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DISSERTATION ABSTRACT

Joseph W. Iverson

Doctor of Philosophy

Department of Mathematics

June 2016

Title: Frames Generated by Actions of Locally Compact Groups

Let G be a second countable, locally compact group which is either compact or

abelian, and let ρ be a unitary representation of G on a separable Hilbert space Hρ.

We examine frames of the form {ρ(x)fj : x ∈ G, j ∈ I} for families {fj}j∈I in Hρ. In

particular, we give necessary and sufficient conditions for the joint orbit of a family

of vectors in Hρ to form a continuous frame.

We pay special attention to this problem in the setting of shift invariance. In

other words, we fix a larger second countable locally compact group Γ ⊇ G containing

G as a closed subgroup, and we let ρ be the action of G on L2(Γ) by left translation.

In both the compact and the abelian settings, we introduce notions of Zak transforms

on L2(Γ) which simplify the analysis of group frames. Meanwhile, we run a parallel

program that uses the Zak transform to classify closed subspaces of L2(Γ) which are

invariant under left translation by G. The two projects give compatible outcomes.

This dissertation contains previously published material.
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CHAPTER I

INTRODUCTION

This chapter contains previously published material. In fact, this entire

dissertation is a combination of two previously existing articles. Chapters II and

III were previously published as [42], while Chapter IV will be published as [43]. This

introduction contains portions of the introductions in [42, 43]. The sole exception is

Section 3.4, which is appearing here for the first time. The reader making a citation

is encouraged to refer to the original sources rather than to this compilation.

This dissertation focuses on the interplay between frame theory and

representations of locally compact groups. Broadly speaking, we are interested in

two related questions about a unitary representation π of a locally compact group G:

(Q1) What are the invariant subspaces of π?

and

(Q2) For which families A of vectors in the representation space is the orbit

{π(x)f : x ∈ G, f ∈ A } a frame?

These questions are related in the following way. In general, the vectors {π(x)f : x ∈

G, f ∈ A } may not span the entire representation space, in which case they can

only form a frame for their closed linear span. That span is precisely the invariant

subspace generated by A . In most situations, therefore, one cannot hope to answer

(Q2) without first addressing (Q1).

An overarching theme of this document is the notion that frame theory and

representation theory share deep connections. This goes far beyond the prominence

of reproducing systems associated with group actions. On the face of things, for

1



instance, (Q1) is a question about representation theory, and (Q2) is a question about

frame theory. In Chapter IV, however, we will use tools from frame theory to answer

(Q1), and from representation theory to answer (Q2). In fact, many of the standard

tools of frame theory give vital information about the structure of representations.

For instance, another part of Chapter IV introduces an analogue of the bracket map,

which found its first use in the study of multiresolution analysis [46]. It will turn out

that our version of the bracket carries information about the isotypical components

of a representation and the multiplicities of irreducibles, and in many cases can be

used to test a purported cyclic vector. We will also give a complete description of the

invariant subspaces of an arbitrary representation of a compact group, and explain

how to use one irreducible decomposition to classify all such decompositions. The

main tool for both of these applications is essentially the analysis operator, which

belongs firmly in the toolbox labeled “frame theory”.

1.1. Shift-invariant spaces

Our questions (Q1) and (Q2) have been explored most thoroughly in the context

of shift-invariant spaces, where they made some of their first appearances. From our

perspective, shift-invariant spaces come from the action of G = Zn on L2(Rn) by

integer shifts Tk : L2(Rn)→ L2(Rn),

(Tkf)(x) = f(x− k) for k ∈ Zn, f ∈ L2(Rn), x ∈ Rn.

The frames associated with this representation have the form {Tkfi : k ∈ Zn, i ∈ I}.

They appear most prominently in Gabor systems and multiresolution analysis, with

important applications for wavelets, spline systems, and approximation theory.
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The invariant subspaces of this representation are called shift-invariant, or SI.

In other words, an SI-space is a closed subspace V ⊆ L2(Rn) such that TkV = V

for every k ∈ Zn. In the 1960s, Helson [37] and Srinivasan [57] used range functions

to classify SI-spaces, under the equivalent guise of “doubly invariant spaces”. This

mask was uncovered by de Boor, DeVore, and Ron [22] in 1994, through the lens of

the fiberization operator

T : L2(Rn)→ L2([0, 1]n; `2(Zn))

given by

(T f)(x) =
(
f̂(x+ k)

)
k∈Zn

for f ∈ L2(Rn) and x ∈ [0, 1]n.

In other words, (T f)(x) gives the values of f̂ on the coset x + Zn, in the form of

a sequence which happens to belong to `2(Zn). Fiberization was the key to almost

all research on SI-spaces before 2014, when the paper [42] behind Chapters II–III

and the concurrent work of Hernández and his colleagues [10] introduced the Zak

transform as an alternative. A landmark 2000 paper of Bownik [11] built on [22] to

give an explicit reformulation of Helson’s classification of SI-spaces in terms of range

functions and the fiberization operator. More importantly, he tied this classification

into a broader theory of frames generated by integer shifts in L2(Rn). In other words,

he answered (Q1) and (Q2) for integer shifts in L2(Rn), and he combined his answers

into a single, tidy package.

What followed was a mass effort to extract and generalize the group-theoretic

underpinnings of [11], replacing Rn with a general locally compact abelian (LCA)

group Γ, and Zn with a closed subgroup G ⊆ Γ. Here as in the classical setting,
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G acts on L2(Γ) by translation. The problem is to answer (Q1) and (Q2) for this

representation. Following the blueprint of [11], a variety of authors [13, 14, 49] worked

toward a solution by first imposing and then carefully removing topological hypotheses

on the subgroup G ⊆ Γ.

Before the material in this dissertation appeared, the state of the art required

that Γ/G be compact. This was a major obstruction, because it precluded important

examples like the p-adics Zp ⊆ Qp, as well as basic ones like a lattice Zm ⊆ Rn of

less than full rank. Without this technical assumption, however, it was not clear

how to define the fiberization operator, or even whether such an operator existed.

Our solution in Chapters II and III overcomes this barrier by exhibiting a very

general measure space isomorphism Γ ∼= G × Γ/G which makes fiberization almost

trivial. This leads to a complete characterization of shift-invariance in the abelian

setting. However, the larger contribution of Chapter III is to give an additional

characterization of SI-spaces and frames of translates that replaces fiberization with

a version of the Zak transform. The Zak transform shifts the burden of Fourier

analysis from the large group Γ to the small group G, thereby eliminating the need

for Γ to be abelian. This allows for much more sophisticated examples, like the non-

normal copy of R in the ax + b group. At the same time, it produces a description

of shift-invariant spaces in L2(Rn) more amenable to the theory of Gabor systems,

where the Zak transform plays a prominent role.

In Chapter IV, we push these ideas much further in the nonabelian direction,

even removing the assumption that the subgroup G be abelian. Instead, we require G

to be compact. Once again leveraging the measure space isomorphism from Chapter

II, we develop an operator-valued version of the Zak transform for L2(Γ). This forms

the basis for a range-function characterization of shift-invariant spaces and frames
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of translates in the nonabelian setting. Along with the characteristically different

papers [9, 19], this forms one of the first successful excursions into the world of shift

invariance without commutativity assumptions.

1.2. Group frames

Frames of the form in (Q2) are called group frames. The vectors f ∈ A are

called generators. If card(A ) = 1, the frame is said to have a single generator ;

otherwise, it has multiple generators. Group frames are reproducing systems made

by leveraging the natural symmetries of a Hilbert space. This often results in a certain

austere beauty, and eases the surrounding calculations. In particular, the reproducing

properties of group frames can be greatly simplified by the aid of the representation.

When there is a single generator f , for instance, the frame operator S lies in the

commutant of π. This means that when one wants to reproduce a vector g with the

formula

g =

∫
G

〈g, S−1π(x)f〉π(x)f dx,

there is no need to actually find the canonical dual {S−1π(x)f : x ∈ G}. It suffices

to compute S−1f and then observe that

〈g, S−1π(x)f〉 = 〈π(x−1)g, S−1f〉.

In practice, this means we just have to make a one-time payment to find the inverse

image of a single vector, and after that we can reproduce vectors to our hearts’ content

until the end of time.

Group frames are at least as old as modern frame theory; in a sense, they are

even older. A 1985 paper of Grossmann, Morlet, and Paul [33] describes a method for
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constructing reproducing systems using irreducible representations of locally compact

groups. In modern language, we would call those systems “tight frames”. The

landmark 1986 paper of Daubechies, Grossmann, and Meyer [20], which revived

modern interest in frames, leaned heavily on [33], and described Gabor systems and

wavelets in terms of unitary representations of the Weyl-Heisenberg and ax+b groups,

respectively.

One of the first systematic treatments of general group frames appeared in the

2000 monograph of Han and Larson [36], which established many of their operator-

theoretic properties. Actually constructing examples in the sense of (Q2), however,

was another issue. After wavelets and Gabor systems, some of the first examples were

harmonic frames, which are made by extracting rows from a discrete Fourier transform

(DFT) matrix. Harmonic frames are associated with actions of abelian groups, and

were studied by several independent authors in the early 2000s [16, 24, 29, 30, 58].

The nonabelian case has proved more difficult. It has long been known that when G

is finite and the representation π is irreducible, any single nonzero vector generates

a tight frame in the sense of (Q2). The first progress on reducible representations of

finite nonabelian groups was made by Vale and Waldron [59] in 2008. By decomposing

the representation as a direct sum of irreducibles, they established a neat condition for

a single vector to generate a tight frame. This was the state of the art in nonabelian

group frames for quite some time. It was not clear how to extend this result to

allow frames with unequal bounds or, more annoyingly, multiple generating vectors.

As recently as 2013, Waldron [61] described characterizing frames with multiple

generators as a major unsolved problem in this area.

In the specific context of shift-invariant spaces, however, frames with multiple

generators have been routinely characterized since at least the work of Ron and Shen
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[55] in 1995. Borrowing from this tradition, our work in Chapter IV uses shift-

invariant spaces as a kind of all-purpose machine for the theory of group frames,

resulting in a characterization of general group frames in the compact setting—

including frames with multiple generators. This takes the form of a very general

duality theorem. Around the same time as the paper behind Chapter IV was released,

Vale and Waldron [60] independently found a solution of the multiple generator

problem in the special case of finite groups and tight frames. As it turned out,

their main result was a special case of the duality theorem in Chapter IV.

1.3. Bracket analysis

Another line of research on group frames stems from the bracket map introduced

by Jia and Micchelli [46] in 1991 for the analysis of principal shift-invariant spaces. In

2010, Hernández, Šikić, Weiss, and Wilson [39] developed a notion of the bracket map

for a special class of representations of LCA groups. Representations that admit a

bracket are called “dual integrable”. Weiss and his collaborators used the bracket to

describe single generator frames made by dual integrable representations of discrete

abelian groups. In [42], I found a way to connect this problem with shift-invariance

on LCA groups, which led to an extension of the results in [39] for general (not

necessarily discrete) LCA groups and, significantly, multiple generators.

Bracket analysis is user-friendly in the sense that it does not require any

understanding of an irreducible decomposition for the representation. On the other

hand, it may be extremely difficult to actually compute a bracket in practice, even

when abstract machinery guarantees its existence. Our work in Chapter IV solves this

problem in the case of compact groups. Expanding on the ideas in [39], we give an

operator-valued version of the bracket that works for any representation of a compact
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group. Importantly, the bracket can be computed directly from the representation

itself, still without requiring knowledge of the representation’s structure. On the

contrary, a major application of the bracket lies in its ability to compute that structure

from first principles. This is an important example of frame theory paying down

its debt to representation theory. The expanded version of the bracket still works

for group frames with a single generator. In fact, the whole package of bracket

analysis is flexible enough to produce a complete classification of single generator

frames associated with actions of compact groups. This, in turn, leads to a number

of new examples, including a generalization of the harmonic frame construction for

nonabelian groups.

1.4. Overview

This document is organized as follows. Chapter II contains top-level machinery

necessary for the sequel. In Section 2.1, we investigate a common source of frames

and Riesz bases in a measure-theoretic setting. Let X be a measure space, and

let H be a separable Hilbert space. Any two functions f : X → C and ϕ : X →

H can be multiplied pointwise, with product (fϕ)(x) = f(x)ϕ(x). Given a basis-

like set D ⊆ L2(X) and a family A ⊆ L2(X;H), we give conditions under which

{fϕ : f ∈ D, ϕ ∈ A } forms a continuous frame or a Riesz sequence in L2(X;H). The

main results here are Theorems 2.1.3 and 2.1.10, relating frame and Riesz sequence

conditions in L2(X;H) to the corresponding pointwise conditions in H. This section

is meant as a companion to the recent work by Bownik and Ross [13, §2] on range

functions and multiplicative invariance in the measure-theoretic setting.

In Section 2.2, we develop a version of Weil’s formula for right cosets. Given

a closed subgroup Γ ⊆ G, we produce a measure on the space Γ\G that allows
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for a measure space isomorphism G ∼= Γ × Γ\G. This isomorphism is the key to

our development of the abstract Zak transform and fiberization map in Section 3.1.

There we give a wide variety of examples, and describe connections between the Zak

transform and the fiberization map in the abelian setting.

Actions of abelian groups are the focus of Chapter III. To begin, we fix an abelian

subgroup H ⊆ G, and consider its action on L2(G) by left translations Lξ : L2(G)→

L2(G):

(Lξf)(x) = f(ξ−1x) for f ∈ L2(G), ξ ∈ H, and x ∈ G.

A closed subspace V ⊆ L2(G) satisfying the condition LξV = V for all ξ ∈ H will

be called H-translation invariant, or H-TI. In Section 3.2, we give our main results

classifying H-TI spaces in terms of fiberization and/or the Zak transform. Here we

also describe conditions under which the left H-translates of a family of functions

in L2(G) form a continuous frame or a Riesz sequence. At the end of this section,

we analyze translation/modulation-invariant spaces under critical sampling in the

abelian setting.

In Section 3.3, we consider the related problem of invariant subspaces for

dual integrable representations of locally compact abelian (LCA) groups, introduced

by Hernández, Šikić, Weiss, and Wilson in [40]. We show that dual integrable

representations are precisely those gotten from the translation action of an abelian

subgroup, as in Section 3.2. We then give a range function classification of invariant

subspaces. Moreover, we explain when the orbit of a family of vectors produces

a continuous frame. If the group is discrete, we do the same for Riesz sequences.

Our results generalize those in [40], which treated discrete LCA groups and cyclic

subspaces. Section 3.4, an addendum to the original article [42], makes the connection
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between group frames and shift invariant spaces explicit, and serves as a bridge

between the two articles that make up this dissertation.

Chapter IV deals with actions of compact groups. The first part, Sections 4.1–

4.3, investigates questions (Q1) and (Q2) for actions of compact groups by translation.

Let G be a second countable locally compact group, and let K ⊆ G be a compact

subgroup. The purpose of these sections is to describe the structure of closed

subspaces of L2(G) which are invariant under left translation by K. We call these

spaces K-invariant. Our first major development occurs in Section 4.1, where we

introduce an operator-valued analogue of the Zak transform, generalizing a classical

construction of Weil [62, 63] and Gelfand [28]. It forms the basis for much of our

subsequent analysis. In Section 4.2, we use range functions to classify K-invariant

subspaces of L2(G), and explore this correspondence in depth. This line of thinking

comes to a culmination in Section 4.3, where we give precise conditions for a family

of functions in L2(G) to generate a frame via left translation by K.

The second part of the paper, Sections 4.4 and 4.5, describes a symbolic calculus

for the analysis of representations of compact groups. We introduce an operator-

valued version of the bracket map first developed for the study of principal shift-

invariant spaces by Jia and Micchelli [46], and subsequently generalized for actions of

locally compact abelian (LCA) groups by Weiss and his collaborators [39], then by a

variety of authors in other settings [7, 8, 9]. Our main result, Theorem 4.4.3, gives

the frame properties of the orbit of a cyclic vector in terms of the eigenvalues of the

bracket. We develop basic properties of the bracket in Section 4.4. Several of these

show the bracket carries vital information about the structure of the representation

itself. Section 4.5 contains a host of applications: classification of group frames

with a single generator, block diagonalization of the Gramian operator, disjointness
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properties, and several new examples of frames, including a generalization of harmonic

frames for nonabelian groups.

The third part, Section 4.6, is dedicated to group frames with multiple generators.

Here we mimic the program of Sections 4.1–4.3 for an arbitrary representation ρ of a

compact group K, assuming only that we know how to decompose ρ as a direct sum

of irreducible subrepresentations. We classify the invariant subspaces of ρ using range

functions and a sort of analysis operator, then describe every possible decomposition

of the representation space as a direct sum of irreducible invariant subspaces. The

capstone of this section is the duality result in Theorem 4.6.1, which answers (Q2)

for arbitrary representations of compact groups. Our result unifies classical duality

of frames and Riesz sequences with, among other things, the pioneering work of Vale

and Waldron [58, 59, 60], and the well-known result that the orbit of a nonzero vector

under an irreducible representation of K always forms a tight frame. We hope that

this theorem, and many of the other ideas in this document, will give some clues for

subsequent research on group frames.
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CHAPTER II

ABSTRACT MACHINERY

This chapter was previously published as [42, §2–3].

2.1. Frames and Riesz bases in L2(X;H)

Let A be a countable family of functions in L2(Rn), and let

E(A ) = {Tkf : k ∈ Zn, f ∈ A },

where Tkf(y) = f(y − k). In [11], Bownik studied E(A ) through the fiberization

map T : L2(Rn)→ L2([0, 1)n; l2(Zn)) given by

T f(x) = (f̂(x+ k))k∈Zn for x ∈ [0, 1)n,

where the Fourier transform on Rn is normalized by

f̂(x) =

∫
Rn
f(ξ)e−2πiξ·x dξ for x ∈ Rn and f ∈ L1(Rn).

The utility of T comes from the intertwining relation

T (Tkf)(x) = e2πik·xT f(x) for all k ∈ Zn,

so that integer shifts in L2(Rn) become modulations by an orthonormal basis of

L2([0, 1)n) in L2([0, 1)n; l2(Zn)). Taking advantage of this correspondence, Bownik

gave sufficient and necessary conditions for E(A ) to form a frame or a Riesz basis
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for its closed linear span. Later, Cabrelli and Paternostro [14] and Kamyabi Gol and

Raisi Tousi [49] generalized this method to the setting of a second countable LCA

group G with a closed discrete subgroup H such that G/H is compact. Bownik and

Ross [13] have gone even further by removing the hypothesis that H be discrete,

replacing frames with so-called continuous frames. Each of these papers achieves its

goal by transforming L2(G) into a space L2(X;H), with X a measure space and H

a Hilbert space, in such a way that translations by the subgroup H ⊆ G become

modulations by a nice family of functions in L∞(X). In this section, we consider the

latter situation more generally. Namely, for a countable family A ⊆ L2(X;H) and

a basis-like family D of functions on X, we investigate conditions under which the

family of functions {gϕ : g ∈ D, ϕ ∈ A } given by

(gϕ)(x) = g(x) · ϕ(x) for x ∈ X

form a continuous frame or a Riesz basis for their closed linear span. This work

is complementary to a recent publication by Bownik and Ross [13, §2] extending

Helson’s theory of multiplicative invariance [38]. We now describe their main results.

Definition 2.1.1. Let (X,µ) be a measure space. A determining set for L1(X) is a

family of functions D ⊆ L∞(X) with the property that, for all f ∈ L1(X),

∫
X

f(x)g(x) dµ(x) = 0 for all g ∈ D =⇒ f = 0.

Given a separable Hilbert space H, a closed subspace M ⊆ L2(X;H) is said to be

D-multiplication invariant, or D-MI, if for every g ∈ D and every ϕ ∈M , the function
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(gϕ)(x) = g(x)ϕ(x) also belongs to M . Given a family A in L2(X;H), we define

SD(A ) = span{gϕ : g ∈ D, ϕ ∈ A }

for the D-MI space it generates, and

ED(A ) = {gϕ : g ∈ D, ϕ ∈ A }.

We will consider ED(A ) as a set with multiplicities.

A range function is a mapping

J : X → {closed subspaces of H}.

For a range function J and x ∈ X, we write PJ(x) : H → H for the orthogonal

projection onto J(x). We say that J is a measurable range function if, for each

(u, v) ∈ H ×H, the function x 7→ 〈PJ(x)u, v〉 is measurable on X.

Range functions have a long history in the classification of invariant subspaces,

dating at least as far back as Helson [37] and Srinivasan [57] in 1964. More recently,

Bownik [11] used range functions to classify shift invariant subspaces of L2(Rn). This

program was continued in increasing generality by Cabrelli and Paternostro [14],

Kamyabi Gol and Raisi Tousi [49], Currey, Mayeli, and Oussa [19], and Bownik and

Ross [13]. Our results in Sections 3.2 and 3.3 continue this line of research.

The proposition below is a slight modification of Theorem 2.4 in [13]. See also

Srinivasan [57, Theorem 3] and Helson [37, Lecture VI, Theorem 8] and [38, Ch. 1,

§3, Theorem 1].
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Proposition 2.1.2. Let (X,µ) be a σ-finite measure space, let D be a determining

set for L1(X), and let H be a separable Hilbert space.

(i) If J : X → {closed subspaces of H} is a range function, then

MJ = {ϕ ∈ L2(X;H) : ϕ(x) ∈ J(x) for a.e. x ∈ X}

is a closed D-MI subspace of L2(X;H).

(ii) The correspondence J 7→ MJ is a bijection between measurable range functions

and closed D-MI subspaces of L2(X;H), provided we identify range functions

that agree a.e. on X.

(iii) Let A be a family of functions in L2(X;H), let A0 ⊆ A be a countable dense

subset, and let J be the range function defined almost everywhere by

J(x) = span{ϕ(x) : ϕ ∈ A0}. (2.1)

Then

MJ = SD(A0) = SD(A ). (2.2)

Proof. In [13], Proposition 2.1 and Theorem 2.4 prove everything except the fact

that SD(A0) = SD(A ). One inclusion in this equality is obvious. For the other, let

ϕ ∈ A be arbitrary, and let {ϕk}∞k=1 be a sequence in A0 with ϕk → ϕ. By passing

to a subsequence if necessary, we may assume that ϕk(x)→ ϕ(x) a.e. Since J maps

X into the set of closed subspaces, ϕ(x) ∈ J(x) for a.e. x ∈ X. In other words,

ϕ ∈MJ = SD(A0). Since this holds for every ϕ ∈ A , SD(A ) ⊆ SD(A0).
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2.11. Riesz sequences

We remind the reader that a countable family (ui)i∈I of vectors in a Hilbert space

H is called a Riesz sequence if there are constants 0 < A ≤ B <∞ such that for all

(ci)i∈I ∈ l2(I) with ci 6= 0 for only finitely many i,

A
∑
i∈I

|ci|2 ≤

∥∥∥∥∥∑
i∈I

ciui

∥∥∥∥∥
2

≤ B
∑
i∈I

|ci|2. (2.3)

The constants A and B are called bounds. When a Riesz sequence spans a dense

subspace of H, it is called a Riesz basis.

The following theorem is an abstract version of [11, Theorem 2.3(ii)]. Our proof

is a modification of the argument given there. See also [14, Theorem 4.3] and [13,

Theorem 5.1].

Theorem 2.1.3. Let (X,µ) be a measure space with µ(X) < ∞, and let H be a

Hilbert space. For a countable family A in L2(X;H) and constants 0 < A ≤ B <∞,

the following are equivalent:

(i) For some orthonormal basis D of L2(X), {gϕ : g ∈ D and ϕ ∈ A } is a Riesz

sequence in L2(X;H) with bounds A and B.

(ii) For any Riesz sequence (gi)i∈I in L2(X) with bounds a and b, {giϕ : i ∈ I and ϕ ∈ A }

is a Riesz sequence in L2(X;H) with bounds aA and bB.

(iii) For any family (fϕ)ϕ∈A in L2(X) having fϕ 6= 0 for only finitely many ϕ,

A
∑
ϕ∈A

∫
X

|fϕ(x)|2 dµ(x) ≤
∫
X

∥∥∥∥∥∑
ϕ∈A

fϕ(x)ϕ(x)

∥∥∥∥∥
2

dµ(x) ≤ B
∑
ϕ∈A

∫
X

|fϕ(x)|2 dµ(x).

(2.4)

(iv) For any family (fϕ)ϕ∈A in L2(X) with
∑

ϕ∈A ‖fϕ‖
2
L2(X) <∞, (2.4) holds.
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(v) For almost every x ∈ X, {ϕ(x) : ϕ ∈ A } is a Riesz sequence in H with bounds

A and B.

Condition (iii) can be read as a strictly stronger version of the usual definition

of Riesz sequence, where the coefficient sequence (cϕ)ϕ∈A in l2(A ) has been replaced

with a function sequence (fϕ)ϕ∈A in l2(A ;L2(X)).

Proof of Theorem 2.1.3. (iii) =⇒ (v). Suppose there is a set Y ⊆ X of positive

measure such that, for each x ∈ Y , {ϕ(x) : ϕ ∈ A } is not a Riesz sequence in H

because it fails the upper bound of (2.3). We’ll show that (2.4) fails in the upper

bound. Let {dm}∞m=1 be a dense subset of l2(A ) such that each dm = (dm,ϕ)ϕ∈A has

only finitely many nonzero entries. For each m,n ∈ N, put

Em,n = {x ∈ X :

∥∥∥∥∥∑
ϕ∈A

dm,ϕϕ(x)

∥∥∥∥∥
2

>

(
B +

1

n

)∑
ϕ∈A

|dm,ϕ|2},

which is well-defined up to a set of measure zero. If x /∈
⋃∞
m,n=1Em,n, then

∥∥∥∥∥∑
ϕ∈A

dm,ϕϕ(x)

∥∥∥∥∥
2

≤ B
∑
ϕ∈A

|dm,ϕ|2 for all m,

so {ϕ(x) : ϕ ∈ A } satisfies the upper bound of the Riesz condition with bound B.

Consequently, one of the sets Em,n has µ(Em,n) > 0, and for this m and n we define

a family of functions (fϕ)ϕ∈A ⊆ L2(X) by the formula fϕ(x) = dm,ϕ1Em,n(x). Only

finitely many of these functions are nonzero, yet

∫
X

∥∥∥∥∥∑
ϕ∈A

fϕ(x)ϕ(x)

∥∥∥∥∥
2

dµ(X) =

∫
X

1Em,n(x)

∥∥∥∥∥∑
ϕ∈A

dm,ϕϕ(x)

∥∥∥∥∥
2

dµ(X)

≥
∫
X

1Em,n(x) ·
(
B +

1

n

)∑
ϕ∈A

|dm,ϕ|2 dµ(x) =

(
B +

1

n

)∫
X

∑
ϕ∈A

|dm,ϕ1Em,n(x)|2 dµ(x)
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=

(
B +

1

n

)∑
ϕ∈A

∫
X

|fϕ(x)|2 dµ(x).

