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We investigate some homological properties of graded algebras. If A is an

R-algebra, then E(A) := ExtA (R, R) is an R-algebra under the cup product and

is called the Yoneda algebra. (In most cases, we assume R is a field.) A

well-known and widely-studied condition on E(A) is the Koszul property. We

study a class of deformations of Koszul algebras that arises from the study of

equivariant cohomology and algebraic groups and show that under certain

circumstances these deformations are Poincare-Birkhoff-Witt deformations.

Some of our results involve the K 2 property, recently introduced by

Cassidy and Shelton, which is a generalization of the Koszul property. While a

Koszul algebra must be quadratic, a K2 algebra may have its ideal of relations

generated in different degrees. We study the structure of the Yoneda algebra

corresponding to a monomial K 2 algebra and provide an example of a monomial

K2 algebra whose Yoneda algebra is not also K2. This example illustrates the

difficulty of finding a K2 analogue of the classical theory of Koszul duality.

It is well-known that Poincare-Birkhoff-Witt algebras are Koszul. We find

a K 2 analogue of this theory. If V is a finite-dimensional vector space with an



ordered basis, and A := 1f(V) / I is a connected-graded algebra, we can place a

filtration F on A as well as E(A). We show there is a bigraded algebra

embedding 1\ : grF E(A) '----+ E(grF A). If I has a Grabner basis meeting certain

conditions and grF A is K2, then 1\ can be used to show that A is also K 2.

This dissertation contains both previously published and co-authored

materials.
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CHAPTER I

INTRODUCTION

This dissertation will explore some homological properties of graded

algebras. Homological algebra is a powerful tool used in many areas of

mathematics, and noncommutative algebra is no exception. A deep and

beautiful homological condition is Koszulity. We also explore a generalization of

the Koszul property, known as the J(2 property.

Chapters II and III present previously-known results. In Chapter II, we

introduce Yoneda algebras and coalgebras, which are algebras formed from

cohomology and homology, respectively. We introduce the Koszul and J(2

properties, as well as describe the theory of Poincare-Birkhoff-Witt algebras.

Given a connected-graded algebra A, we can study a related algebra

E(A), which is defined cohomologically. If E(A) satisfies certain conditions,

then A is said to be Koszul. The strength of the Koszul condition is seen from

the fact that there are any number of equivalent definitions given in very

different forms, such as (1) how E(A) is generated, (2) homological purity, (3)

distributive lattices, and (4) canonical resolutions.

While not explicitly stated in the definition, it follows that Koszul

algebras must be quadratic. There have been several attempts to formulate a

more general condition which admits nonquadratic graded algebras. One such
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is the 1C2 condition, introduced by Cassidy and Shelton [9]. Unlike those in the

class of n-Koszul algebras introduced by Berger [2], 1C2 algebras can have

relations generated in more than one degree. For example, while a commutative

algebra with cubic relations has no hope of being 3-Koszul (because the

commutativity relations are quadratic), such algebras could be 1C2. This suggests

we could explore 1C2-ness as a geometric property. For example, all complete

intersections are 1C2 .

Suppose V is a finite-dimensional vector space and let 1f(V) denote the

tensor algebra on V. If A := 1f(V)/ I is a quadratic algebra and I has a

particularly nice Grabner basis, with respect to some ordered basis for V, then A

is said to be a PBW algebra. Priddy proved in [19] that PBW algebras are Koszul.

Chapter III describes the theory of Poincare-Birkhoff-Witt deformations,

which are so named because of the motivating example provided by the PBW

theorem from representation theory. We devote most of Chapter III to describing

a homological technique, introduced by Cassidy and Shelton [8], for

determining when a deformation is PBW. This technique can also be used to

determine the regularity of a central element of a noncommutative algebra.

Chapters IV, V, and VI present new results. In Chapter N, we define a

deformation that arose in the study of some algebras related to representation

theory and algebraic geometry, and show that it is PBW. In [5], the notion of

Goresky-MacPherson duality is introduced, and the main result of Chapter IV is

a stepping stone to the development of GM duality. GM duality has been

observed in some examples, such as the equivariant cohomology associated to

certain algebraic group actions on algebraic varieties.

If A is a Koszul algebra, E(A) is quadratic and its structure is easily

described. Furthermore, A "-J E(E(A)). (This relationship is known as Koszul
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duality.) Finding a JCz-analogue of Koszul duality remains of interest. The

results in Chapter V are in pursuit of this goal. In that chaper, we consider

(noncommutative) monomial algebras. We provide some more structural results

for the Yoneda algebra associated to a monomial algebra. Specifically, we show

that if A is a monomial JCz algebra, we can choose generators of E(A) so that the

defining relations of E(A) are monomial and binomial. At the of the chapter, we

exhibit a monomial JCz algebra whose Yoneda algebra is not JCz (in an

appropriately generalized sense). This illustrates the difficulty of finding a

generalization of Koszul duality to the JCz world.

In Chapter VI, we provide a JCz generalization of the theory of PBW

algebras. An ordered basis on V induces a filtration F on A. A quadratic algebra

A := 1I'(V) / I is PBW if and only if the associated graded algebra grF A is a

quadratic algebra. More generally, if A := 1I'(V) / I is any connected-graded

algebra, there is also a filtration (which we will also denote F) on E(A), and a

bigraded algebra embedding

A: grF E(A) '-+ E(grF A).

We prove that if A is surjective and grF A is JCz, A is JC2 as well. In fact, the PBW

condition on a quadratic algebra is equivalent to requiring that A be surjective in

the first two cohomological degrees (which is enough to conclude the overall

surjectivity of A). We find analogous characterizations of the surjectivity of A,

also involving Grabner bases, in the JCz case. This provides another technique to

prove that algebras are JC2.

In order to prove the results in Chapter VI, we generalize the definition of

JC2 and E(A) for augmented algebras: that is, IK-algebras A with an ideal A+



with dim AI A+ = 1. We show the existence of A in this context. This more

general theory allows one to consider these homological properties under

gradings by other monoids than N.

The generalization to the augmented case is interesting in its own right.

Since every point in an algebraic variety naturally gives rise to such an

augmented algebra, it might be interesting to study these homological

properties from a geometric perspective.

Chapters IV and V contain material which was co-authored. Chapters V

and VI contain previously published material.

4
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CHAPTER II

THE YONEDA ALGEBRA AND COALGEBRA

III Introduction

We begin our study of homological conditions on a graded algebra with

Koszulity. Koszul algebras were first introduced by Priddy in 1970 to study the

Steenrod algebra and the universal enveloping algebra of a Lie algebra. [19] Later,

Koszul algebras attracted the interest of those studying noncommutative

algebraic geometry because some of the Artin-Schelter regular algebras

(introduced in 1988 [1]) are Koszul.

Koszul algebras must always be quadratic. There have been some

attempts to generalize Koszulity to connected-graded algebras with

non-quadratic relations. Hoping to capture more of the Artin-Schelter regular

algebras, Berger introduced N-Koszul algberas in 2001 [2]. These algebras are

N-homogeneous-that is, their ideal of relations may be generated by degree-N

homogeneous elements. (The 2-Koszul algebras are exactly the Koszul algebras.

The term N-Koszul as used by Berger is different than the sense of the term seen

in [18].) Motivated by problems of deformation theory (see Chapter III), Cassidy

and Shelton introduced J(2 algebras in 2007 [8], and explored their properties in

depth in [9]. This class of algebras contains all the N-Koszul algebras and the

Koszul algebras, but also admits algebras whose ideals of relations are generated
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by homogeneous elements in different degrees.

1I.2 Augmented algebras

Throughout, IK will be a field, and for a IK-vector space V, we use 1['(V) to

denote the tensor algebra of V over IK. If R is a semisimple IK-algebra and V is

an R-bimodule, then 1['R (V) will be the tensor algebra of V over R. We will

usually study (R-)augmented algebras, which we define as follows:

Definition 11.2.1. An R-algbera is R-augmented if there is an ideal A+ c A such

that A = A+ EB R . 1 as an R-module.

If A is R-augmented, we regard AR as the A-module AI A+.

We will consider both ungraded and graded versions of some standard

functors from homological algebra, but in many of the cases we consider, the

two versions will coincide. If a IK-algebra A is graded by a monoid M with

identity element e, homA (M, N) is the module of degree-preserving A-linear

homomorphisms, M(IX) is defined by M(IX)f3 := M et!3' and

Then we have the M -graded Hom functor

Homcr(M, N) := EB Homcr(M, N)et.
etEM

Finally, Extcr the derived functor of Homcr'

Definition 11.2.2. For an R-augmented algebra A, a grading A = EBn::::O An is

compatible with the augmentation if A = 1['R (V) I I for some finite-dimensional



R-bimodule V and finitely-generated homogeneous ideal I c Li;::2 V0 i,

An = von mod I, and A+ = ffin>o An. More specifically, we will say that A is

connected-graded if R = K.

In either case, A is graded by the monoid M = Nand R-augmented by

setting A+ = Li;::1 Ai' We use notation established by [9], setting

A(nh nh ) .- ffi A(n·)ffij;I' 2"" '-\I7 I ,

i

where A(nj)ffij; is h direct-sum copies of A(ni)'

Suppose A is an R-augmented algebra. Write A~n for the nth tensor

power of A+ over R. We have a canonical resolution of AR: the bar resolution

Barn(A) := A 0R A~n with differential d~ : A 0R A~n -t A 0R A~n-l defined

by
n-l

d~(ao 0 al 0··· 0 an) := L (-1)i a1 0· .. 0 aiai+l 0 ... 0 an'
i=O

Applying the functor R 0 A -, we get the complex A~·, with the

differential dn : A~n -t A~n-l defined by

n-l
dn(al 0··· 0 an) = L (-1)ia1 0·· . 0 aiai+l 0· .. 0 an·

i=1

Now, Tor~(R, R) is the nth homology module of this complex.

Consider the map

tJ. .' A On -t A0i fV\ A 0n-i
n,L' + + ICY +

7
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defined by

We see that ~ provides a comultiplicative structure for A~-. Furthermore, we

see that ~ respects kernels and images, making A~- a differential-graded

coalgebra and making TorA(R,R) a graded coalgebra. If A is M-graded, then

TorA(R, R) is bigraded, with a homological by N and an internal grading by M.

The cobar complex is the cochain complex Cob- (A) defined by

where the differential

is the pullback of a. Similarly, if A is M-graded, we have a graded version of the

cobar complex CobCr(A).

Consider the map

defined by

We see that JA- provides a multiplicative structure for Cob e(A) (and similarly for

Cobcr(A)). Furthermore, se see that JA- respects kernels and images, making

Cob- (A) (and CObcr(A)) a differential-graded algebra and making ExtA (R, R)

(and ExtCr(AR,A R)) a graded algebra. If A is M-graded, then ExtCr(AR,A R) is



9

bigraded, with a cohomological grading by N and an internal grading by M.

Theorem 11.2.3. We have Jin,i = 1'1v, where

Jin,i : Cobn-i(A) 0 Cobi(A) ~ Cobn(A) and I'1n,i : A~n ~ A~n-i 0 A~i.

Proof Let it 0· .. 0 fi E Cobn(A), gl 0··· 0 gn-i E Cobn-i(A), and

al ... an E A~n. We compute

1'1V((fl 0··· 0 fi)0(gl 0··· 0 gn-i))(al 0··· 0 an)

= ((fl 0· .. 0 fi) 0 (gl 0 .. · 0 gn-i))I'1(al 0· .. 0 an)

= (fl 0 0 fi)(al 0 ... ai)

. (gl 0 0 gn-i) (ai+l 0 ... 0 an)

The above proof can easily be modified for the case when A is M -graded,

yielding the following:

Theorem 11.2.4. The map Jin,i : CobC;i(A) 0 Cob~r(A) ~ CobCr(A) and

I'1n ,i : A~n ~ A~n-i 0 A~i are dual to one another. Thus, for any subset

'I C {O, ... , n}, the maps LiEI Jin,i and LiEI I'1n,i on CObCr(A) and A~n, respectively,

are dual to one another.

11.3 Homological conditions

Definition 11.3.1. For an augmented algebra A, the algebra E(A) = ExtA (R, R)

is called the Yoneda algebra, and the coalgebra T (A) := Tor A (R, R) is called the

Yoneda coalgebra. We say A is lCmif E(A) is generated as an R-algebra by

E1(A), ... ,Em(A).
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For the most part, we only consider the JC1 and JCz conditions. The JCz

property was introduced for connected-graded algebras by Cassidy and Shelton

in [8] and [9]. The following lemma, which we will prove in Section VI.3, is very

useful:

Lemma 11.3.2. If A has agrading compatible with its augmentation, Ern(A) = ECr(A)

if an only if dim ECr (A) < 00. Consequently, if A has agrading compatible with its

augmentation and is JCz, then E (A) = ECr (A).

Definition 11.3.3. If A has a grading compatible with its augmentation and A is

JC1, then A is called Koszul.

In the remainder of the section, we will assume that A has a grading compatible

with its augmentation.

The theory of Koszul algebras is very rich: a good reference is the book

[18] by Polishchuk and Positselski.

