
ON ALGEBRAS ASSOCIATED TO FINITE RANKED

POSETS AND COMBINATORIAL TOPOLOGY:

THE KOSZUL, NUMERICALLY KOSZUL AND

COHEN-MACAULAY PROPERTIES

by

TYLER KLOEFKORN

A DISSERTATION

Presented to the Department of Mathematics
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2014



DISSERTATION APPROVAL PAGE

Student: Tyler Kloefkorn

Title: On Algebras Associated to Finite Ranked Posets and Combinatorial Topology:
The Koszul, Numerically Koszul and Cohen-Macaulay Properties

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Mathematics
by:

Brad Shelton Chairperson
Daniel Dugger Core Member
Alexander Polishchuk Core Member
Sergey Yuzvinsky Core Member
Van Kolpin Institutional Representative

and

Kimberly Andrews Espy Vice President for Research and Innovation
Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded June 2014

ii



c© 2014 Tyler Kloefkorn

iii



DISSERTATION ABSTRACT

Tyler Kloefkorn

Doctor of Philosophy

Department of Mathematics

June 2014

Title: On Algebras Associated to Finite Ranked Posets and Combinatorial Topology:
The Koszul, Numerically Koszul and Cohen-Macaulay Properties

This dissertation studies new connections between combinatorial topology and

homological algebra. To a finite ranked poset Γ we associate a finite-dimensional

quadratic graded algebra RΓ. Assuming Γ satisfies a combinatorial condition known

as uniform, RΓ is related to a well-known algebra, the splitting algebra AΓ. First

introduced by Gelfand, Retakh, Serconek and Wilson, splitting algebras originated

from the problem of factoring non-commuting polynomials.

Given a finite ranked poset Γ, we ask a standard question in homological algebra:

Is RΓ Koszul? The Koszulity of RΓ is related to a combinatorial topology property

of Γ known as Cohen-Macaulay. One of the main theorems of this dissertation is: If

Γ is a finite ranked cyclic poset, then Γ is Cohen-Macaulay if and only if Γ is uniform

and RΓ is Koszul.

We also define a new generalization of Cohen-Macaulay: weakly Cohen-

Macaulay. The class of weakly Cohen-Macaulay finite ranked posets includes posets

with disconnected open subintervals. We prove: if Γ is a finite ranked cyclic poset,

then Γ is weakly Cohen-Macaulay if and only if RΓ is Koszul.
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Finally, we address the notion of numerical Koszulity. We show that there

exist algebras RΓ that are numerically Koszul but not Koszul and give a general

construction for such examples.

This dissertation includes unpublished co-authored material.
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CHAPTER I

INTRODUCTION

1.1. History and Significance

The Koszul property originated in work by its namesake, Jean-Louis Koszul. A

French geometer, Koszul sought to discover a cohomology theory for Lie algebras. In

1950, he discovered what would later be called the Koszul complex. In 1970, Priddy

observed more general applications of the Koszul complex (in particular applications

to Steenrod algebras) in his seminal paper, Koszul Resolutions, [17].

Let F be a field. One of the many equivalent definitions of a Koszul algebra is:

Definition 1.1. A connected graded F-algebra A is Koszul if for all i 6= j,

Exti,jA (F,F) = 0.

It follows from the above definition that a Koszul algebra is quadratic. We also note

that an algebra is Koszul if and only if the trivial module admits linear free resolution.

For a complete survey of all things Koszul, see [13].

Koszul algebras are remarkable – they are ubiquitous and often encode geometric

data. There are several notable examples. In the setting of algebraic topology,

Papadima and Yuzvinsky show that a formal topological space X is rational K[π, 1]

if and only if the cohomology ring of X, H∗(X), is Koszul; see [15]. In [24], Shelton

and Yuzvinsky show that if a hyperplane arrangement A is supersolvable, then its

Orlik-Solomon algebra, OS(A), is Koszul. In the setting of representation theory,

Beilinson, Ginzburg and Soergel apply the notion of Koszul duality to category O;

see [1].
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Further demonstrating its significance, many authors have introduced

generalizations of Koszulity. In [2], Berger defined the class of N -Koszul algebras.

Cassidy and Shelton introduced the class of K2 algebras in [5]. In [9], Herscovich

studies multi-Koszul algebras.

Numerical Koszulity is an important and a closely related property.

Definition 1.2. Let A be graded connected quadratic F-algebra with quadratic dual

algebra A! and let H(A, t) be the Hilbert series of A. Then A is said to be numerically

Koszul if

H(A,−t) ·H(A!, t) = 1.

Every Koszul algebra is numerically Koszul but, in general, the converse is false.

Independently, counterexamples were discovered in [14] and [23].

This dissertation explores new connections between topology and Koszul

algebras. More specifically, we study a combinatorial topology property known as

Cohen-Macaulay and its relationship to the Koszul property.

We give a brief introduction to Cohen-Macaulay posets. Let (Γ, <) be a finite

poset with unique minimal element ∗. We say Γ is ranked if for every b ∈ Γ, any

two maximal chains in [∗, b] have the same length. Also, Γ is cyclic if it has a unique

maximal element. If a < b in Γ, then ∆((a, b)) denotes the order complex of (a, b).

Definition 1.3. A finite ranked cyclic poset Γ is Cohen-Macaulay relative to F if for

all a < b in Γ, H̃n(∆((a, b)),F) = 0 for all n 6= dim∆((a, b)).

Thus, a finite ranked cyclic poset is Cohen-Macaulay if every open interval is, as we

say, a cohomology bouquet of spheres (or CBS). We say that the simplicial complex

∆(P ) is Cohen-Macaulay if the poset P is Cohen-Macaulay. The Cohen-Macaulay
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property has been studied extensively; for a survey of all things Cohen-Macaulay, see

[3].

It is worth noting that both the Cohen-Macaulay and Koszul properties are

relative to the field F.

We wish to give the reader some context for the results found in this dissertation.

Connections between combinatorial topology and homological algebra date back to

the work of Reisner and the introduction of face rings (also known as Stanley-Reisner

rings) and the Cohen-Macaulay property for rings. A commutative Noetherian local

ring is Cohen-Macaulay if its Krull dimension is equal to its depth. The following

theorem, due to Reisner, is integral to the study of face rings.

Theorem 1.4. [18] Let P be a finite ranked poset. The face ring of ∆(P ) over F is

Cohen-Macaulay if and only if P is Cohen-Macaulay relative to F.

Later, Eagon and Reiner proved the following.

Theorem 1.5. [6] Let P be a finite ranked poset. The face ring of ∆(P ) over F has

linear free resolution if and only if the Alexander dual of ∆(P ) is Cohen-Macaulay

relative to F.

For a more recent and closely related example, we direct the reader to the work

of Polo and Woodcock. They proved the following theorem independently.

Theorem 1.6. [16][28] Let P be a finite ranked cyclic poset. The incidence algebra

of P over F is Koszul if and only if P is Cohen-Macaulay relative to F.

We now describe the class of posets and algebras we are interested in studying.

Definition 1.7. Let Γ be a finite ranked poset with unique minimal element ∗. The

algebra RΓ is the F-algebra with degree one generators rx for all x ∈ Γ \ {∗} and

3



relations

rx
∑
x→y

ry = 0

and

rxrw = 0 whenever x 6→ w.

We note RΓ is quadratic.

The algebra RΓ has a relatively complex history. We give an overview.

We let Γ be as in Defintion 1.7. In [8], Gelfand, Retakh, Serconek and Wilson

associate to Γ a connected graded F-algebra AΓ which is called the splitting algebra

of Γ; splitting algebras are related to the problem of factoring non-commuting

polynomials. Retakh, Serconek and Wilson later showed that if Γ satisfies a

combinatorial condition called uniform, then an associated graded algebra of the

splitting algebra is quadratic. From which it follows that AΓ is quadratic (c.f. [19]).

These authors then asked a standard question in homological algebra: given a finite

uniform ranked Γ, is AΓ Koszul?

If AΓ is Koszul, one can use the Hilbert series condition of numerical Koszulity

to extract combinatorial data from the algebra. Recent work in the area of splitting

algebras often focuses on calculating Hilbert series (c.f. [20] and [21]).

It is often difficult to determine if AΓ is Koszul. In fact, preliminary literature

incorrectly asserted that AΓ is Koszul for all uniform Γ. We thus pass to a related

question. Following [19] and assuming Γ is uniform, we filter AΓ by rank in Γ. We

denote the associated graded algebra by grAΓ. Finally, we study the quadratic dual

of grAΓ, which is denoted by (grAΓ)!. Applying standard techniques, we know that

if (grAΓ)! is Koszul, then so is AΓ. We then ask: given a finite uniform ranked Γ, is

4



(grAΓ)! Koszul? We note in [20] and subsequent papers by the same authors, (grAΓ)!

is denoted by B(Γ).

If Γ is uniform, then RΓ = (grAΓ)!. The notation, RΓ, is from [4]; Cassidy, Phan

and Shelton assume Γ is uniform and denote (grAΓ)! with RΓ. We emphasize that

for our definition of RΓ, Γ need not be uniform.

The algebra RΓ and Koszulity of RΓ are extremely interesting, even if Γ is not

uniform and we draw no conclusions about splitting algebras. In [4], Cassidy, Phan

and Shelton show, among many things, that there exists a non-Koszul RΓ. If Γ stems

from a geometric object, then the Koszulity of RΓ gives important combinatorial

and topological data. Again, in [4], the authors show that if Γ is the intersection

poset of a regular CW complex, then RΓ is Koszul. Sadofsky and Shelton also study

posets associated to regular CW complexes in [25] – they show Koszulity for RΓ is

a topological invariant. Lastly, the following question is of great interest: is every

numerically Koszul RΓ also Koszul?

1.2. Summary of Results

Chapter II contains background notation and definitions.

In chapter III, we study finite ranked uniform posets Γ and RΓ. The main result

of this chapter is as follows.

Theorem 1.8. Let Γ be finite ranked cyclic poset. Then Γ is Cohen-Macaulay if and

only if Γ is uniform and RΓ is Koszul.

In addition, chapter III addresses the notion of numerical Koszulity.

Theorem 1.9. There exist finite ranked uniform posets (including cyclic posets) Γ

such that RΓ is numerically Koszul but not Koszul.

5



We give a general construction for such examples and use that construction to provide

cyclic and non-cyclic examples.

In chapter IV, we study finite ranked (possibly non-uniform) posets Γ and RΓ.

Using combinatorial topology, we define a new generalization of the Cohen-Macaulay

property: weakly Cohen-Macaulay. The main theorem of chapter IV is as follows.

Theorem 1.10. Let Γ be finite ranked cyclic poset. Then Γ is weakly Cohen-

Macaulay if and only if RΓ is Koszul.

We find it intriguing that Theorems 1.8 and 1.10 are analogous to results from

[3], [16], [18] and [28] in that they connect properties of combinatorial topology and

homological algebra.

This dissertation includes unpublished co-authored material in chapters II and

III.
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CHAPTER II

DEFINITIONS AND NOTATION

This chapter includes unpublished co-authored material. Brad Shelton and I

collaborated in writing this entire chapter.

2.1. Ranked Posets and the Order Complex

Definition 2.1. Let Γ be a poset with unique minimal element ∗ and strict order <.

We say Γ is ranked if for all b ∈ Γ, any two maximal chains in [∗, b] have the same

length. The length of such a maximal chain is then referred to as the rank of b and

written rkΓ(b). Set Γ+ = Γ \ {∗}. Let Γ(k) be the elements of Γ of rank k.

(1) Γ is pure of rank d if rkΓ(x) = d for every maximal element of Γ.

(2) If Γ is pure, then Γ is the poset Γ adjoined with a unique maximal element.

(3) If Γ is pure, then Γ′ is the poset Γ \ Γ(rk(Γ)).

(4) Γx denotes the interval [∗, x] in Γ.

(5) Γ is cyclic if Γ = Γx for some x ∈ Γ.

(6) For any x ∈ Γ, Sx(k) = {y ∈ Γx | rkΓ(y) = rkΓ(x)− k}.

For any a < b, we say that b covers a, written b → a, if the closed interval [a, b] has

order 2, or equivalently a ∈ Sb(1). This makes Γ into a directed graph that is often

referred to as a layered graph.

