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DISSERTATION ABSTRACT

Jeffrey Musyt

Doctor of Philosophy

Department of Mathematics

June 2019

Title: Equivariant Khovanov Homotopy Type and Periodic Links

In this dissertation, we give two equivalent definitions for a group G acting

on a strictly-unitary-lax-2-functor D : 2n → B from the cube category to the

Burnside category. We then show that the natural Z/pZ action on a p-periodic

link L induces such an action on Lipshitz and Sarkar’s Khovanov functor FKh(L) :

2n → B which makes the Khovanov homotopy type X (L) into an equivariant knot

invariant. That is, if a link L′ is equivariantly isotopic to L, then X (L′) is Borel

homotopy equivalent to X (L).
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CHAPTER I

INTRODUCTION

In 1985, Jones described a new polynomial knot invariant satisfying a

skein relation [Jon85]. Two years later, Kauffman gave a state model definition

for the Jones polynomial by defining what is now called the Kauffman Bracket

[Kau87]. The Jones Polynomial is celebrated not only because it is relatively

good at distinguishing knots, but also because it was used by Kauffman [Kau87],

Murasugi [Mur87], Thistlethwaite [Thi87] [Thi88], and Menasco and Thistlethwaite

[MT93] to prove the Tait Conjectures from 1898 [Tai98]. In 2000, based on an

idea of Crane and Frenkle [CF94], Khovanov categorified the Jones polynomial by

assigning a bigraded abelian group to an oriented link [Kho00]. This is a refinement

of the work of Jones in the sense that the graded Euler characteristic of Khovanov

Homology is the unnormalized Jones polynomial. As a further refinement of the

Jones polynomial and Khovanov homology, Lipshitz and Sarkar [LS14] constructed

the Khovanov stable homotopy type XKh(L) by using the notion of flow categories

described by Cohen, Jones, and Segal in [CJS95]. More precisely, for each oriented

link diagram L, Lipshitz and Sarkar constructed a family of suspension spectra

X (L) =
∨
j X

j
Kh(L) such that

(1) The reduced cohomology of X j
Kh(L) is the same as the Khovanov homology

Kh∗,j(L) :

H̃ i
(
X j
Kh(L)

)
= Khi,j(L)

(2) The homotopy type of X j
Kh(L) is determined by the isotopy class of the link

L.
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Shortly afterwards, a similar spectrum invariant was described by Hu, Kriz, and

Kriz utilizing different techniques [HKK12]. In [LLS15a], Lawson, Lipshitz, and

Sarkar gave an equivalent construction of the Lipshitz-Sarkar Khovanov homotopy

type by defining a strictly-unitary-lax-2-functor FKh(L) : 2n → B from the cube

category to the Burnside category, and by using this reformulation they showed

that the Lisphitz-Sarkar and Hu-Kriz-Kriz invariants were homotopy equivalent.

In 1961, Fox first suggested studying classes of knots with various forms of

symmetries. One such class of links is periodic links, which are links that possess

a diagram with a rotation symmetry [Fox61]. In 1988, Murasugi showed that

there is a relationship between the Jones polynomials of a periodic link and its

quotient link, creating an obstruction for when links can be periodic [Mur88].

In 2007, Chbili defined a G-equivariant Khovanov homology when G is a cyclic

group of odd order [Chb07]. In 2015, Politarczyk defined another equivariant

version of Khovanov homology for periodic links that is an analogue to Borel

equivariant cohomology [Pol15]. In 2018, Borodicz, Politarczyk, and Silvero

extended Politarczyk’s work by utilizing equivariant cubical flow categories to

define an equivariant Khovanov homotopy type [BP17]. They also related the

Borel equivariant homology of the homotopy type to Politarczyk’s equivariant

Khovanov homology. In 2018, Stoffregen and Zhang also constructed a Khovanov

homotopy type for periodic links by constructing an equivariant version of Lawson,

Lipshitz, and Sarkar’s Khovanov functor [SZ18]. It is currently unknown if these

two constructions result in equivalent equivariant homotopy types.

In the following chapters, we will give a third construction of an equivariant

Khovanov homotopy type XKh(L) for periodic links. More precisely, we will prove

the following
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Theorem 1.1. For a p-periodic link L, the natural action of Z/pZ on L induces a

Z/pZ action on XKh(L) which makes XKh(L) a naive Z/pZ-spectrum.

Theorem 1.2. If L and L′ are equivariantly isotopic p-periodic links, then XKh(L′)

is Borel homotopy equivalent to XKh(L).

By Borel homotopy equivalent, we mean that we can find collection of naive Z/pZ-

spectra Xi and Yi−1 such that we get a composition of roofs

XKh(L)

X1

Y1

X2

. . . Yi−1

Xi

XKh(L′)

where the downward maps are equivariant and induce homotopy equivalences but

the inverse maps Yj → Xi need not be equivariant.

To prove theorems 1.1 and 1.2 we will do the following: we will give two

equivalent definitions for what we mean for a group G to act on a strictly-unitary-

lax-2-functor (chapter 3); we will then define how Z/pZ acts on the Khovanov

functor FKh(L) : 2n → B and how this group action can be extended to an action

on XKh(L) (chapter 4); and finally we will show that Xkh(L) is an equivariant knot

invariant (chapter 5).
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CHAPTER II

BACKGROUND

In this chapter we will recall definitions and set notation so that we can

describe both the Khovanov functor FKh : 2n → B and the construction of

the Khovanov homotopy type XKh(L). We begin with our main object of study,

periodic links.

Definition 2.1. A link L of m components is a piecewise linear embedding of m

disjoint copies of S1 in S3. A knot is a link with only one component.

It is often easier to represent a knot by using a knot diagram, which is the

projection of the knot onto a plane with small breaks to indicate where one strand

crosses over another strand. The convention is that the projection of the over-

strand remains intact while the projection of the under-strand is broken. Figure

1 contains a few examples of knot diagrams.

Slight changes to the embedding of the circles that make up a link L do not affect

how “knotted” or “linked” the components of L are in S3, and so links are only

considered up to isotopy.

Figure 1. Diagrams for the Unknot, Trefoil, and Figure-8 knot.
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Definition 2.2. Let f, g : qmi=1S
1 → S3 be two piecewise linear embeddings of

qmi=1S
1 in S3. An isotopy from f to g is a piecewise linear continuous map H :

qmi=1S
1× [0, 1]→ S3 such that H(−, 0) = f , H(−, 1) = g, and H(−, t) is a piecewise

linear embedding of qmi=1S
1 in S3 for all t ∈ [0, 1].

Using this definition, we can now describe an equivalence relation for links.

Definition 2.3. Two links L1 and L2 are equivalent if there exists an isotopy

between them.

Explicitly describing the isotopy between two links can often be quite difficult, and

so it is often helpful to use the following theorem of Reidemeister to determine

when two knot diagrams represent the same equivalence class of links.

Theorem 2.4. [Rei74] Two links L1 and L2 are equivalent if and only if a diagram

D1 representing L1 can be transformed into a diagram D2 representing L2 by a

sequence of the following three types of moves

The main focus of this paper will be a specific class of links called periodic

links.

Definition 2.5. A link L is called p-periodic if it possesses a knot diagram with a

2π
p

rotational symmetry about a point not in the image of L.

In figure 2, rotating each knot diagram about the marked center point shows that

the Hopf Link is 2-periodic and that the Trefoil is 3-periodic.
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Figure 2. A 2-periodic diagram for the Hopf Link and a 3-periodic diagram for
the Trefoil

Two p-periodic links L1 and L2 are equivariantly isotopic if there exists an

isotopy between L1 and L2 that respects the 2π
p

rotation symmetry of the two links.

As with the non-equivariant case, it is often easier to think of this equivariant

isotopy in terms of diagrams, so we will now define the concept of equivariant

Reidemeister moves.

Definition 2.6. Given a p-periodic knot diagram D for a link L, an equivariant

Reidemeister move of type I (resp. II or III) is the result of performing a regular

Reidemeister move of type I (resp. II or III) and the p − 1 images of that move

under the rotational action on D.

Examples of the first and second equivariant Reidemeister moves can be seen in

figure 3. We now give a proof of the following proposition, which can be thought of

as an equivariant verison of Reidemeister’s theorem.

Proposition 2.7 ([BPS18] - Proposition 2.7). Let L1 and L2 be two p-periodic links

and let D1 and D2 be two p-periodic diagrams representing L1 and L2, respectively.

Every equivariant isotopy from L1 to L2 can be realized by a sequence of equivariant

Reidemeister moves from D1 to D2.

Proof. Quotienting D1 and D2 by the rotation action will result in two isotopic

diagrams Dq
1 and Dq

2 representing the quotients of the links L1 and L2. Since Dq
1
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Figure 3. Examples of equivariant Reidemeister moves.

and Dq
2 are isotopic, there is a sequence of regular Reidemeister moves transforming

one into the other. This sequence of moves between Dq
1 and Dq

2 lifts to a sequence

of equivariant Reidemeister moves from D1 to D2.

Another important fact about periodic links is that Z/pZ acts naturally on

any p-periodic link L. More precisely, i ∈ Z/pZ acts on L by rotating the link 2iπ
p

radians. This is the natural action that will be used to induce an action on XKh(L).

2.1 The Cube Category

The objects of the n-dimensional cube category 2n are elements of the

product {0, 1}n. There is a partial ordering on Ob
(
2n
)

with (u1, . . . , un) ≥

(v1, . . . , vn) whenever ui ≥ vi for all 1 ≤ i ≤ n. This partial ordering also induces a

grading on Ob
(
2n
)

given by the L1-norm

|u| =
n∑
i=1

ui.

It will occasionally be useful to know the difference in grading between u and v,

and so we will sometimes write u >k v when u ≥ k and |u| − |v| = k. Additionally,

we will occasionally write u •v when u >1 v in order to emphasize that u and

7



v are joined by a single edge in the cube. The partial ordering on the objects also

induces the morphism structure in 2n with there being a unique morphism ϕu,v

between u and v whenever u ≥ v and no morphism otherwise. (i.e Hom2n(u, v) =

{ϕu,v} when u ≥ v and Hom2n(u, v) = ∅ otherwise.) We will view 2n as a strict 2-

category that contains no non-identity 2-morphisms. It will be helpful later to have

the following sign function

Definition 2.8. For u = {u1, u2, . . . } >1 v = {v1, v2, . . . }, let k be the unique

element of {1, 2, . . . , n} such that uk > vk. Define

sgnu,v =
k−1∑
i=1

ui (mod 2).

2.2 The Thickened Cube Category

The objects of the thickened cube category 2̂n are composable pairs of

morphisms u
ϕu,v−−→ v

ϕv,w−−→ w for any u, v, w ∈ Ob(2n). A morphism between

u
ϕu,v−−→ v

ϕv,w−−→ w and u′
ϕu′,v′−−−→ v′

ϕv′,w′−−−→ w′ is a commutative diagram of the form

u v w

u′ v′ w′.