Theorem 11.3.4. The following are equivalent:

1. A is Koszul.

2. The multiplication fl : En- 1(A) 129 E1(A) ~ En (A) is surjective for each n 2: 2.

3. The comultiplication b. : Tn(A) ~ Tn-1(A) 129 T1(A) is injective for each n 2: 2.

4. E~r (A) = E~; (A) for all n 2: 2.

5. T~r(A) = T~;(A)foralln 2: 2.

6. There exists a projective resolution p. ofgraded A-modules for A R such that pn is

generated in degree n.
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Conditions 4 and 5 are homological purity conditions. The resolution required

by Condition 6 is called a linear projective resolution.

For a graded algebra A = 1rR(V)/ I, we may always begin a projective

resolution of AR with a sequence

where W is a minimal subspace of 1rR(V) with the property 1= (W). Then the

duals ai and ai are both zero. Furthermore, we will have a3= o. Therefore,

E2 (A) = W*, and the cohomology E2 (A) keeps track of the elements that

generate the ideal of relations for A. Since a Koszul algebra A has

E2(A) = E2,2(A), a Koszul algebra A will always be quadratic.

Suppose A = 1rR (V) / I is a quadratic algebra. We let

(-, -) : V02 (29R (V*)02 -+ R, where V* := homR(V,R), be defined by

(VI (29 V2,WI (29 W2) := WI(VI)W2(V2). Then, we define the ideal 1-1 C 1rR(V*) by

1-1 := \ W E (V*) o2 : (V, w) = 0 for all V E I n V02) .

Definition 11.3.5. The quadratic dual to the quadratic algebra A = 1rR (V) / I is

the algebra A! := 1rR(V*)/ 1-1.

Note that for a quadratic algebra A, (A!)! = A. The following relationship is

called Koszul duality.

Theorem 11.3.6. A quadratic algebra A is Koszul ifand only ifE(A) = A!, so

E(E (A)) = A for a Koszul algebra.

Koszul duality is a consequence of a more general result. For a general

graded algebra A = 1rR (V) / I, we defined the quadraticized version of A to be
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the quadratic algebra qA := 1I'R(V)/ (I n V02). We think of qA as having

relations generated by the quadratic relations of A. Of course, for a quadratic A,

A = qA. The following is [18, Proposition 1.3.1]:

Theorem 11.3.7. For agraded algebra A, E9i Ei,i(A) is a subalgebra ofE(A), and in

fact is isomorphic to (qA)!. In particular, ifA is quadratic, then A! rv E9i Ei,i(A).

The first generalization of Koszulity is the N-Koszul condition introduced

by Berger in [2] and is based on the homological purity conditions. Fix N ~ 2.

Let b : N -t N be defined by

{

Ni
2'b(i) :=
N(~-l) + I,

if i is even,

if i is odd.

Definition 11.3.8. A is N-Koszul if Ei(A) = Ei,o(i) (A) for all i.

Note that the 2-Koszul is synonymous with Koszul. Analogously to the Koszul

case, for an N-Koszul algebra A we have E2 (A) = E2,N (A), meaning A will have

the ideal of relations I generated in degree N-that is, A is N-homogeneous.

The following was proved by Green, et. al. in [12] and by Cassidy and

Shelton in [9]:

Theorem 11.3.9. A is N-Koszul ifand only if A is N-homogeneous and 1C2.

Green, et. al. also proved in [12] a "delayed" version of Koszul duality for

N-Koszul algebras:

Theorem 11.3.10. Suppose A is an N-Koszul algebra. Then the Yoneda algebra E(A) is

IC}, and E(A) can be regraded so that E(A) is a Koszul algebra. In addition,

E(E(E(A))) = E(A).
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The search for a Koszul duality-like result for J(2 algebras continues, although

the results in Section VA indicate that this may be difficult.

Another generalization involving purity is the class of bi-Koszul algebras

introduced by Lu and Si in [15]. A subclass of bi-Koszul algebras, the strongly

bi-Koszul algebras, are J(3.

While N-Koszul and bi-Koszul algebras generalize the purity conditions

for Koszul algebras, J(2 algebras generalize the conditions of Ext-generation.

Theorem 11.3.11. The following are equivalent:

1. A is J(2.

2. The multiplication

is surjective for each n 2: 3.

3. The comultiplication

is injective for each n 2: 3.

Proof Suppose A is J(2. Then Condition (2) clearly holds for n = 3. But then

Condition (2) holds by induction on n. On the other hand, induction shows

Condition (2) implies A is J(2'

The equivalence of Conditions (2) and (3) follows from the duality of JA

and 1:3.. 0
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Recall that I is the ideal of relations for A. Set I' = I ® V + V ® I.

Elements of I \ I' are called essential relations. We may choose a subcomplex

A ®R V· c Bar· (A), where vn c A~n, such that the restriction of a* is zero.

Such a resolution is called a minimal projective resolution of AR. We may

represent A ®R V n as a free A-module and the differentials

an : A ® Vn -----+ A ® Vn- 1 as matrices with entries in A (such that the differential

is right multiplication by the matrix). Lift to a matrix M n with entries in 1[R (V).

Note that MnMn- 1 will have entires in I. Set Ln to be the image of Mn after

projection of each entry to AIA;:::2 and En to be the image of MnMn- 1 after

projection of each entry to I I I'. The following is due to Cassidy and Shelton [9]:

Theorem 11.3.12. The following are equivalent:

1. The comultiplication

is injective for each n ~ 3 (and hence A is J(2).

2. The rows of [Ln : En] are linearly independent for 3 ::; n ::; gldim A.

Example 11.3.13. This example will illustrate some of the linear algebra

techniques that can be used to find a minimal projective resolution and

determine that an algebra is not J(2. Let

._ JK[y,z]
A .- ( 2 2 4)'Y z ,y

A b . fA' {I 2 2 3 2 2 3 3 3 4 4 5 56}aSls or IS , y, z, y , yz, z , y , y z, yz , z , yz , y z, z , yz , z , yz , z ,... ,



and so the Hilbert series for A is

2t5

HA(t) := .L dim An = 1 + 2t + 3tZ +4t3 + 3t4 + -1-'
n;:::O - t

We begin our minimal projective resolution with

A( -2,-4, -4) ~ A( -I, -1) ~ A -> K -> 0

where

15

Mz =

From the Hilbert series, we see that

ker Mz n (A3 EEl Al EEl AI)

= K(y3
, -z, 0) + K(yZ, 0, -y) + K(O, y, 0) + K(O,O,z).

To find ker Mz n (A4 EEl Az EEl Az), we calculate

( 3 3 4 {J, Z {J, {J, 3 z Z)MltIYZ + ltzy z + lt3Z , /-,IY + /-,zyz + /-'3Z , f'IY + f'zYz + f'3 Z z



So,

ker M2 n (A4 EB A2 E9 A2) = lK(y3z, a, 0) + lK(o,l, 0) + lK(O, yz, 0)

+ lK (0, z2, 0) + lK (0, 0, y2) + lK (0, 0, yz)

+ lK(O, a, z2)

= lK(y3z, a, 0) + Al (ker M2 n (A4 EB A2 E9 A 2 )).

Note we've now shown that for n ~ 5,

Now, suppose n ~ 6. We calculate

( n-2 + n-I a O)M ( n-I n n-I)iXIYZ iX2Z" 2 = -iXIYZ - iX2Z , iX2YZ ,

meaning that

Thus, we may begin our minimal projective resolution with

.•. ---t A( -5, -5, -5, -5, -6) ~ A( -2, -4, -4) ~

A( -1, -1) ~ A ---t lK ---t a,

16



where
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y3 Z

y2z 0

M3 := 0 y

0 0

y3z 0

o

-y

o

z

o

and M2 and M1 are defined as above.

So, dim E3/6(A) = 2 while dim(E2(A) 0 E1 (A) + E1(A) 0 E2(A))6 = O.

Therefore, A is not JC2.

We can use Theorem II.3.12 to show that A is not JC2. Note that

0 y4

_y2z2 0

M3 M2= y4 0

0 y2z2

_y3z2 y4z

so

0 Z 0 0 y4

0 0 -y _y2z2 0

[L3 : E3] = 0 y 0 y4 0

0 0 z 0 y2z2

0 0 0 0 0

does not have linearly-independent rows.
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11.4 The J(z property for monomial algebras

In this section, we briefly describe a combinatorial perspective for the J(z

condition on monomial algebras, introduced by Cassidy and Shelton in [9].

Because the structure of a monomial algebra is somewhat simple, the structure

of its Yoneda algebra is more easily understood. We will go into more detail

about this structure in Chapter V.

Definition 11.4.1. Fix a basis {Xl, ... , xn } for a K-vector space V. A

connected-graded algebra A = 1f(V) / I is a monomial algebra (with respect to

the fixed basis) if I is generated by monomials (with respect to the basis).

Suppose A = 1f(V) / I is a monomial algebra and let M be the set of all

monomials in 1f(V). Let R be minimal set of monomials generators for I. For

m E M, define the set of minimal left-annihilators

~m := {w E M \ I : wm E I but w'm t/: I for any w', wI! E M with wI!w' = w}.

The following is obvious:

Theorem 11.4.2. For i 2 I, set

Let Vi = span Si C A+ ® Vi-I. Here we identify a monomial m E M \ I with its

image in A. Define a map

by
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Then A Q9 V· is a minimal projective resolution for AJK and is in fact a subresolution of

the bar resolution Barn (A).

The map a: A Q9 Vi -----+ A Q9 V i+l can be represented by a ISi+ll x ISil

matrix in which the columns correspond to elements of Si, the rows correspond

to elements of Si+l, and the row corresponding to m Q9 u E Si+l (where m E M

and u E Si) has an m in the column corresponding to u and a zero in every other

column.

Consider the corresponding matrices Li and Ei from Theorem 11.3.12.

Each Li is a ISi+ 11 x ISi I matrix in which the columns correspond to elements of

Si, the rows correspond to elements of Si+I, and the row corresponding to

m Q9 u E Si+l (where m E M and u E Si) has m mod '][>2(V) in the column

corresponding to u and a zero in every other column. Each Ei is a ISi+ll x lSi-II
matrix in which the columns correspond to elements of Si-l, the rows

correspond to elements of Si+l, and the row corresponding to

m2 Q9 ml Q9 u E Si+l (where ml, m2 EM and u E Si-l has m2ml mod I' in the

column corresponding to u and a zero in every other column. Note that the rows

of [Li : Ei] are linearly independent if and only if each row is nonzero. The

following consequence is found in [9]:

Theorem 11.4.3 (Cassidy-Shelton algorithm for monomial algebras). For m E M,

set 2(~ := {w E 2(m : wm E I'}. Let 60 = {Xl," .,Xn }, and for i :2: I,

6i := UWE6i_l 2(w and 6 := U 6i· Then a monomial algebra A is J(2 ifand only iffor

every m E 6, we have 2(~ C V.

We will provide a pictoral view of this condition in Section V.2.

If A is quadratic, then 2(m c V always. So, we have this classic result as a

corollary:
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Corollary 11.4.4. If A is a quadratic monomial algebra, then A is Koszul.

11.5 Poincare-Birkhoff-Witt algebras

Poincare-Birkhoff-Witt (PBW) algebras are quadratic algebras whose

ideals of relations have nice Grabner bases (with respect to a natural filtration),

or equivalently, have the property that gr A is still quadratic. In the same paper

[19] in which he first formulated the concept of a Koszul algebra, Priddy proved

the following:

Theorem I1.5.l. PBW algebras are Koszul.

This result will also be a corollary to our results in Section VI.3. A more

complete exposition of the connection between PBW algebras and Koszulity is

found in Chapter IV of [18].

Let {Xl, ... , xn } be an ordered basis for the K-vector space V, and consider

a connected-graded algebra A := T(V) I I. Let 7t : T(V) - A be the canonical

surjection. Let M be the set of monomials (including the empty word e) in

T(V), ordered by degree-lexicographical order. Then M is an ordered monoid

(under concatenation). We filter A by M via FaA = 7t (Lf:l:=:;a Kf3). The filtration

F on A yields an associated graded algebra grF A which is monomial.

Definition I1.5.2. 1. We define a (non-linear) function T : T(V) -----+ M via

T (cait + L Cf:l f3 ) := Caito
f:l<a

The output T(X) is called the leading term of X.

2. Let I C T(V) be a homogeneous ideal. A generating set 9 of I is called a



.._-- .._"._-------

21

Grabner basis if (T(Q)) = (T(I)).

The following theorem is standard:

Theorem 11.5.3 ([14, Theorem 2.1]). gr A ~ T(V)/ (T(I)).

Thus, gr A is a monomial algebra.

Theorem 11.5.4. Suppose A = T(V) / I is a quadratic algebra. Then the following are

equivalent:

1. The monomial algebra gr A is a quadratric algebra.

2. gr A is a Koszul algebra.

3. A has a Grabner basis Q such that the set {x + I' : x E Q} is linearly independent

in 1/1'. (Recall that I' = 10 V + V 0 I.)

4. Every generating set B such that

(a) the set {x + l' : x E B} is linearly independent in 1/1' and

(b) the no proper subset ofB generates the ideal (T(B) )

is a Grabner basis.

