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We investigate the existence of a stable homotopy category (SHC) associated to the

category of p-complete abelian groups Ab;. First we examine Ab; and prove Ab; satisfies all but

one of the axioms of an abelian category. The connections between an SHe and homology functors

are then exploited to draw conclusions about possible SHC structures for Ab;. In particular, let

K:(Ab;) denote the category whose objects are chain complexes of Ab~ and morphisms are chain

homotopy classes of maps. We show that any homology functor from any subcategory of K:(Ab;)

containing the p-adic integers and satisfying the axioms of an SHC will not agree with standard

homology on free, finitely generated (as modules over the p-adic integers) chain complexes. Explicit

examples of common functors are included to highlight troubles that arrise when working with Ab~.

We make some first attempts at classifying small objects in K:(Ab;).
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CHAPTER I

INTRODUCTION

A structure in algebraic topology noticed and identified by Puppe [13] and Verdier [16]

is that of a triangulated category. Examples include such categories as the derived category

of a commutative ring and the category of spectra. These triangulated categories often support

additional structures such as monoidal products and function objects. A stable homotopy category

(SHC) is an axiomatic generalization of these examples but the axioms have yet to be universally

agreed upon [14, 3]. By an SHC we will follow the convention in [4] and mean a triangulated

category with a compatible monoidal product and function objects together with a set of weak

generators that satisfy Spanier-Whitehead duality. One key characteristic of an SHC is that

morphisms sent to isomorphisms by all homology functors are equivalences. Call a morphism f, a

quasi-isomorphism if all homology functors send f to an isomorphism. With this language in an

SHC, all quasi-isomorphisms are equivalences.

Denote the category of p-complete abelian groups by Ab; and the p-adic integers by Zp.

Let K(Ab;) be the triangulated category whose objects are chain complexes of p-complete abelian

groups and morphisms that are chain homotopy classes of maps. We show any homology functor

from any subcategory of K(Ab;) containing the p-adic integers and satisfying the axioms of an SHC

will not act like ordinary homology on free, finitely generated (as Zp-modules) chain complexes.

In other words, if there is an SHC for Ab;, it does not admit an extension of standard homology.

We begin by explaining our interest in this category and then justify why the standard

construction given in [4J does not work for Ab;. We give additional properties for Ab; in Chapter

II before giving the exact definitions for an SHC in Chapter III. Chapter IV contains the precise

statements of the non-existence results for an SHC of Ab;.
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1.1 Motivation

The motivation for this work comes from searching for an analogue of the derived category

for the category known as "Morava modules". The Morava module of a spectrum X is the input to

the Adams-Novikov spectral sequence that computes '7r*(LK (n) (X)) [2]. It is possible that similar

techniques used in studying the derived category of modules over the Steenrod Algebra (see [7],

[11], [10], and [12]) could be used to study LK(n)X if we had a derived category of Morava modules.

Like Ab;, the objects in the category of Morava modules are complete with respect to the ideal of

a complete local ring. We believe a reasonable SHC structure for Ab; will provide guidance about

how to make an SHC for Morava modules and conversely obstructions to a reasonable structure

for Ab; will also lead to obstructions to making an SHC for Morava modules.

1.2 Examples and Construction of an SHC

We outline a construction of an SHC that works for the category of R-modules (where

R is a unital commutative ring) and highlight how this construction is often used in a more

general setting. It is known that the SHC of R-modules is the derived category of R, denoted

V(R). That is, V(R) is a triangulated category with a compatible monoidal product where all

quasi-isomorphisms are equivalences and such that a suitable approximation for R-modules always

exists. We present the construction given in 14] that satisfies this definition, though the construction

differs significantly from the presentation given in [17].

We begin by creating a triangulated structure for R-modules. Let Ch(R) be a category

whose objects are unbounded chain complexes and morphisms are sequences of degree preserving

R-module morphisms that commute with the differentials. The quotient category JC(R) has the

same objects but morphisms are chain homotopy classes of maps from Ch(R). Define the functor

~: JC(R) ----t JC(R) degree wise by (~X)n = X n- 1 with differentials (dEX)n = (-I)d;;_l' Let ~iX

be ~ applied i times to X and let R(i) denote the chain complex with the regular module R in the

i th degree and D's in all others. JC(R) is a triangulated category where the cofiber of a morphism

is given by the standard cone construction. Furthermore, the tensor product over R induces a

canonical monoidal structure on JC(R) that is compatible with the triangulation.
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One definition of the derived category is the full subcategory of K(R) whose objects are

all X with a filtration XO s:;; Xl s:;; X2 s:;; ... such that X n /Xn
-

l ~ EB (EBR(i)) for all n (see
iEZ

[8] for details). We call objects that are colimits of sequences of the above form R(O)-cellular, thus

V(R) is the full subcategory of K(R) whose objects are R(O)-cellular.

May shows concretely in [8] that this construction of V(R) implies all quasi-isomorphisms

are equivalences and a suitable approximation for a given chain complex from K(R) exits.

The construction of the triangulated category K(R) generalizes to any additive category

A. We will denote this by K(A). Furthermore, if A has a monoidal structure with compatible

products and coproducts, a canonical monoidal structure can be built for K(A). For a suitably

nice category A (explained further in Example III.3.3), the canonical monoidal structure for K(A)

can be compatible with the triangulation.

To continue the parallel construction of V(R) in the more general case we need a few

definitions.

Definition 1.2.1. A set Q of objects in C is a set of weak generators if Homd G, A) = 0 for all

G E Q implies A ~ 0 in c.

Note that the definition of a weak generator differs from the categorical definition of a generator.

Recall an object Z is a generator of a category C if given F, G E Homc(X, Y) with F -I- G, there

exists an H E Homc(Z, X) so that F 0 H -I- Go H. A generator in an additive category in the

sense of [17] can be shown to be a weak generator. We do not know what minimal structures a

category must have for a weak generator to also qualify as a generator.

Definition 1.2.2. An object A is small in an additive category C if the natural map

EB H01Tl{;(A, B i
) -} H01Tl{;(A, II B i

)

iEI iEI

is an isomorphism for all coproducts in C.

Notice in R-modules the regular module is both small and a weak generator.

The following theorem is given in [4] and is the analogue to defining V(R) as the collection

of R(O)-cellular objects in K(R).

Theorem 1.2.3. Suppose C is an SHe with a set of small weak generators Q. Then every object

X can be written as a sequential colimit of a sequence 0 = XO -} Xl -} x 2 -} ... in which the
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cofiber of each map x k ~ Xk+l is equivalent to a coproduct of objects of the form ":E,iG for i E Z

or G E Q.

We call objects that are colimits of sequences of the above form Q-cellular. Notice in V(R)

the collection of R(i), where i E Z, forms a set of small weak generators. The definition of V(R)

as the full subcategory of K(R) whose objects are R(O)-cellular is thus consistent with the above

theorem.

1.3 Failure of a Standard Construction for an SHC for Ab~

Denote the category of abelian groups by Ab and define the category of p-complete abelian

groups to be the full subcategory of Ab with objects A such that A ~ limA/pi A. A standard
<-----

example of an object in Ab~ is the p-adics integers, denoted by Zp.

It will be shown in Chapter II that Ab~ is an additive category with a monoidal struc­

ture. We can thus use the construction from Section 1.2 to create the triangulated category with

a compatible monoidal structure denoted by K(Ab~). The remaining steps in the definition of

the derived category given in Section 1.2 require a choice of small weak generators Q. The full

subcategory of K(Ab~) consisting of Q-cellular objects, denoted by C(Q), could be considered and

perhaps May's arguments (that showed V(R) satisfied the conditions of an SHC) could be applied.

If the parallel to V(R) continued, a reasonable set to consider for Q will be the set of

Zp(i) where i E Z. Let C(Zp) denote the full subcategory of K(Ab~) consisting of Zp(O)-cellular

objects and Hn ( -) denote the standard homology functor on chain complexes. For C(Zp) to be

an SHC, the quasi-isomorphisms in C(Zp) must be equivalences and there must exist an object

in C(Zp) that is a suitable approximation for a given chain complex in K(Ab~). To show the

second of these conditions for V(R), May constructed complexes Ai E ob(V(R)) and used the

natural isomorphism Hn ( ~Ai) ~ ~Hn(Ai) to verify ~Ai was a suitable approximation.

An example will be provided in Section IV.l to show that there exists objects Xi from K(Ab~) so

that

Thus the techniques employed by May to show an object exists in V(R) that approximates a given

chain complex in K(R) cannot be directly applied to C(Zp).
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1.4 Non-existence of an SHe for Ab; that Respects Hn (-)

We search for a subcategory of K(Ab;) that contains Zp(O), satisfies the axioms of an

SHC, and has equivalences determined by a functor that:

1. acts like ordinary homology on free, finitely generated (as Zp-modules) chain complexes, and

2. satisfies the axioms for a homology functor on an SHC.

We make the following definition that will be stated in a more general setting in Section IlIA.

Definition 1.4.1. Let A be an additive category with kernels and cokernels. A homology functor

on K(Ab;) is a functor H : K(Ab;) ----+ A such that:

1. sequences of the form X ~ Y ----+ Cone(W) induce the following long exact sequence

and

2. H preserves coproducts.

Let H n ( -) denote the standard homology functor on chain complexes to Ab. The example refer­

enced in Section 1.3 that there exists objects Xi from K(Ab;) with N" (gXi) '1-~ Hn(Xi)

implies standard homology does not satisfy our conditions to be a homology functor on K(Ab;).

If we require a homology functor H*(-) : K(Ab;) ----+ Ab to return the same groups as

H*(-) on free, finitely generated chain complexes we have the following negative result.

Theorem 1.4.2. There exists no homology functor H : K(Ab;) ----+ Ab satisfying Hn(X) = Hn(X)

when X is a chain complex that is finitely generated and free as a Zp-module.

The above theorem is restated in a stronger form and proved as Theorem IV.2.2. The

following main non-existence result follows as a corollary:

Theorem 1.4.3. Let V be a subcategory of K(Ab;) containing Zp(O) and satisfying the axioms of

an SHC. There is no homology functor H*( -) : V ----+ Ab that satisfies 1{,,,(X) ~ Hn(X) when X

is a chain complex that is finitely generated and free as a Zp-module.
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Results similar to Theorem 1.4.2 exist for a homology functor with Ab~ as the target

category.

Theorem 1.4.4. There exists no homology functor H : K(Ab~) ---} Ab~ satisfying Hn(X) = Hn(X)

when X is a chain complex that is finitely generated and free as a Zp-module.

A stronger form of Theorem 1.4.4 is stated and proved in Section IV.2 and implies a second

non-existence result.

