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We introduce a new finite-complexity knot theory, the theory of plumbers'

knots, as a model for classical knot theory. The spaces of plumbers' curves admit a

combinatorial cell structure, which we exploit to algorithmically solve the

classification problem for plumbers' knots of a fixed complexity. We describe

cellular subdivision maps on the spaces of plumbers' curves which consistently make

the spaces of plumbers' knots and their discriminants into directed systems.

In this context, we revisit the construction of the Vassiliev spectral sequence.

We construct homotopical resolutions of the discriminants of the spaces of plumbers

knots and describe how their cell structures lift to these resolutions. Next, we

introduce an inverse system of unstable Vassiliev spectral sequences whose limit

includes, on its Eoo - page, the classical finite-type invariants. Finally, we extend the

definition of the Vassiliev derivative to all singularity types of plumbers' curves and

use it to construct canonical chain representatives of the resolution of the Alexander

dual for any invariant of plumbers' knots.
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CHAPTER I

INTRODUCTION

In [12], Vassiliev initiated the study of finite-type invariants by constructing

the spectral sequence which bears his name and analyzing the combinatorics of its

E 1-page. In contrast to classical methods in knot theory which attempt to

understand properites of individual knots, the foundation of Vassiliev's approach

was to apply the tools of algebraic topology to the study of the space of all knots,

/C. He discovered that the complement, or discriminant, of /C in the space of

immersions 51 ---t ffi.3 carries a rich combinatorial structure. Due to the highly

technical nature of its construction, including the use of the weak transversality

theorem to perturb polynomial mapping spaces, few other than Vassiliev himself

have built upon this approach. The principal starting point in the study of

finite-type invariants has instead has been the notion of the Vassiliev derivative

introduced by Birman and Lin [4] and made popular by Bar-Natan [2].

We believe that there remains a great deal to be learned through a geometric

analysis of the discriminant. Several authors, notably Randell [10, 11], Calvo [5] and

Stanford, have approached this area by replacing Vassiliev's choice of polynomial

knot spaces by spaces of stick knots. The discriminant in these spaces is constructed

from partial cubic hypersurfaces and has hardly been more amenable to

comprehensive description.
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The starting point of our approach will be to construct a new model for

classical knot theory we call the theory of "plumbers' knots". Among the

advantages of this model is that its disciminant is the union of partial hyperplanes,

so understanding its geometry is a combinatorial problem.

We are able to extend the notion of Vassiliev derivative to any singularity of

plumbers' curves. This allows us to produce an inverse system of "unstable"

Vassiliev spectral sequences whose limiting sequence's Eoo page contains that of the

classical Vassiliev spectral sequence. In contrast to Vassiliev's stable construction

which only carries singularity data from collections of transverse double points and

the generic boundaries of such singularities, each such unstable sequence carries

information about all singularities arising in the space of plumbers' curves on which

it is constructed. In exchange for more intricate combinatorics, this provides us with

complete data regarding the evolution of any knot invariant through what we call

its Vassiliev system.

In this section, we summarize our main results.

1.1. Plumbers' Curves

The curves we consider, called plumbers' curves, are piecewise linear

(hereafter, PL) curves such that the image of each linear map is parallel to one of

the coordinate axes and so that these axes alternate in a fixed order. The collection

of all such curves decomposes into a directed system of spaces Pm of plumbers'

curves of m moves, each of which is homeomorphic to a Euclidean cube. Inside of

each Pm lies the space of plumbers' knots of n moves, Km, and we determine that

Theorem 1.1. limKm is homotopy equivalent to !C.
----'>

As such, these spaces provide us with a model for classical knot theory in
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addition to presenting an interesting geometric theory in their own right.

'vVe show that each Pm admits a cell decomposition CELL.(Pm ) whose

structure can be canonically encoded through triples of permutations and collections

of "coincidence data". Within this cell complex we identify a subcomplex for

Sm = Pm \ Km, the space of singular plumbers' curves. The combinatorial data in

the cell complex for Srn allows us to recast the spaces Sm as limits of "coincidence"

functors Bm , which provides a concise resolution of its self-intersections using

standard tools of homotopy theory.

While is is commonly assumed that classification problems for knots of fixed

complexity are as difficult as those for Cl knots, the structure of these cell

complexes provides us with an equivalence relation on top dimensional cells called

elementary geometric isotopy.

Theorem 1.2. 7ro(Km) ~ ~m-l X {x,y,z}/ f"V, where f"V is the equivalence relation

generated by elementary geometric isotopies.

This characterization leads us to deterministic finite-time algorithms that

enumerate the components of K Til. and allow us to determine if two knots are

isotopic at a fixed complexity. An implementation of the enumeration algorithm has

demonstrated that there are seven knot types in K s, fourty-nine in K 6 and one

thousand and eight in K 7 . The data, summarized in Table 11.1, shows that the

seven components of K s correspond topologically to the unknot, three right-handed

trefoils and three left-handed trefoils. This phenomenon of "stuck knots", knots

which are not isotopic at a level of finite complexity but whose topological isotopy

classes coincide has been studied in the context of PL knots by a number of authors,

including Cantarella and Johnston [6], Calvo [5] and Biedl, Demaine et al. [3].

Plumbers' knots bear strong a resemblance to both lattice knots as
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considered for example in [8], and the cube diagrams studied in [1]. Any plumbers'

knot can be viewed as a lattice knot. We put bounds on number of the classes of

lattice knots that arise in each Pm. The similarity to the cube diagrams of

Baldridge and Lowrance [1] suggests that the tools we develop for plumbers' knots

could be useful in the study of knot Floer homology.

1.2. Vassiliev Theory

Once we have developed the theory of plumbers' knots, we revisit Vassiliev's

ideas in this context. We now review the conceptual framework he used for his

spectral sequence and summarize our main results.

The discriminant of JC intersects itself in complex ways, as sketched in

Figure 1.1. Vassiliev's first step was to "resolve" this singular space, replacing it

with a union of smooth objects. The most natural such construction replaces points

of the discriminant corresponding to curves with n transverse double points by

(n - I)-simplices, as in Figure 1.2. We resolve the discriminant of K m using an

explicit homotopy colimit.

Theorem 1.3. The homotopy colimit of the coincidence functor B m has the

following properties:

1. 7f : hocolimBm -----> Sm is a homotopy equivalence,

2. for all x E Sm, 7f-l(X) = {x} x *f=l.6.ki for some {k1, k2 , ... kn},

3. the cell structure CELL. (Sm) lifts to such a structure on hocolimBm, and

4. if e is a codimension one cell in CELL.(Sm), 7f-l(e) 3E e.

In order to use his resolution, Vassiliev considered only curves with n

transverse double points and those singular curves which "generically" occur as
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boundaries of families of such curves. While this resulted in accurate results in high

dimension, the completeness question for finite-type invariants remains one of

whether the remaining information is "dense" in the collection of all knot invariants,

and is not merely a lim1 question as is commonly assumed.

Vassiliev introduced a logical ordering on these generic singularities by

"complexity" , providing a filtration on the resolved discriminant. In the filtration

quotient, the boundaries of the simplices introduced in the resolution are identified

to a point, leaving a collection of combinatorial codimension one cycles which live

on the E 1 page of the spectral sequence of the filtration. Those linear combinations

of cycles which survive to the Eoo page correspond to knot invariants, now called

finite-type or Vassiliev invariants.

Due to the restrictive nature of the singularity types which can occur in

plumbers' curves, we are able to construct a straightforward filtration on the spaces

Sm which is compatible with Vassiliev's on "stable" singularities. This allows us to

define an inverse system of "unstable" Vassiliev spectral sequences.

Theorem 1.4. There is a directed system of first quadrant homology spectral

sequences E(m) whose EO pages are given by the filtration quotients of CELL. (3m )

and which converge to H* (3m ). Further, there is an Alexander dual inverse system

of second quadrant cohomology spectral sequences in whose limiting sequence appear

the classical finite-type invariants.

From the standpoint of algebraic topology, knot invariants are classes in

H°(JC). Recall that the Alexander dual to a zero dimensional reduced cocycle [a] in

a subspace X ~ lRn is a codimension one cycle [aV
] in (lRn

\ X)+. If X is a CW

complex. these cycles have as canonical chain representatives the sum of the

codimension one chains of X with coefficients given by the difference in values of [a]
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Fig. 1.1: A cross-section of the discriminant of the knot space.

on its cobounding regions. Intuitively, the Alexander dual of a zero cocycle is the

collection of its "derivatives" as one changes components along a path like that in

Figure 1.1.

The new codimension one cycles on the E 1 page of the Vassiliev spectral

sequence naturally correspond to higher derivatives. At the chain level, the

coefficient of each simplex encodes the change of value of an invariant of "less

singular" curves. For example, a path between isotopy classes of curves with a

single transverse double point generically passes through a finite number of regions

corresponding to curves with two double points, potentially changing the coefficient

of the Alexander dual at each crossing, suggesting a "second derivative".

Using the cell structure on the resolution, we are able to define the Vassiliev
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Fig. 1.2: Vassiliev's resolution of the discriminant; under the canonical projection,
the simplex a maps to the point A in Figure 1.1 and fJ to B.

derivative of a plumbers' knot invariant [a] across all singularity types of plumbers'

curves, rather than restricting our study to generic singularities.

Theorem I.5. For any [a] E fIO(Km) and any e E CELL3m_4(hocolim(Brn)), there

is a canonical Vassiliev derivative de([a]) which is an isotopy invariant of singular

pl'lImbers' curves.

Finally, we use this definition to identify a canonical chain representative for

the lift to Sm of the Alexander dual of a plumbers' knot invariant.