Definition 11.5.5. A quadratic algebra A satisfying the equivalent conditions of

Theorem lI.SA is a Poincare-Birkhoff-Witt algbera. We call a generating set B

satisfying Condition (4a) above a essential generating set. If an essential

generating set also satisfies Condition (4b), we say it has the leading monomial

property. We call an essential generating set which is also a Grabner basis an

essential Grabner basis.



In Section VI.3, we explore the consequences of having an essential Grabner

basis for I when A = T(V) / I is a graded algebra with its ideal of relations I

generated in arbitrary degrees, generalizing Thoerem 11.5.4.

22
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CHAPTER III

PBW DEFORMATION THEORY

111.1 Motivating example and definition

Let 9 be a K-Lie algebra. Then its universal enveloping algebra

U(g) - 1f(g)
- (x®y-y®x- [x,y]: x,y E g)

is filtered by degree, and in fact

gr U(g) :::: 5(g), (111.1)

where 5(V) := 1f(V) / (x ® Y - Y® x : x, y E V) denotes the symmetric algebra

on the vector space V. The isomorphism in (111.1) is a well-known result from

representation theory, known as the Poincare-Birkhoff-Witt theorem (see, for

example, [13, Section 17.3]). Since U(g) has a very similar structure to 5(g), we

think of U(g) as a deformed version of 5(g).

More generally, suppose R = EBll: Kell: is a ring where the ell: are

orthogonal idempotents, and let A = 1fR (V) / I be a graded algebra, where I has

a homogeneous essential generating set {rl,"" r s }. Suppose we have a set of
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not necessarily homogeneous elements

{

degrt-l }
It E ~ V0i : t = 1, ... , s .

1=0

Then let

(III.2)

We will say that the ungraded algbera U is a deformation of the graded algebra

A. Note that U still has a filtration via

n
FnU = L V 0i + (ri - Ii : i = 1, ... , s) .

i=l

Definition 111.1.1. U is a Poincare-Birkhoff-Witt (PBW) deformation of A if

grU ~ A.

In this context, the classic PBW Theorem then implies that U (l)) is a PBW

deformation of S(g).

PBW deformations were first studied by Braverman and Gaitsgory in

1996 in the quadratic case [6]. Additional results for the quadratic case appeared

in the book by Polishchuk and Positselski [18]. Berger and Ginzburg [3] and

Fl0ystad and Vatne [11] extended this study to the N-Koszul algebras in 2006. In

2007, Cassidy and Shelton [8] found a homological technique that works for

algebras with mixed-degree relations. Cassidy and Shelton's results are

explained in the next section.
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111.2 A homological technique for determining if a deformation is PBW

In this section, we will describe a homological technique for determining

whether the deformation in (111.2) is a PBW deformation, first described by

Cassidy and Shelton in [8]. We begin by introducing another graded algebra

which has regularity properties equivalent to the PBW-ness of the deformation:

Definition 111.2.1. Suppose U is a deformation of A as in (111.2). Then the

associated central extension D by z of A is the graded algebra

where ']['R(V) [z] is the polynomial ring over ']['R (V) with central indeterminant z

and h: ']['R(V) ----'> ']['R(V)[Z] is a (non-linear) function, called the

homogenization, defined by

n
.- "a zn-t.- L.J t ,

t=O

in which each at E V0t.

As in Section 11.3, fix a minimal projective resolution

of AR. Recall, this means each 1lj is a graded free R-module and the induced

map a; : 1ii~ I ----'> 1ii* (where - * is the graded dual) is trivial. Choose the

R-modules 1lj so that Vo = R, VI = V, and V2 = EB Rri. We view A @R V· as a

graded free A-module, and view each an as a rank Vn- I X rank Vn matrix with

entries in A (which acts by left multiplication).
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The maximum degree of the entries of V3 determines how much work is

required to verify that U is a PBW deformation.

Definition 111.2.2. The complexity of the graded algebra A is

{
o,

c(A) :=

sup{n : E3,n(A) i- O} -I,

if A has global dimension less than 2;

otherwise.

Note that V3 has maximum degree c(A) + 1.

Now, choose a lift of the matrix an to a matrix M n of elements in

'JfR (V) C 'JfR (V) [z]. Choose a rank Vn-2 X rank Vn matrix fn so that

Let Qi = D @R (Vn EB Vn - 1 ) and define the

(rank Vn- 1 + rank Vn-2) X (2 rank Vn-d matrix

fn )

Mn-l

This gives us a sequence (Q., a.), but it may not even be a chain complex, let

alone exact.

Theorem 111.2.3. The following are equivalent:

1. z is regular in D.

2. If zx = °for some nonzero x E Di' then i > c(A).

3. U is a PBW-deformation of A.
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4. (2- is a projective resolution ofDR.

5. The sequence (23 ----+ (22 ----+ (21 ----+ (20 ----+ R ----+ a is exact.

Cassidy and Shelton proved this theorem in the case where R = K, but their

proofs are completely generalizable to the semisimple case.

In the following examples, we will stick to the case where R = K.

Example 111.2.4. We recover the classical PBW theorem for the Lie algebra

E(2(K), where charK =I=- 2. Let

U '= U(E(2) = K (x, y, h)
. (xy - yx - h, hx - xh - 2x, hy - yh + 2y)

be the universal enveloping algebra for E(2 and let and A := K[x, y, h]. So U is a

deformation of A, and the associated central extension by z is

D- K(x,y,h)[z]
- (xy - yx - hz, hx - xh - 2xz, hy - yh + 2yz) .

A minimal projective resolution for AK is

y -x a x

h a -x y

(h -y x) a h -y h
a ----+ A(-3) ) A( -2)3 ) A (- 1)3 -------+ A ----+ K ----+ O.
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So, we may choose

h

h = ( - 2y - 2x - h) and h = - 2x

2y

Then it is easy to verify that M3h +hMl = 0, so gr U '" A by Theorem 111.2.3.

Example 111.2.5. This technique can be used to verify that central elements of a

graded algebra are regular. Consider the algebra

D '= K[x, y,z]
. (x3y - y3x + xyz2, x2y2) .

We will show that u := x + y is regular in D. Let

K[y,z]
A:=D/uD:::: (24 4)Y z ,y

and let

U:= D/(u -l)D.

In fact, U is a deformation of A and D is the associated central extension by u. In

Example 11.3.13, we carefully showed that a minimal projective resolution for AK

may begin

••• ----> A( -5, -5,-5,-5, -6) ~ A(-2, -4, -4) ~

M 1A( -1, -1) ~ A ----> K ----> 0,
(111.3)
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where

y3 Z a
y2z a -y -z y

,and M, = (:)M3= a y a ,M2= y3 a
a a z a y2z

Iz a a

First, we compute:

a y4

a _y2z2 a
M2M l = y4 andM3M2 = y4 a

y2z2 a y2z2

_y3z2 y4z

Now, to find hand 13, it helps to know that (remembering that u = x + y)

(y3 -lx)(x + y) = y3 x - y2x2+l- y3x

= y4 _ x2y2

= y4,

and that

(x + y)(yz2 - xy2 + x2y) = xyz2 _ x2y2+ x3y + y2z2 _ xy3 + x2y2

= xyz2 + x3y - xy3 + lz2

= y2z2,
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So, from this, we see that we may choose

0 y3 _ y2x
0

xy2 _ yz2 - x2y 0
13= y2x _ y3 andh=

y3 _ y2 x 0
xy2 - yz2 - x2y

_y2z2+ xy3 _ x2y2 y3z - y2xz

Now, we calculate

xy2z - y3z

_ xy3 + y2z2+ x2y2

xy3 - y4

xy2z - yz3 - x2yz

y3z - xy2z

xy3 _ y2z2_ x2y2

+ y4 _ y3x

yz3 - xy2z - x2yz

xy4 _ x2y3 _ xy2z2

0

0

0 =0.

0

x3y2

Thus, U = x +Y is regular in D by Theorem III.2.3.

Example 111.2.6. This example was created by Andrew Conner [10] to show that

the Koszulity hypothesis is necessary in Theorem IY.2.1 (see Example IY.2.3). Let

A = JK (x, y) / (x2, y2 - xy). Consider the deformation

u = JK (x,y)
(x2-1,y2 - xy -1)



and the associated central extension D by t of A is

D = lK(x,y) [z]
(x2 - z2, y2 - xy - z2) .

We may begin a minimal projective resolution for lKA with

31

Note that A is not a Koszul algebra. We can choose our hand h to be

represented by the matrices

h = (z 0) and h = (-z) .
a xz -z

Then, we compute

meaning that U is not a PBW deformation of A by Theorem III.2.3.
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CHAPTER IV

PBW DEFORMATIONS ARISING FROM KOSZUL ALGEBRAS

IV.I Introduction

In this section, we study some deformations that arise in the study of a

recently-discovered duality. This duality is the subject of a paper [5], currently

under review, that the author coauthored with Tom Braden, Anthony Licata,

Nicholas Proudfoot, and Ben Webster. A preprint of the paper is available on the

arXiv preprint server. The results in this chapter are a lemma used to prove the

main theorem in this paper, and first appear there.

In this chapter, we consider graded R-algebras of the form A = 1rR(M) / I

where R is a semisimple ring over the field K and M is an R-bimodule. We

assume R = EBa: Kea:, where the ea: are orthogonal idempotents.

First, let us briefly describe the main results of [5].

Definition IV.I.I. Let U be a finite-dimensional complex vector space and

5 = S(U) be the symmetric algebra. A Goresky-MacPherson algebra is a

quadruple Z = (U, Z,I, h), where Z is a commutative graded S-algebra, I is a

finite set, and h : Z ----+ EBa:EI 5 is a map of graded S-algebras. If h is an

isomorphism, then Z is a strong GM algebra.

There is a notion of GM duality similar to Koszul duality (Theorem 11.3.6). If a
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graded algebra A is Koszul and meets some additional conditions, then the

Yoneda algebra E(A) will also meet those conditions and we can associate to A a

GM algebra Z(A). Under these stronger conditions, the following holds:

Theorem IV.l.2. Z(A) is canonically GM dual to Z(E(A)).

This GM duality has been observed in some examples, such as the equivariant

cohomology associated to certain algebraic group actions on algebraic varieties.

IV.2 A deformation that arises in the proof of Theorem IV.l.2

In this section, for an algebra A as in Theorem IV.1.2 and z! E Z(A!h (the

second degree subspace of the center of A'), we define a deformation .112 1. (Recall

that A! is the quadratic dual in Definition 11.3.5.) In Section IV.3, we will see that

this deformation is PBW.

Let R = EBa Kea be a ring, where the ea are orthogonal idempotents. Let

V and W be R-bimodules, and l : W"------+ V @R V be an injective R-bimodule

homomorphism. We consider the quadratic algebra

A := ']['R(V)/ (l(W) : WE W).

Now, let z! E A1. Note that by Theorem 11.3.7, we can identify

A1 :::: Ext~2 (R, R), and so we have a pairing
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We define the deformation

The proof of Theorem IV.1.2 relies on this theorem as a lemma:

Theorem IV.2.1. If A is Koszul and z! E Z(A!)z C A~, then Az! is a PBW

deformation.

Example IV.2.2. The centrality of z! is a necessary hypothesis for Theorem IV.2.1.

Let A := K (w, x,y) / (xy, wx), which is a monomial quadratic algebra and

hence by Corollary II.4.4 is Koszul. A minimal projective resolution for AK is

w

o~ A(-3) (0 W) ,A(-2f ---'(:_:_:)'------+, A(-I)'~ A ~ JK ~ O.

Note

E(A)=A!= K(w,x,y)
( 2 2 2)'W , wy, xw, X , yw, yx, y

and the element xy E A! is not central. Now the deformation is

A _ K(w,x,y)
xy - (xy -l,wx)

and the associated central extension is

D = K (w,x,y) [z]
(xy - z2, wx) .
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We may choose h = aand

meaning nD(M3h +hMl) = nD(-wz) =i=- a, so Axy is not a PBW deformation

of A by Theorem 111.2.3.

We can also directly observe that in 0, we have wz2 = wxy = a, meaning

z is not a regular element in O.

Example IV.2.3. The Koszulity of A is a necessary hypothesis for Theorem

IV.2.1. Recall the algebra

A= JK(x,y)
(x2,y2 - xy)

and the deformation U = JK (x, y) / (x2-I, y2 - xy - 1) from Example 111.2.6.

We showed that U is not a PBW deformation and that A is not Koszul. Consider

the element

It is easy to show that z! is central in A!: Noting that y3 = -yxy = ain A!, we

compute in A!

(x2 - 2xy) x = x3 - 2xyx = x3 = x2+2l

= x3+2xl = x3 - 2x2y = x(x2 - 2xy)

and

(x2 - 2xy)y = x2y - 2xl = x2y +2l = x2y

= _ xy2 = l = a= yx2 - 2yxy = y(x2 - 2xy).
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Furthermore, Az! = U.

