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DISSERTATION ABSTRACT

Andrew P. Schopieray
Doctor of Philosophy
Department of Mathematics
June 2017

Title: Relations in the Witt Group of Nondegenerate Braided Fusion Categories
Arising from the Representation Theory of Quantum Groups at Roots of Unity

For each finite dimensional Lie algebra g and positive integer k there exists a
modular tensor category C(g, k) consisting of highest weight integrable g-modules
of level k& where g is the corresponding affine Lie algebra. Relations between the
classes [C(sly, k)] in the Witt group of nondegenerate braided fusion categories
have been completely described in the work of Davydov, Nikshych, and Ostrik.
Here we give a complete classification of relations between the classes [C(sls, k)]
relying on the classification of conncted étale alegbras in C(sl3, k) (SU(3) modular
invariants) given by Gannon. We then give an upper bound on the levels for
which exceptional connected étale algebras may exist in the remaining rank 2
cases (C(sos5,k) and C(g2,k)) in hopes of a future classification of Witt group
relations among the classes [C(so05, k)] and [C(ge, k)]. This dissertation contains

previously published material.
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CHAPTER I

INTRODUCTION

This dissertation is a compilation of two existing articles. Chapters 11 and IV
have appeared in [41] (the final publication is available at Springer via
http://dz.doi.org/10.1007/s00220-017-2831-2), Chapter V has appeared in
[42] which has been submitted for publication, and Chapters 1 and 111 include
overlapping portions of both [{1] and [42].

The Witt group of nondegenerate braided fusion categories W, first introduced
in [10], provides an algebraic structure that is one tool for organizing braided
fusion categories. Inside W lies the subgroup W,, consisting of classes of pseudo-
unitary braided fusion categories which, in turn, contains the classes [C(g, k)]
coming from the representation theory of affine Lie algebras. Theorem 3 is the
main goal of this exposition, to classify all relations in the Witt group between
the classes [C(sl3, k)]. To do so requires identification of a unique (up to braided
equivalence) representative of each Witt equivalence class which is simple and
completely anisotropic (see Definitions 3 and 8), constructed in the cases where
3 | k as the category of dyslectic A-modules C(sl3, k)% [27, Definition 1.8]. The
major result which allows for the classification is Theorem 1 which states that the
categories C(sl3, k)% are simple when 3 | k and k # 3.

Translated into the language of modular tensor categories, there is a common
belief among physicists [30] that W, is generated by the classes of the categories
C(g,k). This provides at least one external motivation for understanding Witt
group relations in W,,. But Witt group relations are difficult to come by; all
relations in the subgroup W,; C W consisting of pointed braided fusion categories
are known [14, Appendix A.7] and limited relations in W, are known due to the

theory of conformal embeddings of vertex operator algebras (Section 4.1.). The



general task of classifying all relations in W, was presented in [10], and in [11] all
relations among the classes of the categories C(sly, k) were classified. Independent
from the classification of Witt group relations, the passage from [C] € Wy, to
[CY], the equivalence class of the category of dyslectic A-modules over a connected
étale algebra, is intimately related to extensions of vertex operator algebras [24]
and anyon condensation [21] (see also [15, 29]), providing stronger justification
to conjecture and prove results similar to Theorem 3 for general C(g, k). If these
results are true they also provide an infinite collection of simple modular tensor
categories which play an important role in the classification of all modular tensor
categories, an open and active area of modern research.

Modular tensor categories also encode the data of chiral conformal field theo-
ries. Fuchs, Runkel, and Schweigert [19] describe how full conformal field theories
correspond to certain commutative algebras in these categories. These concepts
have been recently formalized to logarithmic conformal field theories [20], i.e. theo-
ries described by non-semisimple analogs of modular tensor categories. One should
also refer to the work of Bockenhauer, Evans, and Kawahigashi [4, 5] which de-
scribes this connection in terms of modular invariants and subfactor theory, or
Ostrik’s summary of these results in categorical terms [35, Section 5.

Lastly, the aforementioned connected étale algebras partially classify module
categories over fusion categories. Each connected étale algebra A € C gives rise to
an indecomposable module category over C by considering C4, the category of A-
modules in C, although not all indecomposable module categories can be produced
in this way. For example if C is a pointed modular tensor category [17, Chapter
8.4] with the set of isomorphism classes of simple objects of C forming a finite
abelian group G, then indecomposable module categories over C correspond to
subgroups of G along with additional cohomological data [34, Theorem 3.1]; this
example provides some precedence to title connected étale algebras as quantum
subgroups. For a non-modular example, module categories over the even parts of

the Haagerup subfactors have been classified by Grossman and Snyder [23]. More



classically, module categories over C(sly, k) are classified by simply-laced Dynkin
diagrams [7, 27] but this characterization scheme has not immediately lent itself
to classifying module categories over C(g, k) for other simple Lie algebras g. The
language and tools of tensor categories which have solidified in recent years provide
a novel approach to this dated problem.

There is a long-standing belief that the modular tensor categories C(g, k) con-
tain exceptional (see Section 5.2.) connected étale algebras at only finitely many
levels k. Here in Theorem 5 we confirm this conjecture when g = so;, go, con-
tributing a proof and explicit bounds, adding to the previously known positive
results for sly [27] and sl3 [22]. The explicit level-bound provided optimistically
allows for a complete classification of connected étale algebras in C(sos, k) and

C(g2, k) by strictly computational methods.



CHAPTER II

PRELIMINARIES

Chapter 11 appeared in [41] (the final publication is available at Springer via
http://dz.dot.org/10.1007/s00220-017-2831-2).

We assume familiarity with the basic definitions and results found for example
in [17], but will give a brief recollection at this point. In the remainder of this
section k will be an algebraically closed field of characteristic zero.

A fusion category over k is a k-linear semisimple rigid tensor category with
finitely many isomorphism classes of simple objects, finite dimensional spaces of
morphisms, and a simple unit object 1. For brevity, the set of isomorphism classes
of simple objects of a fusion category C will be denoted O(C). We will identify
the unique (up to tensor equivalence) fusion category with one simple object with
Vec, the category of finite dimensional vector spaces over k. Given two braided
fusion categories C and D, Deligne’s tensor product C XD is a new braided fusion
category which can be realized as the completion of the k-linear direct product
C ®x D under direct sums and subobjects under our current assumptions [17,
Section 4.6].

A set of natural isomorphisms
CX’y:X®Y;>Y®X (1)

satisfying compatibility relations [17, Section 8.1] for all X, Y in a fusion category
C is called a braiding on C and we will therefore refer to C as a braided fusion
category. There is an alternative reverse braiding for any braided category given

by cxy = C;,lx and the resulting braided category is denoted C™".

Example 1 (Pointed fusion categories). Special distinction goes to fusion



categories C in which every object X € O(C) is invertible, i.e. the evaluation
evy : X*® X — 1 and coevaluation coevy : 1 — X ® X* maps coming
from the rigidity of C are isomorphisms. Categories in which every X € O(C) is
invertible are called pointed, while the maximal pointed subcategory of a braided
fusion category C will be denoted C,;. Pointed braided fusion categories were
classified by Joyal and Street in [26, Section 3] (see also [17, Section 8.4]). If a
pointed fusion category is braided, due to (1) the set of isomorphism classes of
simple objects forms a finite abelian group under the tensor product, which we
will call A. Recall that a quadratic form on A with values in k* is a function
q: A — k* such that ¢(—z) = q(z) and b(z,y) = q(z +y)/(q(x)q(y)) is bilinear
for all x,y € A. To each pair (A, q) there exists a braided fusion category C(A, q)
that is unique up to braided equivalence whose simple objects are labelled by the

elements of A.

One might identify symmetric braidings (those for which ¢y x o cxy = idxgy)
as the most elementary of braidings as Deligne [12][13][17, Section 9.9] proved that
all symmetric fusion categories must come from the representation theory of finite
groups. In the spirit of gauging how far a braiding is from being symmetric, if
cyx © cxy = idxgy for any objects X,Y € C, we say X and Y centralize one

another [32, Section 2.2].

Definition 1. If D is a subcategory of a braided fusion category C that is closed
under tensor products then D’ C C the centralizer of D in C is the full subcategory
of objects of C that centralize each object of D. A braided fusion category is known

as nondegenerate if C' ~ Vec.

Note 1. One can think of nondegenerate braided fusion categories as those which

are furthest from symmetric as possible.

Example 2 (Metric groups). If the symmetric bilinear form b(—, —) associated
with a pair (A, ¢) (as in Example 1) is nondegenerate, then the pair (A, q) is called

a metric group. It is known [17, Example 8.13.5] that the category C(A4,q) is

>



nondegenerate if and only if (A, ¢) is a metric group. For instance let A := Z/37Z
(considered as the set {0,1,2} with the operation of addition modulo 3). The

following functions are quadratic forms on A with values in C*:

go : A — C~ G2 : A — C*

= (w)* z (W)

where w = exp(27i/3). These quadratic forms equip C(Z/3Z, q.,) and
C(Z/3Z,q.>) with the structure of nondegenerate braided fusion categories which

are not braided equivalent.

2.1. Fusion Subcategories and Prime Decomposition

The assumptions required of a fusion subcategory are very few in number.

Definition 2. A full subcategory D of a fusion category C is a fusion subcategory

if D is closed under tensor products.

It would not be unreasonable to assume that rigidity and existence of the unit
object of D be required in the definition above, but both are consequences of
closure under tensor products. Specifically Lemma 4.11.3 of [17] gives that for
each simple object X there exists n € Zso such that Hom(1, X®") # 0. And
by adjointness of duality [17, Proposition 2.10.8] Hom(X*, X®"~1) £ 0 as well.

Thus 1, X* € C are direct summands of sufficiently large tensor powers of X.

Definition 3. A fusion category with no proper, nontrivial fusion subcategories
is called simple, while a nondegenerate fusion category with no proper, nontrivial,

nondegenerate fusion subcategories is called prime.

The existence of a decomposition of a nondegenerate braided fusion category

into a product of prime fusion subcategories was given by Miiger [32, Section 4.1]



under limited assumptions and proved in the following generality in Theorem 3.13

of [14].

Proposition 1. Let C # Vec be a nondegenerate braided fusion category. Then
C~CX---KC,,

where Cy, . ..,C, are prime nondegenerate subcategories of C.

To construct such a decomposition one can identify a nontrivial nondegener-
ate braided fusion subcategory D inside of a given nondegenerate braided fusion
category C and by Theorem 4.2 of [32], C ~ DX D’ is a braided equivalence.
In future sections this process will be referred to as Miiger’s decomposition. As
noted in [32, Remark 4.6] this decomposition is not necessarily unique which is a

significant observation for the discussion in Section 2.4..
2.2. Modular Categories

Recall the natural isomorphisms ay : V — V** for any finite dimensional
vector space V' over k from elementary linear algebra. This collection of natural
isomorphisms is a pivotal structure on Vec, i.e. they satisty aygw = ay ® ay for
any finite dimensional vector spaces V and W. A pivotal structure on a general
tensor category C allows us to define a categorical analog of trace, Tr(f) € k for

any morphism f € End(X) [17, Section 4.7] given by
Tr(f) : 129 X @ X XULEN yoe g xr 95 g

Tensor categories with a pivotal structure ayx : X — X** for all objects X will

be called pivotal themselves.

Definition 4. The (categorical or quantum) dimension of an object X in a pivotal

tensor category C is dim(X) := Tr(idyx) € k. A pivotal structure on a tensor



category is called spherical if dim(X) = dim(X™) for all X € O(C), while spherical
braided fusion categories are called pre-modular. One can define the dimension of

a pre-modular category by

dim(C) := ) dim(X).
XeO(C)

Example 3 (Vector spaces). There is only one simple object in Vec up to iso-
morphism, the one-dimensional k-vector space 1, and the aforementioned pivotal
structure ay : V. —» V** given by v — {f — f(v)} is spherical. It is easily
verified that dim(1) = 1 and because the categorical notion of dimension is addi-
tive, then in this case the categorical dimension matches the usual notion of the
dimension of a k-vector space.

More generally the categories C(A, ¢) are pointed, and so the evaluation, coeval-

uation, and spherical structure can be realized by identity maps. So dim(X) =1

for all X € O(C(A4, ¢q)) and all metric groups (4, ¢). Moreover dim(C(A4,q)) = |A|.

There is a second notion of dimension defined in terms of the Grothendieck
ring K(C) of a fusion category C. As noted in Section 3.3 of [17], there exists
a unique ring homomorphism FPdim : K(C) — R such that FPdim(X) > 0
for any 0 # X € C. This Frobenius-Perron dimension gives an analog to the

dimension of the category C itself as in Definition 4, given by

FPdim(C) := Y FPdim(X)
Xeo(C)

Spherical fusion categories for which FPdim(C) = dim(C) are called pseudo-
unitary and it is known that for such a category there exists a unique spherical
structure with FPdim(X') = dim(X) for all X € O(C), allowing us to only consider
dim(X) in these cases. It will be important to future computations that dim(X) >
0 for pseudo-unitary fusion categories.

If a braided fusion category is equipped with a spherical structure, there exist



natural isomorphisms 0x : X — X for all X € C known as twists (or the ribbon
structure) compatible with the braiding isomorphisms found in (1) of Section II
[17, Section 8.10]. In the case of pointed fusion categories C(A,q) (Example 1),
for any z € A the map 0, = b(x,x)id, defines a ribbon structure. The diagonal
matrix consisting of the twists 6y over all X € O(C) is called the T-matrix of C.

