and ±w4 are all greater than or

equal to δ. There are no restrictions on v4, v5 ∈ Sd−3.

We will suppress the dependence of M1 on the values of ε3, ε4, ε5 ≤ ε as well as

δ except when needed.

Lemma 2.1. The restriction of ρβ1,S to M1 maps to Emb(S1,Rd) ⊂ Imm≥φ(S1,Rd).

Choose the immersion K2 as shown in Figure 2.1, and assume that the constants

δ > 0 and ε > 0 chosen above satisfy similar conditions for K2, to define M2

analogously. The restriction of ρβ2,S maps M2 to Emb(S1,Rd) ⊂ Imm≥φ(S1,Rd).

We denote the families of embeddings ρβ1,S(M1) and ρβ2,S(M2) by M1 and M2

respectively, and connect the boundary components of M1 to those of M2 to build

a family without boundary.

Each boundary component can also be described as the family of knots obtained

by resolving a singular knot with three double points. In fact, resolving the triple

point in K1 by moving the strand K1 ([t3 − ε3, t3 + ε3]) in the direction of ±w1 or

±w4 yields an immersion with three double points. The four boundary components

of M1 are families of resolutions of these four “newly singular” knots.
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Definition 2.8. Let K3, K4, K5 and K6 be the singular knots, each with three double

points, defined below and shown in Figure 2.4.

K3 = ρ3

(
K1, w4,

1
10
, ε3

)
K4 = ρ3

(
K1,−w4,

1
10
, ε3

)
K5 = ρ3

(
K1, w1,

1
10
, ε3

)
K6 = ρ3

(
K1,−w1,

1
10
, ε3

)

Figure 2.4. Singular knots K3, K4, K5, and K6.

We resolve these knots, restricting the directions so the resulting embeddings are

those in the boundary components of M1. Initially, we focus on K3. The double

points corresponding to [x1, x4] and [x2, x6], labeled a and c, are resolved in the

same way as the double points in K1. The double point corresponding to [x3, x5],

labeled b, is resolved using only vectors in the direction v − w4 for some v such that

‖ v − w4 ‖= δ. This guarantees that resolving this double point in K3 yields the

‖ v3 − w4 ‖= δ boundary component of M1.

13



Definition 2.9. Define M3(ε3, ε4, ε5) ⊂ Imm≥β3(S
1,Rd) ×

∏
i=3,4,6

(
Sd−3 × I× I

)
where β3 = [x1, x4] · [x2, x6] · [x3, x5] as the subset of all K3 ×

∏
i=3,4,6

(
ui,

δ
10
, εi
)

where u4 and u6 are unrestricted and u3 satisfies ‖ w4 + δu3 ‖= 1.

Proposition 2.1. Let S3 = {x3, x4, x6}. The restriction of ρβ3,S3 maps M3 to

Emb(S1,Rd) ⊂ Imm≥φ(S1,Rd), and ρβ3,S3(M3) is the ‖ v3 − w4 ‖= δ boundary

component of M1.

Proof. The resolution ρβ3,S3(K3) = ρβ3
(
ρ3

(
K1, w4,

1
10
, ε3

))
using u3 as in the

definition of M3(ε3, ε4, ε5) is the same embedding as the resolution ρβ1(K1) using

v3 = w4 + δu3, since

1

10
w4 exp

(
1

(t− t3)2 + ε2
3

)
+
δ

10
u3 exp

(
1

(t− t3)2 + ε2
3

)
=

1

10
v3 exp

(
1

(t− t3)2 + ε2
3

)
.

Similarly, resolving the knots K4, K5, and K6 yields the boundary components of

M1 corresponding to ‖ v3 +w4 ‖= δ, ‖ v3−w1 ‖= δ, and ‖ v3 +w1 ‖= δ respectively.

This process can also be applied to the boundary components ofM2. Let K7, K8, K9,

and K10 be the four singular knots obtained from K2 by moving K2 ([t3 − ε3, t3 + ε3])

in the direction of the tangent vectors to the other two strands intersecting at the

triple point, as shown in Figure 2.5. As with K1, resolving these singular knots gives

the four boundary components of M2.

Since each of the four knots K3, K4, K5, K6 has the same singularity data as one

of K7, K8, K9, K10, we have four pairs of knots which are isotopic in Imm=βi(S
1,R4),

and thus in Imm=βi(S
1,Rd) with d ≥ 4, where β3, β4, β5, β6 each encodes singularity

data for a knot with exactly three double points. If d > 4, we require that the isotopy

14



Figure 2.5. Singular knots K7, K8, K9, and K10.

be through knots in R4 ⊂ Rd (with the standard embedding). If d = 4, we restrict

the steps of the isotopy, as described below, to simplify evaluation of Longoni cocycle

on the cycle. Resolving each singular knot in these four isotopies yields four families,

denotedM3,M4,M5, andM6, parametrized by Sd−3×Sd−3×Sd−3× I. Specifically,

if hi : I → Imm=βi(S
1,Rd) is an isotopy, then these Mi are be the images of the

composites

00

Id× hi
//

Mi × I = Sd−3 × Sd−3 × Sd−3 × I

Sd−3 × Sd−3 × Sd−3 × Imm=βi(S
1,Rd) Emb(S1,Rd)

ρβi,Si

For i = 3, 4, 5, 6, the boundary of Mi is the disjoint union of a boundary component

of M1 and a boundary component of M2, providing a way to glue the boundary of

M1 to the boundary of M2.
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The union of these six (3d−8)-dimensional families in Emb(S1,Rd) gives a single

family without boundary. Let

Mβ =
(
M1 tM2 t

(
t6
i=3Mi × I

))
/ ∼

where each boundary component of M3,M4,M5,M6 is identified with a boundary

component of M1 or M2 so as to be compatible with Proposition 2.1. Let Mβ be

the image of the orientable topological manifold Mβ under the resolution map defined

above. We can now precisely state the first version of our main result.

Theorem 2.1. If d > 4 is even then the fundamental class of Mβ is a non-trivial

homology class in Emb(S1,Rd) for any choice of isotopies hi through Imm=βi(S
1,Rd).

For d = 4 the fundamental class ofMβ is a non-trivial homology class in Emb(S1,Rd)

if the isotopies hi satisfy a sequence of specified steps, given in Section 2.1.1.

2.1.1. Isotopies for the Case d = 4.

We can construct isotopies whose images are in R3 except for near crossing

changes. This forces the calculation we will do in Section 2.3 to be the same for

d = 4 as in the higher dimensional cases.

By a slide isotopy we will mean an isotopy through singular knots in which

a singular point is moved along one of the strands through the singularity while

the other strand moves along with the singular point. By a planar isotopy we will

mean an isotopy which can be represented by an isotopy of knot diagrams. Isotopies

corresponding to the Reidemeister moves in classical knot theory generalize to singular

knots in Rd. In addition to the usual Reidemeister I and II moves, we use Reidemeister

16



III moves to move a strand past a crossing (as in classical theory) or past a singularity,

as shown in Figure 2.6.

Figure 2.6. Reidemeister III move for singular knots.

By a “rotate the disk isotopy,” we mean an isotopy in which the disk centered

at a singularity is rotated by 180◦ about the axis perpendicular to a particular great

circle. Specifically, we take two distinct nested disks centered at the singular point

with radii small enough that the intersection of the knot with the disks is the two

strands intersecting at the singular point. The smaller of the two disks is rotated by

180◦ without changing anything inside of this disk. The strands inside of the larger

disk but outside of the smaller disk are stretched through a planar isotopy. This

isotopy is shown in Figure 2.7 from the perspective of the north pole of the larger

disk. The knot remains unchanged outside of the larger disk.

Figure 2.7. View of a rotate the disk isotopy from the north pole.
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A suitable type of isotopy from K3 to K9 is shown in Figure 2.8, and the steps

are given below. Each step occurs in R3 ⊂ R4 except (4), (6) and (10), in which one

strand of the knot briefly moves into R4.

1. Simplify the shape of the strand from b1 to c1 and perform a Reidemeister II

move on the strand from a1 to b1 to eliminate crossings.

2. Move the points a1, b1 and c1 to a2, b2 and c2 through a planar isotopy.

3. Rotate the disk centered at c2 by 180◦ about the axis perpendicular to the great

circle shown.

4. The crossing is changed, briefly moving the strand from b2 to c2 in the direction

of the fourth standard basis vector.

5. Perform a sequence of Redemeister I,II and III moves on the strand from b2 to

c2.

6. The crossing is changed, briefly moving the strand from c2 to a2 in the direction

of the fourth standard basis vector.

7. Perform a sequence of Reidemeister I, II and III moves on the strand from c2

to a2.

8. Rotate the disk centered at a2 by 180◦ about the axis perpendicular to the great

circle shown.

9. Perform a sequence of Reidemeister I, II and III moves on the strand from c2

to a2 and the strand from a2 to b2.

10. The crossing is changed, briefly moving the strand from a2 to b2 in the direction

of the fourth standard basis vector.
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11. Perform a sequence of Reidemeister I, II and III moves on the strand from a2

to b2.

12. Through a planar isotopy, the points a2, b2 and c2 are moved to the positions

of the double points of K9, denoted a3, b3 and c3 and the strands are moved to

give the knot the same shape as K9.

A suitable type of isotopy from K6 to K10 is shown in Figure 2.9, and the steps

are given below. Each step occurs in R3 ⊂ R4.

1. Through a slide isotopy, the point b1 is moved to b2, and the shape of the strand

from c1 to a1 is simplified.

2. Rotate the disk centered at a2 by 180◦ about the axis perpendicular to the great

circle shown.

3. Perform a sequence of Reidemeister I, II and III moves on the strand from a2

to b2 to remove crossings.

4. Rotate the disk centered at c2 by 180◦ about the axis perpendicular to the great

circle shown.

5. Perform a sequence of Reidemeister I, II and III moves on the strand from c2

to the base point to eliminate crossings.

6. Through a planar isotopy, move the points a2, b2 and c2 to the positions of the

double points of K10, denoted a3, b3 and c3.