IV.3 The deformation Az! is PBW

The goal of this section is to prove Theorem rv.2.1. We are actually going

to prove this slightly more general version:

Theorem IV.3.1. Suppose c(A) = 2 or c(A) = 0 (where c(A) is the complexity of A

defined in Definition III.2.2) and z' E Z(A'h = Z(E(A)h. ThenAz! isaPBW

deformation of A.

Proof Let c: E HomR(W,R) be the map

c: :w 1---+ L (z', ea:wea:) ea:.
a:

Then we can write

D ._ 1I'R(V) [z]
.- \1(W) - C:(w)z2 : w E W)

and

AZI = D/D(z -1).

So Az! is a deformation of A and D is the associated central extension.

In the following, when we apply the functions nD or c: to a matrix, we

mean the result of applying the function to each entry in the matrix.

As in Section III.2, choose a minimal projective resolution of AR

so that Va = R, VI = V, and V2 = W. We view each an as a matrix with entries in



A (which acts by left multiplication), and choose lifts M n with entries in

1fR(V) c 1fR(V) [z] .

In general, M3M2 has entries in I, which means that we can think of

M3M2 as a function

However, in this case, c(A) = 2 or c(A) = 0, and so we actually know that

M3M2 has entries in W, and we can think of M3M2 as a function

On the other hand, because V2 = W, Vl = V and Va = R, we know that M2Ml

has entries in W, and so we can think of M2Ml as a function

Indeed, we see that we can view M3M2Ml as a function

1fv(R) ®R V3 -----t 1fR(V) ®R (V ®R wnw ®R V) ® Va.

7fD(M3M2 - zh) = 7fD(M3M2 - ZS'(M3M2)) = 0 and

7fD(M2Ml +z12) = 7fD(M2Ml - ZS'(M2Ml)) = 0,

meaning we may apply Theorem 111.2.3.

37
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Now, it suffices to show that

We can view the matrix h as the composition

TR(V) 0R V3 .M3M 2
) (TR(V) 0R W) 0R VI id0s 0id, TR(V) 0R VI

~ TR(V)z 0R VI,

and the matrix h as the composition

TR(V) 0R V2 .M2M 1
) (TR(V) 0 W) 0R Va id0s 0id) TR(V) 0R Va

~ TR(V)Z 0R Va·

First, note that the diagram

(IVI)

·M3
M

2 • TR(V) 0R W 0R VI id0s0id • TR(V) 0R VI

1·M1 l'Z0id

TR(V) 0R (W 0R V n V 0R W) 0 Va TR(V)Z 0R VI

1idTR (V)0S0idv0idvo 1M 1

TR(V) 0R V 0R Va TR(V)Z 0R Va

l~ ~
1fR(V) 0R Va
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hand, the commutative diagram

·M3 .M2 M1'][R(V)@RV3 -----'][R(V)@R V2------)'][R(V)@RVa
·M3M

2 Ml f
'][R(V) @R (V @R wnW @R V) @R Va

1id']['R (V)0idV®S0id vo

'][R(V) @R Va

1·z0id

'][R (V)z ®R Va

shows us that for v E v3, vM3h = -z(id @S)(vM3M2M1 ).

Therefore, to show (IV.I), it suffices to show

(IV.2)

The elements S@ id and id @ Sare represented in A1 = E3 (A) as z! E Xi and

EXiZ!, respectively, where {xil is a basis for V*. (The equality A1 = E3(A) holds

because c(A) = 2 or c(A) = 0.) So, (IV.2) follows from the centrality of z!. 0
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CHAPTER V

YONEDA ALGEBRAS FOR MONOMIAL CONNECTED-GRADED ALGEBRAS

V.l Introduction

In this chapter, we explore the structure Yoneda algebra and coalgegra for

connected-graded monomial algebras. The material in Section VA was first

described in a paper accepted for publication [7], coauthored with Thomas

Cassidy and Brad Shelton. A preprint of the paper is available on the arXiv

preprint server.

Recall that a monomial algebra is an algebra which can be written in the

form

A = K(Xl"",XnJ
(fl, ... ,fmJ

(V.l)

where each relation fi is a monomial in the generators Xj' A major motivation for

studying monomial algebras is convenience: because these algebras are

relatively uncomplicated, their Yoneda algebras and coalgebras are easier to

understand than in the more general case. This allows us to gain intuition about

what mayor may not be true in the general case.

Recall the notation and results in Section IIA. We have R := {fl, ... , f m }

and M the set of all monomials in the free algebra K (Xl,"" xnJ. For m E M,

we defined a set of minimal left annihilators Q(m, which is used to obtain a
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bigraded vector space V· C A~·. This yields a minimal projective resolution

A 0 V· for AK, which is a subresolution of the bar resolution Barn(A).

V.2 A pictoral method for exhibiting the resolution A 0 V·

Let A be a monomial algebra presented as in (V.l). In this section, we

present a weighted, directed graph exhibiting the resolution A 0 V·. In

constructing such a graph, one will conduct the Cassidy-Shelton algorithm for

monomial algebras (Theorem TIA.3). Recall the set 6 = Ui 6 i defined in

Theorem 11.4.3.

Definition V.2.1. The Cassidy-Shelton algorithm graph for A is a weighted,

directed graph G(A) defined as follows: The set of vertices of G(A) is 6. For

each m1 E 6 and m2 E 2tm1 , there is a directed edge m2 ~ m1 in G(A) if m2m1 is

an essential relation and a directed edge m2~ m1 in G(A) if m2m1 is a

nonessential relation.

When presenting the graph G(A), it is helpful to arrange the vertices so

that elements of 60 are on the far right, elements of 6 1 are to the immediate left

of the elements of 60, and so on.

Note that the elements of Si, which form a basis for Vi, correspond

exactly to paths in G(A) which begin at an element of 60. (Paths are allowed to

have both kinds of edges.) Thus, the global dimension of A will be the length of

the longest path in G(A), or infinite if G(A) contains a loop. Also, this is an

obvious corollary to Theorem 11.4.3:

Theorem V.2.2. A is JC2 ifand only if the only edges m2~ m1 have m2 E 60.

Thus the C-S algorithm graph presents a visual way to determine whether a
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Figure V.I: The C-S algorithm graph for the algebra A in Example V.2.3.

Figure V.2: The C-S algorithm graph for the algebra A in Example V.2.4.

connected-graded monomial algebra has the J(2 property.

Example V.2.3. Let A := JK (x, y) / (x2y, yx). Then the C-S algorithm graph is

shown in Figure V.I. We can see that A is J(2 and has infinite global dimension.

Example V.2A. Let A := JK (x,y) / (x2y2,y2x). Then the C-S algorithm graph is

shown in Figure V.2. We can see that A has infinite global dimension and is not

J(2 (because of the arrow x2y~ y2).

Example V.2.5. Let A:= JK (x,y,z) / ( xy2,y2z). Then the C-S algorithm graph is

shown in Figure V.3. We see that A is J(2 (in fact, 3-Koszul) and has finite global

dimension.

V.3 The Yoneda algebra of a monomial J(2 algebra

Suppose A is a J(2 monomial algebra presented as in (V.I). In this section,

we will prove:
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___---~x

xy~y

Figure Y.3: The C-S algorithm graph for Example Y.2.5.

Theorem V.3.1. E(A) can be presented with only monomial and binomial relations.

Recall in Theorem 11.4.2, we created a canonical basis 5 i for the vector

spaces Vi made up of tensors of monomials. Put 5 := Ui 5i . We write V for VI

(so, in fact, A is a factor of 1f(V)). Let {Ps : s E 5d be the dual basis of (Vi )* to

5i . We identify (Vi )* = Ei(A). We may decompose

(Y.2)

where a subset of 52 is a basis for W.

Example V.3.2. Let A:= JK (x,y,z) / (x2,yx, xy2,xyZ). In this case, 51 = {x,y,z}

and 52 = {x ® x, Y® x, xy ® y, xy ® z}. The decomposition (Y.2) is

V2 = (JKx ® x + JKy ® x) EB (JKxy ® Y+ JKxy ® z).

We will identify W* as the subspace EBsEw ps C (V2 )* = E2(A). Indeed,

we can view W* as the portion of E2(A) not generated by El (A). As we have

assumed A is 1C2 , there is a surjective algebra homomorphism

7[E : 1f(V* EB W*) ---* E(A).
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In other words, E(A) is an algebra generated by V* EEl W*.

Recall that M is the set of monomials in K (xI, ... , xn ). In the following,

is the multiplication, which is really just removing the tensor product signs (for

example, JA(X1 0 X2) = X1X2)' The following is clear from the construction of

5 ~ 1f(K (Xl, . .. , xn )) (and minimality of A 0 V·):

Lemma V.3.3. The restriction JA Is: 5 ~ M is injective.

Let ME be the set of monomials PSIPS2 ••• PSt E 1f(V* EEl W*). For s E 5,

we set

(This is the set of monomials in ME which act nontrivially on s.) On the other

hand, we define a map v: V* EEl W* ~ K (Xl," .,xn ) by setting v(ps) := JA(s) for

s E 51 U 52 and extending linearly. Then we can extend v to an algebra

homomorphism

v : 1f(V* EEl W*) ~ K (x I, ... , xn ) .

We first show that ME can be partitioned based on the elements of 5 upon

which ME acts nontrivially. This action is easy to describe.

Lemma V.3.4. Ms(A) n Ms,(A) = (]) for s,s' E 5 distinct.

Proof For any s E 5, Ms = v-1(JA(s)). Recall that JA is injective.

The next lemma follows from our choice of bases.

Lemma V.3.5. Ifu E Ms(A) then 7rE(U)(S) = 1. Therefore, ifu,u' E Ms(A), then

u - u' E ker 7rE.

D
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Lemma V.3.6. IfU E ME, then u tJ. USES Ms(A) ifand only ifU E ker 7fE·

Proof Since 5 is a basis for V·, it is clear that u tJ. USES Ms (A) implies

u E ker 7fE. On the other hand, by definition, Ms(A) n ker 7fE = 0. 0

Theorem Y.3.1 follows immediately.

For the remainder of the section, we attempt to identify nonessential

binomial generators of ker 7fE. We begin with this cancellation law:

Lemma V.3.7. Suppose ul, U2, u~ E ME. IfU2ul - U~Ul E ker 7fE or

ul u2 - ul u~ E ker 7f£, then U2 = u~.

Proof Suppose U2Ul - U~Ul E ker 7fE. Note that U2UI, U~Ul E Ms(A) for some

s = mt 0 ... 0 mI. Then there exists t > t' :2: 1 so that Ul E M m;® ...0m l (A) while

U2, u~ E M mt ®' ..0mt'+1 (A), thus showing that U2 - u~ E ker 7fE. The proof when

UlU2 - UlU~ E ker 7fE is similar. 0

By cohomological degree considerations, this is an immediate

consequence.

Theorem V.3.8. E(A) can be presented so that all binomial relations have the form

IXI IXexi = Xjf3l f3e or

XiIXl IXeXj = f3l f3Hl,

where {Xl, ... , xn } is basis of V* dual to the basis {Xl, ... , xn } of V, and IXt, f3t E W*.

Example V.3.9. Recall the algebra A in Example Y.2.5. We can compute

51 = {x,y,z}, 52 = {xy 0 y,y2 0z}, and 53 = {X 0 y2 0 z}. Let {x, y, z} be the

dual basis elements to X, y, z, respectively. Let IX, f3 be the dual basis elements to



V2n+1:

y 0 (x20 y)tgm I ytXn

(x20 y)0n 0 X tXnX

V2n+2:
(x20 y)0n+l I tXn+1

y 0 (x20 y)0n 0 X ytXnX
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Figure V.4: The basis for V· for A as defined in Example V.3.11.

xy 0 y and y2 0 z, respectively. Then we see that XtX and [3z both act on V3 via

x 0 y2 0 Z f---* 1. Hence, XtX - [3z is an essential binomial relation. Indeed, we can

easily see

E(A) = JK------'-(x--=,y_,z_,_tX,--'---[3-'----) _

(

-2 - - -2 - -2 2 [3 [32 [32 )X , xy, xz, y , yz, z , tX , tX, tX, ,

ytX, ZtX, tXX, tXytXZ, x[3, y[3, z[3, [3x, [3y, XtX - [3z

We can decompose elements of S.

Definition V.3.l0. Suppose v = mt 0 mt-l 0 ... 0 ml E st. Then we will call a

term mj in v perforcedly linear if mimi-l is not an essential relation. (Recall that

we have assumed that A is JC2 . This property forces mi to be linear.)

Example V.3.ll. Consider the algebra A from Example v'2.4. Figure V,4 shows

the bases of Vi and the sets Ms (A). In any element, all but the last y term is

perforcedly linear.

Theorem V.3.l2. Suppose that v = mt 0 mt-l 0 ... 0 ml ESt, where mi is

perforcedly linear, and Ul, U2 E ME where Ul (v) = U2(V) = 1 (so Ul - U2 E ker TrE).

Let v' = mi-l 0 ... 0 ml Then there exists uj, uj' E ME where Uj = uj'uj and

uj (v') = 1. In other words, essential binomial relations can be obtained by considering

only elements in st without perforcedly linear terms.