Theorem 1.4.5. Let V be a subcategory of K(Ab~) containing Zp(O) and satisfying the axioms of

an SHe. There is no homology functor H* (-) : V ---} Ab~ that satisfies Hn (X) ~ Hn (X) when X

is a chain complex that is finitely generated and free as a Zp-module.
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CHAPTER II

PROPERTIES OF Ab;

To familiarize the reader with Ab; a few useful properties and constructions will be intro­

duced. We will see that Ab; has an additive category structure, but is not an abelian category.

The failure is that not all monomorphisms are kernels. Before we provide an example of this we

need some basic constructions.

Recall Ab; is defined as the full subcategory of Ab with objects A such that A ~ ~jpiA.

We refer to ~AjpiA as the p-completion of A and note that a p-complete group is invariant under

p-completion. The construction of the inverse limit lets us write the elements more explicitly as

universal property of quotients. The following result is trivial but plays a key role in a number of

the proofs that will follow.

Lemma 11.0.6. A morphism f E HomAb(A, B) induces maps !J E HomAb(Ajpi, B jpi) so that

the following diagram commutes.

The morphisms aj and (3j are induced by the universal property of quotients whereas 7f1 and 7ff
are the natural projections.
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We pause to state some immediate corollaries to Lemma 11.0.6. The first can be summa-

rized by:

HomAb; (A, B) = HomAb(A, B) ~ Homzp_mod (A, B)

when A and Bare p-complete abelian groups. The p-adic numbers Qp is an example of a Zp-module

that is not p-complete and Qp ~ Hom;zp-mod(Qp, Qp) <;;; HomAb(Qp, Qp).

A second consequence of Lemma II.0.6 is that p-completion is a functor from Ab to Ab;.

Define (-); : Ab -. Ab; to take objects to their p completions. Given f E HomAb(A, B), Lemma

II.0.6 implies there exists a collection of fdrt : A; -. B /piB where *t : A; -. A/piA. Since B;

is p-complete, the universal property provides a unique map from A; to B; denoted by f;.

Remark 11.0.7. Let A E ob(Ab;) and B E ob(Ab). Let Cl:i : A/piA -. A/pi-lA be the natural

map and li : B -. A/pi A be surjections with Cl:i 0 fi = fi-l for all i. Then the image of the map

f : B -) A (induced by the universal property of lim) is dense in A under the subspace topology
<--

[18] . Moreover, given an element a E A, the following shows how to collect bi E B and a~ E A so

that a - f(bi ) = pia~.

Since A has no elements divisible by pk for all k we reduce to the case when pta. Write

a as (...a3, a2, al) E I1 A/piA. Since li is onto, choose a lift bi E B so that li(b i) = ai.

Let 1r: :A -. A/pk A be the natural projection. Then we consider a - f(bk ) in A. Notice

So there exists a~ E A with a - f(b k) = pka~.

Remark 11.0.8. A category that will be of some use is the full subcategory of groups whose

objects are inverse limits of finite groups. Call a group A projinite if A ~ limAi where Ai is a
<--

finite group for all i [18]. Notice Zp is a profinite group but rr:o Zp is not. In particular, if A is

p-complete and finitely generated as a Zp-module, then A is profinite.

II.l The p-adic Metric on ob(Ab;)

Let a be a nonzero element of A E ob(Ab;). Since A is p-complete, for all nonzero a E A

there exists a well defined i : A -) 1"1 so that 1rrta)a = 0 and 1rrta)+la i= 0 where 1r: :A -. A/pkA.
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Define I. Ip : A ----t [0, 1] C IR by

ifa=JO

else.

The definition implies the following for all a and at in A:

1. /al p = 0 if and only if a= O.

This function will be referred to as the p-adic metric and we adopt the same language

associated with a normed space when appropriate. For example, if a series L an has the property

that L Ian Ip converges, we say L an converges absolutely in the p-adic norm. Standard arguments

show if L an converges absolutely in the p-adic norm to a sum a, then any rearrangement of Lan
converges absolutely in the p-adic norm to a as well.

The existence of this function endows objects of Ab; with a topology. We can state one

more consequence to Lemma II.0.6:

11.2 Cokernels and Coproducts in Ab;

The existence of cokernels and coproducts will follow easily in Ab; once we show that the

p-completion functor is left adjoint to the forgetful functor. Let:F: Ab; ----t Ab be the forgetful

functor.
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Claim 11.2.1. The functor, (-); is left adjoint to the forgetful functor :F.

Proof Let ¢ : A ----; A; be the natural map induced by the p-completion and let 'Ij! : HomAb(A, FB) ----;

HomAb':; (A;, B) send a morphism to its p-completion. The adjoint isomorphism will be given by

¢* and 'Ij!.

We use the same notation that was used in Lemma II.0.6 and write A; as

Then ¢(a) = (...1r1a, 1r~a, 1rfa). To understand the map 'Ij! let f E HomAb(A, FB) and nf

A; ----; A/piA. Then 'lj!f( ....a3, a2, al) = ~finf( ....a3' a2, ad = (...!3(a3), h(a2), h(ad). The

commutativity conditions given in Lemma 11.0.6 imply ¢* o'lj! is the identity. We calculate 'Ij! 0 ¢*

explicitly.

'Ij!(¢*(f))( ....a3, a2, al) = ('Ij!(f 0 ¢))(...a3, a2, al)

= (~(f 0 ¢)i 0 nf)(.. ·a3' a2, ad

= (....(f 0 ¢ha3, (f 0 ¢ha2, (f 0 ¢hal)

We show that for all i, (f 0 ¢)i = Ii- Let ai E A/piA. Notice A is onto A/piA so we can choose

a E A so that 1rf(a) = ai. This implies:

(f 0 ¢Mai) = (f 0 ¢)i 0 1rf(a) = 1rf 0 (f 0 ¢)(a) = 1rf 0 f( ...1r~(a), 1rf(a))

= 1rf(' ..h1r~(a),h1rf(a)) = fi 1rf(a) = fi(ai)

Since (-); is left adjoint, the p-completion of cokernels and coproducts taken in Ab will

satisfy the universal properties necessary in Ab; [6]. Thus we make the following definitions:

Definition 11.2.2. Let f E HomAb,:;(A, B) = HomAb(A, B). The cokernel of f in Ab;, is

Definition 11.2.3. Let I be an indexing set and A E ob(Ab;) for all i E I. The coproduct in

Ab; is

We reserve the symbol EB to denote coproducts taken in Ab.
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Before considering other properties we examine the effect p-completion has when building

coproducts in Ab;. For example, consider UN Zp = (E!JN Zp);. Elements of UN Zp can be treated

as countable tuples, (Zl,Z2,Z3, ... ) from ITNZp (where we are taking the product in Ab) with the

additional constraint IZilp ---.. 0as i ---.. 00. Unlike coproducts in Ab, there exist elements in UN Zp

that have an infinite number of nonzero entries. Some examples of elements of this form are

11.3 Kernels and Products in Ab;

We first consider products in Ab;.

Claim 11.3.1. Let I be an indexing set and Ai E ob(Ab;). ITl Ai

p-complete.

Proof. Let

and

be the natural projections.

By construction

Since pJ IT Ai ~ IT pJ Ai we can rewrite the above as:

The coherent sequences of vectors in IT p1x
i

can be reindexes as vectors of coherent se-

o

The construction of ITl Ai for Ai E ob(Ab;) can be used to show IT Ai satisfies the

universal property of products in Ab;, thus we make the following definition.

Definition 11.3.2. Let I be an indexing set and Ai E ob(Ab;) for all i. The product in Ab; is

IT1El Ai, that is, the set of infinite tuples where the i th factor is an element from Ai'



12

Remark 11.3.3. The category Ab; forms an additive category in the sense of [17]. A consequence

is that finite coproducts are naturally isomorphic to finite products and vice versa.

We work towards a definition for kernels in Ab; and prove the following claim:

Claim 11.3.4. Given f E HomAb~(A,B), kerAb! = {a E Alf(a) = O} E ob(Ab;).

Proof Use the same notation set up in Lemma 11.0.6 and set ¢ : kerAb f --+ (kerAb 1); with natural

projections ¢k : kerAb f --+ kerAb f /pk kerAb f. We will show ¢ is injective and surjective.

The kernel of ¢ is n~lpk kerAb f. Since A is p-complete, n~lpkA = 0, so the containment

pk kerAb f C pkA implies no elements in kerAb f are sent to zero.

To see surjectivity let a = (...a3, az, ad E (kerAb 1);. Lemma II.0.6 implies f is continuous,

so kerAb f is closed in A and it contains its limit points. We will construct a sequence in kerAb f

with a limit that maps to a by ¢.

Choose lifts ai E kerAb f so that ¢i(ai) = ai' Notice pil (ai+l -ai) in kerAb f so pil (ai+l -ai)

in A. The sequence of ai is thus Cauchy in A and since A is p-complete it converges to an element

a. Since kerAb f is closed in A, a E kerAb f and by construction ¢(a) = a. o

Since Ab; is a full subcategory of Ab and kerAb f E ob(Ab;), kerAb f satisfies the universal

property of kernels in Ab;. Thus we can define kernels in Ab;.

Definition 11.3.5. Let f E HomAb~(A,B). The kernel of fin Ab;, denoted kerAb~ f, is

kerAb~ f = kerAb f = {a E A If (a) = O}.

Since kerAb f = kerAb~ f when f E HomAb~ (A, B), there is no ambiguity if we write ker f.

Be aware that the p-adic topology of ker f may not be the same as the subspace topology induced

by A as the following example shows.

Example 11.3.6. Consider the kernel of the the following map:

II Zp ~ II'1L./pi
iEl\! iEl\!

where 1r is the natural map sending the ith entry to the equivalence class in '1L./pi.
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The kernel of Jr is IliEN pi Zp C IliEN Zp. Consider the set of elements:

{(p, 0, 0, ... ), (0, p2, 0, ... ), (0,0, p3, ... ), ...}.

As a subset of IliEN Zp, these elements form a Cauchy sequence with the p-adic topology and

converge to zero. However, when considered as a subset of the kernel IliEN pi Zp, the sequence

does not converge in the p-adic topology.

11.4 Images in Ab;

We now consider images in Ab;.

Definition 11.4.1. Let 9 E HomAbp(A, B). Define the image of 9 in Ab; as done in (l5) by

imAbp(g) = ker( B ----+ cokerAbp(g)).

---,---,-B B
Claim 11.4.2. Let 9 E HomAb p(A, B), then imAbp(g) ~ imAb(g) where imAb(g) denotes the

closure of imAb (g) taken as a subspace of B.

Proof The proof checks double inclusion and follows from the definitions.
:----,----,-B

Let b E imAb (g) C B. There exist elements b~ E imAb(g) and bi E B such that b =

b~ + pibi . Since imAbp(9) = ker1i-, where 1i- : B ----+ cokerAbp(9), we only have to show f(b) = °in

cokerAbp(9) = (BjimAbg);. Notice 1i-(b) = 1i-(b~ + pibi ) = pi1i-(bi ), thus we have that pi l1i-(b) for all

i. However, cokerAbp(9) is p-complete and has no such nonzero elements implying 1i-(b) = 0.