Finally we end this subsection by tying the notions of trace and dimension
in spherical categories to the nondegeneracy conditions defined by the centralizer

construction (Definition 1).

Definition 5. The S-matrix of a pre-modular category C is the matrix
(sx,v)x,yeo) where syy = Tr(cy,x o cxy). A pre-modular category is modular

if the determinant of its S-matrix is nonzero.

Note 2. It is well-known that a pre-modular category C is modular if and only if

it is nondegenerate (C' = Vec). [14, Proposition 3.7][32]

2.3. Etale Algebras

For this exposition, an algebra A in a fusion category C is an associative algebra
with unit which is equipped with a multiplication map m : A A — A. If m
splits as a morphism of A-bimodules, we refer to A as separable. This criterion
ensures that C4, the category of right A-modules is semisimple, and also 4C, 4Ca,
the categories of left A-modules and A-bimodules respectively [10, Proposition

2.7].

Definition 6. An algebra A in a fusion category C is étale if it is both commutative

and separable. This algebra is connected if dimy Hom(1, A) = 1.

Note 3. Etale algebras have also been referred to as condensable algebras in
the physics literature. The following description of the categories C4 when A is

connected étale is summarized from Sections 3.3 and 3.5 of [10].

Braidings on C give rise to functors G : C, — 4,C, defined as M +— M_ (the

identity map as right A-modules), where the left A-module structure on M_ is

9



given as composition of the reverse braiding with the right A-module structure

map p:
Ao M2 Mo AL M.

The commutativity of A implies ,C, is a tensor category and thus the above
functor G provides a tensor structure for C, which we denote ®4. One can also
define a tensor structure, opposite to the one above, on C, by composing the right
A-module structure map with the usual braiding. We will denote the resulting
left A-module produced from M as M, .

With the tensor structure defined on C, by the functor G, the free module
functor ' : C — C, is a tensor functor. In particular F'(1) = A is the unit object
of C, which is simple by the assumption that A is connected. The category C, is

also rigid since any object M € C, is a direct summand of the rigid object

FIM)=M®A=M®,(A® A).

The above discussion implies C, is a fusion category when A € C is connected
¢tale. Unfortunately the category C, is not braided in general. The issue lies
in the inherent choice of a left A-module structure on a given right A-module

Mec,.

Definition 7. If idy, : M_ — M, is an isomorphism of A-bimodules for M € C,,

we say that M is dyslectic (also called local in the literature).

Pareigis [37] originally studied the full subcategory of C, consisting of dyslectic
A-modules, denoted by CY% which is the correct subcategory of C, to study to
ensure a braiding exists (see also [27]). That is if C is a braided fusion category
and A € C a connected étale algebra, then CY is a braided fusion category and

furthermore if C is nondegenerate then CY is nondegenerate as well.

Definition 8. A braided fusion category C is completely anisotropic if the only

connected étale algebra in C is the unit object 1.

10



2.4. The Witt Group of Nondegenerate Braided Fusion Categories

Tensor categories are often regarded as a categorical analog of rings and there
is a categorical construction which (in some ways) mimics the center of a ring.
The Drinfeld center of a monoidal (tensor, fusion) category C is the category
whose objects are pairs (X, {7xy }yec) consisting of an object X € C and natural
isomorphisms

Txy X QY S5V ®X

for all objects Y € C that satisfy the same compatibility conditions as braidings
found in (1) of Section 2.1; i.e. this definition is imposed so that Z(C) is naturally
braided. Where the analogy to the center of a ring falls apart is that in general
Z(C) is much larger than C as the same object X € C may have many distinct
collections of braidings {vxy }yec which can be paired with it. If C is a braided
fusion category, the functors C,C™ — Z(C) mapping objects X to themselves
paired with their inherent braiding isomorphisms in C,C"" are fully faithful and

their images centralize one another, giving a braided tensor functor

CRC — Z(C) (2)

which has been shown to be an isomorphism if and only if C is modular [14,
Proposition 3.7][31, Theorem 7.10].

It is not obvious whether a given nondegenerate braided fusion category arises
as the Drinfeld center of another. The Witt group of nondegenerate braided fusion
categories can be seen as a device for organizing nondegenerate braided fusion

categories by equating those that differ only by the Drinfeld center of another.

Definition 9. The Witt group of nondegenerate braided fusion categories (hereby
called the Witt group, or simply W) is the set of equivalence classes of nondegen-

erate braided fusion categories [C] where [C] = [D] if there exist fusion categories

A; and Ay such that C X Z(A;) ~ DX Z(A;) as braided fusion categories.

11



The title group is justified as the Deligne tensor product equips W with a
commutative monoidal structure (with unit [Vec|) while (2) implies that [C]™! =
[C™¥] [10, Lemma 5.3].

Completely anisotropic categories (Definition 8) play a special role in the study
of W. As noted in Theorem 5.13 of [10] each Witt equivalence class in W contains
a completely anisotropic category that is unique up to braided equivalence. To
produce such a representative one can locate a maximal connected étale algebra
A € C and the passage to the category of dyslectic A-modules C% does not change
the Witt equivalency class, i.e. [C4] = [C] [10, Proposition 5.4].

One impetus to understanding the structure of W is that the decomposition
of a nondegenerate braided fusion category given in Proposition 1 is not unique in
general. The extent of this lack of uniqueness is illustrated in Section 4.2 of [32].

The last tool needed in this section is a numerical invariant that will allow us
to quickly prove that Witt equivalence classes of categories are distinct. Assume
for the rest of this section that C is a modular tensor category over C (Definition
5).

Recall the multiplicative central charge £(C) € C [17, Section 8.15] which sat-

isfies the following important properties.

Lemma 1. For any modular tensor categories C, C; and Co
(a) &£(C) is a root of unity,
(b) §(CLWCy) = &(C1)E(Ce), and
(c) §(C) =¢(C)~.

The equivalence in (2) along with Lemma 1 (b),(c) imply that £(Z(C)) = 1.
Lemma 5.27 of [10] proves further that for pseudo-unitary modular tensor cate-
gories, multiplicative central charge is a numerical invariant of Witt equivalency

classes. This allows us to predict the possible order of elements in W,,.

12



CHAPTER III

QUANTUM GROUPS TO MODULAR TENSOR CATEGORIES

Chapter 111 includes overlapping portions of [41] (the final publication is available
at Springer via http://dz.dot.orqg/10.1007/s00220-017-2831-z) and [{2].
If g is a finite-dimensional simple Lie algebra and g is the corresponding affine
Lie algebra, then for all & € Z~, one can associate a pseudo-unitary modular tensor
category C(g, k) consisting of highest weight integrable g-modules of level k. These
categories were studied by Andersen and Paradowski [1] and Finkelberg [18] later
proved that C(g, k) is equivalent to the semisimple portion of the representation
k+hY) (

category of Lusztig’s quantum group U,(g) when g = e™/( Figure 1.) where

hY is the dual coxeter number for g [3, Chapter 7].

9 q

sly exp(mi/(k +2))
sl; exp(mi/(k + 3))
s05 | exp((1/2)mi/(k + 3))
02 | exp((L/3)mi/(k + 1)

Figure 1.: Roots of unity ¢ when rank(g) < 2

Let b be a Cartan subalgebra of g and (.,.) be the invariant form on h* nor-
malized so that («, @) = 2 for short roots [25, Section 5]. Simple objects of C(g, k)
are labelled by weights A\ € Ay C b*, the Weyl alcove of g at level k. Simple
objects and their representative weights will be used interchangably but can be
easily determined by context. Geometrically, Ay can be described as those weights
bounded by the walls of Ag: the hyperplanes T; := {\ € b* : (A + p, ;) = 0} for
each simple root a;; € b* and T := {A € b* : (A + p,0Y) < k+ h"'} where 6 is the
longest dominant root. Reflections through the hyperplane T; will be denoted 7;

which generate the affine Weyl group 20,.

13



If p is the half-sum of all positive roots of g then the dimension of the simple
object corresponding to the weight A € A is given by the quantum Weyl dimension

formula

. o, A
dim(\) = 1_[0 W

where [m] is the ¢g-analog of m € Z> which for a generic parameter ¢ is

gt —q "

[m] = P — qul + qu:} S q*(m*3) 4 q*(mfl).

Using elementary trigonometry, quantum analogs can be expressed solely in terms

of sines or cosines. The argument of ¢™ is mm/e(g, k) as illustrated in Figure 2.

“(43%>_

which implies

)] = [ L= =
e
(g, k)
qr—q "
| q"
sin( — ) i /,/”//
€(gvk) : ’/,’/// ,_.
e °1
f'.q_m

m

Figure 2.: Modulus of ¢™ — ¢~

In what follows the numerator of the quantum Weyl dimension formula will

often be all that needs to be considered as only equalities and inequalities of

14



dimensions with equal denominators appear. We will denote this numerator
dim’(\). With the values of ¢ found in Figure 1., dim(\) € Rs; (and in par-
ticular [m]| € Ry for all considered m € Z-) for all A € Ag. The full twist on a
simple object A € Aq is given by #(A\) = ¢»**22 which is a root of unity depending
on g, k, and .

We refer the reader to [25, Sections 13,21-24] for concepts and results from

classical representation theory of Lie algebras.
3.1. Numerical Data and Fusion Rules for C(g, k) when rank(g) < 2

Simple objects of C(sly, k) are enumerated by s € Zsq such that s < k. Each
object, denoted by (s), corresponds to the weight s\ € Ay, where A is the unique
fundamental weight. The dimension of (s) is given by dim(s) = [s + 1] and the

full twist on this object by

Figures 3.-6. contain geometric visualizations of the Weyl alcove with respect to
the specified Lie algebra and level, with nodes representing weights in Ay and
shaded nodes representing those weights which also lie in the root lattice. Walls

of Ag are illustrated by dashed lines.

) e o e o e o o (@

Figure 3.: C(sly, 6)

Simple objects of C(sl3, k) are enumerated by nonnegative integer pairs (s, t),
such that s + ¢ < k. Each (s,t) corresponds to the weight sA; + tAy € Ag. The

dimension of the simple object (s,t) is given by

dim(s, t) = i[s + 1t + 1][s + t + 2],

2]
15



and using the trigonometric identities for quantum analogs, we have the following

proposition which will refer back to in future proofs.

Proposition 2. For all (s,t) € Ag

(0 () (122

sin 27 sin?
k—+3 k—+3

The twist on this object is given by

dim(s,t) =

>+ 35+ st + 3t +t°
9(3,t)=exp<8+8+8+ i -27m').

3(k + 3)

® 0O

® "0 "o
e ® O (4,0)
| ® e -
e O ®
e ()
0 M
- (0,0).7

Figure 4.: C(sl3,4)

Simple objects of C(s05, k) are enumerated by nonnegative integer pairs (s, ),
such that s +¢ < k. Each (s,t) corresponds to the weight sA; + tAs € Ag. The
dimension of the simple object of C(s05,k) corresponding to the weight (s,t) is

given by
2(s 4+ D[t + 1][2(s + t + 2)][2s + t + 3]
[21(3][4]1] ’

dim(s,t) =

16



and the twist on this object by

25% 4+ 2st 4 65 + 1> 4+ 4t
O(S,t):exp( Gl e -27?@).

4(k + 3)

3 )\1 O O ////
| @) @) @’/

3 O Ao

o

. (0,0)

Figure 5.: C(s05,6)

Simple objects of C(gs, k) are enumerated by nonnegative integer pairs (s,t),
such that s + 2t < k. Each (s,t) corresponds to the weight sA; + tAs € Ag. The

dimension of the simple object (s,t) is given by

[s + 1][3(t + D)][3(s + t + 2)][3(s + 2t + 3)][s + 3¢t + 4][2s + 3t + 5]
[1][3][6][9][4][5] ’

dim(s,t) =

17



and the twist on this object by

? + 3st + 5s 4 3t> 4 9t
O(S,t):exp(s oSt DS A ST -2%@).

3(k+4)

Figure 6.: C(g2, 8)

Lastly we recall a result influenced by Andersen and Paradowski and proven

by Sawin as Corollary 8 in [39], giving a formula for the fusion rules in C(g, k).

18



Proposition 3 (Quantum Racah formula). If A\,~v,n € Ag then

N, := dim¢ Hom(n, A ® 7) is given by

Ni = >0 () Py (r(n) = N),

7€Wo

where £(T) is the length of a reduced expression of T € Wy in terms of 11,72, T3
and my(p) is the dimension of the p-weight space in the classical representation

of highest weight X.

As in Lemma 1 of [38] this formula can be used to identify particular direct
summands of tensor products of simple objects in C(g, k). Based on slight nota-
tional discrepancies in the Quantum Racah formula in [38], we provide a proof

here based on that of Sawin’s.

Lemma 2 (Sawin). For any o in the classical Weyl group 20, and any v, A € Ay,
if \A+o(v) € Ag, then A®~ contains \+0o(7) as a direct summand with multiplicity

one.