Proof Because mi is perforecedly linear, there is no element p E V2 with



p(mi 0 mi-I) =1= O. Thus, Uj = uj'uj where uj' E Mmt0"'0mi(A) and

uj E Mmi-l0"'0ml (A). The result follows from Lemma V3.7.
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Example V.3.t3. Consider the algebra A from Example V2.4 and V3.11. We can

see by inspection that

E(A) = JK (x, y, ~) .
(x2,xy, y2, x~, ~y)

Indeed, the only basis elements without perforcedly linear terms are x2 0 y 0 x

and x2 0 y. These yield no binomial relations, and thus E(A) has no binomial

relations.

Note that we can regrade E(A) so that x, y, ~ each have degree one. Under

this grading, E(A) is a monomial quadratic algebra, and hence is Koszul. So, in

the original cohomological grading, E(A) is J(I, by Lemma 11.3.2.

V.4 The Yoneda algebra of a J(2 algebra need not be J(2

In this section, we exhibit a monomial J(2 algebra A whose Yoneda

algebra E(A) is not J(2. This example was first described in a paper accepted for

publication [7], coauthored with Thomas Cassidy and Brad Shelton. A preprint

of the paper is available on the arXiv preprint server. This example illustrates

that a delayed version of Koszul duality (motivated by Theorem 11.3.10) may be

difficult to find for J(2 algebras.

Theorem VA.t. Let

A '= JK(m,n,p,q,r,s,t,u,v,w,x,y,z)
. (mn2p, n2pqr, npqrs, pqrst, stu, tuvwx, uvwxy, vwxy2, xy2z) .

A is a J(2 algebra, but E(A) is not J(2'

(V3)
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Proof First, we will exhibit the minimal projective resolution A @ V· using

Theorem 11.4.2. The C-S algorithm graph is shown in Figure v'5.

Figure V,6 is a table showing the basis elements s for V· as well as the sets

Ms(A), which can be read off the C-S algorithm graph. From this table, one can

see that A is JCz as well as all the essential binomial relations. We see that A has

a global dimension of 6.

Let X := {m, H, 15, q, P, s, I, u, v, w, x, y, z}, and let

R := {IX, {3, 1', J, E, '1, T, V, p}. Then by careful inspection of Figure v'6, we see that

E(A) is the quotient of K (X,R) by the ideal generated by the following 474

essential relations:

1. All words ab for a, b E X.

2. All words ag and ga for a E X, g E R except those appearing in the basis

for V3.

3. All words gg' for g, g' E R except those appearing in the basis for V4 .

4. The binomial relations coming from V3, which are:

HI' - (3s, HJ - 'YI,Iv - '1y, u'1 - TY·

5. m{3E and EVZ.

We assign a degree of one to each element of X and R, making E(A) into a

connected-graded algebra with 472 quadratic and 2 cubic relations! Under this

grading, using Figure v'6, we see that the Hilbert series of E(A) is

1 +22t + 12tZ +4t3 .
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(

~-+-------~ n

'------ npqr +----------= s

'-------,,.....c>L----- pqrs ----= t

'-------- UVWX

'----------VWX~y
VW+E--Xy2+E--Z

Figure V.5: The C-S algorithm graph for A as defined in (V.3).
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VI:
m m
n ri V2:

V3:p 15 mn2 0p {\;
m0n2pq0r m(3

q q n2 pq 0 r (3 n0 npqr 0s ri'Y = (35r r npqr 0s '1 n 0 pqrs 0 t rib = 'Its 5 pqrs 0 t b pqr 0 st 0 u bu
t t st 0 u £

S 0 tuvw 0 x 5lJu u tuvw 0 x lJ t0uvwx0y tv = lJYv V uvwx0y T
U 0vwxy0y UV =TYw w vwxy0y v vw 0 xy2 02 V2

X X xy2 0 2 P
Y Y
2 2
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V4 :
n2 0 pqr 0 st 0 u (3£
npqr 0 s 0 tuvw 0 X 'YlJ
pqrs 0 t 0 uvwx 0 Y bT
st 0 u 0 vwxy 0 y w

V5 :
n 0 npqr 0 s 0 tuvw 0 X

n 0 pqrs 0 t 0 uvwx 0 y
pqr 0 st 0 u 0 vwxy 0 y

ri'YlJ = (35lJ
ribT = 'YlJY = 'ItT
buv = bTY

V6 :

n2 0 pqr 0 st 0 u 0 vwxy 0 y I (3w

The spaces Vn are zero for n ~ 7. The second column lists elements of the sets
Ms(A).

Figure V6: The basis for V· for A as defined in (V3).
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Now, consider the bar resolution

E(A) 0 E(A)~· ~ K ~ o.

Truncate and apply the functor E(A) 0E(A) - to get a complex

whose homology is the Yoneda coalgebra T(E(A)). We will show that E(A) is

not K2 by showing that the comultiplication

is not injective and appealing to Theorem 1I.3.11.

Let S := mf3 0 EV 0 Z E E(A)+ 0 E(A)+ 0 E(A)+. Note that

a(s) = mf3Ev 0 Z - mf3 0 EVZ = 0,

so S+ im aE T3(E (A)). We wish to show that Srepresents a nontrivial

homology class and that l'. (s + im a) = o.

First, note that none of the binomial relations of E(A) involve EV, mf3 or Z.

We compute

and



Thus, s tJ. im d.

Now, recall that /1 is induced by

We have

/1(s) = (mf3 (29 EV) (29 Z+ mf3 (29 (w (29 z).

However,

d(-mf3(29E(29V) = mf3 (29 EV,

while

d(m (29 f3) = mf3.

Hence,

/1(s + imd) = (mf3 (29 EV + imd) (29 (z + imd)

+ (mf3+imd) (29 (EV(29z+imd) = 0,

as desired.

52
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CHAPTER VI

A GENERALIZATION OF THE THEORY OF PBW ALGEBRAS

VI.l Introduction

Our goal in this chapter is to generalize Theorem 11.5.4. Recall that a

connected-graded K-algebra A = T(V) / I is a Poincare-Birkhoff-Witt algebra if

there exists a ordered basis for V such that the associated graded algebra gr A is

a quadratic algebra. Such algebras A are Koszul. In this chapter, we extend the

theory of PBW algebras to algebras that have relations in more than one degree.

Some of the material in this chapter appeared in an article published in the

Journal ofAlgebra [17], and is reproduced with permission of Elsevier B.v. A

preprint of the paper is available on the arXiv preprint server.

At first, we will be considerably more general than just considering the

connected-graded case. Let A be a K-augmented algebra. Let M be an ordered

monoid with identity element e. Suppose that there exists a poset isomorphism

p : M C-...+ N-however, we do not assume that p is a monoid homomorphism.

We do require p(e) = O. We will let 8(a, r) := p-l(p(a) + r), the element that

comes r places later in the poset. We assume M filters A so that
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3. FeA = JK and Fa:A+ i= awhen IX > e; and

4. dim Fa:/ Fs(a:,_1)A < 00 for all IX > e.

With these properties, we can put a nice filtration on A+ and Cob(A):

Definition VI.l.l. We filter A+ by setting

Fa:A~n:= L Fa:1 A+ 0 ... 0 Fa:n A +.
a:1 ...a:n <a:

a:i>eVi

We put a decreasing filtration on Cob (A) by setting

This induces a filtration Fa: En (A) and associated graded algebra grF E(A).

Also, the filtration on A yields the associated graded algebra grF A (graded by

M); we set (grF A)+ := EBa:>e(grF A)a:. The algebra grF A is augmented by

grF A = JK E9 (grF A)+. The following is the cornerstone to generalizing the PBW

theory, but is also interesting in its own right:

Theorem VI.l.2. There is a bigraded (with respect to the cohomological and M

gradings) algebra monomorphism

An important goal motivating the work in this chapter is a technique for

transferring the](2 property from grF A to A. Recall that grF A is monomial. As

seen in Section 11.4, it is easy to determine when grF A is ](2'
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Theorem VI.l.3. IfE~r(grFA) and E~r(grF A) are finite dimensional and generate

ECr (grF A), and 1\1 and 1\2 are surjective, then A is lC2 .

We can then prove our generalization of Theorem 11.5.4. Let A = 1r(V) / I

be a connected-graded algebra and fix an ordered basis for V. The filtration F

will be induced by the degree-lexicographical order on monomials Min 1r(V).

Theorem VI.l.4. If I has an essential Grabner basis and grF A is lC2, then A is lC2 as

well.

VI.2 The bigraded embedding of grF E(A) in Ecr(grF A)

In this section, we prove Theorem VI.1.2. We will use A to denote an

augmented algebra filtered by the monoid M as specified above. (Note that M

need not be commutative.)

Throughout, we will denote HomlK(V,lK) =: VV. We first relate

CObcr(grFA) to the cobar complex of A.

Proposition VI.2.1. There is a differential-graded algebra isomorphism

The proof of Proposition V1.2.1 will follow after two lemmas. Let us fix a

lK-basis R = UaEM R a for A such that:

1. UI3~a RI3 is a basis for FaA.

Then {r + Fs(a,-l)A+ : r ERa} is a basis for FaA+ / Fs(a,-1)A+.

For readability, we set (( (grF A)+ )@n)a =: (grFA)~~a'



Lemma VI.2.2. The map

F A0n
m . (grF A)0n -----+ 11: +
T . +,11: F A0n

s(I1:,-l) +

defined by

is a chain isomorphism.

Proof First, if ai - a~ E FS(l1:i,-l)A for some 1 :::; i :::; nand IX1 ... IXn = IX, then

Hence, cp is well-defined.

To show that cp is a chain map, suppose ai E Fl1:iA and IX1 ... IXn = IX. We

compute

(d 0 cp) ((a1+ FS(11:1,-1) A ) 0··· (an + FS(l1: n,-l)A))

= d (a10· .. 0 an + FS(I1:,_1)A~n)
n-1

= L (-1)ia1 0··· 0 aiai+1 0···0 an + FS(I1:,_1)A~n
i=l

n-1
= cp( ~(_l)i (a1 + FS(11:1,-1)A) 0···

1=1

o (aiai+1 + FS(l1:il1:i+l,-l)A ) 0· .. 0 (an + FS(l1:n ,-l)A) )

= (cp 0 d) ( (a1+ FS(11:1,-1) A ) 0· .. 0 (an + FS(l1:n ,_1)A) ) .

56
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Now, to show that ep is an isomorphism, note that the set

B1 := { (a1 + FS(ltl,-1)A) ® ... ® (an + FS(ltn,-l)A) I
ai E R lti , fXi i- e for all i, fX1 ... fXn = fX }

is a basis for (grF A)~~lt' while

B2 := {a1 ® ... ® an + Fs(lt,_l)A~n I

ai E R lti , fXi i- e for all i, fX1 ... fXn = fX }

is a basis for FltA~n / FS(lt,_l)A~n. Since ep gives a bijection between these bases, ep

is an isomorphism.

Now, because of Condition (4) on the filtration, we have a chain

o

isomorphism

The restriction map

induces an injective map

Flt Cobn(A)
P : n( ) <........t

FS(lt,l) Cob A

The following is clear and brings us a long way towards Proposition VI.2.1:

Lemma VI.2.3. The map p is a chain isomorphism.
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We now know that

is a chain isomorphism, graded by M.

ProofofProposition VI.2.1. It suffices to show that cpv 0 p is a differential-graded

algebra homomorphism. Let f E Fct Cobn(A), g E Ftl Cobm(A), ai E Fct;A,

bi E Ftl;A, 1\:1 ••. I\:n = 1\:, and 131 ... 13m = 13·

Then

(cpv 0 p) ((J + Fs(ct,1) Cobn (A)) '-J (g + Fs(tl,1) Cobm(A))

((a1 + Fsh,_l)A) @ @ (an + Fs(ctn,-l)A)

@ (hI + FS(tll,-l)A) @ @ (bm+ Fs(tlm,-l)A))

= p((J + Fs(ct,l) Cobn (A)) '-J (g + Fs(tl,l) Cobm(A)))

((a1 @ ... @an + Fs(ct,_1)A~n) @ (b1@ ... @bm+ Fs(tl,_l)A~m))

= p(J '-J g + Fs(cttl,l) Cobn+m(A))

(a1 @ ... @ an @ b1@ ... @ bm+ Fs(cttl,_l)A~n+m)
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Likewise,

(( cpV 0 p) (f + Fs(tt,l) Cobn(A)) '-' (cpv 0 p) (g + Fs(,B,l) Cobm(A)))

((al + FS(ttl,-I)A) (9 (9 (an + Fs(ttn,_l)A)

(9 (bl + FS(,Bl,-I)A) (9 (9 (bm+ FS(,Bm,-I)A))

= p(f + Fs(tt,l) Cobn(A))(al (9 ... (9 an + FS(tt,_I)A~n)

. p(g + Fs(,B,I) Cobm(A))(bl (9 ... (9 bm+ Fs(,B,_l)A~m)

= f(al (9 ... (9 an)g(bl (9 ... (9 bm),

as desired. D

Recall that we give E(A) a filtration FttE(A) induced by the filtration Ftt Cob- (A).