7. Perform a sequence of Reidemeister I, II and III moves on the strand from b3

to c3.

19



Figure 2.8. Isotopy from K3 to K9.
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8. Through a planar isotopy, move the strands to give the knot the same shape

and K10.

A suitable type of isotopy from K5 to K7 is shown in Figure 2.10, and the steps

are given below. Each step occurs in R3 ⊂ R4.

1. Through a slide isotopy, move point b1 to b2 and simplify the shape of the

strands with a planar isotopy.

2. Rotate the disk centered at b2 by 180◦ about the axis perpendicular to the great

circle shown.

3. Perform a sequence of Reidemeister I, II and III moves on the strand from b2

to a2 to eliminate crossings.

4. Perform a sequence of Reidemeister I, II and III moves on the strand from c2

to b2.

5. Rotate the disk centered at b2 by 180◦ about the axis perpendicular to the great

circle shown.

6. Rotate the disk centered at a2 by 180◦ about the axis perpendicular to the great

circle shown.

7. Perform a sequence of Reidemeister I, II and III moves on the strand from b2

to a2 to eliminate crossings.

8. Rotate the disk centered at c2 by 180◦ about the axis perpendicular to the great

circle shown.
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Figure 2.9. Isotopy from K6 to K10.
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9. Perform a sequence of Reidemeister I, II and III moves on the strand from c2

to b2 to eliminate crossings.

10. Perform a sequence of Reidemeister I, II and III moves on the strand from b2

to c2.

11. Perform a sequence of Reidemeister I, II and III moves on the strand from a2

to c2.

12. Through a slide isotopy, move the point b2 to b3.

13. Through a planar isotopy, move the points a3, b3 and c3 to the positions of the

double points of K7, denoted a4, b4 and c4.

14. Perform a sequence of Reidemeister I, II and III moves on the strand from b4

to a4. Through a planar isotopy, move the strands to give the knot the same

shape and K7.

A suitable type of isotopy from K4 to K8 is shown in Figure 2.11, and the steps

are given below. Each step occurs in R3 ⊂ R4, except (6), in which one strand of the

knot briefly moves into R4.

1. Simplify the shape of the strand from c1 to a1 and perform a sequence of

Reidemeister I, II and III moves on the loop based at a1 to eliminate crossings.

2. Through a planar isotopy, move point a1 to the point a2.

3. Rotate the disk centered at b2 by 180◦ about the axis perpendicular to the great

circle shown.
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Figure 2.10. Isotopy from K5 to K7.
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4. Rotate the disk centered at c2 by 180◦ about the axis perpendicular to the great

circle shown.

5. Perform a sequence of Reidemeister I, II and III moves on one of the strands

from b2 to c2, and simplify the shape of the other strand from b2 to c2. Simplify

the shape of the strand from a2 to b2.

6. The crossing is changed, briefly moving the strand from c2 to a2 in the direction

of the fourth standard basis vector.

7. Perform a Reidemeister II move on the strand from c2 to a2. Through a planar

isotopy, move the points a2, b2 and c2 to positions of the double points of K8,

denoted a3, b3 and c3.

8. Through a planar isotopy, the strands are moved to give the knot the same

shape as K8.

2.2. The Longoni Cocycle

In [7], Cattaneo, Cotta-Ramusino, and Longoni use configuration space integrals

to define a chain map I from a complex of decorated graphs to the de Rham complex

of Emb(S1,Rd). The starting point is the evaluation map ev : Cq[S
1]×Emb(S1,Rd)→

Cq[Rd], where Cq[M ] is the Fulton-MacPherson compactified configuration space. See

[20] for more details. For some graphs G (namely those with no internal vertices),

the image of the chain map I is defined by pulling back a form determined by G from

Cq[Rd] to Cq[S
1]× Emb(S1,Rd) and then pushing forward to Emb(S1,Rd).
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Figure 2.11. Isotopy from K4 to K8.
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To understand the general case, let ev∗Cq,r[Rd] be the total space of the pull-back

bundle shown below:

ev∗Cq,r[Rd] êv //

��

Cq+r[Rd]

��
Cord
q [S1]× Emb(S1,Rd) ev // Cq[Rd] ,

where Cord
q [S1] is the connected component of Cq[S

1] in which the ordering on the

points in the configuration agrees with the ordering induced by the orientation of

S1. Fix an antipodally symmetric volume form on Sd−1, denoted α. A choice of α

determines tautological (d− 1)−forms on ev∗Cq,r[Rd], defined by

θij = êv∗φ∗ij(α)

where φij : Cq(Rd) → Sd−1 sends a configuration to the unit vector from the i−th

point to the j−th point in the configuration. We use integration over the fiber of the

bundle ev∗Cq,r[Rd]→ Emb(S1,Rd), which is the composite of the projections

ev∗Cq,r[Rd]→ Cord
q [S1]× Emb(S1,Rd)→ Emb(S1,Rd),

to push forward products of the tautological forms to forms on Emb(S1,Rd).

Which forms to push forward will be determined by graphs. Consider connected

graphs which satisfy the following conditions. A decorated graph (of even type) is a

connected graph consisting of an oriented circle, vertices on the circle (called external

vertices), vertices which are not on the circle (called internal vertices), and edges.

We require that all vertices are at least trivalent. The decoration consists of an

enumeration of the edges and an enumeration of the external vertices that is cyclic
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with respect to the orientation of the circle. We will call the portion of the oriented

circle between two external vertices an arc.

Definition 2.10. Let De be the vector space generated by decorated graphs of even

type with the following relations. We set G = 0 if there are two edges in G with the

same endpoints, or if there is an edge in G whose endpoints are the same internal

vertex. The graphs G and G′ are equal if they are isomorphic as graphs and the

enumerations of their edges differ by an even permutation.

The vector space De admits a bigrading as follows. Let ve and vi be the number

of external and internal vertices, respectively, and let e be the number edges. The

order of a graph is given by

ordG = e− vi

and the degree of a graph is defined by

degG = 2e− 3vi − ve.

Let Dk,me be the vector space of equivalence classes with order k and degree m. In

[7], Cattaneo, Cotta-Ramusino and Longoni define a map from this vector space to

the space of (m+ (d− 3)k)− forms on Emb(S1,Rd).

Definition 2.11. Define I(α) : Dk,me → Ωm+(d−3)k
(
Emb(S1,Rd)

)
as follows.

1. Choose an ordering on the internal vertices.

2. Associate each edge in G joining vertex i and vertex j to the tautological form

θij.

3. Take the product of these tautological forms with the order of multiplication

determined by the enumeration of the edges, to define a form on ev∗Cq,r[Rd].
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4. Integrate this form over the fiber to obtain a form on Emb(S1,Rd).

This integration over the fiber defines the pushforward and in this case is often

called a configuration space integral. There is a coboundary map on De which makes

I(α) a cochain map.

Definition 2.12. Define a coboundary operator on De by taking δG to be the signed

sum of the decorated graphs obtained from G by contracting, one at a time, the arcs

of G and the edges of G which have at least one endpoint at an external vertex.

After contracting, the edges and vertices are relabeled in the obvious way - if the

edge (respectively vertex) labeled i is removed, we replace the label j by j − 1 for

all j > i. When contracting an arc joining vertex i to i + 1, the sign is given by

σ(i, i + 1) = (−1)i+1, and when contracting the arc joining vertex j to vertex 1, the

sign is given by σ(j, 1) = (−1)j+1. When contracting the edge l, the sign is given by

σ(l) = l + 1 + ve, where ve is the number of external vertices.

Theorem 2.2. [7] The map I(α) determines a cochain map and therefore induces a

map on cohomology, which we denote I(α) : Hk,m(De)→ Hm+(d−3)k(Emb(S1,Rd)).

At the level of forms, I(α) depends on the choice of antipodally symmetric volume

form α. On cohomology, when d > 4 this is independent of α.

Example 2.2. From [7], we have the graph cocycle shown in Figure 2.12, originally

investigated by Bott and Taubes [4] for d = 3.

This induces the cocycle

1

4

∫
ev∗C4,0[Rd]

θ13θ24 −
1

3

∫
ev∗C3,1[Rd]

θ14θ24θ34 ∈ H2d−6
(
Emb(S1,Rd)

)
.
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Figure 2.12. Graph cocycle given by Cattaneo et al. in [7].

In [7], Cattaneo et al. show that this cocycle evaluates non-trivially on

ρ[x1,x3]·[x2,x4]

(
K × Sd−3 × Sd−3

)
, where K is a singular knot with two double points

respecting [x1, x3] · [x2, x4] (in this case, the cycle does not depend on the ordered

subset S ⊆ {x1, x2, x3, x4}).

Example 2.3. In [16], Longoni gives the example shown in Figure 2.13 of a graph

cocycle GL in H3,1(De) which uses nontrivalent graphs. There I(α) (GL) ∈

H3(d−3)+1(Emb(S1,Rd)) is the form

ω =

∫
ev∗C4,1[Rd]

θ15θ45θ35θ25 + 2

∫
ev∗C5,0[Rd]

θ13θ14θ25.

We pair this cocycle with the cycle [Mβ] defined in Section 2.1 to see that both are

non-trivial.

Figure 2.13. Graph cocycle given by Longoni in [16].
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2.3. Non-triviality

Theorem 2.3. Assume d ≥ 4 is even. Let [Mβ] ∈ H3(d−3)+1(Emb(S1,Rd)) be the

cycle defined in Section 2.1, and let ω ∈ H3(d−3)+1(Emb(S1,Rd)) be the Longoni

cocycle defined in the last section. Then ω([Mβ]) = ±2. In particular, ω([Mβ]) is

nonzero, and therefore both ω and [Mβ] are non-trivial.

In [24], Turchin calculates that E2
−5,3(d−1) in the spectral sequence for Emb(I, Id)

has rank one, so [Mβ] is a generator of this vector space.

Proof. Write ω = ω1 + 2ω2 where ω1 =
∫
ev∗C4,1[Rd]

θ15θ45θ35θ25 and ω2 =∫
ev∗C5,0[Rd]

θ13θ14θ25.