Remark 2.2. The above definition of ranked poset is taken from [8], a fundamental

paper in the area of splitting algebras. We note that this definition differs from the

traditional one wherein every maximal chain has the same length (c.f. [27]).

We recall the definition of uniform from [8].
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Definition 2.3. Let Γ be a ranked poset. For x ∈ Γ and a, b ∈ Sx(1), write a ∼x b if

there exists c ∈ Sa(1)∩ Sb(1) and extend ∼x to an equivalence relation on Sx(1). We

say that Γ is uniform if, for every x ∈ Γ, ∼x has a unique equivalence class.

The notion of the order complex of a finite poset is a standard tool in

combinatorial topology and elsewhere. For completeness of exposition, we include

the basic definitions.

Definition 2.4. Let Γ be a finite poset with strict order <. The order complex of Γ,

∆(Γ), is the collection of ordered subsets of Γ:

∆(Γ) = {(b0, b1, . . . , bn) | bi ∈ Γ and b0 < b1 < · · · < bn}

An element β = (b0, · · · , bn) in ∆(Γ) is an n-cell (or n-chain) of the complex, Cn(∆(Γ))

denotes the F-vector space generated by the n-cells and C(∆(Γ)) = ⊕nCn(∆(Γ)).

Given x ∈ Γ, define ux : Cn(∆(Γ)) → Cn+1(∆(Γ)) by extending linearly from the

formula

ux(b0, · · · , bn) =



(x, b0, · · · , bn) if x < b0

(−1)i+1(b0, · · · , bi, x, bi+1, · · · , bn) if bi < x < bi+1

(−1)n+1(b0, · · · , bn, x) if bn < x

0 otherwise

Finally, we set d∆(Γ) = d =
∑

x ux : C(∆(Γ))→ C(∆(Γ)).

Since ∆(Γ) is a simplicial complex, it has a well-defined geometric realization,

or total space which we will denote ||∆(Γ)||. We typically give this topological space

a name, say Y = ||∆(Γ)||. We will consistently abuse notation and write C(Y ) for

8



C(∆(Γ)) and dY for d∆(Γ). It is standard that (C(Y ), dY ) is a cochain complex and

that Hn(Y ) = Hn(C(Y ), dY ). We remind the reader that these cohomology groups

are all calculated with coefficients in our base field, F.

Recall from Definition 1.3 that a finite ranked cyclic poset is Cohen-Macaulay

relative to a field F if the order complex of any open subinterval (a, b) has non-zero

reduced cohomology only in the degree equal to its dimension.

2.2. The Algebra RΓ

In this section, and all remaining chapters, Γ denotes a finite ranked poset with

unique minimal element ∗. We recall the definition of RΓ from Chapter I.

Definition 2.5. Let VΓ be the F-vector space with basis elements rx, ∗ 6= x ∈ Γ. For

each k ≥ 0 and ∗ 6= x ∈ Γ, set rx(k) =
∑

y∈Sx(k)

ry. Let IΓ be the quadratic ideal of the

free (tensor) algebra F(VΓ) generated by the elements:

(1) rx ⊗ ry for all pairs {x, y} such that y 6∈ Sx(1),

(2) rx ⊗ rx(1) for all x.

Then the algebra RΓ is a the quadratic F-algebra F(VΓ)/IΓ and we continue to write

rx for the generators of RΓ.

The algebra RΓ can be graded in several convenient ways, but we will only use

the standard connected grading RΓ =
⊕
n≥0

RΓ,n in which the generators rx have degree

one.

Cassidy, Phan, and Shelton proved the following lemma in [4]. This lemma is a

very powerful tool; we will use it repeatedly and without further comment. We note

that Γ need not be uniform.
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Lemma 2.6 ([4], (3.1)). Let Γ be a finite ranked poset. Then

(RΓ)+ =
⊕
x∈Γ+

rxRΓ.

Recall from Definition 1.1 that a graded connected F-algebra A is Koszul if for all

i 6= j, Exti,jA (F,F) = 0. There are many equivalent ways to define Koszul (c.f. [13]).

We will often use the following equivalent definition: a graded connected F-algebra

A is Koszul if the trivial right A-module FA admits a linear projective resolution.

We will say that a finite ranked poset Γ is Koszul if the algebra RΓ is Koszul.

We warn the reader that this is an abuse of notation since we know from [4] that

this definition is dependent on the field F. That is, there are posets Γ such that the

property “RΓ is Koszul” is dependent on the field F.

The Koszul property is closely related to a certain co-chain complex built from

the ring RΓ.

Definition 2.7. Let Γ be a finite ranked poset.

(1) dΓ =
∑
∗6=x∈Γ

rx ∈ RΓ,1. Also let dΓ denote the function dΓ : RΓ → RΓ given by

left (but never right) multiplication by dΓ.

(2) For all n ≥ k ≥ 0, set RΓ(n, k) =
∑

rkΓ(y)=n+1

ryRΓ,n−k.

By definition, RΓ has a spanning set of monomials of the form rb1rb2 · · · rbj where

b1 → b2 → · · · → bj. The space RΓ(n, k) is then the span of such monomials for which

rkΓ(b1) = n+ 1 and rkΓ(bj) = k + 1. The degree of such a monomial is n− k + 1.

From the definitions we see at once that (dΓ)2 = 0. In particular, for each k ≥ 0

we have a cochain complex:

· · ·RΓ(n− 1, k)
dΓ−→ RΓ(n, k)

dΓ−→ RΓ(n+ 1, k) · · ·

10



It is useful to note the folllowing. Let dnΓ =
∑

rk(y)=n+1

ry, so that dΓ =
∑

n d
n
Γ. Then

the cochain complex above is the same as:

· · ·RΓ(n− 1, k)
dnΓ−→ RΓ(n, k)

dn+1
Γ−−−→ RΓ(n+ 1, k) · · ·

Definition 2.8. For each k ≥ 0, we will denote the cohomology of the complex above,

Hn(RΓ(·, k), dΓ), by HRΓ
(n, k), or more simply as HΓ(n, k).

It is sometimes convenient to augment each of the cochain complexes RΓ(·, k)

by defining F → R(k, k) via 1 7→ dkΓ. We denote the cohomology of the augemented

complex by H̃Γ(n, k). Please note that this differs from HΓ(n, k) in cohomology degree

k, not 0.

11



CHAPTER III

FINITE RANKED UNIFORM POSETS AND RΓ

This chapter includes unpublished co-authored material. Brad Shelton and I

collaborated in writing this entire chapter.

We recall important results related to RΓ. The following result from [4] is

extremely useful and will be used repeatedly without further comment.

Theorem 3.1 ([4], (3.5)). If the poset Γ is uniform, then Γ is Koszul if and only if

Γx is Koszul for every ∗ 6= x ∈ Γ.

The following important theorem from [4] explains how the internal cohomology

groups HΓ(n, k) are related to the Koszul property of the algebra RΓ.

Theorem 3.2. Assume Γ = Γx is a finite ranked uniform cyclic poset with rkΓ(x) =

d+ 1. Then

(1) HΓ(k, k) = F for all 0 ≤ k ≤ d.

(2) HΓ(n, k) = 0 if n = d or d− 1 and k < n.

(3) Assume Γz is Koszul for every z < x. Then Γ is Koszul if and only if

HΓ(n, k) = 0 for all 0 ≤ k < n ≤ d− 2.

Proof. This is 3.7 and 3.8 of [4].

Remark 3.3. Despite a remark to the contrary in [4], neither the cyclic hypothesis

nor the “inductive” hypothesis can be removed from part (3) of 3.2. We give two

examples below to illustrate these points.

Example 3.4. Historically, the first known example of a poset for which RΓ is not

Koszul is the poset Γ whose Hasse diagram is shown in Figure 3.1. Let Γ′ = Γ \ {X}.
12



One sees directly that the element rDrG in RΓ′(1, 0) = RΓ(1, 0) represents a non-zero

cohomology class in both HΓ′(1, 0) and HΓ(1, 0). Since RΓ′ is Koszul (because all

rank 3 cases are Koszul), this shows that Koszulity, without the cyclic hypothesis,

does not guarantee vanishing of cohomology. The fact that HΓ(1, 0) is non-zero does,

however, prove that RΓ is not Koszul (by (3) of 3.2).

FIGURE 3.1. The poset Γ.

It is rather more complex to show that without the inductive hypothesis vanishing

of the cohomology groups HRΓ
(n, k) for k < n does not imply the Koszul property.

We use the results of [4] to build a fairly straightforward cyclic example.

Example 3.5. Let Z and Y be two regular CW complexes pictured to the left in

Figure 3.2 and let Ω be the uniform ranked poset whose Hasse diagram is given to

the right in Figure 3.2.

We claim that HΩ(n, k) = 0 for all 0 ≤ k < n ≤ 4, but Ω is not Koszul.

First note that ΩZ has the form P ∪{∗, Z}, where P is the incidence poset of the

CW complex Z. Since Z is homotopic to S1, but is pure of dimension 2, Corollary

5.6 of [4] tells us ΩZ is not Koszul. Hence Ω is not Koszul.
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FIGURE 3.2. The regular CW complexes Z and Y and the Poset Ω.

On the other hand, ΩY has the form Q ∪ {∗, Y }, where Q is the incidence poset

of Y. Since Y is a 2-disc, Corollary 5.6 of [4] tells us that ΩY is Koszul and then 3.2

tells us that HΩY (n, k) = 0 for all 0 ≤ k < n ≤ 3. Since the element Y majorizes

every element of Ω of rank at most 3, and since HΩY (2, k) = 0 for k = 0, 1, one can

see by inspection that HΩ(n, k) = HΩY (n, k) for all 0 ≤ k ≤ n ≤ 2. Combining this

with (2) of 3.2 shows that HΩ(n, k) = 0 for all 0 ≤ k < n ≤ 4, as claimed.

3.1. A Co-Chain Map

Let Y be the total space of the order complex ∆(Γ \ {∗}). We define an

epimorphism:

ΦΓ : Cn(Y )→ RΓ(n, 0)

by extending linearly from the formula:

ΦΓ((b0, · · · , bn)) =


rbnrbn−1 · · · rb0 if rkΓ(b0) = 1

0 otherwise
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We note that ΦΓ((b0, · · · , bn)) = 0 unless rkΓ(bn) = n + 1, since otherwise either

rkΓ(b0) 6= 1 or there is some j for which bj 6→ bj−1 and then rbjrbj−1
= 0. It may seem

odd to utilize a map that annihilates so much information, but it works.

Lemma 3.6. ΦΓ : C(Y )→ RΓ(·, 0) is a cochain epimorphism.

Proof. We begin with a preliminary observation. Fix ∗ 6= a < b in Γ. We claim:∑
a<x<b

rbrxra = 0 in RΓ. To see this, first observe that we may eliminate from the

sum any x that is not in Sb(1) since for such x, rbrx = 0. On the other hand, for

any y ∈ Sb(1) for which a 6< y, we have ryra = 0. Hence we may add such terms to

the sum without changing it. Hence the sum is the same as rbrb(1)ra, which is 0 by

definition. A similar observation is that
∑
∗6=x<b

rbrx = 0.

Fix β = (b0, · · · , bn) ∈ Cn(Y ). Consider first the case when rk(b0) > 1, in which

case dΓΦΓ(β) = dΓ0 = 0. Then

ΦΓ(dY (β)) =
∑
∗6=x<b0

ΦΓ(x, b0, · · · , bn) =
∑

x<b0, rk(x)=1

rbn · · · rb0rx.

If rk(b0) > 2 then this sum is 0 since every term rb0rx = 0. If rk(b0) = 2, then this

sum is 0 by the observation above. Either way, ΦΓ(dY (β)) = (−1)n+1dΓΦΓ(β) = 0.

Consider the case when rk(b0) = 1. Recalling that ryrbn = 0 whenever bn 6< y,

we get

dΓΦΓ(β) = dΓrbn · · · rb0 =
∑
bn<y

ryrbn · · · rb0 .
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On the other hand,

ΦΓ(dY (β)) =
∑
i

(−1)i+1
∑

bi<x<bi+1

rbn · · · rbi+1
rxrbi · · · rb0

+ (−1)n+1
∑
bn<x

rxrbn · · · rb0 .