ϕu,v ϕv,w

ϕu,u′ ϕv′,v ϕw,w′

ϕu′,v′ ϕv′,w′

Note the upward direction of the middle vertical map. We will occasionally

refer to a morphism by the triple (ϕu,u′ , ϕv′,v, ϕw,w′) of its vertical maps. The

composition of two morphisms (ϕu,u′ , ϕv′,v, ϕw,w′) and (ϕu′,u′′ , ϕv′′,v′ , ϕw′,w′′) is just

formed by vertically stacking the two commutative diagrams, or more succinctly

(ϕu′,u′′ , ϕv′′,v′ , ϕw′,w′′) ◦ (ϕu,u′ , ϕv′,v, ϕw,w′) = (ϕu′,u′′ ◦ϕu,u′ , ϕv′,v ◦ϕv′′,v′ , ϕw,w′ ◦ϕw′,w′′).

This category is the result of a general thickening process applied to the cube

category. A similar process can be applied to any small category.
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2.3 The Burnside Category

The objects of the Burnside category, B, are finite sets. A morphism

between X and Y in B is a triple (A, s, t) where A is a finite set, s : A → X is

a set map, and t : A → Y is a set map. (s and t are often called the source map

and target map respectively.) The triple (A, s, t) is often called a correspondence

(or span) between X and Y and is usually depicted as

A

X Y

s t

.

Given two correspondences (A, sA, tA) ∈ HomB(X, Y ) and (B, sB, tB) ∈

HomB(Y, Z) the composition of these two morphisms is given by (C, sC , tC) where

C = A×Y B = {(a, b) ∈ A×B | tA(a) = sB(b)}

sC(a, b) = sA(a) tC(a, b) = tB(b).

Diagrammatically this looks like

A

X Y

A×y B

Z.

B
sA tA sB tB

Additionally, given two correspondences (A, sA, tA) and (B, sB, tB) from X to Y , a

morphism of correspondences is a bijection between A and B such that following

triangles commute

A

B

X Y .

∼=

9



The Burnside category is a weak 2-category with the morphisms of correspondences

acting as the 2-morphisms. See, for instance, [LLS15b, Section 3] for more details.

In order to define the Khovanov functor in section 2.5, it will help to define

a functor A : B → Ab from B to the category of abelian groups.

Definition 2.9. For X ∈ Ob(B), define A(X) = Z〈X〉, the free abelian group

with basis X. For a correspondence (A, s, t) ∈ HomB(X, Y ) define the map A(A) :

A(X)→ A(Y ) on each of the basis elements x ∈ X as

A(A)(x) =
∑
y∈Y

|s−1(x) ∩ t−1(y)|y.

If we consider the objects of B to be isomorphism classes of correspondences

instead of just correspondences, then we can view B as a regular category. In this

case, A identifies B as a full subcategory of Ab whose objects are finitely generated

free abelian groups and whose morphisms are matrices with non-negative entries.

2.4 Functors from the Cube to the Burnside Category

We will now give two equivalent definitions for a functor D : 2n → B from

the cube category to the Burnside category. As mentioned in sections 2.1 and 2.3

we can view 2n as a strict 2-category and B as a weak 2-category. This means that

when we refer to a functor from the cube category to the Burnside category, we

really mean a strictly-unitary-lax-2-functor. A more detailed explanation for these

types of functors can be found in [Béa67], where they are referred to as strictly

unitary homomorphisms.

Definition 2.10. A strictly-unitary-lax-2-functor D from the cube category 2n to

the Burnside category B consists of

(i) A finite set D(u) ∈ B for every u ∈ Ob (2n)

10



(ii) A finite correspondence D(ϕu,v) ∈ HomB

(
D(u), D(v)

)
for every u ≥ v

(iii) A 2-isomorphism Du,v,w : D(ϕv,w)×D(v) D(ϕu,v)→ D(ϕu,w) for all u > v > w

such that for all u > v > w > z the following diagram commutes

D(ϕw,z)×D(w) D(ϕv,w)×D(v) D(ϕu,v) D(ϕw,z)×D(w) D(ϕu,w)

D(ϕv,z)×D(v) D(ϕu,v) D(ϕu,z)

Id×Du,v,w

Dv,w,z × Id Du,w,z

Du,v,z .

It should be noted that D(ϕw,z)×D(w) D(ϕv,w)×D(v) D(ϕu,v) denotes D(ϕw,z)×D(w)(
D(ϕv,w) ×D(v) D(ϕu,v)

)
when going across the top of the diagram, and(

D(ϕw,z) ×D(w) D(ϕv,w)
)
×D(v) D(ϕu,v) when going down the left side. These are

not the same but they are canonically identified.

Notice that condition (ii) in the above definition requires a finite

correspondence be given for every morphism in 2n. In some sense this is the

complete set of data for the morphisms, and so we will often use the phrase

“complete definition” when we want to specifically refer to definition 2.10.

The second definition is composed of a similar set of data. However, instead

of giving a correspondence D(ϕu,v) for every morphism ϕu,v in 2n, this definition

only gives a correspondence for each edge of the cube. With this in mind (and to

contrast the above definition), we will often refer to definition 2.11 as the “edge

definition” for D.

Definition 2.11. A strictly-unitary-lax-2-functor D from the cube category 2n to

the Burnside category B consists of

(e.i) A finite set D(u) ∈ B for every u ∈ 2n

11



(e.ii) A finite correspondence D(ϕu,v) ∈ HomB

(
D(u), D(v)

)
for every edge u •v

(e.iii) An isomorphism Du,v,v′,w : D(ϕv,w) ×D(v) D(ϕu,v) → D(ϕv′,w) ×D(v′) D(ϕu,v′)

for every face
v
•u

•

•
w

v′
• .

Such that the following two conditions are satisfied

(C1) For every face
v
•u

•

•
w

v′
• , Du,v′,v,w = D−1

u,v,v′,w

(C2) For every three dimensional face

v •
•
w′′

•u

•

•
•
v′

•

•
w′ •z

v′′ •
•

w

• the following square

commutes

D(ϕw′′,z)×D(w′′) D(ϕv,w′′)×D(v) D(ϕu,v)

D(ϕw′,z)×D(w′) D(ϕv,w′)×D(v) D(ϕu,v)

D(ϕw′′,z)×D(w′′) D(ϕv′,w′′)×D(v′) D(ϕu,v′)

D(ϕw′,z)×D(w′) D(ϕv′′,w′)×D(v′′) D(ϕu,v′′)

D(ϕw,z)×D(w) D(ϕv′,w)×D(v′) D(ϕu,v′)

D(ϕw,z)×D(w) D(ϕv′′,w)×D(v′′) D(ϕu,v′′)

Dv,w′′,w′,z × Id

Id×Du,v′,v′′,w

Id×Du,v,v′,w′′

Dv′,w′′,w,z × Id

Id×Du,v,v′′,w′

Dv′′,w′,w,z × Id

Given the data from the complete definition, it is easy to produce the

required data for the edge definition by simply setting Du,v,v′,w = D−1
u,v′,w ◦ Du,v,w.

Showing that the data from the edge definition is sufficient to produce the data for

the total definition requires selecting maximal chains between any two vertices. A

maximal chain mu,v between vertices u >k v is a choice of edges

12



u = zu,v0
• ... • zu,vi • .... • zu,vk = v.

connecting u and v. By using these maximal chains and the face isomorphisms

from (e.iii), it is possible to recover the complete definition of D. For a more

detailed explanation, see [LLS15a, Prop. 4.3].

2.5 The Khovanov Functor

Following section 4 of [LLS15a], we now define the Khovanov functor

FKh(L) : 2n → B which is a specific strictly-unitary-lax-2-functor from the

cube category to the Burnside category that captures the information from the

Khovanov chain complex. To do this, we will first define a functor FKh,Ab : (2n)op →

Ab and then refine it to produce FKh(L).

For an oriented link diagram, L, with n crossings and a fixed ordering on the

crossings, we can construct a cube of resolutions for L by replacing each crossing

with one of the following two resolutions

0 1

which are referred to as the the 0-resolution of 1-resolution respectively. Given

a vertex u = {u1, . . . un} ∈ Ob (2n), performing the ui-resolution on the ith

crossing of the link results in a collection of embedded circles in S2, denoted Lu.

Additionally, for an edge u •v , Lu can be changed into Lv by either merging two

circles together or splitting apart a circle into two circles. Let V = Z〈x+, x−〉 be a

free rank-2 Z module with the following multiplication and comultiplication

13



m(x+ ⊗ x+) = x+ ∆(x+) = x+ ⊗ x− + x− ⊗ x+

m(x+ ⊗ x−) = x− ∆(x−) = x− ⊗ x−

m(x− ⊗ x+) = x−

m(x+ ⊗ x+) = 0

We can define a function FKh,Ab : (2n)op → Ab as follows. For u ∈ 2n, FKh,Ab(u) =⊗
S∈π0(Lu) V . For the morphism ϕu,v corresponding to the edge u •v , there are

two cases. When Lu is obtained from Lv by merging two circles, FKh,Ab(ϕ
op
u,v)

applies the multiplication map to the corresponding factors of FKh,Ab(u) and the

identity map to the remaining factors. In the other case, Lu is obtained from Lv

by splitting apart a single circle, and so FKh,Ab(ϕ
op
u,v) applies the comultiplication

map to corresponding factor of FKh,Ab(u) and the identity map to the remaining

factors. The total complex of the cube, which can be formed by multiplying the

edge map u •v by (−1)sgnu,v and summing over the vertices of each grading, is

the Khovanov complex.

To refine FKh,Ab : (2n)op → Ab into a strictly-unitary-lax-2-functor

FKh : 2n → B, it suffices to describe a set of data for the vertices, edges, and

faces of the cube that satisfy condition (C1) and (C2) from definition 2.13. For

each u, FKh(u) = {x : πo(Lu) → {x+, x−}} is the preferred basis of the Khovanov

generators. For the edge morphism u •v and for each y ∈ FKh(v), notice that

FKh,Ab(ϕ
op
u,v)(y) =

∑
x∈FKh(u) εx,yx where εx,y is a matrix whose entries are 0 and 1.

This means, we can define FKh(ϕu,v) = {(y, x) ∈ FKh(v)× FKh(u)|εx,y = 1}.

To define the isomorphism FKh u,v,v′,w : FKh(ϕv,w) ×FKh(v) FKh(ϕu,v) →

FKh(ϕv′,w)×FKh(v′) FKh(ϕu,v′) for the face
v
•u

•

•
w

v′
• , we first note that since FKh,Ab

is a commutative diagram there is a 2-isomorphism between FKh(ϕv,w) ×FKh(v)
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Figure 4. (a) An example of a link L that would result in a ladybug configuration.
(b) An isotopy of the 00-resultion of L which gives the ladybug configuration its
name. (c) The resolution of the link from (a) with the right arc pairs 1 and 2
labeled.