First we show that ω2([Mβ]) = ±1. Let g : ev∗C5,0[Rd] → Sd−1 × Sd−1 × Sd−1

be the map shown in the diagram below, where ψ̄ = φ13 × φ14 × φ25. Then ω2 is the

pushforward along π : ev∗C5,0[Rd]→ Emb(S1,Rd) of g∗(α⊗ α⊗ α).

ev∗C5,0[Rd] //

��

g

))

π

))

C5[Rd]
ψ̄ //

id
��

Sd−1 × Sd−1 × Sd−1

Cord
5 [S1]× Emb(S1,Rd) //

��

C5[Rd]

Mβ
� � / Emb(S1,Rd)

By naturality of pushforwards, ω2([Mβ]) = g∗(α ⊗ α ⊗ α)([π−1(Mβ)]). The

bundle π : ev∗C5,0[Rd]→ Emb(S1,Rd) is trivial, so

g∗(α⊗ α⊗ α)([π−1(Mβ)]) =

∫
Cord5 [S1]×Mβ

g∗(α⊗ α⊗ α).
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To calculate
∫
Cord5 [S1]×Mβ

g∗(α⊗α⊗α), we first partition Cord
5 [S1]. For i = 1, . . . , 5

let Ni = (ti − ε, ti + ε), where the ti are the times of singularity in K1 and K2, and ε

is as in Section 2.1. Define

C
(i)
5 =

{
s̄ ∈ Cord

5 : sj 6∈ Ni for j = 1, . . . , 5 and s̄ /∈ C(m)
5 for m < i

}
,

and Cc
5 = Cord

5 [S1]\
(
∪5
i=1C

(i)
5

)
, so Cc

5 is the set of all s̄ ∈ Cord
5 [S1] such that ti − ε <

si < ti + ε for i = 1, . . . , 5. Then Cord
5 [S1] decomposes as

Cord
5 [S1] = Cc

5 t C
(1)
5 t · · · t C

(5)
5 ,

and we obtain a corresponding decomposition of
∫
Cord5 [S1]×Mβ

g∗(α⊗ α⊗ α). We will

show that
∫
C

(m)
5 ×Mβ

g∗(α ⊗ α ⊗ α) = 0 for m = 1, . . . , 5, so calculating ω2([Mβ])

reduces to evaluating the integrals
∫
Cc5×Mi

g∗(α⊗ α⊗ α).

For m = 3, 4, 5, we show
∫
C

(m)
5 ×Mβ

g∗(α⊗α⊗α) = 0 by showing
∫
C

(m)
5 ×Mi

g∗(α⊗

α ⊗ α) = 0 for i = 1, . . . , 6. Recall that manifolds have only trivial forms in degrees

above their dimension, so a form pulled back through a smaller dimensional manifold

is always zero. To prove that the integrals
∫
C

(m)
5 ×Mi

g∗(α⊗ α⊗ α) are zero, we show

that the map g factors through spaces of smaller dimension when restricted to each

of the subspaces C
(m)
5 ×Mi.

First, consider the case
∫
C

(3)
5 ×M1

g∗(α ⊗ α ⊗ α). Recall that M1 is

ρβ1,S
(
K1 ×

∏5
k=3(vk, ak, ε)

)
. If t /∈ N3 and γ ∈ M1, the point γ(t) does not depend

on the value of v3 in the preimage of γ. This gives us the following factorization of
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g
∣∣
C

(3)
5 ×M1

:

C
(3)
5 ×M1

g //

((

Sd−1 × Sd−1 × Sd−1

C
(3)
5 × Sd−3 × Sd−3

55

Since dim(C
(3)
5 × Sd−3 × Sd−3) = 2d− 1 is less than dim(Sd−1 × Sd−1 × Sd−1) =

3d− 3, we have
∫
C

(3)
5 ×M1

g∗(α⊗ α⊗ α) = 0.

Similarly, for m = 4 or m = 5, the restriction g
∣∣
C

(m)
5 ×M1

factors through

C
(m)
5 × {v3 ∈ Sd−2 : ‖ v3 ± w1 ‖> δ and ‖ v3 ± w4 ‖> δ} × Sd−3,

so the corresponding integrals are zero. This argument also shows that∫
C

(m)
5 ×M2

g∗(α ⊗ α ⊗ α) = 0 for m = 3, 4, 5. For i = 3, 4, 5, 6 and m = 3, 4, 5, the

restriction g
∣∣
C

(m)
5 ×Mi

factors through Sd−3 × Sd−3 × I and therefore
∫
C

(m)
5 ×Mi

g∗(α ⊗

α⊗ α) is zero.

We show
∫
C

(1)
5 ×Mβ

g∗(α ⊗ α ⊗ α) = 0 by replacing Mβ with the family of

embeddings obtained by moving the first strand (instead of the fourth) off of the

double point Ki(t1) = Ki(t4), over which g∗ factors through a space of lower

dimension. We replace Mβ in two steps - first with the family of embeddings in

which both strands are moved off the double point, and then by the family in which

only the first strand is moved.

Let M′
β be the piecewise smooth subspace of Emb(S1,Rd) defined similarly

to Mβ, but by choosing the ordered subset of variables in β1 and β2 to be S =

{x1, x3, x4, x5}, and fixing a1 = a4 and v1 = −v4. In other words, M′
β is obtained
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from K1, . . . , K6 by moving both strands off the double point Ki(t1) = Ki(t4) in

antipodal directions.

We define a cobordism W1 betweenMβ andM′
β as the subspace of Emb(S1,Rd)

parametrized by (tiMi)×I, with the embedding corresponding to the parameter u ∈ I

determined by a1 = ua4 (so the I parametrizes how far the strand with Ki(t1) is moved

off the double point).

By Stokes’ theorem,

∫
C

(1)
5 ×W1

dg∗(α⊗ α⊗ α) =

∫
∂(C

(1)
5 ×W1)

g∗(α⊗ α⊗ α).

Since dg∗(α⊗ α⊗ α) = g∗d(α⊗ α⊗ α) = 0, we have

0 =

∫
∂C

(1)
5 ×W1

g∗(α⊗α⊗α)+

∫
C

(1)
5 ×Mβ

g∗(α⊗α⊗α)−
∫
C

(1)
5 ×M′β

g∗(α⊗α⊗α). (2.1)

The restriction g∗
∣∣
∂C

(1)
5 ×W1

factors through ∂C
(1)
5 × (tiMi). If s̄ ∈ ∂C

(1)
5 then the

parameter, u ∈ I determining how far the first strand is moved does not affect g(s̄, γ)

for γ ∈ W1. Thus,
∫
∂C

(1)
5 ×W1

g∗(α⊗ α⊗ α) = 0 and

∫
C

(1)
5 ×Mβ

g∗(α⊗ α⊗ α) =

∫
C

(1)
5 ×M′β

g∗(α⊗ α⊗ α).

LetM′′
β be the piecewise smooth subspace of Emb(S1,Rd) obtained by choosing

the ordered subset of variables in β1 and β2 to be S = {x1, x3, x5}. In other words,

M′′
β is obtained from K1, . . . , K6 by moving only the first strand off the double point

Ki(t1) = Ki(t4). Let W2 ⊂ Emb(S1,Rd) be parametrized by (tiMi) × I, with the

embedding corresponding to the parameter u ∈ I given by choosing a′′4 = ua4 (so the

interval parametrizes how far the strand with Ki(t4) is moved off the double point).
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Then W2 gives a cobordism between M′
β and M′′

β, as ∂W2 = Mβ t (−M′
β). Using

Stokes’ Theorem and naturality again, we have

0 =

∫
∂C

(1)
5 ×W2

g∗(α⊗α⊗α)+

∫
C

(1)
5 ×M′β

g∗(α⊗α⊗α)−
∫
C

(1)
5 ×M′′β

g∗(α⊗α⊗α). (2.2)

The restriction g∗
∣∣
∂C

(1)
5 ×W2

does not factor through ∂C
(1)
5 × (tiMi). To show the

first integral in (2.2) is zero, we consider W2 as a subspace of Imm≤[x1,x2],t1,t4(S
1,Rd),

the subset of Imm(S1,Rd) consisting of all immersions γ with at most one singularity

– a double point γ(t1) = γ(t4). Since a configuration in ∂C
(1)
5 does not contain

the point t1, the map g is well-defined on ∂C
(1)
5 × Imm≤[x1,x2],t1,t4(S

1,Rd). Letting

the dependance on the lengths of the strands be apparent, we now work with

W2 = W2(ε3, ε4, ε4) as a subspace of Imm≤[x1,x2],t1,t2(S
1,Rd). In this larger space,

W2(ε3, ε4, ε5) is cobordant to W2(ε3, 0, ε5). The cobordism is given by W3 ⊂

Imm[x1,x2],t1,t4(S
1,Rd) parametrized by (tiMi)× I× I where the second unit interval

parametrizes the length of the strand centered at t4 moved by the resolution map.

By Stokes’ Theorem and naturality,

0 =

∫
∂C

(1)
5 ×W3

dg∗(α⊗ α⊗ α) =

∫
∂
(
∂C

(1)
5 ×W3

) g∗(α⊗ α⊗ α),

and thus,

0 =

∫
∂(∂C

(1)
5 )×W3

g∗(α⊗α⊗α)+

∫
∂C

(1)
5 ×W2(ε3,ε4,ε5)

g∗(α⊗α⊗α)−
∫
∂C

(1)
5 ×W2(ε3,0,ε5)

g∗(α⊗α⊗α)

=

∫
∂C

(1)
5 ×W2(ε3,ε4,ε5)

g∗(α⊗ α⊗ α). (2.3)
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The second equality holds because ∂(∂C
(1)
5 ) = ∅ and the dimension of W2(ε3, 0, ε5)

is 2d− 3.

By the same argument,
∫
C

(5)
5 ×Mβ

g∗(α⊗ α⊗ α) = 0. Calculating
∫
C5×Mβ

g∗(α⊗

α⊗ α) thus reduces to calculating
∫
Cc5×Mi

g∗(α⊗ α⊗ α) for i = 1, . . . , 6.