Let b E imAbp(g) = ker1i-, so 1i-(b) = °E (BjimAbg);. Thus there exist elements bi E

BjimAb(g) with Jr(b) = pibi where Jr is the natural projection. Choose a hi E B that projects to

bi by Jr. Since Jr(b) = Jr(pihi ) in BjimAbg, there exits b~ E imAbg so that b = b~ + pihi in B. This

means b is a limit point of imAb(g) in B. D

We provide an example in which imAb(g) '1- imAbp(9). This will also provide an example

when cokerAbg '1- cokerAbpg, since the definition of kernel implies the following sequences are both

exact in Ab:
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Example 11.4.3. Define W : UiEN Zp ----> I1iEN Zp so that w(al, az, a3, ... ) = (pal,pZaz,p3a3, ... ).

Denote the cokernel of W in Ab by g : I1iEN Zp ----> C, so that the cokernel of W in Ab; would be

g; : I1iEN Zp ----> C;. By Definition H.4.1, imAb~w = ker g;. Also by definition of image in Ab,

imAbw = ker g.

First examine imAb~w. Let Wi : I1iEN Zp ----> I1iEN Zp be defined by multiplying the i th

factor by pi. We will verify Wi is the kernel of g; and thus show imAb~w = ker g; ~ I1iEN Zp.

Since g; 0 Wi = 0, the universal property of kernels in Ab; induces a map f : I1iEN Zp ---->

imAbpw. Wi is an injection so commutativity of the diagram below implies f is an injection.

o

To verify f is onto, let a E imAbpw. Claim 11.4.2 lets us treat imAbpw = imAbwflEfi zp C

I1iEN Zp, so if we write a as (aI, az, a3, ... ), there are elements

so that

(bi, b~, b~, ... ) Ell Zp and
N

(ci, C~, 4, ...) E II Zp
N

The jl'h entry in the above simplifies to aj - p1b; = piC;. The element (bt + cL b§ + c§, b~ + c~, ... )

is in I1N Zp and maps to a under f, thus imAbpw ~ I1iEN Zp,

By contrast, imAbw = ker g ~ U iEN Zp, so imAb~w cP imAbw. We highlight an element in

imAbj; w that is not in imAbw.

Consider (p, pZ, p3, ... ) E I1iEN Zp, Let [p, pZ, p3 ]C denote the equivalence class of the

image of (p, pZ, p3 ... ) E I1iEN Zp. By construction (1,1,1, ) t/:- U Zp so in C, [p,pZ,p3 ... ]C is not

zero. By definition of kernels then (p, pZ, p3 ... ) t/:- ker g = imAbw.

The set {(1,0,0,0...),(1,1,0,0.... ),(1,1,1,0.... ), } E UiENZp when passed through w

gives us a Cauchy sequence that converges to (p, pZ, p3 ) E I1iEN Zp using the topology induced

by I1iEN Zp, Claim H.4.2 implies that (p,pZ,p3 ... ) E imAbpw = imAbwDiENzP. Thus, (p,pZ,p3 ... )

is an element of imAbj; w that is not in imAbw.
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Let g E HomAb;;(A,B). We record a few instances when imAb(g) ~ imAb;;(g) and show

imAb(g) E ob(Ab~).

Claim 11.4.4. Let A and B be p-complete and finitely generated as Zp-modules. Let g : A --; B.

Then imAb;;(g) = imAb(g).

Proof. Note Remark 11.0.8 implies A and Bare profinite groups. If imAbg is closed in B, then

cokerAbg is profinite [18]. Zp and 'lLjpi are compact with respect to the p-adic topology for all i,

thus the finite products A and B are both compact. The image of a compact set is compact and

B is Hausdorff so imAbg is closed in Band cokerAbg is profinite.

Since B has finite rank, cokerAbg will as well. This implies that indexing category N used

to calculate ~ for the p-completion functor is cofinal in the indexing category used to take the

profinite completion of an object. Thus, because cokerAbg is profinite, cokerAbg is also p-complete.

o

Claim 11.4.5. Let g E HomAb;; (A, B) and assume imAbg is dense in B with the subspace topology.

Then imAbg = B.

Proof. Let b E B. We will construct a Cauchy sequence in A that is sent to a Cauchy sequence

in B which converges to b. The p-completeness of A will then force the limit of our constructed

sequence to exist and continuity will force the limit to map to b.

Since imAbg is dense in B, we can find b1 E imAb(g) and b~ E B so that

(ILl )

Since b1 E imAb(g), choose al E A so that g(al) = b1 .

Consider the "error", b~ E B. Since imAbg
B = B, we can find b2 E imAb(g) and b~ E B so

that

(II.2)

Since b2 E imAb(g), choose a2 E A so that g(a2) = b1 .

We repeat the process for the "error to the error" b~, and iteratively find bi E imAb(g) and

b~ E B so that

(11.3)
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Consider the Cauchy sequence

Examine the special case b - g(al + pa2 + p2 a3 ) as it is indicative of the general case.

b - g(al +pa2 + p2 a3 ) = b - g(aI) - pg(a2) - p2g(a3)

= (b - bI) - pb2 - p2b3 by Equation 11.1

= pb~ - pb2 - p2b3

= p(b~ - b2) - p2b3

= ppb~ - p2b3

= p2(b~ - b3)

by Equation 11.2

by Equation 11.3

= p3b~

In general b - 9 (tpi-lai) = pnb~, thus, the sequence {g(Si)} converges to bin B.

Since A is p-complete and {Si} is a Cauchy sequence in A, a limit a exists for s. Continuity

of 9 implies that g(a) = b, thus bE imAb(g). o

Corollary IIA.6. If 9 E HomAbp(A, B), then imAb(g) = {b E BI :Ja E A such that g(a) = b} is

p-complete.

Proof. We first show the completion map ¢ : imAb(g) ----t (imAb(g))~ is injective. Since,

and B is p-complete we have ker ¢ c niEN(piB) = {O}, thus ¢ is injective.

Let 9 be the epimorphism between A and imAbg induced by the universal property of

images in Ab. Consider the map ¢og E HomAbp(A, (imAbg)~). The imAb(¢o9) is dense in (imAbg)~

with respect to the p-adic topology of (imAbg)~, so Claim 11.4.5 implies (imAbg); ~ imAb(¢ 0 9).

By definition imAb(¢ 0 9) = {c E (imAbg);1 :Ja E A such that ¢ 0 g(a) = c}. Since ¢ is one

to one in Ab, imAb(¢ 0 9) ~ imAbg. Furthermore, 9 is onto in Ab so imAbg ~ imAbg implying

o

Note the reference to the subspace topology in Claim 11.4.5 is important since in general

given A, B E Ab; with A dense in B under some topology, A may not equal B. Example 11.4.3
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highlights such a situation where imAbw is p-complete and dense in imAb~w with respect to the

topology induced by ITiEN Zp. However, imAbw is not dense in imAb~w with respect to the p-adic

topology of imAb~w. The element (p,p2,p3, ... ) E imAb~w is an example of an element not in

imAbwimAbpw, and in fact it was shown that imAbw '¥- imAb~w.

11.5 A.b~ Is Not an Abelian Category

Recall that a category A. is abelian if it is an additive category satisfying the following [6]:

1. A. has a null object,

2. A. has binary biproducts,

3. every arrow in A. has a kernel and cokernel,

4. every monic arrow is a kernel, and every epi is a cokernel.

The previous sections verified the first three conditions. We will verify the second half of the fourth

and show the failure of the remaining condition. Before starting this we recall what it means for

a morphism to be an epi or a monic and identify these in A.b~.

A morphism m is monic if m 0 f = m 0 h implies that f = h. A morphism that is

monic is said to have the left cancellation property. Dually, a morphism e is epi if it has the right

cancellation property, or foe = hoe implies f = h.

Claim 11.5.1. A morphism m is monic in A.b~ if and only if m is monic in A.b.

Proof Since A.b~ is a full subcategory of A.b, we need only verify that if m E HomAb~ (A, B) and

is monic, then m is monic in A.b.

Assume C E ob(A.b), f,h E HomAb(C,A), and m 0 f = m 0 h. We need to show f = h,

or f - h = 0 where we make use of the group structure of HomAb(C, A). We make use of the

following diagram in A.b where ~ is the natural map.

kerm



18

If ker m = 0 in the above diagram the map f - h factors through 0 and thus must be O. It thus

suffices to show ker m = O.

Recall in Claim II.3.4 that kerAb m = kerAb~ m. To show ker m = 0 it thus suffices

to show that 0 satisfies the universal property of kernels in Ab~. This, however, follows from

kerm E ob(Ab~) and m having the left cancellation property in Ab~. Thus, kerm = 0 implying

f - h = 0 so f = h which is what we had to show. D

We can import results known in Ab and say such things as morphism in Ab~ are monic if

and only if m is one-to-one. A similar result holds for morphisms that are epi.

Claim 11.5.2. A morphism e is epi in Ab~ if and only if e is epi in Ab.

Proof Since Ab~ is a full subcategory of Ab, it suffices to show if e E HomAb~ (A, B) and is epi

then e is an epi in Ab. We will show if e is epi in Ab~ then cokerAb~e = 0 and claims from Section

II.4 will finish the proof.

Let f E HomAb~(B,C) and foe = O. Since e is epi, f = 0 and the following diagram

verifies that 0 satisfies the universal property of cokernels in Ab;.

Recall by definition of image in Ab; that

Claim 11.4.2 implies

thus cokerAb~e ~ 0 implies imAbe is dense in B under the subspace topology. Since A and Bare

p-complete, Claim II.4.5 implies imAbe = B so e is onto. A morphism in Ab is epi if and only if is

onto, thus e is an epi in Ab. D

We return to checking the axioms of an abelian category for Ab;. We verify the second

half of the fourth condition but then provide a counterexample to the first half.
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Claim 11.5.3. Every epi is a cokernel.

Proof Let f E HomAb;; (A, B) be an epi in Ab~, and L : ker f -----> A be the natural map. Note A is

in Ab; by assumption and ker f is in Ab~ by Claim II.3.4, so L is in Ab~. It will be shown that f

is the cokernel of L in Ab~ by showing f satisfies the appropriate universal property.

Assume g E HomAb;; (A, C) is such that go L = O. The definition of kernel implies f 0 L = 0,

so we concentrate on building the dotted arrow in the following diagram and showing it is unique.

a

~
kerf~A~C

~ I ~
o~ fl .....

B

In the abelian category Ab, there is a factorization of f as follows [6]:

A -.:.., A/kerf -.::., imAbf ~ B.