Theorem I.6. Let [a] E HO(Km). There is a canonical choice of chain

representative for roY] E H3m - 4(Sm) whose coefficients are given by the Vassiliev

derivative.
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CHAPTER II

PLUMBERS' KNOTS

We begin by introducing plumbers' curves and the terminiology we will use

to study them. This will immediately lead us to a cell structure on the spaces of

plumbers' curves, whose combinatorics we describe. Through analysis of these

combinatorics, we construct an algorithm which enumerates the plumbers' knot

types appearing in each space.

ILL Plumbers' Curves

Fix a basis {.x, y, z} for ~3. Let 1[3 be the cube [0, 1]3 ~ ~3 and

Pm = (lnt 1[3)711-1. Given a point v E Pm, we construct a map ¢v: ~ ---+ ~3 with

support on the interval [0,3] which we call a plumbers! curve with 3m "sections of

pipe" .

Throughout, we write [m] = {1, ... ,m}.

Definition II.l. Let v = (va, VI, ... , Vn) E Pm with Va = (0,0,0) and Vm = (1,1,1).

For i E [m - 1], define maps which interpolate between consecutive Vi in three

steps, parallel to the coordinate axes. Let the maps parallel to the x-axis, Xi(t), be

of the following form and define Yi(t) and Zi(t) analagously.

.(). [3i 3i + 1] T1ll3 _ ((,' ') x (' ,') x y Z)x, t. m' --.;;;:- ---+ rn. - 3l + 1 - mt Vi + mt - 3l Vi+l' Vi , Vi
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Each such map is a pipe, and we will sometimes not distinguish between such and

its image. Set the length of Xi as Ilxill = IXi(~) - xie~l)l, and its direction S(Xi)

to be the sign of Xi e~l ) - Xi (~) or 0 if they are equal.

Make similar definitions for Yi and Zi.

Let ¢v(t): [0,3] -----7 lI3 be the union of these maps. We call ¢v an m-move

plumbers) curve. An example of such a curve is given in Figure 11.1

/ '-

J
_e------------,I

Fig. 11.1: A plumbers' curve of 6 moves.

These maps encode piecewise linear motion parallel to the x-, y- and z-axes.

A generic curve alternates these three directions of motion in the order

x, y. z, x, ... ,z. Up to reparametrization any such map is obtainable via such a

construction, so we can identify Pm with the space of such curves, and call Pm the

space of m-move plumber's curves. Unless we are specifically using the properties of

the map ¢v, we ''lill make most of our statements about the underlying collection of

points v.

There are two types of codimension one singularities in C 1 curves: points at

which the derivative vanishes and transverse self-intersections. The rigid nature of

plumbers' curves allows for the description of their singularities by a single
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condition.

Definition 11.2. We say two pipes are distant if they are separated by at least

three intervening pipes. For example, Xi and Xi+l are not distant, but Xi and Yi+l

are. A plumbers' curve is singular if any pair of its distant pipes intersect. Thus

some of the pipes of a plumbers' curve - up to two in a row - can have zero length

without introducing a singularity. While this is different from PL knot theory, it is

necessary to get an equivalent limiting knot theory.

A non-singular plumbers' curve is a plumbers' knot, and the space of all such

is K m ~ Pm. The discriminant 8 m = Pm \ K m is the subspace of singular plumbers'

curves.

Definition II.3. Let cj.;v, cPw E K m. We say cj.;v and cj.;w are (geometrically) isotopic if

there is a path <Pv,w: II ~ K m with <pv,w(O) = v and <Pv,w(1) = w.

Later, we will see that this notion of isotopy in any K m is stronger than the

usual topological notion of knot isotopy. However, the two notions converge as we

increase the articulation of plumbers' knots.

11.2. A Cell Complex for 8m

The spaces Pm possess an intrinsic combinatorial cell structure given by the

threefold product of the standard simplical decomposition of lim-I. This cell

structure is compatable with the partition into subspaces 8 m and K m , and we will

utilize it throughout our work.

Let I:m be the symmetric group on m letters. We sometimes refer to a

CJ E I:m using permutation notation, CJ(l )CJ(2) ... CJ(m). As most of our constructions

and results will be symmetric for our x, y and z coordinates, we will often make

statements only for x.
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Definition II.4. Let (J E ~m-l' We say v E Pm respects (J in x if

o x x x 1< Va.i(l) < V;";(2) < ... < va;(m-I) < (11.1 )

{V E Pm I v respects (Jx in x, (Jy in y and (Jz in z}

\\Then we write the permutations in permutation notation, the name of the cell

transparently describes the defining inequalities. Such cells are a product of three

open (m - 1)-simplices, and the collection of all such cells e form the top dimension

of the cellular decomposition of Pm given by the threefold product of the standard

simplical decomposition of rrm-I.

Where possible we will abbreviate the triple ((Jx, (Jy, (Jz) as 5 and write, for

example, Px5 = (Px(J;j,o, (Jy, (JJ for the left action of ~m-I on ~m-I X {x, y, z} in the

indicated coordinate.

Each top-dimensional cell described above is non-empty. We distinguish an

element as follows.

Definition II.5. Given a cell e = e(5) ~ Pm, construct an m-move plumbers' knot

by choosing the point v( e) in the cell given by

The knot ¢v(e) is called the representative knot for e.

Any plumbers' knot ¢v in the closure of a cell is geometrically isotopic to the

representative knot for that cell via a straight line geometric isotopy. Thus, to study



12

geometric isotopy types of m-move plumbers' knots it suffices to study only

representative knots. This discretizes the study of plumbers' knots.

Lemma ILL If a pZ,umbers' curve ¢v is singular, v is in the closure of a

codimension one cell. Further, if some ¢v is singular and lies in the interior of a

cell e (of codimension one or greater), all v in the closure of e are.

Proof. If ¢v is singular, there must be distant pipes a and b which intersect. As the

pipes are lines parallel to the coordinate axes, it is easy to characterize plumbers'

curves for which given pipes intersect. Here and elsewhere, we write

"(p - r)(q - r) ::; 0" in place of "either q ::; r ::; p or p ::; r ::; q". Then

• Xi nYj, as illustrated in Figure II.2, if

1 ( XX )( x X) < 0· vi - v j +1 VH1 - vj +1 _ ,

2. (V] - v;) (V]+1 - v;) ::; 0 and

3 z z
· Vi = vj ,

• Xi n Zj if

2. v
y = v

y and
1 )+1

3. (v} - v:) (V}+l - vI) ::; 0, and

• Yj n Zi if

1 V x - V X
· HI - j+1'

3. (vi - v;) (vi+1 - v;) ::; o.
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Vj+l

Fig. II.2: An x-y intersection.

Each of these conditions requires an equality of the form Vi+l = Vj+ll vY = V%+l or

vi = vj. As e(5) is a product of simplices, such are satisfied only on the boundary

of a cell. If any v in a particular boundary cell of e(5) satisfies such a condition, all

in that cell do so. 0

Lemma 11.1 tells us that the discriminant Sm is described by a closed

subcomplex of Pm generated by codimension one cells. Thus Km is an open

submanifold of Pm whose combinatorics we now carefully develop.

Boundaries of cells e(5) E CELL3m-4 (Pm) are indexed by collections of

coordinate equalities on vertices. We encode such an equality as a transposition

decorated with a label indicating which coordinate it involves. For example, (1 2)x

means that the first and second vertex share x-coordinates, which is in the

boundary of e(5) precisely when {1 2} = {CTx(i) CTx(i + 1)} for some choice of i.

Given a collection T of transpositions and a cell e E CELL.(Pm) for whose

elements all of the equalities indexed by T hold, we say the cell respects T. For

example, e(3142x,4132y, 1324z) has several boundary cells which respect the set

T = {(13)x, (2 4)x, (14)y, (13)y}, all of which also respect the set T
1 = {(13)Xl (14)y}.

We use this to establish notation for boundary cells.
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Definition II.5. Let P(S) be the power set of a set S. Fix a permutation

ax E 2: m - l . Vve say that a set C ~ [m - 1] is admissible for ax if C is of the form

ax ({ i, i + 1, ... , i + k}) for some i and k. Denote such a set

{ax(i), ax(i + 1), ... , ax(i + k)L.

If 5 E 2:m - l x {x,y,z} is a triple of permutations and C is the disjoint union

of a collection of sets each of which is admissible for one of the ad, we say Cis

admissible for 5.

For example, C = {l, 2, 4L is admissible for (3142,r, 4132y , 1324z ). Sets

which are admissible for 5 index the collections of coordinate equalities which can

occur in the boundary of the cell e(5).

Given a set C which is admissible for 5, we produce a collection of

transpositions T( C) which describe the coordinate equalities in C compatibly with

the order of the vertices in e(5) by reading off the transpositions in the order they

appear in 5.

Definition II. 7. Define

T(C,5) = {(aa(i) aa(i + 1)), (aa(i + 1) aa(i + 2)), ... , (aa(i + k - 1) aa(i + k))}).

We say such a collection of transpositions is sequential for 5. When 5 is clear

fr011'l context, we will supress it from notation.

In the example above, T(C, 5) = {(I 4)x, (4 2)x}.

Definition II.8. Fix a triple of permutations 5 E 2:m - l x {x,y,z}. Let

C = {Cl ,C2 , ... ,Cd be a partition of [m-I] x {x,y,z} into sets which are

admissible for 5. Denote by e(5; C) the cell of plumbers' curves obtained by setting

equal precisely those coordinates of vertices which appear in the same Ci and

otherwise respecting the inequalities defined by 5.
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Such a cell is a boundary of e(5) of codimension I: ICil - ICI and is

homeomorphic to ~ ax X ~ay X ~ a z , where the ~ ad are the faces of the simplex

~m-l induced by the coordinate equalities in C. We omit singletons when writing

C as these induce no equalities in the coordinates. We will also write Cx, for

example, for the collection of all Ci E C which are admissible for CTx .