Proof. Assume that X ¢ A is any weight conjugate to A € Ay under the action of
Wy. Explicitly, there exists (7,7, -+ 7;,) € Wp (written as a reduced expression

in the generating simple reflections) such that
(7ir i -+ Ti)J(A) = A (3)

Now let n € Ag be arbitrary. The hyperplane of reflection corresponding to 7;,
lies between X and n by assumption, so ||7;,(\) —n|| < ||N — n||. Repeating this

argument over all simple reflections in (3) shows that
A =nll <IN =7l (4)

With reference to the summands appearing in Proposition 3, assume that
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my(T(A+ o(v)) — A) # 0 for some non-trivial 7 € 2. Then

I7(A+a(v)) = All < Il (5)

because 7y is heighest weight. Since A + o(y) € Ag and 7(A + (7)) is not, (4)
implies

= lleMF = 1A +a()) = All < IT(A +o(7)) = Al

contradicting the highest weight inequality in (5). Thus m,(7(A + (7)) — A) is

possibly nonzero if and only if 7 = id € 2, and thus
N7 = (=1)°my (A + 0 (7)) = X) = my(0(7)) = L.

]

It is necessary to the proof of future claims to consider the geometric inter-
pretation of the quantum Racah formula specifically for rank 2 Lie algebras [39,
Remark 4]. The notation and concepts introduced in this subsection will be used
prolifically throughout the proof of Theorem 5 and are illustrated by example in
Figure 7. to compute Ny for arbitrary p € Ao, A := (3,4), and v := (3,6) (white
node) in C(so5, 12).

Given \,v € Ay, the quantum Racah formula states that to calculate the
fusion coefficients N f\L ., for any pu € Ag geometrically, one should compute (),
the classical weight diagram for the finite-dimensional irreducible representation
of highest weight A, and (for visual ease) we illustrate its convex hull, TI(\). For
this purpose reflections in the classical Weyl group are illustrated in Figure 7.a by
thin lines. One can then shift II(A) and TI(\), so they are centered at 7, denoting
these shifted sets by II(\ : v) and II(\ : ). Now for a fixed weight p € Ag, 7 € 2
will contribute to the sum N} if and only if there exists y € II(A : ) such that
7(u') = p. The walls of Ay are illustrated (and labelled) in Figure 7.b by dashed

lines and all contributing 7 € 20, can be visualized by folding TI(X : ) along the

20



walls of Ay until it lies completely within Ay. To emphasize effect of folding, the
folded portions of TI(\ : 7) are illustrated in Figure 7.b with emphasized shading,

while regions of II(\ : v) unaffected by folding are given a crosshatch pattern.

(a) II(N) (b) TI(\ : ), folded

Figure 7.: A® v € C(so05, 12)

For arbitrary \,v,u € Ay there may be several 7 € 20, which contribute
(positively or negatively) to the sum NY_ in the quantum Racah formula, but
for many fusion coefficients the only contribution comes from the identity of 20,
and are therefore easily determined to be zero or positive. In Figure 7.b, these
coefficients correspond to weights in II(A : ) which also lie in the crosshatched

region.
Lemma 3. Fiz \,v,pu € Ag. If

(1) pell(X:7), and

(2) Ti(1) # p for any (' € (A : ) and i =0,1,2,
then NY_ > 0.

Proof. By assumption (1), my(u — ) > 0 is one term in the quantum Racah
formula for Ny . Any nontrivial 7 contributing to N}, does so via ' € TI(A :

) conjugate to pu. But one can verify using elementary plane geometry that
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7 (IL(A : 7)) C II(X : ) for each generating reflection ¢ = 0, 1,2. This observation
along with assumption (2) implies no reflections of length greater than or equal
to one may contribute to the desired fusion coefficient and moreover NV fﬁ is equal

to ma(u —y) > 0. O
3.2. C(ﬁ[g,k)

Even though the duality in C(sl3, k) is clear for other reasons, its computation
is straightforward from Lemma 2.
Corollary 1. If (my,ma) € Ay, then (my,me)* = (mg, my).

Proof. Note that if C is a fusion category and X,Y € C are simple, then by

adjointness of duality Y* ~ X if and only if

1 = dimy Hom(Y™, X)) = dimy, Hom(1, X ® Y').

Now if we denote the generating reflections oy, o9 € 20, then

(020102)(7712, ml) = —(ml, mg).

Thus (my, my) + (090102)(m2, my) = (0,0) and by Lemma 2, (mq, ms) ® (ma, m;)

contains (0,0) with multiplicity one. O

We also collect a formula for the multiplicative central charge of C(g, k) [10,

Section 6.2] for future use.

Lemma 4. The multiplicative central charge of C :== C(g, k) is given by

£(C) = exp (2m’ kdimg)

8 k+hv

where dim g is the dimension of g as a C-vector space and h" is the dual Coxeter

number of g.
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Note 4. Refer to the introduction in [39] for a complete list of dual Coxeter

numbers.

3.2.1. Fusion Subcategories of C(sl3, k). All fusion subcategories of C(g, k)
were classified by Sawin in Theorem 1 of [38]. For each level k € Z, C(sls, k)

has four fusion subcategories:

the trivial fusion subcategory consisting of (0, 0);

the entire category C(sls, k);

the subcategory consisting of weights (mq, ms) € Ag also in the root lattice.

The collection of such weights will be denoted Rj;

the subcategory consisting of the weights (0,0), (k,0), and (0, k), hereby

called corner weights.

The proof of this classification relies on two facts that will be used in the sequel.
We provide proofs here based on the original arguments found in [38], specialized

to the case when g = sl; for clarity and instructive purposes.

Lemma 5 (Sawin). If a fusion subcategory D C C(sls, k) for k > 2 contains weight

A that is not a corner weight then A @ \* contains 0 as a direct summand.
Proof. Note that 6 is self-dual by Corollary 1, hence Nf’ w=DN /{‘79 and by Propo-

sition 3

Nyo= > (=) @my(r(3) = ). (6)

€Wy
If 7 = id then the corresponding summand in (6) is my(0) = 2, the rank of sls.
Now if the simple reflections 7y, 75,73 are the generators of 2, the reasoning

leading to inequality (4) in the proof of Lemma 2 implies if i # j
[(7im5) (A) = All > [|75(A) = All > 0 (7)

for 7,57 = 1,2,3. If 7;(A) — X contributes to the sum in (6), then 7;(A) — X\ must

be a nonzero root. But inequality (7) implies that any 7 € 20, whose reduced
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expression in terms of simple reflections has length greater than 1 causes 7(A) — A
to be longer than any root, and hence does not contribute to the sum in (6).
Moreover, the only negative contributions to (6) come from simple reflections.

If a weight © € Ag is adjacent to any generating hyperplane T; for some i =
1,2,3 (see Figure 8.), then ||7;(u) — u|* < 2 otherwise ||7;(u) — p)|> > 2. Thus
7;(1) — p can contribute —1 to the sum in (6) if and only if p is adjacent to
the hyperplane T;. For pu € Ay which are not corners, the number of adjacent

generating hyperplanes adjacent to p is at most 1, proving N ,%,9 > 0. O

%)

T . |72 (p) — p|* > 2

Figure 8.: Adjacent vs. nonadjacent to T; (level k = 5)

Lemma 6 (Sawin). If a fusion subcategory D C C(sls, k) contains weight 0 then

D contains the entire root lattice in the Weyl alcove, Ry.

Proof. If A € Ry then there exists a path of length n € Z>q of weights 0 =
Aoy A1, A2y ... A, = Ain Ag such that A\;;; — \; is aroot for 0 < i <n—1. We
now proceed inductively on ¢ to show each A; is in D. Assume J; is in D for some
0 <1< n—1. The Weyl group 2J acts transitively on the roots, so there exists
o; € 2 such that o;(A\g) = \ix1 — A;. In other words \; + 0;(A\g) = \is1 € A and

Ao ® A; contains \;;1 as a direct summand with multiplicity 1 by Lemma 2. [
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3.2.2. Prime Decomposition when 3 { k. In light of Proposition 1 the cate-
gories C(sl3, k) can be decomposed into a product of prime factors which we will

use in the sequel when 31 k.

Proposition 4. The following are decompositions of C(sl3, k) into prime factors

when 31 k:

(a) Clsls, 1) ~ C(Z/3Z, q.),

(b) C(sl3,2) = C(sl3,2),, X C(sl3,2) s = (C(sly, 3),,)" " K C(Z/3Z, q.2),
and for all m € Z~

(c) C(sl3,3m + 1) ~C(sl3, 3m + 1), , K C(sl3, 1), and

(d) C(sl3, 3m +2) =~ C(sl3, 3m + 2)7, K C(sl3, 2) s
Note 5. Refer to Example 2 for the definitions of ¢, and q,:.

Proof. We begin by computing the twists (Section 3.1.) of the corner weights:

02+ 3(0) + (0)(k) + 3k + k?
3(k + 3) '

0(0,k) = 0(k,0) = exp ( 27m'> = exp (2kmi/3) .

Thus if k=1 (mod 3) 6(0,k) = 60(k,0) = w and if £k =2 (mod 3) then 6(0,k) =
0(k,0) = w?

The category C(sl3, 1) is pointed with three simple objects, and so it is deter-
mined by its twists found above. This identifies C(sl3,1) ~ C(Z/37Z, q,,) which is
simple, proving (a).

For level k = 2 we first apply Miiger’s decomposition (Section 2.1.) and no-
tice that C(sls,2), ~ C(Z/3Z,q,2) based on the twist computations above. Its
centralizer has two simple objects and is not pointed. Thus C(sl3,2);; is either

equivalent to C(sly, 3),; or (C(sly,3);,)™" [10, Section 6.4[33]. Using the formula

p

found in Section 6.4 (2) of [10] we see

2m'<3-3

£ (C(sl, 3)p,) = exp (? a5t (—1)(3“)/2)) = exp(7mi/10),
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and thus by Lemma 1 (c),

€ ((Clsly, 3)1,)™") = exp(13mi/10).

Using Lemma 1 (b) we have

€ (C(sl3,2)) _ exp(4mi/b)
§(C(sl3,2)pt)  exp(3mi/2)

¢ (Clsls, 2)1,) = = exp(137i/10),

proving (b) since both of these categories are known to be simple.

The decompositions in parts (c¢) and (d) follow directly from Miiger’s decom-
position along with parts (a) and (b), and we are left with proving simplicity of the
centralizers of the pointed subcategories. For any k € Z- the fusion subcategory

of corner weights ((0,0), (k,0), and (0, k)) is pointed. Proposition 3 gives

(0, k) ® (my,ma) = (ma, k —my —mg) and

(/{:,O)@(ml,mg) == (k—ml —mg,ml). (8)
Thus using the balancing equation [17, Proposition 8.13.8] we have

1
5(0,k),(m1,ma) = €XP <§(k’ —2my —mg) - 27rz') dim(my, msy), and

1 . .
5(k,0),(m1,ma) = €XD (g(k —my — 2my) - 27m) dim(my, ms).

This implies s(ok),(my,me) = S(k0),(m1,me) = dim(my, ms) if and only if m; = my
(mod 3), that is to say (mi,ms) € Ry. And from [32, Proposition 2.5] sxy =
dim(X)dim(Y) if and only if X and Y centralize one another . Moreover if
3 1 k then the corners (0, k) and (k,0) are not in the root lattice so by Sawin’s
classification of fusion subcategories (Section 3.2.1.), the centralizers of the pointed
subcategories are simple and thus prime.

]

We now take a moment to compute the central charge of C(sl3, k), for future
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use when k = 3m-+1 or k = 3m+2 with m € Z>( based on (c), (d) of Proposition

4 and the multiplicativity of &.
Corollary 2. For m € Z>

(a) when k=3m+1 (m#0)

, 9m |
g (C(5[37 k)pt) = exXp < 7”) )
(b) and when k = 3m + 2

Py Im—T7 .
¢ (C(sls, k)1,) = exp (—6m m 107”) .

3.2.3. Simplicity of C(sl3, %)% when 3 | k. When k = 3m for some m € Z,
the object A = (0,0) & (3m,0) & (0,3m) has the structure of a connected étale
algebra and we can consider the nondegenerate braided fusion category consisting
of dyslectic A-modules CY := C(sl3,3m)% (Section 2.3.). The act of tensoring
with (3m,0) or (0,3m) geometrically results in a rotation of Ay by 120 degrees

counter-clockwise or clockwise, respectively, as illustrated in Figure 9..

o Free Objects
R ®(6,0) > Stationary Objects

= 86,0

Figure 9.: CY at level £ = 6 and the action of a corner weight

There are two types of simple objects in C:
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- Free objects (Section 2.3.) are of the form F(A\) = A® A for A € Ry not
equal to (m,m). These objects are the sum of the objects in orbits of size

three under the 120 degree rotations described above.

- Three stationary objects are isomorphic to (m,m) as objects of C(sls, 3m),
but non-isomorphic as A-modules. If p; : (m,m) ® A — (m,m) is the
action on one of these A-modules then the others have actions given by

po = wpy and p,2 = w?p; where w = exp(2mi/3).

Denote any of these three stationary objects as X € C% or collectively as
X1, X5, X3 € C%. At no point in what follows will it become important to dis-
tinguish their A-module structures and in fact doing so can lead to ambiguity in

computations as illustrated in the sly case described in Section 7 of [27].