Thus the upper bound in (iii) fails. In other words, the upper bound in (iii) implies

the upper bound in (v). A similar argument applies for the lower bounds.

(v) =⇒ (ii). Let (gi)i∈I be a Riesz sequence in L2(X) with bounds a and b, and

let (ci,ϕ)i∈I,ϕ∈A be a sequence in l2(I ×A ) having only finitely many nonzero terms.

If (v) holds, then for a.e. x ∈ X we apply the Riesz condition with the sequence

(
∑

i∈I ci,ϕgi(x))ϕ∈A to deduce

A
∑
ϕ∈A

∣∣∣∣∣∑
i∈I

ci,ϕgi(x)

∣∣∣∣∣
2

≤

∥∥∥∥∥∑
ϕ∈A

(∑
i∈I

ci,ϕgi(x)

)
ϕ(x)

∥∥∥∥∥
2

H

≤ B
∑
ϕ∈A

∣∣∣∣∣∑
i∈I

ci,ϕgi(x)

∣∣∣∣∣
2

.

Integrating this inequality over X produces

A
∑
ϕ∈A

∥∥∥∥∥∑
i∈I

ci,ϕgi

∥∥∥∥∥
2

L2(X)

≤

∥∥∥∥∥∑
ϕ∈A

∑
i∈I

ci,ϕgiϕ

∥∥∥∥∥
2

L2(X;H)

≤ B
∑
ϕ∈A

∥∥∥∥∥∑
i∈I

ci,ϕgi

∥∥∥∥∥
2

L2(X)

. (2.5)

Meanwhile, for any ϕ ∈ A we apply the Riesz condition in L2(X) to deduce

a
∑
i∈I

|ci,ϕ|2 ≤

∥∥∥∥∥∑
i∈I

ci,ϕgi

∥∥∥∥∥
2

L2(X)

≤ b
∑
i∈I

|ci,ϕ|2.

Adding over all ϕ ∈ A and combining with (2.5) gives

aA
∑
ϕ∈A

∑
i∈I

|ci,ϕ|2 ≤

∥∥∥∥∥∑
ϕ∈A

∑
i∈I

ci,ϕgiϕ

∥∥∥∥∥
2

L2(X;H)

≤ bB
∑
ϕ∈A

∑
i∈I

|ci,ϕ|2.

In other words, {giϕ : i ∈ I and ϕ ∈ A } is a Riesz sequence with bounds aA and bB.

(ii) =⇒ (i). This is immediate.
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(i) =⇒ (iii). Suppose L2(X) has an orthonormal basis D for which

{gϕ : g ∈ D, ϕ ∈ A }

is a Riesz sequence with bounds A,B. First, let (pϕ)ϕ∈A be a family in the finite

linear span of D ⊆ L2(X), with pϕ 6= 0 for only finitely many ϕ. Writing

pϕ(x) =
∑
g∈D

cg,ϕg(x)

for appropriate constants cg,ϕ, we have (by definition)

∫
X

∥∥∥∥∥∑
ϕ∈A

pϕ(x)ϕ(x)

∥∥∥∥∥
2

dµ(x) =

∥∥∥∥∥∑
ϕ∈A

∑
g∈D

cg,ϕgϕ

∥∥∥∥∥
2

and (by Parseval’s identity)

∑
ϕ∈A

∫
X

|pϕ(x)|2 dµ(x) =
∑
ϕ∈A

∑
g∈D

|cg,ϕ|2.

Since {gϕ : g ∈ D, ϕ ∈ A } is a Riesz sequence, and since cg,ϕ 6= 0 for only finitely

many indices (g, ϕ),

A
∑
ϕ∈A

∫
X

|pϕ(x)|2 dµ(x) ≤
∫
X

∥∥∥∥∥∑
ϕ∈A

pϕ(x)ϕ(x)

∥∥∥∥∥
2

dµ(x) ≤ B
∑
ϕ∈A

∫
X

|pϕ(x)|2 dµ(x),

(2.6)

Now let (fϕ)ϕ∈A be a family of functions in L2(X), as in (iii). For each ϕ ∈ A ,

there is a sequence {pϕ,k}∞k=1 of functions in the finite linear span of D such that

pϕ,k → fϕ in L2(X). By passing to a subsequence if necessary, we may assume that

pϕ,k(x) → fϕ(x) almost everywhere on X. Moreover, we can assume that pϕ,k = 0
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when fϕ = 0, so that for each k, only finitely many pϕ,k 6= 0. By Fatou’s Lemma and

(2.6),

∫
X

∥∥∥∥∥∑
ϕ∈A

fϕ(x)ϕ(x)

∥∥∥∥∥
2

dµ(x) ≤ lim inf
k→∞

∫
X

∥∥∥∥∥∑
ϕ∈A

pϕ,k(x)ϕ(x)

∥∥∥∥∥
2

dµ(x)

≤ lim inf
k→∞

B
∑
ϕ∈A

∫
X

|pϕ,k(x)|2 dµ(x) = B
∑
ϕ∈A

∫
X

|fϕ(x)|2 dµ(x).

In other words, the upper bound holds in (2.4).

It remains to prove the lower bound. To do this, we will upgrade the first

inequality above to an equality. Previously, we showed that the upper bound in (iii)

implies the upper bound in (v). Thus, for any sequence (cϕ)ϕ∈A in l2(A ) having only

finitely many nonzero entries,

∥∥∥∥∥∑
ϕ∈A

cϕϕ(x)

∥∥∥∥∥
2

≤ B
∑
ϕ∈A

|cϕ|2 for a.e. x ∈ X.

In particular, ‖ϕ(x)‖2 ≤ B for all ϕ ∈ A and a.e. x ∈ X. Therefore,

∫
X

‖fϕ(x)ϕ(x)− pϕ,k(x)ϕ(x)‖2 dµ(x) =

∫
X

|fϕ(x)− pϕ,k(x)|2 ‖ϕ(x)‖2 dµ(x)

≤ B

∫
X

|fϕ(x)− pϕ,k(x)|2 dµ(x).

Since pϕ,k → fϕ in L2(X), pϕ,kϕ→ fϕϕ in L2(X;H). In particular,

∫
X

‖pϕ,k(x)ϕ(x)‖2 dµ(x)→
∫
X

‖fϕ(x)ϕ(x)‖2 dµ(x).

Now (2.4) follows from (2.6).

20



(iii) ⇐⇒ (iv). Obviously (iv) implies (iii). Suppose conversely that (iii) holds.

Without loss of generality, we may assume that A is infinite, and then we can

enumerate A = (ϕk)
∞
k=1. Let (fk)

∞
k=1 be a sequence of functions in L2(X) such

that
∑∞

k=1 ‖fk‖
2
L2(X) <∞. By Tonelli’s Theorem,

∫
X

∞∑
k=1

|fk(x)|2 dµ(x) =
∞∑
k=1

∫
X

|fk(x)|2 dµ(x) <∞,

so (fk(x))∞k=1 ∈ l2(N) for a.e. x ∈ X. We have shown that (iii) implies (v). Thus

(ϕk(x))∞k=1 is a Riesz sequence for a.e. x ∈ X. Applying the synthesis operator, we

find that the sum
∑∞

k=1 fk(x)ϕk(x) converges unconditionally for a.e. x ∈ X.

For each n ∈ N, (iii) gives

A
n∑
k=1

∫
X

|fk(x)|2 dµ(x) ≤
∫
X

∥∥∥∥∥
n∑
k=1

fk(x)ϕk(x)

∥∥∥∥∥
2

dµ(x) ≤ B
n∑
k=1

∫
X

|fk(x)|2. (2.7)

Moreover, Fatou’s Lemma and another application of (iii) show that

∫
X

∥∥∥∥∥
∞∑
k=1

fk(x)ϕk(x)−
n∑
k=1

fk(x)ϕk(x)

∥∥∥∥∥
2

dµ(x) =

∫
X

lim
N→∞

∥∥∥∥∥
N∑

k=n+1

fk(x)ϕk(x)

∥∥∥∥∥
2

dµ(x)

≤ lim inf
N→∞

∫
X

∥∥∥∥∥
N∑

k=n+1

fk(x)ϕk(x)

∥∥∥∥∥
2

dµ(x) ≤ lim inf
N→∞

B
N∑

k=n+1

∫
X

|fk(x)|2 dµ(x)

= B
∞∑

k=n+1

‖fk‖2
L2(X) .
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Thus
∑n

k=1 fkϕk →
∑∞

k=1 fkϕk in L2(X;H)-norm. Completeness shows that∑∞
k=1 fkϕk ∈ L2(X;H), and continuity of the norm gives

lim
n→∞

∫
X

∥∥∥∥∥
n∑
k=1

fk(x)ϕk(x)

∥∥∥∥∥
2

dµ(x) =

∫
X

∥∥∥∥∥
∞∑
k=1

fk(x)ϕk(x)

∥∥∥∥∥
2

dµ(x).

Sending n→∞ in (2.7) establishes (iv).

Remark 2.1.4. The theorem above holds when µ(X) =∞, but only vacuously. Indeed,

the hypothesis that µ(X) <∞ was never used. However, if A is any countable family

in L2(X;H) satisfying (v), then ‖ϕ(x)‖2 ≥ A for every ϕ ∈ A and a.e. x ∈ X. Hence,

∫
X

‖ϕ(x)‖2 dµ(x) ≥ Aµ(X) =∞

for each ϕ ∈ A , so that A = ∅.

2.12. Continuous frames

Definition 2.1.5. Let H be a Hilbert space, and let (M, µM) be a measure space.

A family of vectors (ut)t∈M in H is called a continuous frame over M for H if both

of the following hold:

(i) For each v ∈ H, the function t 7→ 〈v, ut〉 is measurable M→ C.

(ii) There are constants 0 < A ≤ B < ∞, called frame bounds, such that for each

v ∈ H,

A ‖v‖2 ≤
∫
M
|〈v, ut〉|2 dµM(t) ≤ B ‖v‖2 .

When A = B, the frame is called tight, and when A = B = 1, it is a continuous

Parseval frame.
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In practice, it is enough to check condition (ii) for v in a dense subset of H. See

[53, Proposition 2.5]. Continuous frames were introduced independently by Kaiser

[48] and Ali, Antoine, and Gazou [2]. WhenM is a countable set and µM is counting

measure, continuous frames reduce to the usual discrete version.

Definition 2.1.6. Let (X,µX) be a measure space. A Parseval determining set

for L1(X) consists of another measure space (M, µM) and a family of functions

(gt)t∈M ⊆ L∞(X) such that for each f ∈ L1(X), the mapping

t 7→
∫
X

f(x)gt(x) dµX(x)

is measurable on M, and

∫
M

∣∣∣∣∫
X

f(x)gt(x) dµX(x)

∣∣∣∣2 dµM(t) =

∫
X

|f(x)|2 dµX(x). (2.8)

We allow that both sides may be infinite.

This definition axiomatizes Lemma 3.5 of [13]. If (gt)t∈M is a Parseval

determining set for L1(X), then so is (gt)t∈M, by taking complex conjugates in the

integrands above. It follows easily that a Parseval determining set is a determining

set in the sense of Definition 2.1.1.

In the sections that follow, our primary example of a Parseval determining set

will be the characters of an LCA group; see Lemma 3.2.2 infra. For another example,

suppose that X is equipped with counting measure. If M is a countable set with

counting measure, then a family (gt)t∈M in l2(X) ⊆ l∞(X) is a Parseval determining
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set for L1(X) if and only if

∑
t∈M

∣∣∣∣∣∑
x∈X

f(x)gt(x)

∣∣∣∣∣
2

=
∑
x∈X

|f(x)|2 for all f ∈ l1(X) ⊆ l2(X),

if and only if (gt)t∈M is a discrete Parseval frame for l2(X).

If we relax our conditions and allow (X,µ) to be an arbitrary σ-finite measure

space, then any Parseval determining set (gt)t∈M in L∞(X) ∩ L2(X) satisfies the

Parseval condition on the dense subspace L1(X)∩L2(X) ⊆ L2(X), so it is a Parseval

frame for L2(X). However, not every Parseval frame for L2(X) consisting of functions

in L∞(X) is a Parseval determining set for L1(X).1 Indeed, for any f ∈ L1([0, 1]) \

L2([0, 1]) there is an orthonormal basis (gn)∞n=1 ⊆ C([0, 1]) for L2([0, 1]) such that∫
fgn = 0 for every n; see [47, Satz 613]. For these functions, the left hand side of

(2.8) is infinite, but the right hand side is zero.

Definition 2.1.7. Let (X,µX) and (M, µM) be measure spaces, and let H be a

separable Hilbert space. We say a family (ϕt)t∈M in L2(X;H) is jointly measurable

if there is a function Φ: M×X → H satisfying the conditions:

(i) For a.e. t ∈M, Φ(t, ·) = ϕt a.e. on X.

(ii) For any u ∈ H, the function (t, x) 7→ 〈Φ(t, x), u〉 is measurable on M×X.

By Pettis’s Measurability Theorem [51, Theorem 1.1], condition (ii) says precisely

that Φ: M×X → H is measurable with respect to the Borel σ-algebra on H. In the

case where H = L2(Y ), this is equivalent to another kind of pointwise measurability

property, which we describe in Corollary 2.1.9 below.

1The author thanks Prof. Alexander Olevskii for his help answering this question.
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Intuitively, joint measurability means that the function (t, x) 7→ ϕt(x) is

measurable on M × X. However, this notion may depend on the choice of

representative functions ϕt : X → H. In the sequel, we will often ignore this subtlety

and integrate expressions involving ϕt(x) over M×X. When this happens, it is to

be assumed that we have fixed a measurable function Φ: M×X → H as above.

We expect that the next proposition is already known. However, we have not

been able to locate a reference. Therefore, we supply a proof.

Proposition 2.1.8. Let (M, µM) and (Y, µY ) be σ-finite measure spaces, with

(M, µM) complete. For a family (ft)t∈M in L2(Y ), the following are equivalent:

(i) There is a measurable function F : M× Y → C such that, for a.e. t ∈ M,

F (t, ·) = ft a.e. on Y .

(ii) For each g ∈ L2(Y ), the function t 7→ 〈ft, g〉 is measurable on M.

Proof. First assume that (i) holds. Find a sequence of simple measurable functions

Sn : M× Y → C such that Sn(t, y) → F (t, y) for all (t, y) ∈ M, with |Sn(t, y)| ≤

|F (t, y)|. Using the σ-finite conditions, we may assume that each Sn has support

contained in a measurable rectangle with finite measure. For every g ∈ L2(Y ) and

every n, Hölder’s Inequality yields

∫
M

∫
Y

|Sn(t, y)g(y)| dµY (y) dµM(t)

≤
∫
M

(∫
Y

|Sn(t, y)|2 dµY (y)

)1/2(∫
Y

|g(y)|2 dµY (y)

)1/2

dµM(t)

<∞.
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Therefore Fubini’s Theorem applies to the function (t, y) 7→ Sn(t, y)g(y), and in

particular the function

t 7→
∫
Y

Sn(t, y)g(y) dµY (y)

is well defined a.e. and measurable onM. Now the Lebesgue Dominated Convergence

Theorem shows that

〈ft, g〉 =

∫
Y

F (t, y)g(y) dµY (y) = lim
n→∞

∫
Y

Sn(t, y)g(y) dµY (y)

for a.e. t ∈M. Hence the function t 7→ 〈ft, g〉 is the a.e. pointwise limit of measurable

functions, and is itself measurable.

Suppose conversely that (ii) holds. By Pettis’s Measurability Theorem, the

function t 7→ ft is measurableM→ L2(Y ); hence t 7→ ‖ft‖ is measurable onM. An

easy exercise now shows that the measurable space M admits another measure µ̃M

for which ∫
M
‖ft‖2 dµ̃M(t) <∞.

Since we are concerned only with measurability, we may replace µM with µ̃M and

assume that the function t 7→ ft belongs to L2(M;L2(Y )). The usual identification

of L2(M× Y ) with L2(M;L2(Y )) now proves (i). (See for instance [54, Theorem

II.10(c)].)

Corollary 2.1.9. Let (X,µX), (Y, µY ), and (M, µM) be complete, σ-finite measure

spaces. A family (ϕt)t∈M in L2(X;L2(Y )) is jointly measurable if and only if there is

a measurable function Φ: M×X ×Y → C such that for a.e. t ∈M, for a.e. x ∈ X,

Φ(t, x, ·) = ϕt(x) a.e. on Y . Consequently, the notion of “joint measurability” remains
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unchanged when we identify L2(X;L2(Y )) with L2(X × Y ) = L2(X × Y ;C), or with

L2(Y ;L2(X)).

Proof. Apply Proposition 2.1.8 to the family (ϕt(x))(t,x)∈M×X ⊆ L2(Y ). We leave it

to the reader to check the details surrounding sets of measure zero.

The next theorem is an abstract version of [11, Theorem 2.3(i)], whose argument

we follow. See also [14, Theorem 4.2] and [13, Theorem 5.1].

Theorem 2.1.10. Let (X,µX) and (M, µM) be σ-finite measure spaces, and let D =

(gs)s∈M be a Parseval determining set for L1(X). Fix a separable Hilbert space H,

another σ-finite measure space (N , µN ), and a jointly measurable familiy A = (ϕt)t∈N

in L2(X;H). Let A0 ⊆ A be a countable dense subset, and define J as in (2.1). For

constants 0 < A ≤ B <∞, the following are equivalent:

(i) ED(A ) forms a continuous frame for SD(A ) over M×N , with bounds A and

B. That is,

A

∫
X

‖ψ(x)‖2 dµX(x) ≤
∫
N

∫
M

∣∣∣∣∫
X

〈ψ(x), gs(x)ϕt(x)〉 dµX(x)

∣∣∣∣2 dµM(s) dµN (t)

≤ B

∫
X

‖ψ(x)‖2 dµX(x)

for all ψ ∈ SD(A ).

(ii) For a.e. x ∈ X and every u ∈ J(x),

A ‖u‖2 ≤
∫
N
|〈u, ϕt(x)〉|2dµN (t) ≤ B ‖u‖2 .

We are tempted to interpret condition (ii) to mean that the family ((ϕt)(x))t∈N

forms a continuous frame for J(x) for a.e. x ∈ X. However, when A is uncountable,
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the vectors ϕt(x) need not reside in J(x). A more precise interpretation says that

{PJ(x)[ϕt(x)] : t ∈ N} forms a continuous frame for J(x) for a.e. x ∈ X.

The theorem significantly reduces the problem of determining when ED(A ) forms

a continuous frame. For instance, when A ⊆ L2(X;H) is a countable family equipped

with counting measure, condition (ii) says that for a.e. x ∈ X, {ϕ(x) : ϕ ∈ A } forms

a discrete frame for J(x). Thus, a continuous problem in L2(X;H) reduces to a

discrete problem in H. The reduction is even more pronounced when A consists of

a single function ϕ ∈ L2(X;H). In that case, (ii) reduces to

(ii’) For a.e. x ∈ X, either ϕ(x) = 0 or A ≤ ‖ϕ(x)‖2 ≤ B.

Proof of Theorem 2.1.10. Joint measurability of A ensures that the integrals above

are well defined; use Tonelli’s Theorem for the integral in condition (ii). For each

ψ ∈ SD(A ), we compute

∫
N

∫
M

∣∣∣∣∫
X

〈ψ(x), gs(x)ϕt(x)〉 dµX(x)

∣∣∣∣2 dµM(s) dµN (t) (2.9)

=

∫
N

∫
M

∣∣∣∣∫
X

〈ψ(x), ϕt(x)〉gs(x) dµX(x)

∣∣∣∣2 dµM(s)dµN (t)

=

∫
N

∫
X

|〈ψ(x), ϕt(x)〉|2 dµX(x) dµN (t)

=

∫
X

∫
N
|〈ψ(x), ϕt(x)〉|2 dµN (t) dµX(x),

since D is a Parseval determining set for L1(X).

If (ii) holds, then (2.2) shows that

A ‖ψ(x)‖2 ≤
∫
N
|〈ψ(x), ϕt(x)〉|2 dµN (t) ≤ B ‖ψ(x)‖2

for all ψ ∈ SD(A ) and a.e. x ∈ X. Integrating over X and applying (2.9) proves (i).
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Suppose conversely that (ii) fails. Fix a countable dense subset {um}∞m=1 ⊆ H.

For a.e. x ∈ X, it follows that {PJ(x)um}∞m=1 is a dense subset of J(x). Given

m,n ∈ N, define

Em,n =

{
x ∈ X :

∫
N
|〈PJ(x)um, ϕt(x)〉|2 dµN (t) >

(
B +

1

n

)
‖PJ(x)um‖2

}
Fm,n =

{
x ∈ X :

∫
N
|〈PJ(x)um, ϕt(x)〉|2 dµN (t) <

(
A− 1

n

)
‖PJ(x)um‖2

}
,

each of which is well-defined up to a set of measure zero. For a.e. x /∈
⋃∞
m,n=1(Em,n ∪

Fm,n),

A ‖PJ(x)um‖2 ≤
∫
N
|〈PJ(x)um, ϕt(x)〉|2 dµN (t) ≤ B ‖PJ(x)um‖2 for all m ∈ N,

so that {PJ(x)[ϕt(x)]}t∈N forms a frame for J(x) with bounds A,B. Therefore at

least one set Em,n or Fm,n has positive measure. In the first case, fix a Borel set

E ⊆ Em,n with 0 < µX(E) <∞, and define θ ∈ L2(X;H) by

θ(x) = 1E(x) · PJ(x)um.
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Since we used strict inequality in the definition of Em,n, ‖θ(x)‖ > 0 on E. Moreover,

θ ∈ SD(A ) by (2.2), and (2.9) shows that

∫
N

∫
M

∣∣∣∣∫
X

〈θ(x), gs(x)ϕt(x)〉 dµX(x)

∣∣∣∣2 dµM(s) dµN (t)

=

∫
X

∫
N
|〈θ(x), ϕt(x)〉|2 dµN (t) dµX(x)

=

∫
X

1E(x) ·
∫
N
|〈PJ(x)um, ϕt(x)〉|2 dµN (t) dµX(x)

≥
∫
X

1E(x) ·
(
B +

1

n

)
‖PJ(x)um‖2 dµX(x)

=

(
B +

1

n

)∫
X

‖θ(x)‖2 dµX(x).

Thus (i) fails. A similar argument shows that (i) fails when µX(Fm,n) > 0. This

completes the proof.

2.2. A Weil formula for right cosets

Let G be a second countable locally compact group, and let Γ ⊆ G be a closed

subgroup. We emphasize that these groups need not be abelian. Our purpose is to

examine the measure-theoretic interplay between G, Γ, and the topological quotients

G/Γ and Γ\G; the latter is the space of right cosets of Γ in G. Our main result is

the existence of a measure on Γ\G for which G ∼= Γ × Γ\G as measure spaces, and

for which the resulting unitary U : L2(G) → L2(Γ× Γ\G) is well behaved under left

translation by Γ.

There is a positive regular Borel measure µG on G, called (left) Haar measure,

such that ∫
G

f(yx) dµG(x) =

∫
G

f(x) dµG(x) (2.10)
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for all f ∈ L1(G, µG) and all y ∈ G. This measure is unique up to multiplication

by a scalar c > 0. Fix a scale once and for all. Equation (2.10) generally fails if we

replace yx with xy. However, there is a continuous function ∆G : G→ (0,∞), called

the modular function, such that

∫
G

f(xy) dµG(x) = ∆G(y−1)

∫
G

f(x) dµG(x) (2.11)

and ∫
G

f(x−1) dµG(x) =

∫
G

f(x)∆G(x−1) dµG(x) (2.12)

for all f ∈ L1(G, µG) and y ∈ G. When ∆G ≡ 1, G is called unimodular. The

modular function is a homomorphism with respect to multiplication on (0,∞), and

it is independent of the choice of Haar measure on G. The subgroup Γ also has a

modular function ∆Γ and a left Haar measure µΓ, whose scale we also fix.

A rho function for the pair (G,Γ) is a continuous map ρ : G → (0,∞) with the

property that

ρ(xξ) = ρ(x)
∆Γ(ξ)

∆G(ξ)

for all x ∈ G and all ξ ∈ Γ. Such a function always exists; fix a choice once and for

all, taking ρ = 1 if possible. There is a unique positive regular Borel measure µG/Γ

on G/Γ such that

∫
G

f(x)ρ(x) dµG(x) =

∫
G/Γ

∫
Γ

f(xξ) dµΓ(ξ) dµG/Γ(xΓ) (2.13)

for all f ∈ L1(G). See Folland [26, Section 2.6] and Reiter and Stegeman [55,

Section 8.2]. In particular, the inner integral does not depend on the choice of

coset representative for xΓ, the mapping ξ 7→ f(xξ) belongs to L1(Γ) for µG/Γ-a.e.
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xΓ ∈ G/Γ, and the function xΓ 7→
∫

Γ
f(xξ) dµΓ(ξ) is measurable on G/Γ. The

associated measure µG/Γ is strongly quasi-invariant under the action of G, in the

sense that

∫
G/Γ

f(y−1xΓ) dµG/Γ(xΓ) =

∫
G/Γ

f(xΓ)
ρ(yx)

ρ(x)
dµG/Γ(xΓ) (2.14)

for all f ∈ Cc(G/Γ) and all y ∈ G. In particular, µG/Γ is invariant under the action

of G if and only if ρ = 1; this can happen if and only if ∆Γ = ∆G|Γ. In that case,

(2.13) becomes Weil’s formula,

∫
G

f(x) dµG(x) =

∫
G/Γ

∫
Γ

f(xξ) dµΓ(ξ) dµG/Γ(xΓ) for all f ∈ L1(G). (2.15)

For instance, when Γ is normal in G, any choice of left Haar measure on G/Γ is

invariant under the action of G. Therefore we can take ρ = 1, and by (2.14), µG/Γ is

the unique left Haar measure on G/Γ that satisfies (2.15).

By a well-known result of Feldman and Greenleaf [25], there is a Borel measurable

function τ : G/Γ → G with the property that q ◦ τ = idG/Γ, where q is the quotient

mapping onto G/Γ. In effect, τ chooses a representative for each coset of Γ in G,

and it does it in a measurable way. We call such a function a Borel section for G/Γ.

To describe τ , it suffices to give its fundamental domain τ(G/Γ), since τ(xΓ) is the

unique element of τ(G/Γ) ∩ xΓ. Moreover, τ is a Borel measurable function if and

only if its fundamental domain is a Borel subset of G. As remarked in [25], τ can be

chosen such that, whenever K ⊆ G/Γ is compact, τ(K) has compact closure in G.

Fix a section τ with this property once and for all, and let T : Γ×G/Γ→ G be the

associated bijection

T (ξ, xΓ) = τ(xΓ)ξ.

32



Proposition 2.2.1. The function T described above is an isomorphism of measure

spaces

T :
(
Γ×G/Γ, dµΓ ⊗ dµG/Γ

)
→ (G, ρ dµG) .