FKh(ϕu,v) and FKh(ϕv′,w) ×FKh(v′) FKh(ϕu,v′). Namely, for x ∈ FKh(u) and z ∈

FKh(w), the cardinalities of

Ax,z := s−1(z) ∩ t−1(x) ⊆ FKh(ϕv,w)×FKh(v) FKh(ϕu,v) and

A′x,z := s−1(z) ∩ t−1(x) ⊆ FKh(ϕv′,w)×FKh(v′) FKh(ϕu,v′)

are the (x, z) entries in the matrix FKh,Ab(ϕ
op
u,v) ◦ FKh,Ab(ϕopv,w) and FKh,Ab(ϕ

op
u,v′) ◦

FKh,Ab(ϕ
op
v′,w) respectively, and these two matrices are the same. In most cases

the cardinalities of the above sets are either zero or one. In either case, there is a

unique isomorphism FKh u,v,v′,w|Ax,z : Ax,z → A′x,z. The only exceptional case is

when a circle Cw in Lw splits to form two circles C1
v and C2

v in Lv and two circles

C1
v′ and C2

v′ in Lv′ ; these two circles merge back to a single circle Cu in Lu; x labels

Cu by x−; and z labels Cw by x+.

15



In this case, we can define the isomorphism by using the ladybug

configuration (See figure 4). To use the ladybug configuration, we first draw

the circle Cw from Lw. We then draw an arc av where we would need to pinch

Cw together to form the two circles Cv1 and Cv2 in Lv. We then draw a second

arc av′ where we would need to pinch the Cw circle together to form the two

circles Cv′1 and Cv′2 in L′v. Using av and av′ we can define the right pair of arcs in

(Cw, ∂av ∪ ∂av′) as the arcs you get by walking along av and av′ and then turning

right. We then can choose to label one of the right pair arcs as 1 and the other

as 2. (This choice of labeling will not affect FKh u,v,v′,w). Each right pair arc is

contained entirely within one of the two circles in both Lv and Lv′ . This means

we can label the two circle of Lv as C1
v and C2

v based on which right pair arc they

contain. Similarly, we can label the two circles of Lv′ as C1
v′ and C2

v′ . With these

identifications we can define the two elements of Ax,z as

α = ((Cw → x+), (C
1
v , C

2
v )→ (x−, x+), (Cu → x−)),

β = ((Cw → x+), (C
1
v , C

2
v )→ (x+, x−), (Cu → x−))

and the two elements of A′x,z as

α′ = ((Cw → x+), (C
1
v′ , C

2
v′)→ (x−, x+), (Cu → x−)),

β′ = ((Cw → x+), (C
1
v′ , C

2
v′)→ (x+, x−), (Cu → x−)).

With these two two-element sets identified FKh u,v,v′,w can be defined by mapping

α 7→ α′ and β 7→ β′. From the definition of FKh u,v,v′,w it is clear that F−1
Kh u,v′,v,w

= FKh u,v,v′,w so condition (C1) is satisfied. Checking condition (C2) requires

fixing a three-dimensional face

v •
•
w′′

•u

•

•
•
v′

•

•
w′ •z

v′′ •
•

w

• and fixing Khovanov generators

x ∈ FKh(u) and z ∈ FKh(z). There are six correspondences coming from the six
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paths through the cube which correspond to three bijections FKh,u,v∗,w∗ and three

bijections FKh v∗,w∗,z. One needs to check that these bijections agree (taking into

account the ladybug formation.) The proof that these bijections do in fact agree

follows from lemmas 5.14 and 5.17 in [LS14].

2.6 Homotopy Colimits

In order to define the Khovanov homotopy type, we will end up needing

to take a homotopy colimit, so for completeness sake, we include Vogt’s definition

[Vog73] as described by Lawson, Lipshitz, and Sarkar in [LLS15a, Section 2.9].

Definition 2.12. Let C be a small category and D : C → Top• be a C -diagram in

Top• (or Top). Let

Cn(A,B) = {(fn, . . . , f1) ∈ (Mor(C ))n|fn ◦ · · · ◦ f1 : A→ B is defined in C } n > 0

C0(A,A) = {(idA)} C0(A,B) = ∅ for A 6= B.

The homotopy colimit of D, hocolim(D), is( ⊔
A,B∈C

∞⊔
n=0

Cn(A,B)× In ×D(A)

)
∪ {∗}/ ∼

where I is the unit interval and {∗} an extra point, where ∼ is given as follows:

(tn, fn, . . . , t1, f1;x) ∼



(tn, fn, . . . , t2, f2;x) f1 = id

(tn, fn, . . . , fi+1, titi−1, fi−1, . . . , t1, f1;x) fi = id, 1 < i

(tn, fn, . . . , ti+1, fi+1 ◦ fi, ti−1, , . . . , t1, f1;x) ti = 1, i < n

(tn−1, fn−1, . . . , t1, f1;x) tn = 1

(tn, fn, . . . , fi+1;D((fi ◦ f1)(x)) ti = 0

∗ x = base point

with {∗} as base point for a diagram D in Top•. The unbased version is obtained by

deleting {∗} and the last relation.
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2.7 The Khovanov Homotopy Type

We now have all the required background needed to define the Khovanov

homotopy type XKh(L) given a link diagram L and the Khovanov functor FKh(L) :

2n → B. The construction from [LLS15a, Section 4] begins by defining a family of

functors F̂ k
Kh : 2̂n → Top• for eack k ∈ N. For each u

ϕu,v−−→ v
ϕv,w−−→ w ∈ Ob

(
2̂n
)

we

define

F̂ k
Kh

(
u

ϕu,v−−→ v
ϕv,w−−→ w

)
=

∨
a∈FKh(ϕu,v)

∏
b∈FKh(ϕv,w)
s(b)=t(a)

Sk.

To define the image of a morphism (ϕu,u′ , ϕv′,v, ϕw,w′) between u
ϕu,v−−→ v

ϕv,w−−→ w and

u′
ϕu′,v′−−−→ v′

ϕv′,w′−−−→ w′ we need to define a map∨
a∈FKh(ϕu,v)

∏
b∈FKh(ϕv,w)
s(b)=t(a)

Sk −→
∨

a′∈FKh(ϕu′,v′ )

∏
b′∈FKh(ϕv′,w′ )

s(b′)=t(a′)

Sk.

To do this we note that it suffices to construct the map on each piece of the wedge

sum, so fix an a ∈ FKh(ϕu,v). The maps FKh u,u′,v and FKh u,v′,v induce a bijection

FKh(ϕu,v) ∼= FKh(ϕv′,v)×FKh(v) FKh(ϕu′,v′)×FKh(u′) FKh(ϕu,u′).

This means each a can be identified with a triple (y, a′, x) in the fiber product

above. With this identification, we can define F̂ k
Kh to send the wedge summand

corresponding to a to the wedge summand corresponding to a′. Similarly, the maps

FKh v′,w,w′ and FKh u,v′,v give an isomorphism

FKh(ϕv′,w′) = FKh(ϕw,w′)×FKh(w) FKh(ϕv,w)×FKh(v) FKh(ϕv′,v)

so for each b ∈ FKh(ϕv′,w′) we get b′ = (z, b̄, ȳ). If we let ∆b represent the diagonal

map then, we can consider the sequence of maps∏
b∈FKh(ϕv,w)
s(b)=t(a)

Sk
∏

b ∆b−−−→
∏

b∈FKh(ϕv,w)
s(b)=t(a)

∏
b′=(z,b̄,ȳ)∈FKh(ϕv′,w)

b̄=b
ȳ=y

Sk ∼=
∏

b′∈FKh(ϕv′,w)

b′=(z,b,y)
s(b)=t(a)

Sk
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We now note that {b′ ∈ FKh(ϕu′,v′)|b′ = (z, b, y)} is a subset of {b′ ∈

FKh(ϕu′,v′)|t(a′) = s(b′)} since s(b′) = s(y) = t(a′). This means we can extend

the above map to a map

∏
b∈FKh(ϕv,w)

s(b)=t(a)

Sk
∏

b ∆b
−−−−−→

∏
b∈FKh(ϕv,w)

s(b)=t(a)

∏
b′=(z,b̄,ȳ)∈FKh(ϕ

v′,w)

b̄=b

ȳ=y

Sk ∼=

∏
b′∈FKh(ϕ

v′,w)

b′=(z,b,y)

s(b)=t(a)

Sk →
∏

b′∈FKh(ϕ
v′,w′ )

s(b′)=t(a′)

Sk

by mapping to the base point in the remaining factors. This is our desired

map. Applying this map to every part of the wedge sum gives the definition of

F̂ k
Kh((ϕu,u′ , ϕv′,v, ϕw,w′)).

We now note that there are natural transformations Sn ∧ F̂ k
Kh(L)→ F̂ k+n

Kh (L)

between our family of thickened Khovanov functors F̂ k
Kh(L) given by

Sn ∧

 ∨
a∈FKh(ϕu,v)

∏
b∈FKh(ϕv,w)

s(b)=t(a)

Sk

 ∼=

∨
a∈FKh(ϕu,v)

Sn ∧
∏

b∈ϕv,w
s(b)=t(a)

Sk →
∨

a∈FKh(ϕu,v)

∏
b∈ϕv,w
s(b)=t(a)

Sn+k

The first part of this map is just given by commuting the smash product with the

wedge sum. The second part of this map is given by applying the following map to

each

σn : Sn ∧
∏
i

Xi →
∏
i

Sn ∧Xi

where we view Sn ∧ X as [0, 1]n × X/(∂[0, 1]n × X ∪ [0, 1]n × {∗}) and where

σn(y, x1, . . . , xn) = ((y, x1) . . . (y, xn). If all of the Xi are (k − 1)-connected this σn

induces isomorphisms on πi for 0 ≤ i ≤ 2k − 2. With these natural transformations,

we can view all of the F̂ k
Kh’s as being a diagram of spectra F̂Kh : 2̂n → S .

Finally, we let 2̂n+ be the category obtained from 2̂n by adding a new object

∗ and new morphisms ((u → v → w) → ∗) from each vertex of 2̂n with w 6=
→
0. Similarly, we will define F̂ k

Kh

+

: 2̂n+ → S by setting F̂ k
Kh

+

|2̂n = F̂ k
Kh and

F̂ k
Kh

+

(∗) = {∗}. Taking the homotopy colimit of F̂Kh
+

and formally desuspending
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by the number of negative crossings n− in L produces XKh(L). That is XKh(L) =

Σ−n−hocolim(F̂Kh
+

).