To continue our example with 5 = (3142 x, 4132y, 1324z), there is a boundary

cell of e(5) given by e(5; {I, 3}x, {2, 4}x, {I, 3, 4}y) whose codimension is

2 + 2 + 3 - 3 = 4. Any boundary cell of e(5) which respects

T = {(13}r' (2 4):r, (14)y, (13)y} is also a boundary of this cell.

Cells of codimension one or greater are not uniquely named; we can

rearrange any indices in 5 which appear in the same component of C and to obtain

another permutation 5' and another label for the same cell, e(5', C). Another name

for our example cell is thus e(5'; {I, 3}x, {2, 4}x, {I, 3, 4}y) with

5' = (1342.", 1342y, 1324z). This flexible naming convention will simplify the formula

for the Vassiliev derivative in Definition III. 9.

Definition II.9. Let 5 and C be as in Definition II.8. Define I;c = TI~=l I;c"

where ~c, is the symmetric group on the elements of C i .

All possible names for a given cell e(5; C) are given by e(p5; C) for p E l:;c.

For example, there are two classes of codimension two cells: those for which

C consists of two sets of two indices apeice and those for which C consists of a

single set of three indices. In the former case there are four names for each cell,

while in the latter there are six.

vVe can extend the idea of representative knots for top dimensional cells to

produce representative curves for every cell in CELL. (Pm).
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Definition 11.10. Fix a cell e = e(5; C) E CELL.(Pm ). A map in such a cell will

have vertices in Tn - ~CECx ICI + ICxl (y-z)-planes, some of the x vertices now

being coplanar. We need to define a function E[PxJ (i) that counts the number of

equalities that occur before Vi in the x-axis equation for e.

Choose an ordering of the elements of C x so that the indices {I ... Tn}

appear in the order 0-x(1) , 0-x(2), ... , 0-x(Tn), and label the kth set in this order

(C1,k For example, if o-x = 312546 and C x = {{45}x, {123}x, {6}x}, we would have

(Cx)l = {3, 1, 2}x, (Cxh = {5, 4} and (Cxh = {6}. Now, define E[Cx](i) = j,

Construct an m-move plumbers' curve cPv(e) E e by

The knot cPv(e) is called the representative curve (or when appropriate knot) for e.

The cell structure leads to a convenient categorical decomposition of the

space Sm. Denote by G) the collection of two element subsets of 1.

Definition 11.11. Define 8 m be the Tnth coincidence category, whose objects are

non-empty elements of P (em;lJ) x {x, y, z}) and whose morphisms are reverse

inclusions.

Objects of S,n are precisely our collections of transpositions, as in

Definition II.8.

Definition 11.12. Let Bm : 8 m -t Top be the covariant functor given by

Our analysis of the cell complex above and the basic fact that CW complexes

are the colimit of their skeleta now immediately gives us that
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Proposition 11.2. Sm = colimBm.

II.2.1. An Algorithm Jor Computing Components oj K m

Our naming convention for cells allmvs us to resolve several fundamental

questions about the spaces of plumbers' knots algorithmically.

By Lemma 11.1, there are two types of codimension one cells: those which

consist of plumbers' knots and those which consist of singular plumbers' curves. As

those which consist of singular plumbers' curves generate a cell complex for Sm, we

wish to distinguish them. Fortunately, we can determine combinatorially into which

of these classes a given cell falls.

Choose the representative knot for a cell e(O') and a transposition T = (a b)

appearing in CJ~,. Geometrically, applying T to CJx corresponds to exchanging the

x-coordinates of the ath and bth vertices, which "pushes" the (y-z)-plane x = -in

past the (y-z)-plane x = HI. As they lie in the plane x = i.., this forces the pipesnl m

Ya-l and Za-l to move, possibly intersecting Zb-l or Yb-l respectively, as illustrated

in Figure II.3. vVhile an intersection between other pipes than those mentioned is

possible, this always occurs in addition to one of the singularities mentioned above.

A similar analysis demonstrates that transpositions appearing in CJy

(respectively, CJz) can only cause intersections of the form X a n Zb-l or Xb n Za-l

(respectively, X a n Yb or Xb n Ya).

Definition 11.13. Let e(O') be a cell in Pn , Tx = (a b) a transposition appearing in

CJx ' We say that Tx produces an intersection if one of the following pairs of

conditions holds.

Either

1. CJ;;l(b) is between CJ;;l(a - 1) and CJ;;l(a) and CJ;l(a -1) is between CJ;l(b - 1)

and CJ;l(b) or

.d ..
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x = V~ x = vb x = V~ = Vb

Fig. II.3: Transposing x-coordinates may result in y-z intersections.

2. a;l(a) is between a;l(b - 1) and a;l(b) and a;l(b - 1) is between a;l(a - 1)

and a;l (a)

This condition is precisely that for Yj to intersect Zi in the proof of Lemma 11.1.

The definitions for y and Z are similar.

Theorem 11.3. Let e(5) and Tx be as in Definition II. 13. There is a straight-line

geometric isotopy between the representative knots for e(5) and e(Tx 5) if and only if

TT does not prod'uce a (y - z) -intersection for 5.

If an isotopy such as the one in the theorem exists, it is an elementary

geometric isotopy. Elementary geometric isotopies playa role for plumbers' knots

similar to that played by Reidermeister moves for C 1 knots. Elementary geometric

isotopies do not always exist even between neighboring knots which are

geometrically isotopic, as shown in Figure II.4.

vVe notice, however, that unlike Reidermeister moves, elementary geometric

isotopies preserve the complexity of the knot, as measured in number of moves

necessary to represent it. This affords us greater facility with the equivalence

relation generated by such.

Corollary 11.4. Let r/Yv, r/Yw E K m! v E e(5), W E e(5'). r/Yv is geometrically isotopic
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Fig. II.4: Two unknots which are minimally separated by a sequence of three elemen­
tary geometric isotopies.

to cPw if and only if there is a sequence of elementary geometric isotopies connecting

the repTesentative knots for e(O') and e(O").

Corollary 11.5. Ho(I{'m) ~ Z(e(O') I 0' E Em- 1 x {x,y,z})/ r'V, where rv is the

equivalence relation generated by elementary geometric isotopies.

As an application of Corollary II.5, we can computationally determine if two

m-move plumbers' knots ¢v and ¢v' are geometrically isotopic. Without loss of

generality, v and Vi occur in the interior of a (3m - 3)-cell.

Algorithm ILl. 1. Construct a graph whose vertices V are indexed by

CELL3m-3(Pm) and where there is an edge (e, e' ) E E if there is an elementary

genometric isotopy between the representative knots for e and e' .

2. Let eo, el E V with v E eo, Vi E el'

3. Starting at eo, perform a graph search for el' Such a search recursively

traverses edges in the graph until it either locates el or exhausts all vertices in

its component. If the search terminates successfully, the knots are isotopic.

Otherwise, they are not geometrically isotopic for the given Tn.
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If it is possible to determine to which K m a pair of plumbers' knots must be

lifted to ensure that a lack of geometric isotopy coincides with a lack of isotopy,

Algorithm 11.1 will determine if given knots are isotopic in O((m!)3) running time.

A modified version of Algorithm 11.1 which instead identifies the components

of the graph enumerates the geometric isotopy classes of K m . The results of this

algorithm being run on K s and K 6 are included in Table 11.1. K 7 has similarly been

determined to have one thousand and eight components. The topological isotopy

classes of these knots were determined by computation of known knot invariants on

representatives of each class.

Such algorithms have not been discovered for other finite-complexity knot

theories like stick knots. Indeed, it is usually assumed that enumeration problems

are at least as difficult for these theories as they are for that of C1 knots.

An immediate consequence of Theorem II.3 and Lemma 11.1, we have the

following characterization of the cell complex for Sm.

Corollary 11.6. CELL.(Sm) is generated in dimension 3m - 4 as a cell complex by

all cells of the form e(5; C) for which some tmnsposition in ~c produces an

intersection.

Thus, a byproduct of the aforementioned modification to Algorithm 11.1 is an

enumeration of the cells in CELL3m-4(Sm).

11.3. The Directed System of Spaces of Plumbers' Curves and Knots

For fixed m, elements of Pm are too rigid to properly model classes of C 1

knots. To do so, we require a mechanism by which to increase the articulation of a

knot of interest in a fashion which varies continuously across each Pm. As we will

also wish to work with duality between the space of knots and the discriminant
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Components of K 5

Type Cells Representative Type Representative
01 13,728 1234x , 1234y , 1234z

31 1342x ,2413y ,2413z 1342x , 3142y , 2413z

31 (R)

I

16 1342x ,2413y ,3124z 31 (L) 1342x , 3142y , 3124z

1 2431x ,2413y ,4213z 2431x ,3142y ,4213z

Components of K 6

01 1.7m 12345x , 12345y , 12345z

19,507 24135x ,31245y ,23145z 12453x , 13524y , 13524z

31 (R) 5 42351 x ,24315y ,24135z 31 (L) 42351 x , 51342y , 24135z

5 13524x ,15324y ,51342z 13524x ,42351y ,51342z

41
393 14352x , 31452y , 42135z 41

31452x ,31524y ,32451z

393 24153x , 25314y , 24315z 24513x , 42135y , 32415z

19 24153x , 31524y , 42315z 15342x ,31542y ,31524z

19 25134x , 41253y , 35241 z 52413x ,24513y ,25314z

51 (R) 4 15342x ,24153y ,42153z 51 (L) 15342x ,31542y ,42513z

4 31542x , 31524y , 42315z 31542x , 42513y , 42315z

1 41523x ,41352y ,34152z 41523x , 25314y , 34152z

12 15342x ,24513y ,35124z 15342x , 31542y , 35124z

12 25413x ,35124y ,25314z 24513x , 42153y , 42315z

9 25134x , 24153y , 35241z 25134x , 35124y , 35241 z

9 25413x ,31524y ,42315z 52413x , 24513y , 23514z

4 15342x , 24513y , 42153z 15342x , 31542y , 42153z

4 31542x ,31524y ,42351z 31542x , 42153y , 42315z

52 (R)
3 15342x , 25413y , 31524z 52 (L)