This result was stated in a section of notes by Folland [26, §2.7]. However, its

proof was only sketched, and an important detail was missing. The full proof relies

on the remarkable lemma below. We remind the reader that a separable topological

space is called Polish if it admits a complete metric. Every second countable locally

compact Hausdorff space is Polish, and the product of Polish spaces is Polish; see

Kechris [48, Theorem 5.3, Proposition 3.3]. The lemma below is Theorem 14.12 of

[48].

Lemma 2.2.2. Let X and Y be Polish spaces. Then every Borel measurable bijection

f : X → Y is an isomorphism of Borel spaces. That is, f−1 is also Borel measurable.

Proof of Proposition 2.2.1. For each ξ ∈ Γ, the function Tξ : G/Γ → G given by

Tξ(xΓ) = T (ξ, xΓ) = τ(xΓ)ξ is Borel measurable; and for each xΓ ∈ G/Γ, the

function T xΓ : Γ → G given by T xΓ(ξ) = T (ξ, xΓ) = τ(xΓ)ξ is continuous. It follows

that T is Borel measurable (see for instance [48, Exercise 11.3]). By Lemma 2.2.2

and (2.13), T is an isomorphism of measure spaces.

Corollary 2.2.3. There is a unitary U : L2(G, µG) → L2(Γ× G/Γ, µΓ ⊗ µG/Γ) such

that

Uf(ξ, xΓ) =
f(τ(xΓ)ξ)√
ρ(τ(xΓ)ξ)

for all f ∈ L2(G), µΓ-a.e. ξ ∈ Γ, and µG/Γ-a.e. xΓ ∈ G/Γ.

Proof. Let V : L2(G, dµG) → L2(G, ρ dµG) be the isometric isomorphism given by

V (f) = f/
√
ρ. Follow V by W : L2(G, ρ dµG) → L2(Γ × G/Γ, dµΓ ⊗ dµΓ⊗G/Γ),

W (g) = g ◦ T . The resulting unitary is U .
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If we are willing to sacrifice invariance under the action of G, we can eliminate the

rho function in the results above by replacing left cosets with right. Denote qL : G→

G/Γ and qR : G→ Γ\G for the respective quotient maps, and ε : Γ\G→ G/Γ for the

homeomorphism ε(Γx) = x−1Γ. If i : G → G is the inversion map, one easily checks

that ε ◦ qR ◦ i = qL, as shown below.

G

qL
��

i // G

qR
��

G/Γ

τ

BB

Γ\Gε
oo

Define γ : Γ\G→ G by γ = i ◦ τ ◦ ε, that is,

γ(Γx) =
[
τ(x−1Γ)

]−1
. (2.16)

We claim that γ is a Borel section for Γ\G. Indeed, ε ◦ qR ◦ i ◦ τ = qL ◦ τ = idG/Γ, so

qR ◦ i ◦ τ = ε−1. Hence

qR ◦ γ = qR ◦ i ◦ τ ◦ ε = ε−1 ◦ ε = idΓ\G.

The claim follows once we observe that γ is formed by composing τ with

homeomorphisms on either side, so it is Borel. Moreover, it inherits the property

from τ , that whenever K ⊆ Γ\G is compact, γ(K) has compact closure in G.

Theorem 2.2.4. There is a unique positive regular Borel measure µΓ\G on Γ\G such

that ∫
G

f(x) dµG(x) =

∫
Γ\G

∫
Γ

f (ξγ(Γx)) dµΓ(ξ) dµΓ\G(Γx) (2.17)
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for all f ∈ L1(G). In particular, ξ 7→ f(ξγ(Γx)) belongs to L1(Γ) for µΓ\G-a.e.

Γx ∈ Γ\G, and the function Γx 7→
∫

Γ
f(ξγ(Γx)) dµΓ(ξ) is measurable on Γ\G. If

ε : Γ\G→ G/Γ is the homeomorphism ε(Γx) = x−1Γ, then

∫
Γ\G

f(Γx) dµΓ\G(Γx) =

∫
G/Γ

f(ε−1(xΓ))
1

ρ(τ(xΓ))∆G(τ(xΓ))
dµG/Γ(xΓ) (2.18)

for f ∈ L1(Γ\G).

Proof. We’ll first show that (2.18) defines a measure µΓ\G on Γ\G satisfying (2.17).

Recall that the image of a compact set in G/Γ has compact closure in G. If f : G→ R

is any continuous function, it follows that f ◦ τ : G/Γ → R is Borel measurable and

bounded on compact subsets. In particular, xΓ 7→ 1
ρ(τ(xΓ))∆G(τ(xΓ))

is a locally µG/Γ-

integrable function on G/Γ, and we can use it to define a positive regular Borel

measure dµ̃G/Γ = 1
(ρ·∆G)◦τ dµG/Γ. Since ε : Γ\G→ G/Γ is a homeomorphism, there is

a positive regular Borel measure µΓ\G on Γ\G given by dµΓ\G(Γx) = dµ̃G/Γ(ε(Γx)).

For a Borel set E ⊆ Γ\G, this means that

∫
Γ\G

1E(Γx) dµΓ\G(Γx) = µΓ\G(E) = µ̃G/Γ(ε(E))

=

∫
G/Γ

1ε(E)(xΓ)
1

ρ(τ(xΓ))∆G(τ(xΓ))
dµG/Γ(xΓ)

=

∫
G/Γ

1E(ε−1(xΓ))
1

ρ(τ(xΓ))∆G(τ(xΓ))
dµG/Γ(xΓ).

It follows that (2.18) holds for all f ∈ L1(Γ\G, µΓ\G).

35



Given f ∈ L1(G), use (2.13) to compute

∫
G

f(x) dµG(x) =

∫
G

f(x−1)

ρ(x)
∆G(x−1)ρ(x) dµG(x)

=

∫
G/Γ

∫
Γ

f((xξ)−1)

ρ(xξ)
∆G((xξ)−1) dµΓ(ξ) dµG/Γ(xΓ)

=

∫
G/Γ

∫
Γ

f(ξ−1τ(xΓ)−1)

ρ(τ(xΓ)ξ)
∆G(ξ−1τ(xΓ)−1) dµΓ(ξ) dµG/Γ(xΓ)

=

∫
G/Γ

∫
Γ

f(ξ−1γ(Γx−1))∆G(ξ)

ρ(τ(xΓ))∆Γ(ξ)
∆G(ξ−1)∆G(τ(xΓ)−1) dµΓ(ξ) dµG/Γ(xΓ)

=

∫
G/Γ

∫
Γ

f (ξ−1γ(ε−1(xΓ)))

ρ(τ(xΓ))∆G(τ(xΓ))
∆Γ(ξ−1) dµΓ(ξ) dµG/Γ(xΓ).

Using the inversion formula (2.12) on Γ, we obtain

∫
G

f(x) dµG(x) =

∫
G/Γ

∫
Γ

f
(
ξγ(ε−1(xΓ))

)
dµΓ(ξ)

1

ρ(τ(xΓ))∆G(τ(xΓ))
dµG/Γ(xΓ)

=

∫
Γ\G

∫
Γ

f(ξγ(Γx)) dµΓ(ξ) dµΓ\G(Γx).

Therefore µΓ\G satisfies (2.17).

It remains to prove uniqueness. Recall from Folland [26, Proposition (2.48)] that

the periodization operator P : Cc(G)→ Cc(G/Γ) given by

(Pf)(xΓ) =

∫
Γ

f(τ(xΓ)ξ) dµΓ(ξ)

is surjective, and if φ ∈ Cc(G/Γ) is nonnegative, we can find nonnegative f ∈ Cc(G)

with Pf = φ. By an argument analogous to the one given in [26, Proposition (2.48)],
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there is a surjective operator P̃ : Cc(G)→ Cc(Γ\G) given by

(P̃ f)(Γx) =

∫
Γ

f(ξγ(Γx)) dµΓ(ξ),

and for φ ∈ Cc(Γ\G) with φ ≥ 0, we can find f ≥ 0 in Cc(G) with P̃ f = φ; we leave

it to the reader to make the necessary adjustments. Moreover, (2.17) shows that

when f, g ∈ Cc(G) are functions with P̃ f = P̃ g,
∫
G
f(x) dµG(x) =

∫
G
g(x) dµG(x).

Therefore P̃ f 7→
∫
G
f(x) dµG(x) is a well-defined positive linear functional on

Cc(Γ\G), and by the uniqueness in the Riesz Representation Theorem, there is only

one positive regular Borel measure µΓ\G satisfying (2.17).

A word of warning: this measure is not usually invariant under the right action

of G, even when an invariant measure exists, unless G is unimodular. Indeed, a right

invariant measure on Γ\G, suitably normalized, would cause (2.17) to hold with right

Haar measure on G in place of the left Haar measure µG. A staightforward (but

tedious) computation involving (2.18) and (2.14) produces

∫
Γ\G

f(Γxy) dµΓ\G(Γx)

=

∫
Γ\G

f(Γx)
ρ (γ(Γx)−1) ∆G (γ(Γx)−1)

ρ (γ(Γxy−1)−1) ∆G (γ(Γxy−1)−1)

ρ (yx−1)

ρ (x−1)
dµΓ\G(Γx)

for all f ∈ Cc(Γ\G) and y ∈ G.

Remark 2.2.5. When Γ is discrete and µΓ is counting measure, γ identifies (Γ\G, µΓ\G)

as a measure space with (γ(Γ\G), µG), but when Γ is not discrete, µG(γ(Γ\G)) = 0.

To see this, let E ⊆ γ(Γ\G) be a Borel set with µG(E) < ∞, and use (2.17) to
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compute

µG(E) =

∫
G

1E(x) dµG(x) =

∫
Γ\G

∫
Γ

1E(ξγ(Γx)) dµΓ(ξ) dµΓ\G(Γx)

=

∫
Γ\G

µΓ({1}) · 1E(γ(Γx)) dµΓ\G(Γx) = µΓ({1})
∫

Γ\G
1γ−1(E)(Γx) dµΓ\G(Γx)

= µΓ({1}) · µΓ\G(γ−1(E)).

Lemma 2.2.2 shows that γ preserves the Borel σ-algebra, and the claim follows.

Theorem 2.2.6. The mapping

T :
(
Γ× Γ\G, dµΓ ⊗ dµΓ\G

)
→ (G, dµG)

given by T (ξ,Γx) = ξγ(Γx) is a measure space isomorphism.

Proof. It follows from Lemma 2.2.2 and (2.17) just as Proposition 2.2.1 did.

Corollary 2.2.7. There is a unitary map U : L2(G, µG) → L2(Γ × Γ\G, µΓ ⊗ µΓ\G)

such that

Uf(ξ,Γx) = f(ξγ(Γx))

for all f ∈ L2(G), µΓ-a.e. ξ ∈ Γ, and µΓ\G-a.e. Γx ∈ Γ\G.

Remark 2.2.8. When Γ is a normal subgroup of G, we have defined two measures

on the coinciding quotient spaces G/Γ = Γ\G, namely µG/Γ and µΓ\G. In the most

general setting, these measures need not be equal, but they are related in a way that

we now describe. For arbitrary f ∈ Cc(G/Γ), we compute

∫
Γ\G

f(Γx) dµΓ\G(Γx) =

∫
G/Γ

f(Γx−1)∆G(τ(xΓ)−1)dµG/Γ(xΓ)
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=

∫
G/Γ

f(Γx−1)∆G(γ(Γx−1))dµG/Γ(xΓ).

Since Γ is normal in G, µG/Γ is a left Haar measure on G/Γ. Denoting ∆G/Γ for the

modular function on G/Γ, and identifying Γx−1 with x−1Γ, we compute

∫
Γ\G

f(Γx) dµΓ\G(Γx) =

∫
G/Γ

f(xΓ)∆G(γ(Γx))∆G/Γ(x−1Γ) dµG/Γ(xΓ),

by (2.12). Thus,

dµΓ\G =
∆G ◦ γ
∆G/Γ

dµG/Γ. (2.19)

There is another way to compute the Radon-Nikodym derivative that is

sometimes useful. For each x ∈ G, there is a unique number δ(x) > 0 such that

∫
Γ

f(xξx−1) dµΓ(ξ) = δ(x)

∫
Γ

f(ξ) dµΓ(ξ)

for all f ∈ L1(Γ). In fact, δ(x) = ∆G(x)
∆G/Γ(xΓ)

. (See Nachbin [50, Chapter II, Propositions

16 and 22].) Thus we can take any function f ∈ L1(Γ) with nonzero integral that we

like, and compute

∆G(γ(Γx))

∆G/Γ(xΓ)
= δ(γ(xΓ)) =

∫
Γ

f
(
γ(Γx)ξγ(Γx)−1

)
dµΓ(ξ) ·

(∫
Γ

f(ξ) dµΓ(ξ)

)−1

.

For instance, in the case where Γ is compact and normal, we can take f = 1 in

the formula above to see that ∆G◦γ
∆G/Γ

= 1, and therefore µΓ\G = µG/Γ. Likewise,

µΓ\G = µG/Γ when Γ is a closed subgroup in the center of G.

Example 2.2.9. Let G be the affine group on R consisting of transformations x 7→

ax + b with a > 0. As a topological space, we identify G with (0,∞)× R; its group
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laws are then given by

(a, b) · (c, d) = (ac, b+ ad) and (a, b)−1 = (1/a,−b/a).

The modular function is ∆G(a, b) = 1/a, and a left Haar measure is given by

dµG(a, b) =
da db

a2
.

Let H be the normal subgroup

H = {(1, b) ∈ G : b ∈ R},

and let

K = {(a, 0) ∈ G : a > 0}.

Then H ∼= (R,+), K ∼= (R+,×), and G = H o K. In particular, G/H ∼= K. We

choose Borel sections τH : G/H → G and τK : G/K → G given by

τH((a, b)H) = (a, 0) and τK((a, b)K) = (1, b).

The associated sections γH : H\G→ G and γK : K\G→ G then have formulae

γH(H(a, b)) = (a, 0) and γK(K(a, b)) = (1, b/a).

For Haar measures on H and K, we choose dµH(1, b) = db and dµK(a, 0) = da/a,

respectively. Let us compute the measures on the respective quotients. Since H is

a normal subgroup, µG/H is the unique choice of left Haar measure on G/H ∼= K ∼=
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(R+,×) satisfying (2.15); an easy computation shows that

dµG/H((a, b)H) = dµK(a, 0) =
da

a
.

Then by (2.19),

dµH\G(H(a, b)) =
∆G(γH(H(a, b)))

∆G/H((a, b)H)
dµG/H(a, b) = ∆G(a, 0)

da

a
=
da

a2
.

On the other hand, K is not a normal subgroup, and since ∆G(a, 0) 6= ∆K(a, 0)

there is no invariant measure on G/K. However, a rho function is given by ρK(a, b) =

a, and the associated quasi-invariant measure on G/K ∼= R is

dµG/K((a, b)K) = db,

as the reader can easily verify.

The interested reader can now compute µK\G using (2.18). We proceed straight

to the punchline. Since G/K is homeomorphic with R via (1, b)K 7→ b, and since

(1, b)−1 = (1,−b), composing with ε : K\G → G/K on the left and with b 7→ −b on

the right shows that K\G ∼= R via K(1, b) 7→ b. In particular, there is a positive

regular Borel measure µK\G on K\G given by

dµK\G(K(1, b)) = db.
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For any f ∈ Cc(G), we compute

∫
K\G

∫
K

f
(

(a, 0) · γ(K(1, b))
)
dµK(a, 0) dµK\G(K(1, b))

=

∫
K\G

∫
K

f
(
(a, 0) · (1, b)

)
dµK(a, 0) dµK\G(K(1, b))

=

∫
R

∫
R+

f(a, ab)
da

a
db =

∫
R

∫
R+

f(a, b)
da db

a2
=

∫
G

f(a, b) dµG(a, b).

Therefore µK\G satisfies (2.17). In other words, K(1, b) 7→ b identifies K\G with R

as both a topological space and a measure space.
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CHAPTER III

ACTIONS OF ABELIAN GROUPS

This chapter was previously published as [42, §4–6].

3.1. The Zak transform and fiberization

Let G be a second countable locally compact group with a closed abelian

subgroup H, with notation as in the last section. In this section we develop a

generalized version of the Zak transform for the pair (G,H).

We begin with a short reminder of terminology on locally compact abelian (LCA)

groups. Let G be an LCA group, and let µG be a Haar measure on G. We denote Ĝ for

the dual group of G, which consists of continuous homomorphisms α : G → T under

pointwise multiplication, with the topology of uniform convergence on compact sets.

The Fourier transform of f ∈ L1(G) is the function f̂ ∈ C0(Ĝ) given by

f̂(α) =

∫
G
f(x)α(x−1) dµG(x).

For any choice of Haar measure on Ĝ, the Fourier transform maps L1(G) ∩ L2(G)

onto a dense subspace of L2(Ĝ), and for a unique choice µĜ this map is an isometry.

That choice of µĜ is called dual to µG; it is always the measure we have in mind.

With dual Haar measure on Ĝ, the Fourier transform extends uniquely to a unitary

map FG : L2(G)→ L2(Ĝ). We also call FG the Fourier transform, and we also denote

f̂ = FGf for f ∈ L2(G). When g ∈ L2(Ĝ), we denote ǧ = F−1
G g. For any f ∈
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L1(G) + L2(G), the Fourier transform satisfies the following intertwining relation:

(Lyf)∧(α) = α(y−1)f̂(α) for y ∈ G, α ∈ Ĝ.

The dual of Ĝ can be identified with G as follows. Each x ∈ G defines a character

Xx on Ĝ given by Xx(α) = α(x), and the mapping x 7→ Xx is a topological group

isomorphism of G with
ˆ̂G. This is called Pontryagin Duality. When

ˆ̂G is identified

with G in this way, µG gives the measure dual to µĜ.

If Γ ⊆ G is a closed subgroup, its annihilator in Ĝ is the closed subgroup

Γ∗ = {κ ∈ Ĝ : κ(ξ) = 1 for all ξ ∈ Γ}.

The subgroups Γ ⊆ G, Γ∗ ⊆ Ĝ, and their quotients are all canonically related through

duality. First, each κ ∈ Γ∗ defines a character κ̂ ∈ (G/Γ)∧ by the formula

κ̂(xΓ) = κ(x), (3.1)

and the mapping κ 7→ κ̂ identifies Γ∗ with (G/Γ)∧ as topological groups. Likewise,

Ĝ/Γ∗ identifies with Γ̂ through the mapping ωΓ∗ 7→ ω|Γ. Moreover, the dual measures

on Ĝ, Γ∗ ∼= (G/Γ)∧, and Ĝ/Γ∗ ∼= Γ̂ satisfy Weil’s formula (2.15).

Given f : G → C and a coset Hx ∈ H\G, we will write fHx : H → C for the

function

fHx(ξ) = f(ξγ(Hx)),
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where γ : H\G → G is the Borel section from (2.16). Given ϕ : Ĥ → L2(H\G), we

define functions ϕHx : Ĥ → C for a.e. Hx ∈ H\G with the formula

ϕHx(α) = ϕ(α)(Hx).

Theorem 3.1.1. There is a unitary transformation Z : L2(G) → L2(Ĥ;L2(H\G))

given by

(Zf)(α)(Hx) = f̂Hx(α) for all f ∈ L2(G), a.e. α ∈ Ĥ, and a.e. Hx ∈ H\G.

(3.2)

Its inverse is given by

(Z−1ϕ)(ξγ(Hx)) = }ϕHx(ξ) for all ϕ ∈ L2(Ĥ;L2(H\G)), a.e. ξ ∈ H, (3.3)

and a.e. Hx ∈ H\G.

When f ∈ L2(G) and ξ ∈ H, Z satisfies the relation

(ZLξf)(α) = α(ξ−1) · (Zf)(α) (3.4)

for a.e. α ∈ Ĥ.

Proof. Construct a sequence of unitaries

L2(G)
U1→ L2(H×H\G)

U2→ L2(H\G;L2(H))
U3→ L2(H\G;L2(Ĥ))

U4→ L2(Ĥ;L2(H\G)),
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where U1 is the isomorphism from Corollary 2.2.7, U3 is the unitary given by

(U3ϕ)(Hx) = ϕ̂(Hx),

and all others are the natural isomorphisms. Let Z = U4U3U2U1. Then

(U2U1f)(Hx)(ξ) = (U1f)(ξ,Hx) = f(ξγ(Hx)) = fHx(ξ),

and

(Zf)(α)(Hx) = (U4U3U2U1f)(α)(Hx) = (U3U2U1f)(Hx)(α) = [(U2U1f)(Hx)]∧(α)

= f̂Hx(α).

This proves (3.2). A similar computation verifies (3.3). Moreover, for every f : G→ C

and every ξ ∈ H,

(Lξf)Hx(η) = (Lξf)(ηγ(Hx)) = f(ξ−1ηγ(Hx)) = fHx(ξ−1η) = Lξ(f
Hx)(η).

Hence, for f ∈ L2(G) and ξ ∈ H,

(ZLξf)(α)(Hx) = [(Lξf)Hx]∧(α) = [Lξ(f
Hx)]∧(α) = α(ξ−1)f̂Hx(α)

= α(ξ−1) · (Zf)(α)(Hx),

as in (3.4).

We call Z the Zak transform, for reasons that will soon be obvious. Whenever

we find it useful, we will freely interpret Z as the unitary Z̃ : L2(G)→ L2(Ĥ ×H\G)
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given by

(Z̃f)(α,Hx) = (Zf)(α)(Hx) = f̂Hx(α).

We emphasize that both Z and the measure used to construct L2(H\G) depend on

the choice of Borel section γ. Our construction of the Zak transform generalizes the

definition given by Weil in [62, pp. 164–165] to the case where G is nonabelian; see

Example 3.1.2(vi) below. For more on the history of the Zak transform, we refer the

reader to [39].

Example 3.1.2. We now compute Z in a wide variety of concrete settings.

(i) Z ⊆ R. To justify our usage of “Zak transform”, we first compute Z for

the subgroup Z ⊆ R. Take Lebesgue measure for µR and counting measure for µZ.

We use the fundamental domain [0, 1). Since Z is discrete, the associated section γ

identifies (Z\R, µZ\R) with the interval [0, 1) under Lebesgue measure, as explained

in Remark 2.2.5. From this perspective, f t+Z(k) = f(t+ k) for f : R→ C, t ∈ [0, 1),

and k ∈ Z. When Ẑ is identified with T, the Zak transform becomes the map

Z : L2(R)→ L2(T;L2([0, 1))) which for f ∈ L1(R) ∩ L2(R) is given by

(Zf)(z)(t) = f̂ t+Z(z) =
∑
k∈Z

f t+Z(k)z−k =
∑
k∈Z

f(t+ k)z−k.

If we further identify T with the interval [0, 1) under Lebesgue measure, Z can be

thought of as the map Z̃ : L2(R)→ L2([0, 1)× [0, 1)) given by

(Z̃f)(s, t) =
∑
k∈Z

f(t+ k)e−2πiks (3.5)

for f ∈ L1(R) ∩ L2(R) and s, t ∈ [0, 1). This is exactly the classical Zak transform.
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(ii) Zm ⊆ Rn. More generally, let m and n be positive integers with m ≤ n, and think

of Zm as the subgroup of Rn consisting of vectors with integers in the first m entries

and zeros in the last n−m. A fundamental domain is given by [0, 1)m × Rn−m, and

since Zm is discrete, the associated section γ : Zm\Rn → Rn identifies the measure

space (Zm\Rn, µZm\Rn) with [0, 1)m×Rn−m under Lebesgue measure. Identifying Ẑm

with [0, 1)m ⊆ Rm as above, we can think of the Zak transform as a unitary

Z̃ : L2(Rn)→ L2([0, 1)m × [0, 1)m × Rn−m)

which for f ∈ L1(Rn) ∩ L2(Rn) is given by

(Z̃f)(s, t, x) =
∑
k∈Zm

f(t+ k, x)e−2πik·s. (3.6)

(iii) Rm ⊆ Rn. Let m and n be positive integers with m ≤ n, and consider Rm as

the subgroup of Rn consisting of vectors with zeros in the last n −m entries. Then

Rm\Rn ∼= Rn−m with Lebesgue measure, by (2.13) and Remark 2.2.8. Our section

γ : Rn−m → Rn will be given by

γ(xm+1, . . . , xn) = (0, . . . , 0, xm+1, . . . , xn).

Identifying R̂m with Rm in the usual way, we can view the Zak transform for Rm ⊆ Rn

as a unitary

Z : L2(Rn)→ L2(Rm;L2(Rn−m))
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which for f ∈ L1(Rn) ∩ L2(Rn) is given by

(Zf)(ξ)(y) =

∫
Rm

f(x, y)e−2πiξ·x dx. (3.7)

(iv) Zp ⊆ Qp. Let p be a prime number, and let Qp be the locally compact field of

p-adic numbers

x =
∞∑
j=m

cjp
j

for m ∈ Z and cj ∈ {0, 1, . . . , p− 1}. The topology on Qp is given by the p-adic norm

| · |p; for x as above with cm 6= 0, |x|p = p−m. Any two elements of Qp can be added

or multiplied in the obvious way, and under these operations Qp is a locally compact

field. Consider Qp as an LCA group under addition, and let Zp be the compact open

subgroup of p-adic integers

Zp = {x ∈ Qp : |x|p ≤ 1} =

{
∞∑
j=0

cjp
j : cj ∈ {0, 1, . . . , p− 1}

}
.

A fundamental domain for Zp is

Ω =

{
−1∑
j=m

cjp
j : m ∈ Z<0, cj ∈ {0, 1, . . . , p− 1}

}
.

Since Zp is open in Qp, the quotient Zp\Qp is discrete, and the section γ : Zp\Qp → Qp

associated with Ω is automatically Borel. Moreover, the image of a compact set

automatically has compact closure, as required.

Identify Q̂p with Qp as follows. For x =
∑∞

j=m cjp
j ∈ Qp, we abbreviate

e±2πix = exp

(
±2πi

−1∑
j=m

cjp
j

)
.
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Each y ∈ Qp then defines a character ωy ∈ Q̂p by the formula ωy(x) = e2πiyx, and the

mapping y 7→ ωy is a topological group isomorphism of Qp with Q̂p. Moreover,

Z∗p = {ωξ : ξ ∈ Zp}.

Hence Ẑp ∼= Q̂p/Z∗p is the discrete group of characters ωy|Zp for y ∈ Ω.