We should mention that in definition 2.15 we described the homotopy

colimit for a functor D : C → Top• and not a functor to the category of spectra.

To resolve this discrepancy, we note that the homotopy colimits of the the F̂ k
Kh

+

’s

together with the structure maps σn form a classical spectrum (hocolim(F̂ k
Kh

+

), σn)

and that (hocolim(F̂Kh
+

))k = hocolim(F̂ k
Kh

+

), and so (hocolim(F̂ k
Kh

+

), σn) =

XKh(L).

We should also mention that for the remainder of our discussion, we will

suppress the formal grading shift as it is clear in the proofs of invariance that any

grading shifts will agree with the above.
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CHAPTER III

GROUP ACTIONS ON CATEGORIES AND FUNCTORS

The main goal of this chapter is to give two equivalent definitions for what

it means for a group G to act on a strictly-unitary-lax two functor D : 2n → B

from the cube category to the Burnside category. We begin by giving a definition

for what it means for a group G to act on a category C.

Definition 3.1. For a group G, the group action of G on a category C is the

following collection of data:

(1) an autoequivalence Gg : C → C for each g ∈ G

(2) an isomorphism of functors ηg,h : GhGg ∼= Ghg for each pair g, h ∈ G

such that for all g, h, i ∈ G the following diagram of functors is commutative:

GiGhGg GiGhg

GihGg Gihg.

Given g ∈ G, A ∈ Ob(C), and f a morphism in C, we will usually write gA to

mean Gg(A) and gf to mean Gg(F ). We now define what it means for G to act on a

functor between two 1-categories.

Definition 3.2. Let F : C → C ′ be a functor between categories C and C ′ and

let G be a group that acts on C. A group action of G on F is a collection of maps

Rg,A : F(A) → F(gA) such that for all A,B ∈ Ob(C), f ∈ Hom(A,B), and for all

g, h ∈ G, the following hold:

(1) For the identity element e ∈ G, Re,A is the identity morphism
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(2) Rh,gA ◦Rg,A = Rhg,A

(3) The following diagram commutes

F(A) F(B)

F(gA) F(gB).

F(f)

Rg,A Rg,B

(F ◦ Gg)(f)

Unfortunately, the above definition does not immediately apply to a strictly-

unitary-lax-2-functor D : 2n → B because such functors only preserve compositions

of morphisms up to an isomorphism. Instead, we describe the following larger set of

data to explain precisely how G acts on D.

Definition 3.3. Let D : 2n → B be a strictly-unitary-lax-2-functor from the

cube category to the Burnside category described by the “complete set of data”

(definition 2.10) and let G be a group that acts on 2n. A group action of G on D

is a collection of maps

Rg,u : D(u)→ D(gu) and Sg,ϕu,v : D(ϕu,v)→ D(ϕgu,gv)

for any u, v, w ∈ Ob(2n) with u >k v >l w and for any g, h ∈ G, such that

(c.i) For the identity element e ∈ G, Re,u : D(u) → D(eu) and Se,ϕu,v : D(ϕu,v) →

D(ϕeu,ev) are the identity maps

(c.ii) Rh,gu ◦Rg,u = Rhg,u

(c.iii) Sh,ϕu,v ◦ Sg,ϕu,v = Shg,ϕu,v

(c.iv) Rg,u ◦ s = s ◦ Sg,ϕu,v and Rg,u ◦ t = t ◦ Sg,ϕu,v
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(c.v) Sg,ϕu,w ◦Du,v,w = Dgu,gv,gw ◦ (Sg,ϕv,w × Sg,ϕv,w).

We have chosen to label the conditions (c.i) through (c.v) in order to emphasize

that this definition is for a group action on D where D is described by the complete

set of data. The following definition is a similar collection data but for D described

by the edge set of data. To distinguish between the two definitions, we will include

the superscript e on the maps and we will label the conditions (e.i) - (e.v).

Definition 3.4. Let D : 2n → B be a strictly-unitary-lax-2-functor from the cube

category to the Burnside category described by the edge set of data (definition 2.11)

and let G be a group that acts on 2n. A group action of G on D is a collection of

maps

Re
g,u : D(u)→ D(gu) and Seg,ϕu,v

: D(ϕu,v)→ D(ϕgu,gv)

for any u, v, v′, w ∈ Ob(2n) with
v
•u

•

•
w

v′
• and for any g, h ∈ G, such that

(e.i) For the identity element e ∈ G, Re,u : D(u) → D(eu) and Se,ϕu,v : D(ϕu,v) →

D(ϕeu,ev) are the identity maps

(e.ii) Re
h,gu ◦Re

g,u = Re
hg,u

(e.iii) Seh,ϕu,v
◦ Seg,ϕu,v

= Sehg,ϕu,v

(e.iv) Re
g,u ◦ s = s ◦ Seg,ϕu,v

and Re
g,u ◦ t = t ◦ Seg,ϕu,v

(e.v) (Seg,ϕv′,w
×Re

g,v′
Seg,ϕu,v′

) ◦Du,v,v′,w = Dgu,gv,gv′,gw ◦
(
Seg,ϕv,w

×Re
g,v
Seg,ϕu,v

)
An advantage of the second definition is that it contains much less data since the

maps Seg,ϕu,v
need only be defined for the edges of the cube. Additionally, we only

need to check that certain conditions hold for each face of the cube. We will now

show the promised equivalence between definition 3.3 and definition 3.4.
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Proposition 3.5. The complete set of data for the action of G on D : 2n → B

can be used to construct the edge set of data for the group action in such a way that

Rg,u = Re
g,u for all u ∈ 2n and that Sg,ϕu,v = Seg,ϕu,v

for all edges u •v . Similarly,

the edge set of data for the group action can be used to construct the complete set of

data in such a way that Re
g,u = Rg,u for all u ∈ 2n and that Seg,ϕu,v

= Sg,ϕu,v for all

edges u •v .

Proof. We begin by showing that the complete data definition of the G-action

produces the edge set of data. To do this, we need to define Re
g,u and Seg,ϕu,v

and

show that conditions (e.i) − (e.v) hold. We require that Re
g,u = Rg,u for all vertices

and that Seg,ϕu,v
= Sg,ϕu,v for all edges, which immediately implies that conditions

(e.i) − (e.iv) follow directly from (c.i) − (c.iv). All that remains to be shown is

that condition (e.v) holds. To prove this, we consider any face
v
•u

•

•
w

v′
• and note

that in the following diagram, the two center squares commute because of condition

(c.v).

D(ϕv,w)×D(v) D(ϕu,v) D(ϕu,w) D(ϕv′,w)×D(v′) D(ϕu,v′)

D(ϕgv,gw)×D(gv) D(ϕgu,gv) D(ϕgu,gw) D(ϕgv′,gw)×D(gv′) D(ϕgu,gv′)

Du,v,w D−1
u,v′,w

Dgu,gv,gw D−1
gu,gv′,gw

Seg,ϕv,w
× Seg,ϕu,v

Seg,ϕu,w
Seg,ϕv′,w

× Seg,ϕu,v′

Du,v,v′,w

Dgu,gv,gv′,gw
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Since Du,v,v′,w = D−1
u,v′,w ◦ Du,v,w the outer square of the diagram commutes and

so condition (e.v) holds, and so definition 3.3 can be used to construct the data for

definition 3.4.

To show the other direction, we need to show that the collections of maps

for the edge definition of the G-action give us a collection of maps for the complete

G-action. We must again define Rg,u = Re
g,u. This trivially satisfies the first half of

condition (c.i) and condition (c.ii). In order to define Sg,ϕu,v we will use the idea of

maximal chains. For each pair of vertices u >k v, choose any sequence of k edges

u = zu,v0
• ... • zu,vi • .... • zu,vk = v.

to be the maximal chain mu,v from u to v. Given these choices of maximal chains

we can define D(ϕu,v) = D(ϕzu,vk ,zu,vk−1
)×D(zu,vk−1) D(ϕzu,vk−1,z

u,v
k−2

)× ...×D(zu,v1 ) D(ϕzu,v1 ,zu,v0
).

Given (xk, ..., x1) ∈ D(ϕu,v) we can now apply our Seg,∗ maps to each element in

the tuple (xk, ..., x1) since each element comes from an edge in the cube. This gives

us a map from D(ϕu,v) to D(ϕgzu,vk ,gzu,vk−1
) ×D(gzu,vk−1) D(ϕgzu,vk−1,gz

u,v
k−2

) × ... ×D(gzu,v1 )

D(ϕgzu,v1 ,gzu,v0
) which sends

(xk, xk−1, ... , x2, x1) 7−→
(
Seg,ϕ

z
u,v
k

,z
u,v
k−1

(xk), ... , S
e
g,ϕ

z
u,v
1 ,z

u,v
0

(x1)

)
.

If k = 1 then then Sg,ϕu,v = Seg,ϕu,v
for the edge u •v as required. However,

if k > 1, then
(
Seg , ϕzu,vk ,zu,vk−1

(xk), . . . , S
e
g , ϕzu,v1 ,zu,v0

(x1)
)

may not be in

D(ϕgu,gv) since the action of G may not send mu,v to mgu,gv. More explicitly,

gu = gzu,v0
• . . . • gzu,vi • . . . • gzu,vk = gv need not equal gu =

zgu,gv0
• ... • zgu,gvi

• .... • zgu,gvk = gv. However, since both of these chains start

at gu and gv, we can apply a series of face isomorphisms D∗,∗,∗,∗ that are included

in the data of our functor to get a map from

D(ϕgzu,vk ,gzu,vk−1
)×D(gzu,vk−1) D(ϕgzu,vk−1,gz

u,v
k−2

)× ...×D(ϕgzu,v1 ,gzu,v0
)
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to

D(ϕzgu,gvk ,zgu,gvk−1
)×D(zgu,gvk−1 ) D(ϕzgu,gvk−1 ,zgu,gvk−2

)× ...×D(ϕzgu,gv1 ,zgu,gv0
) = D(ϕgu,gv)

as required. This means, we can define Sg,ϕu,v as the composition of the product of

our Seg,∗ maps and some number of face isomorphisms. It follows immediately that

the second part of condition (c.i) holds. To check that condition (c.iii) holds, we

first note that by our description the map Sh,ϕu,v ◦Sg,ϕu,v is made up of four parts: a

product of Seg,∗ maps, a composition of face isomorphisms Dgi
∗,∗,∗,∗ ◦ · · · ◦ Dg1

∗,∗,∗,∗,

a product of Seh,∗ maps, and finally a second composition of face isomorphisms

Dhi
∗,∗,∗,∗ ◦ · · · ◦Dh1

∗,∗,∗,∗. By making use of condition (e.v) we can commute the product

of Seh,∗ maps past the first set of face isomorphisms, and by using condition (e.iii),

we can compose the product of Seh,∗ maps with the product of the Seg,∗ maps to give

us(
Sh,ϕu,v ◦ Sg,ϕu,v

)
(x)