By the observation above, each sum inside the first term of this expression is 0. This

shows that ΦΓ(dY (β)) = (−1)n+1dΓΦΓ(β), as required.

It is clear that the cochain map ΦΓ extends to a cochain map between the

augmented cochains F→ C(Y ) and F→ RΓ(·, 0).

Theorem 3.7. Let Γ be a finite ranked uniform poset and Y = ||∆(Γ\{∗})||. Assume

RΓ is Koszul. Then the cochain map ΦΓ : Cn(Y )→ RΓ(n, 0) is a quasi-isomorphism.

In particular:

Hn(Y ) = HΓ(n, 0) for all n.

Proof. Let R = RΓ throughout the proof. Let d + 1 be the maximal rank of any

element of Γ. We prove the theorem by induction on d. The case d = 0 is clear.

Henceforth we assume d > 0. We begin by proving a special case of the theorem.

The special case contains substantive extra information.

Lemma 3.8. Let Γ, Y be as in 3.7, with the additional hypothesis that Γ is cyclic,

that is Γ = Γx where rkΓ(x) = d+1. Let Γ′ = Γ\{x}, let Z be the (d−1)-dimensional

closed subspace of Y given by Z = ||∆(Γ′ \ {∗})|| = ||∆((∗, x))||.

(1) ΦΓ : Cn(Y )→ R(n, 0) is a quasi-isomorphism,

(2) H̃n(Y ) = H̃Γ(n, 0) = 0 for all n,

(3) H̃n(Z) = 0 for all n 6= d− 1,

16



(4) The map H̃d−1(Z)→ R(d, 0) given by

[(b0, · · · , bd−1)] 7→ rxΦΓ′(b0, · · · , bd−1) = rxrbd−1
· · · rb0

is an isomorphism.

Proof. Since R = RΓ is by assumption Koszul, 3.2 tells us H̃Γ(n, 0) = 0 for all n.

Since Γ is cyclic, the space Y is contractible and thus H̃n(Y ) = 0 for all n. This

proves (2), from which (1) follows trivially.

Let R′ = RΓ′ . By induction, ΦΓ′ : Cn(Z)→ R′(n, 0) is a quasi-isomorphism and

H̃n(Z) = H̃Γ′(n, 0) for all n.

Define the cochain complex K to be 0 → R(d, 0) → 0 with the term R(d, 0) in

degree d. We note that R(n, 0) = R′(n, 0) for all n < d, and R′(d, 0) = 0. Moreover,

the maps dΓ and dΓ′ coincide on the spaces R(n, 0) for n < d − 1. Hence we have

short exact sequence of cochains:

0→ K → R(·, 0)→ R′(·, 0)→ 0

The associated long exact sequence in cohomology, together with (2), yields

HΓ′(n, 0) = HΓ(n, 0) = 0 for all n < d − 1. Furthermore, HΓ′(d − 1, 0) is

isomorphic to R(d, 0) via the connecting homomorphism. Composing the connecting

homomorphism with the isomorphism ΦΓ′ : H̃d−1(Z) → H̃Γ′(d − 1, 0) gives exactly

the map given in (4). This proves (3) and (4).

We return to proving the general case of the Theorem. Let Γ(d+1) = {y1, . . . , ys}

and set Ω = Γ \ Γ(d + 1). We define closed subspaces of Y : Yi = ||∆((∗, yi])|| for
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1 ≤ i ≤ s and Z = ||∆(Ω \ {∗})||. Note that for each i, Z ∩Yi = ||∆((∗, yi))||, so that

Lemma 3.8 applies to the pair (Yi, Z ∩ Yi).

Consider the relative cochain complex C(Y, Z). The basis elements of Cn+1(Y, Z)

are those n + 1-cells (b0, · · · , bn+1) in Cn+1(Y ) for which bn+1 = yi for some i, in

which case (b0, · · · , bn) is in Cn(Z ∩ Yi). Hence there is a vector space isomorphism

ζ : ⊕iCn(Z ∩ Yi) → Cn+1(Y, Z) given by mapping (b0, · · · , bn) in Cn(Z ∩ Yi) to

(b0, . . . , bn, yi). We also define the isomorphism ζ : Fs → C0(Y, Z) by ζ(ei) = (yi).

Finally, define an augmentation Fs → ⊕iC0(Z ∩ Yi) via ei 7→
∑
b<yi

(b) in C0(Z ∩ Yi).

Using the fact that each yi is maximal in Γ, it is a straightforward calculation

to see that ζ is a degree +1 cochain map between the augmented cochain complex

Fs → ⊕iC(Z ∩ Yi) and the complex C(Y, Z). Hence ζ is an isomorphism of cochain

complexes. Thus Hn+1(Y, Z) =
⊕

i H̃
n(Z∩Yi) for all n. By Lemma 3.8, we then have

Hn(Y, Z) = 0 for all n < d. Since R(d, 0) =
⊕

i ryiR(d−1, 0) =
⊕

iRΓyi
(d, 0), 3.8 also

shows us that Hd(Y, Z) is isomorphic to R(d, 0), via the map [β = (b0, · · · , bd−1, yi)] 7→

ryirbd−1
· · · rb0 = ΦΓ(β).

Let K be the cochain complex 0 → R(d, 0) → 0, concentrated in degree d.

Exactly as in the proof of 3.8 we have a short exact sequence of cochain complexes:

0 → K → R(·, 0) → RΩ(·, 0) → 0. For any n < d, let Φ̂Γ be the restriction of ΦΓ to

Cn(Y, Z). By the note just after the definition of ΦΓ, we see Φ̂Γ(Cn(Y, Z)) = 0 for all

n < d.
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Using the last observation, we see that we have a commutative diagram of cochain

complexes:

0 −→ C(Y, Z) −→ C(Y ) −→ C(Z) −→ 0

0 −→ K

Φ̂Γ

?
−→ R(·, 0)

ΦΓ

?

−→ RΩ(·, 0)

ΦΩ

?

−→ 0

By induction, ΦΩ is a quasi-isomorphism. By the previous paragraph, Φ̂Γ is a quasi-

isomorphism. Thus ΦΓ is a quasi-isomorphism. This completes the proof of Theorem

3.7.

3.2. Connection to a Theorem of Retakh, Serconek and Wilson

This section is a brief digression in order make a connection between our methods

and a very good result: Proposition 3.2.1 of [20]. The basic idea of this section is to see

just how far one can push the techniques of the previous section without the Koszul

hypothesis. We will prove a weaker version of 3.7, from which we get a corollary that

is equivalent to 3.2.1 of [20].

Theorem 3.9. Let Γ = Γx be a finite ranked uniform cyclic poset with rkΓ(x) = d+1

and set Γ′ = Γ \ {x}. Let Z be the total space of the order complex ∆(Γ′ \ {∗}).

Then:

(1) The cochain epimorphism ΦΓ′ : Cn(Z) → RΓ′(n, 0), as described in the

previous section, induces an isomorphism in cohomology in degree d− 1, that is

Hd−1(Z) ∼= HΓ′(d− 1, 0).
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(2) The map H̃d−1(Z)→ RΓ(d, 0) given by

[(b0, · · · , bd−1)] 7→ rxΦΓ′(b0, · · · , bd−1) = rxrbd−1
· · · rb0

is an isomorphism.

Proof. We prove both parts of the theorem by induction on d. The case d = 0 is

trivial, as there is nothing to prove. The case d = 1 is essentially trivial (and is

anyways covered by 3.8). We assume d ≥ 2.

Let Γ′(d) = {y1, . . . , ys} be the elements of rank d. Set Ω′ = Γ′ \ {y1, . . . , ys}.

Let Ω be the poset obtained by adjoining to Ω′ a unique new maximal element 1̄ (so

that, in particular, Ω′ = Ω \ {1̄}). In order to apply induction to the pair (Ω,Ω′) we

need to observe that Ω is a ranked uniform cyclic poset. It is ranked because every

maximal element of Ω′ has rank d − 1. It is cyclic by construction. The fact that Ω

is uniform is Lemma 2.3 of [4]. Let W = ||∆(Ω′ \ {∗})||.

For each yi, let Zi = ||∆((∗, yi])||. Then Zi ∩W = ||∆((∗, yi))||. Since (Γ′)yi =

[∗, yi] is uniform and cyclic, we may also apply the inductive hypothesis to the pairs

(Zi, Zi ∩W ).

Exactly as in the proof of 3.7 we have a degree +1 cochain isomorphism ζ between

the augmented cochain complex Fs →
⊕

iC
n−1(Zi ∩W ) and the cochain complex

Cn(Z,W ). Also exactly as in that proof we have a commutative diagram of cochain

compexes:

0 −→ C(Z,W ) −→ C(Z) −→ C(W ) −→ 0

0 −→ K ′

Φ̂Γ′

?

−→ RΓ′(·, 0)

ΦΓ′

?

−→ RΩ′(·, 0)

ΦΩ′

?

−→ 0
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where K ′ is the cochain complex 0 → RΓ′(d − 1, 0) → 0 with the nonzero term

in degree d − 1. Consider the final terms of the associated diagram of long exact

cohomology sequences:

· · · −→ Hd−2(W ) −→ Hd−1(Z,W ) −→ Hd−1(Z) −→ 0

· · · −→HΩ′(d− 2, 0)

ΦΩ′

?

−→RΓ′(d− 1, 0)

Φ̂Γ′

?

−→HΓ′(d− 1, 0)

ΦΓ′

?

−→ 0

The first downward arrow in this diagram is an isomorphism by induction. Using the

isomorphism ζ and induction again we have Hd−1(Z,W ) =
⊕

iH
d−2(Zi ∩ W ) =⊕

iRΓ′yi
(d − 1, 0) = RΓ′(d − 1, 0). Hence the second downward map is also an

isomorphism. Hence the final downward map is also an isomorphism.

This completes the inductive proof of part (1) of the theorem. Part (2) follows

immediately from part (1), exactly as in the proof of part (3) of Lemma 3.8.

Definition 3.10. For each k ≥ 0 we set Γ>k = {y ∈ Γ | rkΓ(y) > k} ∪ {∗}.

We note that Γ>0 = Γ and that Γ>k is uniform if Γ is uniform. The rank

function on Γ>k \ {∗} is rkΓ>k(a) = rkΓ(a)− k. It is also clear that for all 0 ≤ j ≤ n,

RΓ>k(n, j) = RΓ(n + k, j + k) and furthermore that HΓ>k(n, j) = HΓ(n + k, j + k).

Using this notation we get the following corollary to Theorem 3.9. This corollary is

an exact restatement of Proposition 3.2.1 from [20] in our notation. (Remark: there

is a typographical error in 3.2.1 of [20], which uses Hn−2 instead of H̃n−2. It is clear

that reduced cohomology was intended by the authors.)
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Corollary 3.11. Let Γ be a finite ranked uniform poset and ∗ 6= v ∈ Γ an element

of rank d+ 1. Then for any 0 ≤ k ≤ d− 1,

dim(rvRΓ(d− 1, k)) = dim(H̃d−k−1(∆(Γ>kv \ {∗, v})).

Proof. rvRΓ(d− 1, k) = RΓv(d, k) = RΓ>kv
(d− k, 0). Apply (2) of 3.9.

As in [20], this formula easily yields a closed formula for the Hilbert series of RΓ.

We will return to that formula in Section 8.

3.3. The First Main Theorem

Definition 3.12. Let Γ be a finite ranked poset. For any a < b let XΓ(a, b) = X(a, b)

be the total space of the order complex ∆((a, b)).

We note that the dimension of X(a, b) is rkΓ(b)− rkΓ(a)− 2. This is consistent

with the definition: dim(∆(∅)) = −1. We also take as a (standard) convention

H̃n(∆(∅)) = 0 for n 6= −1 and H̃−1(∆(∅)) = F (cf. [28]). We note that using the

above notation, a cyclic poset Γ is Cohen-Macaulay if and only if

(∗) H̃n(X(a, b)) = 0 for all a < b ∈ Γ and all n 6= dim(X(a, b)).

We are now prepared to restate and then prove Theorem ??.

Theorem 3.13. Let Γ be a finite ranked cyclic poset. Then Γ is Cohen-Macaulay if

and only if Γ is uniform and the algebra RΓ is Koszul.