15342x ,31452y ,31524z

3 24153x , 35214y , 42315z 24153x ,41253y ,42315z

2 15342x , 25413y , 42513z 15342x , 31452y , 42513z

2 35142x , 35214y , 42315z 35142x , 41253y , 42315z

1 15342x , 24153y , 41253z 15342x , 35142y , 41253z

1 31452x , 31524y , 42315z 31452x ,42513y ,42315z

1 41523x , 25314y , 43152z 41523x ,41352y ,43152z

1 41532x ,41352y ,34152z 41532x , 25314y , 34152z

Tab. 11.1: Components of K 5 and K 6 ; the number of cells in a component are the
same in the second column
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inside the directed system, it is desirable to construct the maps Pm - Pm+1 so that

they take Sm to Sm+l and K m to Km+1 . It would also be useful for the map to be

cellular with respect to the cell complex structure on Pm, and we will be able to

accomplish this using a "barycentric subdivision" for the majority of the maps in

each space.

Occasionally it will be useful to refer to our basis vectors (x, y, z) as

(co, e l, (2), although this often decreases readability and we will avoid it where

possible. When we write [mlJ we are referring to the reduction of m modulo 3.

Vve require two pieces of notation in order to understand how the maps in

the directed system interact with the cell structure. We first need to build new

permutations that reflect the insertion of vertices into the plumbers' maps.

Definition II.14. Let k E [m - 1] and (J E ~m-l' Define jk,k+l((J) E ~m in two

steps. First, increase by one the image of the elements of the permutation whose

image is already greater than k. For example, if k = 2, 124563x becomes 125674x .

'Vrite the new permutation as o-[k], defined by

{

(J(i)
o-[k](i) =

(J(i) + 1 (J(i) > k.

o-[k](i)

Now, insert k + 1 in the "middle", lexicographically, of k and k + 2, so in the above

example we end up with 1253674x . Let a = min{(J-l(k), (J-l(k + I)} and define

i < (J-l(a) + l~((J-l(k) + (J-l(k + I)J)

i = (J-l(a) + l~((J-l(k) + (J-l(k + I)J)

o-[k](i - 1) i > (J-l(a) + l~((J-l(k) + (J-l(k + I)J).
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Alternately, define an element jk((J) by inserting k + 1 immediately following k. In

the current example, the result would be 123564x .

o-[k](i)

jk((J)(i) = k + 1

o-[k](i - 1) i > (J~l(k) + 1

We abuse terminology by calling the product of the barycentric subdivisions

of each of the simplicies in a cell again barycentric subdivision. In order to name

the subdivided cells in the image, we use the following notation.

{v E e((Jx, (Jy, (Jz)1

v),r = ~(Vx ( -1(')_1) + V
x

( -1(') 1))}2 ~x ~x ) ~x ~x ) +

The codimension one subset of the simplex represented by (Jx in which vj is the

average of its two neighboring coordinates is a union of faces in the barycentric

subdivision, as in Figure II.5. Thus, the cell e((Jx, (Jy, (Jz; (j)x) is a product of the

simplicies represented by (Jy and (Jz with these faces. Since this set is a subset of an

existing celL we can use our transposition notation for faces in the usual fashion.

Schematically, we want our sequence of maps to insert new vertices in a

"sufficiently distributed" fashion across the pipes in a plumbers' curve. To choose

the pipe into which to insert a vertex at each stage, we will fix a function a:: N ---7 N

and insert a vertex into the middle of the a pipe travelling in the e!mh direction in

the o(m)th move, per Figure II.5. We choose a: so that each move in a map in PM,

for some fixed NI, will be chosen in lexicographic order, skipping any newly created

moves until vertices have been inserted in each of the existing M pipes, then begin
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Fig. II.S: Averages of coordinates in barycentric subdivision; here, to = a and t3 = 1

again at P21vI .

We now define the maps on both the pointwise and cellular level. Let v E Pm

so that there is at least one vertex between Vo: and Vo:+1 along the e[mh axis. Such

points live in cells for which (0: 0:+1) does not appear in O'e[mb' Any cell in with this

property will be called good.

Definition II.I5. For m, > 2 and vEe E CELL.(Pm ) with e a good cell,

n = a(rn) + 1 and 6i,j the Kronecker delta. Define [¥::od: Pm - Pm+1 by

a.nd

{

V 1-

V'i-1 i> 0: + 1

([90od (V))X ,
m 0:+1

( 90od( ))Y
L.m V 0:+1

([90od (V))Z
m 0:+1
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900d ( )I'm V 0<+2

i 90od (V)711 0< 1

i goo (V)m 0<

Fig. II.6: ilf::°d(v)

The image of cP good( ) is the same as that of cPv, but the curve contains a new
~nl. V

vertex. This is homotopic to a curve in which the third coordinate is inserted

instead at the average of those of the two vertices closest to the middle of the pipe.

Observe that with this definition if::°d is not cellular, but is cellular when we

barycentrically subdivide the codomain. This allows us to use the j maps of

Definition II.14 to determine the image of the cell.

Lemma 11.7. Let e E CELL.(Pm ) be a good cell. Then the image of e 'Under the

If the pipe into which we wish to insert a vertex has zero length, such a map

ma,)' insert a vertex coincident to an existing one. This poses no problem in the

discriminant, but would result in a knot mapping to a singular curve. For example,

.f (X Y Z) d (X Y Z ).. . .th f1 V'i = Vi' V'i , V'i ,an V'i+1 = Vi' Vi' vi+ 1 , msertmg a vertex m e1 er 0 X'i or Y'i

results in i 9ood (V)' = iPL(V)' = 'U so 190od (V) (3i+1) = igood(,u) (3i+,4) an' rn 1 711 1+1 1, '711. 711 711 711'

intersection of distant pipes.

vVe resolve this issue by borrowing length from the two surrounding pipes, at

least one of which is guaranteed to have non-zero length if the curve is non-singular.
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In some cases, this requires changing the coordinates of the two existing neighboring

vertices in a manner which does not change the knot type of the image, as in

Figure II.7. To ensure that we don't change the knot type, we limit our deformation

of the knot in either borrowing direction to half the distance to the closest pipe,

which must run perpendicular to the plane in which the two vertices occur.

This issue only arises if two specific consecutive vertices in the curve lie in

the same coordinate plane. These are precisely the curves produced by points lying

in the closure of codimension one cells of the form e(O'x, O'y, O'Z; (a a+1)e[mIJ. Call

any such cell a-planar. All cells which are neither good nor a-planar, namely those

for which (0 0+1) appears in O'[mb but which are not in the closure of an a-planar

cell, will be called interpolating.

We make the following sequence of definitions for e[mb = eo (or x). Similar

definitions can be made for y and z.

Definition II.16. Let a(m) and a be as in Definition II.15 and vEe E CELL.(Pm )

v,ith e an Q-planar cell

Define L~ (v) by

i::;a-1

( X l( Y + y ) Z)
V Cl:l 2" Vex V (-1() ( ))' V exay a y ex +8 Yo

i=a+1

i ~ a + 2.

L~ is a cellular map from a-planar cells to the the barycentric subdivision of

the codomain.

Lemma II.8. Let e E CELL.(Pm ) be an a-planar cell. Then the image of e under
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--
Fig. II.7: (rn(v)

the znd'Uced chain map ({rn)# is

It now remains to continuously extend the maps {~od and (~ across the

interpolating cells. When within such a cell, rather than just inserting a vertex we

will also slightly perturb the vertices using the borrowing construction from

Definition II.16. See Figure II.S for an example of how the map functions on a point

which requires such an interpolation.

Definition II.17. Let a(m) and a be as in Definition II.15 and vEe E CELL.(Pm )

with e an interpolating cell.

\Ve define the interpolating parameter p(v) to be the ratio of the distance

between v~ and V~+l to the maximal distance between them within the cell if we fix

the other vertices, namely

p(v)
I x x I'va,,(a; 1 (a)-s(xa ))) - va,,(a; 1 (a+l)+s(xa )))
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-
Fig, II.8: i~ (v)

Define L~l (v) by

v'j, i :::; a-I

i ~ a + 2.

Now. we define i m as the union of these three maps. For M > In, write

Lm,M = iM-l 0 iM-2 0 ... 0 i m and let im,m be the identity.

Only i~, fails to be cellular, though the image of an interpolating cell is

contained in a cell we can name.

Lemma II.9. Let a = a(m) + 1 and e an interpolating cell. The image of e under

L~J satisfies

By construction, the following lemma is immediate.

Lemma II.lO. i m : K m '----> K m + 1 and i m : Sm'----> Sm+l.

That is, the {Km } and the {Sm} form compatible directed systems under the

im' In Definition III,12, we will use the compatibility of these systems to define an
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inverse system of cohomology spectral sequences as the Alexander dual of a directed

system of homology spectral sequences.

Let Lm •oo : K m ----7 ~Km be the induced map. Similarly for 3m-

Definition 11.18. Let v E K m and w E K liI . We say cPv and cPw are isotopic if there

is a path <1>v,w: IT ----7 ~Km with <1>(0) = [,m,oo(v) and <1>(1) = [,M,oo(W).