Example 4. When k& = 3 the only free object is the identity F'(0,0) and there
are three stationary objects X7, X5, X3 corresponding to the central weight (1,1).
This category is pointed by Theorem 1.18 of [27] which states that for i = 1,2, 3

) s (5)sin (%T) .

dim(1
dim(

)

1 = =
) 3sin (§> sin? (E)

The simple objects of CY form an abelian group of order four, which is either cyclic

dim(X;) =

(9)

or the Klein-4 group. But the automorphism of this group given by tensoring
with (0,3) or (3,0) has order three so we must have C% ~ C(Z/2 & Z/27Z,q) with
quadratic form ¢ : Z/27 @ 7./27 — C* which is 1 on the unit object and —1 on
the stationary objects. This category is evidently not simple as Z/27Z & Z /27 has

many subgroups.

Example 5. We will also examine the case k = 6 as it is of great interest. There
are three stationary objects X7, X, and X3, and three free objects Y; = F(0,0),

Yo = F(1,1), and Y5 = F(3,3). The tensor structure of the free module functor
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gives the fusion rules between the free objects:

YoR4Yo =Y ®2Y, ®2Y3 D X; © Xy ® X3,
YoR4Y3 =250 Y3D X, & Xy, ® X3, and

For instance

Yo ®4Ye =F(L,1) @4 F(1,1)
=F((1,1)®(1,1))
= F((0,0)® (0,3) ® (3,0) ® (1,1) @ (1,1) @ (2,2))
=ViaV:aY:aeY,aY,d F(2,2)

=Y 02,023 ® X, © Xo ® X;.

Now to compute the remaining fusion rules note that at least one Xj is self dual,
hence all objects in the orbit of this X; (under tensoring with a corner object)
must be self dual as well; i.e. all stationary objects X; are self dual.

By comparing dimensions we must have that

Yo0u4X, =Yo0Ys X, ® X, (10)
V304X, =Y Y;® Xy, (11)
and
VieYseX, if r=s
X, @4 X, = (12)
Y, ® X, if r#s

for some 7, k, ¢, t,u = 1,2,3. We will now determine the unknown summands in

(10), (11), and (12). For instance the self duality of all objects implies if i # j, by
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(12) we must have

1 = dim¢ Hom(Y5, X; ®4 X;) = dime Hom(X;, Yo ®4 X;).
Hence i, j, k are all distinct in (10). Similarly

0 = dim¢ Hom(Y3, X; ®4 X;) = dimc Hom(X;, Y3 ®4 Xj),

which implies i« = ¢ in (11) above. For any i,j = 1,2,3 denote the unknown
summand in X; ®4 X; by X; ;. We will show that if X; # X;; then the following

equality cannot hold:
3 = dimg Hom(X; ®4 X, X; ®4 X;) = dime Hom(Yy, X24%). (13)

To see the contradiction note that X§A3 =2Y, @ Ys @ 2X; ® X, ;; where X, ;; is
the unknown summand in the product X; ®4 X;;. Our initial assumption and
the self duality of X; guarantees X; # X}, and thus X; # X, ;. But this would
imply dim¢ Hom(X; ®4 X;, X; ®4 X;) = 2 by the above computation of X?A3,
contradicting (13).

Now to determine the remaining fusion rule in (12), computing Y; ® (X; ® X;)
and (Yo ® X;)® X; using (10), (11), and the first part of (12) shows that X;; = X,
X;; and Xj, are distinct. By symmetry of this computation X;;, X;; = X;, and
X, as well as X ;, Xj 5, and X, = X}, are distinct triples as well. This proves
that X;®X; = Yo® X}, where 4, j, k are distinct and the fusion rules are completely

determined.
Note 6. C(sl3,6)" is simple.

The S-matrix is now computed using the balancing equation [17, Proposition

8.13.8] which states that for all X, € O(C) in a pre-modular category C,

sxy = 0(X Z N%,6(Z)dim(Z).
ZeO(C
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The ribbon structure of C(sl3,6)% is identical to that of C(sl3, 6) by Theorem 1.17

of [27] and the dimensions are computed using Theorem 1.18 of [27] as in Example

4 to yield
1 (+1 ¢ € € €
(+1 ¢ —1 —€ —€ —€
¢ —1 —(C+1 € € €
o (C+1) |
€ —€ € 2¢ —€ —€
€ —¢ € —€ 2¢ —€
€ —€ € —€ —€ 2€

where ( is the positive root of 23 — 322 —6x — 1 and e is the greatest positive root of
x3 — 32? + 1. The T-matrix for C% contains the same twists as the corresponding
objects in C(sl3,6): T = diag(1l,w,w? n,n,n) where w = exp(2mi/3) and n =

exp (27i/9).

Note 7. This S-matrix was computed independently for the author by Daniel
Creamer applying algebro-geometric methods to the admissability criterion found

for example in [6] under the assumption that this category was self dual.
Theorem 1. The categories CY := C(slz,3m)% are simple for m > 2.

Proof. Assume that D C CY is a fusion subcategory containing a non-trivial simple
free object F'(A) for some A € Ry. As noted in Section 2.1. the fusion subcategory

*

D must also contain F'(A\)*. Lemma 5 implies A ® A* contains 6 as a summand.

So by the tensor structure of F' (Section 2.3.),

F(A) @4 F(A)* = F(A) @4 F(X) = F(A® \Y)

which implies F(A\) ®4 F(A)* contains F'(f) as a summand. Finally Lemma 6
implies that there exists an n € Z-q such that 6™ contains u as a direct summand

for any p € Ry. Hence by the above argument using the tensor structure of F',
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F(0)™ will contain F'(u) as a direct summand. In this case we have proven D = CY
since all simple objects are direct summands of free objects (Section 2.3.).

The only case that remains is if the fusion subcategory D only contains sta-
tionary object(s) X € CY corresponding to the central weight (m,m) which we

will denote as v for brevity.

Lemma 7. In C(sl3, 3m) with m € Zso, we have N}, = m + 1.

Proof. Proposition 3 gives

Ny, =Y (=1)my(r(v) —v). (14)

T7€W(

For the simple reflections 71, 75, 73 € W, ||7:(v) — v|| > ||v|| and by the reasoning
leading to inequality (4) in the proof of Lemma 2 the only nonzero term in (14)
comes from the identity in W, i.e. N, = m,(0). If p(u) is the number of ways
of writing a weight u as a sum of positive roots, by Kostant’s multiplicity formula

(25, Chapter 24.2]

m,(0) =Y (=1 p(a((m+ Das + (m + 1)az) — a1 — o)

= p(may + may)

because the argument of p is not dominant for any nontrivial elements of the
Weyl group. Now it suffices to note that because there are three positive roots,
aq, (g, a1 + g, then p(mayg +masy) = m+ 1 because to count the number of ways
to write may; + mas as a sum of positive roots is the same as choosing how many

copies of ay + ay to use (the number of ay’s and ay’s are then determined). [

To finish the proof of Theorem 1, we wish to show that some nontrivial simple
free object appears as a summand of X ®4 X (1 is a summand of X ®4 X* as
dimc Hom(1, X ®4 X*) = dimc Hom(X, X)) = 1). We have already shown above

that this would imply the nontrivial simple free summand generates the entire
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category CY.
If X ®4 X* does not contain a simple non-trivial summand different from X
then we must have

X4 X" =1dnX

where n € Z>p and n < m + 1 by Lemma 7. Using the additivity and multiplica-

tivity of dimension the above implies
dim(X)? — ndim(X) — 1 =0,

hence

714
dim(X) = % <m+3. (15)

By Proposition 2 and Theorem 1.18 of [27],

o0 (g ) (s )

0 (g 70) 7 (379

But for m > 2 the arguments of the above sines are are positive hence sin(z) < x

dim(X) =

and we have
27V/3(m +1)°
1673

dim(X) >

which is strictly greater than m + 3 for m > 3, contradicting the inequality in

(15). The case when m = 2 was described explicitly in Example 5. ]
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CHAPTER IV

WITT GROUP RELATIONS

Chapter IV appeared in [41] (the final publication is available at Springer via

http://dz.dot.orq9/10.1007/s00220-017-2831 —z).
4.1. Modular Invariants and Conformal Embeddings

Given a connected étale algebra A in a modular tensor category C one can
construct Z4 € Mat,(Z>) where n = |O(C)|. The matrix Z, commutes with
the modular group action associated with the modular tensor category C, i.e. Z4
commutes with the S-matrix and T-matrix of C [27, Theorem 4.1]. Such matrices
have been referred to as (symmetric) modular invariants in the mathematical

physics literature [22, Definition 1].

Note 8. There is a slight discrepancy in vocabulary needed to use [27, Theorem
4.1] in the case of connected étale algebras in C(g, k). In particular this theorem
was proven assuming A is a “rigid C-algebra with (A) = id4”. The term C-
algebra in [27, Definition 1.1] corresponds to an associative, unital, commutative,
connected algebra in C. Thus connected étale algebras in C are also C-algebras.
The term rigid [27, Definition 1.11] requires a certain nondegenerate pairing A ®
A — 1 which is guaranteed for connected étale algebras as noted in [10, Remark
3.4]. A proof of the fact that §(A) = id4 when A is a connected étale algebra in a
pseudo-unitary modular tensor category can be derived from paragraph 3 of [36,

Remark 2.19], or in Lemma 8.

To explicitly compute Z, from a connected étale algebra A € C one should
decompose all dyslectic modules M € CY as objects of C: M = Dxcor) Ny X,

with N3 € Zso and treating X as a formal symbol representing an object
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X € O(C), compute

S OINRXP = > ZxyXY,
Meo(cY) X,YeO(C)
for some Zxy € Z>o. The coefficient matrix Z4 := Zx y is the modular invariant

associated to A.

Example 6. For a low-rank example consider C := C(sly,4) with five simple
objects: (0),(1),(2),(3),(4). The object A := (0) ® (4) has the structure of a
connected étale algebra and C9 has three simple objects: (0) @ (4) and two objects

isomorphic to (2) with different A-module structures. We compute

> INGXP =10)+ @)P +2/(2)
Meo(CY)

= (0)(0) + (0)(4) + (4)(0) + (4)(4) + 2(2)(2),

which yields the following modular invariant. The reader may verify that Z4

commutes with the given S-matrix for C(sly,4).

,_.
o o
o o
o o
— O

n
I
Hélwél.—
[a)
|
[N}

As the rank of g and the level k increase without bound across all C(g, k),
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computing and classifying these modular invariants from a numerical standpoint
becomes an arduous task. A complete and rigorous classification only exists for
all levels k in the g = sly [7] and g = sl3 [22] cases, the latter being of particular
interest to our second main result. In particular there is an infinite family of such
modular invariants for sl3 occuring at levels k = 3m for some m € Z>,, arising
from the connected étale algebras described in Section 3.2.3. (there is also a trivial
modular invariant corresponding to the unit object considered as a connected étale
algebra). All other symmetric modular invariants will be labelled exceptional. The
following is a consequence of the classification of sl modular invariants due to

Gannon [22, Theorem 1].

Theorem 2 (Gannon). The only exceptional symmetric modular invariants for

sl occur at levels k =5, 9, and 21.

Translating this into our discussion of Witt class representatives and the de-
compositions/reductions found in Sections 3.2.2. and 3.2.3., we have the following

corollary.

Corollary 3. The categories C(sls,3m + 1), and C(sl3, 3m + 2);, are completely
anisotropic for m € Zwo and 3m + 2 # 5, while C(slz,3m)Y is completely

anisotropic for m € Zso and 3m # 9,21.

Proof. We begin by noting that A € C(sl3, 3m) as described in Section 3.2.3. must
be a maximal connected étale algebra when £ # 9,21. If not, by the method de-
scribed in the introduction to this section, one could create an exceptional modular
invariant at this level contradicting Theorem 2. Hence C(sl3,3m)Y is completely
anisotropic when k # 9, 21.

By this exact argument, no nontrivial connected étale algebra exists in
C(sl3,3m+1) or C(sl3, 3m+2) when 3m +2 # 5. Finally if A is a connected étale
algebra in a braided fusion category C, and D is any other braided fusion category,
then AX 1 is a connected étale algebra in C X D [11, Section 3.2]. Moreover the

lack of connected étale algebras in C(sl3, 3m+1) or C(sl3, 3m+2) when 3m—+2 # 5
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implies that the simple factors of these categories are completely anisotropic as

well. =

In the cases kK = 5,9, 21 we will use alternative methods to identify completely
anisotropic representatives of the Witt classes of C(sls, k). In particular the the-
ory of conformal embeddings can be used to construct relations among the classes
[C(g, k)] for any finite dimensional simple Lie algebra g [10, Section 6.2]. A com-
plete classification of such conformal embeddings is given in [2] and [40].

Each conformal embedding g C g’ gives rise to equivalences of the form
[C(g,k)] = [C(d', k)] for some levels k, k" € Z-y. Three conformal embeddings
are of interest for the classification of sl3 relations: Asg C Eg1, A2901 € E75, and
Ay s C As ;. These embeddings will be used implicitly in the proof of the following

proposition.

Proposition 5. The following relations hold in the Witt group WW:

(a)  [C(sls, 9)] = [C(sls, 2)p]
(b) [C(sls, 21)] = [(C(sl2, 1)™], and

(c) [C(sls, )] = [C(sls, 1)] = [C(Z/5Z, q)].