= D
hj′
∗,∗,∗,∗ ◦ · · · ◦Dh1

∗,∗,∗,∗ ◦ (Sh,∗, . . . Sh,∗) ◦D
gj
∗,∗,∗,∗ ◦ · · · ◦Dg1

∗,∗,∗,∗ ◦
(
Seg,∗(xk), . . . S

e
g,∗(x1)

)
= D

hj′
∗,∗,∗,∗◦· · ·◦Dh1

∗,∗,∗,∗◦D
gj
h∗,h∗,h∗,h∗◦· · ·◦D

g1
h∗,h∗,h∗,h∗◦

(
(Seh,∗◦Seg,∗)(xk), . . . (Seh,∗◦Seg,∗)(x1)

)
= D

hj′
∗,∗,∗,∗ ◦ · · · ◦ Dh1

∗,∗,∗,∗ ◦ D
gj
h∗,h∗,h∗,h∗ ◦ · · · ◦ D

g1
h∗,h∗,h∗,h∗ ◦

(
(Sehg,∗(xk), . . . (S

e
hg,∗(x1)

)
= Shg,ϕu,v(x)

as required. It is easy to check that condition (c.iv) follows directly from condition

(e.iv). Finally, for condition (c.v), we know that the map Du,v,w is defined to be

a composition of face isomorpisms between mu,v ∪ mv,w and mu,w and that these

isomorphisms commute with the group action in the sense of (e.v). Hence, the

proof of (c.v) is analogous to our proof of (c.iii). Thus, the complete set of data

for the group action can be constructed from the edge set of data.
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CHAPTER IV

A Z/pZ-ACTION ON THE KHOVANOV HOMOTOPY TYPE

The goal of this chapter is to prove theorem 1.1., i.e. the natural group

action of Z/pZ on a p-periodic link L induces an action on XKh(L) that makes

XKh(L) a naive G-spectrum.

We begin by explaining how the action of Z/pZ on L induces an action on

2n. Recall from section 2.5 that if we fix an ordering of the n crossings of a knot

diagram for L, then given a vertex u = {u1, . . . , un} ∈ Ob(2n) performing the ui-

resolution on the ith crossing of L forms a collection of embedded circles Lu. Since

g ∈ Z/pZ acts on L by rotating the knot diagram 2gπ
p

radians about a central axis,

we can define gLu to be the image of Lu under this rotation. It is clear that gLu is

identical to some other resolution Lu′ in Khovanov’s cube of resolution where u′ =

{u′1, . . . u′n} is another vertex in Ob(2n), and so it makes sense to define gu = u′.

Clearly |u| = |gu| since the rotation action does not change any of the resolutions

in Lu. Further, for any vertices u >k v, we know that gu >k gv, and since the Hom

sets in 2n contain either 0 or 1 elements the only way to satisfy the condition in

definition 3.1 is for g to map ϕu,v to ϕgu,gv.

A more succinct way to state the above is that the action of Z/pZ of

L induces a permutation of the n crossings of L, and so Z/pZ acts on 2n by

permuting the n-coordinates of {0, 1}n in the same manner.

We can extend the induced action of Z/pZ on 2n to an action on 2̂n, by

defining g to act on objects by sending (u→ v → w) 7→ (gu→ gv → gw) and to act

on morphisms by sending (ϕu,u′ , ϕv′,v, ϕw,w′) 7→ (ϕgu,gu′ , ϕgv′,gv, ϕgw,gw′).
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Since we now have a description for the induced group action on 2n and

2̂n, we can now describe how Z/pZ acts on the Khovanov functor FKh and the

thickened Khovanov functor F̂Kh.

Proposition 4.1. Let L be a p-periodic link and let FKh(L) : 2n → B be the

associated Khovanov functor. The natural action of Z/pZ on L induces an action

2n which induces an action on FKh(L).

Proof. We will prove this proposition by describing a collection of maps that

satisfy the edge definition for a group action on a strictly-unitary-lax-2-functor

(definition 3.4). That is, we will define maps Re
g,u : FKh(u) → FKh(gu) and

Seg,ϕu,v
: FKh(ϕu,v)→ FKh(ϕgu,gv) that meet conditions (e.i)− (e.v).

For any vertex u, FKh(u) = {x : π0(Lu) → {x+, x−}} is the set of

labellings of the circles in Lu by the preferred Khovanov generators. Since Lgu is

just a rotation of Lu, there is an induced map g∗ : π0(Lu) → π0(Lgu). This means

that for any x ∈ FKh(u), we can define Rg,u(x) = x ◦ (g∗)
−1. It is clear that this

definition of Rg,u satisfies the first half of condition (e.i) and condition (e.ii).

For the edge morphism u •v , FKh(ϕu,v) is defined by FKh(ϕu,v) = {(y, x) ∈

FKh(v)× FKh(u)|εx,y = 1}, so we define Sg,ϕu,v : FKh(ϕu,v)→ FKh(ϕgu,gv) by setting

Seg,ϕu,v
((y, x)) = (Re

g,v(y), Re
g,u(x)). It is clear that this satisfied the second half of

condition (e.i). We can check directly that condition (e.iii) is satisfied since

(Sh,ϕgu,gv ◦ Sg,ϕu,v)((y, x)) = (Sh,ϕgu,gv)(Rg,v(y), Rg,u(x))

=

(
(Rh,gv ◦Rg,v)(y), (Rh,gu ◦Rg,u)(x)

)
= (Rhg,v(y), Rhg,u(x))

= (Shg,ϕu,v(y, x)).

Again, checking directly, we get that
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(s ◦ Sg,ϕu,v)((y, x)) = s(Rg,v(y), Rg,u(x)) = Rg,u(x) = Rg,u(s(y, x)) = (Rg,u ◦ s)((y, x))

and that

(t ◦ Sg,ϕu,v)((y, x)) = t(Rg,v(y), Rg,u(x)) = Rg,v(y) = Rg,v(t(y, x)) = (Rg,u ◦ t)((y, x))

and so condition (e.iv) is satisfied.

All that remains for us to check is that our definitions satisfy condition

(e.v). That is, we need to check that for any face
v
•u

•

•
w

v′
• the following diagram

commutes

FKh(ϕv,w)×FKh(v) FKh(ϕu,v)

FKh(ϕgv,gw)×FKh(gv) FKh(ϕgu,gv)

FKh(ϕv′,w)×FKh(v′) FKh(ϕu,v′)

FKh(ϕgv′,gw)×FKh(gv′) FKh(ϕgu,gv′)

Seg,ϕv,w
×Re

g,v
Seg,ϕu,v

Seg,ϕv′,w
×Re

g,v′
Seg,ϕu,v′

Fu,v,v′,w

Fgu,gv,gv′,gw .

In section 2.6, we noted that for x ∈ FKh(u) and z ∈ FKh(w) we can define the sets

Ax,z := s−1(x) ∩ t−1(z) ⊆ FKh(ϕv,w)×FKh(v) FKh(ϕu,v)

A′x,z := s−1(x) ∩ t−1(z) ⊆ FKh(ϕv′,w)×FKh(v′) FKh(ϕu,v′)

Applying the vertical maps in the diagram above to these two sets sends the sets

Ax,z and A′x,z to

ARg,u(x),Rg,w(z) := s−1(Rg,u(x)) ∩ t−1(Rg,w(z)) ⊆ FKh(ϕgv,gw)×FKh(gv) FKh(ϕgu,gv)

and

A′Rg,u(x),Rg,w(z) := s−1(Rg,u(x)) ∩ t−1(Rg,w(z)) ⊆ FKh(φgv′,gw)×FKh(gv′) FKh(φgu,gv′)
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respectively. We know the cardinality of these four sets will always be the same

and will always be 0,1, or 2. When the cardinality of the sets is either 0 or 1 the

above square obviously commutes, so we only need to consider the case when the

cardinality is 2. In this case, we used the ladybug configuration which involved

drawing arcs av and av′ , which allowed us to define a right pair of arcs in the circle

Cw. Labeling one of the right pair arcs as 1 and the other as 2 allowed us to label

the two circles in Lv and Lv′ and define the elements of Ax,z as

α = ((Cw → x+), (C1
v , C

2
v )→ (x−, x+), (Cu → x−))

β = ((Cw → x+), (C1
v , C

2
v )→ (x+, x−), (Cu → x−))

and the two elements of A′x,z as

α′ = ((Cw → x+), (C1
v′ , C

2
v′)→ (x−, x+), (Cu → x−))

β′ = ((Cw → x+), (C1
v′ , C

2
v′)→ (x+, x−), (Cu → x−)).

This allowed us to define Fu,v,v′,w as the map sending α 7→ α′ and β 7→ β′. Using

the ladybug configuration for Lgw, we can also define the elements of ARg,u(x),Rg,w(z)

as

αg = ((Cgw → x+), (C1
gv, C

2
gv)→ (x−, x+), (Cgu → x−))

βg = ((Cgw → x+), (C1
gv, C

2
gv)→ (x+, x−), (Cgu → x−))

and the two elements of A′Rg,u(x),Rg,w(z) as

α′g = ((Cgw → x+), (C1
gv′ , C

2
gv′)→ (x−, x+), (Cgu → x−))

β′g = ((Cgw → x+), (C1
gv′ , C

2
gv′)→ (x+, x−), (Cgu → x−)).

FKh gu,gv,gv′,gw is defined to be the map that sends αg 7→ α′g and βg 7→ β′g. If we let

gav and gav′ be the image of the arcs av and av′ under the rotation action of g, it is
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clear that gav = agv, gav′ = agv′ and that the image of the right pair of arcs in Lw

is the same as the right pair of arcs in Lgw. However, the image of the right pair arc

labeled 1 in Lw may not coincide with the right pair arc labeled 1 in Lgw since we

independently chose these labellings when defining FKh u,v,v′,w and FKh gu,gv,gv′,gw.

If the image of the right pair arc labeled 1 in Lw coincides with the right pair arc

labeled 1 in Lgw, then the vertical maps in the diagram send α 7→ αg, β 7→ βg,

α′ 7→ α′g, and β′ 7→ β′g. If the image of the right pair arc labeled 1 in Lw coincides

with the right pair arc labeled 2 in Lgw, then the vertical maps in the diagram send

α 7→ βg, β 7→ αg, α
′ 7→ β′g, and β′ 7→ α′g. In either case, the diagram commutes.

