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We compare the relaxation times of two random walks - the simple

random walk and the metropolis walk - on an arbitrary finite multigraph G. We

apply this result to the random graph with n vertices, where each edge is

included with probability p = ~ where A > 1 is a constant and also to the

Newman-Watts small world model. We give a bound for the reconstruction

problem for general trees and general 2 x 2 matrices in terms of the branching

number of the tree and some function of the matrix. Specifically, if the transition

probabilities between the two states in the state space are a and b, we show that

we do not have reconstruction if Br(T) (J < I, where

(J = ( J(I- a)(1 - b) - Jab) 2 and Br(T) is the branching number of the tree in

question. This bound agrees with a result obtained by Martin for regular trees

and is obtained by more elementary methods. We prove an inequality closely

related to this problem.
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CHAPTER I

INTRODUCTION

This dissertation consists of two parts. In the first part, we do a

comparison of relaxation times and mixing times for two types of random walks.

We apply what we learn to two types of random graphs. In the second part, we

prove a bound for the reconstruction problem for general trees. We also prove

an inequality which might lead to better results and is of independent interest.
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CHAPTER II

A COMPARISON: LAZY METROPOLIS AND SIMPLE RANDOM WALKS

11.1 Introduction

Much has been written on random walks on random graphs. In

particular, results are known for the mixing times of the simple random walk on

an Erdos-Renyi random graph. Benjamini et al. show in [9] that the mixing time

on the largest component of the random graph on n vertices where each edge is

added with probability p = ~, where A > 1 is constant, is O(log2 n) with high

probability. Similar results for the lazy random walk, for non-constant A were

shown by Fountoulakis and Reed in [7]. Other models with known results for

mixing time include the Newman-Watts small world model for which Durrett

shows a bound of O(log3 n) bound on the mixing time for the lazy random walk

([4]).

In practice, a random walk can be used to sample from a graph, either to

choose a random node or to compute the expectation of some function on the

vertex set. Since in a simple random walk, the walker will spend more time at

nodes of high degree, this skewing must be dealt with in some way depending

on the application. Although it is possible to deal with this skewing in the case

of approximating a function on the vertex set by adjusting to compensate for

degree, an alternative method uses a version of a random walk whose limiting
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distribution is uniform over the vertex set. This is the Metropolis walk. It applies

the Metropolis-Hastings algorithm to the simple random walk with target

distribution equal to the uniform distribution ([14], [8]). Since the Metropolis

walk uses a censoring process to slow the walk down at vertices of low degree,

this walk takes longer to mix. But empirical results by Duffield et al. show that

sampling using the Metropolis walk can offer more accurate results when

sampling compared to sampling by a regular random walk with correction, at

least in the case of a graph that is changing with respect to time [16].

Our comparisons will be for the lazy versions of these walks.

11.2 Definitions and Organization of Chapter

Given a graph G = (V, E), the lazy random walk on G moves from vertex

v to vertex w with the following probability:

1 1 if v "-' w"2 degv

P(v, w) = 1 ifv = w ,
2

0 else

where v "-' w means that (v, w) E E. We can interpret this as the walker staying

still with probability 1/2, and with probability 1/2, moving to one of the

neighboring vertices chosen uniformly at random. This walk has stationary

measure 7f(X) = ~I~I' which is the same as the stationary measure for the simple

random walk.

The lazy Metropolis walk is similar, but each possible move is censored
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with a probability depending on the current and destination vertices:

p(v, w) =

1._1_ (1/\ degV) if 'W rv 11
2 degv degw

1 1 '" 1 (1 /\ deg v ) if 'W = 11
2 L.Jw~v degv degw

o else

Because of this censoring, the Metropolis chain has the uniform measure as its

stationary measure (it is reversible with respect to the uniform measure). But,

consequently, the chain is slowed down - particularly near vertices of high

degree where the censoring occurs with higher probability. We compare the

relaxation times of the chains by way of their Dirichlet forms. We use the

maximum degree of the graph: ~ := maxdeg(G) = maxvEV {deg 1)} as the

primary quantity in this comparison.

One of the random graph models we consider (the Newman-Watts

model) is actually a random multigraph (vertices may have self loops, pairs of

vertices may have multiple edges), so we need to define these walks for a

multigraph G as well. For the lazy random walk on a multigraph, the walker

stays still with probability 1/2 and with probability 1/2 we choose uniformly from

the edges incident to the current vertex and move to the other vertex incident to

it, or stay still in the case that it is a self loop. If we define deg 11 in this case to be

the number of edges incident to 11 (counting each self loop only once), and

E* := LVEV deg v, then the stationary measure for the lazy random walk on Gis

( )
_ deg.T

11" x - E* .

If G is a simple graph (no self loops or multiple edges) then E* = 21EI.

Formally, if for vertices v and 'W, we define #(v, w) to be the number of edges



connecting v to w, then the lazy random walk on G is defined by

1 #(v,w) if v rv W
"2 degv

5

P(v, w) = 1
2

ifv=w ,

o else

We can now define the lazy Metropolis walk using this notion of degree:

p(v,w) =

1. #(v,w) (1/\ degv) if w rv V
2 degv degw

1 - 1. '" #(v,w) (1/\ degv) if w = V
2 LJw~v deg v deg w

o else

We give some standard definitions and results involving Markov chains

that can be found in many texts (for example, chapters 12 and 13 of [12]).

Given a transition matrix P Markov chain on state space X, and starting

distribution p" the distribution after t steps is p,pt , and this converges in

distribution to the stationary distribution 7f if the chain is irreducible and

aperiodic. The notion of distance we use is the total variation distance dTV which

is defined by
1

dTv(p" v) := 2L Ip,(x) - v(x)l·
xEX

The distance to the stationary distribution after t steps is given by

d(t) := max {dTV (p,pt
, 7f)}

J.t

To measure the rate of convergence, we use the mixing time tmix ' The mixing
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time with parameter E is defined by:

We use E = 1/4 and define t mix := t mix (1/4). We are usually interested in how the

mixing time relates to the size of the state space when the state space is

parameterized by some n that increases to infinity.