Proof. The category C(FEs, 1) is pointed with three simple objects. Using Propo-
sition 4 we compute (C(Eg, 1)) = exp((2mi)/8(1 - 78)/(1 + 12)) = —i. Pointed
categories C(Z/3Z, q) are determined by their central charge and thus C(Fg, 1) ~
C(Z/3Z,q.2) ~ C(sl3,2)p, which is simple and completely anisotropic implying re-
lation (a). Similarly the category C(E;, 1) is pointed with two simple objects. Us-
ing Proposition 4 we find £(C(FE7, 1)) = exp((2mi/8)(1-133) /(1+18)) = (1—i)/V/2.
Pointed categories C(Z/27Z,q) are also determined by their central charge and
thus C(F7,1) ~ C(Z/2Z,q-), where q_(1) = —i, which is simple and completely
anisotropic. This is a familiar category coming from sl,. Proposition 4 implies
£(C(sly,1)) = exp((27i/8)(1-3)/(1+2)) = (1 +i)/+/2. Lemma 1 (c) then implies
£(C(sly,1)) = (1 — i)/+/2 which gives relation (b). Lastly C(sls,1) is pointed
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with five simple objects. As noted in Example 6.2 of [10], C(sl,,, 1) ~ C(Z/nZ, q)

where ¢(¢) = exp (7if*(n — 1)/n)) and hence relation (c) follows. O

4.2. A Classification of sl; Relations

Theorem 3. The only relations in the Witt group of nondegenerate braided fusion

categories YW coming from the subgroup generated by [C(sls, k)| are the following:

(3.a) [C(sls, 1)]* = [Vec],
(3.b) [C(sl3,3)]* = [Vec],
(3.c) [C(sl3,5)]* = [Vec],
(3.d) [C(sls, 1))® = [C(sl5,9)], and

(3.0)  [Clsls, 21)]° = [Ved].

Proof. Our approach to this proof will be to show that the above relations hold,
and then prove that these are the only relations which can exist by identifying the
unique representatives of each class [C(sl3, k)] as described in Section 2.4..

Since C(sls, k) in equations (3.a)—(3.e) above are all Witt equivalent to a
pointed modular tensor category by the computations in Proposition 4 (a), Exam-
ple 4, and Proposition 5, the relations follow from the exposition in Appendix A.7
of [14] which explicitly describes the pointed subgroup Wy, C W. The remaining
question is whether these relations are exhaustive.

By Proposition 4, Theorem 1, and Corollary 3 for m € Z>, we have collected

simple, completely anisotropic, nondegenerate braided fusion categories

C(sls, 3m + 1), for m # 0 (16)
C(sl3, 3m +2), for m # 1 (17)
C(sls,3m)Y, for m #0,1,3,7 (18)

We claim the categories in the above families are not equivalent and will prove
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this by noting their central charges are distinct using Lemma 4 and Lemma 2. For
m = 0, 1,2 one can manually verify the proposed central charges are distinct. If

arg(z) is the complex argument of z € C, for m € Z~3 we have

0 <arg&(C(sls, 3m +2),) < m/2 (19)
7 <arg&(C(sls,3m + 1)) < 37/2, and (20)
3m/2 <arg&(C(sls, 3m)Y) < 27. (21)

Recall the Witt group of slightly degenerate braided fusion categories, sVV, in-
troduced in [11]. Studying this alternate Witt group is advantageous because
slightly degenerate braided fusion categories admit a unique decomposition into
s-simple components [11, Definition 4.9, Theorem 4.13], and consequentially there
are no nontrivial relations in s other than relations of the form [C] = [C]™!
[11, Remark 5.11]. The categories in (16)—(18) are simple and unpointed, hence
their image under the group homomorphism S : W — sW [11, Section 5.3] is s-
simple. Their image is also completely anisotropic and slightly degenerate. Hence
any nontrivial relation in WV between these categories would pass to a relation in
sWW under the map S and this relation is nontrivial provided they are not in the
kernel of S, which is Wiging consisting of the Witt equivalence classes of the Ising
braided categories.

When [C] = [C]7! in sW, C ~ C™ which implies {(C) = +1. This cannot be
true of the categories in (16)—(18) by the inequalities in (19)—(21) and a manual

check in the case m = 0, 1,2. Thus the relations (3.a)—(3.e) are exhaustive. O

Once relations in the subgroups individually generated by [C(sls, k)] and
[C(sl3, k)] are classified one should then classify all relations between the two fam-

ilies.
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Theorem 4. All nontrivial relations between the equivalency classes [C(sl, k)]

and [C(sl3, k)] are generated by

(4.2) [C(sls,3)] = [C(sly, 2)]%,

(4.b)  [C(sl3,3)][C(sly, 2)]" = [C(sls,6)]?,
(4.c) [C(sl3,3)][C(sly,2)]" = [C(sly, 10)],
(4.d)  [C(sls,21)][C(sly, 1)] = [Vec],

(4.€) [C(sls,2)][C(sly, 28)] = [C(sls,9)],
(4.£) [C(sly, 4)] = [C(sls, 1)],

(4g) [Csly,4))° = [C(s15,9)],

(4.h)  [C(sls, 6)][C(s)y, 16)] = [Vec], and

(4.1) [C(sl3,4)][C(sl3,1)] = [C(slz, 12)].

To organize the search for these relations we will proceed in two stages: first
we consider coincidences between the sl3 relations from Theorem 3 and those sly

relations found in [11, Section 5.5]:

[C(s1y,1)]® = [Vec], (22)

[C(sls, 8)] = [C(sl2, 3)] *[C(sls, 1)]?, (23)
[C(sly,28)] = [C(sls, 3)][C(sly, 1)] 7, (24)
[C(sly, 4)]* = [Ved], (25)
[C(sly,2)]"® = [Vec], (26)
[C(sly,10)] = [C(sly,7)]", and (27)
[C(sly,6)]* = [C(sly, 2)]°. (28)

Secondly we compare the lists of simple completely anisotropic Witt class
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representatives for sl3 found in (16)—(18) and those for sly found in [11, Section

5.5]:
Csly, 20+ 1)1, 0> 1, (29)
C(sly,40)%, 0> 3,0 # 7, and (30)
C(sly, 40 +2)) £ > 3. (31)

For the first stage we have [C(sl3,3)] = [C(sl3,3)%] is in Wiging. By (26) this is
a cyclic group of order 16 which is generated by [C(sly, 2)], giving relation (4.a).
Multiplying relation (4.a) by [C(sls,2)]'" gives relation (4.b) using (28) and mul-
tiplying relation (4.a) by [C(sly, 2)]' gives relation (4.c) using (27).

Proposition 5 (b) implies relation (4.d). The relation implied by Proposition 4
(b) is [C(sl3, 2)][C(slz, 3):] = [C(sl3,2)pe]. But together with (24) and Proposition
5 (a) we have relation (4.e).

Relation (25) is very similar to relations (3.a) and (3.c), and this is no coinci-
dence since there exists a conformal embedding A; 4 C As 1, yielding relation (4.f).
Lastly cubing relation (4.f) and applying relation (3.d) implies relation (4.g).

For stage 2 of our proof, a first deduction can be made by noting that the cate-
gories (29) and (31) are self dual. There are only three self dual categories in (16)—

(18): C(sls, 2)1, C(sls, 3)%, and C(sls, 6)%. The first is equivalent to (C(sly, 3)},)""

bt
as noted in Proposition 3.2.2. (b) and the implied relations were discussed above,
while the Witt equivalence class of the second was previously treated as an ele-
ment of Wigng. It remains to show that C(sls, 6)% is not equivalent to C(sly, 11);,
since these categories have the same number of simple objects. To this end the
formula in [10, Section 6.4 (1)] and Lemma 4 imply their central charges are not
equal.

The last step of stage 2 is to check that none of the categories C(sly, 4¢)% are

equivalent to the categories in (16)—(18) (or their reverse categories). We will do
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so by comparing central charges. Lemma 4 states for ¢ € Z>,

30T
40 + 2

arg £ (C(sly, 40))) =

and thus 7/2 < arg¢ (C(sly,4¢)%) < m. There are possible exceptional equiv-
alences of the form C ~ D™ since arg¢ (C(sly,4)%) + argé (C(sl3,9)%) = 2m,
arg € (C(sl, 16)0,) +arg € (C(sly, 6)3) = 2m, arg € (C(shy, 28)%) +arg (Csls, 2),,) =
0, and arg§ (C(sly, 12)%) = arg&(C(sls, 4),;). The first case was considered in
relation (4.g). In the second case not much work is needed since there is a con-
formal embedding Ay x Aj 16 C Egy which gives relation (4.h). The third case
was considered in relation (4.e). The last case is caused from the equivalence
C(sls, 4), ~ C(sly,12)% by the classification of rank 5 modular tensor categories

6], giving relation (4.i).
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CHAPTER V

CONNECTED ETALE ALGEBRAS IN C(g, k)

Chapter V has previously appeared in [42].

The results of Chapter IV relied heavily on Theorem 2. There is no known proof
of an analgous statement for Lie algebras other than sly and sl3. In Theorem 5 we
provide a bound on levels k for which exceptional symmetric modular invariants
can exist in C(so5, k) and C(gs, k), reproving this known result for C(sly, k) and

C(sl3, k) to demonstrate the generality of the argument.

5.1. Technical Machinery

The numerical conditions for an algebra in a pseudo-unitary pre-modular cat-
egory to be connected étale are quite restrictive. In particular the full twist on
such an algebra is trivial as we will prove below. This result is due to Victor
Ostrik, although a proof does not appear in the literature to our knowledge. The
full twist need not be trivial if the assumption of pseudo-unitary is removed as the

following example illustrates.

Example 7. The fusion category of complex Z/2Z-graded vector spaces has two
possible (symmetric) pre-modular structures, distinguished by the full twist on
the non-trivial simple object #(X) = 41. The trivial twist corresponds to the
pseudo-unitary category Rep(Z/2Z), while the nontrivial twist corresponds to
sVec, the category of complex super vector spaces [17, Example 8.2.2]. The object
A := 1 X has a unique structure of a connected étale algebra in both cases, but

0(A) #idy4 in sVec, which is not pseudo-unitary (i.e. dim(X) = —1).

Lemma 8. If C is a pseudo-unitary premodular category and A is a connected

étale algebra in C, then 6(A) = idy.
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Proof. The composition ¢ : A® A 5 A 24 1 is non-degenerate [10, Remark
3.4], where £, arises from A being connected (and is unique up to scalar mul-
tiple). Note that the commutativity of A implies psy- xSx x = ¢. We can
then rewrite sx« xsx x- using the balancing axiom [3, Equation 2.2.8] to yield
O(X)0(X*)0(1)~! = 1 because ¢ is nondegenerate. Moreover §(X) = +1. So we
may now decompose A = AT @ A~ where AT is the sum of simple summands of
A with twist 1, respectively. We will deduce that A~ is empty in the remainder
of the proof.

The commutativity of A = AT @& A~ implies this decomposition is a Z/27Z-
grading again by the balancing axiom, i.e. (X ® Y) = 0(X)0(Y) for all simple
X,Y C A. Thus m restricts to a multiplication morphism A* @ AT — AT. We
now aim to prove that A™ is a connected étale algebra. The commutativity of
AT is clear from the commutativity of A and (1) = 1 by the balancing axiom
[3, Equation 2.2.9] so A% is connected. It remains to show that A™ is separable,
i.e. Cy+ is semisimple. This follows from [27, Theorem 3.3] by recalling that A"
is rigid (in the sense of Kirillov and Ostrik) because A* @ A* & A+ 24 1 is
non-degenerate, and dim(A) # 0 since C is pseudo-unitary.

In the language of [10, Section 3.6], A with the inclusion AT — A is known as
a commutative algebra over AT and thus A can be considered as a commutative
algebra in D := CY,. Proposition 3.16 of [10] then implies A (as an algebra in D)
is connected étale as well. We also note that §(A™) = id4+ along with Theorem

1.18 of [27], implies dim(D) = 3_ xcoip dimp(X)? is equal to

OOV e
Z (@) = FPdimc(A) Z FPdim¢(X) (32)

XeO(D) XeO(D)
= FPdim¢(A) 2FPdim(C)

= FPdim(D). (33)

where (32) follows from C being pseudo-unitary and [10, Corollary 3.32] implies

(33). Moreover we have shown D is pseudo-unitary by Proposition 8.23 of [16].
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Now assume X C A is a simple summand of A (as an object of D) which is
distinct from AT = 1p. An immediate consequence is that X C A~, should such
an object exist. But X ®p X is a quotient of X ® X [27, Theorem 1.5] which, by
the Z/2Z-grading of A, implies X ®p X C AT = 1p. The simplicity of the unit
object 1p = AT then implies X @p X = 1p.

Lastly we consider the fusion subcategory £ C D generated by X, which by
the above reasoning is equivalent to the category of Z/27Z-graded vector spaces
(as a fusion category). The spherical structure of £ which is inherited from D,
must be the nontrivial one since (X ) = —1 (see Example 7) and thus & = s Vec,

a contradiction to D being pseudo-unitary. Moreover no such X can exist and

A=A" O

Now let A be a connected étale algebra in C := C(g, k) where g is sl3, 505, or go
and (¢, m) C A be a nontrivial summand of A which is minimal in the sense that
¢ +m is minimal in the case of sl3 and so5, and £+ (3/2)m is minimal in the case

of go. The reasons for this distinction will be explained in the proof of Lemma 9.

Note 9. Our goal is not to reprove Theorem 5 in the rank 1 case so it will be
satisfactory to point out the following lemmas can be restated for C(sly, k) where

(¢) is the analogous minimal nontrivial summand of A € C(sly, k).