The proof of the previous proposition used the edge definition of a group

acting on a strictly-unitary-lax-2-functor to show that there is an induced action

of Z/pZ on FKh(L) : 2n → B. By proposition 3.5, we know that the we can

use the maps Re
g,u : FKh(u) → FKh(gu) and Seg,ϕu,v

: FKh(ϕu,v) → FKh(ϕgu,gv)

defined in the previous proof to construct maps Rg,u : FKh(u) → FKh(gu) and

Sg,ϕu,v : FKh(ϕu,v) → FKh(ϕgu,gv) that satisfy conditions (c.i) through (c.v) from

the complete definition of g acting on FKh(L) : 2n → B. We will now use these

complete definition maps to prove the following proposition.

Proposition 4.2. Let L be an p-periodic link and let FKh(L) : 2n → B be the

Khovanov functor. The natural action of Z/pZ on L induces an action on the

thickened Khovanov functor F̂ k
Kh : 2̂n → Top•.

Proof. As in definition 3.2, we need to construct a map

Rg,u→v→w : F̂ k
Kh(u→ v → w)→ F̂ k

Kh(gu→ gv → gw)

that satisfies the three conditions in definition 3.2. This means we need a map
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Rg,u→v→w :
∨

a∈FKh(ϕu,v)

∏
b∈FKh(ϕv,w)
s(b)=t(a)

Sk −→
∨

Sg,ϕu,v (a)∈FKh(ϕgu,gv)

∏
Sg,ϕv,w (b)∈FKh(ϕgv,gw)

s(Sg,ϕv,w (b))=t(Sg,ϕu,v (a))

Sk

We will define this map on each component of the wedge sum, and then extend this

across the wedge sum by mapping the component corresponding to a ∈ FKh(ϕu,v)

to the wedge component corresponding to Sg,ϕu,v(a) ∈ FKh(ϕgu,gv). So fix an

a ∈ FKh(ϕu,v), label the elements of {b ∈ FKh(ϕv,w); s(b) = t(a)} arbitrarily by

b1, . . . , b`, and let pbi be a point in the Sk component of the product corresponding

to bi. Then we can define

Rg,u→v→w
(
(pb1 , ... , pb`)

)
= (pSg,ϕv,w (b1), ... , pSg,ϕv,w (b`)).

The facts that Re,u→v→w is the identity morphism and that Rh,gu→gv→gw ◦

Rg,u→v→w = Rhg,u→v→w follow directly from conditions (c.i) and (c.ii) of the group

action on FKh : 2n → B.

All that remains is to verify the diagram in condition (3) of definition 3.2

commutes. Recall that in section 2.7, we defined the map F̂ k
Kh(ϕu,u′ , ϕv′,v, ϕw,w′)

from F̂ k
Kh(u → v → w) to F̂ k

Kh(u
′ → v′ → w′) on each component of the wedge sum

and then extended it to the whole wedge sum. Since Rg,u→v→w is similarly defined,

it suffices to check the commutative diagram in definition 3.2 component-wise as

well. So fix an a ∈ F̂ k
Kh(ϕu,v). Also recall that in 2̂n the morphism

u′ v′ w′

u v w

ϕu′,v′ ϕv′,w′

ϕu,v ϕv,w

ϕu,u′ ϕv′,v ϕw,w′

gives us two isomorphisms

FKh(ϕu,v) ∼= FKh(ϕv′,v)×FKh(v′) FKh(ϕu′,v′)×FKh(u′) FKh(ϕu,u′)

and
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FKh(ϕv′,w′) ∼= FKh(ϕw,w′)×FKh(w) FKh(ϕv,w)×FKh(v) FKh(ϕv′,v).

So for each a ∈ FKh(ϕu,v) there is a triple (y, a′, x) in the composition, and similarly

for each b′ ∈ FKh(ϕv′,w′) there is a corresponding triple (z, b̄, ȳ). The induced group

action on 2̂n also gives us the following isomorphisms

FKh(ϕgu,gv) ∼= FKh(ϕgv′,gv)×FKh(gv′) FKh(ϕgu′,gv′)×FKh(gu′) FKh(ϕgu,gu′)

and

FKh(ϕgv′,gw′) ∼= FKh(ϕgw,gw′)×FKh(gw) FKh(ϕgv,gw)×FKh(gv) FKh(ϕgv′,gv).

By applying condition (c.v) from definition 3.3, we see that for Sg,ϕu,v(a) ∈

FKh(ϕgu,gv) we have Sg,ϕu,v(a) =
(
Sg,ϕv′,v

(y), Sg,ϕu,v′
(a′), Sg,ϕu,u′

(x)
)
, and that for

Sg,ϕv′,w
(b′) ∈ FKh(ϕgv′,gw) we have Sg,ϕv′,w

(b′) =
(
Sg,ϕw,w′

(z), Sg,ϕu,v′
(b̄), Sg,ϕu,u′

(ȳ)
)
.

With these isomorphisms in mind, we let mi = |{b′ = (z, b̄, ȳ) ∈ FKh(ϕv′,w′) | b̄ =

bi ȳ = y}|. Since a is fixed, we know that y in the above isomorphisms is also fixed.

This means each triple (z, b̄, ȳ) is uniquely determined by bi and a z ∈ FKh(ϕw,w′).

So we will label the these triples as (bi, zi,1), · · · , (bi, zi,mi
), so under the diagonal

map Πb∆b, we will have that pbi 7→ (pbi,zi,1 , pbi,zi,2 , · · ·, pbi,zi,mi
).

We need to show that the following diagram commutes, but first for

clarity we will describe the maps involved in the diagram. The two horizontal

maps are given by the group action. More specifically, the top horizontal map

is given by Rg,u→v→w and the bottom horizontal map Rg,u′→v′→w′ . The first pair

of vertical maps is just a diagonal map applied to each element in FKh(ϕu,v)

and FKh(ϕgu,gv). The second pair of vertical maps is just a relabeling of the

elements in the product under the bijections b′ = (z, bi, ȳ) and Sg,ϕv′,w
(b′) =(

Sg,ϕw,w′
(z), Sg,ϕu,v′

(b̄), Sg,ϕu,u′
(ȳ)
)

described above. For the the last pair of

vertical maps, recall from section 2.7 that {b′ ∈ FKh(ϕu′,v′)|b′ = (z, b, y)}
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is a subset of {b′ ∈ FKh(ϕu′,v′)|t(a′) = s(b′)} and that {Sg,ϕv,w(b′) ∈

FKh(ϕgu′,gv′)|Sg,ϕv,w(b′) = (Sg,ϕw,w′
(z), Sg,ϕv,w(b), Sg,ϕv′,v

(y))} is a subset of

{Sg,ϕv,w(b′) ∈ FKh(ϕgu′,gv′)|t(Sg,ϕu,v(a′)) = s(Sg,ϕv,w(b′))}. So these final verical

maps are just extensions of the previous vertical maps that map to the base point

in the remaining factors.∏
b ∈ FKh(ϕv,w)
s(b)=t(a)

Sk
∏

Sg,ϕv,w (b) ∈ FKh(ϕgv,gw)

s(Sg,ϕv,w (b)) = t(Sg,ϕu,v (a))

Sk

∏
b ∈ FKh(ϕv,w)
s(b)=t(a)

∏
b′=(z,b̄,ȳ) ∈ FKh(ϕv′,w′ )

b̄=b
ȳ=y

Sk

∏
Sg,ϕv,w (b) ∈ FKh(ϕgv,gw)

s(Sg,ϕv,w (b))=t(Sg,ϕu,v (a))

∏
b′∗=(z∗,b̄∗,ȳ∗) ∈ FKh(ϕgv′,gw′ )

b̄∗=Sg,ϕv,w (b)

ȳ∗=Sg,ϕv′,v (y)

Sk

∏
b′ ∈ FKh(ϕv′,w′ )

b′=(z,b,y)
s(b)=t(a)

Sk

∏
Sg,ϕv′,w′ (b

′) ∈ FKh(ϕgv′,gw′ )

Sg,ϕv′,w′ (b
′) = (Sg,ϕw,w′ (z), Sg,ϕv,w (b), Sg,ϕv′,v (y))

s(Sg,ϕv,w (b)) = t(Sg,ϕu,v (a))

Sk

∏
b′ ∈ FKh(ϕv′,w′ )

s(b′)=t(a′)

Sk
∏

Sg,ϕv′,w′ (b
′) ∈ FKh(ϕgv′,gw′ )

s(Sg,ϕgv′,gw′ (b
′))=t(Sg,ϕgu′,gv′ (a

′))

Sk

∼=

Rg,u′→v′→w′

Rg,u→v→w

∼=
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Going down and then right we get that(
pb1 , . . . , pbl

)
7→
(
pb1,z1,1 , . . . , pb1,z1,m1

, pb2,z2,1 , . . . , pbl,zl,ml

)
7→
(
pb′1,1 , . . . , pb1,m1

, pb2,1 , . . . , pb′`,m`

)
7→
(
pb′1,1 , . . . , pb1,m1

, pb2,1 , . . . , pb′`,m`
, ∗, . . . , ∗

)
7→
(
pSg,ϕv′,w′ (b

′
1.1), . . . , pSg,ϕv′,w′ (b

′
1,m`

), pSg,ϕv′,w′ (b
′
2,1), . . . , pSg,ϕv′,w′ (b

′
`,m`

), ∗, . . . , ∗
)

where ∗ denotes the base point.

Going right and then down we get(
pb1 , . . . , pbl

)
7→
(
pSg,ϕv,w (b1), . . . , pSg,ϕv,w (bl)

)
7→
(
pSg,ϕv′,w′ (b1),Sg,ϕw,w′ (z1,1), . . . , pSg,ϕv′,w′ (b1),Sg,ϕw,w′ (z1,m1 ),

pSg,ϕv,w (b2),Sg,ϕw,w′ (z2,1), . . . , pSg,ϕv,w (b`),Sg,ϕw,w′ (z`,m`
)

7→
(
pSg,ϕv′,w′ (b

′
1.1), . . . , pSg,ϕv′,w′ (b

′
1,m`

), pSg,ϕv′,w′ (b
′
2,1), . . . , pSg,ϕv′,w′ (b

′
`,m`

)

)
7→
(
pSg,ϕv′,w′ (b

′
1.1), . . . , pSg,ϕv′,w′ (b

′
1,m`

), pSg,ϕv′,w′ (b
′
2,1), . . . , pSg,ϕv′,w′ (b

′
`,m`

), ∗, . . . , ∗
)
.

Thus, the diagram commutes and so condition (3) is satisfied.

Since we know that Z/pZ acts on all of the F̂ k
Kh’s, we will now check that

the action commutes with the natural transformations Sn ∧ F̂ k
Kh(L) → F̂ k+n

Kh (L).