The composition m 0 s 0 e equals f, e is an epi, s is an isomorphism, and m is a monic. Expand

the above diagram to:

a

id g

k",f~ I. '/ :+>~ C

A/kerf~B

Since A/ ker f is a cokernel in Ab, there exists a unique map ?i : A/ ker f -----> C that

makes the above diagram commute. To define a map from B to C it suffices to show m 0 s is an

isomorphism in Ab. Since s is an isomorphism, the problem reduces to showing m is onto.

Since f is an epi, cokerAb;;f = O. By definition imAb;;f is the kernel of the map 7r : B ----->

cokerAb;;f thus imAb;;f ~ B. Since imAb;;f = imAbf
B

as a subspace of B, imAbf is dense in B.

Claim II.4.5 finishes the proof. o

The following is an example of a monic that is not a kernel and thus Ab~ is not an abelian

category.
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Example 11.5.4. We revisit Example II.4.3 and consider the map w : lliEN Zp ----+ I1iEN Zp defined

by w(al, a2, a3, ... ) = (pal,p2a2,p3a3, ... ). Notice that w is a monic in Ab, so it is also a monic in

Before showing that w is not a kernel we show why w is not the kernel to the most obvious

candidate, mainly the kernel of g; : I1iEN Zp ----+ cokerAb~w. Notice ker g; = imAb~w which was

shown to be isomorphic to I1iEN Zp in Example II.4.3. Thus w is not the kernel of g;.
To show that w is not the kernel of any map, we assume w is the kernel of a map hand

derive a contradiction. Since how = 0, the universal property of cokerAb~w induces s in the

diagram below. Commutativity implies hoI' = so g; 0 f' = 0, so the universal property of kernels

from w induces the map r. Let L be the map induced by the universal property of ker g;.

Since r 0 L = id we can write ker g; ~ lliEN Zp EEl A for some A E ob(Ab). Example II.4.3 shows

that ker g; '1c lliEN Zp, thus A i= O. Tracing a nonzero element (0, a) E lliEN Zp EEl A, we find that

w 0 prO)l (0, a) = O. However, lliEN Zp EEl A also can be sent to I1iEN Zp by the injective map 1', so

by commutativity of the diagram w 0 prO)l (0, a) i= O. Thus we have a contradiction and h must

not exist.

11.6 Failure of Five Lemma in Ab;

Before leaving the chapter we stress that Ab; is not abelian so theorems relying on Property

4 in the definition of an abelian category may not hold. In particular the Five Lemma no longer

holds as the following example illustrates.

Example 11.6.1. Consider again the map from Example II.4.3, w : lliEN Zp ----+ I1iE N Zp defined by

w(al,a2,a3,''') = (pal,p2a2,p3a3, ... ). Recall imAb~w = imAbwTIiEl,jZp, thus the sequences below



are both short exact in Ab;.

o~ II Zp ~ II Zp ~ cokerAbpW~ 0

l iEN iEN 1 1
id ';t! t id -It ,id id

o~ kerg; ~ II Zp ~ cokerAbpW~ 0
iEN

21
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CHAPTER III

DEFINITION AND EXAMPLES OF STABLE HOMOTOPY CATEGORIES

The definition of an SHC given in [4] requires some preliminary definitions which we review

before giving the definition. The definition of an SHC is from [4]; other definitions that are provided

below can be found in [4] or [9].

111.1 Closed Symmetric Monoidal Categories

Definition 111.1.1. A category C has a closed symmetric monoidal structure if there exists a

monoidal functor Q9 : C x C ---.. C that is associative up to coherent natural isomorphism and the

following hold [6};

1. There exists a unit S and coherent natural isomorphisms in C so that S Q9 A ~ A ~ A Q9 S.

2. (symmetric) There is a coherent natural isomorphism between A Q9 Band B Q9 A.

3. (closed) There is a function object Fc(A, B) that is covariant in the second variable and

contravariant in the first. There also exists an isomorphism

HO'Tl7{;(A,Fc(B,C)) ~ Homc(AQ9B,C)

that is natural with respect to all three variables.

An example is the category Ab where Q9 is the tensor product over Z and the function object

Fc(A, B) is HomAb(A, B). More generally, the category of R-modules (where R is a commutative

unital ring) is a closed symmetric monoidal category with the monoidal structure given by the

tensor product over R and the function object is HomR(A, B). The unit is R and the closed

condition is satisfied since Q9R and HomR are an adjoint pair.
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A topological example is the category of compactly generated Hausdorff spaces, denoted

CGHaus. The monoidal structure arises from the cartesian product and the unit is the space

consisting of a single point. The function object FccHaus(A, B) is the set of continuous maps

from A to B with the compact open topology. More examples of closed symmetric monoidal

categories can be found in Section VII of [6].

111.2 Triangulated Categories

Definition 111.2.1. A triangulation on an additive category C is an additive (suspension) functor

L: that gives an a'utomorphism ofC, together with a collection 6 of diagrams, called exact triangles,

of the form X ----. Y ----. Z ----. L:X so that the following hold:

1. (T1)

• Any diagram equivalent to an exact triangle is also in 6.

• Any diagram of the form 0 ----. X ~ X ----. 0 is in 6.

• For every F E Horne (X, Y) there exists an exact triangle of the form

X .!'-, Y ----. Z ----. L:x.

2. (T2) If X .!'-, Y ----. Z ----. L:X is in 6, then Y ----. Z ----. L:X~ L:Y is in 6.

3. (T3) Let

X' -------.;> Y' -------';> Z'~ L:X'

where the rows are in 6. Then there exists a map G E Horne (Z, Z'), not necessarily uniq'ue,

so that the following diagram commutes.

X ------;,. Y ----.;> Z -------.;> L:X

Fl 0 1 0 cl 0 l~F
X' -------.;> Y' -------';> Z'~ L:X'

4. (T4) Verdier's octahedral axiom holds. To state this more precisely, denote the exact triangle
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A ----> B ----> C ----> ~A in C by:

A

.....-:? "'"........... ~

C<<-----B

Assume there are maps F E Homc(X, Y) and G E Homc(Y, Z). Suppose that there are

X F Y a GoF r (3 d G 'Y • A h b 1
-----t ----; U, X -------7 Z ----; V, an Y -----t Z W zn L..l. as s ,own e ow.

V

• '(3

p ,""X GoF ) Z

8'~a~ y(~
U • Y -<n .. noOn ... W

Then there exists maps r : U ----> V and s : V ----> W so that U ~ V ~ W is in ~ and

f3 0 G = r 0 el, (0 S = (~F) 0 (0, so f3 = 'Y, and (00 r = 8.

We refer to a category with a triangulation as a triangulated category.

Example 111.2.2. An example of a triangulated category is K(R) referred to in Section 1.2. Recall

the objects of K(R) are unbounded chain complexes of R-modules where R is a unital commuta­

tive ring. The morphisms of K(R) are degree preserving chain homotopy classes of maps. The

suspension functor is defined degree-wise by (~X)n = X n- 1 with differentials (dEX)n= (-l)d;{_l'

The exact triangles are the collection of all sequences in K(R) equivalent to the sequence

FX -----t Y ----> Cone(F)

for some F E HomK:(R) (X, Y) where Cone(F)n = X n- 1 ED Yn with the differential

d~one(F) (x, y) = (-d;{_l (x), d";; (y) - Fn- 1 (x)).

Other examples of triangulated categories can be found by considering subcategories of

K( R) with the triangulated structure just defined. Given an R-module A, let A(i) denote the chain

complex with A in the i th degree and the zero object in all others.
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Example 111.2.3. We revisit the derived category V(R), first introduced in Chapter I, and provide

a more precise definition:

Definition 111.2.4. We sayan object Z is a coproduct of free modules if Z is chain homotopy

equivalent to EBjEz ( EBiElj R(j)). An object X is R(O)-cellular if X is a colimit of a sequence

{XO, Xl, x 2 , ... } where X O ~ a and Xi ~ Cone(Fi- 1 ) for some Fi-l : Z'i-l ---4 X i- 1 where Zi-l

is a coproduct of free modules. Define V(R) to be the full subcategory of iC(R) with objects that

are R(O) -cellular.

The ~ and 6 structures for iC(R) restrict to make V(R) a triangulated category in its

own right.

Example 111.2.5. We can generalize Example III.2.2 to any additive category A with arrows that

are degree preserving chain homotopy classes of maps. Denote this category iC(A) and note that

the same definitions for ~ and 6 in iC(R) makes iC(A) a triangulated category.

We mention a non-example. Recall Ch(A) is the category with the same objects as iC(A)

but with arrows that are degree preserving chain maps. The ~ functor and Cone construction

both make sense in Ch(A), but the set 6 defined as the set of sequences of the form

FX -'f Y ---4 Cone(F)

for some FE HOmCh(A) (X, Y), does not satisfy the (Tl) condition since Cone(Id) '1- a in Ch(A).

Definition 111.2.6. A thick subcategory is a full subcategory C, of a triangulated category such

that the following two conditions are satisfied:

1. When any two objects in the exact triangle X ---4 Y ---4 Z are in C, the third is also in C.

2. If Y is in C, and X ~ Y E.. X is such that poi = idx, then X is in C.

A localizing subcategory of a triangulated category is a thick subcategory C with the property that

any coproduct of objects from C is also in C.

Given a triangulated category C, the trivial examples C and the zero subcategory are both

localizing. The derived category V(R) is a nontrivial example of a localizing subcategory in iC(R).
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111.3 Triangulation Compatible with the Product in Monoidal Categories

Definition 111.3.1. If C is both a triangulated and a closed symmetric monoidal category, the two

structures are compatible if the following hold:

• The monoidal product preserves suspensions in the following way. There is a natural equiv-

alence eXY : (~X) ® Y ----+ ~(X ® Y). Let rx : X ® s ----+ X be the unital equivalence, then

~rx 0 exs = r~x. Let axyZ : (X ® Y) ® Z ----+ X ® (Y ® Z) be the associative equivalence,

then the following diagram commutes.

~(A®B) ®C

e7 ~
(~A®B)®C 0 ~((A®B)®C)

a(EA)BC1 ~aABC1
~A ® (B ® C) eA(B0C) > ~(A ® (B ® C))

• Given an object X of C, the functor - ® X takes exact triangles to exact triangles.

• Given an object W of C, the functor Fe (W, -) takes exact triangles to exact triangles. (The

natural equivalence of e can be used to show F(W, ~X) ~ ~F(W,X) and F(~X,W) ~

~-1F(X, W) as in (4}.) The functor Fe( -, W) takes an exact triangle X L Y ~ Z ~ ~X)

to the following triangle in ~.

• The monoidal product interacts with the suspension functor in a graded-commutative manner.

In more detail, the following diagram must be commuative for all integers rand s, where t

is the natural equivalence responsible for the symmetric structure.