A irreducible transition matrix P is reversible if n(.T)P(X, y) = n(y)p(y, x)

for all x and y in the state space. The eigenvalues of a reversible transition matrix

P satisfy 1 = Al > A2 ;::: ... ;::: AN ;::: -1. We define A* = max~2 {\Ai\}' and the

relaxation time as trel := 1-':>,* whenever this makes sense. Using the lazy versions

of a Markov chain ensures all eigenvalues are positive so that trel = 1-\2' The

relaxation time is closely related to the mixing time. In fact, we have that

And

tre1 = 0 (tmix ) (11.1 )

(II.2)

Where the implicit constants are independent of the size of the state space.

Given a function f on the state space, the Dirichlet kernel rff is defined by

rff(J) := ((I - P)f, f)1r' where the inner product (-, ')1r is defined by

(j, g)1r = LXEX f(x)g(x)n(x). The Dirichlet kernel can be used to compute the

relaxation time. We have that



It can be shown that

1 ~ 20"(J) = 2" ~ (J(X) - f(y)) 7f(X)P(X, y).
x,yEX

The following lemma (Lemma 13.22 in [12]) is useful in comparing the

relaxation times of Markov chains:

Lemma 11.1. Let P and P be the transition matrices for reversible Markov chains on

state spa'ce X. If there exists a constant C such that 0"(J) ::; ci(J) for all I, then

1 C ( 7f(X)) 1-----;:_:;- < max-- ---
1-.\2 - xEX 1f(x) 1 - .\2'

Ifall eigenvalues are positive then we have:

- (7f(X))t rel ::; C max -(-) t rel .
xEX 7f X

In what follows, P,1f, 0", trel, and t mix refers to the transition matrix,

stationary measure, dirichlet form, relaxation time and mixing time of the lazy

random walk, and P, if, i, trel' and t mix refers to the same for the lazy

Metropolis walk. We investigate how this comparison works out for two types

of random graphs: the Erdos-Renyi model and the Newman-Watts model.

The comparison is done for an arbitrary multigraph in the next section.

This result is then used in conjunction with asymptotic results about the

maximum degree for these random graphs in subsequent sections.

7
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11.3 The Comparison: Maximum Degree Bound for an Arbitrary Multigraph

Proposition 11.1. If G is any finite connected multigraph and P and Pare the

transition matrices for the lazy versions of the simple and Metropolis walks respectively,

then

Proof Let j be an arbitrary function on the vertex set. Then

v,w

= L(J(v) - j(w)?_1 ~ #(v, w) (1/\ degv)
IVI2 degv degw

v,w

__1 '"""(j(v) _ j(W))2! #(v, w)
- IV/6 2 degv V degw

v,w

1 1
~ .0.IVI L(J(v) - j(W))2"2#(V, w)

v,w

=~ '"""(J(v) _ j(W))2 degv . ! #(v, w)
.0.IVI6 E* 2 degv

v,w

E*
= .0.IVI L(J(v) - j(w)?7f(v)P(v, w)

v,w

E*
= .0.IVI 2g(J).

boWl -Therefore, g(J) ::; E"*g(J) and consequently, by Lemma II.I, we have that

- .0.IVI (7f(V)) ( 1)trel ::; -E max -() trel =.0. max -d- trel ::;.0. trel* vEV 7f V vEV egv

(II.3)

o
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II.3.1 Tightness ofMaximum Degree Bounds

We give an example that shows that (II.3) is tight in the sense that equality

is achieved (up to a constant) for some graph. The graph is the star with n + 1

vertices, that is, the graph with vertex set {I, ... , n + I} where vertices 1, ... , n

are each connected to vertex n + 1 by an edge, and there are no other edges. Thus

there is one vertex of degree n and all other vertices are degree 1 (see Fig. 1).

Fig. 1: Star graph

The salient feature of this graph is the o~e vertex of high degree, which

will slow the Metropolis chain considerably. To show tight bounds for (11.3), we

find an upper bound for trel and a lower bound for irel .

For both the upper and lower bounds, we use the bottleneck constant <P*

defined as follows for a transition matrix P: Given a subset S of the state space,

Define

Q(S, SC) := L L 7r(v)P(v, w)
vES wESc

<P*:= min Q(S, SC)
S:1f(S) <::,1/2 7r(S)

Jerrum and Sinclair ([10]) show that ~: :::; 1 - A2 :::; 2<p* . Thus, to get a lower
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bound on the relaxation time for P, we want to get an upper bound on <I>*. Since

we are dealing with reversible chains, we have that Q(S, SC) = Q(SC, S), and so

without loss of generality we may let S be any subset of the vertex set of the star

that contains the center of the star. Then, since the only way to move from S to

sc is through the vertex n + I, we have:

Q(S, SC) = L L ir(v)p(v, w)
vEB wEBc

~ 1 -
= L -IV,P(n+l,w)

wEBc

1 11
=Ln+l'2~

wEBC

n + I-lSI
2n(n + 1) .

And since ir(S) = J~ll' we have that

1 - ir(S)
2n

If we minimize this over sets S with ir(S) :::; 1/2, we get

<I> <.1... (1 - In/2J ) < .1... (1 - n-1) = .1... n+1. And this gives us the bound* - 2n n - 2n 2n 4n n

- 1 (n )trel ~ -_- ~ 2n -- .
2<1>* n + 1

For the upper bound, we again let S be any subset of the vertex set that contains



the center. Then

Q(5,5C
) = L L n(v)P(v, w)

vES wES c

= L n(n + 1) . P(n + 1, w)

n+ 1-151
-

4n
n+1

= (1 - n(5))-.
4n

Thus,

<P*:= min Q(5,5
C

) = min (_1__ 1) n + 1> n + 1> !.
s:7r(s)'5.1j2 n(5) S:7r(S) 9/2 n(5) 4n - 4n - 4

This leads to the bound
2

tret ::; <p2 ::; 32.
*

Comparing these two bounds, we have

tret > ~_n_ = S1(~)
tret - 16 n + 1 '

which shows that our maximum degree bound is asymptotically tight up to a

constant.

11
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11.4 Preliminaries for Comparison of Random Walks on Erdos-Renyi

Random Graph

The Erdos-Renyi random graph is a graph with n vertices where each edge

is included with probability p. We denote this probability space by ER(n,p). We

take p = ~ where A > 1 is a constant. Because A > I, we are in the regime where

ER(n, p) has a unique giant component with high probability (see [5]) and we

start our walks (somewhere) in this component. To compare our walks on this

model we need to find an upper bound for ~ with respect to n for GEER(n, p).