Lemma 9. If (s,t) € Ay and 2(s +t) < £+ m in the case g = sl3,505, or
2(s 4 (3/2)t) < €+ (3/2)m in the case g = ga, then (s,t) @ A is a simple right
A-module.

Proof. Label X := (s,t). Then we have by [35, Lemma 2, Lemma 4]

HOHlCA()\ (24 A, A X A) = Homc(/\, A & A) = HOIHc(/\ ® /\*7 A) (34)

The highest weight in TI(A : A*) is v := (s +t,s + ¢) when g = sl3 and v :=
(2s,2t) when g = s05,go. The respective assumptions on (s,t) relative to (¢, m)

in our hypotheses imply v # (¢,m) and it remains to check no other weights
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(s',t") € II(A : \*) are equal to (¢,m) either. To this end it will suffice to check
v —a # (¢,m) for each simple root « since our claim follows inductively on
dominance ordering. If g = sl3, v — a3 = (s +t — 2,5+t + 1) which is not equal
to ((,m) since s+t —2+s+t+1=2(s+t)—1 < ¢+ m and symmetrically
for ap. If g = s05, v — a1 = (2s — 2,2t + 2) which is not equal to (¢,m) since
2s =2 +2t+2=2(s+t) <l{+mand v — ay = (25 + 1,2t — 2) which is not
equal to (¢,m) since 2s + 142t —2 = 2(s+2) — 1 < {4+ m. Lastly if g = go,
v—aq = (25 — 2,2t + 1) which is not equal to (¢,m) since 2s —2+ (3/2)(2t+1) =
2(s+(3/2)t) —1/2 < £+ (3/2)m, and v — as = (25 + 3,2t — 2) which is not equal
to (£,m) since 2s + 3+ (3/2)(2t — 2) = 2(s+ (3/2)t) < £+ (3/2)m. Moreover the

right-hand side of (34) is one-dimensional and A ® A is a simple object in C4. [J

Lemma 10. If M € Cy4, and (s,t) C M satisfies the hypotheses of Lemma 9, then
(s,t) ® A is a right A-submodule of M.

Proof. As in the proof of Lemma 9 with A := (s, ), compute Home, (A® A, M) =
Home (A, M). By assumption and Lemma 9, A ® A is simple, hence the result is

proven since the right-hand side is nontrivial. 0

Corollary 4. For all (s,t) € Ay and {(s;,t;) }ier, collections of simple summands

of M = (s,t) ® A satisying the assumptions of Lemma 9,

Z dim’(s;, t;) < dim’(s, ).

i€l
Proof. Apply Lemma 10 to each element of {(s;, ;) }ics. For each (s;,t;) we then
have (s;,t;) ® A C (s,t) ® A. Taking dimensions of the containment provides the

inequality, then dim(A) can be divided out and denominators cleared. O

Exact computations are often intractable with quantum analogs so we now
collect a set of results that will be used frequently in the sequel to verify when
inequalities of the type in Corollary 4 are true or false. An illustration of the

trigonometric formulas for ¢" + ¢~ in terms of sine or cosine when ¢ is a root of
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unity can be found in [41, Figure 3]. Set (g, k) to be the denominator of In g (see

Figure 1.).
Lemma 11. If n,m € Z>1, then [n+ m] < [n] + m.

Proof. We will present a proof in the case m is even, leaving the near-identical

case of odd m to the reader. Carrying out the long division and simplifying yields

n+m __ —(n+m) n__ .—n
q q q q
e ) = (T2 - (D20
qg—4q qa—4q

:(anrmfl + qn+m73 4o+ qf(nerfS) + qf(n+mfl))

m/2

:Z(qn—1+2i i q—(n—1+2i))
i=1

by the triangle inequality. O]
Corollary 5. If n € Z>q, then [n] < n.

1 1
Lemma 12. Ifn € Z>, and n < ie(g,k), then [n] > Jn

= () (0 (em))

We have 0 < n < e(g, k) by assumption so we may use the inequalities

Proof. Note that

sin(x) > z(1 —z/7m) (for 0 <z <) and 1/sin(z) > 1/z (for = > 0) to yield

Vﬂ%(“i“)(d?%)(l‘aﬁﬁ)
:"(1_d;M>
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5.2. Exceptional Algebras

In [27], connected étale algebras in C(sly, k) are organized into an ADE clas-
sification scheme paralleling the classification of simply-laced Dynkin diagrams.
The connected étale algebra of type A is the trivial one given by the unit object
1 € C(sly, k). Those connected étale algebras of type D arise at even levels in
the following manner. The fusion subcategory C(sly, 2k),; C C(slz, 2k) generated
by invertible objects is equivalent to Rep(Z/27Z) and all connected étale algebras
in Rep(Z/2Z) are in one-to-one correspondence with subgroups of Z/27Z as the
additional cohomological data from [34, Theorem 3.1] is trivial for cyclic groups.
Type A algebras correspond to the trivial subgroup in the type D construction,
so we will refer to both types as standard in this exposition, and any algebra that

does not arise from this construction as exceptional.

Example 8. Extending the notation from Section 3.1., simple objects of C(sl,,, nk)
for k € Z>, are enumerated by positive integer (n—1)-tuples (s1, sg, ..., Sp—1) such
that s; + s34+ - -+ 5,1 < nk. The fusion subcategory C(sl,,, nk)y; >~ Rep(Z/nZ)
has simple objects (si, S2,...,8,—1) such that s; = nk and s; = 0 for all j # 1,
along with the trivial object. Standard connected étale algebras in C(sl,, nk)
are again in one-to-one correspondence with subgroups of Z/nZ. All exceptional
connected étale algebras in C(sly, k) are succinctly listed in [27, Table 1], while all
exceptional connected étale algebras in C(sl3, k) are listed using modular invariants
[22, Equations 2.7d,2.7¢,2.7g] at levels k = 5,9,21. The theory of conformal
embeddings provides examples of exceptional connected étale algebras in C(sly, k)

at levels k = 4, 6,8, which are described in detail in [9].

Example 9. There are no nontrivial standard connected étale algebras in C(gs, k)
since C(g2, k)pt >~ Vec, but there are two standard connected étale algebras in
C(s05,2k) since C(s05,2k),, =~ Rep(Z/2Z) corresponding to (0,0) and (0,0) &
(k,0). For odd levels k, 8(k,0) = —1 and so by Lemma 8, (0,0) & (k,0) does not

have the structure of a connected étale algebra. As in Example 8, the theory of
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conformal embeddings provides examples of exceptional connected étale algebras
in C(go, k) at levels k& = 3,4 and C(sos,k) at levels k = 2,3,7,12, which are

described in detail in [8].

Theorem 5. There exist finitely many levels k € Zsy such that C(so0s,k) or

C(ga, k) contains an exceptional connected étale algebra.

The proof of this result is contained in Section 5.3. but illustrated below in the

following example for sl and sl;.

Example 10 (C(sly, k)). If A is an exceptional connected étale algebra in C(sls, k)
with minimal nontrivial summand (¢), Lemma 8 applied to the full twist formula
in Section 3.1. implies (¢) is in the root lattice, i.e. ¢ is even, say ¢ = 2m for
some m € Zs; and 2m < k. Explicit fusion rules for C(sl, k) are well-known |10,
Section 2.8], and we see that (m + 3) ® (2m) contains summands (m — 1) and

(m — 3) provided 3 < m < k. Moreover Corollary 4 then implies

[m] + [m — 2] < [m + 4] (35)
< [m]+4 (36)
N %(m _9) <4 (37)

where (36) results from applying Corollary 5 to the right-hand side of (35) and
(37) results from applying Lemma 12 to the left-hand side of (36) which is justified
because 2m < k implies m — 2 < (1/2)(k + 2). The inequality in (37) is false for
m > 9. Moreover 6(¢) = 1 by Lemma 8 and so m(m + 1) — 2 > k which implies
k<88if m <0.

Note 10. It is possible to show from the definition of [n] that the inequality in
(35) is false in a more restricted setting: m > 5, which then implies & < 28. But
there exists an exceptional connected étale algebra in C(sly, 28) corresponding to
the object (0) @ (10) @ (18) @ (28) (type Fg in the ADE classification [27, Section

6]) and so this bound is tight. Even for Lie algebras of rank 2, computing precisely

49



when such an inequality is true becomes unrealistically complex. For the purposes

of Theorem 5 any bound will suffice.

Now let A be an exceptional connected étale algebra in C(sl3, k) with minimal
nontrivial summand (¢, m) (i.e. £4+m is minimal). Using duality ((¢, m)* = (m,{))
and rotation of Ay by 120 degrees (tensoring with (0,k)), every (¢,m) € Ag is
conjugate to one (¢, m’) such that m’ < ¢ < k/2. In what follows, the summands
of (¢,m)* ® (¢/,m) will be computed and these summands are invariant under
duality and rotation. We will show ¢ 4+ m’ is bounded for such a conjugate. To
do so we claim if m < ¢ < k/2, then

lz/2]
P i,i) € (m. &) & (¢,m). (38)

1=0

The set II(m, £ : £,m) illustrated in Figure 10. (refer to Section 3.1. for descriptions
of the notation and visualization used) is a hexagon (triangle in the degenerate
case m = 0) with vertex (0,0) and circumcenter (¢,m). In particular (i,7) €
II(m, ¢ : ¢,m) for 0 < i < |[z/2] (black nodes in Figure 10.). The angles formed
between II(m, ¢ : ¢, m) and T}, T, are 30 degrees when they exist. Therefore, when
folded over T}, T, the edges of II(m, ¢ : £,m) containing (0, 0) are parallel to the
line formed by the weights 0 <4 < |z/2], implying 7;(p) # (¢,4) for any ¢ > 0 and
j = 1,2. Furthermore m < ¢ < k/2 ensures there is no contribution from 7y to

N((:;fi,) (m) for any of the desired summands. Lemma 3 then implies containment

(38).
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(a) TI(3,4) (b) TI(3,4: 4,3)

Figure 10.: (3,4) ® (4,3) € C(sl3,12)

By Corollary 4, containment (38) implies

l=/2]
S i+ P20+ 1)) < [0+ 1 [m+ 1[0 +m + 2], (39)
=0
while applying Corollary 5 to the right-hand side of (39) and Lemma 12 to the left-
hand side of (39) (which is applicable since i < x/2 implies 2(i+1) < z+2 < k+3)

yields

2/2]
> G) (i+1)° (%) 20+ 1) < (L+1D)(m+1)(€+m+2). (40)

i=0
Furthermore we re-index the left-hand side of (40), and bound each of the factors
on the right-hand side of (40) in terms of = to produce

lz/2]+1
> i< (2 +2)(x+2)(22 +4). (41)

B |

Now to eliminate the sum we proceed by parity: if z is even |2/2| +1=2z/2+1
and if = is odd |x/2] + 1 = 2/2 4 1/2. Then using Faulhaber’s formula (refer to

the introduction of [28] for a brief history and statement of this formula) on the
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left-hand side of (41) implies the inequalities

(x even) %(z +2)% (2 +4)* < (20 + 2) (2 + 2)(2x + 4), and
(z odd) %(:ﬂ—i— Dz +3)* < (22 +2)(z + 2)(2z + 4).

The first inequality is true for even x such that x < 1017 while the second is true
for odd z such that x < 1021.

Lemma 8 implies 6(¢, m) = 1 for our original minimal nontrivial summand of A.
One consequence is that (¢, m) is contained in the root lattice inside Ay (i.e. £ =m
(mod 3)). Another consequence is that (¢, m’), the twist of its conjugate, is a
third root of unity. To see this note that 6(0, k) is a third root of unity depending
on the level £ modulo 3 and (¢, m) is in the centralizer of the pointed subcategory
generated by the simple object (0, k) (refer to the proof of [41, Proposition 3.4.1]).
Our claim then follows from the ribbon axioms 6((0, k) ® (¢,m)) = 0(¢,m)0(0, k),
and 6(¢,m) = 0(m, )~ [17, Definition 8.10.1].

Furthermore, 6(¢', m’) being a third root of unity forces (¢ + 3¢+ ¢'m’ +3m’ +
m')/(k+3) € Z and moreover (¢*+ 30 +'m’+3m’+m/*) —3 > k. The left-hand
side of this inequality is maximized (as a real symmetric function of ¢/, m’ > 0)
when ¢/ = m/, which by the above argument can be no larger than x < 1019.
Hence we have k£ < 3121194. In summary any exceptional connected étale algebra
in C(sl3, k) must have a minimal summand which is conjugate to (¢',m’) such that
¢+ m' < 2038 and must occur at a level & < 3121194, proving Theorem 5 for

C(ﬁ[g,k).

5.3. Proof of Theorem 5: C(so3, k)

Let A be a connected étale algebra in C(so0s5, k) with minimal nontrivial sum-
mand (¢, m) (i.e. £+ m is minimal) and let = := [(1/2)(¢ +m)] — 1, the greatest
integer strictly less than the average of ¢ and m. The quantity z is crucial in the

remainder of Section 5.3. as summands (s,t) such that s + ¢ < x are precisely
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those which will satisfy the hypotheses of Lemma 9. We aim to provide an ex-
plicit bound on z to subsequently produce a bound on the level k£ for which such
a connected étale algebra can exist.