Proof. The proof of 3.13 will proceed by induction on the rank of Γ. We first prove

three technical lemmas.
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Lemma 3.14. If the uniform ranked poset Γ is Koszul, then the poset Γ>k is Koszul

for all k ≥ 0.

Proof. Fix k ≥ 0 and suppose Γ>k is not Koszul. Then for some x ∈ Γ>k, (Γ>k)x is

not Koszul. Choose such an x of minimal rank.

Note that (Γ>k)x = (Γx)
>k := Γ>kx . By minimality of x, Γ>ky is Koszul for every

y < x in Γ>k. So by 3.2, HΓ>kx
(n, j) 6= 0 for some 0 ≤ j < n. But HΓ>kx

(n, j) =

HΓx(n+ k, j + k). This contradicts Lemma 2.7, since Γx is Koszul.

Lemma 3.15. Let Γ = Γb be a cyclic uniform ranked poset. Set Γ′ = Γ\{b}, Ω = Γ>1

and Ω′ = Ω \ {b}. Let Y and Z be the total spaces of the order complexes of Γ′ and

Ω′ respectively. Then for all n > 0,

Hn(Y, Z) =
⊕
a∈Γ(1)

H̃n−1(X(a, b)).

Proof. An n-cell β = (b0, · · · , bn) is a basis element of Cn(Y, Z) if and only if it

is not an n-cell of Z, which happens precisely when b0 has rank 1 in Γ. For each

a ∈ Γ(1) let Cn
a be the F -span of those β for which b0 = a. Since each such a

is minimal, dY : Cn
a → Cn+1

a . Thus we have a cochain complex decomposition:

C∗(Y, Z) =
⊕

a∈Γ(1)C
∗
a .

For n > 0, let ζ : Cn
a → Cn−1(X(a, b)) be the isomorphism defined by

(a, b1, · · · , bn) 7→ (b1, · · · , bn). Similarly define ζ : C0
a → F by (a) 7→ 1. It is clear

that we have defined a degree -1 cochain complex isomorphism between C∗a and the

augmented cocomplex F→ C∗(X(a, b)).

The statement of the lemma is now clear.

Our last lemma relates the property of being uniform to the property that the

topological spaces X(a, b) are connected.
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Lemma 3.16. Let Γ be a finite ranked poset which satisfies:

(∗∗) X(a, b) is connected for all a < b with rkΓ(b)− rkΓ(a) ≥ 3.

Then for all a < b, the interval [a, b] is uniform (as a ranked poset with unique minimal

element a). In particular Γ is uniform.

Proof. Choose a < b in Γ. We proceed by induction on rkΓ(b)− rkΓ(a). We may also

assume rkΓ(b)− rkΓ(a) ≥ 3, since otherwise [a, b] is automatically uniform.

For any a < c < b, the interval [a, c] is uniform by induction. Therefore, it

remains only to check the definition of uniform against the element b itself. Returning

to the definition of uniform (relative to [a, b]) we define S[a,b](1) = {c | a < c <

b and rkΓ(b) − rkΓ(c) = 1}. The equivalence relation on S[a,b](1) is defined by

transitive extension from the definition: c1 ∼[a,b] c2 if there exists a ≤ u with u < c1,

u < c2 and rkΓ(b)−rkΓ(u) = 2. Let [c1], [c2], . . . [cr] be the distinct equivalence classes

of ∼[a,b].

It remains only to prove r = 1, so let us assume r > 1. For each 1 ≤ i ≤ r, let

Ui = (a, [ci]] := {x ∈ Γ | a < x ≤ f for some f ∈ [ci]}. Then (a, b) = ∪iUi.

Since X(a, b) is connected, the poset (a, b) must be connected as a graph. Since

each Ui is a union of maximal intervals in (a,b), the various Ui can not all be disjoint.

So we may assume U1 ∩ U2 6= ∅. Choose y ∈ U1 ∩ U2. Then y < c′1 and y < c′2 for

some c′1 ∈ [c1] and c′2 ∈ [c2]. By induction, [y, b] is uniform. This implies c′1 ∼[y,b] c
′
2,

which is clearly a contradiction to c′1 6∼[a,b] c
′
2, since [y, b] ⊂ [a, b]. Hence r = 1 and

[a, b] is uniform.

We can now complete the proof of 3.13.
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We first prove the claim that if Γ is uniform and Koszul then condition (*)

holds. Fix a < b in Γ. Let k be the rank of a and d + 1 be the rank of b. Then

dim(X(a, b)) = d− k − 1 and so there is nothing to prove unless d > k + 1.

Let Γ′, Ω, Ω′, Y and Z be as in Lemma 3.15. By 3.14, Ω and Ω′ are Koszul.

If k = 0, that is a = ∗, then X(a, b) = Y and by (3) of 3.8 we have H̃n(X(a, b)) =

0 for all n < dim(X(a, b)).

Assume k = 1. Consider the short exact sequence of cochain complexes

0→ C(Y, Z)→ C(Y )→ C(Z)→ 0

and associated long exact sequence

(∗ ∗ ∗) · · · → H̃n−1(Z)→ Hn(Y, Z)→ H̃n(Y )→ · · ·

By 3.8, H̃n(Y ) = 0 for n < dim(Y ) = d− 1 and H̃n−1(Z) = 0 for n− 1 < dim(Z) =

d − 2. Hence Hn(Y, Z) = 0 for n < d − 1. By 3.15, H̃n−1(X(a, b)) is a summand

of Hn(Y, Z) and we obtain H̃n−1(X(a, b)) = 0 for n − 1 < dim(X(a, b)) = d − 2, as

required.

Finally, consider the case k > 1. In this case a ∈ Ω with rkΩ(a) > 0. By

induction on d, we immediately get H̃n(X(a, b)) = 0 for n < dim(X(a, b)). This

completes the proof of the first half.

We now turn to the converse. Assume condition (*) holds. By Lemma 3.16, Γ

is uniform. We proceed to prove that Γ is Koszul, again by induction on d + 1, the

rank of Γ. If d = 0 there is nothing to prove. We assume d > 0.
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Again, let Γ′, Ω, Ω′ and Y be as in Lemma 3.15. By induction, the posets Γ′, Ω

and Ω′ are all Koszul, since the hypothesis (*) is true for all three and all three only

have elements of rank at most d.

For any ∗ 6= a < b in Γ, Γa also satisfies (*) and thus, by induction Γa is Koszul.

Hence by 3.2 it suffices to prove

HΓ(n, k) = 0 for all 0 ≤ k < n ≤ d− 2.

Since Ω is cyclic, Koszul, and rank d, Theorem 3.2 tells us that for all 0 < k <

n ≤ d− 2:

HΓ(n, k) = HΓ′(n, k) = HΩ′(n− 1, k − 1) = HΩ(n− 1, k − 1) = 0.

By Theorem 3.7 and (*), for all 0 < n ≤ d− 2,

HΓ(n, 0) = HΓ′(n, 0) = Hn(Y ) = 0.

This completes the proof of 3.13.

The following corollary is 3.13 together with 3.1.

Corollary 3.17. Let Γ be a finite ranked poset. For all elements x ∈ Γ of maximal

rank, Γx is Cohen-Macaulay if and only if Γ is uniform and RΓ is Koszul.

3.4. A Few Examples

We first discuss three types of examples that were of specific interest to us, as

they represent different areas where we struggled with the Koszul question in the

past.
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Example 3.18. Let Γ be the infinite ranked poset of all partitions of non-negative

integers. We identify a partition with its Young diagram, and then the order on

Γ is ⊂. The unique minimal element is the partition (0). For any integer n and

any partition λ ` n, the finite poset Γλ is a modular lattice, hence Cohen-Macaulay

(cf. [3]). Thus RΓλ is Koszul. This result was proved earlier by T. Cassidy and Shelton

using a modification of the techniques of [4].

Example 3.19. Let A = {H1, . . . , Hn} be an arrangement of hyperplanes in an

ambient vector space V (over an arbitrary field, not necessarily F). Then the

intersection lattice Γ associated to A is semi-modular and therefore Cohen-Macaulay

over any field (cf. [3]). Hence RΓ is Koszul. This class of examples includes, in

particular, the lattice of all subspaces of a finite dimensional vector space over a finite

field.

Example 3.20. Let Γ be the incidence poset of any finite regular CW complex, let

X be the total space of the CW complex and let Γ̄ = Γ ∪ {∅}, where ∅ is uniquely

minimal. If Γ is pure (all maximal cells have the same dimension), then we set

Γ̂ = Γ ∪ {∅, X} where X is uniquely maximal.

It is well known that for any Z ∈ Γ̄, Γ̄Z is Cohen-Macaulay over any field. Hence

RΓ̄ is Koszul over any field. This theorem was first proved in both [22] and [4].

The poset Γ̂ may well not be Cohen-Macaulay. The second main result of [4],

Theorem 5.3, is an exact description, in combinatorial-topological terms, of when the

algebras RΓ̂ are Koszul (these conditions include uniform, expressed as a topological

condition). In the paper [25] it was further shown that the conditions under which Γ̂ is

Koszul are topological invariants rather than just combinatorial invariants. However,

the conditions of that theorem can, with some small effort, be translated directly into

the statement that Γ̂ is Cohen-Macaulay, thereby relating that theorem directly to
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3.13. Since Cohen-Macaulay is known to be a topological invariant, Theorem 3.13

also recaptures the results of [25].

There is an explicit example in [4] (Example 5.9 and Theorem 5.10) of a pure

3-dimensional regular CW complex X that is contractible, and yet Γ̂ is not Koszul.

The proof of this fact was somewhat detailed. But one can see by inspection, in the

notation of that example, that the open interval (C4, X) is not connected as a graph.

That is enough show that Γ̂ is not Cohen-Macaulay and conclude that the algebra is

not Koszul.

We now give two specific examples. The first demonstrates that we can readily

build posets Γ such that the Koszulity of RΓ is field dependent. The second shows

that if Γ is a lattice, then RΓ need not be Koszul.

Example 3.21. We give RP 2 a regular CW structure with four faces, eight edges and

five vertices. Let Σ be the intersection poset of the CW complex. Similar to the above

example, we set Σ̂ = Σ ∪ {∗, X}; Σ̂ is shown in Figure 3.3. Then ∆((∗, X)) is the

FIGURE 3.3. The poset Σ̂.
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barycentric subdivision of the CW structure on RP 2, thus ‖∆((∗, X))‖ is homotopic

to RP 2. If F is a field of characteristic two, then Hk(∆((∗, X)),F) = F for all

0 ≤ k ≤ n. Hence Σ is not Cohen-Macaulay relative to F. We conclude that the

F-algebra RΣ is not Koszul. On the other hand, if K is a field with characteristic

different from two, then Hk(∆((∗, X)),K) = K for k = 0 and k = n odd, and zero

otherwise. Thus Σ is Cohen-Macaulay relative to K and the K-algebra RΣ is Koszul.

Example 3.22. Let Π be the finite ranked poset shown in Figure 3.4. By inspection,

FIGURE 3.4. The poset Π.

Π is a lattice. The interval (∗, z) is the incidence poset of a regular CW complex on

a pinched S1× I. Thus ‖∆(∗, z)‖ is homotopic to S1. We conclude RΠ is not Koszul.

3.5. Uniform and Cohen-Macaulay Posets

We borrow some nice notation from [20].

Definition 3.23. For any a ∈ Γ and 1 ≤ i ≤ rkΓ(a) we set

Γa,i = {w < a | rkΓ(a)− rkΓ(w) ≤ i− 1} = Γ>rkΓ(a)−i ∩ (∗, a)
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Note that Γa,i is a subposet of [∗, a) and the dimension of ∆(Γa,i) is i− 2. It is

helfpul to note that Γa,1 = ∅, Γa,2 = S1(a) and Γa,rkΓ(a) = (∗, a). Also, we remark

that ∆(Γx,k) has dimension k − 2.

We give an equivalent definition of uniform.

Proposition 3.24. Let Γ be a finite ranked poset. Then Γ is uniform if and only if

for all x ∈ Γ+ of rank at least three, Γx,3 is connected as a graph.

Similarly, we give an equivalent definition of Cohen-Macaulay.