We chose the antipodally symmetric volume form, α, to be concentrated near the

points x̄1 = (0, . . . , 0, 1) ∈ Sd−1 and x̄2 = (0, . . . , 0,−1) ∈ Sd−1. Let τx̄1 and τx̄2 be

the Thom classes of these points, as defined in Section 6 of [5], so α = 1
2

(τx̄1 + τx̄2).

Let y be the arc in Sd−1 connecting (0, . . . , 0, 1) and (0, . . . , 0,−1), defined as

y =
{(

0, . . . , 0,
√

1− s2, s
)
∈ Sd−1 : −1 ≤ s ≤ 1

}
.

The Thom class τy of y can be chosen so that dτy = τx̄1 − τx̄2 = 2(τx̄1 − α).

We have

∫
Cc5×Mi

g∗(α⊗ α⊗ α− τx̄1 ⊗ α⊗ α) =

∫
Cc5×Mi

g∗
(
−1

2
dτy ⊗ α⊗ α

)
= −1

2

∫
Cc5×Mi

dg∗(τy ⊗ α⊗ α)

= −1
2

∫
∂(Cc5×Mi)

g∗(τy ⊗ α⊗ α).

If (v1, v2, v3) ∈ g (∂(Cc
5 ×Mi)) at least one of the first two coordinates of v1 is

non-zero, but every x̄ ∈ y ⊂ Sd−1 has x1, x2 = 0. Thus, the sets y and g (∂(Cc
5 ×Mi))

are disjoint and
∫
Cc5×Mi

g∗(τy ⊗ α ⊗ α) = 0, which means
∫
Cc5×Mi

g∗(α ⊗ α ⊗ α) =∫
Cc5×Mi

g∗(τx̄1 ⊗ α⊗ α). By a similar argument,

∫
Cc5×Mi

g∗(α⊗ α⊗ α) =

∫
Cc5×Mi

g∗(τx̄1 ⊗ τx̄1 ⊗ τx̄1).

36



This integral can be calculated by counting the transverse intersections of g(Cc
5×Mi)

and (x̄1, x̄1, x̄1) in Sd−1 × Sd−1 × Sd−1.

Recall that

g(s̄, γ) =

(
γ(s3)− γ(s1)

‖γ(s3)− γ(s1)‖
,
γ(s4)− γ(s1)

‖γ(s4)− γ(s1)‖
,
γ(s5)− γ(s2)

‖γ(s5)− γ(s2)‖

)
.

Thus, we are counting the number of pairs (s̄, γ) ∈ Cc
5 ×Mi for which

γ(s3)− γ(s1)

‖γ(s3)− γ(s1)‖
=

γ(s4)− γ(s1)

‖γ(s4)− γ(s1)‖
=

γ(s5)− γ(s2)

‖γ(s5)− γ(s2)‖
= (0, . . . , 0, 1). (2.4)

If γ ∈ Mβ the image of γ is in R3 ⊂ Rd except for along the intervals which are

moved to resolve the singularities (and at the crossing changes in the isotopies for

d = 4). Thus, the equality in Equation 2.4 is only possible if si = ti for i = 1, . . . , 5.

If γ ∈M1, then

γ(t3)− γ(t1)

‖γ(t3)− γ(t1)‖
=

γ(t4)− γ(t1)

‖γ(t4)− γ(t1)‖
=

γ(t5)− γ(t2)

‖γ(t5)− γ(t2)‖
= (0, . . . , 0, 1)

exactly when v3 = v4 = v5 = (0, . . . , 0, 1) and so
∫
Cc5×M1

g∗(α ⊗ α ⊗ α) = ±1. If

γ ∈Mi for i = 2, . . . , 6, then

γ(t3)− γ(t1)

‖γ(t3)− γ(t1)‖
6= (0, . . . , 0, 1),

and
∫
Cc5×Mi

g∗(α⊗ α⊗ α) = 0. Thus, ω2([Mβ]) = ±1.

Next, we show that ω1([Mβ]) = 0. Let

f : ev∗C4,1(Rd)→ Sd−1 × Sd−1 × Sd−1 × Sd−1
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be the map shown in the diagram below, where ϕ̄ = φ15 × φ45 × φ35 × φ25. Then ω1

is the pushforward of f ∗(α⊗ α⊗ α⊗ α) along p : ev∗C4,1(Rd)→ Emb(S1,Rd).

ev∗C4,1(Rd) //

p1
��

f

**

p

))

C5[Rd]
ϕ̄ //

��

Sd−1 × Sd−1 × Sd−1 × Sd−1

Cord
4 [S1]× Emb(S1,Rd) //

p2
��

C4[Rd]

Mβ
� � / Emb(S1,Rd)

Since p−1(Mβ) = p−1
1 (Cord

4 [S1]×Mβ), we have

ω1([Mβ]) =

∫
p−1
1 (Cord4 [S1]×Mβ)

f ∗(α⊗ α⊗ α⊗ α).

Following the calculation of ω2([Mβ]), define

C
(i)
4 =

{
s̄ ∈ Cord

4 [S1] : sj 6∈ Ni for j = 1, . . . , 4 and s̄ /∈ C(m)
4 for m < i

}
.

Each configuration in Cord
4 [S1] has four points, so Cord

4 [S1] = C
(1)
4 t · · · t C(5)

4 .

The arguments used to prove that
∫
C

(m)
5 ×Mβ

g∗(α ⊗ α ⊗ α) = 0 also show∫
p−1
1 (C

(m)
4 ×Mβ)

f ∗(α⊗ α⊗ α⊗ α) = 0 for m = 1, . . . , 5.
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CHAPTER III

FIRST DIFFERENTIAL IN SINHA’S SPECTRAL SEQUENCE

3.1. Graphs and Trees

In [22], Sinha gives a characterization of the Poisson operad Poisd and its dual

co-operad Siopd in terms of trees and graphs and gives a perfect pairing between the

two. We summarize these results below, introducing the language of graphs and trees

which will be used throughout the rest of this chapter.

Definition 3.1. A tree is an isotopy class of a planar graph consisting of only trivalent

and univalent vertices, with a distinguished univalent vertex called the root. The

remaining univalent vertices are called leaves and are labeled by elements of L(T ) ⊆

n = {1, 2, . . . , n}. A forest is an ordered collection of trees embedded in the upper

half plane with their roots on the x-axis. If the forest has n leaves, the leaves are

labeled by the set n. We call the trivalent vertices internal vertices.

The root path of an interior vertex or a leaf is the path in the tree from the

vertex to the root. The height of an interior vertex or a leaf is the number of edges

in the root path of the vertex. If v is an interior vertex, then another vertex u (either

interior or a leaf) is above v if the root path of u passes through the vertex v.

Definition 3.2. A right (respectively, left) tall tree is a tree for which the left

(respectively, right) branch of every internal vertex is a leaf, and the leaf with the

maximal height has the minimal label.
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Example 3.1. The tree shown below is a tall tree

.

3.1.1. Sinha’s Spectral Sequence

Recall that the group E1
−p,q(d−1) in the reduced homology spectral sequence

for Emb(I, Id) has a subgroup isomorphic to the subgroup of Poisd(p) generated

by expressions with q brackets such that each xi appears inside a bracket and the

multiplication “·” does not appear inside of a bracket. This subgroup can also be

described as the vector space generated by forests with q internal vertices and leaves

labeled by the set p, modulo the antisymmetry, commutativity and Jacobi identities.

The anti-symmetry and Jacobi Identities are shown below, where |Ti| is the number

of internal vertices in the tree Ti:

Anti− symmetry : ,

Jacobi : .

For commutativity, if two forests F1 and F2 contain the same trees, then F1 = σd−1F2

where σ is the sign of the permutation taking the ordered set of the internal vertices

of F1 to the ordered set of the internal vertices of F2.
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Example 3.2. The following forest represents the element [[x1, x3], x4] · [x2, x5] of

E1
−5,3(d−1):

Definition 3.3. We will call trees with leaves labeled by ordered subsets of p (instead

of just elements of p) multi-labeled trees.

Using multi-labeled trees, we can encode the multiplication “·” inside of the tree

and represent the standard spanning set for Poisd using multi-labeled trees. For

example, the element [x1 · x2, x3] ∈ Poisd(3) is represented by the following multi-

labeled tree:

.

Multi-labeled trees can be written as sums of trees through the Leibniz identity, just

as bracket expressions with “·” inside of a bracket pair can be rewritten using the

Leibniz rule so the multiplication only appears outside of all brackets. Recall that for

bracket expressions, the Leibniz rules states

[X · Y, Z] = X · [Y, Z] + [X,Z] · Y,

where X, Y , and Z are sub-expressions. For multi-labeled trees in which the leaves

labeled by sets have height greater than two, the intermediate steps cannot be written

using multi-labeled trees. Bracket expressions are much better suited to calculation

with the Leibniz rule.
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For any two leaves x and y in a (multi-labeled) tree T , there is a unique embedded

path in T from x to y, which we will denote pT (x, y). Similarly, for any two internal

vertices v and w in T , there is a unique embedded path in T from v to w, which we

will denote pT (v, w).

Definition 3.4. We define the differential d1 using multi-labeled trees instead of

brackets:

d1T = F0 +

p∑
a=1

(−1)aTa + (−1)p+1Fp+1,

where F0 (respectively, Fp+1) is the forest obtained by adding the tree with exactly

one leaf, labeled 1 (respectively, p) before (respectively, after) the tree T , and in F0

the label on leaf i is replaced by i + 1 for each leaf in T . The tree Ta is the multi-

labeled tree obtained from T by replacing the label on leaf a by {a, a + 1} and the

label on leaf i by i+ 1 for all i > a.

3.1.2. The Perfect Pairing Between Graphs and Trees.

In [22], Sinha shows that the following defines a perfect pairing between Poisd(p)

and Siopd(p).

Following Sinha in [19], let Γ(p) be the free module generated by graphs whose

vertices are labeled by p and whose edges are oriented and ordered. If two graphs, G

and G′, differ by the orientations on k edges and a reordering of the edges given by

a permutation σ, then the arrow reversing identity is given by

G− (−1)k(d−1)(sign σ)dG′ = 0.