That is, we will check that the following diagram commutes:
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Sn ∧

 ∨
a∈FKh(ϕu,v)

∏
b∈FKh(ϕv,w)
s(b)=t(a)

Sk



∨
a∈FKh(ϕu,v)

∏
b∈FKh(ϕv,w)
s(b)=t(a)

Sn+k

Sn ∧

 ∨
Sg,ϕu,v (a)∈FKh(ϕgu,gv)

∏
Sg,ϕv,w (b)∈FKh(ϕgv,gw)

s(Sg,ϕv,w (b))=t(Sg,ϕu,v (a))

Sk



∨
Sg,ϕu,v (a)∈FKh(ϕgu,gv)

∏
Sg,ϕu,v (b)∈ϕgv,gw

s(Sg,ϕu,v (b))=t(Sg,ϕu,v (a))

Sn+k.

id ∧Rg,u→v→w

Rg,u→v→w

Recall that the suspension maps involve commuting the smash product past the

wedge sum and then applying the following map to each summand

σn : Sn ∧
∏
i

Xi →
∏
i

Sn ∧Xi

where we view Sn ∧ X as [0, 1]n × X/(∂[0, 1]n × X ∪ [0, 1]n × {∗}) and where

σn(y, x1, . . . , xn) = ((y, x1) . . . (y, xn)).

The action of Z/pZ on F̂ k
Kh and F̂ k+n

Kh permutes the parts of the wedge

sum and then permutes the Sk’s in each of the products. Since we commute the

smash product past the wedge sum the first permutation of the parts of the wedge

sum, will not affect the natural transformation. Similarly, permuting the Sk’s just
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corresponds to permuting the xi’s in the description of Sn ∧
∏

iXi which clearly

commutes with applying the map σn.

We now know G acts on F̂Kh(L) : 2̂n → B, which can be extended by to an

action on F̂Kh
+

(L) by having G fix the added point ∗. We can now prove theorem

1.1.

Theorem 1.1 For a p-periodic link L, the natural action of Z/pZ on L induces a

Z/pZ action on XKh(L), which makes XKh(L) a naive Z/pZ-spectrum.

Proof. Let Z = u → v → w, Z ′ = u′ → v′ → w′, gZ = gu → gv → gw, and

gZ ′ = gu′ → gv′ → gw′ be objects in 2̂n. Since XKh(L) = hocolim(F̂Kh
+

(L)), we

know that the kth space in the spectrum is hocolim(F̂ k
Kh

+

(L)), which is defined as ⊔
Z,Z′∈ 2̂n

∞⊔
n=0

Cn(Z,Z ′)× In × F̂ k
Kh

+

(Z)

 ∪ {∗}/ ∼.

For g ∈ Z/pZ, g acts on hocolim(F̂ k
Kh(L)) by sending the above collection of cells to ⊔

gZ,gZ′∈ 2̂n

∞⊔
n=0

Cn(gZ, gZ ′)× In ×Rg,Z

(
F̂ k
Kh

+

(Z)
) ∪ {∗}/ ∼.

In more detail, G acts on the homotopy colimit by sending a chain of composible

morphisms in 2̂n to its image under the action of G on 2̂n (that is it sends an

element of Cn(Z,Z ′) to an element of Cn(gZ, gZ ′)), by sending In to In by the

identity map, and by sending elements of F̂ k
Kh

+

(Z) to the elements of F̂ k
Kh

+

(gZ) by

using the map Rg,Z given by the action of G on F̂ k
Kh

+

(L) : 2̂n → B. The relations

∼ only involve the composition of morphisms in 2̂n which we know commutes

with the action of G. Similarly, the conditions (c.i) - (c.v) ensure that this action

satisfies the conditions for G acting on hocolim(F̂ k
Kh

+

(L)) as a topological space.

Furthermore, the suspension map between hocolim(F̂ k
Kh

+

(L)) and

hocolim(F̂ k+1
Kh

+

(L)) is given by natural transformation S1 ∧ F̂ k
Kh(L) → F̂ k+1

Kh (L),
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and we know that this commutes with the action of g. Thus, g acts on each space

in XKh(L) and the action of g commutes with the suspension in XKh(L), and so

XKh(L) is a naive Z/pZ-spectrum as desired.
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CHAPTER V

PROOF OF INVARIANCE

The goal of this chapter is to prove theorem 1.2. In order to do that, we

need to show that if L and L′ are two equivariantly isotopic p-periodic links, then

XKh(L) = hocolim(F̂Kh
+

(L)) is Borel stable homotopy equivalent to XKh(L′) =

hocolim(F̂Kh
+

(L′)). This is equivalent to showing that the Khovanov homotopy

type is invariant under the three equivariant Reidemeister moves (def 2.6). To do

this, we need the following definition of an insular subfunctor, which is a special

case of [LLS17, Def 3.25].

Definition 5.1. Given a strictly-unitary-lax-2-functor D : 2n → B an insular

subfunctor E of D is a collection of subsets E(u) ⊂ D(u) for each u ∈ Ob(2n) such

that for all u > v

s−1(E(u)) ∩ t−1(D(v) \ E(v)) = ∅ ⊂ D(ϕu,v).

We can extend E to a strictly-unitary-lax-2-functor by defining E(ϕu,v) ⊂

D(ϕu,v) = s−1(E(u))∩t−1(E(v)) and letting Eu,v,w : E(ϕv,w)×E(v)E(ϕu,v)→ E(ϕu,w)

be the map induced by Du,v,w : D(ϕv,w)×D(v) D(ϕu,v)→ D(ϕu,w).

Given an insular subfunctor E of D, we can define the corresponding

quotient functor (D/E) : 2n → B be setting (D/E)(u) = D(u) \ E(u),

(D/E)(ϕu,v) = s−1(D/E(u)) ∩ t−1(D/E)(v) and letting (D/E)u,v,w be the

map induced by Du,v,w. This is again a special case of the corresponding quotient

functor described in [LLS17].

Our reason for introducing insular subfunctors and their quotient functors is

the following important lemma.

Lemma 5.2. Given an insular subfunctor E of a strictly-unitary-lax-2-functor D

there exists a cofiber sequence
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hocolim(Ê+) ↪−→ hocolim(D̂+) −→ hocolim(D̂/E
+

).

In particular, if the inclusion map (resp. quotient map) in the sequence above

corresponds to an acyclic subcomplex of Tot(A(D)), then the quotient map (resp.

inclusion map) is a stable homotopy equivalence.

Proof. This follows directly from [LLS17]

In order to prove that XKh(L) is Borel homotopy equivalent to XKh(L′),

it suffices to find insular subfunctors of FKh(L) that are closed under the induced

Z/pZ-action, that have corresponding chain complexes which are acyclic, and whose

quotient functors are isomorphic to the Khovanov functor of L. Then we can apply

the previous lemma to get the desired Borel homotopy equivalence.

Proposition 5.3. If L and L′ are two equivariantly isotopic p-periodic links that

differ by a equivariant Reidemeister move of type I, then XKh(L) is Borel homotopy

equivalent to XKh(L′).

Proof. Let KC(L) and KC(L′) be the respective Khovanov chain complexes for

L and L′. We know that L′ differs from L by an equivariant Reidemeister move of

type I, which is the same as performing p copies of a regular Reidemeister I move.

We can depict these crossings as

.
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(a) (b) (c) (d)

Figure 5. (a) The 1-resolution of a Reidemeister I move, (b) the 0-resolution of
a Reidemeister I move, (c) a 0-resolution indicating both x+ and x− generators,
(d) a resolution indicating all the generators for both the 1-resolution and the
0-resolution.

We will label these crossings 1 to p. Now in KC(L′) these crossing are

resolved as either the 1-resolution or the 0-resolution (respectively (a) and (b) in

figure 5). Additionally, the 0-resolution contains a unique circle that can be labeled

as + or − to specify a part of the complex that only contains one of the Khovanov

generators x+ or x− for that circle. Sometimes we want to allow for both generators

in which case we will label the circle +/− like in figure 5 (c). Similarly, when we

want to refer to part of the complex containing the generators for any of the above

resolutions, we will use the notation in figure 5 (d).

We will let C1 be the subcomplex of KC(L′) containing all the generators

for vertices where at least one of the crossings involved in the p Reidemeister moves

of type I is the 1-resolution or at least one of the circles in the p 0-resolutions is

labeled with an x+. It is clear that C1 is closed under the natural group action.

The quotient KC(L′)/C1, which is depicted below, is the quotient complex that

contains all the generators for the vertices where all the p Reidemeister I moves are

the 0-resolution with the circle labeled x−.
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It is clear that KC(L′)/C1 is isomorphic to KC(L) and that KC(L′)/C1

corresponds to an insular subfunctor FKC(L′)/C1
of FKh(L

′). If we can show that

C1 is an acyclic subcomplex, then we will be able to apply lemma 5.2 to get that

hocolim( ̂FKC(L′)/C1

+
) → hocolim(F̂Kh

+
(L′)) is a homotopy equivalence and that

XKh(L) is Borel homotopy equivalent to XKh(L′) as required. To show this fact, we

will describe how C1 is built out of a series of acyclic subcomplexes (similar to the

ones described by Bar-Natan [BN02]).

Let C1.1 be the subcomplex of KC(L′) depicted below. That is, the

subcomplex of all the generators for vertices where the first Reidemeister I move

is the 0-resolution with the an x+ labeled circle or the first Reidemeister I move is

the 1-resolution.

m

C1.1
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Note that the two types of vertices in C1.1 are connected by an edge where the x+

circle in one of 0-resolutions merges to form a 1-resolution. Each of these merge

maps is an isomorphism, which means C1.1 is an acyclic subcomplex. In a similar

fashion, let C1.2 be the subcomplex of KC(L′) containing all generators for the

vertices where

• the first Reidemeister I move is the 0-resolution with an x− marked circle,

and the second Reidemeister I move is the 0-resolution with an x+ marked

circle, or

• the first Reidemeister I move is the 0-resolution with an x− marked circle,

and the second Reidemeister I move is the 1-resolution.

m

C1.2

Again, the merge maps between the 0-resolutions and 1-resolutions in the second

Reidemeister I move are all isomorphisms, so C1.2 is an acyclic subcomplex.

Continuing in this manner, let C1.i be the subcomplex containing all the generators

for vertices where

• the first i − 1 Reidemeister I moves are the 0-resolution with an x− marked

circle and the ith Reidemeister I move is the 0-resolution with an x+ marked

circle, or
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• the first i − 1 Reidemeister I moves are the 0-resolution with an x− marked

circle and the ith Reidemeister I move is the 1-resolution.

m

C1.i

Again C1.i is acyclic. By construction, C1 = C1.1 ⊕ · · · ⊕ C1.n, and since each of the

C1.i’s is acyclic, it follows that C1 is an acyclic subcomplex.

In the previous proposition, we described in detail a subcomplex

corresponding to an insular subfunctor that was closed under the group action

and was made up of acyclic subcomplexes corresponding to each of the p copies

of the Reidemeister I move. We will use a similar proof technique for equivariant

Reidemeister move of type II.