Theorem 3.25. Let Γ be a finite ranked cyclic poset. Then Γ is Cohen-Macaulay if

and only if for all x ∈ Γ+ and all rkΓ(x) ≥ k > n, H̃n−2(∆(Γx,k)) = 0.

Proof. Assume Γ is Cohen-Macaulay and let x ∈ Γ+. By Theorem 3.13, RΓ is Koszul,

from which it follows that RΓx is Koszul. Applying Theorem 3.2, we see HΓx(m, j) = 0

for all rkΓ(x) > m > j ≥ 0. Theorem 3.7 together with Lemma 3.14 tell us that

HΓx(m, j) = Hm−j(∆(Γx,rkΓ(x)−j)) for all rkΓ(x) > m ≥ j ≥ 0, which completes the

proof of the forward direction.

For the reverse direction, we proceed by induction on the rank of Γ = Γb. For a

poset of rank one, there is nothing to show. We then assume Γ has rank d + 1 with

d > 0.

By the inductive hypothesis, Γa is Cohen-Macaulay for all a < b in Γ. Let

m ≤ rkΓ(b). We observed that ∆(Γb,m−1) is a closed subspace of ∆(Γb,m). We obtain

the standard long exact sequence

· · · → H̃n(∆(Γb,m−1))→ H̃n+1(∆(Γb,m),∆(Γb,m−1))→ H̃n+1(∆(Γb,m))→ · · · .
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Then, by assumption, H̃n(∆(Γb,m),∆(Γb,m−1)) = 0 for all n ≤ m−2. Similar to 3.15,

we get

Hn(∆(Γb,m),∆(Γb,m−1)) =
⊕

a∈Sb(m−1)

H̃n−1(∆((a, b))).

This implies ⊕
a∈Sb(m−1)

H̃j(∆((a, b))) = 0

for all j ≤ m− 3. This implies Γ is Cohen-Macaulay.

3.6. On Numerical Koszulity

The Hilbert series of an N-graded F-algebra R = ⊕iRi is the power series

H(R, t) =
∑

i dim(Ri)t
i. It is well known that if R is a quadratic and Koszul algebra

with quadratic dual algebra R! (cf. [13]), then H(R,−t)H(R!, t) = 1. We say that a

quadratic algebra is numerically Koszul if it satisfies this equation.

Given a finite ranked uniform poset Γ, the quadratic dual of the algebra RΓ will

be denoted here as A′Γ. This algebra was first described in [8] as a deformation of

another important quadratic algebra AΓ, the splitting algebra of the poset Γ. The

algebras A′Γ and AΓ have the same Hilbert series, which was computed in [21] and

then recalculated in terms of order complexes in [20]. We record here Theorem 4.1.1 of

[20], translated into our notation. (Remark: as with Theorem 3.2.1 of [20], Theorem

4.1.1 has a typographical error. The theorem must use reduced cohomology, not

cohomology.)

Definition 3.26. The reduced Euler characteristic of a space X, relative to F, is

χ̃(X) =
∑
i

(−1)i dim(H̃ i(X))
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where cohomology is calculated with coefficients in F.

Note that χ̃(∆(∅)) = −1.

Theorem 3.27. ([20], 4.1.1) Let Γ be a uniform finite ranked poset. Then:

H(AΓ, t)
−1 = 1 +

∑
i≥1

∑
a∈Γ

rkΓ(a)≥i

χ̃(∆(Γa,i))t
i

For further use we also record the Hilbert series of RΓ from 3.1.1 of [20] (again,

correcting for reduced cohomology).

Theorem 3.28. ([20], 3.1.1) Let Γ be a uniform finite ranked poset. Then:

H(RΓ,−t) = 1 +
∑
i≥1

∑
a∈Γ

rkΓ(a)≥i

(−1)i−2 dim H̃ i−2(∆(Γa,i))t
i

Definition 3.29. Let Γ be a finite uniform ranked poset.

(1) Let v ∈ Γ and i ≤ rkΓ(v). We say that the pair (v, i) is good if

χ̃(∆(Γv,i)) = (−1)i−2 dim H̃ i−2(∆(Γv,i))

and bad if the equality does not hold.

(2) We define the numerical Koszul defect of Γ to be

NKD(Γ) = H(RΓ,−t)−H(AΓ, t)
−1

=
∑

(v,i) bad

[
(−1)i−2 dim H̃ i−2(∆(Γv,i))− χ̃(∆(Γv,i))

]
ti

Since AΓ and A′Γ = R!
Γ have the same Hilbert series for any uniform Γ, we see

that the ring RΓ is numerically Koszul if and only if NKD(Γ) = 0.
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We record the following trivial observation which we will use frequently: if Γ

is uniform, then for any v ∈ Γ, (v, 1), (v, 2), (v, 3) are always good ((v, 3) is good

because uniformity implies the graph Γv,3 is connected). And (v, 4) is good if and

only if H1(∆(Γ(v,4)) = 0. This immediately gives the following simple theorem.

Theorem 3.30. If Γ is a finite uniform ranked poset and no element of Γ has rank

bigger than 4, then RΓ is Koszul if and only if RΓ is numerically Koszul.

Proof. Only one direction needs to be proved. Assume RΓ is numerically Koszul. Fix

any a < b in Γ. If dim(X(a, b)) ≤ 1 then it is clear from uniform that H̃n(X(a, b))

is non-zero only for n = dim(X(a, b)). So assume dim(X(a, b)) = 2 (the maximum

possible such dimension). This can only happen if rkΓ(b) = 4 and a = ∗. But by

hypothesis, (b, 4) is good. Since Γb,4 = (∗, b), we have H̃n(X(∗, b)) = 0 for n 6= 2. We

have shown Γx is Cohen-Macaulay for all x of rank four. Thus Γ is Koszul.

We now describe a construction for combining two uniform finite ranked posets,

over which the NKD will be additive. This will allow us to construct examples that

are numerically Koszul but not Koszul.

For the time being, let Γ and Ω be two finite ranked uniform posets with minimal

elements ∗Γ and ∗Ω respectively. Let XΓ and XΩ be the total spaces of the respective

order complexes ∆(Γ) and ∆(Ω). Fix elements v ∈ Γ(1) and v′ ∈ Ω(1).

Definition 3.31. With notation as above we set

Γ ∨(v,v′) Ω = Γ ∪ Ω/(∗Γ ∼ ∗Ω, v ∼ v′)

We identify Γ and Ω as subsets of Γ∨(v,v′) Ω. The set inherits an order from Γ and Ω

wherein two elements are related if and only if they are related in either Γ or in Ω.

We denote the unique minimal element by ∗ and the common image of v and v′ by v̄.
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It is clear that the poset Γ ∨(v,v′) Ω inherits the uniform property from Γ and Ω.

The following lemma is obvious.

Lemma 3.32. Let notation be as above. Then the total space of the order complex

of the poset Γ ∨(v,v′) Ω is XΓ ∨XΩ.

Lemma 3.33. Let notation be as above. Then

NKD(Γ ∨(v,v′) Ω) = NKD(Γ) + NKD(Ω).

Proof. To ease the notation, let Θ = Γ∨(v,v′) Ω. For any a ∈ Θ we see that Θa,i = Γa,i

if a ∈ Γ and Θa,i = Ωa,i if a ∈ Ω. In particular, Θv̄,1 = ∅. Thus, by 3.27 we have the

following decomposition:

H(AΘ, t)
−1 = 1 +

∑
a∈Γ

rkΓ(a)≥i≥1

χ̃(∆(Γa,i))t
i

+
∑
a∈Ω

rkΓ(a)≥i≥1

χ̃(∆(Ωa,i))t
i − χ̃(Θv̄,1)t

= H(AΓ, t)
−1 +H(AΩ, t)

−1 + t− 1

Exactly the same calculation for H(RΘ,−t) yields

H(RΘ,−t) = H(RΓ,−t) +H(RΩ,−t) + t− 1

Subtracting gives the required equation.

Lemma 3.34. Let Γ be the uniform ranked poset shown to the right in Figure 3.5.

Then NKD(Γ) = −t5. In particular Γ is not Koszul.
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FIGURE 3.5. The regular CW complex S2 × I and the poset Γ.

Proof. The poset Γ is of the form P ∪ {∗, X}, where P is the incidence poset of a

regular CW complex realization of S2× I. The picture to the left in Figure 3.5 labels

the CW complex P (to the best of our abilities). Because P is a CW complex, the

only pairs (v, i) that might be bad are the pairs (X, 5) and (X, 4).

The pair (X, 5) is bad. To see this note ΓX,5 = (∗, X) = P and hence

||∆(ΓX,5)|| = S2 × I. This 3-dimensional space is homotopic to S2 and has non-zero

reduced cohomology only in degree 2. Hence the pair (X, 5) is bad and contributes

−t5 to NKD(Γ).

The pair (X, 4) is good. To see this, first apply 3.15 to get

Hn(∆(ΓX,5),∆(ΓX,4)) =
⊕
v∈Γ(1)

H̃n−1(∆( (v,X) )).

Since S2 × I is a manifold with boundary and each 0-cell in P is on the boundary,

the spaces ∆( (v,X) ) are all homeomorphic to 2-discs and thus have no reduced

cohomology. I.e. Hn(∆(ΓX,5),∆(ΓX,4)) = 0 for all n. Since H̃n(∆(ΓX,5)) = 0 for all
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n 6= 2, the usual long exact sequence for relative cohomology tells us H̃n(∆(ΓX,4)) = 0

for all n 6= 2. Thus (X, 4) is good.

This proves the lemma.

Lemma 3.35. Let Ω be the the uniform ranked poset shown in Figure 3.6. Then

NKD(Ω) = t5. In particular Ω is not Koszul.

FIGURE 3.6. The poset Ω.

Proof. We see at once that Ω is not Koszul because the interval (a′, Y ) is not connected

as a graph. By direct inspection, every pair (v, 4) is good, because every pair (v, 4)

corresponds to a contractible space with no reduced cohomology. This leaves (Y, 5)

as the only pair that can be bad. Since ∆(ΩY,5) = ∆((∗, Y )) is 3-dimensional but

homotopic to S1 (by inspection), the pair (Y, 5) is bad and contributes exactly t5 to

NKD(Ω), as claimed.

We now see easily that a numerically Koszul algebra in our class need not be

Koszul, as promised in Theorem 1.9.

Theorem 3.36. Let Γ be as in 3.34 and Ω as in 3.35. Set Θ = Γ ∨(a,a′) Ω. Then the

algebra RΘ is not Koszul, but it is numerically Koszul.
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Proof. The intervals (∗, Y ) and (∗, X) show that the respective posets Γ and Ω are

not Cohen-Macauley. Hence by Corollary 3.17, RΘ is not Koszul.

By 3.33, 3.34 and 3.35, NKD(Θ) = NKD(Γ) + NKD(Ω) = −t5 + t5 = 0. Thus Θ

is numerically Koszul.

It is clear that any number of examples could be constructed in this fashion,

but the resulting examples are not very satisfying, as they are far from being cyclic.

Fortunately, through much more ad-hoc methods we were able to obtain the following

cyclic example.

Theorem 3.37. Let Γ be the uniform ranked poset shown in Figure 3.7. Then Γ is

numerically Koszul, but not Koszul.

FIGURE 3.7. The poset Γ.

Proof. We first list several useful observations about Γ. [∗, X] is the poset from 3.34.

In particular, (∗, X) is the incidence poset of a regular CW complex realization of

S2 × I; we will refer to this CW complex as ‖X‖. Let ‖Y ‖ be the three-dimensional
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CW complex drawn (to the best of our abilities) in Figure 3.8. ‖Y ‖ has three 3-cells

B, C1, and C2 and we note that B is also a 3-cell of ‖X‖. ‖Y ‖ has a singular point

at z and is homotopic to S1. (∗, Y ) in Γ is the incidence poset of ‖Y ‖. (∗,W ) in Γ is

not the incidence poset of a CW complex.

FIGURE 3.8. The CW complex ‖Y ‖.

By construction, Γ is uniform. Γ is not Cohen-Macaulay because the open

interval (z, Y ) is not connected as a graph, By 3.13, RΓ is not Koszul.