11.5 Maximum Degree of an Erdos-Renyi Random Graph

As deg v, for each v E V, is concentrated around A, there is hope that the

maximum of n such random variables will not be too large, but yet should go to

infinity with n. An initial observation is that deg v ~ PO(A), where PO(fl) is the

Poisson distribution with mean fl. An easier problem is to compute the

distribution of the maximum of n independent PO(A) random variables that are

independent. In our situation, though, the collection (deg V)VEV is not

independent. However, there is a very loose dependence, so it will have the

same behavior as a collection of independent random variables for a large vertex

set. There are some very useful methods for comparing certain types of weakly

dependent random variables to a Poisson distribution contained in [I], however,

we can get away with something less sophisticated here. This computation is

also an exercise (3.5) in [2] (where one is prompted to use the machinery

developed there).
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Theorem 11.1. For G E ER(n,p) withpn = A > 1 and E: > 0,

[ ~n ~n]lP (1 - c) 1 1 ::; maxdeg (G) ::; (1 + E:) 1 1 --+ 1.
og ogn og ogn

The theorem will be proved after a couple of lemmas. An important

ingredient will be the Chernoff bounds for a binomial random variable:

Lemma 11.2. Let X "" Bin [n - 1, A/n ], then lP [X ~ t] ::; e-t (logt-logA-1)-A

Proof Let fl > 0 be a fixed constant (whose value will be determined.) Using

Markov's inequality, we get lP [X ~ t] = lP [eJ.tx ~ eJ.tt] ::; e-J.tt lEeJ.tx. By writing X

as a sum of independent Bernoulli random variables we can compute

lEeJ.tx = (1 + ~ (eJ.t - 1)r-1
::; eA(e

IL
-1). So we get lP [X ~ t] ::; e-J.tt+A(e

IL
-1), which

can be minimized by taking p, = log t. D

Lemma 11.3. Let tn = ~lloln ,let 'Y be a constant, and let v E V. thenog ogn

n lP [deg(v) ~ 'Ytn] --+ 00 if 'Y < I, and --+ 0 if 'Y > 1.

Proof First let 'Y > 1. Let a < 1 be such that 'Ya > 1. For such an a, there exists

N E N such that n ~ N implies that log ( 'Y lo~~;n) - log A-I ~ a log log n. From

Lemma II.2, we have

~(Io ( ~) I A 1) AnlP[deg(v);:::: 'Ytn]::; ne-'Y1og\ogn g 'Y\og\ogn -og - -
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For n 2:: N, and this goes to awith n. Now let I :s; 1.

There exists N E N such that if n 2:: N then n-~~LtnJ 2:: ±and (1 - ~)n-l 2:: e-~.

So, for such an n,

Now, by Stirling's formula, n! rv V21i nn+1
/2 e-n, and since lnJ rv 7/" we have that:

By replacing n with en, we get that this has the same limit as:

This goes to infinity as the leading term in the exponent is (1 - I) n. Thus

n lID [deg(v) 2:: Itn] --t 00. o
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Proof of Thm 11.1

Proof The upper bound follows immediately from Lemma II.3:

IP[maxdeg(G) ~ (l+c)tn ] =IP[UvEv{degv ~ (l+c)tn }]

:::; 2: IP [degv ~ (1 + c)tn ]

vEV

= nIP [degv ~ (1 + c)tn ] ~ O.

For the lower bound, we use the second moment method. For each v E V, let

Iv = Iv(t) = ldegv2:t and let N = N(t) = LVEV Iv. N counts the number of

vertices whose degree is greater than or equal to t. Since the range of N is in the

non-negative integers, lEN = IENl (N ~ 1) :::; (IEN2IP (N ~ 1)//2, which yields

(IEN)2
JP (N > 1) > --'-----------':-- - IEN2

We work on IEN2 first. Let '7r~ = IP [Bin (n - 1, >jn) ~ t] and

P~ = JP [Bin (n - 1, >jn) = t], then for v ~ w,

A( t-l) 2 ( A) (t )2IE Ivlw =;;, '7rn - 1 + 1 - ;;, '7rn - 1

A( t-l t) 2 ( A) (t )2= - Pn-l + 1fn - 1 + 1 - - '7rn - 1n n

A (( t-l)2 t-l t ) (t )2=;;, Pn-l + 2Pn- 1'7rn- 1 + '7rn - 1
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Furthermore, since N 2 = N + Lv,iw Ivlw,

lEN2
= lEN + n(n - 1) (~ ((p~_=\)2 + 2p~-=-\ 1r~_1) + (1r~_1)2)

= lEN + n(n - 1) (0(1) + (1r~_1)2) .

Also,

lEN t ( t A t-l)= n1rn = n 1rn-1+ ;;,Pn-l .

Thus, letting t = (1 - c)tn = (1 - c)lo~~;n' since n1r~_l ----t 00 by Lemma 11.3, we

have that

and

Thus dividing numerator and denominator of (:~~2 by (n1r~_1)2,we get

JP'(N 21) ----t 1.

Since maxdeg(G) :S t if and only if N(t) = 0,

JP' [maxdeg(G) :S (1 - c)tn ] = JP' (N((l - c)tn ) = 0) ----t O.

D



17

11.6 Comparison of Walks on Erdos-Renyi Random Graph

We now compare the two random walks on the largest component of

ER(n, p). Recall that tmix and trel are the mixing and relaxation times for the

regular random walk and i mix and i rel are the mixing and relaxation times for

the Metropolis walk. Proposition II.3 and Theorem II.1 immediately yield:

Corollary 11.2. With high probability for G E ER(n,p), pn = A > 1,

i rel _ 0 ( log n )
trel - log log n .

We use the bounds trel = 0 (tmix ) and [mix = 0 (irellog (maxVEv frtV)))

(see (11.1) and (II.2)), together with the fact that maxvEV irtv) = n, to get:

Corollary 11.3. With high probability for G E ER(n, p), pn = A > 1,

- 2
t mix = 0 ( log n ).
t mix log log n

Using the result t mix = 8 (log2 n) proved in [7], we get:

CorollaryII.4. WithhighprobabilitYforG E ER(n,p),pn = A > 1,

_ ( log4 n )
t mix = 0 .

loglogn

II.7 Preliminaries for Comparison of Walks on the Newman-Watts Random

Graph

The Newman-Watts random graph is defined with the intent of forcing a

small diameter yet a high clustering coefficient (roughly, the clustering

coefficient measures how much the neighborhood of of a randomly chosen
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vertex resembles a complete graph). We use the definition of the model defined

on page 10 of Durrett's book ([4]). It takes three parameters: the number of

vertices n, a connection coefficient k, and a long distance connection parameter

p. We start with n vertices labeled 0, ... ,n - 1 and attach vertex i to vertices i ± 1

mod n, ... , i ± k mod n. Then we add in Po(~) number of additional edges,

attaching each end of each edge independently to any of the n vertices (in this

way we allow for multiple edges between two vertices and self loops). This

creates a fixed ring-like structure with random "shortcuts" and we denote this

probability space as NW(n, k, p) (see Fig. 2 for an example). To compare our

Fig. 2: G E NW (n, k,p) with n = 17, k = 3, and 4 shortcuts

walks using Proposition 11.3, we need to find an upper bound for .6. for

G E NW(n, k,p) with respect to n.