42



The Arnold identity for three graphs which differ only in the edges between the three

vertices i, j and k, is shown below:

.

Definition 3.5. A long graph is graph for which each component is a linear graph

such that one endpoint vertex has the minimal label. Also, the edges are ordered

consecutively and oriented away from the vertex with the minimal label.

The following is an example of a long graph:

1→ 3→ 4 2→ 5.

Sinha shows in Lemma 4.4 of [19] that Poisd(p) is spanned by forests with leaf set p

whose trees are all tall, and Siopd(p) is spanned by long graphs with p vertices.

Definition 3.6. For any graph G ∈ Siopd(p) and tree T ∈ Poisd(p), define a function

β(G, T ) : {edges of G} → {internal vertices of T}

which takes the edge i→ j in G to the nadir of the path in T from the leaf labeled i

to the leaf labeled j.

A graph G ∈ Siopd(p) defines a partition of p through its components, and a

forest F ∈ Poisd(p) defines a partition of p through the labels of its trees. If these

partitions are the same, then the map defined above can be extended to a map

β(G,F ) : {edges of G} → {internal vertices of F}.
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Definition 3.7. If d is even, let τ d(G,F ) = (−1)N , where N is the number of paths

in F corresponding to edges i → j in G which travel from left to right. If d is odd,

let τ d(G,F ) be the sign of the permutation taking the ordered set of the edges of

G to the internal vertices of F given by the map β(G,F ). The internal vertices of

F are ordered left to right according to the planar embedding of F . For any graph

G ∈ Siopd(p) and forest F ∈ Poisd(p), define the pairing 〈G,F 〉 as

〈G,F 〉 =

 τ d(G,F ) if β(G,F ) exists and is a bijection

0 otherwise
.

We extend linearly as is standard, and the remarkable fact is that this well-defined –

that is the pairing vanishes on the Jacobi, Arnold, and anti-symmetry identities.

This definition of the pairing can be extended to forests made up of multi-labeled

trees, by extending the definition of β(G, T ). If T is a multi-labeled tree and for every

edge i → j in the graph G, the labels i and j appear on different leaves of T , then

the map β defined in Definition 3.6 can be extended to a map

β(G, T ) : {edges of G} → {internal vertices of T}.

The following is essentially Proposition 2.6 in [22].

Proposition 3.1. If F is a forest made up of multi-labled trees with leaf set L(F ) = p

and G ∈ Siopd(p), the extended pairing 〈G,F 〉 is equal to the pairing 〈G,ΣF̃i〉, where

ΣF̃i is the sum of the forests obtained by expanding the multi-labeled trees in F using

the Leibniz rule.

We have already seen trees and bracket expressions as closely related

combinatorial objects. We now introduce a third formulation.
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Definition 3.8. An exclusion relation R on a set S is a subset of S×3 such that all

coordinates are distinct and

1. If ((x, y), z) ∈ R then ((y, x), z) ∈ R and ((x, z), y) /∈ R.

2. If ((x, y), z) ∈ R and ((w, x), y) ∈ R then ((w, x), z) ∈ R.

If ((x, y), z) ∈ R we say that x and y exclude z. An exclusion relation is called full

if for any three elements x, y, z ∈ S one of ((x, y), z), ((z, x), y) or ((y, z), x) is an

element of R.

In [20], Sinha defines a bijective correspondence between exclusion relations and

possibly non-binary trees. The exclusion relation corresponding to a tree T is the

subset RT ⊂ L(T )×3 defined by ((x, y), z) ∈ RT if there is an internal vertex v in T

such that the root paths of the leaves x and y pass through v but the root path of

z does not. Under this correspondence, full exclusion relations correspond to binary

trees.

An internal vertex v of a tree T corresponds to a subset Uv of the leaf L(T ) set

that is closed under the exclusion relation RT in the sense that if x, y ∈ Uv then x

and y exclude z for every z /∈ Uv. In particular, Uv is the set of all leaves which are

above v. Furthermore, if a vertex v is the nadir of the path pT (x, y), then Uv is the

smallest subset containing x and y that is closed under exclusion.

Definition 3.9. Let T be a tree with leaf set L(T ), and let RT be the corresponding

exclusion relation.

1. A restriction S of T is defined by restricting the exclusion relation RT to a

subset L(S)×3 ⊂ L(T )×3.

2. A branch S of T is a restriction where L(S) is defined as the set of all l ∈ L(T )

above a chosen internal vertex of T .
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3. A tall branch S of T is a branch which is a tall tree (except the leaf with the

maximal height is not required to have the minimal label) and is maximal in

the sense that if any leaves are added to S, then S is no longer tall.

A multi-labeled tree T corresponds to an exclusion relation RT on a set L(T ) ⊂

P(n) where P(n) is the power set of n, such that if X, Y ∈ L(T ) then X ∩ Y = ∅.

Definition 3.10. By a restriction S of a multi-labeled tree T , we will mean an

exclusion relation on a subset L(S) ⊂ P(n) such that for each X ∈ L(S), there is a

set X̃ ∈ L(T ) with X ⊆ X̃, and each set in L(T ) has at most one subset appearing

in L(S). The exclusion relation on L(S) is defined as follows. If X, Y, Z ∈ L(S) are

subsets of X̃, Ỹ , Z̃ ∈ L(T ), respectively and ((X̃, Ỹ ), Z̃) ∈ RT , then ((X, Y ), Z) ∈ RS.

Example 3.3. The tree, T , shown in Figure 3.1 has tall branches S1, S2 and S3, shown

in Figure 3.2.

Figure 3.1. The tree T .

Figure 3.2. The tall branches of T .
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The restriction

is not a tall branch of T (even though it is a tall tree) because it is not a branch of T .

Definition 3.11. An almost tall branch of a tree T is a restriction S of a tall branch

S̃ of T such that S does not contain either of the two leaves of S̃ with maximal height.

Definition 3.12. Let T be a tree and let S be a restriction of T . We say S is

admissible if the leaf set L(S) can be written as

L(S) =
n⋃
i=1

L(Si),

where at most one of the Si is an almost tall branch, and the rest are tall branches.

If S is an admissible restriction of T with all of the Si tall, we say that S is

purely admissible. Otherwise, we say that S is impurely admissible. We will call the

sets Si the components of S.

Example 3.4. The almost tall branches of the tree T from Figure 3.1 are shown below,

where the first three are restrictions of S1 and the last is a restriction of S3:

.
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The restrictions of T shown below are admissible, as the leaf set of each is the

union of the leaf sets of tall branches of T :

.

The examples below of admissible restrictions have leaf sets that are the union

of the leaf sets of one almost tall branch and those of some tall branches:

.

The restriction

is not admissible because its leaf set is the union of the leaf sets of two almost tall

branches.

We will make frequent us of the reindexing function,

rl,δ(i) =

 i if i < l + δ

i+ 1 if i ≥ l + δ
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where δ = 0 or δ = 1. Recall that Tl is the multi-labeled tree obtained from T by

replacing the label on leaf l by {l, l + 1} and the label on leaf i by rl,1(i).

Definition 3.13. Let S be an admissible restriction of T , and let l ∈ L(T ) \ L(S).

The compliment of S with respect to l is the restriction Sc,l with leaf set L(Sc,l) =

L(T ) \ (L(S) ∪ {l}). We say the leaf l distinguishes S from Sc,l if for any two leaves

l1 ∈ L(Sc,l) and l2 ∈ L(S), either ((l, rl,1(l1)), rl,1(l2)) ∈ RTl or ((l, rl,1(l2)), rl,1(l1)) ∈

RTl .

Equivalently, l distinguishes S from Sc,l if for any such pair of leaves l1 and l2,

the path pTl(l, rl,1(l1)) has a different nadir than the path pTl(l, rl,1(l2)). By abuse,

we simply say that l distinguishes S.

Example 3.5. Let T be the tree shown in Figure 3.3.

Figure 3.3. The tree T .

For the admissible restriction S with L(S) = {1, 2, 6, 7, 8}, the leaves labeled by

3 and 4 distinguish S while the leaves labeled 5, 9, 10 and 11 do not distinguish S.

For the admissible restriction S with L(S) = {3, 4, 9, 10, 11}, the leaves labeled

by 1 and 2 distinguish S while the leaves labeled 5, 6, 7 and 8 do not.
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Example 3.6. Let T be the tree shown in Figure 3.3. If S is the admissible restriction

then only the leaf labeled by 5 distinguishes S. In this case, the compliment of S

with respect to 5 is

,

which is itself admissible. The leaves 1, 2, . . . , 8 all distinguish Sc,5. In particular, the

leaf labeled 5 distinguishes S from Sc,5 and distinguishes Sc,5 from S. This symmetry

can only occur if the leaf is itself a tall branch of the original tree T .

Remark 3.1. Suppose S is an impurely admissible restriction of T with almost tall

component Sj, which is a restriction of the tall branch S̃j of T . If l ∈ L(T ) \ L(S)

distinguishes S, then l ∈ S̃j and the height of l is greater than the height of every

leaf in Sj.
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Example 3.7. If T is the tree shown in Figure 3.3, and S is the admissible restriction

,

then only the leaves 6 and 7 distinguish S. However, if S is the admissible restriction

,

then none of the leaves in L(T ) \ L(S) distinguish S. For example, if l = 7 then the

nadir of pT7(7, 4) will be the same vertex as the nadir of pT7(7, 1).

.

3.2. A New Formula for the First Differential

To define a new formula for the differential, we will use admissible restrictions

to define new forests.
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Definition 3.14. Let T be a tree with leaves labeled by p, let S be a restriction of

T and let l ∈ L(T ) \ L(S). Define F(S,l,δ) (here δ is either 0 or 1) to be a forest with

leaves labeled by p + 1 and two trees, TS and TL\S, which are restrictions of Tl. The

leaf sets of TS and TL\S are defined below.