~rS ® ~sS ~ ~r+sS

tl 0 1(-1)"s
~s S ® ~rS ~ ~r+sS

Example 111.3.2. The category K(R) has a closed symmetric monoidal structure that is com-

patible with the triangulated structure already introduced. The monoidal functor is the standard
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tensor product of chain complexes over R. Given chain complexes X and Y, the function object

FK(R) (X, Y) is the chain complex with (FK(R) (X, Y))n = ITj HomR(Xj , YJ+n)' The component of

the differential d~X;(R)(X,y), landing in HomR(X j , YJ+n-d comes from

where dFIC(R) (X,Y) (fj-l, fj) = (_l)n+lh-ldf+d3+nk Notice that FK(R) (X, Y)n only depends on

the graded group structures of X and Y. The differentials in X and Yare taken into consideration

by dFX;(R) (X,Y) .

Example 111.3.3. We can generalize the previous example to any additive category A with

products, coproducts, and a closed symmetric monoidal structure provided coproducts and the

monoidal product satisfy some compatibility conditions. Let JC(A) be the triangulated category

described in Example IIL2.5 and A(i) be the chain complex with the object A in the i th degree

and the zero object in all others. If Q9A : A x A ----> A is the associative functor and SA the unit in

A define Q9 : JC(A) x JC(A) ----> JC(A) degree-wise by:

(X Q9 Y)n = II (Xi Q9A YJ)
i+j=n

with the differential

d;0Y = L (df Q9A idYj + (-l)iidx , Q9A dn·
i+j=n

Notice that we use the summation sign in the definition of dX0Y but this may not be a finite sum.

In order for Q9 to be an associative functor for JC(A), A must have a natural equivalence between

(III A) Q9A B and III (Ai Q9A B). If 0 Q9A A is equivalent to 0 in A, the unit object in JC(A)

will be SA(O).

Define the function object degree-wise by (FK(A) (X, Y))n = ITj FA (Xj , YJ+n) where FA

denotes the function object in A. The component of the differential landing in FA (Xj , YJ+n-l) is

defined as
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Recall the collection of D. defined for K(A) are all sequences chain homotopy equivalent

to a sequence of the form:

FX ----t Y -7 Cone(F)

for some F E HomJC(A) (X, Y). The restriction of our exact triangles to the above form allows one

to verify each of the compatibility conditions stated in Definition IlL3.!.

IlIA Stable Homotopy Categories

We introduce two more definitions before stating the axioms of an SHC.

Definition 111.4.1. Let C be a triangulated category and A an additive category. A cohomology

functor 1i : C -7 A, is a contravariant functor that:

1. takes exact triangles in C to long exact sequences in A, and

2. takes coproducts in C to products in A.

Given a closed symmetric monoidal category C there exists an evaluation map TJA->B

Fc(A, B) @ A -7 B that corresponds to the identity morphism under the adjoint

Homc(Fc(A,B),Fc(A,B)) ~ Homc(Fc(A,B) @A,B).

The identity morphism in Homc(B, B) corresponds to a map Fc(A,S) @B -7 Fc(A,B)

by the following natural morphisms:

Homc(B,B) Homc(Fc(A,S) @B,Fc(A,B))

~l ~I
~* ~

Homc(S @B, B)~ Homc((Fc(A, S) @A) @B,B) --=.;, Homc((Fc(A, S) @B) @A,B)

Definition 111.4.2. Let C be a closed symmetric monoidal category with a unit object S. An

object A is strongly dualizable if the natural map Fc(A, S) @ B -7 Fc(A, B) described above, is an

isomorphism for all B.

In Ab the finitely generated strongly dualizable objects are exactly the finitely generated

free abelian groups. More generally, finitely generated free R-modules in R-mod are strongly

dualizable. In CGH Q,us the space consisting of only one point is an example of a strongly dualizable

object.
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We at last state the axioms for a stable homotopy category given in [4].

Definition 111.4.3. A stable homotopy category (SHC) is a category V with the following five

properties:

1. V has a triangulated structure.

2. V has a closed, symmetric monoidal structure denoted by 181 and that is compatible with the

triangulated structure.

3. There exists a set Q of strongly dualizable objects of V, such that the only localizing subcate­

gory of V containing Q is V.

4. Arbitrary coproducts of objects exist in V.

5. Every cohomology functor on V is representable.

It is shown in [4] that the derived category V(R) satisfies the above axioms. The closed

symmetric monoidal structure that is compatible with a triangulation is inherited from K:(Ab) and

the set Q consists of only R(O).

Not all conditions in Definition II1.4.3 are assumed by all authors who study SHC's.

For example, the closed symmetric monoidal structure was not assumed in [9] and [3] suggests

eliminating the strongly dualizable condition. However, most alternative definitions provided in

the literature include conditions 1 and 4 which we focus on in this paper. A more complete

discussion of axioms assumed for an SHC is in [14].

Recall the close connection drawn between an SHC and homology functors in Chapter 1.

For example, in V(R) morphisms sent to isomorphisms by the functor H n : K:(R) ----7 Ab defined

by Hom}c(R) (EnR(O), -) are equivalences. This property is shown explicitly in [8] and [17], but a

general property holds for an arbitrary SHC [4]. Let E*Q denote {EiZIZ E Q and i E Z}.

Lemma 111.4.4. Let C be an SHe and 1{w : C ----7 Ab be the functor defined by Horne (W, -).

If F E Homc(X, Y) is such that 1{W(F) is an isomorphism for all W E E*Q, then F is an

isomorphism.

The proof makes use of the uniqueness assumption with respect to localizing subcategories

containing the set of weak generators in the definition of an SHC.
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We return to the example V(R), where quasi isomorphisms with respect to the functor

Homv(R) (~nR(O), -) are equivalences in V(R). Instead of generalizing to functors ofthe form H W

as done in Lemma III.4.4 we might have instead considered a generic homology functor defined

below.

Definition 111.4.5. Let C be a triangulated category and A an additive category with kernels and

cokernels. A homology functor H : C ----> A is a covariant functor that:

1. takes exact triangles in C to long exact sequences in A, and

2. preserve coproducts. That is, for any indexing set I, the object H(IlI Xi) and morphisms

H(~i) : H(Xi ) ----> H(IlXi) satisfy the universal properties of coproducts in Ab.

In the case of H W as defined in Lemma II I.4.4, H W is a homology functor if and only if

W is small. Recall W is small if the natural map

EBHomc(W; yi) ----> Homc(W, II yi)
iEI iEI

is an isomorphism for all coproducts. Notice in V(R), the object R(O) is small, so the functor

Homv(R)(~nR(O),-) is a homology functor. An SHC whose objects from 9 are small is called

algebraic.

Theorem 2.3.2 from [4] provides an effective way to check if a category is an algebraic

SHC.

Theorem 111.4.6. Let C be a triangulated category with a compatible closed symmetric monoidal

structure. Suppose C has arbitrary products and coproducts. Suppose 9 is a set of small strongly

dualizable objects of C that are weak generators of C. Then C is an algebraic SHe.

A second example of an SHC is the category of CW spectra, S. The triangulated structure

comes from the usual suspension functor and cone construction of spectra. The smash product of

spectra and the function spectra makes S into a closed symmetric monoidal category. The sphere

spectrum SO is the only small strongly dualizable object in g. J.F. Adams gives a proof in Part III

of [1] that an XES with the property Homs(~iSO,X) = 0 for all i, implies that X = O. Theorem

III.4.6 thus implies S is an algebraic SHC.

Additional examples including some non-algebraic SHC's are discussed in detail in Section

9 of [4].
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CHAPTER IV

STRUCTURES ON Ab;

We show that Ab; is a closed symmetric monoidal category and apply Section IIL3 to

build a compatible triangulated structure. We will exhibit a family of homology functors that do

not exist on JC(Ab;) and use this to state the main result. Some results about homology functors

of the form HomIC(Ab~) (W, -) are then given by way of considering the small objects of JC(Ab;).

IV.1 A Triangulated and Monoidal Structure for Ab;

The closed symmetric monoidal structure on the category of R-modules (when R = Zp)

introduced in Section IIL1 does not provide the monoidal structure for Ab;. The tensor product

over Zp of two objects in Ab; is not, in general, p-complete.

Define the product A 0Ab~ B := (A 0z
p

B);. Notice Zp acts as a unit and the symmetry

of 0zp descends to make 0Ab~ symmetric. The product 0Ab~ will endow Ab; with a symmetric

monoidal structure.

Claim IV.I.I. If BE ob(Ab;) then HomAb(A, B) is p-complete.

Proof Let ¢ : HomAb(A, B) ---> (HomAb(A, B)); with natural projections ¢k : HomAb(A, B) --->

HomAb(A, B)/pkHomAb(A, B).

If f E ker ¢ then for all a E A, pnlf(a) for all n. B is p-complete so if pn divides f(a) for

all n, f(a) = O. Since this is true for all a E A, f is the zero morphism and ¢ is injective.

To show ¢ is surjective we construct a sequence of morphisms much as we did in Claim

II.3.4 for a given f = (...13, iz, fd E (HomAb(A, B));. Since B is p-complete, we can point-wise

define a map from A to B, but we take more care in the construction to guarantee this map is a

group morphism.
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Choose a lift iI E HomAb(A, B) so that (PI (];J = iI· Let CYk be the natural projection

from HomAb(A, B)/pkHomAb(A, B) to HomAb(A, B)/pk-IHomAb(A, B).

Notice CY~(cP2(];J - iz) = 0 E HomAb(A,B)/pIHomAb(A,B), so cP2(];J - iz E kercy~.

Observe

so there exists a g2 E (HomAb(A,B)/p2HomAb(A,B)) with

Choose a lift g2 E HomAb(A, B) so that cP2(g2) = g2.

Notice the element h := h - pg2 has been designed so that

We can inductively construct a sequence of In = ]; - I:~=l pigHI so that

Fix a E A. Define 1(a) to be the limit of the Cauchy sequence in (a) in B. By construction

I maps to f under cP, so it only remains to show that the point-wise defined f is a group morphism.

Let a and a' be in A. We are comparing

to 1(a) + 1(a') = nl~~ (h(a) + ~pkgk+l(a)) + nl~~ (];(a') + ~pk9k+l(a')).
00 2

Since]; and gk are group morphisms for all k it suffices to show the series L Lpkgk+l (Xi)
k=li=l

where Xl = a and X2 = a', is invariant under reordering. By results stated in Section 11.1 it suffices

to show this series converges absolutely in the p-adic norm.
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Property 2 from Section ILl and the observation that 0 :s; Igk+1 (Xi) Ip :s; 1 for all Xi E A

implies

So

n 2 n

}!_.~ 2: 2: Ip kgk+1(Xi)lp = j'!"~ 2: (lp kgk+1(a)lp + Ip kgk+1(a')lp)
k=l -;=1 k=l

n (1 1) 2< lim - + - = --.
- n->oo 2: pk pk P - 1

k=l

The series defining 1(a+a') thus absolutely converges in the p norm implying 1(a+a') = 1(a)+1(a')

so f is a group morphism.