11.8 Maximum Degree of a Newman-Watts Random Graph

To use the comparison in Proposition 11.3, we need to also get a bound on

.6. for G E NW(n, k,p). We first prove a lemma for bounds on a Poisson random

variable:
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Lemma 11.4. Let X rv Po (p,), then for every c > 0,

JP> (X > cp,) ::; eJ.i(c(1-1ogc)-1).

Proof Let t > 0 be some constant (to be chosen later).

JP>(X > cp,) = JP> (etX > eteJ.i) ::; e-tCJ.iEetx . EetX is the moment generating function

for the Po (p,) random variable X and so EetX = eJ.i(et-l). Thus

(11.4)

The right hand side of (11.4) is minimized when t = log c. For this value of t we

have

JP> (X > cp,) ::; eJ.i(c(l-logc)-l).

o

We now give a lower bound for the maximum of a collection of Poisson

random variables:

Lemma 11.5. Let (Xi)~l be a collection of Po(p,) random variables, not necessarily

independent, and let E > 0, then

(
n logn )

lim JP> n:taxXi> (1 +E)l 1 = O.
n--too ~=l og og n
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Proof. Let f(n) = .l~ then
'J' J.L log log n'

n

:::; L IP' (Xi > (1 + E) /1} (n) )
i=l

= nIP' (Xo > (1 + E)~Lf(n)).

By Lemma 11.4, we get that this is less than

neJ.L((He)!(n)(l-log(He)!(n») -1) = neJ.L( (He) t lO~r;,;n(l-log( (1+.0) t lO~°r;,;n)) -1)

I (l+e)~(l-lo ((l+e)1.~))= e ogne loglogn g J.L loglogn e-J.L

= e(l+e) lo~r;,;n(l-log(He)+log J.L-log logn+log log logn)+logne-J.L

= e(l+e) lo~r;,;n(l-log(He)+log J.L+log loglogn)-e logne-J.L.

Since the largest in the exponent is -E log n, this goes to zero as n goes to

infinity.

Proposition 11.2. For G E NW (n, k, p), we have that ~ = 0 (lo~~~n) with high

probability.

o

Proof We first inspect the number of shortcuts attached to an arbitrarily chosen

vertex v. Since there are a Po (~) number of shortcuts, each of which are

attached to v with a probability of ~, the probability that j edges are attached to

v given the value of Po (~) is

for j = 0, ... ,Po (~). Thus, conditioning on the value of Po (~), noting that v
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has exactly 2k non-shortcut attachments, we have that

00 (i) (2)j ( 2)i-
j

( (nkP) )lP' (deg v = 2k + j) =~ j -:;; 1 - -:;; lP' Po -2- = i

_ 00 (i) (2)j ( 2)i-
j
(~)i _~-2: - 1-- e 2

.. j n n i!
t=J

= e-~ (~)j (~)j 00 (1 _3.) i-j (~) i-j
j! ~ n ('i - j)!

t=J

_~ (kp)j (l-.£)(~) (kp)j-k= e 2 --e n 2 = --e P., "J. J.

Thus degv f'J 2k + Po(kp). Therefore, by Lemma II.s,

(
n log n )

lim lP' maxdegv> (1 + E)l 1 = o.
n->oo v=l og og n

o

11.9 Comparison of Walks on a Newman-Watts Random Graph

We now compare the two random walks on NW(n, k,p) for k = 1. Recall

that tmix and trel are the mixing and relaxation times for the regular random

walk and tmix and trel are the mixing and relaxation times for the Metropolis

walk. Proposition II.3 and Theorem II.2 immediately yield:

Corollary 11.5. With high probability for G E NW(n,l,p),

trel = 0 ( log n )
trel log log n .
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Durrett proves in [?] that on NW(n, 1,p), trel = o(log2 n) (Theorem 6.6.1)

and this yields the following bound on relaxation time for the Metropolis walk:

Corollary 11.6. With high probability for G E NW (n, 1, p),

_ ( log3 n )
trel = 0 .

log log n

We can get bounds on mixing time using imix = 0 (irellOg (maxVEV fi"tV)))

(see (11.2)), together with the fact that maxvEV fi"(lv) = n, to get:

Corollary 11.7. With high probability for G E NW(n, 1,p),

_ ( log4 n )tmix = 0 .
log log n
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CHAPTER III

THE RECONSTRUCTION PROBLEM

111.1 Introduction

III.l.l Overview of the Reconstruction Problem

Consider an infinite rooted tree T and a transition matrix M acting on

state space A. (Since M determines the size of A, we consider A to be

determined by M.) The configuration space is the set of functions {a: T ----+ A},

that is, an assignment of an element of the state space to each vertex of the tree.