Lemma 8 implies that (¢,m) lies in the root lattice (i.e. m is even). Our proof
will be split into four cases (three of the four cases have an argument based on
the parity of ¢), illustrated in Figure 11., based on the relative size of m versus x:
m=0and/<k—1,0<m—-2<z,0#/(<zx<m-—2,and { =0 with m < k.
The case (¢, m) = (k,0) corresponds to either the standard connected étale algebra
(0,0)® (k,0) (if & is even; see Example 9) or A has a nontrivial minimal summand
covered by another case. In the case (¢,m) = (k—1,0), 0(k—1,0) = 1 if and only
if (k+2)(k—1)/(2(k+3)) is an integer. It can be easily verified that for k € Z>,,
(k+2)(k—1)/(2(k+3)) is an integer if and only if £ = 1. Similarly (0, k) = 1 if
and only if k(k+4)/(k+ 3) is an integer which is likewise only the case when this
integer is zero. Moreover all possible (¢, m) will be discussed through these four

cases.

B T T T,
RS
N

\

Figure 11.: Possible (¢,m) when k =14 and z =5
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5.3.1. The Case m =0 and 0 < ¢ < k—1. Set A := ¢ — 2z + 2 so we have
A=x+4if £ is even and A = x + 3 if £ is odd. We claim that if 5 < ¢ < k — 1,
then

(= X018 (£ —\2)C (\0)& (4,0). (42)

The set II(A, 0) is a square with vertex (—\,0) and its three conjugates under the

Weyl group. In particular TI(X,0 : £,0) contains (¢ — A, 0) and (£ — A, 2) provided

¢ > 5. The reflection 71 cannot contribute to N((f,_og\:(Qe),o) or N ((f ;\”((20) as (A, 0) does

not lie on T, nor does 7y contribute by the assumption ¢ < k—1. There can be no

,0

contribution from 7, as II(\,0 : £,0) does not intersect T5. Lemma 3 then implies

containment, (42).

N e - -
S N

(a) TI(6,0) (b) TI(6,0 : 7,0)

Figure 12.: (6,0) ® (7,0) € C(s05,9)

If ¢ is even, Corollary 4 applied to (42) gives

dim’(z — 2,0) + dim’(z — 2,2) < [2x + 10][2z + 11][2z + 12] (43)

< (22 — 2] + 12)([2z — 1] + 12)([22] + 12)  (44)
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by applying Lemma 11 to the right-hand side of (43). Then expanding the product
on the right-hand side of (44) and subtracting the leading term (which is equal to

dim’(z — 2,0)) from both sides yields
[3][22 — 2][2x + 4][2x + 1] < 24(622 + 30z + 55) (45)

using Corollary 5 on the right-hand side to eliminate the quantum analogs. More-
over, applying Lemma 12 to the left-hand side of (45) (which is justified since

x = (1/2)¢ — 1 implies 2(2z + 4) < 2(k + 3)) leaves the inequalities

(¢ even) Z(Jc —1)(2z + 1)(x + 2) < 24(62* + 30z + 55), and (46)

(¢ odd) Z(m —1)(2z + 1)(z + 2) < 120(2* + 42 + 6) (47)

repeating the same process for ¢ odd. Inequality (46) is true for even ¢ with
x < 98 and inequality (47) is true for odd ¢ with z < 81. The former is a
weaker bound on ¢ = 2z 4+ 2 < 198, which using #(¢,0) = 1 by Lemma 8 implies
(202 +60)/(4(k + 3)) € Z and thus k < (2(198)% + 6(198))/4 — 3 = 19896.

5.3.2. The Case 2 <m <z +2. Set \:=F¢+m — x sothat A\=x+ 1 when ¢

is odd and A =z + 2 if £ is even. We claim that for 2 < m < z + 2,
(2,0) & (x —2,2) € (A, 0) @ (£, m). (48)

The set II(A, 0) is a square with vertex (—\,0) and its three conjugates under the
Weyl group. From the fact m > 2 is even, the set II(\,0 : £,m) contains (z,0) and
(z —2,2). The square II(A, 0 : ¢,m) intersects T} at 45 degree angles, thus (x,0)
and (z — 2,2) lying on this intersecting edge implies there is no contribution to
the desired fusion coefficients from 7. Reflection 7, could only contribute if (¢,m)
lies on Tj, and the assumption m < x + 2 ensures there is no contribution from 7

as well. Lemma 3 then implies containment (48).
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(a) TI(6,0) (b) TI(6,0 : 7, 4)

Figure 13.: (6,0) ® (7,4) € C(so05,12)
If ¢ is odd, Corollary 4 applied to (48) gives

dim'(z, 0) + dim’(z — 2,2) < [2(z + 2)][2(x + 3)][2z + 5] (49)

< (2x+2]+2)([2x + 3] +2)([2z + 4] +2) (50)

using Lemma 11 on the right-hand side of (49). Expanding the product on
the right-hand side of (50) and subtracting the leading term (which is equal to
dim’(z, 0)) yields

[3][2(z — D)][2z + 1][2(z + 2)] < 24(x + 2)? (51)

using Corollary 5 on the right-hand side. Applying Lemma 12 to the left-hand
side of (1) is justified since 2(2z +4) = 2({ +m + 3) < 2(k + 3) and thus

(¢ odd) Z(w )20+ 1)(x +2) < 24(z +2)%, and (52)
(¢ even) g(:p C)2r 4+ 1)@+ 2) < 24222 + 102 +13).  (53)
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The inequality in (52) is true for odd ¢ with < 18 while the inequality in (53)
is true for even ¢ with x < 35. Moreover 2 < m < 37, / +m < 72, and therefore
k < 2625 from Lemma 8 by maximizing (2¢% + 2¢m + 6¢ +m? +4m) /4 — 3 subject

to these constraints.

5.3.3. The Case ¢/ =0 and m < k. We claim for m > 4,

r—1

i, 0) c (0,m) & (0,m). (54)
i=0
The set T1(0,m) is a square with vertex (0, —m) and its three conjugates under
the Weyl group. In particular TI(0,m : 0,m) contains (i,0) for 0 < ¢ <z — 1. The
angles formed between Ty, To and TI(0,m : 0,m) are 45 degrees, ensuring there is
no contribution to the desired fusion coefficients from 7y, 75; II(0,m : 0,m) does

not intersect 17 so there is no contribution from 7; either. Lemma 3 then implies

containment (54).

\

(a) T1(0, 10) (b) T1(0,10 : 0,10)

Figure 14.: (0,10) ® (0, 10) € C(s05,11)
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Corollary 4 applied to (54) gives

2[2(2' + D][2(0 + 2)][2i + 3] < [2][m + 1][2(m + 2)][m + 3]  (55)
= m_@+&X%+%@+3ﬂ)<Mm+&ﬂm+2ﬂm+3) (56)

by applying Corollary 5 to the right-hand side of (55) and Lemma 12 to the left-
hand side of (55). Lemma 12 applies since m even implies 2(2z+2) = 2(m+4) <
2(k + 3). Now we rewrite the right-hand side of (56) in terms of x and re-index
the left-hand sum, observing each factor on the left-hand side of (56) is greater
than ¢ to yield

§3ﬁ<4@x+a@x+®@x+m. (57)

i=1

Using Faulhaber’s formula [28] on the left-hand side of (57) produces

1
Zﬁu+¢f<4@x+$@x+®@x+@

which is true for x < 131, and thus 2z + 2 = m < 264. From Lemma 8 we have
6(0,m) = 1, which implies (m? + 4m)/(4(k + 3)) € Z and thus k < (264 + 4 -
264)/4 — 3 = 17685.

5.3.4. The Case 0 A/ <x<m—2. Set \:=(+m—x+1sothat \=x+3

if £ is even, and A = x + 2 if £ is odd. We claim if 0 £ ¢ < z < m — 2, then
l+1,m—-—NB(l—-1,m—-—XA+2)C (0,\)® (¢, m). (58)

The set I1(0, \) is a square with vertex (0, —)) and its seven conjugates under the
Weyl group. In particular II1(0, A : £,m) contains ({+1, m—\) and ({—1, m—A+2)
since o + 2 < m. The angles formed by II(0, A : £,m) and T} are 45 degrees when
they exist which implies there is no contribution to the desired fusion coefficients

from 75, while 75 cannot contribute because (¢, m) does not lie on Tj. Lastly note

o8



that T1(0,\ : ¢,m) does not intersect T} since x + 2 < m so there can be no

contribution from 7 either. Lemma 3 then implies containment (58).

(a) TI(0,6) (b) TT(0,6 : 3,7)
Figure 15.: (0,6) ® (3,7) € C(so05, 10)

Now notice that (¢ + 1,m — A) and (¢ —1,m — A+ 2) are contained in the set
of weights (s,t) € Ag such that s+t = z.
Lemma 13. If0 < z < k/2, dim’(0,2) < dim'(s,z — s) for all 0 < s < z.
Proof. With k := w/(2(k + 3)), define f(s) :=sin((z — s + 1)) sin((z + s + 3)k)
and ¢(s) := sin((2s + 2)k) so that

dim/(s, 2 — 5) = sin~*(x) sin(2(x + 2)x) f(s)g(s)

as a real function of s € [0, z] with the constant sin™*(x) sin(2(x +2)k) > 0 since &
and 2(z +2)k are in the interval (0, 7/2) for 0 < x < k/2. We will prove our claim
by showing that (d?/ds*)dim’(s,z — s) < 0 on [0, ] and dim’(0,z) < dim'(x,0).
It can be easily verified that f(s) > 0, g(s) > 0, ¢'(s) > 0 and ¢"(s) < 0 for

s € [0, z], so we will explicitly compute with o := 2 — s+ 1 and §:= 2+ s+ 3 for
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brevity:

1'(s) = k(sin(ak) cos(Br) — cos(ak) sin(SBk))
= —ksin(2(s + 2)k)

= f"(s) = —2K%cos(2(s + 2)k).

The above computations imply f’(s) < 0 and f”(s) < 0 for s € [0,z]|. Using the
product rule twice implies (fg)”(s) < 0 and moreover (d*/ds*)dim’(s,z — s) < 0
since these functions differ by a positive constant factor.

Lastly we need to verify dim’(0, ) < dim'(z,0), or that

2][z + 1][x + 3] < [2z + 2][2z + 3]

2z + 2]
2]

& [z + 1]z + 3] < 2z + 3].

Note that

[2{27 + 2] qurl +q7(m+1)
= — [z +1]
2] q+q

),

(sa°3)

[z + 1],

>

ols 8
[\] n

because z41 < (1/2)(k+3). Moreover we need only prove [z+3] < (v/2/2)[2z+3].
This inequality is always true because x+ 3 and 2z + 3 are in the interval (0, k+3)
and the function [n] = sin(nw/(2(k + 3)))/sin(7/(2(k + 3))) is strictly increasing
for n € (0, k + 3). O
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Hence when ¢ is even, Lemma 13 and Corollary 4 applied to (58) implies

dim’(0, z) + dim’(0, x) < dim'(¢ + 1,m — ) + dim’'({ — 1,m — X\ + 2)
< dim'(0,z + 3)

= dim/(0,2) + dim'(0,2) < [2](jx + 1] + 3)([2z + 4 + 6)([z + 3] +3)  (59)

by applying Lemma 11 to the right-hand side of (59). All terms in the inequality
in (59) have a factor of [2] which we divide out before expanding the product on
the right-hand side of (59) and subtracting the leading term (equal to dim’(0, z))
to yield

i(gw 1) (x +2)(x + 3) < 6(32% + 21x + 38). (60)

Corollary 5 was applied eliminate the quantum analogs on the right-hand side of
(60) and Lemma 12 was applied to eliminate the quantum analogs on the left-hand
side, which is applicable since 4(x + 2) < 4(k + 3) since = < k/2. Inequality (60)
is true for x < 72, which implies 0 < £ < 72 and 74 < m < 145. Moreover Lemma
8 implies k& < 13319 by maximizing (202 + 2¢m + 6¢ + m? + 4m)/4 — 3 subject to
these constraints. Repeating the above with ¢ odd only changes the right-hand

side of (60) to 12(x + 3)2, which clearly produces a more restrictive bound on z.
5.4. Proof of Theorem 5: C(gs, k)

Let A be a connected étale algebra in C(go, k) with minimal nontrivial sum-
mand (¢,m) (i.e. ¢+ (3/2)m is minimal) and fix = := [(1/2)(¢ + (3/2)m)] — 1,
the value x is the greatest integer n such that (n,0) satisfies the hypotheses of
Lemma 9. Similarly one can set y := [(1/2)((2/3)¢ + m)] — 1; the value y is
the greatest integer n such that (0,n) satisfies the hypotheses of Lemma 9. The
proof of Theorem 5 will be split into four (clearly exhaustive) cases, illustrated by
example in Figure 16., with varying numbers of subcases for a fixed z: 0 < ¢ < 2,

3<t<x+3,x+3<{withm #0, and m = 0.
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Figure 16.: Possible (¢,m) when k =20 and z =5

5.4.1. The Case 0 </ < 2.

The Subcase ¢ = 0. We will employ the same strategy as Section 5.3.1.. Recall
y=[m/2] —1if £ =0 and set A :==m —y+ 1 so that A = y + 3 if m is even, and

A=y +2if mis odd. We claim for 4 < m < k/2,

The set I1(0, \), illustrated by example in Figure 17., (refer to Section 3.1. for
descriptions of the notation and visualization used), is a hexagon with vertex
(0, —A) and its five conjugates under the Weyl group. In particular I1(0, A : 0, m)
contains (0, y—1) and (3, y—2) since m > 4. There is no contribution to N, ((8”/1\'; (10)’m)
or N(((i’;/)_’ (%)7m) from 7, because the angles formed by II(0,A : 0,m) and T are

60 degrees and there is no contribution from 7 because the angles formed by

TI(0, A : 0,m) and T (when they exist) are 30 degrees. There is no contribution
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from 7y because (0,m) does not lie on Tp. Lemma 3 then implies containment

(61).