Definition IV.1.2. Define the function object for Ab;, FAbp(A, B) as

o

The closed condition is justified below:

HomAbp(A 0Abp B, C) ~ HomAb(A 0zp B, F(C)) (( - );, F) is an adjoint pair

~ HomAb(A,Homzp(B,F(C))) (0zp,Homzp) is an adjoint pair

~ HomAb(A, HomAb(B, F(C))) consequence of Lemma II.O.6

~HomAb(A,HomAbp(B,C)) ((-);,F) is an adjoint pair

~ HomAb(A, FAbp(B, C)) by definition of FAbp (B, C).

This establishes a closed symmetric monoidal structure on Ab;.

Section III,3 outlines a method to extend the closed symmetric monoidal category Ab;

into a compatible triangulated category JC(Ab;). JC(Ab;) may be thought of as a triangulated

subcategory of K(Zp), however, the different monoidal functor and coproduct structure on Ab;

gives K(Ab;) a closed symmetric monoidal structure distinct from that of K(Zp). For example,

consider the chain complex X with zero differentials and Xi = Zp for all i. In K(Zp), (X 0K(zp)

X)o ~ EBzZp, where as in JC(Ab;), (X 0K(Abp) X)o ~ liz Zp.

We record one immediate consequence for any subcategory of K(Ab;) containing Zp(O)

that satisfies the axioms of an SHOo
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Claim IV.1.3. Let D be a subcategory of K(Ab~) containing the chain complex Zp(O) that satisfies

the axioms of an SHe. Then D is not algebraic.

Proof. The construction of ® in K(Ab~) implies

for all X E ob(K(Ab~)). Since D is subcategory of K(Ab~) and Zp(O) E ob(D), Zp(O) also acts as

a unit with respect to the monoidal structure in D.

We now show that Zp(O) is not small in D. Recall there exists elements in UN Zp

with an infinite number of nonzero entries such as (p, p2, p3, .,.). Since D contains its coprod-

ucts, UN Zp(O) E ob(D). The morphism F, defined by sending the generator of Zp(O)o to

(p,p2,p3, ..,) E (UN Zp(O))o is a well defined morphism in Homv(Zp(O), UN Zp(O)) but has no

D

IV.2 Non-existence of Homology Functors on K(Ab~)

We focus on homology functors that return the same groups as standard homology when

given a chain complex that is free and finitely generated as an ungraded Zp-module. Terminology

will be introduced before we can state the non-existence results explicitly. The proofs will rely on

a lemma and a carefully chosen morphism in Ab~ to derive contradictions.

Definition IV.2.1. Let B(Ab~) be the full subcategory of K(Ab~) consisting of chain complexes

that are free and finitely generated as graded Zp-modules. Let K be a triangulated category with

B(Ab;) eKe K(Ab;). Let £i : B(Ab;) ----> A be a functor to an additive category A. A functor

Hi : K ----> A extends £i to K I if Hi restricted to B (Ab;) is naturally equivalent to £i' That is for

any F E Homl3(Abp)(X, Y), there exists isomorphisms TJx: £i(X) ----> Hi(X) so that

£i(X) ~ Hi(X)

Hi (F)1 0 lHi (F)

£i (Y) ~ Hi (Y)



35

The rest of the section is dedicated to proving the following two non-existence results:

Theorem IV.2.2. Let B(Ab;) c /C c /C(Ab;) as triangulated categories. Assume /C is a localizing

subcategory and contains arbitrary coproducts, then there exists no homology functor H* : /C ----+ Ab

that extends the standard homology functor H* to /C.

Theorem IV.2.3. Let B(Ab;) c /C c /C(Ab;) as triangulated categories. Assume /C is a localizing

subcategory and contains arbitrary coproducts. Let Hi : B(Ab;) ----+ Ab; take X to ker df jimAbdft-l'

There exists no homology functor H* that extends H* to /C.

The statement of Theorem IV.2.3 requires some justification as an arbitrary X E /C(Ab;)

may not return a p-complete group under standard homology (see Example II.4.3). However, when

restricted to B(Ab;), Claim 11.4.4 implies standard homology will return a p-complete group.

Given a functor that extends standard homology H* (-), there is an analog to the fact

f = Ha(f) where f E HomAb(A, B) and A and B are treated as chain complexes concentrated

in degree zero. Recall M n is the functor from Ab; to /C(Ab;) that sends an object to the chain

complex concentrated in degree n.

Lemma IV.2.4. Let /C be a subcategory of /C(Ab;) and H be a homology functor that extends

standard homology H to /C. Let Ai and Bk be objects from Ab; that are finitely generated as

Zp-modules. Let

f E HomAb~ (It Ai, IlKB
k

) g E HomAb~ (ILAi,IlKB
k

) h E HomAb~ (Il/Ai,IIKB
k

)

and set

Maf = F, Mag = G, and Mah = H.

There exist isomorphisms in Ab for all n that make the following diagrams commute.
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Proof. The top diagram commutes since H is a homology functor that extends H. The remaining

diagrams will follow from Theorem 22 of [5].

Consider the diagram with the morphisms g and H n (G). Theorem 22 in [5] implies there

exists an indexing set J and an isomorphism 'IjJ : IL oj ---+ TIiEI Ai, where oj is isomorphic to Zp

or Z / pi for some t. Denote M n ( 'IjJ) as \[!. The result follows since H is a functor and the following

diagram commutes.

A similar application of Theorem 22 in [5] gives the last diagram involving the morphisms

hand Hn(H). D

The proofs for Theorem IV.2.2 and IV.2.3 will make use of the following morphisms in

Ab;. Set the following notation for the remainder of the section.

The morphism w' is induced by the universal property of products in Ab;. If we identify UN Zp

with its image in TIN Zp, w is well defined. These maps are related to w from Example II.4.3 by

w = w' 0 L

Let Mow, Mow, and Mow' be denoted by denoted n, n, and n' respectively.

Proof of Theorem Iv'2.2. Let K be a localizing subcategory containing arbitrary coproducts and

B(Ab;) eKe K(Ab;) as triangulated categories. Assume H* is a homology functor that extends

H*. Let 'IjJ : UJ Zp ---+ TIN Zp be the isomorphism guaranteed to exists from Theorem 22 in [5].

Note that the cardinality of J is greater than that of N.

We will consider the exact triangle of the form
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This triangle is in K since Mo(UJ Zp) ~ UJ(Mo(Zp)) and K is a localizing subcategory that

contains its coproducts. The assumed existence of H will provide a long exact sequence in Ab with

which we can arrive at a contradiction.

Consider the long exact sequence obtained by applying H* (-) to the above exact triangle.

... --> HI (Cone(Q" 0\[1) -->

(Il ) H(ITo\lJ) (Il) -HoMo J Zp I HoMo l\I Zp --> HoCone(D a \[1) -->

H-1M o (Il
J

Zp) --> ...

For any n not equal to 0, Hn(Mo(UJ Zp)) ~ EB J Hn(Mo(Zp)) because Hn preserves coprod­

ucts. Since Hn extends Hn, EBJ Hn(Mo(Zp) ~ EBHn(Mo(Zp)) ~ 0 for n cJ O. Similarly

Hn(Mo(Ul\I Zp)) ~ 0 when n cJ O. The above long exact sequence thus becomes:

We can further simplify the above long exact sequence by applying Lemma IV.2.4 to

H(n a \[1)) and reduce to the following long exact sequence.

ffi H(ITo'lr) ffi -
... --> 0 --> W J Zp I Wl\I Zp --> Ho(Cone(D a \[1)) --> 0 --> ...

The above exact sequence is in Ab, but the objects also have a Zp-modules structure. Note

Qp is flat so when passed through the functor - ® Qp the above becomes:

We have thus found an injective map of vector spaces mapping EBJ Qp into a space with strictly

smaller cardinality. o

Proof of Theorem IV.2.3. Let K be a localizing subcategory containing arbitrary coproducts and

B(Ab;) eKe K(Ab;) as triangulated categories. Theorem IV.2.3 results from assuming the

existence of a homology functor H* that extends H* to K and calculating H*( -) of the chain

complex below. Note that the products written below do exist in K since Theorem 22 from [5]

implies the products can be written as coproducts for some indexing set and K contains arbitrary

coproducts.
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degree

2 Il\jZp

t[;-W]

1 Il
N

Zp EB Il
N

Zp

tlid w']

o IlNZp

Denote the above chain complex by Z and note that Z is isomorphic to the cone of

I ~
Cone(-D) --> Cone(-D') and Cone(~) --> Cone(-Id)

where I and <J> are defined respectively by:

liN Zp ---=-t IlNZp

wt w't
Il

N
Zp ~ Il

N
Zp

Il
N

Zp~ Il
N

Zp

-"t idt
IlNZp~ IlNZp.

We will calculate 'H* (Z) by first using Cone(I). We then repeat the calculation of 'H* (Z) with

Cone( <J» and conclude 'H* (Z) is not well defined.

To begin calculating 'H*(Cone(I)) we first consider the two triangles

and

There is a map of triangles that induces a map between their respective long exact se-

quences. The same techniques in the proof of Theorem IV.2.2 reduce the long exact sequences to

the following.
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0-------> 'Hl(Cone(-D)) ---.;;. 'Ho(IL\I Zp) 'Ho(-!1~ 'Ho(IIj\jZp) ---.;;. 'Ho(Cone(-D)) -------> 0

1 1 'Ho(Mo«lll 'Ho(idll 'HO(Ill 1
o~ 'Hl(Cone(-D')) ~ 'Ho(IIj\j Zp) 'HO(-!1/~ 'Ho(IIj\jZp) ~ 'Ho(Cone(-D'))~ 0

Lemma IV.2.4 implies 'Ho( -D) and 'Ho( -D') are injective. The definition of kernel in Ab~

thus implies that 'H 1 (Cone(-D)) ~ 0 ~ 'H1(Cone(-D')). This and Lemma IV.2.4 implies that we

can simply the above to:

The rows are exact in Ab~, so

'Ho(Cone( -D)) ~ cokerAb~(-w) and 'Ho(Cone(-D')) ~ cokerAb~(-w').

Let n : IlNZp ----+ cokerAb~ (-w) and n' : IlN Zp ----+ cokerAb~ (-w') be the natural projec­

tions. Remark 11.0.7 implies that the image of IlN Zp is dense in cokerAb~ (-w) and cokerAb~(-w').