Proposition 5.4. If L and L′ are two equivariantly isotopic p-periodic links

that differ by an equivariant Reidemeister move of type II, then XKh(L) is Borel

homotopy equivalent to XKh(L′).

Proof. We again let KC(L) and KC(L′) be the respective Khovanov chain

complexes for L and L′, and we note that L′ differs from L by p copies of

the normal Reidemeister move of type II. Each of these p type II moves in L′

introduces two crossings. A depiction of two of the p type II moves can be seen in

figure 6 (a) below. We will refer to the left move as the first of the p Reidemeister
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II moves, and the right one as the ith Reidemeister II move. Each of the two

crossings can be resolved in two ways, and so each Reidemeister II move represents

four vertices in the cube of resolutions. We can label these four vertices as the 00-

resolution, 10-resolution, 11-resolution, and the 01-resolution. (See figure 6 (b)).

Note that the 01-resolution of each of the p-copies of the Reidemeister II move

contains a central circle.

Let C1 be the subcomplex of KC(L′) consisting of all the generators

corresponding to vertices where

• one of the p copies of the Reidemeister II move is the 01-resolution with the

central circle labeled x+, or

• one of the p copies of the Reidemeister II move is the 11-resolution.

It is clear this is an equivariant subcomplex. To see that C1 is acyclic, we will let

C1.1 be the subcomplex containing all the generators for vertices where

• the first Reidemeister II move is the 01-resolution with the central circle

labeled x+, or

• the first Reidemeister II move is the 11-resolution.

(See figure 6 (c)). The merge maps connecting the vertices in C1.1 are

isomorphisms, which means C1.1 is acyclic. Similar to our method in the previous

proof, we let C1.i be the subcomplex containing all generators corresponding to

vertices where

• the first i − 1 Reidemeister II moves are the 01-resolution with the central

circle labeled x− and the ith Reidemeister II move is the 01-resolution with

the central circle labeled x+, or
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• the first i − 1 Reidemeister II moves are the 01-resolution with the central

circle labeled x− and the ith Reidemeister II move is the 11-resolution.

See figure 6 (d). Again, the merge maps between these vertices are isomorphisms,

and so C1.i is acyclic. Since C1 = C1.1 ⊕ · · · ⊕ C1.n, we see that C1 is an acyclic

subcomplex that is closed under the group action.

Letting C2 = KC(L′)/C1 we see that C2 is the complex pictured in figure

7 (a). We now let C3 be the subcomplex of C2 consisting of all the generators for

vertices where

• at least one of the p copies of the Reidemeister 11 moves is the 00-resolution,

or

• at least one of the p copies of the Reidemeister II moves is the 01-resolution

with the central circle labeled x−.

It is clear from the description that C3 is closed under the group action.

To show that C3 is acyclic, we will let C3.1 be the subcomplex of C2 that

contains all the generators for vertices where

• the first copy of the p type II Reidemeister moves is the 00-resolution, or

• the first copy of the p type II Reidemeister moves is the 01-resolution with

the central circle labeled x−

See figure 7 (b). Since C2 only contains generators for vertices where the 01-

resolutions have an x− labeled central circle, the splitting maps between the

vertices in C3.1 are isomorphisms, which means C3.1 is acyclic. Defining C3.i in

the same manner described above, it is clear that C3.i is acyclic and that C3 =

C3.1 ⊕ · · · ⊕ C3.n (See figure 7 (c)).
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(a) (b)

00

10

01

11

11

01

10

00

(c) (d)

Figure 6. (a) a depiction of two of the p Reidemeister II moves that make up the
equivariant Reidemeister II move, (b) the resolutions of the crossings in the two
Reidemeister II moves, (c) the subcomplex C1.1, (d) the subcomplex C1.i
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(a) (b)

(c) (d)

Figure 7. (a) the quotient complex C2, (b) the subcomplex C3.1, (c) the
subcomplex C3.i, (d) the quotient complex C2/C3.
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Now, we note that C2 corresponds to an insular subfuctor FC2 of FKh(L
′),

so applying lemma 5.2 we get that the inclusion map hocolim(F̂C2

+
) ↪→

hocolim(F̂Kh
+

(L′)) is a homotopy equivalence. Additionally, we note that C3

corresponds to an insular subfunctor FC3 functor of FC2 , which means we can

apply lemma 5.2 a second time to get that the quotient map hocolim(F̂C2

+
) →

hocolim(F̂C2/C3

+
) is a homotopy equivalence. Since C2/C3 is isomorphic to KC(L)

(see figure 7 (d)), it follows that hocolim(F̂C2/C3

+
) is homotopy equivalent to

hocolim(F̂Kh
+

(L)), and so it follows that XKh(L′) is Borel homotopy equivalent

to XKh(L).

Lipshitz and Sarkar note that the above two proofs depend upon the

following facts.

Remark 5.5. [LS14] Let u and v be vertices in a (partial) cube of resolution such

that there is an arrow from v to u, and one of the following holds.

(1) The arrow from v to u merges a circle U of the (partial) resolution at v. Let

S be the set of all generators that correspond to u; and let T be the set of all

generators corresponding to v with the circle U labeled by x+.

(2) The arrow from v to u splits off a circle U in the (partial) resolution at U .

Let S be the set of all generators that correspond to u with the circle U

labeled by x−; and let T be the set of all generators that correspond to v.

Let C be the chain complex generated by S and T ; it is an acyclic complex, and

therefore we can delete it without changing the homology. If, in addition, C is a

subcomplex or a quotient complex of the original chain complex, then in deleting

C, we do not introduce any new boundary maps.
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In addition, we also note that if we want to delete an equivariant

subcomplex, we can take the subcomplex where at least one of p copies of the non-

equivariant Reidemeister moves contains one of the deletions described above. We

can then show that this equivariant subcomplex (or the corresponding equivariant

quotient complex) is acyclic by finding further acyclic subcomplexes. With this in

mind we can now proceed to the equivariant Reidemeister move of type III, and

note that since we have already shown that X (L) is invariant under equivariant

Reidemeister moves of type I and type II it suffices to check the following braid-like

version of the Reidemeister move of type III.

For more infomation about this braid-like Reidemeister move, see [Bal10, Section

7.3].

Proposition 5.6. If L and L′ are two equivariantly isotopic p-periodic links that

differ by the braid-like version of the equivariant Reidemeister move of type III,

then XKh(L) is Borel homotopy equivalent to XKh(L′).

Proof. We again let KC(L) and KC(L′) correspond to the Khovanov complex of

L and L′ respectively. This means that L′ differs from L by a series of p-copies of

the braid version of a Reidemeister move of type III. We know from the previous

remarks that it suffices to find acyclic equivariant subcomplexes corresponding to

insular subfunctors whose inclusion/quotient result in a complex isomorphic to

KC(L). We also know that these equivariant subcomplexes can be built up from
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smaller complexes, each focusing on a single Reidemeister III type move. It suffices

to use the complexes described by Lipshitz and Sarkar in [LS14, Proposition 6.4].

Let C1 be the subcomplex of KC(L′) where at least one of the p

Reidemeister type III braid-like moves contains a generator for one of the

vertices depicted in figure 8 with all of the + marked circles corresponding to

the x+ generator. Note that C1 is equivariant by construction, and it can be

checked directly that the quotient complex C2 = KC(L′)/C1 corresponds to an

insular subfunctor FC2 . This means that if C1 is acyclic, then the inclusion map

hocolim(F̂C2

+
)→ hocolim(F̂Kh

+
(L′)) will induce a homotopy equivalence by lemma

5.2.

Let C3 be the subcomplex of C2 where at least one of the p Reidemeister

type III braid-like moves contains a generator corresponding to one of the vertices

depicted in figure 9. Again, the − marked circle corresponds only to the x−

generator. By construction C3 is equivariant and it can be checked that C3

corresponds to an insular subfunctor FC3 . If we can show that C3 is acyclic,

then it will again follow by lemma 5.2 that the quotient map hocolim(F̂C2

+
) →

hocolim(F̂C2/C3

+
) is a homotopy equivalence. The subcomplex C2/C3 results in p

copies of the following 111000 resolution

which is clearly isotopic to KC(L). So if we can show that C1 and C3 are

acyclic then it will follow that hocolim(F̂C2/C3

+
) will be homotopy equivalent to

hocomlimF̂Kh
+

(L) and that XKh(L) is Borel homotopy equivalent XKh(L′).
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Figure 8. A subcomplex of C1 for one of the p copies of the Reidemeister III
move. The symbol + indicates the corresponding circle is labeled x+.
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Figure 9. A subcomplex of C3 for one of the p copies of the Reidemeister III
move. The symbol − indicates the corresponding circle is labeled x−.
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To see why these complexes are acyclic, we note the following list of deletions

described by Lipshitz and Sarkar.

Top half 1∗1111, 1∗1110, 1∗1101, 1∗1011, 110∗11, 0111∗1, ∗01111, 1∗1100,

1∗1010, 1∗1001, 0111∗01, 110∗01, ∗01110, 01101∗, ∗01011, 110∗10,

010∗11, 1∗0011, 01∗101, ∗01101, 1001∗1, 10∗101.

Bottom half 0000∗0, 1000∗0, 0100∗0, 0010∗0, 00∗100, 0∗0001, 00001∗, 0110∗0,

1100∗0, 1∗1000, 10101∗0, 01∗100, 1∗0001, ∗01001, 00∗101, 01∗001,

01001∗, 010∗10, 0∗0110, ∗01100, ∗01010, 100∗10, 1∗0100, 10∗100.

Here 1∗1111 means to cancel along the edge from the 101111 resolution to the

111111 resolution. It can be checked directly that each of these cancellations

corresponds to taking either a subcomplex or a quotient complex. This means

during all of the cancellations no additional maps are introduced.

We can build C1 and C3 out of subcomplexes C1,i and C3,i as we did in

propositions 5.3 and 5.4 above. That is, we can apply the deletions described by

Lipshitz and Sarkar to each of the p copies of the Reidemeister III moves in turn.

Each of the C1,i’s and the C3,i’s will be acyclic by construction and so C1 and C3

are acyclic as required.

We can now prove our second main theorem.

Theorem 1.2 For a p-periodic link L, the natural action of Z/pZ on L induces

a Z/pZ action on XKh(L) which makes XKh(L) a naive Z/pZ-spectrum.

Furthermore, if a link L′ is equivariantly isotopic to L, then XKh(L′) is Borel

homotopy equivalent to XKh(L).

Proof. If L is equivariantly isotopic to L′, we know that L can be transformed into

L′ by a series of equivariant Reidemeister moves. Applying propositions 5.3, 5.4,

54



and 5.6 in the same order as the series of equivariant Reidemeister moves gives us a

roof of morphisms from XKh(L) to XKh(L′).
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