When Haar measures are normalized so that µQp(Zp) = µZp(Zp) = 1, the dual

measure on Ẑp is counting measure. Counting measure on Zp\Qp also causes (2.17)

to hold. Identifying both Ẑp and Zp\Qp with Ω makes the Zak transform a unitary

Z̃ : L2(Qp)→ l2(Ω× Ω)

which for f ∈ L1(Qp) ∩ L2(Qp) is given by

(Z̃f)(x, y) =

∫
Zp
f(y + ξ)e−2πixξ dµZp(ξ). (3.8)

(v) R ⊆ ax + b. Let G be the ax + b group described in Example 2.2.9. For the

normal subgroup

H = {(1, b) ∈ G : b ∈ R} ∼= (R,+),

we identify Ĥ with R in the usual way. When L2(H\G) is identified with

L2(R+, dx/x
2) via x 7→ H(x, 0), the Zak transform becomes a unitary ZH : L2(G)→

L2(R;L2(R+, dx/x
2)) which for f ∈ L1(G) ∩ L2(G) is given by

(ZHf)(ξ)(a) =

∫
R
f(a, b)e−2πiξb db.
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On the other hand, the subgroup

K = {(a, 0) ∈ G : a > 0}

is isomorphic with (R+,×), and its dual can be identified with (R,+) under the

pairing

ξ̂(a, 0) = a2πiξ.

For (a, 0) ∈ K and K(1, b) ∈ K\G, we have

fK(1,b)(a, 0) = f
(
(a, 0) · γK(K(1, b))

)
= f

(
(a, 0) · (1, b)

)
= f(a, ab).

Identifying L2(K\G) with L2(R) as in Example 2.2.9, the Zak transform becomes a

unitary ZK : L2(G)→ L2(R× R) which for f ∈ L1(G) ∩ L2(G) is given by

(ZKf)(ξ, b) =

∫ ∞
0

f(a, ab)a−2πiξ

a
da.

(vi) Let G be any second countable LCA group with closed subgroup H. For f ∈

Cc(G), α ∈ Ĥ, and Hx ∈ H\G, we compute

(Z̃f)(α,Hx) = f̂Hx(α) =

∫
H

f(ξγ(Hx))α(ξ−1) dµH(ξ).

More generally, for x ∈ G the function ξ 7→ f(ξx) belongs to Cc(H), so we can define

a function ˜̃Zf : G× Ĝ→ C by the formula

( ˜̃Zf)(ω, x) =

∫
H

f(ξx)ω(ξ−1) dµH(ξ). (3.9)
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This matches the definition of Zak transform given by Weil in [62] (although he didn’t

call it that, of course).

For the remainder of this section, we will assume that G is abelian. Each ω ∈ Ĝ

then acts unitarily on L2(G) via the modulation (Mωf)(x) = ω(x)f(x). The Zak

transform behaves well under modulations by H∗ and translations by H. When

f ∈ Cc(G) and κ ∈ H∗,

(Z̃Mκf)(α,Hx) =

∫
H

(Mκf)(ξγ(Hx))α(ξ−1) dµH(ξ)

=

∫
H

κ(ξγ(Hx))f(ξγ(Hx))α(ξ−1) dµH(ξ)

=

∫
H

κ(γ(Hx))f(ξγ(Hx))α(ξ−1) dµH(ξ) = κ(γ(Hx)) · (Z̃f)(α,Hx).

Since γ(Hx) = ξx for some ξ ∈ H, and since κ(ξ) = 1, we can write κ(x) in place of

κ(γ(Hx)) in the last expression above. Extending by continuity and combining with

(3.4), we find that

(Z̃LξMκf)(α,Hx) = α(ξ−1)κ(x) · (Z̃f)(α,Hx) (3.10)

for all f ∈ L2(G), ξ ∈ H, and κ ∈ H∗.

In the abelian setting, the Zak transform has a sibling, which we now introduce.

Whenever we work in this setting we will use a fixed Borel section β : Ĝ/H∗ → Ĝ that

sends compact sets to pre-compact sets. We remind the reader that G/H = H\G

and Ĝ/H∗ = H∗\Ĝ as measure spaces; see the final line of Remark 2.2.8.
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Proposition 3.1.3. In addition to the standing hypotheses, suppose that G is abelian.

There is a unitary map

T : L2(G)→ L2(Ĝ/H∗;L2(H∗))

given by

(T f)(ωH∗)(κ) = f̂(β(ωH∗)κ). (3.11)

Moreover, for any ξ ∈ H,

(T Lξf)(ωH∗) = ω(ξ−1) · (T f)(ωH∗). (3.12)

Proof. Follow the Fourier transform L2(G) → L2(Ĝ) by the unitary L2(Ĝ) →

L2(H∗ × Ĝ/H∗) from Corollary 2.2.3. When L2(H∗ × Ĝ/H∗) is identified with

L2(Ĝ/H∗;L2(H∗)), the composition T is given by (3.11).

If f ∈ L2(G) and ξ ∈ H, we compute

(T Lξf)(ωH∗)(κ) = (Lξf)∧(β(ωH∗)κ) = β(ωH∗)(ξ−1)κ(ξ−1)f̂(β(ωH∗)κ)

= ω(ξ−1) · (T f)(ωH∗)(κ),

since β(ωH∗) = ωχ for some χ ∈ H∗, and χ(ξ−1) = κ(ξ−1) = 1. This proves

(3.12).

We call T the fiberization map. In the special case where H is discrete and

G/H is compact, Proposition 3.1.3 was proved separately by Kamyabi Gol and Raisi

Tousi [49, Proposition 2.1] and Cabrelli and Paternostro [14, Proposition 3.3]. To
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the author’s knowledge, every existing classification of H-TI uses some version of

fiberization.

The Zak transform is closely related to fiberization in the abelian setting, and

indeed T can be obtained from Z through a modulation in L2(Ĥ;L2(H\G)) and the

Fourier transform on H\G, as we now show. With the isomorphisms Ĥ ∼= Ĝ/H∗ and

H∗ ∼= (G/H)∧ in mind, define a modulationM : L2(Ĥ;L2(H\G))→ L2(Ĥ;L2(H\G))

by the formula

(Mϕ)(ω|H)(Hx) = β(ωH∗)(γ(Hx)−1) · ϕ(ω|H)(Hx) (3.13)

for ϕ ∈ L2(Ĥ;L2(H\G)), ω ∈ Ĝ, and Hx ∈ H\G. We claim that

(T f)(ωH∗)(κ) = [(MZf)(ω|H)]∧(κ̂) (3.14)

for any f ∈ L2(G), where the Fourier transform on the right is taken over H\G.

Indeed, for any f ∈ Cc(G), we compute

(T f)(ωH∗)(κ) = f̂(β(ωH∗)κ) =

∫
G

f(x)β(ωH∗)(x−1)κ(x−1) dµG(x)

=

∫
H\G

∫
H

f(ξγ(Hx)) · β(ωH∗)(γ(Hx)−1ξ−1) · κ(γ(Hx)−1ξ−1) dµH(ξ) dµH\G(Hx)

=

∫
H\G

β(ωH∗)(γ(Hx)−1)·κ(γ(Hx)−1)

∫
H

f(ξγ(Hx))·β(ωH∗)(ξ−1)·κ(ξ−1) dµH(ξ) dµH\G(Hx).

This is messy, but it cleans up nicely. First, κ(γ(Hx)−1) = κ(x−1), since κ(η) = 1

for any η ∈ H. Likewise, β(ωH∗)(ξ−1) = ω(ξ−1), since any element of H∗ annihilates

ξ−1. We also have κ(ξ−1) = 1, and we can abbreviate f(ξγ(Hx)) = fHx(ξ). With all
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that in mind, our last equation reads

(T f)(ωH∗)(κ) =

∫
H\G

β(ωH∗)(γ(Hx)−1)·κ(x−1)

∫
H

fHx(ξ)ω(ξ−1) dµH(ξ) dµH\G(Hx)

=

∫
H\G

β(ωH∗)(γ(Hx)−1) · f̂Hx(ω|H) · κ(x−1) dµH\G(Hx)

=

∫
H\G

(MZf)(ω|H)(Hx) · κ̂(Hx−1) dµH\G(Hx) = [(MZf)(ω|H)]∧(κ̂).

Thus (3.14) holds for all f ∈ Cc(G); extending with continuity gives it for all f ∈

L2(G).

Example 3.1.4. Let us interpret (3.14) for the classical Zak transform (3.5). Identify

R̂ with R and Z∗ with Z in the usual way: each ξ ∈ R defines a character ξ̂ ∈ R̂

by ξ̂(x) = e2πiξx, and Z∗ = {k̂ ∈ R̂ : k ∈ Z}. In Example 3.1.2(i), the identification

of T ∼= Ẑ ∼= R̂/Z∗ with [0, 1) ⊆ R describes a Borel section β : R̂/Z∗ → R̂ with

fundamental domain β(R̂/Z∗) = [0, 1) ⊆ R̂. Then for ϕ ∈ L2([0, 1) × [0, 1)), the

modulation M in (3.13) is given by

(Mϕ)(s, t) = ŝ(−t)ϕ(s, t) = e−2πistϕ(s, t).

Thus, (3.14) says that for all f ∈ L2(R) and a.e. s ∈ [0, 1),

f̂(s+k) =

∫ 1

0

e−2πist·(Z̃f)(s, t)·e−2πikt dt =

∫ 1

0

(Z̃f)(s, t)·e−2πi(s+k)t dt for all k ∈ Z.

Here is another relation between the fiberization map and the Zak transform.

Fix f, g ∈ L2(G). For every ξ ∈ H, (3.4) and (2.12) show that

〈f, Lξg〉 = 〈Zf, Z(Lξg)〉 =

∫
Ĥ

〈(Zf)(α), (ZLξg)(α)〉dµĤ(α) (3.15)
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=

∫
Ĥ

〈(Zf)(α), (Zg)(α)〉α(ξ) dµĤ(α)

=

∫
Ĥ

〈(Zf)(α−1), (Zg)(α−1)〉α(ξ) dµĤ(α).

On the other hand, a similar computation involving (3.12) produces

〈f, Lξg〉 =

∫
Ĝ/H∗
〈(T f)(ω−1H∗), (T g)(ω−1H∗)〉ω(ξ) dµĜ/H∗(ωH

∗) (3.16)

=

∫
Ĥ

〈(T f)(ω−1H∗), (T g)(ω−1H∗)〉ω(ξ) dµĤ(ω|H).

The Fourier transform L1(Ĥ)→ C0(H) is injective, so for a.e. ωH∗ ∈ Ĝ/H∗,

〈(T f)(ωH∗), (T g)(ωH∗)〉L2(H∗) = 〈(Zf)(ω|H), (Zg)(ω|H)〉L2(H\G). (3.17)

3.2. The structure of H-TI spaces in L2(G)

Returning to the more general case, where G need not be abelian, we now classify

H-TI spaces in L2(G). Given a family A ⊆ L2(G), we will denote

EH(A ) = {Lξϕ : ξ ∈ H,ϕ ∈ A }

for the left H-translates of A , and

SH(A ) = span{Lξϕ : ξ ∈ H,ϕ ∈ A }

for the H-TI space it generates. We will also give conditions under which EH(A )

forms a continuous frame or a Riesz basis for SH(A ).
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When J : Ĥ → {closed subspaces of L2(H\G)} is a range function, we write

PJ(α) : L2(H\G)→ J(α) for the orthogonal projection associated to α ∈ Ĥ. We also

denote

VJ = {f ∈ L2(G) : (Zf)(α) ∈ J(α) for a.e. α ∈ Ĥ}.

If G is abelian and J̃ : Ĝ/H∗ → {closed subspaces of L2(H∗)}, we similarly write

P̃J̃(ωH∗) : L2(H∗) → J̃(ωH∗) for the orthogonal projection associated to ωH∗ ∈

Ĝ/H∗, and we define

ṼJ̃ = {f ∈ L2(G) : (T f)(ωH∗) ∈ J̃(ωH∗) for a.e. ωH∗ ∈ Ĝ/H∗}.

The next theorem is an application of [13, Theorem 2.4]. Its provenance

stretches back to Helson [37] and Srinivasan [57]. Part (ii) generalizes results of

de Boor, DeVore, and Ron [22, Result 1.5]; Bownik [11, Proposition 1.5]; Cabrelli

and Paternostro [14, Theorem 3.10]; Kamyabi Gol and Raisi Tousi [49, Theorem 3.1];

and Bownik and Ross [13, Theorem 3.8]. In contrast with these references, we do not

require G/H to be compact. Part (i) opens the door even wider, by allowing G to be

nonabelian. As far as the author knows, the results in (i) are new even for Z ⊆ R.

For another description of H-TI spaces, in terms of the “extra” invariance of an

invariant subspace, we refer the reader to [1, 3, 4, 56]. In the special case where G is

abelian and H contains a countable discrete subgroup K such that G/K is compact,

these papers describe H-TI spaces in terms of the range function classification of

K-TI spaces given in [11, 14, 22, 49]. In particular, their descriptions of H-TI spaces

use the fiberization map for K ⊆ G. We do not require H to contain such a subgroup

here, and our classifications are in terms of the Zak transform and fiberization map

for H itself.
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Theorem 3.2.1. (i) H-TI spaces in L2(G) are indexed by measurable range functions

J : Ĥ → {closed subspaces of L2(H\G)},

provided we identify range functions that agree a.e. A bijection maps J 7→ VJ . When

A ⊆ L2(G) is a family with a countable dense subset A0 ⊆ A , SH(A ) = SH(A0),

and the associated range function is given by

J(α) = span{(Zf)(α) : f ∈ A0}. (3.18)

(ii) In addition to the standing assumptions, suppose that G is abelian. Then H-TI

spaces in L2(G) can also be indexed by measurable range functions

J̃ : Ĝ/H∗ → {closed subspaces of L2(H∗)},

provided we identify range functions that agree a.e. A bijection maps J̃ 7→ ṼJ̃ . For a

family A ⊆ L2(G) with countable dense subset A0 ⊆ A , the range function associated

with SH(A ) = SH(A0) is

J̃(ωH∗) = span{(T f)(ωH∗) : f ∈ A0}. (3.19)

We will need the following lemma, which essentially restates [13, Lemma 3.5].

Lemma 3.2.2. Let G be an LCA group with Haar measure µG, and let Ĝ be its dual

group with dual Haar measure µĜ. Then Ĝ forms a Parseval determining set for
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L1(G) with respect to µĜ. In other words,

∫
Ĝ

∣∣∣∣∫
G
f(x)α(x) dµG(x)

∣∣∣∣2 dµĜ(α) =

∫
G
|f(x)|2 dµG(x) (3.20)

for each f ∈ L1(G); both sides may be infinite.

Proof. For f ∈ L1(G), the left hand side of (3.20) is precisely
∥∥∥f̂∥∥∥2

2
. If f ∈ L1(G) ∩

L2(G), (3.20) is just Plancherel’s Theorem. On the other hand, if ‖f‖2 = ∞, then∥∥∥f̂∥∥∥
2

=∞ by 31.44(a) of [41].

Remark 3.2.3. Pontryagin Duality allows us to switch G and Ĝ in the lemma above.

Given x ∈ G, write Xx ∈ ˆ̂G for the corresponding character Xx(α) = α(x). Then

D = (Xx)x∈G is a Parseval determining set for L1(Ĝ) with respect to µG.

When G is abelian, we can identify (Ĝ/H∗, µĜ/H∗) with (Ĥ, µĤ) by mapping

ωH∗ 7→ ω|H . Each ξ ∈ H then defines a character X̃ξ on Ĝ/H∗ by the formula

X̃ξ(ωH
∗) = Xξ(ω|H) = ω(ξ),

and the previous paragraph shows that D̃ = (X̃ξ)ξ∈H is a Parseval determining set

for L1(Ĝ/H∗) with respect to µH .

Proof of Theorem 3.2.1. Let D be as in Remark 3.2.3, with G = H. By Theorem

3.1.1, a subspace M ⊆ L2(G) is H-TI if and only if ZM is a D-MI subspace of

L2(Ĥ;L2(H\G)). Thus (i) is an application of Proposition 2.1.2. Likewise, (ii) follows

immediately from Proposition 3.1.3, Proposition 2.1.2, and the remark above.

As in the familiar case of integer shifts in L2(Rn), our classification ofH-TI spaces

ties with a set of conditions under which the H-translates of a family A ⊆ L2(G) form

a continuous frame. Namely, it reduces the problem of EH(A ) forming a continuous
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frame for SH(A ) to an analysis of the fibers J(α) = span{(Zf)(α) : f ∈ A }. If G

is abelian we can replace the Zak transform with fiberization, and if H is discrete we

can replace “continuous frame” with “Riesz basis”.

The next two theorems are applications of Theorems 2.1.3 and 2.1.10. They

generalize results of Bownik [11, Theorem 2.3]; Kamyabi Gol and Raisi Tousi [49,

Theorems 4.1 and 4.2]; Cabrelli and Paternostro [14, Theorems 4.1 and 4.3]; and

Bownik and Ross [13, Theorem 5.1]. In contrast with these results, we do not require

G/H to be compact. When we use the Zak transform, we do not even need G to be

abelian.

Theorem 3.2.4. Let (M, µM) be a complete, σ-finite measure space, and let A =

(ft)t∈M ⊆ L2(G) be a jointly measurable family of functions. Fix a countable dense

subset A0 ⊆ A , and let J be as in (3.18). Given constants 0 < A ≤ B < ∞, the

following are equivalent:

(i) EH(A ) forms a continuous frame for SH(A ) over M×H, with bounds A,B.

In other words, for every g ∈ SH(A ),

A

∫
G

|g(x)|2 dµG(x) ≤
∫
M

∫
H

∣∣∣∣∫
G

g(x)Lξft(x) dµG(x)

∣∣∣∣2 dµH(ξ) dµM(t)

≤ B

∫
G

|g(x)|2 dµG(x).

(ii) For a.e. α ∈ Ĥ and every h ∈ J(α) ⊆ L2(H\G),

A ‖h‖2 ≤
∫
M
|〈h, (Zft)(α)〉|2 dµM(t) ≤ B ‖h‖2 .

If G is abelian and J̃ is as in (3.19), the conditions above are equivalent to:
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(iii) For a.e. ωH∗ ∈ Ĝ/H∗ and every h ∈ J̃(ωH∗) ⊆ L2(H∗),

A ‖h‖2 ≤
∫
M
|〈h, (T ft)(ωH∗)〉|2 dµM(t) ≤ B ‖h‖2 .

As in the remarks following Theorem 2.1.10, condition (ii) says that for a.e.

α ∈ Ĥ, the family {[PJ(α)](Zft)(α) : t ∈M} forms a continuous frame for J(α) with

bounds A,B. A similar consideration applies to (iii).

When A is countable this theorem reduces a continuous problem in L2(G) to a

discrete problem in L2(H\G) or L2(H∗). For instance, when A consists of a single

function f ∈ L2(G), condition (ii) is equivalent to

(ii’) For a.e. α ∈ Ĥ, either (Zf)(α) = 0 or A ≤ ‖(Zf)(α)‖2 ≤ B.

Proof of Theorem 3.2.4. We claim that ZA = (Zft)t∈M ⊆ L2(Ĥ;L2(H\G)) is

jointly measurable. To prove this, we consider the image of A under each of

the isomorphisms Uk used to construct Z in the proof of Theorem 3.1.1. The

first isomorphism U1 : L2(G) → L2(H × H\G) is gotten from a measure space

isomorphism, so it must preserve the notion of joint measurability. Corollary 2.1.9

shows joint measurability is preserved by U2 : L2(H × H\G) → L2(H\G;L2(H)).

Since the Fourier transform L2(H) → L2(Ĥ) leaves inner products unchanged,

joint measurability is preserved by U3 : L2(H\G;L2(H)) → L2(H\G;L2(Ĥ)).

Another application of Corollary 2.1.9 gives joint measurability after applying

U4 : L2(H\G;L2(Ĥ))→ L2(Ĥ;L2(H\G)). This proves the claim.

Let D = (Xξ)ξ∈H be the Parseval determining set from Remark 3.2.3. Since

the unitary Z : L2(G)→ L2(Ĥ;L2(H\G)) intertwines left translation by ξ ∈ H with

multiplication by Xξ ∈ D, condition (i) above is equivalent to:

(i’) ED(ZA ) forms a continuous frame for SD(ZA ) with bounds A,B.
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Moreover, the range function associated with the D-MI space SD(ZA ) is precisely

J , by Proposition 2.1.2. Hence, the equivalence of (i) and (ii) follows from the

corresponding equivalence in Theorem 2.1.10.

When G is abelian, the fiberization map T is made by composing the Fourier

transform L2(G) → L2(Ĝ) with the isomorphisms L2(Ĝ) → L2(H∗ × Ĝ/H∗)

and L2(H∗ × Ĝ/H∗) → L2(Ĝ/H∗;L2(H∗)). The first isomorphism preserves joint

measurability as an easy consequence of Proposition 2.1.8 and Plancherel’s Theorem,

the second preserves it because it is based on a measure space isomorphism, and

the third preserves it by Corollary 2.1.9. Consequently, T A = (T ft)t∈M ⊆

L2(Ĝ/H∗;L2(H∗)) is jointly measurable. An argument similar to the one in the

paragraph above now proves the equivalence of (i) and (iii): replace Z with T , and

D with D̃ from Remark 3.2.3.

Theorem 3.2.5. In addition to the standing assumptions, suppose that H is discrete

and µH is counting measure. Let A ⊆ L2(G) be a countable family, and let

J(α) = span{(Zf)(α) : f ∈ A }

for a.e. α ∈ Ĥ. For constants 0 < A ≤ B <∞, the following are equivalent:

(i) EH(A ) is a Riesz basis for SH(A ) with bounds A,B.

(ii) For a.e. α ∈ Ĥ, {(Zf)(α) : f ∈ A } is a Riesz basis for J(α) with bounds A,B.

If G is abelian and

J̃(ωH∗) = span{(T f)(ωH∗) : f ∈ A }

for a.e. ωH∗ ∈ Ĝ/H∗, the conditions above are equivalent to:
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(iii) For a.e. ωH∗ ∈ Ĝ/H∗, {(T f)(ωH∗) : f ∈ A } is a Riesz basis for J̃(ωH∗) with

bounds A,B.

Proof. Recall that discrete abelian groups are dual to compact abelian groups, with

counting measures dual to probability measures. Hence µĤ(Ĥ) = 1. The theorem

now follows from Theorem 2.1.3 in the same way that Theorem 3.2.4 followed from

Theorem 2.1.10.

Strictly speaking, the previous theorem holds even if H is not discrete. However,

when Ĥ is not compact, condition (ii) can never occur. See Remark 2.1.4.

Remark 3.2.6. When A consists of a single function f ∈ L2(G), the conditions in the

previous theorems simplify even further. Let Ωf = {α ∈ Ĥ : (Zf)(α) 6= 0}. Then

condition (ii) of Theorem 3.2.4 is equivalent to

(ii’) For a.e. α ∈ Ωf , A ≤ ‖(Zf)(α)‖2 ≤ B.

When H is discrete, we can likewise replace condition (ii) of Theorem 3.2.5 with

(ii’) For a.e. α ∈ Ĥ, A ≤ ‖(Zf)(α)‖2 ≤ B.

Similar considerations apply for fiberization in the abelian setting.

We end this section with a pair of results on Gabor systems with critical sampling.

We will assume that G is abelian. A closed subspace M ⊆ L2(G) is called (H,H∗)-

translation/modulation-invariant, or (H,H∗)-TMI, if LξMκf ∈ M whenever f ∈

M , ξ ∈ H, and κ ∈ H∗. TMI spaces have usually been called “shift/modulation

invariant”, or SMI, in the discrete case. Following the examples of Bownik and Ross

[13] and Jakobsen and Lemvig [45], we adopt the term TMI to emphasize that the

subgroup involved need not be discrete.
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Every family A ⊆ L2(G) generates a Gabor system {LξMκf : ξ ∈ H, κ ∈

H∗, f ∈ A }. The closed linear span of this system is the smallest (H,H∗)-TMI space

containing A . The Zak transform has a long history of use for Gabor systems. We

continue the tradition here. Our first result classifies (H,H∗)-TMI spaces in terms

of the Zak transform. Our second result tells when Gabor systems are continuous

frames.

The theorem below should be compared with Bownik [12, Theorem 5.1] and

Cabrelli and Paternostro [15, Theorem 5.1]. Given a Borel subset E ⊆ Ĥ ×H\G, we

denote

ME = {f ∈ L2(G) : (Z̃f)(α,Hx) = 0 for a.e. (α,Hx) /∈ E}.

Two Borel subsets of Ĥ×H\G are called equivalent if their symmetric difference has

measure zero.

Theorem 3.2.7. The (H,H∗)-TMI spaces in L2(G) are indexed by equivalence classes

of Borel subsets of Ĥ × H\G. A bijection maps E 7→ ME. For A ⊆ L2(G), any

countable dense subset A0 ⊆ A generates the same (H,H∗)-TMI space as does A ,

and the corresponding subset of Ĥ ×H\G is

E = {(α,Hx) ∈ Ĥ ×H\G : (Z̃f)(α,Hx) 6= 0 for some f ∈ A0}. (3.21)

Proof. Since H∗ ∼= (H\G)∧, Pontryagin duality shows that (Ĥ ×H\G)∧ ∼= H ×H∗.

For (ξ, κ) ∈ H × H∗, the corresponding character X(ξ,κ) ∈ (Ĥ × H\G)∧ is given

by X(ξ,κ)(α,Hx) = α(ξ)κ(x). By Lemma 3.2.2, the family D = (X(ξ,κ))ξ∈H,κ∈H∗

is a Parseval determining set for L1(Ĥ × H\G). Moreover, (3.10) shows that a

subspace M ⊆ L2(G) is (H,H∗)-TMI if and only if Z̃M ⊆ L2(Ĥ × H\G) is D-

MI. The proof follows from Proposition 2.1.2 once we observe that a range function
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J : Ĥ ×H\G→ {closed subsets of C} identifies uniquely with the set

E = {(α,Hx) ∈ Ĥ ×H\G : J(α,Hx) = C}.

Moreover, J is a measurable range function if and only if E is a Borel set.

The next theorem generalizes a result of Arefijamaal [5, Theorem 2.6]. Also see

Corollary 6.4.4 of Gröchenig [32], and the discussion that follows it.

Theorem 3.2.8. Let (M, µM) be a complete, σ-finite measure space, and let A =

(ft)t∈M ⊆ L2(G) be a jointly measurable family of functions. Fix a countable dense

subset A0 ⊆ A , and let E ⊆ Ĥ×H\G be as in (3.21). For constants 0 < A ≤ B <∞,

the following are equivalent:

(i) The Gabor system generated by A is a continuous frame for its closed linear

span, with bounds A,B.

(ii) For a.e. (α,Hx) ∈ E,

A ≤
∫
M
|(Z̃ft)(α,Hx)|2 dµM(t) ≤ B.

Proof. As in the proof of Theorem 3.2.4, the family Z̃A = (Z̃ft)t∈M ⊆ L2(Ĥ×H\G)

is jointly measurable. The theorem now follows from Theorem 2.1.10 in the same way

that Theorem 3.2.7 followed from Proposition 2.1.2.

3.3. Dual integrable representations of LCA groups

We now turn our attention to a more general problem. Given a representation of

a locally compact group on a Hilbert space H, we would like to know when the orbit
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of a family of vectors A ⊆ H makes a continuous frame in H. We give an answer for

a large class of representations of LCA groups.