1. L(TS) = rl,δ(S) ∪ {l + δ}.

2. L(TL\S) = rl,δ(L(T ) \ L(S)).

Remark 3.2. If δ = 0, the leaf l is in TS and if δ = 1 the leaf l is in TL\S.

Example 3.8. Let T be the tree given in Figure 3.1. In Figures 3.4 and 3.5, we have

examples of F(S,l,δ) for different admissible restrictions, leaves, and values of δ.

Figure 3.4. An example of F(S,l,δ) with l = 1 and δ = 0.

Figure 3.5. An example of F(S,l,δ) with l = 7 and δ = 1.

Remark 3.3. For the tree T and admissible restriction S in Example 3.6, the forests

F(S,5,0) and F(Sc,5,5,1) are equal up to a sign, as shown in Figure 3.6. Similarly, the

forests F(S,5,1) and F(Sc,5,5,0) are equal up to a sign.

52



Figure 3.6. The forests F(S,5,0) and F(Sc,5,5,1).

Definition 3.15. Let

BT = {(S, Sc,l, l);S or Sc,l is an admissible restriction of T, and l distinguishes S or Sc,l}.

Define a map d̃1 : E−p,q(d−1) → E−(p+1),q(d−1) by

d̃1T =
∑

(S,Sc,l,l)∈BT

(−1)lσdS,l
(
F(S,l,0) + F(S,l,1)

)
,

where S is admissible. If d is even, σdS,l = 1 and if d is odd, σdS,l is the sign of the

permutation defined by fS,l from Definition 3.16.

If S and Sc,l are both admissible, then the term σdS,l
(
F(S,l,0) + F(S,l,1)

)
appears

in the sum only once, and the term does not depend on which choice of S or Sc,l is

made for the admissible restriction.

Remark 3.4. If the tree T is tall with leaf set L(T ) = {l1, l2, . . . , ln}, where l1 and l2

have the greatest height, then this formula reduces to

d̃1T =
∑

S⊆L(T )\{l1,l2}

( ∑
l distinguishes S

(−1)lσdS,l
(
F(S,l,0) + F(S,l,1)

))
.

In this case, l distinguishes S exactly when l ∈ L(T ) \ L(S) such that the height of l

is greater than the height of every leaf in L(S).
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Example 3.9. To calculate d1([[[x1, x3], x2], x4]) using the definition of d1 from the

spectral sequence, we have 24 terms after expanding using Leibniz’ Rule, many of

which cancel. Using the definition of d̃1 above, we immediately have the mod 2

equality

d̃1


1 3

2
4

 =
1 3

2 4
5

+
2 3

1 4
5

+
3 2

1 4
5

+
4 2

1 3
5
+

1 5
2 4

3
+

2 5
1 4

3
+

3 5
1 4

2
+

4 5
1 3

2
+

2 5
1 4

3
+

3 5
1 4

2
+

1 3
5 2 4

+

2 3
5 1 4

+

3 2
5 1 4

+

4 2
5 1 3

.

Theorem 3.1. The maps d1 and d̃1 are equal. In other words, d1T = d̃1T for any

T ∈ E1
−p,q(d−1).

We immediately have the following, which is not obvious from the definition of

d1.

Corollary 3.2. For a forest, F , the differential d1F is equal to a linear combination

of forests with coefficients ±1.

We spend the rest of this section proving Theorem 3.1. Recall from Definition

3.4 that Tl is the multi-labeled tree obtained from T by replacing the label on leaf l

by {l, l + 1}, and replacing i 6= l by rl,1(i).
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Definition 3.16. If S is an admissible restriction of T and l distinguishes S, we will

define a map

fS,l : {internal vertices of F(S,l,δ)} → {internal vertices of Tl}

as follows. For an internal vertex v in F(S,l,δ), choose leaves x and y in F(S,l,δ) such

that v is the nadir of the path pF(S,l,δ)
(x, y). Define fS,l(v) to be the nadir of the path

pTl(x, y).

Lemma 3.1. Let T be a (multi-labeled) tree with x, y, r, s ∈ L(T ). The paths pT (x, y)

and pT (r, s) have the same nadir if and only if none of ((x, y), r), ((x, y), s), ((r, s), x)

and ((r, s), y) are in RT .

Proof. If the paths pT (x, y) and pT (r, s) have the same nadir, then clearly none of

((x, y), r), ((x, y), s), ((r, s), x) or ((r, s), y) are in RT . For example, if ((x, y), r) ∈ RT

then the root path of r does not pass through the nadir of pT (x, y), and so the nadir

of pT (x, y) cannot be equal to the nadir of pT (r, s).

Suppose the paths pT (x, y) and pT (r, s) have different nadirs. If the nadir

of pT (x, y) is above the nadir of pT (r, s), then either ((x, y), r) or ((x, y), s) is in

RT . Similarly, if the nadir of pT (r, s) is above the nadir of pT (x, y), then either

((r, s), x) or ((r, s), y) is in RT . If neither nadir is above the other, then all four of

((x, y), r), ((x, y), s), ((r, s), x) and ((r, s), y) are in RT . Thus, if the paths pT (x, y)

and pT (r, s) have different nadirs, then at least one of ((x, y), r), ((x, y), s), ((r, s), x)

and ((r, s), y) is in RT . Equivalently, if none of ((x, y), r), ((x, y), s), ((r, s), x) and

((r, s), y) are in RT , then the paths pT (x, y) and pT (r, s) have the same nadir.

Lemma 3.2. If S is an admissible restriction of T and the leaf l distinguishes S,

then for δ = 0 or δ = 1 the map fS,l is well-defined.
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Proof. Suppose the vertex v in F(S,l,δ) is the nadir of both the path pF(S,l,δ)
(x, y) and the

path pF(S,l,δ)
(r, s). Then the leaves x, y, r, s are all in the same tree in F(S,l,δ) – call this

tree Tv. By Lemma 3.1, none of ((x, y), r), ((x, y), s), ((r, s), x) or ((r, s), y) are in RTv .

Since Tv is a restriction of Tl, this implies that none of ((x, y), r), ((x, y), s), ((r, s), x)

or ((r, s), y) are in RTl . By Lemma 3.1, the paths pTl(x, y) and pTl(r, s) have the

same nadir. Thus, fS,l is well-defined.

Definition 3.17. Let T be a tree and S a restriction of T . A set A ⊂ L(T ) of leaves

is not separated by S if either A ⊂ L(S) or A ⊂ L(TL\S).

To construct an inverse to fS,l, we will need the following.

Lemma 3.3. Let S be an admissible restriction of T and assume the leaf l

distinguishes S. Let the leaves x, y, r, s ∈ L(Tl) be such that the leaf sets {x, y}

and {r, s} are not separated by S. If the paths pTl(x, y) and pTl(r, s) have the same

nadir, then {x, y, r, s} is not separated by S.

Proof. Since the exclusion relation is full, one of ((r, s), l), ((r, l), s) or ((s, l), r) is in

RTl .

If ((r, s), l) ∈ RTl , then the root path of l does not pass through the nadir of

pTl(r, s). This implies that x and y also exclude l. Suppose, by way of a contradiction,

that x, y ∈ L(TS) and r, s ∈ L(TL\S). Since l distinguishes S, either ((r, l), x) ∈ RTl

or ((x, l), r) ∈ RTl . If ((r, l), x) ∈ RTl then ((r, s), l) ∈ RTl implies that ((r, s), x) ∈

RTl . By Lemma 3.1 this contradicts that the paths pTl(x, y) and pTl(r, s) have

the same nadir. If ((x, l), r) ∈ RTl then ((x, y), l) ∈ RTl implies that ((x, y), r) ∈

RTl , contradicting that the paths pTl(x, y) and pTl(r, s) have the same nadir. Thus,

{x, y, r, s} is not separated by S.

Suppose ((r, l), s) ∈ RTl . Since the paths pTl(x, y) and pTl(r, s) have the same

nadir (call the nadir v), we may assume that ((s, x), r) ∈ RTl . This means that the
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root paths of s and x pass through the vertex v from one side, while the root paths

of r, y and l pass through v from the other side, as shown in Figure 3.7.

Figure 3.7. The arrangement of the leaves with respect to the vertex v.

From Figure 3.7, we see that ((s, x), l) ∈ RTl . Thus, ((l, x), s) /∈ RTl and

((l, s), x) /∈ RTl . Since l distinguishes S, the set {s, x} is not separated by S. Thus,

{x, y, r, s} is also not separated by S.

Similarly, if ((s, l), r) ∈ RTl then {x, y, r, s} is not separated by S.

Proposition 3.2. If S is an admissible restriction of T and the leaf l distinguishes

S, then for δ = 0 or δ = 1 the map fS,l is a bijection.

Proof. Let w1 and w2 be two vertices in F(S,l,δ) such that fS,l(w1) = fS,l(w2) = v.

Choose leaves x and y in F(S,l,δ) so that w1 is the nadir of the path pF(S,l,δ)
(x, y).

Similarly, choose leaves r and s in F(S,l,δ) so that w2 is the nadir of the path

pF(S,l,δ)
(r, s). Then the vertex v is the nadir of both the path pTl(x, y) and the path

pTl(r, s). By Lemma 3.3, the leaves x, y, r, s are all in the same tree in F(S,l,δ). Call

this tree Tv.

By Lemma 3.1 none of ((x, y), r), ((x, y), s), ((r, s), x) or ((r, s), y) are in RTl .

Since Tv is a restriction of Tl, this means none of ((x, y), r), ((x, y), s), ((r, s), x) or
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((r, s), y) are in RTv . By Lemma 3.1, the paths pTv(x, y) and pTv(r, s) have the same

nadir. The vertices w1 and w2 in F(S,l,δ) must then be the same, and fS,l is injective.

Since both F(S,l,δ) and Tl have p− 1 vertices, f is a bijection.

Let T be any tree in E1
−p,q(d−1) and let G ∈ Siopd(p + 1). Recall from the

definition of d1 that the pairing 〈G, d1T 〉 is given by

〈G, d1T 〉 = 〈G,F0〉+

p∑
a=1

〈G, (−1)aTa〉+ 〈G, (−1)p+1Fp+1〉.