It follows from Lemma n.10 that if cPv and cPw E K m are geometrically

isotopic, so are cPLm(V) and ¢lm(W)'

We wish to compare these new spaces K m to more familiar spaces of (long)

knots. We will use PL maps of m segments whose segments are each parameterized

by intervals of fixed length 1.., so the ith segment has domain [0:., 3(i+l)]. Given am m m

point v E (lnt IT3yn~1, a PL map of "m segments" is a map 'l/Jv: ]R ----7 ]R3 with

support on [0, 3], built in a manner similar to that for a plumbers' curve.

Definition 11.19. Let v E (lnt IT3)m-l, and for i E [m - 1] construct linear maps

between consecutive Vi as follows.

£7(t): [3i,3(i+1)] ----7]R3
m m

(3i + 1 - mt)vi + (mt - 3i)vi+l

Each such map is a segment, and as with pipes we will sometimes fail to distinguish

betvveen the map and its image. Let 'l/Jv: [0,3] ----7 ]R3 be the union of the £i, so for t

in the domain of ti, 'l/Jv(t) = £i(t). Such a map is a PL map with m segments.

Definition 11.20. Let v E (lnt IT3)m-l and 7/Jv a PL map with m segments. v)v is

non-singular if 7/Jv(.'3) = 'I/Jv(t) only if s = t. A non-singular PL map with n segments

is a P L knot with m segments. Denote space of all such maps by Lm .

The maps which make L m into a directed system are constructed in a

manner similar to the maps between the Pm' but are much more straightforward,
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defined simply to be "inserting a vertex in the middle of the a(m)th move". This

requires a reparameterization of the map in order to make it a valid element of

L m +1 , which we produce by reconstructing the knot from the new list of vertices.

Definition II.21. Let a(m), a be defined as before. For v E (lnt lI3)m-l, define

i < a

i > a.

It is apparent that 1m is injective for all m. For M > m, write

1m .M = 1M - 1 0 1M - 2 0·· . 01711 , 1m ,m is the identity. The spaces {Lm } form a directed

system under 1m , so let 1711 .=: Lm -----7lli!}Lm be the induced map.

Geometric isotopy and isotopy of PL knots are defined in precisely the same

manner as for plumbers' knots.

Let K be the space of C 1 long knots in ffi,3. With the construction we have

exhibited, it is known that lli!}Lm is homotopy equivalent to K. We wish to

establish that 7f* (limJ(711) ~ 7f* (limLm) in order to use the space of plumbers' knots
----7 ----7

as a model for studying K. We begin by proving Theorem II.13, which shows that

the components of limJ(m are the same as those of limLm, using a standard but
----7 ----7

technically involved method: we produce maps from each directed system to the

other which are, up to isotopy, inverses in the limit.

To simplify the proof of this theorem, we will want to be able to say that a

map from one space of knots to another "respects the isotopy type" of a knot. To

make this rigorous, we approximate both PL and plumbers' knots with C 1 knots

and compare these approximations, thus allowing us to compare C1-isotopy classes

across knot spaces. It is known that we can approximate a PL knot 'l/Jw E L m to
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arbitrary precision with a C 1 knot 'l/Jw via a careful choice of corner smoothing, so it

remains to do the same with plumbers' knots. This approxmiation will not be

canonical, but it is well defined on components of the space.

Vie proceed by producing an appropriate map K m ---+ L 3m . We would like to

use the naive map that sends a plumbers' knot to the PL knot defined by the same

set of vertices. However not all plumbers' knots consist of vertices which produce

valicl PL knots, as plumbers' knots can have up to two consecutive pipes of zero

length. In order to produce continuous maps, we rely on techniques similar to those

used to produce maps between the K m , "buckling" knots which have segments

whose length is below a particular threshold.

Definition 11.22. Let 'u E Km- Define the global perturbation distance E(v) for the

knot r/Jv to be a small fraction of the minimum of the distances between distant

pipes and between pipes (other than the first two and the last two) and the

boundary of the unit cube. By perturbing the knot no more than this distance, we

do not to change the isotopy type or make it singular.

Define the buckling function for a pipe p in <Pv by

3(p)
E> Ilpll
E ::; Ilpll.

The buckling function acts as the borrowing function did before, providing an

interpolation which allows us to make our function continuous. As the length of a

particular pipe shrinks, we deform the the image of the knot in L 3m by moving the

vertices at its endpoints into the pipes which neighbor it, as in Figure II.9.
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Produce a map fm: K m ---; L3m . For each i E {O, ... ,m - 1} define

(fm(v)h

(fm(V)h+1

(fm(V)h+2

(vf + s(xi)ll xill,6(Zi-l), vf, vI - s(zi-d Il zi-III,6(Xi)),

(vI - s(xi)ll xill,6(Yi),vf + s(Yi)IIYill,6(Xi),Vt),

(vf,vf - s(Yi)IIYill,6(Zi), v: + s(zi)ll zill,6(Yi))'

Here, for convenience, define ,6(Z-I) = liz-III = o.

Vi+l

-
fm(vh+3

fm(vh+2

fm (Vhi+l
frn(vh

Fig. II.9: Buckling a plumbers' knot to create a PL knot

The image of fm has the property that Ifm(v)(t) - v(t)1 < E(V).

Lemma II.Il. TheTe is a map of sets Srvr : K m ---; JC which passes to a well-defined

rnap on 7To.

Sketch of pmof. Consider a "tubular neighborhood" of ¢ E K m. Srvr(¢) is a C1

curve which "intersects each fiber" in precisely one point. Such a choice of curves

can be chosen to be continuously parameterized by elements of K m and the tubular

neighborhood guarantees that the knot type is preserved. 0

There is an analagous map which smooths PL curves which by abuse we also

call SM.

Definition 11.23. Let g: Km ---; Lm (respectively h: Lm ---; K m). We say g Tespects
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the knot type of <Pv if SM(g(V)) is isotopic to SM(V) (respectively SM(h(v)) is

isotopic to 8lVI (v)). If 9 respects the knot type of all <Pv, we say 9 respects knot types.

We will make use of the maps fm in our proof of Theorem II.13. The inverse

maps are defined as follows:

Definition II.24. Let W ELm. Define Am: Lm ~ J(m to be the map which takes

the PL knot 'ljJw to the plumbers' knot <Pw. In general, Am does not preserve knot

types or even non-singularity. However, in order to ensure that Am respects knot

types it is sufficient to force the lengths of segments in 'l/Jw to be sufficiently small.

Define the maximal segment length function 0 for W E Lm by

o(w)

min{d(Pi, £j) I Ii - j I > I}

min{d(w'i,8(IT3
) liE {I, ... ,n - I}}

1
10 min(m1' 1n2)'

Let 111(w) be the minimum number so that 'l/Jlm ,M(1U)(w) is a PL knot with the

property that no segment has length greater than 0(w).

Lemma II.12. AM(w) a Im,M(w) respects the knot type of'l/Jw.

The "isotopy" between the approximated C 1 knots is itself approximated by

the triangulated surfaces bounded by each segment of the PL knot and the

corresponding pipes of the plumbers' knot.

Theorem II.13. The induced map f*: 1fo(li!!tJ(m) ~ 1fo(li!!tLm) is an isomorphism

of sets.

Proof. Let W E li!QLm and k an integer and 10 E L k so that h,oo(w) = w. We

require that in following family of diagrams indexed by w, the images of 'I}!w under
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both composites of maps are geometrically isotopic.

However, as Am, 1m and 1mrespect the knot type of 'l/Jw, there is a geometric

isotopy between the images. Since the i m are injective, this says that for w E fulJLm

there exists f) E limKm which maps to the isotopy class of 'l/Jiij under 1*.
-----t

Now. let 'i/Jiij and VIIi/ be isotopic elements of limLm . We can lift an isotopy
-----t

between them to a geometric isotopy at some finite stage, Ww,w,: II ---t Lm . Let

M = max{A1(W(t)) It E II}, where fliI(w) is as in Definition II.24. Precompose

Ww,w' by 1m ,M to produce a geometric isotopy W between 'l/JIM(w) and 'l/JIM(w')' Now

we can apply A'\1 to get a geometric isotopy between ¢(AMoIM)(w) and ¢(AMoIM)(w')'

Per the proof of surjectivity, under 1M these map to elements geometrically isotopic

to ,VI3M(w) and '~)I3M(W') respectively. That is, if 'l/Jiij, 'l/Jiij' E fulJL m are isotopic, we can

construct an isotopy between elements of fulJKm which map to knots isotopic to 'l/Jiij

and 1j)tTJ', so 1* is injective.

D

Using compactness to choose the maximum number of vertices necessary for

any higher isotopy, it is now straightforward to conclude that

Theorem II.14. limKm is homotopy equivalent to limLm .
-----t -----t

II.4. Relationships with Lattice Knots and Cube Diagrams

We observe that plumbers' knots bear strong reselnblance to a number of

other finite-complexity knot theories. Two of particular interest are lattice knots
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and cube diagrams. Lattice knots are studied because they can be used to model

physical data like length and thickness of the material from which a knot is

constructed. Cube diagrams are used in [1] to construct chain complexes of knots

with which one can study knot Floer homology.

II.4.1. Lattice knots

A lattice knot is a PL knot whose segments lie parallel to the coordinate axes

and meet one another on points of the integer lattice £::3 ~ R 3
. Clearly, such knots

are very closely related to the representative knots of Definition II.1D. In fact, a

suitable representative of a cell of non-singular plumbers' knots can be rescaled and

"closed" to produce a lattice knot, as in Figure II.10.

Fig. II.1D: Closing a plumbers' knot to obtain a lattice knot.

Definition II.25. Recall that L m is the space of m-segment piecewise linear knots

and suitably modify the definitions given so that maps in L m have their images in

[0, N]3 for some large N. Let Latm ~ Lm be the subspace of lattice knots.