Throughout this section, G will denote a fixed, second countable LCA group.

Its Haar measure is µG, its dual group is Ĝ, and the dual Haar measure on Ĝ is µĜ.

For x ∈ G, the corresponding character of Ĝ is Xx; that is, Xx(α) = α(x). We set

D = (Xx)x∈G. As explained in Remark 3.2.3, D is a Parseval determining set for

L1(Ĝ).

A (unitary) representation of G on a Hilbert space H is a strongly continuous

group homomorphism π : G → U(H) into the unitary group of H. We call π dual

integrable if there is a function

[·, ·] : H×H → L1(Ĝ),

called a bracket for π, such that

〈ϕ, π(x)ψ〉 =

∫
Ĝ
[ϕ, ψ](α) · α(x) dµĜ(α) for all ϕ, ψ ∈ H and x ∈ G.

In other words, a representation is dual integrable when all of its matrix elements lie

in the image of the Fourier transform L1(Ĝ)→ C0(G). The bracket gives the inverse

Fourier transform of a matrix element. Consequently, the bracket is unique when it

exists.

Dual integrable representations were introduced in the abstract setting by

Hernández, Šikić, Weiss, and Wilson in [40]. Concrete versions of the bracket have

been around much longer. Early uses appear in Jia and Michelli [46] and de Boor,

DeVore, and Ron [22, 21]. An analog of dual integrable representations for possibly

nonabelian countable discrete groups was recently developed by Barbieri, Hernández,
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and Parcet in [8]. Another version for square integrable functions over the Heisenberg

group appears in Barbieri, Hernández, and Mayeli [7].

In this section, we fix a dual integrable representation π acting on a separable

Hilbert space H. Given ϕ ∈ H, we denote

〈ϕ〉 = span{π(x)ϕ : x ∈ G}.

We begin by recalling some basic properties of the bracket from [40].

Proposition 3.3.1. The bracket is a sesquilinear Hermitian map [·, ·] : H × H →

L1(Ĝ). Moreover, for ϕ, ψ ∈ H and x ∈ G, the following hold:

(i) [ϕ, ϕ] ≥ 0 a.e.

(ii) |[ϕ, ψ]| ≤ [ϕ, ϕ]1/2[ψ, ψ]1/2 a.e.

(iii) ϕ ⊥ 〈ψ〉 if and only if [ϕ, ψ] = 0 a.e.

(iv) [π(x)ϕ, ψ] = Xx · [ϕ, ψ] = [ϕ, π(x−1)ψ]

Our strategy for understanding the translation action of an abelian subgroup in

Section 3.2 was to apply an isometry that intertwined that action with modulation.

We employ the same method here. Our isometry will be based on the following notion.

The terminology is our own invention.

Definition 3.3.2. Let π be a representation of G on a Hilbert space H. A family of

vectors (θi)i∈I ⊆ H is called orthogonal generators for π if H =
⊕

i∈I〈θi〉.

Every representation admits a family of orthogonal generators, as a well-known

consequence of Zorn’s Lemma. Normally, the choice of generators is far from unique.

For instance, any family of functions {fi}i∈I ⊆ L2(R) for which {supp f̂i}I∈I forms a
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partition of R, is an orthogonal generating family of the regular representation of R.

As this example demonstrates, orthogonal generators abound, and the cardinality of

the indexing set I can change dramatically from family to family.

In an abstract sense, the lack of a canonical family of orthogonal generators

might seem annoying, but in a practical sense, it is an advantage. In what follows,

we analyze a dual integrable representation in terms of its bracket, a family (θi)i∈I of

orthogonal generators, and l2(I). The abundance of orthogonal generating families

only makes this analysis more flexible.

For the remainder of the paper, we fix a family (θi)i∈I ⊆ H of orthogonal

generators for π. For i ∈ I, we denote

Ωi = {α ∈ Ĝ : [θi, θi] 6= 0}.

We also write δi ∈ l2(I) for the standard basis element corresponding to i ∈ I.

The next proposition is Corollary (3.2) of [40]. The corollary after it was partially

explained in the proof of [40, Corollary (3.4)].

Proposition 3.3.3. Let ψ ∈ H, and denote

Ωψ = {α ∈ Ĝ : [ψ, ψ](α) 6= 0}, (3.22)

which is well defined up to a set of measure zero. The function Tψ : 〈ψ〉 → L2(Ĝ)

given by

Tψ(ϕ) = 1Ωψ

[ϕ, ψ]

[ψ, ψ]1/2
for ϕ ∈ 〈ψ〉 ⊆ H (3.23)

maps 〈ψ〉 unitarily onto L2(Ωψ, µĜ).
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Corollary 3.3.4. The function T : H → L2(Ĝ; l2(I)) given by

T (ϕ)(α) =

(
1Ωi(α) · [ϕ, θi](α)

([θi, θi](α))1/2

)
i∈I

for ϕ ∈ H and α ∈ Ĝ

is a linear isometry satisfying

T (π(x)ϕ) = Xx · T (ϕ) for all ϕ ∈ H and x ∈ G. (3.24)

In particular, T (H) is a D-MI space in L2(Ĝ; l2(I)). The range function J0 : Ĝ →

{closed subspaces of l2(I)} given by

J0(α) = span{1Ωi(α) · δi : i ∈ I}

corresponds to T (H), in the sense of Proposition 2.1.2(ii).

Proof. For each i ∈ I, let Pi : H → 〈θi〉 be orthogonal projection, and let Ti =

Tθi : 〈θi〉 → L2(Ĝ) be the map from Proposition 3.3.3. Given ϕ ∈ H and i ∈ I,

Proposition 3.3.1 implies that

[ϕ, θi](α) = [Piϕ, θi](α) + [(1− Pi)ϕ, θi](α) = [Piϕ, θi](α).

Consequently,

TiPiϕ = 1Ωi

[ϕ, θi]

([θi, θi])1/2
;

in other words,

T (ϕ)(α) = ((TiPiϕ)(α))i∈I .
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By Proposition 3.3.3, T maps the spaces 〈θi〉 ⊆ H isometrically into orthogonal

subspaces of L2(Ĝ; l2(I)). Since H =
⊕

i∈I〈θi〉, T is a linear isometry. Proposition

3.3.1(iv) gives (3.24).

For i, j ∈ I, Proposition 3.3.1 quickly implies that [θi, θj] = δi,j · [θi, θi], where

δi,j is the Kronecker-delta. Thus,

T (θi)(α) = ([θi, θi](α))1/2 · δi. (3.25)

Since H = span{π(x)θi : x ∈ G, i ∈ I}, we have, in the language of Section 2.1,

T (H) = span{T (π(x)θi) : x ∈ G, i ∈ I} = span{Xx · T (θi) : x ∈ G, i ∈ I}

= ED({T (θi)}i∈I).

By Proposition 2.1.2(iii), the range function associated with T (H) is

J0(α) = span{T (θi)(α) : i ∈ I} = span{1Ωi(α) · δi : i ∈ I}.

A closed subspace M ⊆ H is called π-invariant if π(x)ϕ ∈ M whenever ϕ ∈ M

and x ∈ G. The restriction of each π(x) to M gives the subrepresentation of π on

M . The subrepresentation is also dual integrable, with the same bracket. The next

theorem classifies π-invariant subspaces of H in terms of range functions.

Given a range function J : Ĝ → {closed subspaces of l2(I)}, we denote

PJ(α) : l2(I) → J(α) for the orthogonal projection associated to α ∈ Ĝ. We also

write

VJ = {ϕ ∈ H : (Tϕ)(α) ∈ J(α) for a.e. α ∈ Ĝ}.
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We call two range functions equivalent when they agree a.e. on Ĝ.

Given a family A ⊆ H, we write

E(A ) = {π(x)ϕ : x ∈ G, ϕ ∈ A }

for its orbit under π, and

S(A ) = span{π(x)ϕ : x ∈ G, ϕ ∈ A }

for the π-invariant space it generates.

Theorem 3.3.5. Let J0 be as in Corollary 3.3.4. The π-invariant subspaces

of H are indexed by equivalence classes of measurable range functions J : Ĝ →

{closed subspaces of l2(I)} satisfying

J(α) ⊆ J0(α) for a.e. α ∈ Ĝ. (3.26)

A bijection maps J 7→ VJ .

If A ⊆ H has a countable dense subset A0 ⊆ A , then the range function J : Ĝ →

{closed subspaces of l2(I)} given by

J(α) = span{(Tϕ)(α) : ϕ ∈ A0}. (3.27)

satisfies

VJ = S(A0) = S(A ).

Proof. By Corollary 3.3.4, E 7→ T (E) is a bijection between closed π-invariant

subspaces of H and D-MI spaces contained in T (H). Moreover, E = VJ if and only
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if T (E) = MJ , in the language of Proposition 2.1.2. Obviously MJ ⊆ T (H) = MJ0

if and only if J satisfies (3.26), so the theorem is a consequence of Proposition 2.1.2

and Remark 3.2.3.

Representations of LCA groups are uniquely determined by associated

projection-valued measures on the dual group. For background, we refer the reader to

Folland [26, Sections 1.4 and 4.4]. Hernández et al. [40, Corollary (2.5)] have given the

projection-valued measure associated with a dual integrable representation, in terms

of the bracket. The next proposition gives the projection-valued measure associated

with an invariant subspace of a dual integrable representation, in terms of T .

Proposition 3.3.6. Let J : Ĝ → {closed subspaces of l2(I)} be a measurable range

function satisfying (3.26). For each E ⊆ Ĝ, define a projection P (E) on VJ by the

formula

T (P (E)ϕ) = 1E · T (ϕ).

Then P is a regular VJ-projection-valued measure on Ĝ, and the subrepresentation of

π on VJ is given by

π(x) =

∫
Ĝ
α(x) dP (α).

Proof. For each ϕ, ψ ∈ H, define a complex-valued measure Pϕ,ψ on Ĝ with the

formula

Pϕ,ψ(E) = 〈P (E)ϕ, ψ〉 = 〈1E · Tϕ, Tψ〉 =

∫
Ĝ

1E(α) · 〈(Tϕ)(α), (Tψ)(α)〉 dµĜ(α)

=

∫
Ĝ

1E(α) · [ϕ, ψ](α) dµĜ(α).

72



In other words, dPϕ,ψ = [ϕ, ψ] dµĜ. By Corollary (2.5) of [40],

〈π(x)ϕ, ψ〉 =

∫
Ĝ
α(x) · [ϕ, ψ](α) dµĜ(α) =

∫
Ĝ
α(x) dPϕ,ψ(α).

This completes the proof.

We now give the main results of this section, reducing frame and Riesz basis

conditions on the orbit of a family A ⊆ H to pointwise conditions on the fibers J(α)

from (3.27). In the special case of a discrete LCA group with a cyclic dual integrable

representation, the next two theorems were given by Hernández et al. [40, Proposition

(5.3) and Theorem (5.7)].

Theorem 3.3.7. Let (M, µM) be a complete, σ-finite measure space, and let A =

(ϕt)t∈M ⊆ H be a family of vectors such that, for each i ∈ I, the function

(t, α) 7→ [ϕt, θi](α)

is measurable on M× Ĝ. Let A0 ⊆ A be a countable dense subset, and let J be as

in (3.27). For constants 0 < A ≤ B <∞, the following are equivalent:

(i) E(A ) is a continuous frame for S(A ) with bounds A,B. That is,

A ‖ψ‖2 ≤
∫
M

∫
G
|〈ψ, π(x)ϕt〉|2 dµG(x) dµM(t) ≤ B ‖ψ‖2

for all ψ ∈ S(A ).
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(ii) For a.e. α ∈ Ĝ, {PJ(α)[Tϕt(α)] : t ∈ M} is a continuous frame for J(α) with

bounds A,B. In other words,

A ‖v‖2
l2(I) ≤

∫
M
|〈v, Tϕt(α)〉l2(I)|2 dµM(t) ≤ B ‖v‖2

l2(I)

for a.e. α ∈ Ĝ and all v ∈ J(α).

Proof. By Corollary 3.3.4, the linear isometry T : H → L2(Ĝ; l2(I)) maps S(A )

unitarily onto SD(TA ), sending E(A ) to ED(TA ). For each i ∈ I, the function

(t, α) 7→ 1Ωi(α) · [ϕt, θi](α)

([θi, θi](α))1/2

is measurable on M× Ĝ. Therefore

(t, α, i) 7→ ([Tϕt](α))i

is measurable on M× Ĝ × I. By Corollary 2.1.9, the family TA = (Tϕt)t∈M ⊆

L2(Ĝ; l2(I)) is jointly measurable. The theorem now follows immediately from

Theorem 2.1.10 and Remark 3.2.3.

Theorem 3.3.8. In addition to the standing assumptions, suppose that G is discrete.

For a countable family A ⊆ H and constants 0 < A ≤ B < ∞, the following are

equivalent:

(i) E(A ) forms a Riesz basis for S(A ) with bounds A,B.

(ii) For a.e. α ∈ Ĝ, {Tϕ(α) : ϕ ∈ A } forms a Riesz sequence in l2(I) with bounds

A,B.
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Proof. It follows from Theorem 2.1.3 in the same way that Theorem 3.3.7 followed

from Theorem 2.1.10.

For completeness, we mention the following combination of Lemma (2.8) and

Proposition (5.1) in [40].

Proposition 3.3.9. In addition to the standing assumptions, assume that G is

discrete. For a family A = (θi)i∈I ⊆ H, E(A ) is an orthonormal sequence if and

only if [θi, θj] = δi,j a.e.

Remark 3.3.10. Given a single vector ψ ∈ H, we can replace H with 〈ψ〉 and take {ψ}

for our family of orthogonal generators. Then T becomes the function Tψ : 〈ψ〉 →

L2(Ĝ) from (3.23). The range function J0 : Ĝ → {closed subspaces of C} assigns C to

every element of the set Ωψ from (3.22), and {0} to every element of its complement.

Taking A = {ψ} in Theorem 3.3.7, we see that the following are equivalent for

constants 0 < A ≤ B <∞:

(i) The orbit (π(x)ψ)x∈G is a continuous frame for 〈ψ〉 with bounds A,B.

(ii) For a.e. α ∈ Ωψ, A ≤ [ψ, ψ](α) ≤ B.

This generalizes Theorem (5.7) of [40] for continuous frames. A similar analysis

recovers [40, Proposition (5.3)] from Theorem 3.3.8.

Example 3.3.11. Below are three prominent examples of dual integrable

representations.

(i) If H0 is any separable Hilbert space, G acts on L2(Ĝ;H0) via the modulation

representation λ̂ given by

λ̂(x)ϕ(α) = α(x) · ϕ(α).
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This representation is dual integrable, and its bracket is given by the formula

[ϕ, ψ](α) = 〈ϕ(α), ψ(α)〉.

(ii) Let G be a second countable locally compact group. Any closed abelian subgroup

H ⊆ G acts on L2(G) by left translation. This representation is dual integrable,

and the Zak transform gives a formula for the bracket. Indeed, (3.15) says that for

f, g ∈ L2(G) and α ∈ Ĥ,

[f, g](α) = 〈(Zf)(α−1), (Zg)(α−1)〉L2(H\G).

When G is abelian, the bracket can also be expressed in terms of the fiberization

map. For f, g ∈ L2(G) and ω ∈ Ĝ, (3.16) says that

[f, g](ω|H) = 〈(T f)(ω−1H∗), (T g)(ω−1H∗)〉L2(H∗).

Theorems 3.2.1, 3.2.4, and 3.2.5 can be recovered from Theorems 3.3.5, 3.3.7, and

3.3.8, respectively.

(iii) Let G be a second countable LCA group with a closed subgroup H. Then

H × H∗ acts on L2(G) by translation and modulation. This representation is dual

integrable, and the Zak transform gives a formula for the bracket, as follows. For any

f, g ∈ L2(G), ξ ∈ H, and κ ∈ H∗, (3.10) produces

〈f, LξMκg〉L2(G) = 〈Z̃f, Z̃LξMκg〉L2(H×H\G)

=

∫
Ĥ

∫
H\G

(Z̃f)(α,Hx)(Z̃g)(α,Hx) · α(ξ)κ(x) dµH\GdµĤ(α)
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=

∫
Ĥ

∫
H\G

(Z̃f)(α−1, Hx)(Z̃g)(α−1, Hx) · α(ξ)κ(x) dµH\GdµĤ(α).

Since H∗ ∼= (G/H)∧, Pontryagin Duality identifies Ĥ∗ with H\G. For Hx ∈ H\G,

the corresponding character XHx ∈ Ĥ∗ is given by XHx(κ) = κ(x). Thus,

[f, g](α,XHx) = (Z̃f)(α−1, Hx)(Z̃g)(α−1, Hx).

Theorems 3.2.7 and 3.2.8 can be deduced from Theorems 3.3.5 and 3.3.7.

We end with several equivalent conditions for dual integrability, continuing the

list begun in [40, Corollary 3.4]. The equivalence of (i) and (ii) below was essentially

given there. From a philosophical perspective, the theorem below is the basis for our

work on dual integrable representations, and the thread that connects Sections 2.1,

3.2, and 3.3. We remind the reader that representations σ and σ′ of G acting on

Hilbert spaces Hσ and H′σ, respectively, are called unitarily equivalent if there is a

unitary U : Hσ → H′σ such that Uσ(x) = σ′(x)U for all x ∈ G.

Theorem 3.3.12. For a representation σ of G, the following are equivalent:

(i) σ is dual integrable, and the space on which it acts is separable.

(ii) There is a separable Hilbert space H0 for which σ is unitarily equivalent to a

subrepresentation of the modulation representation on L2(G;H0).

(iii) There is a second countable locally compact group G containing G as a closed

subgroup, and σ is unitarily equivalent to the left translation action of G on a

G-TI subspace of L2(G).

Proof. That (iii) implies (i) is the content of Example 3.3.11(ii). Corollary 3.3.4

says that (i) implies (ii). Suppose (ii) holds. Without loss of generality, we may
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assume that H0 = l2(K) for some countable set K. Give K the structure of a

cyclic group, and let G = G × K. Let γ : G\G → G be the Borel section with

fundamental domain γ(G\G) = K ⊆ G. Then the Zak transform is a unitary map

Z : L2(G) → L2(Ĝ; l2(K)) intertwining the translation action of G on L2(G) with

modulation on L2(Ĝ; l2(K)). Following the unitary equivalence in (ii) with Z−1 proves

(iii).

3.4. Addendum: Group frames and shift-invariant spaces

This section is an addendum to the original article [42]. Here we explain that,

roughly speaking, every group frame comes from the translation action on a shift-

invariant space, as described for abelian groups in Section 3.2. With Theorem 3.3.12,

this means in particular that every abelian group frame comes from a dual integrable

representation.

Let Γ be a second countable locally compact group (not necessarily abelian),

let π : Γ → U(Hπ) be a unitary representation on a separable Hilbert space, and let

A = {fi}i∈I ⊆ Hπ be a countable family of vectors whose orbit

E(A ) = {π(x)fi : x ∈ Γ, i ∈ I}

is a continuous frame for Hπ. In other words, there are constants A and B with

0 < A ≤ B <∞ such that

A ‖g‖2 ≤
∑
i∈I

∫
Γ

|〈g, π(x)fi〉|2dµΓ(x) ≤ B ‖g‖2
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for every g ∈ Hπ. The purpose of this section is to make a very simple observation

about the representation π.

Theorem 3.4.1. Up to unitary equivalence, π is a subrepresentation of the regular

representation of Γ on L2(Γ; `2(I)). In other words, there is a linear isometry

T : Hπ → L2(Γ; `2(I)) such that

(Tπ(x)g)(y) = (Tg)(x−1y) (x, y ∈ Γ; g ∈ Hπ).

When Γ is either discrete or abelian, this implies that the representation π

is dual integrable in the sense of [8, 9] or [40], respectively. Consequently, every

frame generated by a countable discrete group is described in [8, 9], and every frame

generated by a second countable LCA group is described in [40, 42].

The proof of Theorem 3.4.1 is almost trivial. We only need to adapt a few

standard theorems from the theory of finite group frames to the continuous setting,

and then make a one-line calculation.

Both of the following lemmas are adapted from [35, Chapter 8]. Let S : Hπ → Hπ

be the frame operator for the frame E(A ). That is,

Sg =
∑
i∈I

∫
Γ

〈g, π(x)fi〉π(x)fi dµΓ(x) (g ∈ Hπ).

Here, the vector-valued integral should be interpreted in the weak sense. In other

words, Sg is the unique vector in H defined weakly by the relation

〈Sg, h〉 =

∫
Γ

〈g, π(x)fi〉〈π(x)fi, h〉 dµΓ(x) (h ∈ Hπ).

79



Lemma 3.4.2. The frame operator S lies in the commutant of π.

Proof. This is a simple calculation. For any g ∈ Hπ and y ∈ Γ, we have

Sπ(y)g =
∑
i∈I

∫
Γ

〈π(y)g, π(x)fi〉π(x)fi dµΓ(x) =
∑
i∈I

∫
Γ

〈g, π(y−1x)fi〉π(x)fi dµ(x)

=
∑
i∈I

∫
Γ

〈g, π(x)fi〉π(yx)fi dµΓ(x) = π(y)Sg.

Lemma 3.4.3. The canonical tight frame associated with E(A ) is another group

frame. In other words, it has the form E(A ′) for some other countable family A ′ ⊆

Hπ.

Proof. The canonical tight frame is {S−1/2π(x)fi : x ∈ Γ, i ∈ I}. Since S lies in the

commutant of π, we have

S−1/2π(x) = π(x)S−1/2

for every x ∈ Γ. Thus, the canonical tight frame is {π(x)f ′i : x ∈ G, i ∈ I}, where

f ′i = S−1/2fi.

Proof of Theorem 3.4.1. Let

T : Hπ → L2(γ × I)

be the analysis operator for E(A ). That is,

(Tg)(x, i) = 〈g, π(x)fi〉 (g ∈ Hπ;x ∈ Γ; i ∈ I).
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By Lemma 3.4.3, we may assume without loss of generality that the frame is Parseval,

and hence that T is an isometry. Now simply observe that

(Tπ(y)g)(x, i) = 〈π(y)g, π(x)fi〉 = 〈g, π(y−1x)fi〉 = (Tg)(y−1x, i)

for every x, y ∈ Γ, g ∈ Hπ, and i ∈ I. Following T with the canonical identification

L2(Γ× I) ∼= L2(Γ; `2(I))

gives the desired isometry.

Another interpretation of Theorem 3.4.1 is that every group frame is given by

translation. In the special case where Γ is compact, a version of the corollary below

appeared in [43].

Corollary 3.4.4. There is a second countable locally compact group G containing Γ

as a closed subgroup, and a linear isometry

T : Hπ → L2(G)

such that

Tπ(x) = LxT

for every x ∈ Γ.

Proof. Give I the structure of a discrete abelian group, and let G = Γ× I. As in the

proof of Theorem 3.4.1, we can take T to be the analysis operator for the canonical

tight frame.

81



Corollary 3.4.5. Let G be any second countable locally compact group containing Γ

as a closed subgroup of infinite index. Then there is a closed subspace V ⊆ L2(G)

which is invariant under left translation by Γ, such that the action of Γ on V by left

translation is unitarily equivalent to π.

If U : Hπ → V is the unitary equivalence described above, then Uπ(x)fi = LxUfi

for all x ∈ Γ and all i ∈ I, so U gives a unitary equivalence between the group frame

{π(x)fi : x ∈ G, i ∈ I} and the frame of translates {Lx(Ufi) : x ∈ G, i ∈ I}.

This implies, for instance, that every group frame generated by Zn is given by

integer shifts in L2(Rn), and has therefore been described by Bownik [11]. Likewise,

descriptions of every possible frame generated by a second countable LCA group

appear in any of [10, 13, 14, 42, 49].

Proof. We use follow the notation of Section 2.2. Assume for the moment that

L2(Γ\G) is infinite dimensional. Applying Corollary 2.2.7, we find there are unitaries

L2(G) ∼= L2(Γ× Γ\G) ∼= L2(Γ;L2(Γ\G)) ∼= L2(Γ; `2(Z))

which all preserve left translation by Γ. Since I is countable, Theorem 3.4.1 says

that π is unitarily equivalent to a subrepresentation of the regular representation on

L2(Γ; `2(Z)). Hence it is unitarily equivalent left translation by Γ on some invariant

subspace of L2(G).

It remains to prove that dimL2(Γ\G) =∞. First, we claim that every nonempty

open subset U ⊆ Γ\G has positive measure. Let q : G → Γ\G be the quotient map.

In G, nonempty open sets have positive measure (see, for instance, [26, Proposition

2.19]), so since µG is a regular measure, q−1(U) contains a compact subset K with
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0 < µG(K) <∞. By (2.17),

0 < µG(K) =

∫
G

1K(x) dµG(x) =

∫
Γ\G

∫
Γ

1K(ξγ(Γx)) dµΓ(ξ) dµΓ\G(Γx)

≤
∫

Γ\G

∫
Γ

1q−1(U)(ξγ(Γx)) dµΓ(ξ) dµΓ\G(Γx)

=

∫
Γ\G

∫
Γ

1U(Γx) dµΓ(ξ) dµΓ\G(Γx) = µΓ\G(U) · µΓ(Γ),

so µΓ\G(U) > 0, as claimed.

Since Γ\G is Hausdorff, any open set with at least two points contains two disjoint

open subsets, each of which has positive measure. Hence, Γ\G either contains an

infinite sequence of open sets U1 ⊇ U2 ⊇ · · · with the property that 0 < µΓ\G(Un) <

∞ and µΓ\G(Un \Un+1) > 0 for each n, or Γ\G contains an open set which is a point.

In the first case, the characteristic functions 1U1 ,1U2 , . . . all belong to L2(Γ\G) and

satisfy 1Un+1 /∈ span{1U1 , . . . ,1Un} for all n, so L2(Γ\G) is infinite dimensional. In the

second case, at least one right coset of Γ is open inG. By applying right multiplication,

we see that all the right cosets of Γ are open in G, so Γ\G is discrete. In particular,

every point in Γ\G has positive measure. Since Γ\G is infinite by hypothesis, it

follows again that dimL2(Γ\G) =∞.

3.41. Conclusion

The results in this section were proved with very little effort. Their value lies

not in the techniques they required, but in the philosophy they embody: if we want

to learn more about group frames, then we should continue the extremely productive

line of research on shift-invariant spaces. That philosophy will be fully exploited for

representations of compact groups in Chapter IV.
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CHAPTER IV

ACTIONS OF COMPACT GROUPS

This chapter has been accepted for publication as [43].

4.1. The Zak transform of a compact subgroup

In Sections 4.1 – 4.3, G is a second countable locally compact group (not

necessarily abelian), and K ⊆ G is a compact subgroup. Our main result is the

existence of an operator-valued Zak transform on L2(G) that treats left translation

by K in a manner similar to the Fourier transform on L2(K). This operator will form

the basis for our classification of K-invariant subspaces of L2(G) in Section 4.2, and

for our analysis of frames formed by K-translates in Section 4.3.