Claim 11.4.5 then implies nand n' is onto. The following sequence is thus exact in Ab.

o -------> ker n ---.;;. II
N

Zp ~ cokerAb~ (-w) -------> 0

1 1 idl ,'HO(I)l 1
o~ ker n' ~ II

N
Zp ~ cokerAb~ (-w')~ 0

It was shown in Example 11.4.3 that ker n ~ IliEN pi Zp. It can also be shown that

kern' ~ IliENpiZp • Since the above diagram is in Ab, the Five Lemma implies cokerAb~(-w) ~

cokerAb~ (-w') and 'Ho (1) is an isomorphism.

We return to calculating 'Hn(Z) by with the triangle

I
~z := Cone(-D) ----+ Cone(-D') ----+ Z.
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The long exact sequence in Ab; induced by H simplifies to

o----t H1(Z) ----t Ho(Cone(-D)) !!.c:.5!1Ho(Cone(-D')) ----t Ho(Z) ----t O.

Since Ho(I) is an isomorphism, Hn(Z) = 0 for all n.

Consider calculating Hn(Z) with the following triangle instead.

/1Z1 ;= Cone(~) ~ Cone(-id) ----t Z

Note that Hn(Cone( -id)) = 0 for all n. The long exact sequence will imply that Hn+l(Z) ~

Hn(Cone(~)) for all n. Lemma IV.2.4 implies that Ho(Cone(~)) ~ cokerAb;~ ~ 0 thus H1(Z) ~ 0

which is a contradiction. 0

IV.3 Non-existence of a SHC for Ab; with a Homology Extending H*( -)

Recall an SHC is a localizing subcategory of K(Ab;). If V is an SHC containing the p-adic

integers in the form of Mn(Zp), V will also contain the chain complexes used in the proof of

Theorem IV.2.2. We can thus state the following non-existence result as a corollary to Theorem

IV.2.2.

Corollary IV.3.I. Let V be an SHe containing a chain complex of the form Mn(Zp) that is a

subcategory of K(Ab;). IfH* : V ----t Ab is a homology functor, then it does not extend H*( -).

IVA Small Objects in K(Ab;)

If W is a small object in K(Ab;), the functor H W defined by HomqAb;)(W, -) is a

homology functor [9]. We thus investigate the small objects of K(Ab;). To begin, we consider Ab;

which naturally sits in K(Ab;). We will show Ab; has no small objects and state some observations

about the small objects in K(Ab;).

Remark IVA.I. Let A be an additive category and let A, B E ob(A). If B is not small, the

group structure on the Hom sets imply A EB B is also not small.
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Lemma IVA.2. Z/pr is not small in Ab; for all r.

Proof. Fix r. The morphism f defined by f(1) = (l,p,p2,p3, ... ) is a well defined morphism

in HomAbp(Z/pr,Il~,.Z/pi)that has no corresponding morphism in EB~rHomAbp(Z/pr,Z/pi).

Thus, the group Z/p" is not small.

Lemma IVA.3. There are no nonzero small objects in Ab;.

o

Proof. Assume A is a nonzero object in Ab;. Theorem 22 from [5] states there are indexing sets

1j for j = 0,1,2, ...n, not all empty, so that

A ~ (EB Zp EB EB Z/p EB EB Z/p2 EB ... ) ..
Io I, I2 p

We will show A is not small by considering the two cases 10 =I=- 0 and 10 = 0.

If 10 =I=- 0, let B ~ Zp and C be the remaining factors so that A ~ (B EB C);. Remark

II.3.3 lets us write B EB C as a product, which commutes with p-completion. Thus A ~ B EB C;.

The proof of Claim IV. 1.3 showed Zp is not small so Remark IV.4.1 implies A is not small.

If 10 = 0 we can find an l' so that 1r =I=- 0 and let B ~ Z/pr. Let C be the remaining

factors and repeat the arguments above so we can write A ~ B EB C;. Lemma IV.4.2 states B is

not small, so Remark IV.4.1 again implies A is not small. o

Recall the functor M j : Ab; ----. JC(Ab;) takes objects A E Ab; to the chain com­

plex with A in the jth degree and zeros in all others. Chain homotopies between objects of

the form Mj(A) and Mj(B) for A, B E ob(Ab;) are thus not possible and HomAbp(A, B) ""­

Hom1C(Ab p)(Mj (A), Mj(B)). The above lemma implies the following.

Corollary IV.4.4. There are no small objects in JC(Ab;) of the form Mj(A) for some A E

ob(Ab;).

Claim IV.4.5. Let X k be the chain complex whose only nonzero degrees are the nth and the

n + 1th. Let the nontrivial differential be d;~ 1 : Zp ----. Zp where d;~1 (1) = pk. The object X k is

not small in JC(Ab;).

Proof. Without loss of generality assume n = 0, so X k is the chain complex with Zp in the first

and zeroth degrees and the nontrivial differential is d? (1) = pk. Fix k, we will produce yi and

show Hom1C(Abp)(Xk, IlN yi) is strictly larger than EBN HOffi1C(Abp)(Xk , yi).
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Define pi : X k --; yi to be the following chain map where all other degrees are zero.

degree

1

o

a
Zp > 0

d{1 01
x max(k,i-k) .

Zp p > Zip"

Notice that the collection of pi induce a map in HomK(Ab~)(Xk,UN yi) that we denote

by UPi. In particular, (UPi)o(l) E UNZ/pi will be ofthe form:

(0 O k k k k+l k+2 k+3 ), , ...p ,p , ...p ,p ,p ,p , ....

where the first nonzero entry is in the Z/pk+l factor and pk+l is in the Z/p2k+l factor.

The placement of the zero differentials in X k and UN yi will force any maps homo­

topic to U pi to be equal to U pi in degree O. Notice (U pi)O E HomAb~ (Zp, UN Z/pi) but

there is no corresponding morphism in EBN HomAb~ (Zp, Z/pi). We thus have a morphism U pi in

HomK(Ab~)(Xk,UNyi) with no corresponding morphism in EBNHomK(Ab~)(Xk,yi) implying X k

is not small.

Claim IVA.6. If X is small in K(Ab;), then Hn(X) = 0 for all but finitely many n.

o

Proof. Assume Hn(X) i=- 0 infinitely often. Let I be an index set so that i E I when Hi(X) i=- O.

For each i E I, a chain complex yi and chain map pi : X --; yi will be constructed so that yi '1- 0

and pi '1- 0 in JC(Ab;). A map is constructed that exists in HomK(Ab;;) (X, UiEI yi) that does not

correspond to a morphism in EBiEI HomK(Abp)(X, yi), implying that X is not small.
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Define the nonzero degrees of yi and F i by the following.

where (and di+2 are induced by the universal property of kerdi\l' By construction Hi(Fi) is an

isomorphism so Fi ~ 0 and yi ~ 0 in K(Ab;).

Consider the map DiE I F i : X -; DiEI yi, that has a nontrivial image in each factor in

some degree. Recall products in JC(Ab;) are taken degree wise. For each j EN,

(II Yi) ~ yHl EB yj EB yi-l EB yj-2
I j J J J J

so Remark 11.3.3 implies (DiEI yi) j ~ (UiEI yi) j for all j. The map DiE I F i is thus a well

defined morphism in HomqAb;) (X, Il
iEI

yi) even though there is no corresponding map in

ffi
iEI

HomqAb;) (X, yi). 0

We make the following conjecture:

Conjecture IV.4.7. There are no small objects in JC(Ab;).
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CHAPTER V

HOMOLOGY FUNCTOR CANDIDATES THAT EXTEND HOMK(Ab) (Mn(Z), -)

Theorems IV.2.2 and IV.2.3 state that there are no examples of homology functors from

K(Ab;) to either Ab or Ab; that extend standard homology. We record here the particular problems

that arise for a number of homology functor candidates.

V.I Properties of the Functor HOmK(Ab) (Mn(Z), -)

It is worth returning to the definition of H n (-). The description "kernel mod image"

introduces ambiguity since the image in Ab; differs from the image in Ab. We can define Hn ( -) :

K(Ab) -; Ab for each n by Hn(X) = HOmK(Ab) (Mn(Z), X). Given our interest in K(Ab;) we

instead restrict the to the subcategory K(Ab;) and make the following definition.

Definition V.LL Define standard homology as the functor Hn(-) : K(Ab;) -; Ab where

Hn(X) = HomK(Ab)(Mn(Z),X).

This definition lets us write Hn(-) ~ kerdn/imAbdn+l where both the image and cokernel is

taken with respect to Ab and not Ab;. We note Hn ( -) cannot be treated as a functor to Ab; since

Hn(X) may not, in general, be p-complete. An example of Hn(X) tf- ob(Ab;) can be constructed

using w from Example IIA.3.

Claim V.L2. Hn(-) is naturally equivalent to the functor HomK(Ab~)(Mn(Zp), -)

Proof. Let X E K(Ab;). Claim II.3A states that kerdn is p-complete. The adjoint condition

implies

and
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The definition of chain maps and chain homotopy then imply HomK(Ab;) (MnZp, -) is naturally

equivalent to Hn(-) = HomK(Ab) (Mn(Z), -). o

Given an exact triangle X ----+ Y ----+ Z in K(Ab~), the functor H*(-) induces a long exact

sequence in Ab. The proof is straightforward and makes heavy use of the cone structure used when

defining exact triangles [6].

The functor H*( -) fails to preserve coproducts in general and thus does not qualify as a

homology functor. The following provides an example of when H*(UIXJ) '1- EBIH*(XJ).

Example V.1.3. Let XJ be Mo(Zp) for all j. Since the differentials are all zero we can compute

H*(UN XJ) and EBN H*(XJ) directly.

V.2 Properties of the Functor (HomK(Ab;) (Mn(Zp), - ))~

The previous section allows us to write (HOmK(Ab;) (Mn(Zp), -)) ~ compactly as (Hn(- ))~.

Both Ab and Ab~ me be target categories for the functor (Hn(-))~' Since the target categories

involved have different coproducts we distinguish the different functors explicitly.

Definition V.2.1. Define (Hn(- ))~ : K(Ab~) ----+ Ab~ by taking X to (Hn(X))~,

Define (1in(- ))~ : qAb~) ----+ Ab by taking X to (Hn(X))~,

The chain complexes given in Example V.1.3 provides a situation in which

The functor (1in ( - ))~ is thus not a homology functor.

Before examining the second functor (Hn(- ));, we consider the object (Hn(X)); where

X E ob(qAb;)). Let 7r be the natural map in Ab from kerd;; to Hn(X). Notice Claim 11.4.5

implies 7r; : kerd;; ----+ (Hn(X)); is also onto so (Hn(X)); may also be treated as a quotient of

ker d;;. We will show

(V.I)
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--~-kerdX

is exact in Ab, where imAbd;;+1 n denotes the closure of imAbd;;+l with respect to ker d;;. Since

Ab is an abelian category we will be able to compare Hn(X) and (Hn(X))~ more directly with

this fact.