Recall as well that the pairing 〈G, d̃1T 〉 is given by

〈G, d̃1T 〉 =
∑

(S,Sc,l,l)∈BT

(−1)lσdS,l〈G,F(S,l,0) + F(S,l,1)〉.

We will show d1T = d̃1T by showing that 〈G, d1T 〉 = 〈G, d̃1T 〉 for every long

graph in Siopd(p+ 1). The following is immediate.

Lemma 3.4. Let G ∈ Siopd(p+1) be a long graph and F ∈ Poisd(p+1). The pairing

〈G,F 〉 is non-zero if and only if the partition of p + 1 defined by the components of

G is equal to the partition defined by the trees in F and 〈G′, T 〉 6= 0 for each pair of

a component G′ of G and a tree T of F such that

{vertices of G′} = {leaves of T}.

Fix a long graph G ∈ Siopd(p + 1). Both Ta and F(S,l,δ) have p − 1 vertices, so

we may assume that G has p−1 edges and therefore is a long graph with exactly two

components.
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Lemma 3.5. If one of the components of G has one vertex and no edges, then

〈G, d1T 〉 = 0 and 〈G, d̃1T 〉 = 0.

Proof. Suppose one of the two components of G has zero edges and one vertex. If

〈G,F0〉 6= 0 then the vertex in the component of G with one vertex is 1, and 〈G, T1〉 =

〈G,F0〉. Similarly, if 〈G,Fp+1〉 6= 0 then the vertex in the component of G with one

vertex is p+1 and 〈G, Tp〉 = 〈G,Fp〉. If 〈G, Ta〉 6= 0 then the vertex of the component

of G with one vertex is either a or a+ 1. If this vertex is a, then 〈G, Ta−1〉 = 〈G, Ta〉,

otherwise 〈G, Ta+1〉 = 〈G, Ta〉. Thus, in the sum 〈G, d1T 〉 any non-zero terms occur

in pairs with opposite signs, so 〈G, d1T 〉 = 0. Furthermore, 〈G, d̃1T 〉 = 0 because

every forest in d̃1T consists of two trees, each with two or more leaves.

Thus, we may assume G is a long graph with two components and each

component has at least one edge. In particular, 〈G,F0〉 = 0 and 〈G,Fp+1〉 = 0.

Lemma 3.6. Let G be a long graph with two components. If 〈G, Ta〉 6= 0, then each

component of G contains one, but not both, of the vertices with labels a and a+ 1.

Proof. If either component of G contains both the vertex labeled a and the vertex

labeled a + 1, then this component defines a path on Ta starting and ending at the

leaf labeled {a, a+ 1}. Every internal vertex in this path appears at least twice. The

vertex with minimal height must then be the nadir of the paths determined by two

edges in this component of G. If 〈G, Ta〉 6= 0 this is impossible, so each component

of G has a vertex labeled by one of a or a+ 1, but not both.

Definition 3.18. Assume 〈G, Ta〉 6= 0, and let G′ be the component of G which does

not have the edge corresponding to the vertex in Ta directly below {a, a + 1}. If G′

has a vertex labeled by a, let δa = 0; otherwise, let δa = 1. Let Sa be the restriction

of T whose leaf set is r−1
a,δa

({vertices in G′} \ {a, a+ 1}).
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Definition 3.19. The root vertex of a restriction S of T is the second highest vertex

of T through which all the root paths of l ∈ L(S) pass.

Lemma 3.7. If 〈G, Ta〉 6= 0, then at least one of Sa or Sc,aa is admissible and a

distinguishes that set. In other words, (Sa, S
c,a
a , a) ∈ BT .

Proof. First we show that Sa is admissible. The leaf set L(Sa) can be written as

L(Sa) =
⋃n
i=1 L(Si), where each Si is either a tall branch or an almost tall branch. We

can choose this union to be maximal in the sense that no two almost tall branches in

the union are restrictions of the same tall branch. For each Si, let S̃i be the restriction

of Ta with leaf set ra,1(L(Si)).

Recall that Sa is defined as the restriction of T whose leaf set is

r−1
a,δa

({vertices in G′} \ {a, a + 1}). Thus, G′ contains the vertices with labels

corresponding to the leaves in L(Si) for each i. For each pair of indices i 6= j,

the path on Ta determined by this component passes through the nadir of the path

pTa(root of S̃i, root of S̃j).

If both Si and Sj are almost tall branches of T , then S̃i and S̃j are restriction

of tall branches, S̃ ′i and S̃ ′j, of Ta. The second component of G contains vertices

with the same labels as the leaves in L(S̃ ′i) \ L(S̃i) and L(S̃ ′j) \ (S̃j). Thus,

β(G, Ta) will map one of the edges from the second component of G to the nadir

of the path pTa(root of S̃i, root of S̃j), which is equal to the nadir of the path

pTa(root of S̃ ′i, root of S̃ ′j). Since 〈G, Ta〉 6= 0, this is impossible. Thus, at most one of

the Si can be an almost tall branch of T , and Sa is admissible.

Now we show that a distinguishes Sa. Let l1 ∈ L(Sc,la ) and l2 ∈ L(Sa). Suppose,

by way of a contradiction, that ((ra,1(l1), ra,1(l2)), a) ∈ RTa . This implies that the

paths pTa(ra,1(l1), {a, a + 1}) and pTa(ra,1(l2), {a, a + 1}) have the same nadir – call

this vertex v. Since ra,1(l2) is the label of a vertex in G′, this component determines
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a path on Ta between the vertex v and the leaf {a, a + 1}. However, ra,1(l1) is

the label of a vertex in the other component of G, so this component determines

another path on Ta between v and {a, a + 1}. Since 〈G, Ta〉 6= 0, the vertex in

each of these paths with minimal height must be v, so v the image under β(G, Ta)

of one edge from each component of G. This is impossible, because β(G, Ta) is a

bijection, and so ((ra,1(l1), ra,1(l2)), a) /∈ RTa . The equivalence relation is full, so either

((a, ra,1(l1)), ra,1(l2)) ∈ RTa or ((a, ra,1(l2)), ra,1(l1)) ∈ RTa . Thus, a distinguishes Sa.

In Example 3.11, the leaf set of S7 is the union of the leaf sets of one almost

tall branch of T and one tall branch of T . In Example 3.12, the leaf set of S4 is the

union the the leaf sets of two tall branches of T .

Define sets AG,T and ÃG,T to keep track of which terms in 〈G, d1T 〉 or 〈G, d̃1T 〉

are nonzero. In other words,

AG,T = {a ∈ p : 〈G, Ta〉 = ±1},

and

ÃG,T = {(S, l, δ) : (S, Sc,l, l) ∈ BT , and 〈G,F(S,l,δ)〉 = ±1}.

We will show AG,T and ÃG,T are isomorphic as sets, and thus 〈G, d1T 〉 ≡ 〈G, d̃1T 〉

mod 2.

Provisionally, we define a map ϕ : ÃG,T → AG,T by ϕ(S, l, δ) = l.

Lemma 3.8. The map ϕ : ÃG,T → AG,T is well-defined.
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Proof. Assume that (S, l, δ) ∈ ÃG,T , so 〈G,F(S,l,δ)〉 6= 0. We have the following

sequence of bijections:

{Edges of G}
β(G,F(S,l,δ)) // {Vertices of F(S,l,δ)}

fS,l // {Vertices of Tl} .

Recall from Definition 3.6 that if β(G,F(S,l,δ)) is defined, then it sends the edge i→ j

in G to the nadir of the path pF(S,l,δ)
(i, j). The map fS,l then sends this internal vertex

to the nadir of the path pTl(i, j). Thus, the composition of these bijections is β(G, Tl),

the set map used in the pairing 〈G, Tl〉. The map β(G, Tl) is therefore a bijection,

and 〈G, Tl〉 6= 0, as needed for ϕ to be well-defined.

We work out an example of the composition fS,l ◦β(G,F(S,l,δ)) in Example 3.10.

Provisionally, we define another map ψ : AG,T → ÃG,T by ψ(a) = (Sa, a, δa). The

image ψ(a) is calculated in Examples 3.10, 3.11 and 3.12 for various situations.

Lemma 3.9. The map ψ : AG,T → ÃG,T is well-defined.

Proof. Fix a ∈ AG,T . By Lemma 3.7, (Sa, S
c,a
a , δa) ∈ BT . Since 〈G, Ta〉 6= 0, we have

the following sequence of bijections:

{Edges of G} β(G,Ta) // {Vertices of Ta}
f−1
Sa,a // {Vertices of F(Sa,a,δa)} .

The map β(G, Ta) sends the edge i→ j to the nadir of the path pTa(i, j). If the edge

i → j is in the component G′ of G, then the leaves i and j in F(Sa,a,δa) appear on

the tree TSa . Otherwise, the leaves i and j appear on the tree TL\Sa . Thus, the map

f−1
Sa,a

maps the nadir of the path pTa(i, j) to the nadir of the path pF(Sa,a,δa)
(i, j). An

example calculation of this composition is done in Example 3.10. The composition
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of these bijections is β(G,F(Sa,a,δa)), the set map used in the pairing 〈G,F(Sa,a,δa)〉.

Thus, this map is a bijection and 〈G,F(Sa,a,δa)〉 6= 0.

Lemma 3.10. The maps ψ and ϕ are inverse set isomorphisms.

Proof. Clearly, ϕ◦ψ is the identity, so it remains to show that the composition ψ◦ϕ :

ÃG,T → ÃG,T is the identity. An explicit calculation of these as inverse isomorphisms

is shown in Example 3.10. If 〈G,F(S,l,δ)〉 6= 0 then ψ ◦ ϕ(S, l, δ) = ψ(l) = (Sl, l, δl).

Since 〈G,F(S,l,δ)〉 6= 0 and 〈G,F(Sl,l,δl)〉 6= 0, the partition of p + 1 defined by the trees

in F(S,l,δ) is equal to the partition defined by the trees in F(Sl,l,δl). Since the same leaf,

l, is used in the definition of both forests, the admissible sets S and Sl must be the

same and δ = δl.