The reader may consult [26, 41] for background on compact groups and their

representations. We record a few of the basics here. Throughout the paper, we

normalize Haar measure on K so that |K| = 1. The left and right translates of

f : K → C by ξ ∈ K are denoted Lξf and Rξf , respectively. That is,

(Lξf)(η) = f(ξ−1η), (Rξf)(η) = f(ηξ) (η ∈ K).

We give L2(K) the usual convolution and involution, namely

(f ∗ g)(ξ) =

∫
K

f(η)g(η−1ξ) dη (f, g ∈ L2(K); ξ ∈ K)

and

(f ∗)(ξ) = f(ξ−1) (f ∈ L2(K), ξ ∈ K).
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These operations make L2(K) a Banach ∗-algebra.

The dual object of K is K̂; it has one representative of each equivalence class

of irreducible unitary representations of K. Each π ∈ K̂ acts on a finite dimensional

space, which we denote Hπ. Its dimension is dπ = dimHπ. The Fourier transform of

f ∈ L2(K) evaluated at π ∈ K̂ is the operator

f̂(π) =

∫
K

f(ξ)π(ξ−1) dξ ∈ B(Hπ),

where the integral is to be interpreted in the weak sense. For our purposes, the utility

of the Fourier transform lies in the formulae

(Lξf)ˆ(π) = f̂(π)π(ξ−1), (Rξf)ˆ(π) = π(ξ)f̂(π) (f ∈ L2(K), ξ ∈ K, π ∈ K̂)

(4.1)

and

(f ∗)ˆ(π) = f̂(π)∗, (f ∗ g)ˆ(π) = ĝ(π)f̂(π) (f, g ∈ L2(K); π ∈ K̂). (4.2)

If B(Hπ) is treated as a Hilbert space with inner product 〈A,B〉 = dπ〈A,B〉HS =

dπ tr(B∗A), the Fourier transform may be viewed as a unitary

F : L2(K)→
⊕
π∈K̂

B(Hπ), Ff = (f̂(π))π∈K̂ .

This is called Plancherel’s Theorem. When an orthonormal basis eπ1 , . . . , e
π
dπ
∈ Hπ is

chosen for each π ∈ K̂, we define the matrix elements πi,j ∈ C(K) by

πi,j(ξ) = 〈π(ξ)eπj , e
π
i 〉 (π ∈ K̂; ξ ∈ K; i, j = 1, . . . , dπ).
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In other words, the matrix for π(ξ) with respect to the chosen basis is (πi,j(ξ))
dπ
i,j=1.

For f ∈ L2(K), the (i, j)-entry of the matrix for f̂(π) over this basis is

f̂(π)i,j =

∫
K

f(ξ)πi,j(ξ) dξ (f ∈ L2(K); π ∈ K̂; i, j = 1, . . . , dπ).

The contragredient to π ∈ K̂ is the representation π on Hπ with matrix elements

πi,j(ξ) = πi,j(ξ) (ξ ∈ K; i, j = 1, . . . , dπ).

The contragredient of an irreducible representation is also irreducible. The Peter-

Weyl Theorem asserts that

{
√
dππi,j : π ∈ K̂, i, j = 1, . . . , dπ}

is an orthonormal basis for L2(K). In particular,

‖f‖2
L2(K) =

∑
π∈K̂

dπ∑
i,j=1

dπ|f̂(π)i,j|2 =
∑
π∈K̂

dπ

∥∥∥f̂(π)
∥∥∥2

HS
(f ∈ L2(K)). (4.3)

Let K\G be the quotient space of right cosets of K in G. A cross section of

K\G in G is a map τ : K\G → G that selects a representative of each coset. In

other words, τ(Kx) ∈ Kx for every Kx ∈ K\G. By a classic result of Feldman

and Greenleaf [25], there is a Borel cross section τ : K\G→ G which maps compact

subsets of K\G to sets with compact closure in G. Fix such a cross section, and let

T : K ×K\G→ G be the bijection

T (ξ,Kx) = ξ · τ(Kx) (ξ ∈ K, Kx ∈ K\G). (4.4)
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By [42, Theorem 3.6], K\G admits a unique regular Borel measure with respect to

which T is a measure space isomorphism. We shall always have this measure in mind

when we treat K\G as a measure space.

Given a function f : G→ C and a coset Kx ∈ K\G, we will denote fKx : K → C

for the function given by

fKx(ξ) = f(ξ · τ(Kx)) (ξ ∈ K). (4.5)

Intuitively, we are treating the coset Kx like a copy of K itself, with the chosen

representative τ(Kx) taking the role of the identity element. In this sense, fKx is just

the restriction of f to Kx. Obviously,

(Lξf)Kx = Lξ(fKx) (ξ ∈ K, Kx ∈ K\G). (4.6)

Theorem 4.1.1. There is a unitary

Z : L2(G)→
⊕
π∈K̂

B(Hπ, L
2(K\G;Hπ))

given by

[(Zf)(π)u](Kx) = (fKx)ˆ(π)u (f ∈ L2(G), π ∈ K̂, u ∈ Hπ, Kx ∈ K\G). (4.7)

Here B(Hπ, L
2(K\G;Hπ)) is treated as a Hilbert space with inner product 〈A,B〉 =

dπ tr(B∗A), and the direct sum is that of Hilbert spaces.
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For f ∈ L2(G), ξ ∈ K, and π ∈ K̂, the unitary Z satisfies

[Z(Lξf)](π) = (Zf)(π) π(ξ−1). (4.8)

We call Z the Zak transform for the pair (G,K).

Proof. The measure space isomorphism T : K × K\G → G induces a unitary

U : L2(G)→ L2(K ×K\G), namely

(Uf)(ξ,Kx) = f(ξ · τ(Kx)) = fKx(ξ) (f ∈ L2(G), ξ ∈ K, Kx ∈ K\G).

Follow this with the canonical unitary V : L2(K ×K\G)→ L2(K)⊗ L2(K\G), and

then apply

FK ⊗ id : L2(K)⊗ L2(K\G)→ [
⊕
π∈K̂

B(Hπ)]⊗ L2(K\G).

Finally, make the natural identifications

[
⊕
π∈K̂

B(Hπ)]⊗ L2(K\G) ∼=
⊕
π∈K̂

[B(Hπ)⊗ L2(K\G)] ∼=
⊕
π∈K̂

B(Hπ,Hπ ⊗ L2(K\G))

∼=
⊕
π∈K̂

B(Hπ, L
2(K\G;Hπ)).

The resulting composition is Z. The translation identity (4.8) follows directly from

(4.6), (4.7), and the corresponding identity for the Fourier transform (4.1).

Remark 4.1.2. In the extreme case where K is all of G, the quotient K\G consists

of a single point, and we can interpret L2(K\G;Hπ) as simply being Hπ. Then the

Zak transform reduces to the usual Fourier transform on L2(K), as long as the cross
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section τ chooses the identity element as the representative of the (single) coset of K

in G.

In general, the choice of cross-section τ is noncanonical, and the operator Z

depends on this choice. Nonetheless, Zak transforms associated with different cross-

sections are easily related. Suppose that τ ′ : K\G→ G is another cross-section with

the required properties. For each Kx ∈ K\G, there is an element ηKx ∈ K such

that τ ′(Kx) = ηKxτ(Kx). Denoting Zτ and Zτ ′ for the versions of the Zak transform

obtained using τ and τ ′, respectively, we apply (4.7) and (4.1) to obtain the following

relation for any f ∈ L2(G), π ∈ K̂, u ∈ Hπ, and Kx ∈ K\G:

[(Zτ ′f)(π)u](Kx) = π(ηKx)[(Zτf)(π)u](Kx).

In other words, Zτ ′ can be obtained from Zτ by applying post composition with

π(ηKx) at each point Kx ∈ K\G and in every coordinate π ∈ K̂.

As with the usual Fourier transform on L2(K), there is another, basis-

dependent version of the Zak transform that sometimes makes computation more

convenient. When an orthonormal basis eπ1 , . . . , e
π
dπ

is chosen for Hπ, the space

B(Hπ, L
2(K\G;Hπ)) can be identified with Mdπ(L2(K\G)) by mapping the operator

A to the matrix whose (i, j)-entry is the function

Kx 7→ 〈(Aeπj )(Kx), eπi 〉 (Kx ∈ K\G).

Under this identification, the inner product on Mdπ(L2(K\G)) corresponding to the

one in the definition of the Zak transform is given by

〈M,N〉 = dπ

dπ∑
i,j=1

〈Mi,j, Ni,j〉 (M,N ∈Mdπ(L2(K\G))).
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When this identification is made for each π ∈ K̂, the Zak transform becomes a unitary

Z̃ : L2(G)→
⊕
π∈K̂

Mdπ(L2(K\G)).

The translation formula (4.8) then becomes

[Z̃(Lξf)](π) = (Z̃f)(π) · (πi,j(ξ−1))dπi,j=1 (f ∈ L2(G), ξ ∈ K, π ∈ K̂), (4.9)

where the vector- and scalar-valued matrices multiply using the usual formula for

matrix multiplication. For f ∈ L2(G) and π ∈ K̂, the (i, j)-entry of (Z̃f)(π) is the

function in L2(K\G) given by

Kx 7→
∫
K

f(ξτ(Kx))πi,j(ξ
−1) dξ (Kx ∈ K\G). (4.10)

For example, when K is a compact abelian group, each irreducible representation

π ∈ K̂ has dimension 1. Thus Mdπ(L2(K\G)) can be identified with L2(K\G), and

if we reinterpret the direct sum, we may view the Zak transform as a unitary

˜̃Z : L2(G)→ `2(K̂;L2(K\G))

given by

[( ˜̃Zf)(α)](Kx) =

∫
K

f(ξτ(Kx))α(ξ) dξ (f ∈ L2(G), α ∈ K̂, Kx ∈ K\G).

This agrees with the notion of Zak transform for an abelian subgroup described by

the author in [42]. If G and K are both abelian, this definition is equivalent to the

original notion of Zak transform as described by Weil in [63, p. 164–165]. That
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version of the Zak transform has a very long history in harmonic analysis. We refer

the reader to [40] for a brief survey.

4.2. Range functions and translation invariance

A closed subspace V ⊆ L2(G) will be called K-invariant if Lξf ∈ V whenever

f ∈ V and ξ ∈ K. In this section, we apply the Zak transform to classify the

K-invariant subspaces of L2(G) in terms of range functions.

Definition 4.2.1. Let X be an indexing set, and let H = {H(x)}x∈X be a family

of Hilbert spaces. A range function in H is a mapping

J : X →
⋃
x∈X

{closed subspaces of H(x)}

such that J(x) ⊆ H(x) for each x ∈ X. In other words, it is a choice of closed

subspace J(x) ⊆ H(x) for each x ∈ X.

If J is a range function in {L2(K\G;Hπ)}π∈K̂ , we define

VJ = {f ∈ L2(G) : for all π ∈ K̂, the range of (Zf)(π) is contained in J(π)}.

In terms of the Zak transform,

Z(VJ) =
⊕
π∈K̂

B(Hπ, J(π)), (4.11)

where we consider B(Hπ, J(π)) to be a closed subspace of B(Hπ, L
2(K\G;Hπ)).

The translation identity (4.8) for the Zak transform shows that VJ is K-invariant.

Remarkably, every K-invariant subspace of L2(G) takes this form.
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Theorem 4.2.2. The mapping J 7→ VJ is a bijection between range functions in

{L2(K\G;Hπ)}π∈K̂ and K-invariant subspaces of L2(G).

A basis-dependent version of this theorem runs as follows. Choose orthonormal

bases for each of the spaces Hπ, π ∈ K̂, and let

Z̃ : L2(G)→
⊕
π∈K̂

Mdπ(L2(K\G))

be the resulting basis-dependent Zak transform. For each π ∈ K̂, we will think of the

columns of Mdπ(L2(K\G)) as elements of L2(K\G)⊕dπ , the direct sum of dπ copies

of L2(K\G). Given a range function J in {L2(K\G)⊕dπ}π∈K̂ , let

ṼJ = {f ∈ L2(G) : for all π ∈ K̂, the columns of (Z̃f)(π) lie in J(π)}.

Then J 7→ ṼJ is a bijection between range functions in {L2(K\G)⊕dπ}π∈K̂ and K-

invariant subspaces of L2(G).

Range functions have a long history in the theory of translation invariance.

Helson [37] and Srinivasan [57] seem to have the first results in this area. Their

work was released at approximately the same time, and each cites the other,

so it is not clear who deserves credit for this line of research. The idea of

applying a Fourier-like transform and classifying invariant subspaces in terms of range

functions has since been applied by a host of researchers in a variety of settings

[1, 3, 4, 11, 12, 13, 14, 15, 19, 22, 38, 49]. Recently, the author [42] and Hernández,

et al. [10] independently applied a version of the Zak transform to classify translation

invariance by an abelian subgroup. The present theorem extends these results to the

setting of compact groups.
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We emphasize the novelty of applying this technique with a nonabelian subgroup.

Of the results mentioned above, only Currey, et al. [19] treats a noncommutative

case.1 The theory of translation invariance in the nonabelian setting is only in its

beginning stages. We hope that by first understanding the case of compact groups,

where the representation theory is comparatively simple, we can help point a direction

for understanding more general locally compact nonabelian groups.

The proof of Theorem 4.2.2 relies on a standard decomposition of actions of

compact groups. If ρ : K → U(Hρ) is a unitary representation of K, then the

isotypical component of π ∈ K̂ in ρ is the invariant subspace Mπ ⊆ Hρ spanned

by all subspaces of Hρ on which ρ is unitarily equivalent to π. Then

Hρ =
⊕
π∈K̂

Mπ. (4.12)

Moreover, each Mπ decomposes as a direct sum of irreducible subspaces on which ρ

is equivalent to π. If mult(π, ρ) is the multiplicity of π in ρ, it follows that

dimMπ = dπ ·mult(π, ρ) (π ∈ K̂). (4.13)

See [26, §5.1].

Given an invariant subspace V ⊆ Hρ, we will write ρV for the subrepresentation

of ρ on V . The following can be deduced easily from [41, Theorem 27.44].

Lemma 4.2.3. Let ρ : K → U(Hρ) be a unitary representation of K, with isotypical

components Mπ ⊆ Hρ for π ∈ K̂.

1At least one other group of researchers has shown interest in generalizing the shift-invariance
results of [11] to the compact nonabelian setting. An attempt at a classification theorem appears in
[52].
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(i) For each π ∈ K̂, let Eπ ⊆ Hρ be the closed linear span of some invariant

subspaces on which ρ is equivalent to π. If Hρ =
⊕

π∈K̂ Eπ, then Eπ =Mπ for

every π ∈ K̂.

(ii) If V ⊆ Hρ is an invariant subspace, then V ∩Mπ is the isotypical component

of π ∈ K̂ in ρV .

The next lemma follows from Schur’s Lemma and the Double Commutant

Theorem for von Neumann algebras.

Lemma 4.2.4. Let π ∈ K̂. Then B(Hπ) = span{π(ξ) : ξ ∈ K}.

Proof of Theorem 4.2.2. Since Z is unitary, (4.11) shows that the mapping J 7→ VJ

is injective. We need only prove that every K-invariant subspace V ⊆ L2(G) arises

as such a VJ . To do this, we will first show that V decomposes as a direct sum of

simpler pieces, and then we will leverage the Zak transform’s translation property

(4.8) on each piece.

Let ρ be the action of K on L2(G) by left translation. For each π ∈ K̂, let

Mπ = {f ∈ L2(G) : (Zf)(σ) = 0 for σ 6= π}.

We claim that Mπ is the isotypical component of π in ρ. Fix an orthonormal basis

eπ1 , . . . , e
π
dπ
∈ Hπ. For each π ∈ K̂, i = 1, . . . , dπ, and nonzero F ∈ L2(K\G;Hπ), we

define Fπ,i ∈ L2(G) by

(ZFπ,i)(σ)eσj =


d
−1/2
π ‖F‖−1 · F, if σ = π and i = j

0, otherwise

(σ ∈ K̂; j = 1, . . . , dσ)

94



Then 〈Fπ,i, Fπ,j〉 = 〈ZFπ,i, ZFπ,〉 = δi,j, and one can check that

LξFπ,j =
dπ∑
i=1

πi,j(ξ) · Fπ,i.

Hence span{Fπ,i : i = 1, . . . , dπ} is a K-invariant subspace of Mπ on which ρ is

equivalent to π. Moreover,

Mπ = span{Fπ,i : F ∈ L2(K\G;Hπ), i = 1, . . . , dπ}.

The claim follows from Lemma 4.2.3(i).

Now let V ⊆ L2(G) be a K-invariant subspace. By Lemma 4.2.3(ii),

V =
⊕
π∈K̂

V ∩Mπ.

Since (Zf)(σ) = 0 for f ∈ V ∩Mπ and σ 6= π, we may view Wπ := Z(V ∩Mπ) as a

closed subspace of B(Hπ, L
2(K\G;Hπ)). Let

J(π) = span{Au : A ∈ Wπ, u ∈ Hπ} ⊆ L2(K\G;Hπ).

Clearly Wπ ⊆ B(Hπ, J(π)). If we can upgrade this inclusion to equality, we will be

able to conclude that

Z(V ) =
⊕
π∈K̂

Z(V ∩Mπ) =
⊕
π∈K̂

B(Hπ, J(π)),

and the proof will be complete.

Fix any A ∈ B(Hπ, J(π)). We want to show that A ∈ Wπ. A moment’s thought

shows that A is the sum of operators in B(Hπ, J(π)) whose kernels have codimension
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one. It is enough to show that each of those operators belongs to Wπ. We may

therefore assume that there is a unit norm vector u ∈ Hπ such that Av = 0 for

all v ⊥ u. Let ε > 0 be arbitrary. Since ranA ⊆ J(π), we can find operators

B1, . . . , Bn ∈ Wπ and nonzero vectors v1, . . . , vn ∈ Hπ such that

∥∥∥∥∥Au−
n∑
j=1

Bjvj

∥∥∥∥∥
2

< ε.

We are going to produce an operator B ∈ Wπ with Bu =
∑n

j=1 Bjvj and Bv = 0 for

v ⊥ u.

Here is the key step. Since V ∩Mπ is invariant under left translation by K, the

identity (4.8) shows that Wπ = Z(V ∩Mπ) is invariant under right multiplication

by π(ξ−1) for each ξ ∈ K. Therefore Wπ is invariant under right multiplication by

B(Hπ) = span{π(ξ−1) : ξ ∈ K}. In particular, we can precompose each Bj ∈ Wπ

with another operator in B(Hπ) to make B′j ∈ Wπ satisfying B′ju = Bjvj and B′jv = 0

for all v ⊥ u. Then B := B′1 + · · ·+B′n belongs to Wπ, and

‖A−B‖2 = dπ ‖Au−Bu‖2 < dπε.

Since Wπ is closed and ε > 0 was arbitrary, we conclude that A ∈ Wπ. Therefore,

Z(V ∩Mπ) = Wπ = B(Hπ, J(π)),

as desired.

The preceding proof contained a fact that is useful in its own right.

Proposition 4.2.5. Let J be a range function in {L2(K\G;Hπ)}π∈K̂, and let ρJ be

the representation of K on VJ given by left translation. Then the isotypical component
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of π ∈ K̂ in ρJ is

Mπ = {f ∈ VJ : (Zf)(σ) = 0 for σ 6= π}.

In particular,

mult(π, ρJ) = dim J(π). (4.14)

and

dimVJ =
∑
π∈K̂

dπ · dim J(π). (4.15)

Proof. That Mπ is the isotypical component of π in ρJ was proven above. To see

(4.14), simply observe that

dimMπ = dimZMπ = dπ · dim J(π)

and apply (4.13). Then (4.15) follows from (4.12).

Remark 4.2.6. K-invariant spaces are determined up to unitary equivalence by the

dimensions of the spaces chosen by their range functions, in the following sense.

Let J1 and J2 be two range functions in {L2(K\G;Hπ)}π∈K̂ , and let V1 and V2 be

the corresponding K-invariant subspaces of L2(G). Then there is a unitary map

U : V1 → V2 with the property that

ULξ = LξU (ξ ∈ K)

if and only if

dim J1(π) = dim J2(π) (π ∈ K̂).
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This is a consequence of (4.14), since representations of compact groups are

determined up to unitary equivalence by multiplicities of irreducible representations.

Compare with Bownik’s results on the dimension function for shift-invariant subspaces

of L2(Rn) [11, Theorem 4.10].

Theorem 4.2.7. Let A ⊆ L2(G) be an arbitrary family of functions, and let S(A ) ⊆

L2(G) be the K-invariant subspace generated by A . That is,

S(A ) = span{Lξf : ξ ∈ K, f ∈ A }.

Then S(A ) = VJ , where

J(π) = span{ran(Zf)(π) : f ∈ A } (π ∈ K̂).

Proof. If J and J ′ are two range functions in {L2(K\G;Hπ)}π∈K̂ with the property

that J(π) ⊆ J ′(π) for all π ∈ K̂, then it is easy to see that VJ ⊆ VJ ′ . Moreover, VJ ′

contains S(A ) if and only if J ′(π) contains ran(Zf)(π) for all f ∈ A , for every π ∈ K̂.

Since S(A ) is the smallest K-invariant space containing A , the corresponding range

function J must be such that J(π) is the smallest closed subspace of L2(K\G;Hπ)

containing ran(Zf)(π) for all f ∈ A , for every π ∈ K̂. That subspace is precisely

span{ran(Zf)(π) : f ∈ A }.

Corollary 4.2.8. L2(G) contains a function f with span{Lξf : ξ ∈ K} = L2(G) if

and only if G = K.
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Proof. The K-invariant space L2(G) corresponds with the range function J ′ given by

J ′(π) = L2(K\G;Hπ) (π ∈ K̂).

If K ( G, then any f ∈ L2(G) has

rank(Zf)(π) ≤ dπ < dimL2(K\G;Hπ) (π ∈ K̂).

By the previous theorem, the range function J associated with S({f}) has J(π) =

ran(Zf)(π) 6= J ′(π) for each π ∈ K̂. Hence,

S({f}) = VJ 6= VJ ′ = L2(G).

When G = K, on the other hand, it is well known that every subrepresentation

of the regular representation is cyclic. See, for instance, [31].

We will now study the correspondence between range functions and K-invariant

spaces in greater detail. Roughly speaking, we will see that the map VJ 7→ J allows us

to view the lattice of K-invariant spaces as a much simpler lattice of linear subspaces.

Many of the ideas that follow will appear again in our analysis of invariant subspaces

of general representations of compact groups in Section 4.6.

To begin, we introduce the notion of direct sum for range functions. If J and J ′

are two range functions in the same family H = {H(x)}x∈X , with the property that

J(x) ⊥ J ′(x) for every x ∈ X, then we say that J and J ′ are orthogonal, and write

J ⊥ J ′. Given a family {Jα}α∈A of pairwise orthogonal range functions in H , we
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denote ⊕α∈AJα for the range function in H given by

[
⊕
α∈A

Jα](x) =
⊕
α∈A

[Jα(x)] (x ∈ X).

Let J and J ′ be two range functions in {L2(K\G;Hπ)}π∈K̂ . For each π ∈ K̂,

we view B(Hπ, J(π)) and B(Hπ, J
′(π)) as closed subspaces of B(Hπ, L

2(K\G;Hπ)),

with the inner product

〈A,B〉 = dπ〈A,B〉HS .

Then B(Hπ, J(π)) is orthogonal to B(Hπ, J
′(π)) if and only if J(π) ⊥ J ′(π). Since

Z is unitary and

Z(VJ) =
⊕
π∈K̂

B(Hπ, J(π)),

we conclude that

J ⊥ J ′ ⇐⇒ VJ ⊥ VJ ′ . (4.16)

Moreover, if {Jα}α∈A is a family of range functions in {L2(K\G;Hπ)}π∈K̂ , then

J =
⊕
α∈A

Jα ⇐⇒ VJ =
⊕
α∈A

VJα . (4.17)

With these simple observations, we can easily describe all possible

decompositions of VJ as a direct sum of irreducible subspaces.

Theorem 4.2.9. Let J be a range function in {L2(K\G;Hπ)}π∈K̂. For each π ∈ K̂,

choose an orthonormal basis {F π
i }i∈Iπ for J(π).2 Then

Vπ,i := {f ∈ L2(G) : ran(Zf)(π) ⊆ span{F π
i }, and (Zf)(σ) = 0 for σ 6= π in K̂}

2If J(π) = {0}, we take Iπ to be the empty set.
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is an irreducible K-invariant space for each π ∈ K̂ and i ∈ Iπ, and

VJ =
⊕
π∈K̂

⊕
i∈Iπ

Vπ,i. (4.18)

Moreover, every decomposition of VJ as a direct sum of irreducible K-invariant spaces

occurs in this way.

In terms of the Zak transform, the direct sum decomposition (4.18) simply says

that

Z(VJ) =
⊕
π∈K̂

⊕
i∈Iπ

B(Hπ, span{F π
i }).

We can think of span{F π
i } as being a copy of C, so that B(Hπ, span{F π

i }) is like a

copy of H∗π. It will therefore come as no surprise that the corresponding action of K

on B(Hπ, span{F π
i }) is unitarily equivalent to π.

Proof. For each π ∈ K̂ and each i = 1, . . . , dπ, let Jπ,i be the range function given by

Jπ,i(σ) =


span{F π

i }, if σ = π

{0}, if σ 6= π

(σ ∈ K̂).

Then Vπ,i = VJπ,i , and the direct sum decomposition (4.18) follows immediately from

(4.17). If ρπ,i is the action of K on Vπ,i by left translation, then ρπ,i ∼= π by (4.14).

In particular, Vπ,i is irreducible.

Suppose

VJ =
⊕
α∈A

Vα (4.19)

is another decomposition of VJ into irreducible K-invariant spaces. Each Vα has the

form VJα for some range function Jα, and (4.14) shows that Jα(π) is one dimensional
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for exactly one π ∈ K̂, and trivial for all others. For that unique value of π, we choose

a unit norm vector Gα ∈ Jα(π).

Applying (4.17) again, we see that J =
⊕

α∈A Jα. In particular,

J(π) =
⊕
α∈A,

Jα(π)6={0}

Jα(π) =
⊕
α∈A,

Jα(π)6={0}

span{Gα}

for each π ∈ K̂. Hence {Gα : α ∈ A, Jα(π) 6= {0}} is an orthonormal basis for J(π).

Rearranging the decomposition (4.19) as

VJ =
⊕
π∈K̂

⊕
α∈A,

Jα(π)6={0}

Vα

shows it has the same form as (4.18).

4.3. Frames of translates

There is a long tradition of combining range function classifications of invariant

spaces with conditions for a family of translates to form a reproducing system. Bownik

[11] seems to have the first results along these lines. His example was followed in

[10, 13, 14, 19, 42, 49]. We now carry that tradition to the setting of compact,

nonabelian subgroups. For our purposes, the relevant notion will be a continuous

version of frames.