Starting with some distribution p, over A at the root, we generate a distribution

over {a : T ----+ A} according to M and the initial distribution IJ,. The

reconstruction problem asks when, asymptotically, information about the

distribution at the root can be inferred from a given configuration over some

subset of the tree. A sub category of these problems looks at when there is an

eventual complete loss of information and when there is always some

information preserved and seeks to give an answer in terms of characteristics of

both T and M. A cutset II of the tree T is a subset of the vertex set such that

every non-intersecting path from the root to infinity passes through exactly one

vertex of II (see Fig. 3). We can reasonably restrict our attention to the case that

the information given is a configuration on a cutset. Let Xri be the distribution

on the cutset II given that the distribution at the root is p,. If we want to know
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Fig. 3: Infinite tree with cutset II

how much information about fJ, is contained in Xh, we can answer this question

using total variation distance, dTV , for distributions. Specifically, if

sup inf dTV (Xh, X~) = 0,
/l,l/ IT

(111.1)

where the infimum is over all cutsets of T and the supremum is over all

distributions at the root, then there is an eventual loss of all information about

the distribution at the root. If this quantity is positive, then some information is

always preserved asymptotically. So, given that the information we are

provided is a configuration on a cutset, the answer to this problem given a

specific T and a specific M is: yes we can infer something about the root

asymptotically, or no we cannot. The reconstruction problem would be solved, if

we could construct a function F that took as input an infinite rooted tree T and a

transition matrix M such that F(T, M) = "yes" if there is reconstruction and

F(T, M) ="no" if there is no reconstruction. We suspect that F can be broken

into two real-valued functions Br(T) and 8(M) such that F outputs "yes" when

Br(T) 8(M) > I, and "no" when Br(T) 8(M) ~ 1. The function Br(T) is the
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branching number of the tree. We do not know what form 8(M) would take.The

definition of branching number that we use in this paper is:

(111.2)

where the infimum is over all cutsets II and Iwl is the distance from the vertex w

to the root.

III.l.2 Previous Work

8(M) could take into account every entry of the matrix or, a priori, it

could use only information like eigenvalues, trace, or determinant. Prior

research by Mossel [15] shows that eigenvalue information is not enough in

general. However the only (partial) answer to the reconstruction problem for

general matrices bigger than 2 x 2 is in terms of the second largest eigenvalue,

).dM), of M. The result of [11] is valid for regular trees and shows that

reconstruction is possible for the b-ary tree if b).~ (M) > 1. This result is not tight

in general and this is shown in [15]. (But for nearly symmetric 2 x 2 matrices,

this bound is tight [3].) For regular trees, some other results are known for

various classes of matrices, but nothing else is known for general matrices larger

than 2 x 2. For the 2 x 2 case, and for a general tree, [6] has solved the case of a

symmetric .!v!, finding the exact threshold for reconstruction. For general 2 x 2

matrices, the methods of [6] that were used to determine when reconstruction is

possible were extended in [3], but these bounds are not tight for all matrices.

[13] found bounds for non-reconstruction for general matrices, but only for

regular trees. This paper gives a bound for general trees and general matrices

that matches bounds of [13] in the case of regular trees, and is found by different
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methods. [3] shows that this result is not tight.

III.l.3 Main Result

In this paper we assume that T is any rooted tree with root p, with paths

to infinity, and with the degree of each vertex finite. We analyze the process that

starts with a given distribution of {O, 1} at p and proceeds generationally by

choosing the value of the child w given the value of the parent v according to

[

JI»(X(w) = O[X(v) = 0) JI»(X(w) = 1IX(v) = 0) ] = [ 1- a a ].

JI» (X(w) = OIX(v) = 1) JI» (X(w) = 1IX(v) = 1) b 1 - b

This generates a tree-indexed Markov chain, where the restriction to any path

from the root is a Markov chain with matrix

[

1-a a ]

b 1- b

We want to know under what circumstances the values on the vertices at large

depth carry significant information about the value at the root. We answer this

question in terms of total variation. Let W be any vertex set, then xtv is the

(random) sequence of values on W given that the root takes value i. We want to

know when

where the infimum is over all cutsets II. (The supremum of (IIL1) is obtained by

these starting distributions.) The left-hand side is zero exactly when the best

guess for the value at the root is asymptotically no better than the uniform
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guess. That is, the left hand side is zero exactly when we can find some cutset II

for which any configuration on that cutset leads to a best guess that is a

distribution that is very close to choosing aand 1 with equal probability. Let

e= (J(1- a)(1 - b) - V7ibr. The result we prove is:

Theorem 1. If Br(T) e< 1, then infrr dTV(Xg, X~) = O.

This is naturally proved by finding an upperbound for dTV(Xg, X~) for

each cutset II in terms of something related to the branching number. The

theorem will follow from a couple lemmas. We begin with some definitions.

III.2 Proof of Theorem 1

III.2.1 Definitions and Basic Proof Idea

For a given cutset II, we let T(II) be the set of vertices and edges between

the root and II (inclusive). (This makes xg and X~ the corresponding

configurations on the leaves.) Our main approach will be to switch to Hellinger

distance. For two distributions f-L and v on some set S, the Hellinger distance is

defined as:

dH(f-L, v) := 2: (vif-L(x) - vlv(x)r.
xES

This can be related to total variation distance, dTV by using Jensen's inequality

with respect to the probability measure /l't as follows:

d ( ) '=~~I ()_ ()I=~If-L(x)-v(x),(f-L(X)+v(x))
TV f-L, v. LJ f-L x v x LJ () ()2 f-Lx+vx 2

xES xES

< 2: (If-L(X) - V(X)!)2 (f-L(X) + v(X)) =
IL(X) + v(x) 2

xES

~ 2: (f-L(x) - V(X))2
2 IL(X) + v(x) .

xES
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. . (Ji*)+J*))
2

Usmg the relatIon p,(x)+v(x) ~ 2, which can be shown using the concavity

of ..;:, we get:

Therefore we have that

dTV(X~,Xb)' :S L (JW' (X& = rr) - JW' (Xir = rr))' ,
a

where the sum is over all configurations on the leaves of T(IT). We use this by

successively dividing the tree into its independent branches, starting first with

those branches issuing from the root and moving to an inequality that regards

these descendants as roots of their own trees, and then continuing the same

process until the leaves are reached. To get started, we need some additional

notation. Given a vertex v, let Ov be the set of configurations on the leaves of

T(IT) below v and let C(v) be the set of those vertices that are immediate

descendants of v (the children of v). For two vertices v and w, we write v ~ w if

the vertex v is on the unique non-intersecting path from the root to w. For a

vertex v and a subset of vertices W, we write v ~ W if for every vertex w E W,

we have v ~ w. Given a configuration 0" E Ov and a vertex w with v ~ w,let O"w

be the restriction of 0" to Ow' We suppress the notation IT in further notation, for

we consider everything that follows to be for a fixed cutset until further notice.