To see that Γ is numerically Koszul, we need to examine the pairs (A, 4), (B, 4),

(C1, 4), (C2, 4), (X, 4), (X, 5), (Y, 4), (Y, 5), (W, 4), (W, 5), and (W, 6).

Due to the regular CW structures, the realizations of the order complexes of

ΓA,4, ΓB,4, ΓC1,4, and ΓC2,4 are each homeomorphic to 2-spheres. We conclude (A, 4),

(B, 4), (C1, 4), and (C2, 4) are good. 3.34 tells us (X, 4) is good and (X, 5) is bad.

(Y, 5) is bad because ‖∆(ΓY,5)‖ is homotopic to S1.

Before calculating the remaining pairs, we will state a useful observation. Let V

be a topological space and let U1, U2 be closed subsets of V such that U1 ∪ U2 = V .

If U1 ∩ U2 is contractible, then cone(U1) ∪ cone(U2) is contractible.
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Claim: (Y, 4) is good. We apply 3.15 to get

(∗∗) Hn(∆(ΓY,5),∆(ΓY,4)) =
⊕

t∈ΓY (1)

H̃n−1(∆((t, Y )))

for all n ≥ 0. The intervals (a, Y ), (d, Y ), (b, Y ) and (c, Y ) are isomorphic as posets

and we can use the above useful observation to see that the order complex of each

interval is contractible. The realization of the order complex of (z, Y ) is homotopic to

S0. From (**), we conclude that Hn(∆(ΓY,5),∆(ΓY,4)) is one-dimensional for n = 1

and is zero otherwise.

We now apply the standard long exact cohomology sequence related to relative

cohomology for ∆(ΓY,5) and ∆(ΓY,4). Recalling that H̃n(∆(ΓY,5)) is one-dimensional

for n = 1 and is zero otherwise, we see that H̃1(∆(ΓY,4)) = 0 as required.

(W,n) is good for all 4 ≤ n ≤ 6 because ‖∆(ΓW,n)‖ is contractible by the above

useful observation.

Finally, we compute

NKD(Γ) =
∑

(V,i) bad

[
(−1)i−2 dim H̃ i−2(∆(ΓV,i))− χ̃(∆(ΓV,i))

]
ti

= [(−1)3 dim H̃3(∆(ΓX,5))− χ̃(∆(ΓX,5))]t5

+[(−1)3 dim H̃3(∆(ΓY,5))− χ̃(∆(ΓY,5))]t5

= [−χ̃(∆(ΓX,5))− χ̃(∆(ΓY,5))]t5 = [(−1)− (−1)]t5 = 0.

Thus RΓ is numerically Koszul and this completes our proof.
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CHAPTER IV

FINITE RANKED POSETS AND RΓ

We begin with an illustrative example.

Example 4.1. Let Θ be the ranked poset shown in Figure 4.1. This poset was

FIGURE 4.1. The poset Θ.

first introduced by Cassidy and it was studied extensively in [10]. We make several

observations. By inspection, we see that Θ is uniform. Also, by inspection, we know

Θ is not Cohen-Macaulay; ‖∆(Θy,4)‖ is homotopic to S1. By Theorem 3.13, RΘ is

not Koszul.

Let Θ∗ be the dual poset of Θ, as shown in Figure 4.2. We again make several

observations. Since Θ∗n,3 is disconnected as a graph, Θ∗ is not uniform and Θ∗ is not

Cohen-Macaulay. Also, ‖∆(Θ∗x,4)‖ = ‖∆(Θy,4)‖ is homotopic to S1.

We may not apply Theorem 3.13 to determine if RΘ∗ is Koszul or not.

Nonetheless, we claim RΘ∗ is Koszul. We use techniques similar to (3.3) of [4]; we will
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FIGURE 4.2. The poset Θ∗.

soon make these techniques more precise. We only need to show rannRΘ∗ (rm + rn) is

linearly generated. We see (rs + rp + rq)ru = rqru = −rqrt. Then, by inspection,

rannRΘ∗ (rm + rn) = (rs + rp + rq)RΘ ⊕
⊕
z∈Θ+

rzRΘ∗ .

We reiterate to the reader: Θ∗ is not Cohen-Macaulay, nonetheless RΘ∗ is Koszul.

Let Γ be an arbitrary (possibly non-uniform) finite ranked poset with unique

minimal element ∗ and rank m + 1. In this chapter, we wish to find necessary and

sufficient conditions on Γ that make RΓ Koszul.

4.1. The Right Annihilator Condition

In this section, we establish algebraic results that generalize section 3 of [4]. We

remind the reader of the following fact from [4]: for a uniform Γ, the Koszul property

for RΓ is equivalent to a condition on right annihilators of certain elements of RΓ.

First, we need some notation and some new combinatorial objects.
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Definition 4.2. Let u ∈ RΓ. Define the linearly generated right annihilator of u,

LΓ(u) := (rannRΓ
(u))1RΓ.

Definition 4.3. Let 1 ≤ n ≤ m+ 1 and S ⊂ Γ(n). Then

rS :=
∑
z∈S

rz.

For all x ∈ Γ+ we write r{x} = rx. Suppose u, v ∈ Γ+. We write u ∼S v if for all

q =
∑
z∈Γ+

qzrz, (qz ∈ F)

rSq = 0 implies qu = qv.

We note ∼S defines an equivalence relation on Γ+. Equivalence classes will be

denoted by [−]S and thus

r[z0]S =
∑
z∈[z0]S

rz.

Proposition 4.4. Let n and S be given as in Definition 4.3. Then

LΓ(rS) =
⊕
[z0]S

r[z0]SRΓ.

Proof. Suppose

rS ·
∑
z∈Γ+

qzrz = 0.

Then ∑
z∈Γ+

qzrz =
∑
[z0]S

q[z0]Sr[z0]S ∈
⊕
[z0]S

r[z0]SRΓ.

We also need to show r[z0]S ∈ rannRΓ
(rS) for all [z0]S. If z0 ∈ Γ \ Γ(n − 1), then

r[z0]S = rz0 and rSrz0 = 0. Now assume z0 ∈ Γ(n− 1). We partition S into two sets:
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S1 = {s ∈ S : s → y for some y ∈ [z0]S} and S2 is the compliment of S1 in S. Then

we compute

rS · r[z0]S = (rS1 + rS2)r[z0]S = rS1r[z0]S = 0

and this completes our proof.

Definition 4.5. Let n and S be given as in Definition 4.3. Let U = {u ∈ Γ(n− 1) :

u < s for some s ∈ S}. We define

AΓ(rS) :=
⊕

[z0]S⊆U

r[z0]SRΓ,

BΓ(rS) :=
⊕

z∈Γ(n−1)\U

rzRΓ

and

HΓ(n− 1) :=
⊕

z∈Γ+\Γ(n−1)

rzRΓ.

It is apparent that

LΓ(rS) = AΓ(rS)⊕BΓ(rS)⊕HΓ(n− 1).

Definition 4.6. Let Γ be a finite ranked cyclic poset with rank m + 1 and Γ = Γx.

We define

Tm+1(Γ) = {Γ(m+ 1)} = {{x}}

and recursively define for m ≥ i ≥ 1

Ti(Γ) = {[z0]S ⊂ Γ+|S ∈ Ti+1 and there exists s ∈ S such that s→ z0}.
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Let

T (Γ) =
m+1⋃
i=1

Ti(Γ).

Definition 4.7. Let Γ be a finite ranked poset. Define

T (Γ) =
⋃
x∈Γ+

T (Γx).

Remark 4.8. By (3.3) from [4], we see that if Γ is uniform, then T (Γ) consists of

sets of the form Γx(n) where x ∈ Γ+ and 1 ≤ n ≤ rkΓ(x).

The following lemma is (3.3) of [4], without the uniform hypothesis.

Theorem 4.9. Let Γ be a finite ranked poset. The algebra RΓ is Koszul if and only

if for all S ∈ T (Γ), rannRΓ
(rS) = LΓ(rS).

Proof. For the forward direction, assume RΓ is Koszul. Then the right RΓ-modules

(RΓ)+ and FRΓ
= RΓ/(RΓ)+ are Koszul. Let S ∈ T (Γ), so there is x ∈ Γ+ and

1 ≤ n ≤ rkΓ(x) with S ∈ Tn(Γx). By (reverse) induction on n, we will simultaneously

prove rannRΓ
(rS) = L(rS) and rSRΓ is a Koszul module.

If n = rkΓ(x), then S = {x}. By definition of RΓ, rannRΓ
(rx) = LΓ(rx). rxRΓ is

a direct summand of (RΓ)+ by Lemma 2.6, thus it is a Koszul module.

We now assume n < rkΓ(x). Then there exists U ∈ Tn+1(Γx), z0 ∈ Γx(n) and

u ∈ U such that u→ z0 and S = [z0]U . By induction, rannRΓ
(rU) = L(rU). We then

have a short exact sequence

0→ LΓ(rU)→ RΓ → rURΓ → 0.

Again, by induction, rURΓ is Koszul. Thus LΓ(rU) is a Koszul module. The module

rSRΓ is a direct summand of L(rU) and therefore, rSRΓ is a Koszul module. Now
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rannRΓ
(rS) is linearly generated and rannRΓ

(rS) = LΓ(rS). This completes the proof

of the forward direction.

We now prove the reverse direction. Let F be the set of right ideals in RΓ of the

form

I =
m⊕
i=1

rSiRΓ

where S1, . . . , Sm ∈ T (Γ) are pairwise disjoint. We include the zero ideal in F and

observe (RΓ)+ ∈ F . To prove that RΓ is Koszul, we show that F is a Koszul filtration

(c.f. [12]).

Let

0 6= I =
m⊕
i=1

rSiRΓ ∈ F .

Then set

J =
m−1⊕
i=1

rSiRΓ

and observe J ∈ F and I = J + rSmRΓ. Also, the right ideal (rSm : J) = {p ∈

RΓ : rSmp ∈ J} (the conductor of rSm into J) is equal to rannRΓ
(rSm). Since

rannRΓ
(rSm) = LΓ(rSm), (rSm : J) ∈ F . We conclude F is a Koszul filtration,

which completes our proof.

Remark 4.10. We reiterate that if S ∈ T (Γ) is a singleton, then rannRΓ
(rS) =

LΓ(rS), even if RΓ is not Koszul.

The following lemma is (3.5) from [4], again, without the uniform hypothesis.

Theorem 4.11. Let Γ be a finite ranked poset. Then RΓ is Koszul if and only if RΓx

is Koszul for all x ∈ Γ+.
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Proof. Let x ∈ Γ+ and S ∈ T (Γx). By Theorem 2.6,

rannRΓ
(rS) ∩RΓx = rannRΓx

(rS).

The theorem then follows from Theorem 4.9.

Remark 4.12. We often use the following fact, which is Theorem 4.9 together with

Theorem 4.11. Suppose Γ is a finite ranked cyclic poset with Γ = Γx. Set Ω =

Γ \ {x} and assume RΩ is Koszul. Then RΓ is Koszul if and only if for all S ∈ T (Γ),

rannRΓ
(rS) = LΓ(rS).

Corollary 4.13. Let Γ be a finite ranked poset with rank less than or equal to three.

Then RΓ is Koszul.

Example 4.14. We return to Θ∗ in Example 4.1. The theorems above, along with

the computations from Example 4.1, show RΘ∗ is Koszul.

Definition 4.15. Let 1 ≤ n ≤ m+ 1 and S ⊂ Γ(n). We set

ΓS = {a ∈ Γ : a ≤ s for some s ∈ S} =
⋃
s∈S

[∗, s].

Additionally, for 0 ≤ k ≤ n− 1, we set

Γ(S, k) = ΓS ∩ Γ≥n−k.

We say S is linked if Γ(S, 1) is connected as a graph. We say S ′ ⊆ S is maximally

linked relative to S if S ′ is maximal amongst linked subsets of S.

The collection of all maximally linked subsets of S forms a partition of S.
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Lemma 4.16. Let n and S be given as in Definition 4.15. Then rannRΓ
(rS) = LΓ(rS)

if and only if for all maximally linked subsets S ′ ⊆ S, rannRΓ
(rS′) = LΓ(rS′).