Definition 4.3.1. Let H be a separable Hilbert space, and let (M, µ) be a σ-finite

measure space. Let {fx}x∈M be an indexed family with the property that x 7→ 〈g, fx〉

is a measurable function on M for every g ∈ H. Then {fx}x∈M is a Bessel mapping
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if there is a constant B > 0 such that

∫
M
|〈g, fx〉|2 dµ(x) ≤ B ‖g‖2 for every g ∈ H.

It is a continuous frame for H if there are constants 0 < A ≤ B <∞ such that

A ‖g‖2 ≤
∫
M
|〈g, fx〉|2 dµ(x) ≤ B ‖g‖2 for every g ∈ H.

The constants A and B are called bounds. If we can take A = B, the frame is tight.

If we can take A = B = 1, it is a Parseval frame.

The reader unfamiliar with this notion may consult [2, 48], where it was originally

developed. Further details are available in [27] and [53]. In the case where M is a

discrete set equipped with counting measure, continuous frames reduce to the usual,

discrete version. (The reader may even take this as a definition.) We will use the

terms “frame” and “continuous frame” interchangeably.

The usual reproducing properties of discrete frames carry over to the continuous

versions, with predictable modifications. Let {fx}x∈M be a Bessel mapping. The

associated analysis operator T : H → L2(M) is defined by

(Tg)(x) = 〈g, fx〉 (g ∈ H, x ∈M);

its adjoint is the synthesis operator T ∗ : L2(M)→ H,

T ∗φ =

∫
M
φ(x)fx dµ(x) (φ ∈ L2(M)),
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where the vector-valued integral is interpreted in the weak sense. The Gramian is

G = TT ∗, and the frame operator is S = T ∗T . When our Bessel mapping is a

continuous frame, the frame operator is positive and invertible, and {S−1/2fx}x∈M

is a continuous Parseval frame for H, called the canonical tight frame. For Parseval

frames, the frame operator is the identity map, and the Gramian is an orthogonal

projection. Even when the frame is not tight, {S−1fx}x∈M is another frame for H

which satisfies

g =

∫
M
〈g, S−1fx〉fx dµ(x) (g ∈ H).

Remark 4.3.2. The results in this paper apply for arbitrary second countable compact

groups, which includes finite groups in particular. When K is finite, all of our results

about continuous frames indexed by K can be interpreted in terms of discrete frames.

We caution that it is necessary to reinterpret the frame bounds in this case, since Haar

measure on K is normalized so that |K| = 1. In the special case where K is finite, a

continuous frame over K having bounds A,B is the same as a discrete frame indexed

by K having bounds card(K) · A, card(K) ·B.

For a countable family A ⊆ L2(G), we will denote

E(A ) = {Lξf}ξ∈K,f∈A

for the translates of A . Recall that

S(A ) = spanE(A )
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is the K-invariant space generated by A , and that S(A ) = VJ , with

J(π) = span{ran(Zf)(π) : f ∈ A } (π ∈ K̂). (4.20)

We would like to know under what circumstances E(A ) forms a continuous frame

for S(A ). Our main result is as follows.

Theorem 4.3.3. Let A ⊆ L2(G) be a countable family of functions, and let J be

the range function in (4.20). For any constants 0 < A ≤ B < ∞ and any choice of

orthonormal bases eπ1 , . . . , e
π
dπ
∈ Hπ, π ∈ K̂, the following are equivalent.

(i) E(A ) is a continuous frame for S(A ) with bounds A,B. That is,

A ‖g‖2 ≤
∑
f∈A

∫
K

|〈g, Lξf〉|2 dξ ≤ B ‖g‖2 (g ∈ S(A )). (4.21)

(ii) For every π ∈ K̂, {(Zf)(π)eπi : f ∈ A , i = 1, . . . , dπ} is a discrete frame for

J(π) with bounds A,B.

This is in the spirit of [11, Theorem 2.3]. When K is compact and abelian, the

theorem above reduces to [42, Theorem 5.4]. If G is also abelian, the same result was

given in [10, Theorem 6.10]. Similar results appear in [10, 13, 14, 19, 42, 44, 49, 55].

The proof of Theorem 4.3.3 relies on the following lemma, which will also play

a prominent role in Section 4.4. To each pair f, g ∈ L2(G), we associate the matrix

element Vfg ∈ C(K) given by

(Vfg)(ξ) = 〈g, Lξf〉 (ξ ∈ K).
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Lemma 4.3.4. For f, g ∈ L2(G) and π ∈ K̂,

(Vfg)ˆ(π) = (Zf)(π)∗(Zg)(π).

Proof. Fix an orthonormal basis eπ1 , . . . , e
π
dπ

for each Hπ, π ∈ K̂. For f, g ∈ L2(G),

π ∈ K̂, and i, j = 1, . . . , dπ, the (i, j)-entry of the matrix for (Vfg)ˆ(π) with respect

to this basis is

(Vfg)ˆ(π)i,j =

∫
K

∫
G

g(x)(Lξf)(x) dx πi,j(ξ) dξ.

Applying the measure space isomorphism G → K\G ×K from (4.4), we see this is

equal to ∫
K

∫
K\G

∫
K

gKx(η)fKx(ξ−1η) dη d(Kx)πi,j(ξ) dξ

=

∫
K

∫
K\G

(gKx ∗ f ∗Kx)(ξ) d(Kx) πi,j(ξ) dξ,

where fKx and gKx are as defined in (4.5). We wish to reverse the order of integration

above with Fubini’s Theorem. Assuming for the moment that this is possible, we will

have

(Vfg)ˆ(π)i,j =

∫
K

∫
K\G

(gKx ∗ f ∗Kx)(ξ) d(Kx) πi,j(ξ) dξ

=

∫
K\G

∫
K

(gKx ∗ f ∗Kx)(ξ)πi,j(ξ) dξ d(Kx) =

∫
K\G

(gKx ∗ f ∗Kx)ˆ(π)i,j d(Kx)

=

∫
K\G
〈(fKx)ˆ(π)∗(gKx)ˆ(π)eπj , e

π
i 〉 d(Kx) =

∫
K\G
〈(gKx)ˆ(π)eπj , (fKx)ˆ(π)eπi 〉 d(Kx)

=

∫
K\G
〈[(Zg)(π)eπj ](Kx), [(Zf)(π)eπi ](Kx)〉 d(Kx) = 〈(Zg)(π)eπj , (Zf)(π)eπi 〉

= [(Zf)(π)∗(Zg)(π)]i,j,
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where we have applied the definition of the Zak transform (4.7) in the third to last

equality. Once the above holds for all i and j, we will be able to conclude that

(Vfg)ˆ(π) = (Zf)(π)∗(Zg)(π),

as desired.

It only remains to justify our use of Fubini’s Theorem. To do so, we observe first

that

|πi,j(ξ)| = |〈π(ξ)eπj , e
π
i 〉| ≤

∥∥π(ξ)eπj
∥∥ ‖eπi ‖ = 1 (ξ ∈ K),

by Cauchy-Schwarz. Hence,

∫
K\G

∫
K

|(gKx ∗ f ∗Kx)(ξ)πi,j(ξ)| dξ d(Kx) ≤
∫
K\G
‖gKx ∗ f ∗Kx‖L1(K) d(Kx)

≤
∫
K\G
‖gKx‖L1(K) ‖fKx‖L1(K) d(Kx)

≤
(∫

K\G
‖gKx‖2

L1(K) d(Kx)

)1/2(∫
K\G
‖fKx‖2

L1(K) d(Kx)

)1/2

.

The proof will be finished if we can show that
∫
K\G ‖fKx‖

2
L1(K) d(Kx) < ∞ for

all f ∈ L2(G). An application of Minkowski’s Integral Inequality produces

(∫
K\G
‖fKx‖2

L1(K) d(Kx)

)1/2

=

(∫
K\G

∣∣∣∣∫
K

|f(ητ(Kx))| dη
∣∣∣∣2 d(Kx)

)1/2

≤
∫
K

(∫
K\G
|f(ητ(Kx))|2 d(Kx)

)1/2

dη.
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Let

E = {η ∈ K :

∫
K\G
|f(ητ(Kx)|2 d(Kx) < 1}

F = {η ∈ K :

∫
K\G
|f(ητ(Kx)|2 d(Kx) ≥ 1}.

(These are well defined up to sets of measure zero.) Then

(∫
K\G
‖fKx‖2

L1(K) d(Kx)

)1/2

≤
∫
K

(∫
K\G
|f(ητ(Kx))|2 d(Kx)

)1/2

dη

=

∫
E

(∫
K\G
|f(ητ(Kx))|2 d(Kx)

)1/2

dη +

∫
F

(∫
K\G
|f(ητ(Kx))|2 d(Kx)

)1/2

dη

≤ |E|+
∫
F

∫
K\G
|f(ητ(Kx))|2 d(Kx) dη ≤ 1 +

∫
K

∫
K\G
|f(ητ(Kx))|2 d(Kx) dη

= 1 +

∫
G

|f(x)|2 dx <∞,

where we have once again applied the measure space isomorphism K ×K\G → G.

This completes the proof.

With this lemma in hand, Theorem 4.3.3 becomes an easy consequence of

Plancherel’s Theorem and our classification of K-invariant spaces.

Proof of Theorem 4.3.3. For any f, g ∈ L2(G), we use Plancherel’s Theorem and

Lemma 4.3.4 to perform the fundamental calculation

∫
K

|〈g, Lξf〉|2 dξ =
∑
π∈K̂

dπ ‖(Zf)(π)∗(Zg)(π)‖2
HS (4.22)

=
∑
π∈K̂

dπ

dπ∑
j=1

dπ∑
i=1

|〈(Zg)(π)eπj , (Zf)(π)eπi 〉|2.
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On the other hand, the fact that Z is unitary implies

‖g‖2 =
∑
π∈K̂

dπ ‖(Zg)(π)‖2
HS =

∑
π∈K̂

dπ

dπ∑
j=1

∥∥(Zg)(π)eπj
∥∥2
. (4.23)

Suppose (i) holds. Fix π ∈ K̂, and choose any G ∈ J(π). Define g ∈ L2(G) by

the formula

(Zg)(σ)eσj =


d
−1/2
π G, if σ = π

0, if σ 6= π

(σ ∈ K̂; j = 1, . . . , dσ).

Then g ∈ VJ = S(A ), by construction. It satisfies

‖g‖2 = ‖G‖2 ,

by (4.23), and

∑
f∈A

∫
K

|〈g, Lξf〉|2 dξ =
∑
f∈A

dπ∑
i=1

|〈G, (Zf)(π)eπi 〉|2,

by (4.22). Substituting these equations into (4.21) gives

A ‖G‖2 ≤
∑
f∈A

dπ∑
i=1

|〈G, (Zf)(π)eπi 〉|2 ≤ B ‖G‖2 .

In other words, (ii) holds.
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Now assume (ii) is satisfied. For every g ∈ S(A ) = VJ and every π ∈ K̂,

(Zg)(π)eπj ∈ J(π). By (4.23) and the frame inequality,

A ‖g‖2 =
∑
π∈K̂

dπ

dπ∑
j=1

A
∥∥(Zg)(π)eπj

∥∥2 ≤
∑
π∈K̂

dπ

dπ∑
j=1

∑
f∈A

dπ∑
i=1

|〈(Zg)(π)eπj , (Zf)(π)eπi 〉|2.

Applying (4.22) to the last expression above, we see that

A ‖g‖2 ≤
∑
f∈A

∫
K

|〈g, Lξf〉|2 dξ.

A similar computation produces

∑
f∈A

∫
K

|〈g, Lξf〉|2 dξ ≤ B ‖g‖2 .

This proves (i).

4.4. Bracket analysis for compact group actions

We turn our attention now to a detailed study of group frames, as described in the

introduction. In this section, we introduce a computational system known as a bracket

for the analysis of representations of compact groups. Our primary motivation is the

study of group frames with a single generator. We will see, however, that the bracket

carries vital information about the structure of the representation itself, including its

isotypical components and the multiplicities of irreducible representations. Several

applications for the theory of group frames, including a complete classification of

(compact) group frames with a single generator, appear in Section 4.5. Throughout,

we fix a second countable compact group K, as in the previous sections, with Haar
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measure normalized so that |K| = 1. We also fix a unitary representation ρ of K,

acting on a separable Hilbert space Hρ.

Our approach is motivated by the work of Weiss, et al. in [39]. Let G be a

second countable locally compact abelian (LCA) group, with dual group Ĝ. Normalize

Haar measures on G and Ĝ so that the Plancherel theorem holds. A representation

π : G → U(Hπ) is called dual integrable if there is a bracket

[·, ·] : Hπ ×Hπ → L1(Ĝ)

such that

〈f, π(x)g〉 =

∫
Ĝ
[f, g](α)α(x) dα (f, g ∈ Hπ; x ∈ G).

When G is identified with the dual of Ĝ via Pontryagin Duality, this means that

〈f, π(·)g〉 is the Fourier transform of [f, g]. The bracket provides an elegant description

of frame properties for an orbit {π(x)f}x∈G.

Proposition 4.4.1 ( [39, 42] ). For f ∈ Hπ and constants A,B with 0 < A ≤ B <∞,

the following are equivalent.

(i) The orbit {π(x)f}x∈G is a continuous frame for its closed linear span, with

bounds A,B

(ii) For a.e. α ∈ Ĝ, either [f, f ](α) = 0 or A ≤ [f, f ](α) ≤ B.

A possible difficulty with this approach is that, generally speaking, one may

know a representation is dual integrable without being able to compute the bracket.3

Suppose, however, that G is compact abelian. Then we can compute brackets as

3For certain kinds of representations, there are ways to recover the bracket even when G is not
compact. Most of these methods involve variants of the Zak transform. See [39] and [42].
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follows. Let π be any unitary representation of G on a separable Hilbert space Hπ.

Then π decomposes as a direct sum of cyclic subrepresentations, each of which is

unitarily equivalent to a subrepresentation of the regular representation. (See, for

instance, [31].) By [39, Corollary 3.4], π is dual integrable. Let [·, ·] : Hπ×Hπ → L1(Ĝ)

be a bracket for π. That is,

〈f, π(x)g〉 = [f, g]ˆ(x) (f, g ∈ H; x ∈ G).

Since G is compact, [f, g]ˆ lies in C(G) ⊆ L1(G) for every f, g ∈ Hπ. Therefore we can

apply Fourier inversion to recover the bracket from the matrix elements 〈f, π(·)g〉:

[f, g](α) = 〈f, π(·)g〉ˆ(α−1) (f, g ∈ Hπ; α ∈ Ĝ).

These results suggest that, for our general compact group K with unitary

representation ρ, it should be possible to analyze frames appearing as orbits of ρ

using the (operator-valued) Fourier transform of the matrix elements

(Vgf)(ξ) := 〈f, ρ(ξ)g〉 (f, g ∈ Hρ; ξ ∈ K).

This is indeed the case.

Definition 4.4.2. The bracket associated with ρ is the map

[·, ·] : Hρ ×Hρ →
⊕
π∈K̂

B(Hπ)

given by

[f, g](π) = (Vgf)ˆ(π) (π ∈ K̂).
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Here, as elsewhere, we consider B(Hπ) to be a Hilbert space with inner product

given by

〈A,B〉 = dπ〈A,B〉HS = dπ tr(B∗A).

Then
⊕

π∈K̂ B(Hπ) is the Hilbert space direct sum.

Following the notation of [39], we will denote 〈f〉 ⊆ Hρ for the cyclic subspace

generated by f ∈ Hρ. That is,

〈f〉 = span{ρ(ξ)f : ξ ∈ K} (f ∈ Hρ).

Our main result is the following.

Theorem 4.4.3. For f ∈ Hρ and constants A,B with 0 < A ≤ B <∞, the following

are equivalent.

(i) The orbit {ρ(ξ)f}ξ∈K is a continuous frame for 〈f〉 with bounds A,B.

(ii) For every π ∈ K̂, the nonzero eigenvalues of [f, f ](π) lie in the interval [A,B].

When dimHρ <∞, it is easy to tell when 〈f〉 = Hρ using the ranks of [f, f ](π),

π ∈ K̂; see Proposition 4.4.9 below. Thus, one can tell whether or not {ρ(ξ)f}ξ∈K is

a frame for Hρ, and with what bounds, based solely on the eigenvalues of [f, f ](π),

π ∈ K̂, and their multiplicities. The condition that dimHρ < ∞ is always satisfied

when {ρ(ξ)f}ξ∈K is a frame for Hρ; this is a consequence of Theorem 4.5.2, infra.

If Qπ denotes orthogonal projection of Hπ onto (ker[f, f ](π))⊥, then condition

(ii) of the theorem above can be interpreted to say that AQπ ≤ [f, f ](π) ≤ BQπ for

each π ∈ K̂. (Compare with [8, Theorem A].) In the special case where K is compact

abelian, Theorem 4.4.3 reduces to Proposition 4.4.1.
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Tight frames generated by actions of finite nonabelian groups have been the

focus of a flurry of recent activity [17, 18, 34, 58, 59, 60]. See [58, Theorem 6.18]

and its generalization [60, Theorem 2.8] in particular for another characterization of

tight frames that occur in this way. A nice summary of the state of the art circa 2013

appears in [61]; unfortunately the survey is already out of date, thanks in part to

recent work by Waldron himself. This field is advancing rapidly.

Brackets have been used to analyze reproducing systems in L2(Rn) since at

least the work of Jia and Micchelli [46]. Weiss and his collaborators brought these

techniques into the group-theoretic domain with [39], as described above. In the

nonabelian setting, Hernández, et al. have developed notions of bracket maps for the

Heisenberg group and for countable discrete groups [7, 8, 9].

The bracket defined above is related to the one that appears in [8, 9]. Suppose

that K is finite (that is, both compact and discrete). Let us write [·, ·]0 : Hρ ×Hρ →

B(L2(K)) for the bracket as developed in [8]. One can show that, for all f, g ∈ Hρ,

[f, g]0(φ) = φ ∗ Vgf (φ ∈ L2(K)).

Conjugating with the Fourier transform turns [f, g]0 into left multiplication by [f, g].

One might say the papers [8, 9] study the convolution operator given by Vgf , where

this paper studies its Fourier transform.

Much of our analysis relies on functions of positive type. We remind the reader

that φ ∈ C(K) is said to be of positive type if

∫
K

(f ∗ f ∗)(ξ)φ(ξ) dξ ≥ 0 for all f ∈ L1(K).
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Equivalently, there is a unitary representation σ of K and a vector f ∈ Hσ such that

φ(ξ) = 〈f, σ(ξ)f〉 (ξ ∈ K).

The representation and the vector are unique in the following sense: If σ′ is another

representation of K with a cyclic vector f ′ ∈ Hσ′ such that φ(ξ) = 〈f ′, σ′(ξ)f ′〉 for

all ξ ∈ K, then there is a unitary U : Hσ′ → Hσ intertwining σ′ with σ and mapping

f ′ 7→ f . (See, for instance, [26, §3.3].) When σ is the regular representation and

f, g ∈ L2(K), we have

〈f, Lξg〉 =

∫
K

f(η)g∗(η−1ξ) dη = (f ∗ g∗)(ξ) (ξ ∈ K). (4.24)

For arbitrary f ∈ L2(K), this means that φ = f ∗ f ∗ is a function of positive

type. Up to unitary equivalence, the cyclic representations of K are precisely the

subrepresentations of the regular representation ([31]); thus every function of positive

type takes this form. In particular,

φ∗ = φ, (4.25)

and

φ̂(π) = (f ∗ f ∗)ˆ(π) = f̂(π)∗f̂(π) ≥ 0 (π ∈ K̂). (4.26)

(It is positive semidefinite.)

The bracket [f, f ] in Theorem 4.4.3 is the Fourier transform of the associated

function of positive type

Vff(ξ) = 〈f, ρ(ξ)f〉 (ξ ∈ K).
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Given Vff , it is possible to reconstruct the Hilbert space 〈f〉, the restriction of ρ to

〈f〉, and the cyclic vector f . In other words, Vff contains complete information about

the cyclic representation generated by f . Philosophically speaking, it must also be

able to tell us when the orbit of f is a continuous frame for 〈f〉. Theorem 4.4.3 tells

how to extract this information.

We will write A† for the Moore-Penrose pseudoinverse of a bounded linear

operator A. When A has closed range, AA† is orthogonal projection onto the range

of A, and A†A is orthogonal projection onto (kerA)⊥.

Lemma 4.4.4. For every f ∈ Hρ, there is a unique linear isometry Tf : 〈f〉 → L2(K)

intertwining ρ with left translation, and sending f to a function of positive type.

Explicitly,

(Tfg)ˆ(π) = ([f, f ](π)1/2)† · [g, f ](π) (g ∈ 〈f〉, π ∈ K̂). (4.27)

Proof. Since the restriction of ρ to 〈f〉 is square integrable, the existence of a linear

isometry Tf : 〈f〉 → L2(K) intertwining ρ with left translation and mapping f to a

function of positive type is given by [23, Theorem 13.8.6]. Then (Tff)∗ = Tff , and

(Vff)(ξ) = 〈Tff, Lξ(Tff)〉 = [Tff ∗ (Tff)∗](ξ) = (Tff ∗ Tff)(ξ) (ξ ∈ K).

Since (Tff)ˆ(π) ≥ 0 for all π ∈ K̂, we conclude that

(Tff)ˆ(π) = [f, f ](π)1/2 (π ∈ K̂).
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For any g ∈ 〈f〉, (4.24) gives

(Vfg)(ξ) = 〈Tfg, LξTff〉 = [(Tfg) ∗ (Tff)∗](ξ) = [(Tfg) ∗ (Tff)](ξ) (ξ ∈ K),

or equivalently,

[g, f ](π) = (Tff)ˆ(π) · (Tfg)ˆ(π) (π ∈ K̂). (4.28)

Since Tfg ∈ 〈Tff〉, Theorem 4.2.7 shows that

ran(Tfg)ˆ(π) ⊆ ran(Tff)ˆ(π) = (ker(Tff)ˆ(π))⊥ (π ∈ K̂).

(Here we use the Fourier transform in place of the Zak transform; see Remark 4.1.2.)

Applying [(Tff)ˆ(π)]† = ([f, f ](π)1/2)† to both sides of (4.28) establishes (4.27). In

particular, Tf is uniquely determined.

Proposition 4.4.5. The bracket has the following properties.

(i) [·, ·] is linear in the first variable, and conjugate linear in the second.

(ii) For all f, g ∈ Hρ and π ∈ K̂,

[f, g](π) = [g, f ](π)∗.

(iii) For all f ∈ Hρ and π ∈ K̂, [f, f ](π) ≥ 0.

(iv) For all f, g ∈ Hρ and A ∈ B(Hρ),

[Af, g] = [f, A∗g].
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(v) For all f, g ∈ Hρ, π ∈ K̂, and ξ ∈ K,

[f, ρ(ξ)g](π) = π(ξ) · [f, g](π)

and

[ρ(ξ)f, g](π) = [f, g](π) · π(ξ−1).

(vi) For f, g ∈ Hρ, f ⊥ 〈g〉 if and only if [f, g] = 0.

More properties will be given in Propositions 4.4.7 and 4.4.8 below.

Proof. Item (i) follows from linearity of the Fourier transform and sesquilinearity of

the map (f, g) 7→ Vgf . To see (ii), apply (4.2) to the identity Vfg = (Vgf)∗. Equation

(4.26) gives (iii), since Vff is a function of positive type. Apply the simple identity

Vg(Af) = VA∗gf to get (iv). For (v), use (4.1) and the identities

Vρ(ξ)gf = Rξ(Vgf), Vg(ρ(ξ)f) = Lξ(Vgf) (f, g ∈ Hρ; ξ ∈ K).

For (vi), first assume that f ⊥ 〈g〉. Let Pg denote orthogonal projection of Hρ

onto 〈g〉, and apply (iv) to see that

[f, g] = [f, Pgg] = [Pgf, g] = 0.

Now suppose that f, g ∈ Hρ satisfy [f, g] = 0. By Plancherel’s Theorem, Vgf = 0.

That is, 〈f, ρ(ξ)g〉 = 0 for all ξ ∈ K. Hence f ⊥ 〈g〉.

When K is contained in a larger second countable, locally compact group G, the

Zak transform provides a bracket for the action of K on L2(G) by left translation.
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Indeed, Lemma 4.3.4 says precisely that

[f, g](π) = (Zg)(π)∗(Zf)(π) (f, g ∈ L2(G); π ∈ K̂)

in this case. The theorem below shows that this example is universal; it is always

possible to embed Hρ as a K-invariant subspace of L2(G), for some larger group G

containing K, in such a way that ρ becomes left translation by K.

Theorem 4.4.6. There is a second countable, locally compact group G containing K

as a closed subgroup, and a linear isometry T : Hρ → L2(G) satisfying

Tρ(ξ)f = LξTf (f ∈ Hρ, ξ ∈ K).

If Z is the Zak transform for the pair (G,K), then the bracket for ρ is given by

[f, g](π) = (ZTg)(π)∗(ZTf)(π) (f, g ∈ Hρ; π ∈ K̂).

Proof. There is a countable family {fi}i∈I ⊆ Hρ for which

Hρ =
⊕
i∈I

〈fi〉.

For each i ∈ I, let Tfi : 〈fi〉 → L2(K) be the isometry from Lemma 4.4.4. Give I the

structure of a discrete abelian group, and let G = K × I. Given g ∈ Hρ, find the

unique decomposition g =
∑

i∈I gi with gi ∈ 〈fi〉 for all i, and define

(Tg)(ξ, i) = (Tfigi)(ξ) (ξ ∈ K, i ∈ I).

Then T : Hρ → L2(G) is the desired isometry.
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Proposition 4.4.7. In addition to the properties listed in Proposition 4.4.5, the

bracket satisfies the following.

(i) For all f, g ∈ Hρ,

〈f, g〉 =
∑
π∈K̂

dπ tr([f, g](π)). (4.29)

(ii) For all f, g ∈ Hρ,

‖[f, g](π)‖2
HS ≤ ‖[f, f ](π)‖HS ‖[g, g](π)‖HS (π ∈ K̂). (4.30)

(iii) If fn → f in Hρ, then [fn, g]→ [f, g] for all g ∈ Hρ. In particular,

[fn, g](π)→ [f, g](π)

for all g ∈ Hρ and π ∈ K̂.

Proof. By applying Theorem 4.4.6 if necessary, we may assume that Hρ is a K-

invariant subspace of L2(G) for some second countable locally compact group G

containing K as a closed subgroup, that ρ is given by left translation of K, and that

[f, g](π) = (Zg)(π)∗(Zf)(π) (f, g ∈ Hρ; π ∈ K̂),

where Z is the Zak transform for the pair (G,K). Now (iii) follows immediately from

continuity of the Zak transform.

To prove (i), we simply compute

〈f, g〉 = 〈Zf, Zg〉 =
∑
π∈K̂

dπ〈(Zf)(π), (Zg)(π)〉HS =
∑
π∈K̂

dπ tr([f, g](π)) (f, g ∈ Hρ).