Given a vertex v, let X~ be the (random) configuration on ITv given that the

vertex v is labeled as i (for i = 0, 1). For any vertex v, let

¢(v) = 2: (JIP> (xg = 0") - JIP> (X; = 0")r
aE[1v
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We would like to show that

¢(v) :s; (J L ¢(w),
wEC(v)

where (J = ( )(1 - a)(l - b) - Jab) 2. Then, since for wE II, 4J(w) = 1, we will

have by induction (after proving Lemmas 1 and 2) that ¢(v) :s; I:wEII
v

(Jlwl-1v l,

and in particular,

dTV(Xg, XA)2 :s; 4J(p) :s; L (Jlwl.
wEII

This is what will allow us to pass to the branching number. Let X~(w) be the

configuration X~ restricted to those vertices below w. We have then, by the

independent evolution on branches, that

JPl(X~ = (7v) = IT JPl(X~(w) = (7w)

wEC(v)

With this in mind, we have that

4J(v) = L ( IT JPl(X3(w) = (7w)-

o-EOv wEC(v)

we would like to show that this is bounded above by

L L ()JPl(X3(w) = (7) - )JPl(X;(w) = (7)r
WEC(v) o-EOw

Since each of the terms JPl (X~ (w) = (7) sums to lover all (7 E [lw for each w, this

will follow from Lemma III.l. Our inductive step is split into two parts. Lemma

III.l will allow us to split a tree issuing from any vertex into separate trees
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indexed by the children of that vertex. Lemma 111.2, which is just an inequality

proved by calculus, will allow us to "move" forward to the next generation,

where we can then repeat the process.

Lemma 111.1. Let n be a positive integer. For each i = 1, ... ,n, let Ii and gi be

non-negative, real-valued functions from afinite set A with

EXiEAi IlTi) = 1 = EXiEAi gi(Xi), then

Lemma 111.2. For x, y 2 aand 0 ~ a, b ~ 1,

(V(1- a)x + ay - Vbx + (1 - b)y)2 ~ e(-IX - .jY)2 (111.3)

The proofs of these lemmas is deferred to Section 2. We now apply

Lemmas 111.1 and 111.2 to our situation with probabilities of configurations on a

tree. These lemmas will be combined into Proposition 111.1, which will be the

inductive step of our main theorem.

Proposition 111.1. For any vertex v, with v rf. II, we have ¢J(v) ~ eEWEC(V) ¢J(w).

Proof

¢J(v) = L (VIP' (X~ = 0-) - VIP' (X; = 0-)r
crEnv

= L ( II IP'(X~(w) = o-w) -
crEnv WEC(v)

II IP'(X;(w) = o-W)) 2

wEC(v)
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By Lemma IlI.1 we get that this is

::; L L ()JID(XB(w) = (J) - )JID(X;(w) = (J)r (IlIA)
WEC(v) o-EOw

Since for (J E Ow,

and

we have that (IlIA) is equal to

L L ()(1- a) JID (X~ = (J) + aJID (X~ = (J)
wEC(v) o-EOw

By Lemma III.2 this is bounded above by

eLL ()JID (X~ = (J) - )JID (X~ = (J)r = e L ¢(w).
wEC(v) o-EOw wEC(v)

D

Next we apply induction to this result to get a quantity related to the

branching number.

Proposition 111.2. For every v E T(n), we have ¢(v) ::; LWEII
v

elwHvl

Proof Given v E T(n), assume that for every vertex U E C(v) we have that
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¢(u) s; 2..:
WE

il
u

elwl-Iul. From Theorem I, we have that

¢(v) s; e L ¢(u) S; eLL elwHul = L L elwHvl = L elwHvl
UEC(v) UEC(v) wEilu uEC(v) wEilu wEIlv

Since it is true for every v E II, and since the inductive step holds, it is true for all

v E T(II).

We are now ready to prove the main theorem, which we restate for

convenience:

Theorem 1. IfBr(T) e < I, then infil dTV(Xg, XA) = o.

Proof Applying Proposition III.2 to the root p, we have that

dTV(Xg, xA? S; ¢(p) S; L e1vl
VEil

and so, by (III.2), if Br(T) < e-1, then

IIL3 Proofs of Lemmas IIL1 and 111.2

We restate the lemmas for convenience.

Lemma 2.1. Let n be a positive integer. For each i = 1, ... ,n, let Ii and 9i be

non-negative, real-valued functions from afinite set Ai with

o

o
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2

g9'(X')) ~ t X~, (Vj,(Xi) - h(xi))'

(IlLS)

Proof Since
n n

L II fi(Xi) = II L fi(Xi) = 1,

and
n n

L II gi(Xi) = II L gi(Xi) = 1,

when the summand of the left hand side of (IlLS) is multiplied out, the left hand

side becomes

by interchanging the sum and product we get that this is the same as

n

2 - 2II L Vfi(Xi) . gi(Xi)
i=l XiEAi

By multiplying out the summand of the right hand side of (IlLS) and summing

fi(Xi) and gi(Xi) over Xi E Ai the right hand side becomes

t (2 - 2x~, Vj,(Xi) . 9'(X;))
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which is the same as

2 (n -t x~. J !«Xi) . 9i(Xi))

So we can verify (IlLS) if we show that

n n

L L J fi(xi) . gi(Xi) - II L Jfi(Xi) . gi(Xi) :s; 17, - 1 (111.6)
i=l xiEAi i=l xiEAi

n n

L Yi - IIYi :s; 17, - 1
i=l i=l

But since 0 < y. < '" fi(Xi)+gi(Xi) = 1 for each i (111.7) is true.
- t - UXi EAi 2 '

Lemma 2.2. For x, Y 2: 0 and 0 :s; a, b :s; I,

(111.7)

o

( J(1 - a)x + ay - Jbx + (1 - b)Y) 2 :s; e(..;x - y'y)2 (111.8)

Proof Let g(x) = J(1- a)x + ay - Vbx + (1 - b)y and let h(x) = ..;x - .;Y. We

seek to optimize f(x) = 9(X)/h(x). f(x) has a critical point exactly when

h(x)g'(x) = h'(x)g(x). Now,

( I-a b)h(x)g'(x) = (..;x - y'y) - "
2)(1 - a)x + ay 2)bx + (1 - b)y
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and,

h'(x)g(x) = 2~ (y'(1- a)x + ay - y'bx + (1 - b)Y) .

Multiplying both sides of the equation h(x)g'(x) = h'(x)g(x) by

2JXy'(1- a)x + ayy'bx + (1 - b)y,

we get the equation

JX (JX - y'Y) ((1- a)y'bx + (1- b)y - by'(l- a)x + ay)

= ((1 - a)x + ay)y'bx + (1 - b)y - (bx + (1- b)y)y'(l- a)x + ay.