Definition VI.2.4. Define a surjective map

to be the composition
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Define a map YJl : FiX Cobn(A) n ker d ----t E8: (gr A) to be the composition

FiX Cobn(A) F
----t F C bn(A) n ker(gr d)

s(iX,l) 0

(Recall that cpv a p : grFCobeCA) ----t CObcr(grF A) is a differential-graded

algebra isomorphism by Proposition VI.2.1. Here, we restrict cpv a p to

FaCobn(A) n ker(grF:I) )
F C bn(A) 0 .5(a,1) 0

The maps YJl and YJoo appear in the construction of a spectral sequence

obtained from the filtration F on CobCA). See, for example, [16, Theorem 2.6]

and its proof. Even though we will not need this spectral sequence to prove our

results, it is nonetheless interesting and is the topic of Section VIA.

Lemma VI.2.5. ker YJl = ker YJoo.

Proof Suppose f E ker YJl, meaning

As cpv a p is a differential-graded algebra isomorphism,
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that is, there exists g E Fa Cobn- 1(A) such that

However, f - a(g) + ima E Fs(a,l)En(A). Thus, 1]00 (f) = O.

Now, suppose f E ker 1]00' meaning f + im a E Fs(a,l) En (A). So,

f + a(g) E Fs(a,1) Cobn(A) for some g E Cobn(A). Since

f,f +a(g) E FaCobn(A),a(g) E FaCobn(A) as well, and

Thus,

and so 1]1 (f) = o. o

Definition VI.2.6. Since 1]00 is surjective, Lemma VI.2.5 tells us we may define a

unique injective map An,a such that the diagram

1]00

commutes. Set A := EBn a An,a .
I

We may now prove Theorem VI.1.2, which we restate:
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Theorem VI.2.7. The map

is an algebra monomorphism.

Proof It remains only to prove A is an algebra homomorphism. Let

f E (grF E(A) )n,lX and g E (grF E(A) )m,{3. Choose preimages (under IJ1)

and

for f and g, respectively. We have

Now, we compute

IJoo(/0g) = ((/0g) +imd) + FS(lX{3,l)En+m(A)

= ((I + im d) '-J (g + imd)) + FS(lX{3,l) En+m(A)

= ((I + imd) + FS(lX,l) En(A)) '-J ((g + imd) + Fs({3,l) Em(A))

= IJoo(f) '-J IJoo(g)

= f '-J g. 0

Before proving Theorem VI.1.3, we prove a general fact about filtered

algebras:
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Lemma VI.2.8. Let R = EBi Ri be agraded algebra with a decreasing filtration F by a

totally-ordered monoid M. Put FaRi = FaR n Ri and assume FaR = EBi FaRiJor all i.

Let R' be the subalgebra of R generated by RlJ ... , Rm . Suppose, for each i, FaRi C R'

for lX sufficiently large. If (grF R) lJ ... , (grF R) m generate grF R, then RI, ... , Rm

generate R.

Proof Suppose that Fs(a,l)Ri C R'. Let a E FaRi \ Fs(a,I)Ri' As grF R is generated

by (grF Rh, ... , (grF R)n, there exists a/ E R' n FaRi such that

As a E R', we know a E R'. Thus, FaR C R'. By (decreasing) induction on lX,

R=R'.

Lemma VI.2.9. IfdimgrF En(A) < 00 then FaEn(A) = 0 for some lX, and

consequently, dim grF En (A) = dim En (A).

Proof Let {s + Fs(aj,l)En(A) : 1 ::; i ::; m} be a basis for grF En(A), and choose

lX > lXi for 1 ::; i ::; m. For f3 2: lX, F~En(A)/Fs(~,l)En(A) = 0, meaning

F~En(A) = FaEn(A).

Now, choose any SE FaEn(A). For f3 2: lX, there exists f~ E F~ Cobn(A)

and f~ E Cobn- 1(A) such that h + imd = Sand f~ = fs(~,l) + d(j~).

o
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Then, for (3 2: ex,

fa = fs(a,l) + dU~)

= fs(a,2) + dU;(a,I)) + dU~)

= f~ + L dU~)·
a~,<~

So, for x E F~A~n and l' > (3,

fa(x) = f,(x) + L dU~)(x)
a~J<,

= L Ul 0 a)(x).
a~J<,

Thus, there exists f' : A~n-I -----+ JK such that fa = f' 0 a. Therefore, S= O. D

We may now prove Theorem VI.1.3, which we restate:

Theorem VI.2.10. If Ebr(grF A) and E~r(grF A) are finite dimensional and generate

Ecr(grFA), and Al and A2 are surjective, then A is J(2.

Proof The map A is an algebra isomorphism. Apply Lemma VI.2.8 when m = 2

and R = E(A). D

Although the main purpose of these results is to study connected-graded

algebras, it is nevertheless interesting to consider ungraded applications:

Example VI.2.11. Let P E JK[x, yh. Let

A = JK[x, y]
(x3 - PI'
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Define E: A ----+t IK via E(X) := 0 and E(Y) := O.

The standard N-grading on IK (x, y) induces a filtration F on A which

satisfies the conditions in the introduction. Then

FA IK[x, y]
gr rv (x3 ) .

Note that grF A is a complete intersection, and therefore is lCz by [9, Corollary

9.2].

One can easily compute dim E1 (grF A) = dim EZ(grF A) = 2.

Furthermore, using Cob· (A), one can find the necessary linearly-independent

cohomology classes to show dim E1(A) = dim EZ(A) = 2, implying that.1\l and

.1\z are surjective. Hence A is lCz.

VI.3 Connected-graded algebras with monomial filtrations

In this section, we assume that A = 'f(V) / I is a connected-graded

algebra. We consider A as a filtered algebra as in (and adopting the notation

from) Section 11.5. Our goal is to prove Theorem V1.1.4. We begin by proving

Lemma 11.3.2, which we restate:

Lemma VI.3.1. For a connected-graded algebra A, Ern(A) = ECr(A) ifand only if

dimEcr(A) < 00.

Proof Projective modules in the category Gr-A of graded A-modules are

graded-free [2, Proposition 2.1]. So, there exists a projective resolution (in both

the category of graded A-modules and of all A-modules)

am 1 0
···-----+A0Vrn~···-----+A0V -----+A0V -----+A-----+AIK-----+O
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such that each Vi is a graded vector space and ai (A 0 Vi) ~ A+ 0 Vi-I. So, for

any A-module homomorphism f : A 0 Vi-l -----+ K, ai
0 f = O. Thus, all the

differentials in both Hom(A 0 V·, AK) and Homcr(A 0 V·, AK) are zero. So,

while

D

Since, in our case, E1(A) and E2 (A) are finite dimensional, any J(2

algebra will have Ecr(A) = E(A), and the J(2 condition is equivalent to Ecr(A)

being generated by Ebr(A) and E~r(A). However, it is possible for

E(A) i- Ecr(A) for a connected-graded algebra:

Example VI.3.2. Consider the algebra

A _ K (w,x,y,z)
- (yz,zx-xz,zw)·

introduced in [8, Example 5.2]. A minimal projective resolution for AK is

o-----+ A( -3, -4, -5, ... ) -----+ A( _2)EB2 -----+ A( _1)EB4 -----+ A -----+ K -----+ O.

Thus, the dimension of E~r(A) is countably infinite, while the dimension of

E3 (A) is uncountable.

Recall that M denotes the monomials of 'I'(V), which (with respect the

ordered basis for V) form a monoid which is totally ordered by degree

lexicographical order. For It E M, we set FiXA := span {7I(f3) : f3 ::; It}. As Mis
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itself N-graded, the we may put an N-grading on Ecr(grF A) by setting

E~r(grFA) := EB E~~(grF A).
Iltl=j

(Here lal denotes the length of a.) The algebra E(A) inherits the grading on A,

and so does grF E(A). Indeed, it is clear that

(grFE(A) )i,j = EB (grFEj (A))lt
Iltl=j

Furthermore, the monomorphism

defined in Theorem VI.l.2 is homogeneous with respect to this internal

N-grading.

The goal of this section is to apply Theorem VI.1.3 to connected-graded

algebras, using this monomial filtration. Note that 1\1 is always surjective, so to

apply Theorem VI.1.3, we need only check:

1. grF A is K z, and

As discussed in Sections IIA and II.5, the algebra grF A is a monomial algebra

and it is easy to determine if grFA is K z. Theorem VI.lA is then a consequence

of the following:

Lemma VI.3.3. The map 1\z : grF EZ(A) '--+ EZ(grFA) is surjective ifand only if I

has an essential Grabner basis.
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Note that a generating set Be for I is essential if and only if

IBe I = dim 1/1' = dim E2 (A). We will show later that the existence of an

essential Grabner basis is equivalent to the surjectivity of A2 . At the same time,

it is desirable to know when an essential generating set is a Grabner basis.

Example VI.3.4. Consider the ideal 1:= (x3,y2; in K (x,y). Under the order

x < y, the set Be := {y2, x3 - y2x} is an essential generating set for I. However

Be is not a Grabner basis. On the other hand, the slightly modified set

9 := {y2, x3 } is an essential Grabner basis. The failure of I to be a Grabner basis

was due to the needless redundancy of leading monomials.

The following lemma is easy.

Lemma VI.3.5. Let Be be an essential generating set for I. Then the following are

equivalent:

1. T(Be) isanessentialgeneratingsetfor (T(Be)).

2. For every r, r' E Be and ct', ('til E M, T(r) t/:. K{'t'T(r'){'t".

3. Foreveryr,r' E Be and {'t',{'t" E M,T(r) t/:.KT({'t'r'{'t").

Definition VI.3.6. If an essential generating set Be meets the equivalent

conditions of Lemma VI.3.5, we say Be has the leading monomial property.

In Example VI.3.4, the set Be failed to be a Grabner basis because it failed

to have the leading monomial property.

Lemma VI.3.7. Essential Grabner bases have the leading monomial property.

Proof Suppose that 9 is an essential Grabner basis. As we have an injective map

A2 : grFE2(A) '------+ E~r(grF A),
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On the other hand, if r(r) E lKr(IX'r'1X") for some IX', 1X" E M and

r, r' E Be, then

(r(Q)) = (r(Q) \ {r(r)})

and so dim E~r(grFA) < dim E2 (A), which is absurd.

Theorem VI.3.8. There exist homogeneous bases B for I and B' for I' such that

B' c B, and the essential generating set Be := B \ B' has the leading monomial

property.

The proof of this theorem will follow after two technical lemmas.

Lemma VI.3.9. For WeI and IX E M, define

D

A~(W) := {r E 1m : r ~ span Wand r(r) ~ IKr(s) for any sEW with r(s) 2 IX}.

xm+1 xm

If Ani (W) =1= 0, then Ani (W) =1= 0; that is, there exists r E 1m such that

r(r) ~ IKIX'r(s) IXII for any IX', IX" E M and sEW.

Proof We need only show that A~(W) =1= 0 implies that A~it,-I)(W) =1= 0. Let

r E A~(W). Suppose r(r) = r(s) for some SEW. Then r - s E 'Im but

r - s ~ span W. Also, r(r - s) < r(s) < IX, so r - s E A~it,-I\W). D

We will use the following lemma to build our basis degree-by-degree:

Lemma VI.3.10. Suppose B is a homogeneous basis for E9~(/ Ii and B' c l3 is a basis

for E9~OI If. Then there exists B" c 1m and rI, . .. , re E 1m such that:

1. B" is a basis for I:n.

2. ri ~ IKIX'r(r)lX" for any i = 1, .. . ,.e, IX', 1X" E M, and rEB.
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3. 8" U {rI, . .. , rd is a basis of 1m.

Proof Set

8(0) = {a'r'a" E 1m : a', a" E M,r' E 8}.

Let 8" c 8(0) such that 8:n is linearly independent. Since 8(0) spans l;nt 8" is a

basis for 1:n.

Now, suppose we have constructed 8(J) = 8(J-I) U {rj} for 1 ::; j ::; i such

that (8(i) \ 8(0)) U 8" is linearly independent and T(rj) t/: JKT(S) for any

s E 8(i-I).

If 8(i) spans 1m , then 8" U {rI, . .. , rJ also spans 1m , and the claim is

xm+1
(')proved. Otherwise, Ani (8]) '=F 0, and so by Lemma VI.3.9, there exists

ri+I E 1m such that T(ri+I) t/: JKT(S) for any s E 8(i). Set

8(i+I) = 8(i) U {ri+d. D

ProofofTheorem VI.3.8. Set 8m = 8:n = 8in = 0 for m ::; 1. Apply Lemma

VI.3.10 and induction on m.

We are now ready to prove Lemma VI.3.3 and Theorem VI.l.4, both of

which are incorporated in the following:

Theorem VI.3.11. The following are equivalent:

1. Every essential generating set for I with the leading monomial property is a

Grabner basis.

2. There is an essential Grabner basis for I.

4. The injective map i\.2 : grF E2(A) '---+ E2 (grF A) defined in Theorem VI.1.2 is

surjective.

D
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Therefore, if I has an essential Grabner basis and grF A is J(2, then A is J(2 as well.

Proof We set J = ker(n : 1f(V) ----» grF A) and l' = J0 V + V 0 J.