Let cP1J E Pm be a representative knot for the cell e(O"'T' O"y, O"z) and define a
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lattice knot LK(v) = LK(¢v) E Lat3m - 1 by

LK(v)o

LK(vh

LK(v)2

LK(vhk

LK(vhk+l

LK(vhk+2

LK(vhn-3

LK(vhn-2

\vhere it' ranges from 1 to m - 2.

(m + 1, m· V'~_l' 0)

( X Y 0)711 . v1 , m . v1 ,

(
X ,Y z)m· vm - 1 , rn· l,m-l' m" vm - 1

(m + 1, m· V~_l'm· V~1-1)

Each representative knot for a co dimension 0 cell of Pm maps to a lattice

knot with 3m - 1 segments. However, these knots tend to use more segments than

necessary and there is some interest in discovering the minimal number of segments

required to create a lattice knot of a given topological knot type. Note that, as in

Definition II.lO, the idea of a representative knot is extensible to cells of any

dimension in CELL.(Km ). As some of the plumbers' knots that appear in these cells

contain zero-length pipes which must be omitted from their image in Latm, we can

study them as a means to find lattice knots with fewer segments. A pipe has zero

length precisely when the two vertices which define its move are in the same

appropriate coordinate plane.

Proposition II.I5. Let v E e(5; C). Define j..L(C) to be the number of pairs of

consecutive indices which appear in the some component of C. The number of
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zero-length pipes in ¢v is f-L( C).

Also, notice that when we close an m-move plumbers' knot for which

vf = V~1-1' there is a zero length segment produced in the closure. This occurs when

1 and m - 1 appear in the same set in C y .

Further, since adjacent pipes can move along the same coordinate axis, it is

permissible to omit a vertex in the middle of the segment when we construct the

lattice knot.

Proposition II.16. Let v(x) be the n'umber of pairs of consewtive integers which

appear in the same set in C y and C z . Let v E e(8; C). The n'umber of consewtive

moves which travel only along single axes in ¢v is v(v) = v(x) + v(y) + v(z).

Notice that if ¢v is a plumbers' knot, the same pair of consecutive integers

can never appear in the same set in all three of cx, C y and C z , as this would

produce three consecutive zero-length pipes.

Lemma II.17. For v E K mJ let f-L(v) = f-L(C) for the cell e(8; C) containing v.

{1(V) + v(v) + OvY 1,)1 :::; 3(m - 2) + l.
ll'1n-l

Definition II.26. Fix a cell e(8; C) and let ¢v E K m be the representative knot for

e. Let p(v) and v(v) be as above. Define a lattice knot LK(v) E Lat3m - 1-/l(v)-IJ(v)

in the same manner as in Definition II.25, omitting vertices which would coincide or

which bound two segments which move along the same coordinate axis.

Using this definition, Lemma 11.17 says that the smallest number of segments

that can occur in a lattice knot arising as the closure of a plumbers' knot of m

moves is 4. Clearly, such a lattice knot is an unknot.

The lattice knots which are produced by plumbers' knots are characterized

by one or two segments lying in the z = 0 plane and one in the plane with the
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highest x coordinate. Every lattice knot can be deformed to such, under the

appropriate notion of isotopy. It seems likely, therefore, that our classification of

plumbers' knots will illuminate the study of lattice knots.

II.4.2. Remarks on Cube Diagmms

The cube diagrams of Baldridge and Lowrance [1] bear strong resemblance to

lattice knots and can be considered as plumbers' knot representatives of particular

cells. A plumbers' knot which satisfies the x - y crossing condition (as described in

[1]) is one whose projection as a knot diagram onto the x - y plane results in the

y- parallel pipe crossing over the x-parallel pipe for each crossing. Such a diagram is

called a grid diagram, and can be used to compute the knot FloeI' homology of a

knot [9].

Proposition 11.18. Let e = e(B) E CELL3m-3(Km) and vEe. The pl'umber-s' knot

91) satisfies the x - y crossing condition if whenever- CJ; 1 (b + 1) is between CJ; 1(a)

and CJ;l(a + 1) and CJ;71(a) is between CJ;71(b) and CJ;71(b + I), then CJ;l(b) > CJ;l(a).

This follows immediately from the definitions, and symmetric statements

exist for the y-z and z-x crossing conditions. We can consider the subspace of cube

knots of Tn moves, Cm ~ K m1 generated by such cells, which are precisely the cube

knots of grid number Tn. If we do not allow stabilization moves, isotopy of cube

knots in each finite space is the same as geometric isotopy through cube knots.

Application of the algorithm for classification of plumbers' knots yields that Cs has

precisely one cell, a right-handed trefoil, while C6 has 11 components and C7 has

108. \Vhile these spaces are significantly smaller than the general spaces of

plumbers' knots, their geometry is significantly less straightforward and are

therefore unsuitable for our current purposes.
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Allowing for the stabilization moves described in [1], the authors prove the

following analog to Theorem II.13.

We expect that our development of the combinatorics of plumbers' knots will

illuminate computations in the cube diagram chain complex for knot Floer

homology. Further, our extension of the theory of finite-type invariants may provide

a method of understanding connections between the two theories.
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CHAPTER III

UNSTABLE VASSILIEV THEORY

We describe an unstable Vassiliev spectral sequence for the homology of the

spaces of plumbers' knots. Using the categorical description of the discriminant Sm

given in Proposition II.2 and standard tools of homotopy theory, we first construct a

resolution Sm of this space. This resolution is compatible with the existing cell

structure on Sm, allowing us to lift it to a cell structure on Sm which encodes both

the geometry of the discriminant and singularity data similar to that in Vassiliev's

resolution of 2.:.

By understanding the possible singularity types that can arise in plumbers'

curves. we introduce a filtration on the discriminant and lift it to the resolution.

Due to the rigid geometry of plumbers' maps, very few configurations of transverse

intersections of pipes are possible. Isolated triple points only occur when three

pipes. one parallel to each of the coordinate axes, intersect in a single point. It is

impossible to produce an isolated quadruple (or higher) point. Since double and

triple points are the only singularities which contribute to cycles in classical

Vassiliev theory, plumbers' knots are well suited to this analysis. The fact that

plumbers' knots serve as a model for classical knot theory coupled with this

observation gives circumstantial evidence that Vassiliev's invariants should be a

complete system of knot invariants.
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Vve extend the Vassiliev derivative to these spaces, using the cell structure to

provide a canonical choice of chain representative on all of Sm for the lift of the

Alexander dual to an invariant of plumbers' knots. Finally, we introduce the inverse

system of unstable Vassiliev spectral sequences induced by our filtration and see

that the EOO-page of its limit contains the finite type invariants.

IlL!. The Homotopical Blowup of the Discriminant

The problem of understanding the geometry of the discriminant is that of

understanding an arrangement of partial real hyperplanes. It is natural to record

which pairs planes intersect, and a standard technique in singularity theory is to

"blow up" the points of the intersection by replacing them with simplices whose

vertices are labelled by these pairs. The combinatorial description of the

discriminant as a colimit gives us the information we require to perform this blowup

using the homotopy colimit.

Definition IlL!. Let B m be as in Definition Il.12. The homotopical blowup of the

discriminant is Sm = hocolimBm.

In order to use these spaces Sm to study Sm, we need the following.

Proposition IlL!. The projection map 1r : Sm --; Sm is a homotopy equivalence.

The coincidence categories Sm of Definition Il.ll are directed Reedy

categories, so Proposition IIl.1 is an instance of the general construction considered,

for example, as Application 13.6 in Dugger's expository paper on homotopy colimits

[7]. While blowing up the discriminant in this manner is a standard technique, both

Vassiliev's filtration and the one we define in Definition IlI.4 produce spectral

sequences which are not equivalent to the one recorded in [7] which arises from the

usual simplicial filtration.
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Vassiliev's analysis of the spectral sequence in [12] relies on a cell structure

that arises in the "stable" filtration quotients of his resolution of the discriminant 2:.

\\7hile the blowup in Proposition III.1 is similar in spirit to Vassiliev's resolution,

illustrated in Figure 1.2, ours carries a canonical cell structure CELL.(Sm) lying over

CELL. (Sm) whose combinatorics we can understand before stabilization or filtration,

Definition 111.2. Let e = e(5; C) E CELL.(Sm) and let p be a nonempty collection

of transpositions in 2:c . Denote by * the topological join and by p(Ci ) the

transpositions in p with support on Ci .

Define e(5; C; p) = e X *;=16 (P(;i))-l E CELL.(Sm) to be the face of the

simplex "lying over" e(5; C) indexed by the elements of p.

This is schematically illustrated in Figure II!.l for the blowup of of the cell

e((25134x , 41253y, 35241 z ); {1, 2, 5}y), which arises as the non-transverse intersection

of three codimension-one cells. In this case, C consists of a single component

resulting in a simplex whose vertices are indexed by {(1 2)y}, {(1 5)y} and {(2 5)y}

respectively. Also illustrated are the "blowups" of the codimension one cells

cobounding e, which are homeomorphic copies.

By construction, the collection of all such cells e(5; C; p) gives rise to a cell

structure for Sm' Write 7f# for the induced map CELL.(Sm) --+ CELL.(Sm) which

"forgets p" .

It will be useful to abuse notation and extend our naming conventions to

plumbers' knots, which by necessity have empty singularity data, denoting by

e(5; C; 0) the cell e(5) E CELL3m-3(Km).

By the Leibniz rule, the boundaries of cells in CELL. (Sm) decompose into an

cl:tc'rnal component inherited from the boundary maps in CELL.(Sm) and an

inte'mal component induced by the combinatorics of the join of simplices. The
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Fig. IILl: The cell stucture over a non-transverse triple intersection in the discrimi­
nant at e((25134x , 41253y, 35241z ); {I, 2, 5}y).
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external boundary component introduces new equalities of coordinates in C,

v,rhereas the internal component deletes transpositions from p.