In order to solve this equation for x, we rearrange it and cancel some terms to

get:

((1- b)y + bJXy'Y)y'(l - a)x + ay = (ay + (1 - a)JXy'Y)y'bx + (1 - b)y.

Canceling a factor of vY on both sides yields

((1 - b)y'Y + bJX)y'(l - a)x + ay = (ay'Y + (1- a)JX)y'bx + (1- b)y.

Squaring both sides yields

((1 - b?y + 2b(1- b)JXy'Y + b2x)((1 - a)x + ay)

= (a2y + 2a(1 - a)vxvY + (1 - a)2x )(bx + (1 - b)y).
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Rearranging this we get

((1 - b)2y + b2x)((1 - a)x + ay) - (a2y + (1 - a)2x )(bx + (1 - b)y)

= (2a(1 - a)(bx + (1- b)y) - 2b(1- b)((1- a)x + ay)).jX.jY.

Rearranging again we get

b(1- a)(b - (1 - a))x2+ (ab2+ (1- a)(l - b)2 - ba2 - (1- b)(l - a?)xy

+ a(1- b)((l- b) - a)y2

= (2b(1 - a)(a - (1- b))x + 2a(1- b)(1- a - b)y).jX.jY.

Factoring, we get

- b(1- a)(l- a- b)x2+ (ab(b - a) +(1- a)(1- b)(a- b))xy+a(l- b)((1- a - b)y2

= 2(1- a - b)(a(l - b)y - b(l - a)x).jX.jY.

Factoring again we get

(1- a - b)(a(1- b)y2 + (a - b)xy - b(1- a)x2)

= 2(1 - a - b)(a(l - b)y - b(1- a)x).jX.jY.

Canceling the 1 - a - b term (noting that (IlL8) holds when 1 - a - b = 0) and

moving everything to one side we get

a(1- b)y2 + (a - b)xy - b(l - a)x2 - 2a(1- b)y.jY.jX + 2b(1- a)x.jX.jY = O.



The left hand side factors as

(..;x - JY)2(b(1 - a)x - a(l - b)y).

Since (IIL8) holds if yIX = JY, the critical point we are interested in is

x = ~g~:~ y. At this critical point we have

(
a(1-b) ) _ Va(1-b) _Va(1-b) (-b)

g b(l - a) y - b Y + ay 1 _ a y + 1 y

~ (I¥ -12) y'y

= (Ja(1- a) - Jb(l- b)) JY ,
Jb(1- a)

and

h(a(l-b)y) = a(1-b)y_JY
b(l - a) b(l - a)

= (Ja(1- b) - Jb(1- a)) vY .
Jb(l - a)

So,

f (a(l- b)y) = Ja(l- a) - Jb(l- b) = J(l- a)(l- b) _ Jcly
b(l - a) Ja(1- b) - Jb(1- a)

Thus the maximum of (f(X))2 is 8, and the lemma is proved.

37

D
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111.4 An Inequality

We prove an inequality that is similar in flavor to Lemma IILL The proof

takes more work than that of Lemma IILl, and is seemingly stronger, yet when it

is used for the reconstruction bound, one is prompted to make subsequent

rough bounds that yield an end result that is inferior. We briefly describe the

motivation for the inequality in terms of the reconstruction problem, prove the

inequality, and then show why it fails to be useful. Recall that xg and XA are

(random) configurations on the cutset II given a aand a 1 at the root

respectively. Rather than bound the total variation distance by the Hellinger

distance, we bound it by the L2 distance:

If we then mimic the proof of Theorem 1, we would need to employ the use of

the following inequality:

(III.9)

for some k, where for each i, Lai X~i = 1 = L ai y~i, the sum being over some

finite set Ai with cti E Ai' This is Corollary III.3 below. We first prove a related

inequality which will lead to III.9 for the case k = 2:

Lemma 111.3. Let?jJ (x 1 y) = x7y for x + y =j:. aand aotherwise. Let m and n be natural

numbers. Let Wi, Xi, Yj, Zj 2: afor each i = 1, ... , m and j = 1, ... 1 n. IfL:l Wi ~ 1,
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We note for convenience that in the case that Wi, Xi, Yj, Zj > 0 for each i,j,

this is the same as:

Proof We use the method of Lagrange multipliers. Let w = (Wi)~I' X = (Xi)~I'

Y = (YjtJ=I' z = (Zj)'']=1 (where we now consider these to be variables and not

fixed), and let

m n m n

f(w, x, y, z) := L ?jJ(Wi' Xi) + L ?jJ(Yj, Zj) - L L ?jJ(WiYj, XiZj).
i=1 j=1 i=1 j=1

(We consider f to be likewise defined for all possible dimensions of w, x, y, and

z - and only for those w, x, y, and z that satisfy the conditions of the lemma.)

Let gw(w) = WI + ... +Wm , and let gX/ gy, and gz be similarly defined. We want to

maximize f(w, x, y, z) over the constraints gw(w) = W, gx(x) = X, gy(y) = Y,

and gz(z) = Z, where 0 < W, X, Y, and Z ::; 1 are all constants. Let 5 be the set

of (w, x, y, z) that satisfy the constraints with 0 < Wi, Xi, Yj, Zj for all i and j. If f

achieves its maximum at some point (w, X, y, z) E 5, then there exists Aw , Ax, Ay ,
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Az such that (w, x, y, z) is a solution of the equation

\7 f(w, x, y, z) =Aw\79w(w, x, y, z) + Ax \79x(w, x, y, z)

Since \79Wf \79x, \79y, and \79z are each vectors of O's and l's (with a 1 in the

coordinates corresponding to the appropriate symbol: w, x, Y, or z), this breaks

into the system of equations:

2 n 2 2
Xi L YjXiZjtw· = - = Aw., (w· + X·)2 (w·y· + X·Z·)2

l l j=l l J l J

2 n 2 2
Wi L ZjWiYj

fx· = - = Ax
, (w· + x·)2 ('w·y· + X·Z·)2

l l j=1 l J l J

2 m 2 2
Yj L .'E(WiYj

fz· = - = Az
J (Y.+Z·)2 (W·Y·+X·Z·)2J J i=l l J l J

and thus (w, x, y, z) solves the system:

Summing the first equation over i and the second equation over), we have that



(w, x, y, z) is a solution of:

Combining these two, we have that (w, X, y, z) is a solution of:

41

and thus,

f(w, x, y, z) = ~ (t _7Jhx~. + t _fhz~. + WAw + XAx + YAy + ZAZ)
2 . w~ + x~ . Y)' + z)

~=1 )=1

1 (m w.x- n ?J.z. )<- ~ ~ '1 +~ )) +A +A +A +A .
- 2 ~w·+x. ~-Y'+z, w x y Z

i=l ~ ~ j=l) )

We now seek bounds for Aw + Ax and Ay + Az.

for all i, j. The function g(s, t) = (:s2:b~)~ can be shown to be bounded below by
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a~b and so we have:

which yields:

1 ( w? + x2 'fi +:z2 )---- < t t J J
f(w, X, y, z) -"2 (_. -.)2 + (_ _ )2

W t + X t Yj + Zj

for all i, j. So the lemma is proved in the case that the maximum is achieved in

the set S for some W, X, Y, and Z. If the maximum is not achieved in the set S

for any W, X, Y, and Z, then some of the Wi, Xi, Yj, Zj are zero. But when these

are zero, then those indices do not show up in the sums for the function f. By

simply ignoring these indices we are back in the previous case, but for smaller m

and/or n.

Theorem 111.1. With the above definitions, we have that f(w, x, y, z) ::; ~ whenever

(w, x, y, z) is in the domain of f.

D

2+ 2
Proof When the i-th coordinate of wand x agree, then we have that (:ii+~)2 = ~.

Similarly for y and z. So if wand x agree somewhere and y and z agree

somewhere, then f(w, x, y, z) ::; ~. Otherwise, we prove the bound by

introducing an additional coordinate to each of the vectors w, x, y,and z, being

the same for each and very small, borrowing from some other coordinate to

preserve the sum condition. Specifically, given (w, x, y, z) in the domain of f

with dim(w) = dim(x) = m and dim(y) = dim(z) = n assume that Wk =1= 0 =1= Xk

for some coordinate k and yg =1= 0 =1= Zg for some coordinate e(if there is no such k

for a given (w, x, y, z) then f(w, x, y, z) = '£]=1 Y~~;j ::; ~ by multi-dimensional



Jensen's inequality (similarly for e)). Form the sequences W(E) E jRm+l,

X(E) E jRm+l, Y(f) E jRn+l,Z(E) E jRn+l defined by

{

Wi if i i= k and i ~ m

'Wi (E) := W k - E if i = k

E ifi=m+l

_ { ,'Ti if i i= k and i ~ m

Xi(f):= Xk -E ifi = k

E ifi=m+l

_ ._ {Yi if i i= k and i ~ n

Yi(E).- Yk -E ifi = k

E ifoi=n+l

~ { Zi if i i= k and i ~ n

Zi(E):= Zk - f if'l = k

E ifi=n+l

then (W(E), X(f), Y(E), Z(f)) satisfies the conditions of the previous Lemma 111.3

for small enough Eand so j(W(E), X(f), Y(E), Z(f)) ~ ~ for small f. Since

j (w(f), x(f), y(f), z(E)) is a continuous function of E, we have that

j(w, x, y, z) = j(w(O), x(O), y(O),z(O)) ~ !

Corollary 111.2. With the above definitions, we have
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o
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Proof

o

We now extend this result to more than just two pairs of sequences:

Corollary 111.3. For each i from 1 to k, let (xfi)aiEAi and (yfi)aiEAi be sequences with

Proof This follows by induction and Corrolary 1II.2 since

k k

IIxfi = II L
i=2 QiEAi

o

We can now apply this to our situation with probabilities of
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configurations on a tree:

~ (JID (X~ = (J) - JID (X~ = (J))2
~ JID (XO = (J) + JID (Xl = (J)

aEOv v v

= L (!1WECH lI'(X~(w) ~ awl - !1wECI") lI'(X; (w) ~ awl)'
a ITwEC(V) JID(X~(w) = (Jw) + ITwEC(V) JID(X;(w) = (Jw)

Applying Corollary 111.3, we get that this is less than

L L (JlD (X~(w) = (J) - JID (X~(w) = (J))2
JID (X~(w) = (J) + JID (X;(w) = (J)WEC(v) aEOw

~ ~ (1 - a - b)2 (JlD (X~(w) = (J) - JID (X;(w) = (J))2
= ~ ~ (1 - a + b)JlD (X~(w) = (J) + (1 + a - b)JID (X~(w) = (Jf (111.10)

WEC(v) aEOw

Making use of the inequality (l-a+b)~:(l+a-b)Y ::; I-I~-bl for 0 < x, Y < 1, we get

that (111.10) is less than

(1-a-b)2 L L (JID(X~(w)=(J)-JID(X;(W)=(J))2

1-la - bl JID(X~(w) = (J) + JID(X~(w) = (J)wEC(v) aEOw

Defining

¢(v) = ~ (JlD(X~=(J)-JID(X~=(J))2
~ JID (XO = (J) + JID (Xl = (J)

aEOv v v

and () = (~::::Ia-=-W, we have proved that

¢(v) ::; () L ¢(w)
WEC(v)

(111.11)

For every v E T(IT) with v rJ. IT. This inequality can be used to get a bound on for

the reconstruction problem that is inferior to that which was proved earlier in

this paper, but for which the constant () is the same for a = 0, a = b, and a = b.
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The problem is that the bounds in (IILll) are not good. If we compare the results

that we get for the reconstruction problem by using Corollary IIL3 versus

Lemma IILl, we see that their efficiency comes down to how well the functions

(xx-:t and (.jX - ~)2 handle the respective equivalent of (IILll). That is, both

methods lead to an inequality of the form

rPf(V) :s; e L rPf(w)
wEC(v)

Where eis a constant and the function rP f is of the form

rP(v) = L f (IP (X~ = 0-) ,IP (X; = 0-)).
aEOv

In our bounds for the reconstruction problem, the function f was given by either

f (x, y) = (Xx-:t or f (x, y) = (.jX - ~) 2. These two functions are related by

For all °:s; x, y :s; 1 (with appropriate limits at (0,0)). If we can establish an

inequality of the form

rPf(V) :s; efg L rPg(w),
wEC(v)

We might be able to get a better constant efg if we use f and 9 that satisfy

2 (x _ y)2(vx - vIY) :s; f (x ,y) < 9 (x, y) :s; --'-------------'-­
x+y

Since in this case, relaxing conditions of the functions f and 9 might yield a

smaller efg than in our previous bounds where we took f = g.
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