Proof of Theorem 3.1. We have now shown that 〈G, d1T 〉 ≡ 〈G, d̃1T 〉 mod 2 for

every tree T ∈ Poisd(p) and every long graph G ∈ Siopd(p+ 1) by showing that the

sets AG,T and ÃG,T are isomorphic. To show that d1T = d̃1T , we will show that the

isomorphisms ϕ and ψ also preserve the signs.

That is, we will show that for any long graph G ∈ Siopd(p + 1) and tree T ∈

Poisd(p), we have

〈G, (−1)aTa〉 = 〈G, (−1)aσSa,aF(Sa,a,δa)〉. (3.1)

This pairing is calculated in Examples 3.12 and 3.11. Recall that if d is even

σdS,l = 1 and if d is odd σdS,l is the sign of the permutation defined by the map fS,l

from Lemma 3.2.

When d is even, the equality in Equation 3.1 reduces to 〈G, Ta〉 = 〈G,F(Sa,a,δa)〉.

Since the trees in F(Sa,a,δa) are restrictions of Ta, the paths used to define the maps
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β(G, Ta) and β(G,F(Sa,a,δa)) have the same number of paths traveling from left to

right, and 〈G, Ta〉 = 〈G,F(Sa,a,δs)〉. Thus, 〈G, Ta〉 = 〈G,F(Sa,a,δa)〉.

When d is odd, 〈G, (−1)aTa〉 = (−1)aσd(G, Ta), where σd(G, Ta) is the sign of

the permutation given by β(G, Ta). Also

〈G, (−1)aσSa,aF(Sa,a,δa)〉 = (−1)aσSa,a · σd(G,F(Sa,a,δa)),

where σSa,a · σd(G,F(Sa,a,δa)) is the sign of the permutation given by the composition

{edges of G}
β(G,F(Sa,a,δa))// {internal vertices of F(Sa,a,δa)}

fSa,a // {vertices of Ta} .

Since f ◦β(G,F(Sa,a,δa)) = β(G, Ta), we have σSa,a ·σd(G,F(Sa,a,δa)) = σ(G, Ta). Thus,

〈G, (−1)aTa〉 = 〈G, (−1)aσSa,aF(Sa,a,δa)〉.

We now have that 〈G, d1T 〉 = 〈G, d̃1T 〉 for every tree T ∈ Poisd(p) and every

long graph G ∈ Siopd(p), so the maps d1 and d̃1 are equal.

Example 3.10. Let T be the tree shown in Figure 3.1, and let S be the admissible

subset of T shown in Figure 3.4. The multi-labeled tree T1 and the forest F(S,1,0) are

shown in Figure 3.8, with their internal vertices ordered from left to right according

to the planar embedding. We will check that ϕ(S, 1, 0) and ψ(1) are well-defined,

that ψ ◦ ϕ(S, 1, 0) = (S, 1, 0) and that ϕ ◦ ψ(1) = 1.
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Figure 3.8. The tree T1 and the forest F(S,1,0) with internal vertices labeled.

The map fS,1 : {internal vertices of F(S,1,0)} → {internal vertices of T1} is given

by the permutation (5678). Let G be the graph shown below, with edges labeled from

left to right:

G = 1 1 // 3 2 // 10 3 // 8 4 // 4 5 // 5 6 // 9 7 // 7 2 8 // 6 .

Then 〈G,F(S,1,0)〉 = ±1 and 〈G, T1〉 = ±1, with the bijections given by β(G,F(S,1,0)) =

(14)(23) and β(G, T1) = (14)(23)(5678).

First we will check that ϕ(S, 1, 0) = 1 is an element of AG,T . We find that

the permutation defined by β(G, T1) is (14)(23)(5678), which is clearly a bijection.

Alternatively, the composition below

{Edges of G}
β(G,F(S,1,0)) // {Vertices of F(S,1,0)}

fS,1 // {Vertices of T1}

is given by (14)(23)(5678). This illustrates that f ◦β(G,F(S,1,0)) = β(G, T1), as in the

proof of Lemma 3.8.

Next we will calculate ψ(1) = (S1, 1, δ1) and see that it is an element of ÃG,T .

The map β(G, T1) sends edge 8 to vertex 5, the vertex directly below {1, 2} in T1.
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The component of G which does not contain edge 8 is

G′ = 1 1 // 3 2 // 10 3 // 8 4 // 4 5 // 5 6 // 9 7 // 7 .

From here, we can see that the leaf set of S1 is L(S1) = {2, 9, 7, 3, 4, 8, 6}. Since their

leaf sets are the same, S1 and S are the same restriction of T . Since G′ contains the

vertex 1, we have δ1 = 0. This gives us that ψ(1) = (S, 1, 0), which we have already

checked is an element of ÃG,T . We can also check explicitly that the composition

{Edges of G} β(G,T1) // {Vertices of T1}
f−1
S,1 // {Vertices of F(S1,1,δ1)}

is β(G,F(S1,1,δ1)):

f−1
S,1 ◦ β(G, T1) = (5876)(14)(23)(5678) = (14)(23) = β(G,F(S1,1,δ1)).

We now have that

ψ ◦ ϕ(S, 1, 0) = ψ(1) = (S, 1, 0),

and

ϕ ◦ ψ(1) = ϕ(S, 1, 0) = 1.

Example 3.11. If T is the tree in Figure 3.1, then T7 is the multi-labled tree shown

in Figure 3.9. We will check that ψ(7) is well defined and that ψ respects the signs.
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Figure 3.9. The mulit-labeled tree T7 with internal vertices labeled.

The graph G, shown below, pairs non-trivially with T7 since β(G, T7) = (1524)

is a bijection.

G = 1 1 // 5 2 // 8 3 // 2 3 4 // 7 5 // 10 6 // 4 7 // 9 8 // 6 .

The map β(G, T7) sends edge 4 of G to vertex 1, and the component of G which

does not contain edge 4 is

G′ = 1 1 // 5 2 // 8 3 // 2 .

This gives us that the leaf set of S7 is L(S7) = {1, 5, 2}. Thus, S7 is the restriction

shown in Figure 3.10.

Figure 3.10. The restriction S7 of T .

The restriction S7 is admissible because the leaf set L(S7) = {2} ∪ {1, 5} is the

union of the leaf sets of one tall branch and one almost tall branch of T . The leaf 7

distinguishes the restriction S7, as the nadir of the path pT7(7, i) is not equal to the
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nadir of the path pT7(7, j) for i = 3, 8, 10, 4, 9, 6 and j = 2, 1, 5. We have that δ7 = 1

because G′ contains the vertex 8. The forest ψ(7) = F(S7,7,1) is shown in Figure 3.11.

Figure 3.11. The forest F(S7,7,1) with internal vertices labeled.

The pairing 〈G,F(S7,7,1)〉 = ±1 as β(G,F(S7,7,1)) = (13) is a bijection.

To check that ψ respects the signs, we need to check that 〈G, (−1)7T7〉 =

〈G, (−1)7σdS7,7
F(S7,7,1)〉.

If d is even, we can see that the paths determined by G on T7 travel in the same

direction as the paths determined by G on F(S7,7,1), and each has seven traveling from

left to right, so

〈G, (−1)7T7〉 = (−1)7(−1)7 = 〈G, (−1)7F(S7,7,1)〉.

If d is odd, we find that fS,7 = (13524) has sign 1, so σdS7,7
= 1. Furthermore,

β(G, T7) = (1524) and β(G,F(S7,7,1)) = (13) both have sign −1. Then 〈G, (−1)7T7〉 =

(−1)7(−1) = 1 and 〈G, (−1)7σdS7,7
F(S7,7,1)〉 = (−1)7(1)(−1) = 1.

Example 3.12. If T is the tree in Figure 3.1, then T4 is the multi-labled tree shown

in Figure 3.12. We will check that ψ(4) is well defined and that ψ respects the signs.
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Figure 3.12. The mulit-labeled tree T4 with internal vertices labeled.

The graph G, shown below, pairs non-trivially with T4 since β(G, T4) = (153)(24)

is a bijection.

G = 1 1 // 6 2 // 3 3 // 8 4 // 10 5 // 2 6 // 5 4 7 // 9 8 // 7 .

The map β(G, T4) sends edge 7 of G to vertex 7 of T4, and the component of G

which does not contain edge 7 is

G′ = 1 1 // 6 2 // 3 3 // 8 4 // 10 5 // 2 6 // 5 .

This gives us that the leaf set of S4 is L(S4) = {1, 5, 3, 7, 9, 2}, and S4 is the restriction

shown in Figure 3.13

Figure 3.13. The restriction S4 of T with internal vertices labeled.

The restriction S4 is admissible because the leaf set L(S4) = {3, 7, 9, 2} ∪ {1, 5}

is the union of the leaf sets of two tall branches of T . The leaf 4 distinguishes the
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restriction S4. We have that δ4 = 1 because G′ contains the vertex 5. The forest

ψ(4) = F(S4,4,1) is shown in Figure 3.14.

Figure 3.14. The forest F(S4,4,1) with internal vertices labeled.

The pairing 〈G,F(S4,4,1)〉 = ±1 as β(G,F(S4,4,1)) = (153)(24). In this example,

fS,4 is the identity, so σdSa,a = 1 for all d. To check that ψ preserves the signs, we need

to check that 〈G, (−1)aTa〉 = 〈G, (−1)aF(Sa,a,δa)〉.

If d is even, we can see in Figures 3.12 and 3.14 that the paths used to determine

the sign of 〈G,F(S4,4,1)〉 travel in the same direction as the paths used to determine

the sign of 〈G, T4〉, and 〈G,F(S4,4,1)〉 = −1 = 〈G, T4〉.

If d is odd, then 〈G,F(S4,4,1)〉 = −1, the sign of the permutation (153)(24). But

this permutation is the same as the permutation

fS4,4 ◦ β(G,F(S4,4,1)) = (153)(24) = β(G, T4).

Thus, 〈G, (−1)4T4〉 = 〈G, (−1)4F(S4,4,δ4)〉 for all d.
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