That is, the boundary of e(5; C; p) E C*(3m ) is given by

d(e(5;C;p)) = ~±e(5;C';p) + ~±e(5;C;p\ {Pi}),
C' p,Ep

where C' range over coarsenings of the partition C produced by combining precisely

two elements of C so that the resulting sets are admissible for 5, and the signs

alternate with respect to the lexicographic ordering in both sums.

This cell structure contains both the singularity data from the original

discriminant and combinatorial data analogous to that in Vassiliev's auxillary

spectral sequences from [12]. This wealth of data allows us to perform detailed

analysis at the chain level. Indeed, we will see that there is a canonical choice of

chain representative for a plumbers' knot invariant in our blowup.

111.2. The Complexity Filtration

In order to construct the unstable Vassiliev spectral sequence on the spaces

of plumbers' knots, we require an increasing, cellular complexity filtration on the

space Sm' Because all maps in a cell share the same singularity data, we define the

filtration on CELL. (Sm), which then lifts to CELL. (3m),

As we wish to compare our spectral sequence to the classical Vassiliev

spectral sequence, we construct our filtration so that "stable" singularity data

appears in the expected filtration. The filtration on other plumbers' curves is then

determined by choosing the greatest complexity amongst cells which such a cell

bounds.

Definition 111.3. Call a plumbers' curve whose only singularities are transverse
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double points simple. If e E CELL.(S71J is a cell whose points are simple plumbers'

curves, call e simple as well.

Simple curves have generic singularity data after subdivision. However, some

pipes may intersect two or more other pipes, which is an unstable condition.

Definition 111.4. Let e E CELL.(Sm) be simple. Define the complexity of e, cx(e),

to be the number of double points of a curve in e.

For e E CELLk(Sm) which contains a singularity other than isolated double

points, define

cx(e) = max{cx(f)lf E CELLk+l(Sm) and e E 8(f)}.

As triple points only occur in the boundary of cells with a pair of double

points, we recover that isolated triple points have complexity 2. Similarly, pauses of

three consecutive zero-length pipes are in the boundary of the transverse double

point where the curve "turns back through itself' in the span of four pipes.

Definition III.5. Let FpCELL.(Sm) = {e E CELL.(Sm)lcx(e) ::; p}.

Vve observe that the maximal number of transverse self intersections of a

plumbers' curve occurs when all of its defining vertices lie in a single plane. By

computing maximal number of transverse intersections rectilinear motion can

produce in a fixed number of pipes we have F(m~l)CELL.(Sm) = CELL.(Sm).

Using this filtration on the space Sm, we may generalize the notion of isotopy

to all plumbers' curves.

Definition 111.6. Two singular plumbers' curves cP, cPt E Sm are isotopic if there

exists a path 1> : I ---> Sm with 1>(0) = cP, 1>(1) = cPt and 1>(1) <:: (Fp \ Fp-1)Sm for

some p.
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Finally, we lift this filtration by FpCELL.(Sm) = 7f;l(Fp CELL.(Sm)). By

construction, the boundary maps in CELL.(Sm) can never decrease complexity. As

the suspension maps Sm "--' Sm+l do not change the image of a curve, they also

respect this filtration.

III.3. The Vassiliev Derivative of a Plumbers' Knot Invariant

The standard approach to the study of Vassiliev invariants has been through

the Vassiliev derivative, introduced by Birman and Lin [4] and popularized by

Bar-Natan [2]. The classical Vassiliev derivative of a knot invariant is defined for

curves with 1'1 transverse double points and can be extended through the 4-term

relation to triple points, but fails to see more degenerate singularities of smooth

knots. We define an analogue of the Vassiliev derivative for invariants of plumbers'

curves across any choice of singular cell.

Definition III. 7. Fix e(5; C; p) E C*(Sm), Ci E C. Let p(Ci ) denote those

transpositions of p supported on Ci . If p(Ci ) is not sequential for any 5, define the

C i coboundary of e(5; C; p) to be zero.

If p(Ci ) is sequential for some 5', it is sequential for exactly two such, both

with the property that e(5'; C; p) = e(5; C; p). These two choices of 5' will differ by

reversal of the order in which the elements of Ci appear in the permutation. Let

5[p(C;)J+ be the one which occurs first in the underlying lexicographic ordering and

5[p(Ci )]- the other. Define the Ci-coboundary of e(5; C; p) to be

Note that the coboundary formula involves a "signed difference" of cells

determined by the geometry of the blowup.
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The fact that the C i are disjoint immediately implies

Lemma III. 2. Let e(5; C; p) E CELL. (S'm) . For any pair Cl , C2 E C,

e5CI e5c2 e(5; C; p) = e5C2 e5CI e(5; C; p).

Definition IlL8. Define the total co boundary of e = e(5; C; p), written e5c(e), to

be the element of CELL3n-3(Km) resulting from composing, in any order, all of the

e5c, for Ci E C.

Lemma III.2 then says that the total coboundary is well defined.

Note that when C has a single component e5c(e) is the "signed difference" of

two cells in CELL3n-3(Km), as in Figure IILl. In this sense, certain codimension one

cell:,; in the blowup "separate" pairs of cells from Pm containing plumbers' curves.

Recalling Section L2 we make the following definition.

Definition IIL9. Let [a] E fIO(Km ) and e = e(5; C; p) E CELL3m-4(S'rr,). The

Vassiliev derivative of [a] at e, de ([a]) , is [a](e5c(e)).

In contrast to the classical Vassiliev derivative, this definition works for any

singularity of plumbers' curve.

Proposition III.3. The Vassiliev derivative is an isotopy invariant for singular

plunrbers' curves.

Sketch of PTOOf. Analogously to our isotopy classification of plumbers' knots, we can

consider representative curves in cells of singular plumbers' curves and restrict our

attention to straight-line "elementary" isotopies between them. Given a plumbers'

knot invariant [a] and two cells of singular plumbers' curves e and e' which share a

boundary f, it is straightforward to compute df([a]) and that de([a]) = de([a]) if

there is an elementary isotopy between their representative curves. 0
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It is vital that our definition agree with the classical definition when the

plumbers' curves in question are sufficiently articulated and the singularities in the

"stable" class studied by Vassiliev.

Definition 111.10. Call an isolated singularity of a plumbers' curve stable if it is

separated from any other singular point by at least one vertex. A cell consisting of

singular plumbers' curves whose singularities consist only of stable double and triple

points is a stable cell.

Our notion of stability differs from Vassiliev's. In particular, our definition is

at the cellular level, while his was at the spectral sequence level.

Recall that a singular curve is said to respect a chord diagram if the

endpoints of each chord are identified in the image of the map (c.f. [2]). Chord

diagrams are usually considered up to diffeomorphisms of the spine which do not

change the order of the endpoints of the chords, and we abuse terminology and call

such a. class of chord diagrams a chord diagram. When we say a map respects a

chord diagram, we mean that it respects some member of its equivalence class.

Each stable cell e has associated to it some maximal chord diagram which its

elements respect, so to evaluate the Vassiliev derivative of [a] E HO(K) on its lift El,

we evaluate a representative weight system for [a] on this chord diagram.

The following lemma justifies the term "stable" and follows immediately

from Definition III.9. It says that on stable cells our notion of Vassiliev derivative

agrees with that of Birman and Lin [4].

Let e E CELL.(Sm) be a stable cell of complexity n and [a] E HO(Km ). We

compute that the codimension one lift of such a cell, El, is 1Ti/(e) = ex ,6.n-l. In

particular, it consists of a single cell which is analagous to the one which arises in

the classical Vassiliev spectral sequence for the same singularity data, and so will
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have as its derivative a single coefficient.

Lemma IlIA. Let e, e and [a] be as above, then de([a]) is given by evaluation of a

representative weight system for [a] on the maximal chord diagmm respected by e

OT, eqlL'ivalently, by evaluation of [a] on an alternating sum of plumbers' knots

pTOduced by Tesolving in a'u possible ways the singulaTities of some map in e.

The case most referred to is where e E CELL3m-3-n(Sm) be a stable cell

whose points are singular curves with precisely n double points. The cell e has

singularity data C = {{ai, bi }d,}, i E {I ... n} and lifts to a codimension one cell

e(5; C; p) = e x 6.n
-

1 whose second factor has vertices which are labeled by

transpositions Pi = p({ai,bi}dJ = (ai bi)di'

One computes that oc(e(5; C; p)) = Li (-1)ie(5[Pl]E,,1 [PZ]Ei,2 ... [Pn]Ei,n; c; 0),

where fi,l is the jth digit of the binary representation of i using digits from {+, - }.

Therefore, for [a] E HO(Km ), de([a]) is the alternating sum of the value of [a] on the

211 cells of K m cobounding e.

All other stable cells contain triple points. Vassiliev studies such singularities

in [13], but we do not single out such cells for further analysis here.

The ability to define the Vassiliev derivative for any singularity of plumbers'

curves along \vith the cell structure on Sm provides a canonical chain representative

for the dual to a plumber's knot invariant as given by the following "Taylor's

theorem" , showing how the derivatives of a plumbers' knot invariant determine that

invariant.