Proof. Due to the observation immediately following Definition 4.5, it is enough to

prove the lemma for Γ = ΓS. We therefore assume S = Γ(n). We enumerate the

maximally linked subsets of S: S1, . . . Sp. For all i = 1, . . . , p, set Ui = {t ∈ Γ(n−1) :

t < s for some s ∈ Si}.

For the forward direction, suppose towards a contradiction that for some k ∈

{1, . . . , p}, there exists A ∈ rannRΓ
(rSk) \ LΓ(rSk). Then A = A1 + A2 with

A1 ∈
⊕
z∈Uk

rzRΓ and A2 ∈
⊕

z∈Γ+\Uk

rzRΓ = BΓ(rSk)⊕HΓ(n− 1).

Clearly rSkA2 = 0, thus rSkA1 = 0. Also, A1 is nonzero and A1 6∈ rUkRΓ = AΓ(rSk);

if not, then A ∈ LΓ(rSk). We compute

rSA1 = (rSk + rΓ(n)\Sk)A1 = rSkA1 = 0.

Therefore, A1 ∈ rannRΓ
(rS). Also, we see A1 6∈ AΓ(rS) =

⊕p
i=1 rUiRΓ since A1 6∈

rUkRΓ. Thus A1 6∈ LΓ(rS), which is a contradiction.
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For the converse, we assume rannRΓ
(rSi) = LΓ(rSi) for all i = 1, . . . , p. Carefully

applying Definition 4.5, we compute

rannRΓ
(rS) =

p⋂
i=1

rannRΓ
(rSi)

=

p⋂
i=1

LΓ(rSi)

=

p⊕
i=1

AΓ(rSi)⊕HΓ(n− 1)

=
⊕
[z0]S

r[z0]SRΓ

= LΓ(rS),

and this completes our proof.

Lemma 4.17. Let n and S be given as in Definition 4.15 and assume S is linked. Then

rannRΓ
(rS) = LΓ(rS) if and only if for all 0 ≤ k ≤ n− 3, Hn−2(RΓS(•, k), dΓS) = 0.

Proof. Again, it is enough to prove the claim for Γ = ΓS. We set S = Γ(n). Then

rannRΓ
(rS) = LΓ(rS) if and only if

rannRΓ
(rS) = rΓ(n−1)RΓ ⊕HΓ(n− 1).

This equality holds if and only if

RΓ(n− 3, k)
rΓ(n−1)·- RΓ(n− 2, k)

rS·- RΓ(n− 1, k)

is exact for all 0 ≤ k ≤ n− 3.

Finally, we define
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Mn(Γ) =
⋃

S∈Tn(Γ)

{S ′ : S ′ is maximally linked relative to S}

and

M(Γ) =
m+1⋃
n=1

Mn(Γ).

Remark 4.18. Using Remark 4.8, we see that if Γ is cyclic and uniform then,

Mn(Γ) = {Γ(n)} for all 1 ≤ n ≤ m+ 1.

We combine the definition of M(Γ) with Lemmas 4.16 and 4.17 arrive at the

following theorem.

Theorem 4.19. Let Γ be a finite ranked poset with unique minimal element ∗ and

rank m+1. Assume Γ = Γx. Set Ω = Γ\{x} and assume RΩ is Koszul. The following

are equivalent:

1. RΓ is Koszul;

2. for all S ∈M(Γ \ {x}), rannRΓ
(rS) = LΓ(rS);

3. for all 1 < n ≤ m, S ∈Mn(Γ\{x}) and 0 ≤ k ≤ n−3, Hn−2(RΓS(•, k), dΓS) = 0.

4.2. A Spectral Sequence Associated to ∆(Γ \ {∗})

Assume Γ has rank m + 1 and let Y = ‖∆(Γ \ {∗})‖. We start by defining an

unusual filtration on C•(Y ). Let FpC
•(Y ) be an increasing filtration on C•(Y ) given

by

FpC
n(Y ) = {(α0, . . . , αn) ∈ Cn(Y ) : rkΓ(αn) ≥ (m+ 1)− p}.
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Note: FpC
n(Y ) consists of all n co-chains of Y that emanate from the top p+1 layers

of Γ. Also, observe

0 = F−1C
•(Y ) ⊂ F0C

•(Y ) ⊂ · · · ⊂ Fm−1C
•(Y ) ⊂ FmC

•(Y ) = C•(Y ).

Let En
p,q denote the associated cohomology spectral sequence with

E0
p,q = FpC

p+q(Y )/Fp−1C
p+q(Y ) and E1

p,q = Hp+q(E0
p∗).

This spectral sequence is bounded since E0
p,q = 0 if p < 0, p+ q < 0, or q > −2p+m.

The differentials are maps drE : Er
p,q → Er

p−r,q+r+1 induced by the differential dY on

C•(Y ).

Proposition 4.20. Let Γ be a ranked poset with unique minimal element ∗ and rank

m+ 1. Let Er
p,q be the spectral sequence of the filtration F• on C•(Y ). For all p and

q, Em+1
p,q = E∞p,q. Also E1

p,q =⇒ Hp+q(Y ).

Proof. The equality holds because dm+1
E is the zero map on Em+1

p,q . The convergence

statement follows from Theorem 5.5.1 of [29].

The E1 page of our spectral sequence can be written in terms of reduced

cohomology of open intervals of Γ.

Proposition 4.21. Let Γ be a finite ranked poset with unique minimal element ∗

and rank m+ 1. Let Er
p,q be the spectral sequence of the filtration F• on C•(Y ). For

all p and q,

E1
p,q =

⊕
rkΓ(x)=(m+1)−p

H̃p+q−1(∆((∗, x))).
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Proof. We fix p and identify two chain complexes: (E0
p,∗, d

0
E) and

 ⊕
rkΓ(x)=(m+1)−p

C̃•(∆((∗, x))),
⊕

rkΓ(x)=(m+1)−p

d∆((∗,x))

 .

For convenience of notation, elements of C̃•(∆((∗, x))) will be denoted by sums of

chains of the form (α0, . . . , αn)x. Define a map

f : E0
p,q = FpC

p+q(Y )/Fp−1C
p+q(Y )→

⊕
rkΓ(x)=(m+1)−p

C̃p+q−1(∆((∗, x)))

via (α0) 7→ (1)α0 and if p+ q > 0

(α0, . . . , αp+q) 7→ (α0, . . . , αp+q−1)αp+q ,

and extend linearly. It is easy to see that f is bijective. We claim f is a co-chain

map. Let (α0, . . . , αp+q) ∈ E0
p,q and note rkΓ(αp+q) = m+ 1− p. We compute

⊕
rkΓ(x)=(m+1)−p

d∆((∗,x)) (f(α0, . . . , αp+q)) =
⊕

rkΓ(x)=(m+1)−p

d∆((∗,x))

(
(α0, . . . , αp+q−1)αp+q

)
= d∆((∗,αp+q)) (α0, . . . , αp+q−1)
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and on the other hand

f(d0
E(α0, . . . , αp+q)) = f

(∑
x<α0

(x, α0, . . . , αp+q)

)

+ f

p+q−1∑
i=0

(−1)i+1
∑

αi<x<αi+1

(α0, . . . , αi, x, αi+1, . . . , αp+q)


=
∑
x<α0

(x, α0, . . . , αp+q−1)αp+q

+

p+q−1∑
i=0

(−1)i+1
∑

αi<x<αi+1

(α0, . . . , αi, x, αi+1, . . . , αp+q−1)αp+q

= d∆((∗,αp+q)) (α0, . . . , αp+q−1) .

It follows that f is a co-chain isomorphism.

We now make an observation related to Theorems 3.7 and 3.13.

Corollary 4.22. Let Γ be a finite ranked cyclic poset with unique minimal element

∗ and rank m + 1. Let Er
p,q be the spectral sequence of the filtration F• on C•(Y ).

Assume Γ is Cohen-Macaulay. Then E1
p,q = 0 unless q = −2p + m. Moreover,

E2
p,q = E∞p,q.

Definition 4.23. For 0 ≤ n ≤ m, define

Sn(Γ+) =
⊕

rkΓ(x)=n+1

H̃n−1(∆((∗, x))).

For n > 0, we denote elements in H̃n−1(∆((∗, x))) with linear combinations of

equivalence classes of the form [x1 ← · · · ← xn]x. This notation requires: xn ← x.

Elements in H̃−1(∆((∗, x))) will be denoted by scalar multiples of [1]x.
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Define dSn(Γ+) : Sn(Γ+)→ Sn+1(Γ+) via

[1]x 7→
⊕
x←y

[x]y

and for n > 0

[x1 ← · · · ← xn]x 7→
⊕
x←y

(−1)n[x1 ← · · · ← xn ← x]y,

and extend linearly.

Proposition 4.24. dSn(Γ+) : Sn(Γ+)→ Sn+1(Γ+) is well-defined.

Proof. If n = 0, the map is clearly well-defined. Assume n > 0. It is sufficient to

observe the inclusion

dSn(Γ+)

(
im(dn−2

∆((∗,x)) : Cn−2(∆((∗, x)))→ Cn−1(∆((∗, x))))
)

⊂ im(dn−1
∆((∗,z)) : Cn−1(∆((∗, z)))→ Cn(∆((∗, z)))).

for all x← z.

Proposition 4.25. (S•(Γ+), dS•(Γ+)) is a co-chain complex.

Proof. Let [1]x ∈ H̃−1(∆((∗, x))). Then

dS1(Γ+) ◦ dS0(Γ+)([1]x) = dS1(Γ+)

(⊕
x←y

[x]y

)

=
⊕
x<z

( ∑
x←y←z

[x← y]z

)

=
⊕
x<z

[0]z
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since

d0
∆((∗,z))(x) = −

∑
x←y←z

(x, y).

for all x < z.

Assume n > 0. Let [x1 ← · · · ← xn]x ∈ H̃n−1(∆((∗, x))). We compute

dSn+1(Γ+) ◦ dSn(Γ+)([x1 ← · · · ← xn]x)

= dSn+1(Γ+)

(⊕
x←y

(−1)n[x1 ← · · · ← xn ← x]y

)

=
⊕
x<z

( ∑
x←y←z

(−1)2n+1[x1 ← · · · ← xn ← x← y]z

)

=
⊕
x<z

[0]z.

The last equality holds because

dn∆((∗,z)) (x1, . . . , xn, x) =
∑

x←y←z

(−1)n+1 (x1, . . . , xn, x, y) .

for all x < z.

We note Sp+q(Γ+) is E1
p,q for q = −2p+m. In fact, dSn(Γ+)) is the differential d1

E

on E1
p,−2p+m.

4.3. An Isomorphism of Co-chain Complexes

Definition 4.26. Define ΨΓ+ : Sn(Γ+)→ RΓ(n, 0) via

[1]x 7→ rx

54



and for n > 0

[x1 ← · · · ← xn]x 7→ rxrxn · · · rx1 ,

and extend linearly.

Proposition 4.27. ΨΓ+ : Sn(Γ+)→ RΓ(n, 0) is well-defined.

Proof. The map is clearly well-defined for n = 0. We then assume n > 0 and let

rkΓ(x) = n+ 1. Similar to the above proofs, it suffices to show:

ΨΓ+

(
im(dn−2

∆((∗,x)) : Cn−2(∆(∗, x))→ Cn−1(∆((∗, x))))
)

= 0.

Let α = (α1, . . . , αn−1) ∈ Cn−2(∆((∗, x))). Since n − 1 = dim∆((∗, x)),

[dn−2
‖∆((∗,x))‖(α)]x is

∑
a←α1

[a← α1 ← · · · ← αn−1]x,

∑
αn−2←a

[α1 ← · · · ← αn−1 ← a]x,

or

∑
αi←a←αi+1

[α1 ← · · · ← αi ← a← αi+1 ← · · · ← an−1]x

for some i ∈ {1, . . . , n − 2}. Using an observation made in the proof of Lemma 3.6,

we see that ΨΓ+ evaluated at any of the above elements is zero in RΓ.

The following theorem is an improvement of 3.2.1 of [20]. It is also an

improvement of Theorem 3.7. Unlike Theorem 3.7, we need not assume RΓ is Koszul.