To show V.1 is exact, we work in Ab and consider ker n~. By definition of kernel:

kern; = {x E kerd;;ln;x = 0 E (Hn(X))~}

= {x E ker d;; I for all k there exists Yk E ker d;; with n;x = pkn;Yd

= {x E ker d;; I 'Vk 3Yk E ker d;; and ZkimAbd;;+1 so that x = pkYk +Zk}
--~-kerdX. dX n

=lmAb n+l

The following example shows the functor (H* (-)); does not take exact triangles to long

exact sequences.

Example V.2.2. Consider,

(degree) 0

1
o

1
(1) 11'1 Zp 4 IINZp ~ liN Zp EB IINZp

djC t di t dfoneF t
(0) liN Zp ~ liN Zp~ 0 EB liN Zp

d~l d6'l 1
(-1) 0 0 '-1 OEBO> >

" " "
We refer to the chain complexes on the left, center, and right as X, Y, and Z respectively. If we

use the same notation used in Section IV.2, the nontrivial differentials de? and di will be w0 ~ and

w respectively. Explicitly, if we treat elements of Xl and YI as column vectors

p 0 0 p 0 0

o o

o 0 o 0
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Set FI to be the natural inclusion and Fo to be the identity map. Notice since Z is the cone of

the map between X and Y, this is an exact triangle in JC(Ab;).

For any W E ob(JC(Ab;)),

Let 7r
w ; be the surjection from kerd~ to (Hn(W));. The universal property of quotients in Ab

gives the following.

Commutativity of the above diagram implies the induced map Hn(W) ----+ (Hn(W)); is a surjec­

tion. Recall H*( -) takes exact triangles to long exact sequences in Ab and consider the following

commutative diagram.

......................;> HI(X)~ HI(Y)~ HI(Z)~ Ho(X) ;>

i ,~i ~i, ai
..................;> (HdX)); 3,. (HI(Y)); --S (HI(Z)); ~ (HoCK)); ........;>

The element [(p,p2,p3, ... )] is nonzero in Ho(X) but divisible by pn for all n and so is

in the kernel of 0:. Note that F* [(p, p2, p3, ... )] = [(p, p2, p3, ... )] = [di (1,1,1, ... )] = [0] E Ho(Y).

Since the top row in the above diagram is exact, there is a nonzero element in HI (Z) that maps

to [p,p2,p3, ...]. We will show [(p,p2,p3, ... ), (1, 1, 1...)] is an element of HI(Z), that it maps to

[(p, p2, p3, ... )] under 0*, and it is not in the kernel of /. A diagram chase will then imply that

(H*(-)); does not take exact triangles to long exact sequences.

Consider ((p,p2,p3, ... ), (1, 1, 1, ... )) E ZI. Note that

df ((p,p2, p3, ... ), (1, 1, 1, ... )) = (-d~ (p,p2, p3 ... ), di (1,1,1...) - Fo(p, p2, p3, ... )) = (0,0)
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thus [(p,p2,p3, ... ), (1, 1, 1, ... )] E HI(Z). We see also that

To verify [(p,p2,p3, ... ), (1, 1, 1...)] (j. kerr we will show that p f [(p,p2,p3, ... ), (1, 1, 1...)]

in HI(Z). Since kerdr c ZI, it suffices to show p f [(p,p2,p3, ...), (1, 1, 1...)] in ZdimAbd~.

Consider the lift ((p,p2,p3, ...), (1,1,1...)) in ZI. The second coordinate (1,1,1, ...) E IT!'! Zp C ZI,

has an infinite number of nonzero entries whose respective p-norms do not tend to zero. The

image of d~ restricted to IT!'! Zp C ZI, however is the natural embedding of the coproduct in

IT!'! Zp that cannot alter an infinite number of entries if the p-norm does not tend to zero. Thus

Assume towards contradiction that (H*( - )); takes exact triangles to long exact sequences

in Ab. Commutativity of the above diagram implies l*,[(p,p2,p3, ...), (1, 1, 1, ... )] = 10], thus there

exists a [0] #- [y] E (HI(Y)); such that ~-;'([y]) = ,[(p,p2,p3, ... ), (1, 1, 1, ... )] E (HI(Z));. However

HI (Y) = 0, thus (HI (Y)); = 0, implying that [y] = [0] so we have our contradiction.

This example can be generalized by letting do? be any injective map that is not a kernel.

Define YI to be the kernel of do? The failure of injectives being kernels thus provides a family of

counterexamples.

V.3 Properties of the Categorically Defined "Kernel Mod Image"

Let X be an object in JC(Ab;). A categorical definition of homology from K:(Ab~) to Ab~

is provided by the following diagram.

cokerAb; d;;'

y I d~
imAb;d;;'+1 > X n > X n - I

....................~ I ~( x)~
k d

x if kerdner n -------.;>. x
ImAb;dn +1 p
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Denote (. kerd~ )" by H;;(X). We perform an analysis similar to that done in Section V.2
ImAb;dn+1 p

to write the following exact sequence in Ab:

(V.2)

To justify V.2, we work in Ab and consider the kernel of it. By definition:

kern = {x E kerd~1 itx = 0 E H;;(X)}

= {x E ker d~ I for all k there exists Yk E ker d~ so that itx = pknyk }

= {x E kerd~1 Vk :JYk E kerd~ and Zk E imAb;d~+l so that x = pkYk + Zk}
. X kerd;;

=lmAb;dn+1

We can further refine the sequence in V.2 to the short exact sequence in Ab:

(V.3)

To see this recall for an arbitrary map f E HomAb;(A,B), that imAb;f ~ imAbf
B

where

imAbi
B

denotes the closure of imAbi with respect to the ambient group B. Then, imAb;d~+l ~
-----,x~·Xn X ker d;; x
imAbdn+l . The above calculation of kerit thus shows kerit = imAb;dn+1 = imAbdn+l

where the first closure is taken with respect to X n and the second with respect to ker d~. Since

kerd~ a subset of X n , we can simply write kern = imAb;d~+lxn. Thus the above sequence is

exact in Ab and we can write H;;(X) ~ kerd~/imAbd~+/n where the cokernel is taken in Ab.
----=o--w

Once we have H;; (W) ~ ker d;; /imAbd~l we can use the universal property of quotients

in Ab. The following diagrams guarantee surjections from Hn (-) and (Hn (-)); onto H;;(-).

Hf (-) does not send exact triangles to long exact sequences and the counterexample used

for (Hn ( - )); will again work here. Assume the same notation used in Example V.2.2. Notice that
--~xo kerd~

X o = kerd~, so imAbdf = imAbdr . Thus Hf?(X) ~ (Ho(X));. In particular we still have

an element [p,p2,p3, ...J E Ho(X) that is sent to zero under the completion morphism a.
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We record this information in the following commutative diagram.

Consider the element:

[(p, p2,p3, ... ), (1, 1, 1, ... )] E Hf (Z).

Example V.2.2 showed [(p,p2,p3, ... ), (1, 1, 1, ... )] E (H1(Z)); is in the kernel of 8* so commutivity

in the above diagram implies [(p,p2,p3, ... ), (1, 1, 1, ... )] E Hf(Z) is in ther kernel of 5f. We will

show [(p,p2 ,p3, ... ), (1, 1, 1, ... )] =1= 0 in Hf (Z), but Hf (Y) = 0 which will imply Hf(-) does not

take exact triangles to long exact sequences.

Recall Hf(Z) ~ kerdt jimAbd¥z" so to show [(p,p2,p3, ... ), (1, 1, 1, ... )] =1= 0 in Hf(Z) it

suffices to show [(p,p2,p3, ... ),(1,1,1, ... )] (j imAbd¥z,. If [(p,p2,p3, ... ),(1,1,1, ... )] E imAbd¥z,

there would exist elements Xk E imAbd¥ and Yk E Zl with

which implies that pkl[(p,p2,p3, ... ), (1, 1, 1, ... )] in ZI/imAbdf. Example V.2.2 showed this is not

possible, thus [(p,p2,p3, ... ), (1, 1, 1, ... )] =1= 0 in Hf(Z) which is what we wanted.

The difference between Hf(-) and (H( - )); is subtle but they are distinct as the following

example shows.
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Example V.3.1. (HnX); 'F H:{ (X)

Define X to be the chain complex with nonzero degrees shown below.

degree X

3 IL\lZp

d3" t
2 IlNZp

d: t
1 IlNZjpk

Let d: project the kth factor of Il Zp onto Z jpk and df send the generator in the kth entry to

(p,p2" ...pk, 0, ... ).

Consider the element (p, p2, p3, ... ) E Il Zp = X 2. Note this element is not in imAbdf. We

can approximate this element in X 2with the sequence {d~(l, 0, 0... ), dnO, 1,0... ), d: (0,0, 1...) ...} c

imAbd:. The difference (p,p2 ,p3, ... ) - d: (0, 0 0,1,0... ) is divisible by pk in X 2, thus (p, p2, p3, ... )

is contained within imAbd:x2 and [(p,p2,p3, ), (1, 1, 1...)] = [0] in Hf(X). However, there ex-

ists no such sequences that approximate (p, p2, p3, ... ) with respect to ker d: so (p, p2, p3, ... ) is a

nonzero element in (H2 X);.

V.4 Conditions so that H:{(X) ~ (Hn(X));

Though (Hn (- )); 'F H:{ (-) on K(Ab;), there exists subcategories K of K(Ab;) in which

HE (-) is naturally equivalent to (H*( - ));. We provide a condition on K that will imply HE (-) ~

(H*(-))p when treated as functors from K.

Claim V.4.1. (Hn (Y)); is naturally equivalent to H:{ (Y) if and only if there exists an N so that

there is no y E Y with pi torsion when i > N.

Proof The necessity of the condition is provided in Example V.3.l.
--~-kerdY

To show the condition is sufficient, recall (Hn(Y))~ ~ ker d~jimAbd~+1 nand H:{ (Y)) ~

ker d~jimAbd~+1Y
n

where we are considering imAbd~+1 under two different closures. Notice that

we have an inclusion from imAbdn+1 kerdn into imAbdHI Y
i

• We will show the conditions given

. . Y ker d;. Y Yn A '" C
above Imply ImAbdn+1 = ImAbdn+1 and thus (Hn(Y))p = Hn (Y).
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Let Y E imAbdn+l Y
n

• By definition there exists elements Xk E imAbdn+l and Yk E Yn so

that

(VA)

for all k. Since Yn is p-complete equation VA implies

(V.5)

so dn(Yk) has pk torsion. The assumption in the claim guarantees there exists an N so that i > N

will imply dnYi = 0 so Yi E kerdn . The elements Xi E imAbdn+l and Yi E kerdn for i > N imply

. d kerdn
Y E ImAb n+l . o
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