(b) TI(0,5 : 0,6)

Figure 17.: (0,5) ® (0,6) € C(g2, 18)
If m is even, Corollary 4 applied to (61) gives

dim’(0,y — 1) + dim/(3,y — 2) (62)
< [y + 12][3y + 15][6y + 27][3y + 13][3y + 14] (63)

< ([By] + 12)([By + 3] + 12)([6y + 3] + 24)([3y + 1] + 12)([3y + 2] + 12)  (64)

where (64) is gained by applying Corollary 5 to (63). Expanding the product in

(64) and subtracting the leading term (equal to dim’(0,y — 1)) yields

27

TW-DE+3)y+ 1By +1)By+5) < 3240(3y* + 30y° + 136y° + 305y + 273)

by applying Lemma 12 to the factors of dim’(3,y—2) in (62), which is true for even
m with y < 324 or likewise m < 650. From Lemma 8, #(0, m) = 1 which implies

(3m?+9m)/(3(k+4)) € Z and moreover k < (1/3)(3(650)%+9(650)) —4 = 424446.
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By repeating the above argument with m odd we obtain the inequality

27

W=D +3)y+ 1By +1)By+5) < 810(9y" 4 72y + 255y + 444y + 308)

which is true for y < 242 which evidently yields a stricter bound on k.

The Subcase ¢ = 1. The strategy is identical to Section 5.4.1., except with

A:=m —y+ 1 we claim

and we omit the redundant arguments for both this containment and to produce

the following inequalities, based on m being even or odd, respectively:

27
ﬁy(y +1)(2y + 1)(3y + 1)(3y + 2) < 324(54y* + 613y° 4 2861y* + Biy + B2)

27
ﬁy(y +1)(2y + 1) (3y + 1)(3y + 2) < 1620(y + 3)(9y> + 65y> + 183y + 191)

where (87 = 6427 and [, = 5725 for display purposes. The first inequality is true
for even m with y < 1160 and the second for odd m with y < 967, hence m < 2322

and moreover k£ < (1% 4 3(1)(2322) + 5(1) + 3(2322)% 4+ 9(2322)) /3 — 4 = 5400970.

The Subcase ¢ = 2. The strategy is identical to Section 5.4.1., except with

Ai=m —y+ 1 we claim

and so we omit the redundant argument to produce the following inequalities,

based on m being even or odd, respectively:

27
ﬁy(y +1)(2y +1)(3y + 1)(3y + 2) < 81(399y* + 5171y° + 19> + Bay + Fs)

27
ﬁy(y +1)(2y + 1)(3y + 1)(3y + 2) < 2835(y + 3)(9y> + 73y* + 234y + 278)
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where 31 = 28239, [y = 74821, and (3 = 78570 for display purposes. The first
inequality is true for even m with y < 2138 and the second for odd m with
y < 1688, hence m < 4272 and moreover k < (22 + 3(2)(4272) + 5(2) + 3(4272)* +
9(4272))/3 — 4 < 18271135.

5.4.2. The Case m = 0. Recall z = [¢/2] =1ifm=0. Set \:=¢—x+1s0

that A\=x+ 3 if £ is even and A = x4 2 if £ is odd. We claim that for 4 < ¢ < k,

(x—1,00® (x—2,1) C (A,0)® (£,0). (65)

The set TI()\,0), illustrated by example in Figure 18., is a hexagon with vertex
(—=A,0) and its five conjugates under the Weyl group. In particular II(A,0 : ¢,0)
contains (z—1,0) and (x—2, 1) provided £ > 4. The angles formed by II(\,0 : £,0)
and Ty are 30 degrees and the angles formed by II()\,0 : £,0) and Ty, Ty are 60
degrees, ensuring there can be no contribution from 7y, 7, 7. Lemma 3 then

implies containment (65).

(a) T1(9,0) (b) T1(9,0 : 15,0)

Figure 18.: (9,0) ® (15,0) € C(g2,20)
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If m is even, Corollary 4 applied to (65) gives

dim’(z — 1,0) + dim’(z — 2,1) (66)
< [z + 4][3][3z + 15][3z + 18][x + 7][2z + 11] (67)

< ([#] +4)[3]([3x + 3] + 12)([3x + 6] + 12)([x + 3] + 4)([22 + 3] + 8) (68)

where (68) is gained by applying Corollary 5 to (67). Expanding the product in

(68) and subtracting the leading term (which is equal to dim'(z — 1,0)) yields

27
1—6(:c — 1) (@ +2)(z+3)(z+5)(z+2) < 1080(x* + 142® + 802 + 2172 +231) (69)

by applying Lemma 12 to the factors of dim'(z — 2,1) in (66), which is true
for even x < 642 or likewise ¢ < 1286. From Lemma 8 we know 6(¢,0) = 1
which implies (¢2 + 5¢)/(3(k + 4)) € Z and with the proven bound on ¢, k <
(1/3)((1286) 4 5(1286)) — 4 = 1660214/3 < 553405.

If m is odd, the above process yields the inequality

i—g(x —1)(z +2)(x + 3)(z +5)(z +2) <810(z + 3)*(2* + 62 + 12)

which is true for x < 481 which evidently yields a stricter bound on k.

5.4.3. The Case 3 </ < x + 3. We will employ the same strategy as Section

5.3.2. but the proof is necessarily split based on ¢ modulo 3.

The Subcase ¢ = 0 (mod 3). Recall y = [(1/2)((2/3)¢ + m)] — 1 and set
A= (2/3){+m —ysothat A\ =y +2if miseven and A = y+ 1 if m is odd. We
claim

(0,9) ® (3,y —2) C (0,A\) ® (£, m). (70)

The set TI(0, ), illustrated by example in Figure 19., is a hexagon with vertex

(0, —A) and its five conjugates under the Weyl group. In particular I1(0, A : ¢, m)
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contains (0,y) and (3,y — 2). To see this, II(0, A : ¢,m) contains more generally
all (£ —3i,m — X+ 2i) for all 0 < i < (1/3)¢. The angles formed by II(0, X : £,m)
and T} are 30 degrees and the angles formed by II(0,\ : £,m) and T3 are 60
degrees, implying there are no contributions from 7, 75. The angles formed by
TI(0, A : £,m) and Ty are 90 (or 30) degrees when they exist, but since (0,m) does

not lie on Tj there is no contribution from 75. Lemma 3 then implies containment

(b) TI(0,4 : 3,4)

Figure 19.: (0,4) ® (3,4) € C(gs, 15)

If m is even, Corollary 4 applied to (70) gives

dim’(0,y) + dim’(3,y — 2) (71)
< [By + 9][3y + 12][6y + 21][3y + 10][3y + 11] (72)

< ([By+ 3] +6)([3y + 6] + 6)([6y + 9] + 18)([3y + 4] + 6)([3y + 5] +6)  (73)

by applying Corollary 5 to (72). Expanding the product in (73) and subtracting

the leading term (equal to dim’(0,y)) yields

%(y ~ Dy +3)(y+1)(By+1)(3y+5) < 1620(y> + 5y + 8)(3y> + 15y + 19) (74)
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which is true for even (2/3)¢ +m with y < 164. This bound implies ¢ + (3/2)m <
495. From Lemma 8 we know 6(¢,m) = 1 which implies k& < (1/3)(¢? + 3¢m +
50+ 3m? +9m) —4; and for £+ (3/2)m < 495 we have k < 109886. As in Sections
5.4.1. and 5.4.2., the case in which ¢+ (3/2)m is odd leads to a stricter bound on

k by this method.

The Subcase ¢ =1 (mod 3). With y = [(1/2)((2/3)¢ +m)] — 1, we set A :=
(2/3)(¢ — 1) +m —y. This implies A = y if m is even and A = y + 1 if m is odd.
We claim

0,y)® 3,y —2) C (1,\) ® (£,m) (75)

and we omit the argument for this containment as it is identical to that of Section
5.4.3..

If m is odd, Corollary 4 applied to (75) gives

dim’(0, y) + dim’(3,y — 2) (76)
< [2][3y + 6][3y + 12][6y + 18][3y + 8][3y + 10] (77)

< [4]([3y =31 +9)([By + 9] + 3)([6y + 6] + 12)([3y + 1 + ) ([3y + 5] +5)  (78)

by applying Corollary 5 to the right-hand side of (77). Expanding the product on
the right-hand side of (78) and subtracting the leading term (equal to dim’(0,y))

yields

%7(7;—1)(y+3)(y+1)(3y+1)(3y+5) < 648(y+3)(12y° — 20y — 282y — 425) (79)

which is true for y < 252. Hence we have (2/3)¢ + m < 1288 and furthermore
(+(3/2)m < 1933. The level k is bounded under these constraints by k& < 1664094.
As in Sections 5.4.1. and 5.4.2., the case in which m is even leads to a stricter

bound on £k by this method.
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The Subcase ¢ =2 (mod 3). With y = [(1/2)((2/3)¢ +m)] — 1, we set A :=
(2/3)(¢ — 2) +m —y. This implies A = y if m is even and A = y — 1 if m is odd.
We claim

0,9) ® (3,y) C (2,A) & (¢,m) (80)

and we omit the argument for this containment as it is identical to that of Section
5.4.3..

If m is even, Corollary 4 applied to (80) gives

dim’(0,y) + dim’(3,y — 2) (81)
< [3][3y + 3][3y + 12][6y + 15][3y + 6][3y + 9] (82)

< [4([By = 3]+ 6)([By + 9] + 3)([6y + 6] + 9)([3y + 1] +5)([3y + 5] +4)  (83)

by applying Corollary 5 to (77). Expanding the product in (78) and subtracting

the leading term (which is equal to dim(0, x)) yields

%(y —D)(y+3)(y+1)(By+1)By+5) < 540(y +3)(y + 1) (27> + 88y +74) (84)

which is true for y < 962, hence (2/3)¢ +m < 1926 and moreover ¢ + (3/2)m <
2889. This produces a bound of £ < 3715250. As in Sections 5.4.1. and 5.4.2., the

case in which m is odd leads to a stricter bound on £ by this method.

5.4.4. The Case x + 3 < ¢ and m # 0. We will employ a similar strategy to
Section 5.3.4.. We first claim that if x + 3 < £, then for some z +1 < X\ < x + 3,
(A,0) ® (¢£,m) contains two summands (s, t) such that s + (3/2)t = x, depending
on the parity of ¢ and remainder of m modulo 4. We will provide proof of this
claim in the most extreme case £ is even and 4 | m, using A = = + 3, leaving the
other near identical cases to the reader. The only changes in each case are due
to the slight differences caused by the ceiling function in the definition of x. Note
that under our current assumptions x = (1/2)¢ + (3/4)m — 1.

The set TI(), 0), illustrated by example in Figure 20., is a hexagon with vertex
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(—=A,0) and its five conjugates under the Weyl group. In particular II(X,0 : ¢,m)
contains (¢ — X\ —2,m +2) and (¢ — A+ 4, m — 2). The angles formed by II(\, 0 :
¢,m) and T; are 30 degrees and the angles formed by II(\,0 : £,0) and Ty, Tp
are 60 degrees, ensuring there can be no contribution from 7y, 7, 7. Lemma 3
then implies the fusion coefficients N&B;&iﬁrm and N&B;J(?;Z;*Q) are nonzero as
desired, provided ({—A+2,m—2) and ({—X—2,m+2) are in Ay which is assured
since £ > x4 3 and m > 4 under our current assumptions. It remains to note that

since ¢ is even and 4 | m, then

(ﬁ—)\+4)+g(m—2):2(%€+2m—1)+3—)\

=2r+3—(x+3)=x

as desired; similarly (¢ — X —2) + (3/2)(m +2) = x.

(a) TI(12,0) (b) TI(12,0 : 14, 4)

Figure 20.: (12,0) ® (14,4) € C(g2,24)

Now because dim'(z,0) < dim’(s, t) over all (s,t) such that s + (3/2)t = x by
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the same reasoning that lead to Lemma 13, Corollary 4 implies

dim’(z,0) + dim'(x, 0) (85)
< [z + 4][3][3z + 15][3z + 18][x + 7][2z + 11] (86)

< ([z+1]+3)B8]([3x + 6] +9)([3z + 9] + 9)([z + 4] + 3)([2= + 5] + 6)  (87)

by applying Corollary 5 to (86). Expanding the product in (87) and subtracting

the leading term (equal to dim’(z,0)) from both sides of this equality yields

2—1(;(; 1)@+ 2) (@ + 3) (@ + 4) (20 +5) < 810(z + 4)2(2> + 8 +19)  (88)

by applying Lemma 12 to the factors on the left-hand side of (88) and Corollary
5 to the factors on the right-hand side of (88). The inequality in (88) is true for
x < 963. Moreover ¢ < 1926 and m < 963, therefore k < (1/3)(¢% + 3¢m + 5¢ +

3m? + 9m) — 4 is maximized within these bounds at k& < 4023089.
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