Theorem 4.28. ΨΓ+ : S•(Γ+)→ RΓ(•, 0) is a co-chain isomorpshim.
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Proof. Let [1]x ∈ H̃−1(∆((∗, x))). Then

ΨΓ+(dS0(Γ+))([1]x) = ΨΓ+

(⊕
x←y

[x]y

)
=

(∑
x←y

ry

)
rx

and

dΓ(ΨΓ+([1]x) = dΓ(x) =

∑
z∈Γ+

rz

 rx =

(∑
x←y

ry

)
rx.

Assume n > 0. Let [x1 ← · · · ← xn]x ∈ H̃n−1(∆((∗, x))). We compute

ΨΓ+(dSn(Γ+))([x1 ← · · · ← xn]x)) = ΨΓ+

(⊕
x←y

(−1)n[x1 ← · · · ← xn ← x]y

)

= (−1)n

(∑
y→x

ry

)
rxrxn · · · rx1

and

dΓ(ΨΓ+([x1 ← · · · ← xn]x)) = dΓ(rxrxn · · · rx1)

=

(∑
y→x

ry

)
rxrxn · · · rx1 .

We conclude that ΨΓ is a chain map.

It is clear that ΨΓ+ is an epimorphism. It remains to show that ΨΓ+ is injective.

We will proceed by induction on the rank of Γ. If Γ has rank one (m = 0), then

dimFRΓ(0, 0) = ‖Γ+‖ =
∑
x∈Γ+

dimFH̃
−1(∆((∗, x))) = dimFS

0(Γ)

which proves the base case.
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We now assume the theorem is true for all posets of rank m. It suffices to prove

the result for cyclic posets of rank m+ 1, since

RΓ(m, 0) =
⊕

rkΓ(z)=m+1

RΓz(m, 0).

Thus, we set Γ = Γx and note Sm(Γ+) = H̃m−1(∆((∗, x))). The poset Γ<x has rank m

and thus Ψ(Γ<x)+ : S•((Γ<x)+)→ RΓ<x(•, 0) is a co-chain isomorphism. It is apparent

that Sn(Γ+) = Sn((Γ<x)+) and RΓ(n, 0) = RΓ<x(n, 0) for 0 ≤ n ≤ m− 1. The maps

dSn(Γ+) and dSn((Γ<x)+) coincide for 0 ≤ n ≤ m− 2. Similarly, the maps dΓ and dΓ<x

coincide for 0 ≤ n ≤ m − 2. Hence, to prove ΨΓ+ is injective, it suffices to prove

H̃m−1(∆((∗, x))) ' RΓx(m, 0).

We have a commutative diagram

⊕
rkΓ(y)=m

H̃m−2(∆((∗, y)))
dSm−1(Γ+)- H̃m−1(∆((∗, x)))

⊕
rkΓ(y)=m

RΓy(m− 1, 0)

Ψ(Γ<x)+

?

dΓ

- RΓx(m, 0)

ΨΓ+

?

By the inductive hypothesis, Ψ(Γ<x)+ is injective. We will use the notation α =

(α1, · · · , αm) for chains in Cm−1(∆((∗, x))). Suppose

∑
α∈Cm−1(∆((∗,x)))

qα[α1 ← · · · ← αm]x ∈ H̃m−1(∆((∗, x))) = Sm(Γ+)

is in the kernel of ΨΓ+ . Thus

∑
α∈Cm−1(∆((∗,x)))

qαrxrαm · · · rα1 = rx

 ∑
α∈Cm−1(∆((∗,x)))

qαrαm · · · rα1

 = 0.
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We set Ω = (Γ<x)
′. Thus, by definition of RΓ,

∑
α∈Cm−1(∆((∗,x)))

qαrαm · · · rα1 = rx(1)
∑

β∈Cm−2(∆(Ω+))

qβrβm−1 · · · rβ1

where β = (β1, . . . , βm−1). We then observe

Ψ(Γ<x)+

 ∑
α∈Cm−1(∆((∗,x)))

qα[α1 ← · · · ← αm−1]αm


=

∑
α∈Cm−1(∆((∗,x)))

qαrαm · · · rα1

= rx(1)
∑

β∈Cm−2(∆(Ω+))

qβrβm−1 · · · rβ1

= Ψ(Γ<x)+

 ∑
β∈Cm−2(∆(Ω+))

 ⊕
βm−1←y

qβ[β1 ← · · · ← βm−1]y

 .

The map Ψ(Γ<x)+ is an isomorphism and therefore

∑
α∈Cm−1(∆((∗,x)))

qα[α1 ← · · · ← αm−1]αm

=
∑

β∈Cm−2(∆(Ω+))

 ⊕
βm−1←y

qβ[β1 ← · · · ← βm−1]y

 .

Thus

dSm−1(Γ+)

 ∑
β∈Cm−2(∆(Ω+))

 ⊕
βm−1←y

[β1 ← · · · ← βm−1]y


=

∑
α∈Cm−1(∆((∗,x)))

qα[α1 ← · · · ← αm]x.
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And finally,

dSm−1(Γ+)

 ∑
β∈Cm−2(∆(Ω+))

 ⊕
βm−1←y

[β1 ← · · · ← βm−1]y

 = [0]x

in H̃m−1(∆((∗, x))). We conclude ΨΓ+ : H̃m−1(∆((∗, x))) → RΓx(m, 0) is an

isomorphism. This completes our proof.

Remark 4.29. Let Γ be a finite ranked poset. Suppose Γx is Cohen-Macaulay for all

maximal rank x in Γ. Using the remark at the end of Section 4.2 and Corollary 4.22,

we see that the cohomology of S•(Γ+) is the cohomology of C•(∆(Γ+)) = C•(Y ).

We end this section with several corollaries. We recall the definition of Γ>i from

Section 3.2

Corollary 4.30. Let 0 ≤ i < m. Then Ψ(Γ>i)+
: S•((Γ>i)+)→ RΓ(•, i) is a co-chain

isomorpshim.

The following corollary is Corollary 3.11, without the uniform hypothesis.

Corollary 4.31. Let Γ be a finite ranked poset and ∗ 6= v ∈ Γ an element of rank

d+ 1. Then for any 0 ≤ k ≤ d− 1,

dim(rvRΓ(d− 1, k)) = dim(H̃d−k−1(∆(Γ>kv \ {∗, v}))).

Recall the definition of Γa,i from Section 3.2 The following corollary is (3.1.1)

from [20], without the uniform hypothesis.

Corollary 4.32. Let Γ be a finite ranked poset. Then:

H(RΓ,−t) = 1 +
∑
i≥1

∑
a∈Γ

rkΓ(a)≥i

(−1)i−2 dim H̃ i−2(∆(Γa,i))t
i
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Finally, we recall the notation Γ(S, k) from Definition 4.15.

Corollary 4.33. Let 0 ≤ k < n ≤ m+1 and S ⊂ Γ(n). Then ΨΓ(S,k) : S•(Γ(S, k))→

RΓS(•+ n− k − 1, n− k − 1) is a co-chain isomorphism.

4.4. The Second Main Theorem

Suppose Γ is cyclic. We remind the reader of several facts. By Theorem 3.25,

Γ is Cohen-Macaulay if for all x ∈ Γ+ and all rkΓ(x) ≥ l > n, H̃n−2(∆(Γx,l)) = 0.

Also, from Theorem 3.13, Γ is Cohen-Macaulay if and only if Γ is uniform and RΓ

is Koszul. Recall again the notation Γ(S, k) from Definition 4.15 and note that the

dimension of ∆(Γ(S, k)) is k.

Definition 4.34. Let Γ be a finite ranked cyclic poset. Then Γ is weakly Cohen-

Macaulay if for all x ∈ Γ+, 0 ≤ k < n ≤ rkΓ(x)− 1 and S ∈Mn(Γx \ {x}),

Hk−1(S•(Γ(S, k))) = 0.

Remark 4.35. Every finite ranked cyclic poset of rank three (or less) is weakly

Cohen-Macaulay.

The following fact shows that weakly Cohen-Macaulay is a slightly weaker

condition than Cohen-Macaulay.

Proposition 4.36. Let Γ be a finite ranked cyclic poset. Then Γ is Cohen-Macaulay

if and only Γ is uniform and weakly Cohen-Macaulay.

Proof. In proving both directions, Γ is uniform. Thus, if x ∈ Γ+, Γx is uniform. By

Remark 4.18, Mn(Γx \ {x}) = {Γx(n)} for all 1 ≤ n ≤ rkΓ(x)− 1.
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For the forward direction, assume Γ is Cohen-Macaulay and let x ∈ Γ+ and

0 ≤ k < n ≤ rkΓ(x)− 1. Set S = Γx(n). Then, by Corollary 4.33, Hk−1(S•(Γ(S, k)))

is isomorphic to Hk−1(RΓS(• + n − k − 1, n − k − 1), dΓS). This is isomorphic to

Hk−1(RΓx(•+n− k− 1, n− k− 1), dΓx). Since Γx is Cohen-Macaulay, RΓx is Koszul.

Therefore, the above cohomology is zero, as desired.

For the reverse direction, we will proceed by induction on rank of Γ and show

that RΓ is Koszul. If Γ has rank one, there is nothing to prove. We assume Γ has rank

m+ 1 with m > 0. Set Γ = Γz. By Lemma 3.2, it remains to show Hn(RΓ(•, k)) = 0

for all 0 ≤ k < n ≤ m − 2. Let S = Γ(n + 2). By Corollary 4.33, Hn(RΓ(•, k)) is

isomorphic to Hn−k(S•(Γ(S, n− k + 1))) = 0 and this completes our proof.

Theorem 4.37. Let Γ be a finite ranked cyclic poset. Then Γ is weakly Cohen-

Macaulay if and only if RΓ is Koszul.

Proof. We will proceed by induction on the rank, m+1, of Γ. The theorem is true for

all Γ of rank one. Assume m > 0 and that the theorem is true for all cyclic posets of

rank less than or equal to m. The theorem follows from Theorem 4.19 and Corollary

4.33.

Corollary 4.38. Let Γ be a finite ranked poset. Then for all elements x in Γ of

maximal rank, Γx is weakly Cohen-Macaulay if and only if RΓ is Koszul.

4.5. A Few Examples and Remarks

Example 4.39. The poset Θ∗ from Example 4.1 is weakly Cohen-Macaulay. By

inspection, S0(Θ∗+) = F[1]u + F[1]t, S
1(Θ∗+) = F[u]q, and S2(Θ∗+) = S3(Θ∗+) = 0.

Also, the map dS0(Θ∗+) : S0(Θ∗+)→ S1(Θ∗+) is surjective. We remark that the dual

of a weakly Cohen-Macaulay cyclic poset need not be weakly Cohen-Macaulay.
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Example 4.40. Let Γ and Ω be finite ranked posets with equal rank. Recall the

notation Γ ∨(v,v′) Ω from Definition 3.31. If Γ and Ω are weakly Cohen-Macaulay,

then so is Γ ∨(v,v′) Ω. In particular, if Γ and Ω are Cohen-Macaulay, then Γ ∨(v,v′) Ω

is weakly Cohen-Macaulay.

Example 4.41. The class of weakly Cohen-Macaulay posets includes many non-

Cohen-Macaulay lattices. For example the lattice Λ, given in Figure 4.3, is weakly

Cohen-Macaulay but not Cohen-Macaulay.

FIGURE 4.3. The poset Λ.

We remark that not all lattices are weakly Cohen-Macaulay; see Example 3.22.

Remark 4.42. Again let Γ and Ω be finite ranked posets with equal rank and unique

minimal elements ∗Γ and ∗Ω. We define

Γ ∨ Ω = Γ ∪ Ω/(∗Γ ∼ ∗Ω).
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We denote the unique minimal element of Γ ∨Ω by ∗. If Γ and Ω are weakly Cohen-

Macaulay, then so is Γ ∨ Ω. In particular, if Γ and Ω are Cohen-Macaulay, then Γ ∨ Ω

is weakly Cohen-Macaulay. Figure 4.3 above gives an example of this construction.

We can give a more general construction of weakly Cohen-Macaulay posets.

Remark 4.43. Suppose Γ is pure and Γx is Cohen-Macaulay for all maximal x in

Γ. Then Γ is weakly Cohen-Macaulay if and only if for all S ∈ Mrk(Γ)(Γ), ΓS is

Cohen-Macaulay.
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