Theorem IlL5. Let [a] E fIO(Km ). The lift of its Alexander dual cycle [aV
] to

H3rn - 4 (Sm) has a chain representative given by

eECELL3m-4(Sm)
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To prove Theorem IlL5, we first need to understand which cells in

CELL. (3m ) can carry non-zero coefficients as chain representatives and how these

cells fit together. The condition in Definition IlL? that each p(Gi ) be sequential for

5 implies that non-zero Vassiliev derivatives only occur for cells of dimension

3m - 4. The internal faces of such a cell are indexed by forgetting one transposition

y in some Pi' In order to have internal faces, Ipi must be greater than one.

e iven a face f = f (5; C; P \ {y}), the collection of cells which are incident to

the face are of two types: internal cofaces which also lie in 1f;1(e(5; C)) and

externa.l cofaces which appear in some 1f;1 (e(5'; C; P \ {T})). The internal cofaces

which are incident to f are of the form e(5; C; (p \ {T}) U {y'n), for some y' E ~Ci'

Precisely those y' whose addition to P \ {T} results in a new collection sequential for

5 correspond to cells with non-zero Vassiliev derivative.

vVrite Pi = ((Pi(l) Pi(2)), (Pi(2) Pi(3)), .. . , (Pi(k - 1) Pi(k))}. There are two

possibilities: y is an "endpoint", either (Pi(l) Pi(2)) or (Pi(k - 1) Pi(k)), or removing

y = (Pi (€) Pi (€ + 1)) splits Pi into two disjoint collections sequential for 5.

In the first case, there are two choices of transposition y' E ~Ci whose

addition will result in a collection sequential for 5: y and (Pi(l) Pi(k)). In the

second case, any of the transpositions (Pi (1) Pi(€ + 1)), (Pi(€) Pi(€ + 1)), (Pi(l) Pi(k))

or (Pi (€) Pi (k)) "reattach" them into a single collection sequential for 5, while the

rest result in non-sequential collections. Thus, there are always either two or four

internal cofaces which can contribute a non-zero coefficient to f.

In constrast, there are always two external cofaces incident to a given f

vvhich can contribute non-zero coefficients. As mentioned above, these are the cells

e(5;C';p\ {y}) E 1f;1(e(5;C')) and e(yB;C';p\ {y}) E 1f;1(e(y5;C')), where C' is

the refinement obtained from C by "splitting the appropriate Gi along T" and y acts

on 5 by block permutation of the elements in these two new partition elements in C.
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Proof of Theorem III. 5. Vie must check two things: that iiv agrees with a chain

representative of roY] on cells which lift to homeomorphic copies of themselves, and

that it is a cycle.

The cells in CELL3m -4 (3m ) are all of the form e( iJ; {ai, bi } ). These cells lift

to cells of the form e = e(iJ; {ai, bi }; {(a b)d). We see that

de([a]) = (-l)0(e l [a] (e(iJ) - e((a b)iiJ)), the difference of the value of the invariant

on the cobounding cells of e, which is precisely the coefficient assigned to the cell by

Alexander duality. Thus if ii v is a cycle, it is a chain representative of the lift.

It remains to show that for each cell f E CELL3m-5(Sm), the total

contribution of cells incident to f under the boundary map d is zero. To do so, we

consider an arbitrary cell e E CELL3m-4(Sm) for which Vassiliev derivatve of [a] is

non-zero, select one of its internal faces and compute the sum of the incidence

coefficients of each of the face's cobounding cells. It suffices to consider internal

faces of such cells: every cell with a coface whose Vassiliev derivative is non-zero

arises as such an internal face, since if internal cells do not contribute the two

external cells' contribution must be equal with opposite sign by Proposition III.3.

'Write Ci (T) = C~ U C;' for the refinement of Ci by splitting at T1 C(T) for the

corresponding refinement to C and p[T, i,j] = (p \ T) U (Pi Pj). Let a be the

standard coboundary of a cell in CELL.(Sm) and use our analysis of cofaces to

compute that (up to a sign depending on choice of iJ),

8(f(8;C;p\ {T})) = -e(8;C;p) + (-l)"e(iJ;C;p[T, 1,£+ 1])

+ (-1)k-fe(8; C; p[T, £, k]) - (-1)k-le(8; C; p[T, 1, k])

+e(iJ;C(T);p\ {T}) -e(T8;C(T);p\ {T})

+ cells with zero Vassiliev derivative.
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Using Lemma III.2, we can rewrite 6e as 6e\ci6Ci and 6eW,6c:6c;, for these two

different types of cells. We now expand the coboundaries.

dc\(f)([a]) = [a] (6ee(B; C; p) + 6ee(B; C; p[T, 1, k]) + 6ee(B; C; PiT, 1, e+ 1])

+ 6ee(B; C; p[T, e, k]) + 6C(T)e(B; C(T); p \ {T})

+ 6C(T)e(TB; C(T);p\ {T}))

= [a] (6cJ6c, (e(B; C; p) + e(B; C; p[T, 1, k])

+ e(B; C; PiT, 1, e+ 1]) + e(B; C; p[T, e, k]))

+6c:6c:,(e(B;C(T);p\ {T}) +e(TB;C(T);p\ {T}))))

= [a] (6(\ (e(B[p(Ci)r; C; p \ p(Ci )) - (-I)IC,l e(B[p(Ci )]+; C; p \ p(Ci ))

+e(B;C;p\p(Cd) - (-I)IC,l e(wo(Ci )B;Cp\p(Ci )) = [0'](0)

So dc\f([a]) = [0'](0) = 0, as required. [J

This chain representative av is canonical in the sense that the coefficient on a

given cell is the "signed difference" of the coefficients on the cells it "separates". We

call this canonical representative the Vassiliev- Taylor series JOT [a]. For purposes of

computation, one can identify representatives of [aV
] in CELL.(S"J with fewer

non-zero coefficients by choosing certain boundary contributions also to be non-zero.

Definition III.Il. Let [a] E fIoUe). Define the Vassiliev system of [a] to be the

collection {at, a;(, ... } of the Vassiliev-Taylor series of its restrictions

[am] E HO(Km ).

\Ve note that the Vassiliev system is defined for any knot invariant, even

those not of finite type.

Theorem III.6. Any [a] E fIO(lC) is completely determined by its Vassiliev system.
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Proof. Any knot invariant is a locally constant function on isotopy classes of knots

k E Ho(JC). By Theorem II.13, any k E Ho(JC) has a representative km in Km for

some m. The restriction [am] E HO(Km) has Vassiliev-Taylor series a~, which in

particular contains sufficient information to deduce the value of

[am](km) = [a](k).

Conceptually, the Vassiliev system decomposes Vassiliev's filtration of knot

invariants by degree into a sequence of finite objects which each carry such a

filtration. These filtrations are finite at each stage a,nd provide us with a mix of

stable and unstable data with which to analyze invariants. However, we have not

yet identified the associated graded for these filtered complexes, nor have we

investigated how the filtration behaves with respect to the inverse limit.

IlIA. The Unstable Vassiliev Spectral Sequence

o

vVe now construct analogues of the Vassiliev spectral sequence for the spaces

of plumbers' knots. The cell structure on each plumbers' knot space allows us to

analyze these sequences explicitly and to identify how the inverse limit of these

spectral sequences contains the collection of finite-type invariants.

Definition III.12. Let E;',q,(m) be the homology spectral sequence of the

complexity filtration on Sm with EO page given by E2',q,(m) = (Fp' / Fp'-l) Cq'-p,(Sm)

and converging to H*(Sm) ~ H*(Sm). The corresponding spectral sequence in

cohomology E~,q(m) is obtained by reindexing p = _pi, q = (3m - 4) - q' + 2p', We

call this the mth 'unstable Vassiliev spectral sequence.

By Alexander duality, E~,q(m) ====} H*(Km ).

A stable cell e cannot lie in the boundary of any j E CELL3m-3(Sm) because

such cobounding cells only arise internally to 1f;l(e), and e is the cell of highest
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dimension lying over e. Thus, any cycle in which a stable cell occurs with a

non-zero coefficient will represent non-zero homology class.

Lemma III. 7. (Fp/ Fp-d3m is homotopy equivalent to a disjoint union of wedges of

spheres

Sketch of proof. Let e E CELL(Sm) with be a cell of complexity p. The lift 1T- 1 (e) is

the product of e with a join of simplices, and applying the filtration quotient

identifies some collection of faces of this join to the basepoint. The image of e under

this identification is homotopy equivalent to a wedge of spheres.

If two cells e and el consisting of complexity p curves share a boundary f

whose elements are also curves of complexity p, then 1T-
1(f) retracts onto

intersection of e and el, and their union is, up to homotopy, e. On the other hand,

if f has complexity greater than p, it is not included in Fp3m . 0

This data allows us to identify a collection of non-zero cycles in E;n,n (m).

Definition 111.13. Fix e E CELL3m_4 (3m) a stable cell of complexity n. Let

[N(e)] E E~-Tl,n(m) be the unique minimal cycle containing e, as guaranteed by

Lemma III. 7.

Using such cycles we can see that finite type invariants arise in the proper

complexity in limit of the unstable spectral sequences.

Theorem 111.8. Let FTn <;: HO(JC) be the collection of finite-type invariants of

type n, then FTn '------7 ~E~n,n(m).

Proof. Let [a] E fIO(lC) be an invariant of type n. Fix a representative linear

combination of weight systems for [aJ, a linear combination of chord diagrams I: Ci

with which this representative pairs non-trivially and a collection of singular curves

r = {,'i hi respects cJ.
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Choose an integer m(f) large enough that all of the Ii E f are represented in

Sm(r) by stable curves lying in cells ei, This ensures that we can resolve the

singularities individually, so all of the topological knot types necessary to apply

Lemma IlIA are represented in Km(f)' Write [am(f)] E HO(Km(f)) for the restriction

of [a] to Km(f)' Then dL, e(')'i) ([am(f)]) = ~i ([aJ, Ci) o:J 0 and so the class

~i(a, ci)[N(ei)] E E;;,n,n(m) is nontrivial.

Applying the universal property of the inverse limit, we see that [a] maps

non-trivially to lim E;;,n.n, o
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