In light of Theorem VI.3.8, is clear that Condition (1) implies Condition

(2).

Suppose 9 is an essential Grabner basis for I. Then I9 I = dim 1/1'. Also,

since 9 has the leading monomial property, I9 I = IT(g) I = dim J/ 1'. So,

Condition (2) implies Condition (3).

Clearly, Condition (3) and Condition (4) are equivalent.

Finally, assume (4). Suppose Be is an essential generating set for I with the

leading monomial property. Let BJ be an essential generating set of Jsuch that

Then, IBe I = dim 1/1' = dim J/ l' = IBJ I. SO, Be is a Grabner basis. Thus,

Condition (4) implies Condition (1). D

Example VI.3.12. Consider

A'- K (x,y)
.- (xy - x2, yx, y3)

with a monomial order induced by x < y. We know from [9, Example 4.5] that A

is not a J(2 algebra. The Hilbert series of A is HA ( t) = 1 + 2t + 2t2. Since

rr(x3) = 0, we see that n(x3) = 0, and grF A -:::: K (x, y) / (xy, yx, x3,y3). We may

apply [9, Theorem 5.3] to see that grF A is J(2. The essential generating set

{xy - x2, yx, y3} is not a Grabner basis for ker 7[, The behavior is similar under

y < x (although grF A is a different J(2 algebra).
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Example VI.3.13. Consider

A .= K (x,y,z)
. (x2y - x3, yz2 - yx2, x3z - x4)

with the monomial order induced by x < Y < z. We may use the diamond

lemma [4, Theorem 1.2] to show that

F K(x,y,z)
gr A ~ B := (2 2 3)·

X y, yz ,x z

Thus, {x2y - x3, yz2 - yx2, x3z - x4 } is an essential Grabner basis for ker TL

However, application of [9, Theorem 5.3] shows that B is not JC2 . By inspection,

o 0 yz

x

y

is a minimal projective resolution for BK. By Theorem VL1.2,

dim Ei,j(A) :s; dim Ei,j(B). So, the chain complex of projective A-modules

x2 -x2 0 X

y2 0 -yx Y

(0 x2 -x) x3 0 -x3 Z

o----> A( -5) ) A( _32, -4) ) A ( - 13) -------+ A ----> K ----> 0

is a minimal projective resolution for AK. Applying [9, Theorem 4.4], we see that

A is JC2 . Hence, the converse to the last sentence of Theorem VL3.11 is false.
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Example VI.3.14. Let

A '= K (x,y)
. (yx - xy,y3 + x2y)'

Then under the order x < y, the essential generating set {yx - xy, y3 + x2y} is a

Grabner basis for ker n, and

rF A = K (x,y)
g (yx, y3) .

We may use [9, Theorem 5.3] to show that grF A is K2 . Thus, by Theorem

V1.3.11, A is K 2 . (This can also be verified directly using [9, Corollary 9.2].)

It turns out that the classical PBW algebra theory is a corollary:

Theorem VI.3.15 ([18, Theorem IV.3.l]). If A is a quadratic algebra, and grF A is

also quadratic, then A is Koszul.

Proof Quadratic monomial algebras are Koszul [18, Corollary 11.4.3]. The

theorem follows directly from Theorem V1.1.3.

VI.4 Spectral sequence approach to connected-graded algebras with

monomial filtrations

o

In this section, we will present an alternate approach to the material in

the previous section. This approach uses the spectral sequence E in which

Ecr(grF A) is the El page and grF E(A) is the Eoo page. We then show that the

multiplication on the E1 page can be pushed to the Eoo page. This yields an

alternate proof to Theorem VI.1A. The material in this section was not included

in the article [17].



Recall we had the poset (but not monoid) embedding

p:M-+N

We introduce some notation from the proof of Theorem 3.8 in [16]:

zlX,q '= F CobP(IX)+q ncr1(F CobP(IX)+q+1 (A))r· IX s(IX,r) ,

BlX,q '= F CobP(IX)+q nd(F CobP(IX)+q-1r' IX s(IX,-r) ,

z~q:= nz~,q = FIXCobP(IX)+q(A) nkerd,
r

and

B~q:= Uz~,q = FIXCobP(IX)+q(A) nimd.
r

With this notation, we view

ElX,q := ZlX,q I (ZS(IX,1),q-1 + BlX,q )
r r r-1 r-1

for r < 00 and

and denote by 1J~,q : z~,q - E~,q the projection. Because

and
ElX,q rv FIXEP(IX)+q (A)

00 - FS(IX,1) EP(IX)+q (A) ,

the use of 1J is consistent with that in Section VI.2. Set E~,q = 1Jr(Z~q). Note
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A (E~q) = E~,q. We have a string of inequalities

d ' EIX,q < d' E~,q < d' EIX,qlmoo_lm l _lm l ,

It would be nice if Er was a spectral sequence of algebras (see [16,

Definition 2,13]). However, the natural tensor product of E~,i and Ef,j does not

land in E~f3,i+j, as required by the definition, since E~f3,i+j is a factor of

Cobp(IXf3)+i+j (A), and p(a:f3) + i + j is not necessarily the same as

p(a:) + i + p(f3) + j. However, we can define a similar multiplicative structure

where R(a:, (3) = p(a:) + p(f3) - p(a:f3),

Lemma VI.4.1 (Odometer formulas). The following two formulas hold:

and

p(a:f3) = p(a: )n1f31 + p(f3),

Proof To prove the first formula, we induct on a: = xim ' • 'XiI' The formula

obviously holds when a: = Xl. Suppose the formula holds when a: = Xim ' , • XiI'

75
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If a = x~, then s(a,l) = xr+1 and

p(s(a,l)) = p(a) + 1
m

=Ln.n t
- 1 +1

t=1
m+l
"\' t-l= L n .
t=1

Now, suppose a =I- x~. Let j E {I, ... , m} be the smallest such that i j =I- n.

h j-l d ( ) j-lT en a = Xim ••• XijXn an s a, 1 = xim ••• Xij+1Xl .

Also,

m j-l

L i tn
t
-

1 + (ij + 1)nj - 1 + L nt- 1

t=j+l t=1

m j-l

= L i tn
t - 1 + nj - 1 + L nt- 1

t=j t=1

m j-l

= L itn
t- 1 + (nj - 1 - 1) + L nt- 1 + 1

t=j t=1

m j-l j-l

= L i tnt - 1 + (n - 1) L nt- 1 + L nt- 1 + 1
t=j t=1 t=1

m j-l

= L i tnt - 1 + Ln. nt- 1 + 1
t=j t=1

= p(a) + 1 = p(s(a,l)),

as desired.

To prove the second formula, write f3 = Xi
iPI

••• Xii and a = Xil~,B1 ... Xi
IP1

+1'



Then

laf3l
p(lX(3) = L itnt- 1

t=l
jaf3l 1131

= L itnt- 1+ L itnt- 1

t=l t=l
laf3l

= L itnt-lf3l-1nlf3l + p((3)
t=lf3l+1

= p(lX)n 1f31 + p((3).

Lemma VI.4.2. We have lXS((3, r) ~ S(lX(3, r).

Proof. This follows from the estimate

p(lX,s((3,r)) = p(lX)n ls (f3,r)1 + p(s((3,r))

~ p(lX)n 1f31 + p((3) + r

= p(S(lX(3,r)).

Lemma VI.4.3. We have S(lX, r)(3 ~ S(lX(3, r).

Proof This follows from the estimate

p(S(lX,r)(3) = p(s(lX,r))n 1f31 + p((3)

= (p(lX) + r)n 1f31 + p((3)

~ p(lX)n 1f31 + r + p((3)

= p(lX(3) + r = p(S(lX(3, r)).
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Lemma VI.4.4. The multiplication

restricts to a map

Z lX,i to. Z[3,i ZIX[3,i+i+R(IX,[3)
r'<Yr--'t r .

Proof Let f E Z~,i and g E Zf,i. Then

and

a(g) E Fs([3,r) CObP([3)+i+1(A).

So,

au 0 g) = au) 0 g + (-l)if 0 a(g)

E FS(IX,r) CobP(IX) +i+l (A)F[3 CobP([3)+i (A)

+ FIX CobP(IX)+i (A )Fs([3,r) Cobp([3)+i+1(A)

= F ( ) Cobp(IX)+i+ p([3)+i+1(A) + F Cobp(IX)+i+p([3)+i+1(A)
S lX,r [3 IXs([3,r)

~ FS(IX[3,r) Cobp(IX)+p([3)+i+i+1(A).

Hence, f 0 g E Z~[3,i+i-R(IX,[3).

Theorem VI.4.5. The map
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induces a map

11 • ElX,i p, E(3,j -----+ E IX(3,i+j+R(IX,(3)
(Or· r '<Y r r .

Proof First suppose f E Z:~il),i-l + B~~l and g E zf,j. So, we may write

f = h + h where h E Z:~il),i-l and h E B~~l' Thus,

and hence
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"d(h ® g) = "dUd ® g + (-l)p(IX)+ih ® "d(g)

E FS(IX,r) CobP(IX)+i+1(A) ® F(3 CobP((3)+j (A)

+ FS(IX,l) Cobp(IX)+i(A) ® Fs((3,r) CobP((3)+j+l(A)

~ FS(IX,r)(3 CobP(IX)+p((3)+i+ j+l(A) + FS(IX,l)s((3,r) CobP(IX)+p((3)+i+j+l(A)

~ FS(IX{3,r) Cobp(IX)+p((3)+i+ j+l(A).

H f p, E ZS(IX(3,l),i+j+R(IX,(3)ence, l'<Yg r-l .

Also,

"d(h ® g) = "d(h) ® g + (-l)p(IX)+ih ® "d(g)

= (-l)p(IX)+ih ® "d(g)

E FlXs ((3,r) CobP(IX)+p((3)+i+j+l (A)

~ FS(IX(3,r) Cobp(IX)+p((3)+i+ j+l(A).

5 f ® E ZS(IX(3,l),i+j+R(IX,(3) C ZS(IX(3,l),i+j+R(IX,{3) + BIX(3,i+j+R(IX,(3)
0, g r-l - r-l r-l'
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On the other hand, suppose that g E Z~~11),j-l + Bf~l and j E Z~,i. Then

g = gl + g2 where gl E Z~~11),j-l and g2 E Bf~l'

We compute

au 0 g) = au 0 (gl + g2))

= au 0 gl) +au 0 g2)

= au) 0 (gl + g2) + (_l)p(rx)+ij 0 a(gl) + (_l)p(rx)+ij 0 a(g2)

= au) 0 (gl + g2) + (_l)p(rx)+ij 0 a(gl)'

Note that

au) 0 gl E Fs(rx,r) Cobp(rx)+i+l(A) 0 Fs(~,l) CobP(~)+j (A)

C F CobP(rx)+p(~)+i+j+l(A)- s(rx,r)s(~,l)

C F Cobp(rx)+p(M+i+j+l(A).- s(rx~,r)

Also,

au) 0 g2 E Fs(rx,r) Cobp(rx)+i+l(A) @ F~ CobP(~)+j(A)

C F ( CobP(rx)+p(~)+i+j+l(A)
- s rx,r)~

C F ( CobP(rx)+p(~)+i+j+l(A)
- s rx~,r) .

Finally,

j 0 a(gl) E Frx Cobp(rx)+i(A) 0 Fs(~,r) CobP(M+j+l(A)

C F CobP(rx)+p(~)+i+j+l(A).- s(rx~,r)
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So, in general, we have

d(f 0 ) E Zs(Ct{3,l),i+j+R(Ct,f3)
g r-l

C Zs(Ct{3,l),i+j+R(Ct,{3) + B Ct f3,i+j+R(Ct,{3)
- r-l r-l'

as desired.

As E is a spectral sequence, there is a differential

d
. ECt,q Es(Ct,r),q-r+l

r· r ----+ r .

This differential is defined so that the diagram

commutes. Furthermore, the map lJr sends Z;~l <;: z~,q to ker dr, and the

composition

D

induces an isomorphism 'Y : E;~l rv HCt,q (Er,dr ). (For more details, see [16, pp.

34-37].) We will show that the map ]lr+l : Er+l 0 Er+l ----+ Er+l is the same as an

induced map H(]lr) : H(Er ) 0 H(Er) ----+ H(Er ) in cohomology.

First, we need to show that]lr induces a map on cohomology.

Lemma VI.4.6. The map

. ECt,i /0, E{3,j ECt{3,i+j+R(Ct,{3)
]lr. r '<Y r ----+ r



restricts to a map

This restriction induces a well-defined map

Furthermore, this map is compatible with rtr+1; that is, the diagram

commutes.

Proof Recall that for f E Z~,i, dr(fJr (f) ) := lJr(d(f)).

First suppose that f E Z~,i and g E zf,j.

dr(rtr(lJr/®lJrg)) =dr(lJr(f®g))

= lJr(d(f ® g))

= lJr(d(f) ® g) + (-l)ilJr(f ® d(g))

= rtr(lJr(d(f)) ® lJr(g)) + (-l)irtr(lJr(f) ® lJr(d(g)))

= rtr(dr(lJr(f)) ® lJr(g)) + (-l)irtr(lJr(f) ® dr(lJr(g)))

So, if lJr(f) E ker dr and lJr(g) E ker dr, then rtr(lJr(f) ® lJr(g)) E ker dr as well.

Now, suppose that lJr (f) E im dr and lJr (g) E ker dr. Then there exists
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~ s(a,~r),i+r~l ~ ~f E Zr such that dr(lJr(f) ) = lJr(f). Thus, lJr(d(f)) = lJr(f). So,

dr(lJr(j0g)) = lJr(d(j0g))

= lJr(d(j) 0g+ (_1)i+r-1j0d(g))

= Jir(lJr(f) 0lJr(g)) + (_1)i+r-1 Jir (lJr(j) 0 dr(lJr(g)))

= Jir(lJr(f) 0lJr(g)).

So, Jir(lJr(f) 0lJr(g)) E imdr as well. A similar argument holds when

lJr (g) E im dr and lJr (f) E ker(dr).

Finally, let f E Z~~l and g E zfj1' Then,

H(Jir)(l'(lJr+1(f)) 01'(lJr+1(g))) = H(Jir)([lJr(f)] 0 [lJr(g)])

= [Jir(lJr(f) 0lJr(g))]

= [lJr(f 0 g)].

On the other hand,

I'(Jir+1(lJr+1(f) 0lJr+1(g))) = l'(lJr+1(f0g))

= [lJr(f0g)],

as desired.

In particular, the map Ji1 is the cup product on E(grF A).

Corollary VI.4.7. The map

11 • Ea,i r::J\ E{3,j Ea{3,i+j+R(a,{3)
r,l' 1 '<Y 1 -----t 1

83
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is the same as the cup product

Proof The differential do is the differential induced by d on grF Cob(A). Lemma

VI.2.1 establishes an isomorphism

grF Cob(A) ~ Cob (grF A)

as differential-graded algebras.

Theorem VI.4.8. The diagram

E~l/ 0 E~i ~_oo__...;.-~ Er:!,i+i+ R (et,{3)

l~ l~
Fa:EP(a:l+i(A) FflEp(f3l +j (A) Fa:flEP(a:l+p(fll+i+j(A)

Fs(a:,llEP(a:)+i(A) 0 FS(fl,l)EP(fl)+j(A) ---* Fs(a:fl,llEP(a:l+p(fll+i+j(A)

commutes. In other words, the multiplication on E converges to the cup product

structure on grF ExtA (IK, IK).

Proof Let

Trh : ker(d : Cob(A) -7 Cob(A)) --» ExtA (IK, IK).

Then the isomorphism
FetEP(et)+q A)

Eet,q rv __--'-(----,--.,..---__

00 - FS(et,l)EP(et)+q(A)

is provided by the induced map

o
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yielded by the inclusion

Now, let f E Z~i and g E ze;j. Then

lfll (JAoo (1]00 (f) ® 1]00 (g) ))

= lfll(1]oo(f®g))

= lfll (f ® g) + Fs(a{3,l) EP(a)+p({3)+i+j (A)

= lfll(f) ® lfll(g) + Fs(a{3,I)EP(a)+p({3)+i+j(A)

= (lfll (f) + Fs(a,l) EP(a)+p({3)+i+j (A)) (lfll (g) + Fs({3,I) EP(a)+p({3)+i+j (A))

= lfll(1]oo(f)) ® lfll(1]oo(g)),

as desired.

D

Write

D~,q := L E~l,il-p(al) ® ... ® E~z,iz-p(az).

al .. ·az=a
i1+"'+iz=q-p(a)

it=1 or it=2

These lemmas are exercises in unraveling notation:

Lemma VI.4.9. The algebra grF A is J(2 ifand only if the map D~,q ----+ E~,q induced by

JAI is surjective.

Lemma VI.4.10. The algebra A is J(2' if the map D~q ----+ E~q induced by JAoo is

surjective.
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We can now prove Theorem VI.3.11, which we restate:

Theorem VI.4.11. Suppose there exists an essential Grabner basis for 1 = ker TL If

grF A is J(2, then A is also J(2.

Proof Set

GCt,q -
r -

Ctl" ·Ctz=Ct
i l +·+iz=q-p(Ct)

it=l or it=2

(So, Yjr(G~,q) = D~,q.) By Lemma VI.4.4, we can view G~,q C z~,q; the diagram

commutes.

Let x E E~q. Then x = Yjoo(x) for some x E z~q C z~,q.

Note that there exists y E G~,q such that y - x E ker Yjl, because grF A is
~Ct, l-p(Ct,) Ct, l-p(Ct,) ~Ct, 2-p(Ct,) Ct' 2-p(Ct,)

J(2. Now since E{ I = Ell! I and Ell! t = Ell! I , we have

Yjl (G~,q) = Yjl (G~q) and there exists y E G~q such that y - x E ker Yjl. But then

floo(Yjoo(y)) = Yjoo(x) = x, since y- x E ker Yjl IZoo <::: kerYjoo.

Thus,

DCt,q ECt,q
00 --t 00

is surjective.

VI.5 Upper-triangularity condition for having an essential Grobner basis

D

An alternate approach to proving that PBW algebras are Koszul is to

show they meet a special distributivity condition. Our goal is to generalize this
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distributivity condition to algebras whose ideals of relations have essential

Grabner bases.

A triple (WI, W2, W3 ) of subspaces of a vector space W is called

distributive if (Wi + Wj ) n Wj = Wi n Wk + Wj n Wk for any i, j, k. Given

WI, ... , Wz subspaces of a vector space W, we may consider the sublattice of

subspaces of W generated by WI,"" Wz by the operations of intersection and

summation. If every triple in that sublattice is distributive, we say that

{WI, ... , Wz } is distributive.

We will deploy the following useful lemma:

Lemma VI.5.l ([18, Proposition 1.7.1]). Let WI, ... , Wz be subspaces ofsome vector

space W. Then {WI, ... , Wz } is distributive ifand only if there exists a basis B for W

such that B n Wi is a basis ofWi for each i.

Let R be the set of a E M which have this property:

If lal = nand n(a) + L cf3n(f3) = 0 then cf3 -::J 0 for some f3 > a. (VI.1)
lXif3EMn

These are exactly the monomials that cannot be reduced modulo I to a sum of

lower monomials. For an essential generating set Be with the leading monomial

property, let

£(Be) := {a EM: f3 -::J r(r) for any r E Be, for any subword f3 of a}.

Equivalently, £(Be) is the set of monomials not in 1f(V) ® span r(Be) ® T(V).

We will write £(Be)m := £(Be) n Mm.

This is a special case of [14, Proposition 2.2] and the proof is omitted:

Lemma VI.5.2. Let Be be an essential generating set for I with the leading monomial

property. Then £(Be) = R ifand only if Be is an essential Grabner basis.
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Theorem VI.5.3. Let Be be an essential basis for I := ker ('J[ : '[' (V) ---* A) with the

leading monomial property. The following are equivalent:

1. There exists a basis Bm = {Ya : a E M m } for v0m such that

(a) V0i &; span Bk&; V0j n Bm is a basis of V0i &; span Bk&; v0j Jor any

i, j, k such that i + j + k = m and

2. R = L(Be) (and hence Be is a Grabner basis).

Remark VI.5.4. The equivalence in the quadratic case Condition (2) and

Condition (1) is [18, Proposition 4.5.1]. By Lemma VI.5.1, Condition (1) implies

that for each m 2: 2, the set {V0i &; span Bk&; V0j : i + j + k = m} of v0m is

distributive. If A is a quadratic algebra and {V0i &; span B2&; V0j : i + j +2 = m}

is distributive for each m 2: 2, then A is Koszul [18, Theorem 2.4.1]; this yields

another proof that PBW algebras are Koszul.

ProofofTheorem VI. 5.3. Note that

1m = L V 0i &; span Bk&; v 0 j.
i+j+k=m

Suppose Condition (2) holds. Set for a E M n

Ya:= a' &; r &; a" if a tJ- Lmand a' E Lla'i is the largest element

such that a = a' &; r(r) &; a" for some r E Be.
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Set Om := In {Ya : a: EM}. Note that

Thus, I = span Om' Also,

a:' ® r ® a:" = a:' ® (r(r) - L cT(r),[3f3) ® a:"
[3<T(r)

= a:' ® r(r) ® a:" - L CT(r),[3a:' ® f3 ® a:".
[3<T(r)

We have l£m(Be)1 = dim Am = dim V0m - dim 1m, and so IOml = dim 1m

Hence, the {Ya} are linearly independent, and Condition (1) holds.

Now, suppose Condition (1) holds. Set

and

Note that Am = span n(Ym). Also, Om is a basis of 1m, implying that

Ym = dim Am and hence n(Ym) is a basis of Am. Furthermore, if Ya E 1m then

n(a:) = L[3<lt c[3,lt n (f3), and hence Ya t/: R m. Thus,

As n(Rm) is a basis of Am as well, we have R m = r(Ym).
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Now, suppose YIX E I. Then

L 1X~,i 0 qr,i (r(r) - L Zf3,i(3)
rEBe,i f3<T(r)

and so r(ylX) = 1X~,i 0 r(r) 0 lX~i for some r E Be and i.

So, IX = r(ylX) = IX~ i 0 r(r) 01X~i E 1f(V) 0 span{r(r) : r E Be} 01f(V),, ,

and thus IX r/- Lm(Be).

Hence, Lm(Be) ~ r(YIX ) = R m. So Condition (2) holds. D

VI.6 Anticommutative analogues to face rings

In this section, use the results from Section VI.3 to show some

anticommutative rings analogous to face rings are K 2 . In particular, we prove:

Theorem VI.6.1. The algebra
I\JIdXl, ... , Xn )

(Xl' .. Xn)

Suppose X := {Xl, . .. , xn} is a finite set and 11 is a simplicial complex on

X-that is, 11 is a subset of the power set 2x such that {Xi} E 11 for 1 ~ i ~ nand

if Y E 11, then 2Y c 11. We define an algebra

A[I1]:= !\(Xl, ... ,xn)l (XiI ,,,xirlil < i2 < ... < ir,{XiI,· .. XiJ r/-11;,
JK

the anticommutative analogue of the face ring of 11. (Face rings are studied in

detail in [20].)
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Definition VI.6.2. If Y c X, Y ~ f..., but 2Y \ {Y} c f..., then we say Y is a

minimally missing face of f....

Theorem VI.6.3. Suppose f... is a simplicial complex on X := {Xl, . .. , xn }. Under the

order Xl < ... < Xn, ker rrA[~] has an essential Grabner basis ifand only ifevery

minimally missing face Y := {Xit , . , ., Xim } C X (where il < i2 < ... < im) satisfies

the following property:

Ifu ~ Y and iI < u < im, then (Y \ {XiI} ) U {Xu} ~ f... or (Y \ {Xim } ) U {Xu} ~ f....

(VI.2)

Proof An essential generating set with the leading monomial property for

I := ker(rr: K (Xl"", Xn ) ---t A[f...])

is Be = {X'X- + x·x·li < J'} U {x?li = 1 n} U {x· ", x· IiI < ... <J I I J I' • • It 1m

im and {XiI' ... , Xim } is a minimally missing face}.

If Y is a minimally missing face which fails (VI.2) for some u ~ Y, then

is an essential relation of grF A for some t, meaning that Be is not a Grabner

basis.

On the other hand, suppose Be is not a Grabner basis. Then grF A has

some new essential relation r such that r =!= r(x) for X E Be. Pick such r

minimally. Then

r = x· .. , x· X mod (x·x· + x·x·)11 1m U I J J I

for some minimally missing face Y = {XiI" .. , Xim }. So Y fails (VI.2). D
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ProofofTheorem VI.6.1. Let X := {Xl,""Xn } and~ = 2X \ {X}. Then by

Theorem VI.6.3, ker(7T : lK (Xl, . .. , Xn ) -----t A[~]) has an essential Grabner basis.

So, applying [9, Theorem 5.3] to

we see that grF A is lC2, and hence A is lC2.

Not every simplicial complex ~ on a set X has an ordering of X which

yields an essential Grabner basis for ker 7TA[l'.]'

Example VI.6.4. Set X := {t, u, w, X, y, 2} and

~ := (2{U,X,Y,z} U 2{t,u,x,z} U 2{U,W,X,z}) \ { {u, X, y, 2},

{t, u, X, 2}, {u, w, X, 2}, {X, y, 2}, {t, u, 2}, {u, w, X} }.

o

Suppose we have an order < of X under which ker 7TA[l'.] has an essential

Grabner basis. Note that {x, y, 2} is a minimally missing face, but

{u, X, y}, {u, y, 2}, {u, X, 2} E ~. So either u < X, y, 2 or u > X, y, 2. Without loss of

generality, u < X, y, 2. Also, {t, u, 2} is a minimally missing face, but

{u, x, 2}, {t, x, 2}, {t, u, X} E ~. So as u < X we have X > t, U, 2. Finally, {u, w, X}

is a minimally missing face, but {u, X, 2}, {u, W, 2}, {w, X, 2} E ~. However, as

X > 2, we cannot have 2 > X, u, w. However, as u < 2, we cannot have 2 < X, u, w

either.
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