120



For (ii), we use Cauchy-Schwarz for the Hilbert-Schmidt inner product to

estimate

‖[f, g](π)‖2
HS = tr((Zf)(π)∗(Zg)(π)(Zg)(π)∗(Zf)(π))

= tr((Zf)(π)(Zf)(π)∗(Zg)(π)(Zg)(π)∗)

= |〈(Zg)(π)(Zg)(π)∗, (Zf)(π)(Zf)(π)∗〉HS |

≤ ‖(Zg)(π)(Zg)(π)∗‖HS ‖(Zf)(π)(Zf)(π)∗‖HS

= ‖[g, g](π)‖HS ‖[f, f ](π)‖HS .

Equation (4.29) implies that vectors in Hρ are uniquely determined by their

bracket values. Specifically, if f, g ∈ Hρ have [f, h] = [g, h] for all h ∈ Hρ, then

(4.29) shows that 〈f, h〉 = 〈g, h〉, so that f = g. Propositions 4.4.5 and 4.4.7 together

give the general feeling that the bracket behaves like a kind of operator-valued inner

product on Hρ.
4 However, the bracket can tell us about much more than the linear

and geometric properties of Hρ. It can tell us about ρ itself.

For each π ∈ K̂, we will denote Mπ for the isotypical component of π in ρ.

In other words, Mπ is the closed linear span of all invariant subspaces of Hρ on

which ρ is equivalent to π. We will write Pπ for the orthogonal projection of Hρ

onto Mπ. Finally, when V ⊆ Hρ is an invariant subspace, we denote ρV for the

subrepresentation of ρ on V . Then we have the following proposition.

Proposition 4.4.8. The bracket carries the following information about the isotypical

components of ρ.

4For representations of discrete groups, this idea was made more precise using the language of
Hilbert modules and a slightly different notion of bracket in [9].
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(i) For all π ∈ K̂,

Mπ = {f ∈ Hρ : [f, g](σ) = 0 for all g ∈ Hρ and σ 6= π}

= {f ∈ Hρ : [f, f ](σ) = 0 for σ 6= π}.

(ii) For all f, g ∈ Hρ,

[f, g](π) = [Pπf, g](π) (π ∈ K̂).

(iii) For all f ∈ Hρ

rank[f, f ](π) = mult(π, ρ〈f〉) (π ∈ K̂).

In particular,

dim〈f〉 =
∑
π∈K̂

dπ · rank[f, f ](π).

Proof. As in the proof of the last proposition, we may assume that K is a closed

subgroup of a second countable locally compact group G, that Hρ is a K-invariant

subspace of L2(G), and that ρ is left translation by K. If Z is the Zak transform for

the pair (G,K), then the bracket is given by

[f, g](π) = (Zg)(π)∗(Zf)(π) (f, g ∈ Hρ; π ∈ K̂).

For any f ∈ Hρ and π ∈ K̂, this implies in particular that (Zf)(π) = 0 if and

only if [f, f ](π) = 0. Moreover, the Cauchy-Schwarz type inequality (4.30) shows
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that [f, f ](π) = 0 if and only if [f, g](π) = 0 for all g ∈ Hρ. Now (i) follows from

Proposition 4.2.5.

For (ii), apply Proposition 4.2.5 to see that (ZPπf)(π) = (Zf)(π).

Finally, (iii) follows from (4.14), Theorem 4.2.7, and the fact that

rank[f, f ](π) = rank((Zf)(π)∗(Zf)(π)) = rank((Zf)(π)) (π ∈ K̂).

In many cases, statement (iii) above can be used to test whether a particular

vector in Hρ is cyclic for ρ.

Proposition 4.4.9. Suppose that mult(π, ρ) < ∞ for each π ∈ K̂. Then f ∈ Hρ is

a cyclic vector for ρ if and only if

rank[f, f ](π) = mult(π, ρ) for every π ∈ K̂.

Moreover, when dimHρ <∞, f is a cyclic vector if and only if

∑
π∈K̂

dπ · rank[f, f ](π) = dimHρ.

We can now prove our main result.

Proof of Theorem 4.4.3. By Lemma 4.4.4, we may assume that f is a function of

positive type in L2(K), and that ρ is given by left translation. We are going to apply

Theorem 4.3.3 with G = K and A = {f}. As explained in Remark 4.1.2, the Zak

transform reduces to the Fourier transform in this case. In particular, Theorem 4.2.7

gives 〈f〉 = S(A ) = VJ , where

J(π) = ran f̂(π) (π ∈ K̂).
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It remains to show that our condition (ii) is equivalent to condition (ii) in

Theorem 4.3.3. For fixed π ∈ K̂, we have f̂(π) ≥ 0, since f is a function of positive

type. Choose an orthonormal basis eπ1 , . . . , e
π
dπ

for Hπ consisting of eigenvectors for

f̂(π), with corresponding eigenvalues λπ1 ≥ . . . ≥ λπdπ ≥ 0. If rπ = rank f̂(π), then

the nonzero eigenvalues of [f, f ](π) = f̂(π)2 are precisely (λπ1 )2, . . . , (λπrπ)2. Now

{f̂(π)eπi }dπi=1 = {λπi eπi }dπi=1 is a discrete frame for J(π) = span{eπ1 , . . . , eπrπ} with bounds

A,B if and only if A ≤ (λπ1 )2, . . . , (λπrπ)2 ≤ B.

Example 4.4.10. When ρ is irreducible, it is well known that any nonzero f ∈ Hρ

generates a continuous tight frame with bound ‖f‖2 /(dimHρ). We can recover this

fact as follows. First, Proposition 4.4.8(iii) shows that

rank[f, f ](π) =


1, if π = ρ

0, if π 6= ρ

(π ∈ K̂).

In particular, the operators [f, f ](π), π ∈ K̂, have only one nonzero eigenvalue

between them. Call that eigenvalue λ. By Theorem 4.4.3, {ρ(ξ)f}ξ∈K is a

continuous tight frame with bound λ. Now use Proposition 4.4.7(i) to compute

‖f‖2 = λ · (dimHρ).

Example 4.4.11. Let D3 = 〈a, b : a3 = b2 = 1, bab−1 = a−1〉 be the dihedral group

of order six. It has three irreducible representations: the trivial representation π1,

the one-dimensional representation π2 given by π2(a) = 1 and π2(b) = −1, and the

two-dimensional representation π3 given by

π3(a) =

ω 0

0 ω−1

 and π3(b) =

0 1

1 0

 .
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Consider the four-dimensional representation ρ given by

ρ(a) =
1

4



1 i
√

3 −3 i
√

3

i
√

3 1 i
√

3 −3

−3 i
√

3 1 i
√

3

i
√

3 −3 i
√

3 1


and ρ(b) =

1

2



1 1 1 −1

1 −1 −1 −1

1 −1 1 1

−1 −1 1 −1


.

Let f = (3, 1,−1, 1). One can compute [f, f ](π1) = 4, [f, f ](π2) = 4, and

[f, f ](π3) =

0 0

0 2

 .

By the dimension count in Proposition 4.4.9, 〈f〉 = Hρ = C4. Applying Theorem

4.4.3, we see that the orbit of f forms a continuous frame for C4 with optimal bounds

2 and 4. When viewed as a discrete frame, the optimal bounds are 12 and 24. (See

Remark 4.3.2.)

As this example demonstrates, bracket analysis can result in significant

dimension reduction for the study of group frames. Suppose, for instance, that we

want to know the optimal frame bounds for {ρ(ξ)f}ξ∈K . A naive approach to this

problem would be to compute the Gramian operator for the sequence {ρ(x)f}x∈K

and find the range of its nonzero eigenvalues. In this example, that would mean

computing the eigenvalues of a 6 × 6 matrix, which could be intractably difficult.

Using bracket analysis, on the other hand, the largest matrix we had to analyze was

2× 2.
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4.5. Applications of bracket analysis

We now explore several applications of the bracket analysis developed in Section

4.4.

4.51. Block diagonalization of the Gramian

As we have just seen, the orbit {ρ(ξ)f}ξ∈K of a vector f ∈ Hρ forms a frame only

under special circumstances. However, compactness of K implies that it is always a

Bessel mapping. Indeed, the Cauchy-Schwarz inequality produces

∫
K

|〈g, ρ(ξ)f〉|2 dξ ≤
∫
K

‖g‖2 · ‖ρ(ξ)f‖2 dξ = ‖f‖2 · ‖g‖2 (g ∈ H).

In particular, the Gramian G : L2(K)→ L2(K) and the frame operator S : Hρ → Hρ

are well-defined for any choice of f ∈ Hρ, whether or not {ρ(ξ)f}ξ∈K is a frame.

A direct computation shows the Gramian is given by

G(φ) = φ ∗ Vff (φ ∈ L2(K)), (4.31)

and the frame operator satisfies

Vh(Sg) = Vfg ∗ Vhf (g, h ∈ 〈f〉).

Thus, S is defined uniquely by the relation

[Sg, h](π) = [f, h](π) · [g, f ](π) (g, h ∈ 〈f〉; π ∈ K̂). (4.32)
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The Gramian and the frame operator are intimately connected through the linear

isometry Tf : 〈f〉 → L2(K) from Lemma 4.4.4. Indeed, given any g ∈ 〈f〉, we compute

(TfSg)ˆ(π) = ([f, f ](π)1/2)† · [Sg, f ](π) = ([f, f ](π)1/2)† · [f, f ](π) · [g, f ](π)

= [f, f ](π) · ([f, f ](π)1/2)† · [g, f ](π) = (GTfg)ˆ(π) (π ∈ K̂).

Therefore,

TfS = GTf . (4.33)

In fact, when {ρ(ξ)f}ξ∈K is a frame for 〈f〉, Tf is the analysis operator for the

canonical tight frame. To see this, first observe that the range of Tf is 〈Tff〉, the left

ideal generated by Tff . Let R be the operator on ranTf given by

R(φ) = φ ∗ (Tff) (φ ∈ ranTf ).

For any g ∈ 〈f〉, we have

〈g, ρ(ξ)f〉 = 〈Tfg, Lξ(Tff)〉 = [(Tfg) ∗ (Tff)∗](ξ) = [(Tfg) ∗ (Tff)](ξ)

= (RTfg)(ξ) (ξ ∈ K).

In other words, the analysis operator T : 〈f〉 → L2(K) for the frame {ρ(ξ)f}ξ∈K is

given by

T = RTf .

Moreover, the computation above shows that Vff = (Tff) ∗ (Tff), so

R2Tf = GTf = TfS. (4.34)
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The operator R is positive semidefinite; for any φ ∈ ranTf , we have

〈φ,R(φ)〉 = 〈φ, φ ∗ (Tff)〉 = 〈φ∗ ∗ φ, Tff〉 =

∫
K

(φ∗ ∗ φ)(ξ) · (Tff)(ξ) dξ ≥ 0,

since Tff is also a function of positive type. Since Tf is a linear isometry, it follows

from (4.34) that TfS
1/2 = RTf = T . Equivalently, Tf = TS−1/2, as desired.

One is often interested in the spectrum σ(G) of the Gramian, since the optimal

frame bounds are precisely the infimum and supremum of σ(G) \ {0}. For a general

positive semidefinite operator, finding the spectrum means diagonalization, which

may be extremely difficult. For group frames, however, the realization of G as a

convolution operator in (4.31) can take us a long way in this direction, as in the

proposition below.

Proposition 4.5.1. Fix any f ∈ Hρ, and let G : L2(K)→ L2(K) be the Gramian for

the Bessel mapping {ρ(ξ)f}ξ∈K. For each π ∈ K̂, choose an orthonormal basis for

B(Hπ) with respect to the inner product 〈A,B〉 = dπ tr(B∗A). Let M[f,f ](π) ∈Md2
π
(C)

be the matrix over this basis for the operator M[f,f ](π) : B(Hπ)→ B(Hπ) given by

M[f,f ](π)(A) = [f, f ](π) · A.

If K̂ = {π1, π2, . . . }, then G is unitarily equivalent to the block diagonal matrix

G̃ =


M[f,f ](π1) 0

M[f,f ](π2)

0
. . .

 ,
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and the Fourier transform F : L2(K)→
⊕

π∈K̂ B(Hπ) is a conjugating unitary. That

is, G̃ = FGF−1.

Proof. This is obvious from the formulae (4.31), which gives the Gramian as a

convolution operator, and (4.2), which says the Fourier transform turns convolution

operators into multiplication operators.

Proposition 4.5.1 leads to an alternative proof of Theorem 4.4.3. Briefly: the

spectrum of G is the union of the eigenvalues for M[f,f ](π) as π runs through K̂, and

the eigenvalues for M[f,f ](π) are the same as those for [f, f ](π). Now use the fact that

a Bessel mapping is a frame if and only if the nonzero elements of σ(G) are bounded

away from zero, with the optimal frame bounds equal to the infimum and supremum

of σ(G) \ {0}, respectively.

4.52. Classification of K-frames

Continuous frames of the form {ρ(ξ)f}ξ∈K are sometimes called K-frames. We

will say that ρ admits a K-frame if Hρ has a continuous frame of this form. In that

case, the orbit of f spansHρ, so in particular ρ is cyclic. Greenleaf and Moskowitz [31,

Theorem 1.10] have reduced the property of being cyclic to a count of multiplicities

of irreducible representations. Explicitly, they have shown that ρ is cyclic if and only

if mult(π, ρ) ≤ dπ for each π ∈ K̂. The following theorem refines this result for

K-frames.

Theorem 4.5.2. The following are equivalent.

(i) ρ admits a K-frame.

(ii) ρ admits a Parseval K-frame.

129



(iii) ρ is cyclic, and dimHρ <∞.

(iv) For all π ∈ K̂, mult(π, ρ) ≤ dπ. Moreover, mult(π, ρ) = 0 for all but finitely

many π ∈ K̂.

The result of Greenleaf and Moskowitz mentioned above says, in part, that every

subrepresentation of the regular representation of K on L2(K) admits a cyclic vector.

Theorem 4.5.2 shows that this result can not be improved using the language of

frames. In particular, the regular representation admits a K-frame if and only if K

is finite.

Proof. The equivalence of (iii) and (iv) is obvious from [31, Theorem 1.10] and the

formula

dimHρ =
∑
π∈K̂

dπ ·mult(π, ρ).

It remains to prove that (i), (ii), and (iv) are equivalent.

(i) =⇒ (iv). Let f ∈ Hρ be such that {ρ(ξ)f}ξ∈K is a continuous frame for

Hρ, with lower frame bound A > 0. Since ρ is cyclic, [31, Theorem 1.10] shows

that mult(π, ρ) ≤ dπ for all π ∈ K̂. By Proposition 4.4.7(i), Theorem 4.4.3, and

Proposition 4.4.8(iii),

‖f‖2 =
∑
π∈K̂

dπ tr([f, f ](π)) ≥
∑
π∈K̂

dπA · rank([f, f ](π)) = A
∑
π∈K̂

dπ mult(π, ρ).

Consequently, mult(π, ρ) = 0 for all except finitely many π ∈ K̂.

(iv) =⇒ (ii). We are going to embed Hρ as a translation-invariant subspace

of L2(K). Recalling that the Zak transform for the pair (K,K) is the usual Fourier

transform on L2(K) (see Remark 4.1.2), we can then use the results of Section 4.2 to

analyze Hρ.
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For each π ∈ K̂, choose a subspace J(π) ⊆ Hπ of dimension equal to mult(π, ρ).

Let

VJ = {f ∈ L2(K) : ran f̂(π) ⊆ J(π) for each π ∈ K̂}

be the translation invariant subspace of L2(K) corresponding to the range function J .

Since representations of K are determined up to unitary equivalence by multiplicities

of irreducible representations, we may assume by (4.14) that Hρ = VJ , and that ρ is

given by left translation. For each π ∈ K̂, let Pπ ∈ B(Hπ) be orthogonal projection

onto J(π). Then

∑
π∈K̂

dπ ‖Pπ‖2
HS =

∑
π∈K̂

dπ dim J(π) =
∑
π∈K̂

dπ mult(π, ρ) <∞,

so there is a function f ∈ L2(K) with f̂(π) = Pπ for all π ∈ K̂, by Plancherel’s

Theorem. Moreover, 〈f〉 = VJ = Hρ by Theorem 4.2.7. Finally, Lemma 4.3.4 shows

that

[f, f ](π) = f̂(π)∗f̂(π) = Pπ (π ∈ K̂),

so {ρ(ξ)f}ξ∈K is a continuous Parseval frame for Hρ, by Theorem 4.4.3.

(ii) =⇒ (i). This is trivial.

Two K-frames {ρ(ξ)f}ξ∈K and {ρ′(ξ)f ′}ξ∈K are unitarily equivalent if there is a

unitary U : Hρ → Hρ′ such that Uρ(ξ)f = ρ′(ξ)f for all ξ ∈ K. Equivalently, U is a

unitary equivalence of ρ and ρ′ satisfying Uf = f ′. We now classify K-frames up to

unitary equivalence.

In the theorem below, we treat L2(K) as a Banach ∗-algebra under convolution.

Thus, a projection in L2(K) is a function f with the property that f = f ∗ f = f ∗.

Equivalently, it is a function f such that f̂(π) is an orthogonal projection for each
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π ∈ K̂. We also write

E(K) = {f ∈ L2(K) : f̂(π) = 0 for all but finitely many π ∈ K̂}

for the space of trigonometric polynomials on K. Every projection in L2(K) belongs

to E(K).

Theorem 4.5.3. Up to unitary equivalence, K-frames are indexed by functions of

positive type in E(K). If f is such a function, the associated frame is {Lξf}ξ∈K.

The same correspondence sets up a bijection between equivalence classes of Parseval

K-frames and projections in L2(K).

In the special case where K is finite, some aspects of this theorem appear

implicitly in Vale and Waldron [59]. See also Han [34]. For Parseval K-frames,

the fact that the generating function f is a projection implies that Vff = f ∗ f ∗ = f .

By (4.31), the Gramian of the associated frame is the convolution operator g 7→ g ∗f ,

which is orthogonal projection onto 〈f〉. In this sense, the theorem above may

be compared with a result of Han and Larson [36, Corollary 2.7], which says that

the correspondence between a frame and its Gramian induces a bijection between

equivalence classes of Parseval frames indexed by a set I, and orthogonal projections

on `2(I). For continuous frames, a similar result appears in [27, Proposition 2.1].

Lots of orthogonal projections on L2(K) correspond to continuous Parseval frames

over K. The projections that correspond to K-frames are precisely those given by

convolution.

Proof. We use the term cyclic structure for a pair (ρ, f) consisting of a cyclic

representation ρ and a cyclic vector f ∈ Hρ. Call two cyclic structures (ρ, f) and

(ρ′, f ′) equivalent if there is a unitary equivalence between ρ and ρ′ that maps f to
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f ′. This agrees with the notion of equivalence of K-frames. Given f ∈ L2(K), we

will denote ρf for the subrepresentation of the regular representation on

〈f〉 = {g ∈ L2(K) : ran ĝ(π) ⊆ ran f̂(π) for all π ∈ K̂}.

Lemma 4.4.4 shows that

{(ρf , f) : f ∈ L2(K) is a function of positive type}

is a complete and irredundant set of cyclic structures, up to equivalence. For a fixed

function f ∈ L2(K) of positive type, it only remains to show

{Lξf}ξ∈K is a frame for 〈f〉 ⇐⇒ f̂(π) = 0 for all but finitely many π ∈ K̂ (4.35)

and

{Lξf}ξ∈K is a Parseval frame for 〈f〉 ⇐⇒ (4.36)

f̂(π) is an orthogonal projection for all π ∈ K̂.

The forward implication of (4.35) follows from Theorem 4.5.2, since

mult(π, ρf ) = rank f̂(π) (π ∈ K̂),

by (4.14). For the reverse implication, suppose that f̂(π) = 0 for all but finitely many

π ∈ K̂. Then the operators [f, f ](π) = f̂(π)2, π ∈ K̂, have only finitely many nonzero

eigenvalues between them, so {Lξf}ξ∈K is a continuous frame, by Theorem 4.4.3.

To prove (4.36), recall that f̂(π) ≥ 0 for all π ∈ K̂, so the eigenvalues of

[f, f ](π) = f̂(π)2 are precisely the squares of the eigenvalues of f̂(π). By Theorem
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4.4.3, {Lξf}ξ∈K is a continuous Parseval frame for 〈f〉 if and only if 0 and 1 are

the only eigenvalues of f̂(π), π ∈ K̂. Since the operators f̂(π) are self-adjoint, that

happens if and only if each f̂(π) is an orthogonal projection.

Remark 4.5.4. A function f ∈ L2(K) is a projection if and only if f̂(π) is an orthogonal

projection for each π ∈ K̂. If we let J(π) = ran f̂(π) ⊆ Hπ, we see that Parseval

K-frames can also be classified by range functions in {Hπ}π∈K̂ with the property that

J(π) = 0 for all but finitely many π ∈ K̂.

Given a projection f ∈ L2(K), {Lξf}ξ∈K is a frame only for its closed linear span

in L2(K), not necessarily for the whole space. This is troublesome in practice, where

one usually wants coordinates for a frame in its “native domain”. The corollary below

gives such coordinates for every Parseval K-frame. When a matrix space Mm,n(C)

is treated as a Hilbert space below, its inner product is gotten from the natural

identification with Cmn.

Corollary 4.5.5. For each π ∈ K̂, choose an integer rπ ∈ {0, . . . , dπ}, in such a way

that only finitely many rπ 6= 0. Choose an orthonormal basis for Hπ, and let πi,j ∈

C(K) be the corresponding matrix elements. Given ξ ∈ K, define Mξ(π) ∈Mrπ ,dπ(C)

by

Mξ(π) = (
√
dππi,j(ξ))1≤i≤rπ ,1≤j≤dπ .

Then {Mξ}ξ∈K is a continuous Parseval frame for
⊕

π∈K̂Mrπ ,dπ(C), and it is a K-

frame when indexed {Mξ−1}ξ∈K. Up to unitary equivalence, every Parseval K-frame

is produced in this way.

Proof. First we will show that {Mξ−1}ξ∈K is a Parseval K-frame. For each π ∈ K̂,

let eπ1 , . . . , e
π
dπ

be the orthonormal basis for Hπ used in the construction of {Mξ}ξ∈K .

Let Pπ ∈ B(Hπ) be orthogonal projection onto span{eπ1 , . . . , eπrπ}. By Plancherel’s
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Theorem, there is a projection f ∈ L2(K) with f̂(π) = Pπ for each π ∈ K̂. We are

going to map

〈f〉 = {g ∈ L2(K) : ran ĝ(π) ⊆ ranPπ for each π ∈ K̂}

unitarily onto
⊕

π∈K̂Mrπ ,dπ(C) in a way that sends the Parseval K-frame {Lξf}ξ∈K

to {Mξ−1}ξ∈K .

For each π ∈ K̂, assign B(Hπ) the inner product 〈A,B〉 = dπ〈A,B〉HS , as in

Plancherel’s Theorem. There is a unitary Uπ : B(Hπ) → Mdπ(C) that replaces each

operator with
√
dπ times its matrix over the chosen basis. Let

U : L2(K)→
⊕
π∈K̂

Mdπ(C)

be the unitary that follows the Fourier transform F : L2(K) →
⊕

π∈K̂ B(Hπ) by an

application of Uπ in every coordinate π ∈ K̂. Given ξ ∈ K, the translation identity

(4.1) shows that

(Lξf)ˆ(π) = Pππ(ξ−1) (π ∈ K̂),

so the π-th coordinate of U(Lξf) is the dπ × dπ matrix with Mξ−1(π) in the top rπ

rows and zeros in the bottom dπ − rπ rows. Moreover,

U〈f〉 =

{(Aπ)π∈K̂ ∈
⊕
π∈K̂

Mdπ(C) : for each π ∈ K̂, Aπ has zeros in the bottom dπ − rπ rows}.
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Following U with the natural identification

U〈f〉 ∼=
⊕
π∈K̂

Mrπ ,dπ(C)

gives the desired unitary of 〈f〉 onto
⊕

π∈K̂Mrπ ,dπ(C).

To see that every Parseval K-frame is produced in this way, reverse the procedure

above for an arbitrary projection f ∈ L2(K). For each π ∈ K̂, let Pπ = f̂(π), let

rπ = rankPπ, and choose an orthonormal basis eπ1 , . . . , e
π
dπ

for Hπ in such a way that

ranPπ = span{eπ1 , . . . , eπrπ}. The Parsevel K-frame {Mξ−1}ξ∈K produced with these

parameters is unitarily equivalent to {Lξf}ξ∈K through the isometries constructed

above.

In the special case where K is finite and abelian, the frames described in Corollary

4.5.5 are precisely the “harmonic” frames made by deleting rows from a discrete

Fourier transform (DFT) matrix. (See [58] for another proof that harmonic frames

come from group actions.) While each finite abelian group can be used to make only

finitely many Parseval frames in this way, a nonabelian group can make uncountably

many inequivalent Parseval frames, since there are uncountably many projections in

L2(K). (For finite groups, this was observed in [59].) Moreover, it is often possible

to make real frames using nonabelian groups, as in the next example.
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Example 4.5.6. Let K = D3. Use notation as in Example 4.4.11. If we choose each

rπ to be as large as possible in Corollary 4.5.5, we obtain the following tight frame:



(1) (1) (1) (1) (1) (1)

(1)(1)(1) (1)(1)(1) (1)(1)(1) (−1)(−1)(−1) (−1)(−1)(−1) (−1)(−1)(−1)√2
√

2
√

2 000

0
√

2


ω√2ω
√

2ω
√

2 000

0 ω2
√

2


ω2
√

2ω2
√

2ω2
√

2 000

0 ω
√

2


 000

√
2
√

2
√

2
√

2 0


 000 ω

√
2ω
√

2ω
√

2

ω2
√

2 0


 000 ω2

√
2ω2
√

2ω2
√

2

ω
√

2 0




.

We can get another tight frame by deleting some of the rows:

 (1)(1)(1) (1)(1)(1) (1)(1)(1) (−1)(−1)(−1) (−1)(−1)(−1) (−1)(−1)(−1)(
√

2
√

2
√

2 000

) (
ω
√

2ω
√

2ω
√

2 000

) (
ω2
√

2ω2
√

2ω2
√

2 000

) (
000
√

2
√

2
√

2

) (
000 ω
√

2ω
√

2ω
√

2

) (
000 ω2

√
2ω2
√

2ω2
√

2

)
 .

This corresponds to choosing r1 = 0 and r2 = r3 = 1. Collapsing the interior matrices

gives a tight frame for C3:


1 1 1 −1 −1 −1
√

2 ω
√

2 ω2
√

2 0 0 0

0 0 0
√

2 ω
√

2 ω2
√

2

 .

The frame bound is card(D3) = 6; see Remark 4.3.2.

Representing the two-dimensional representation over a different basis gives a

completely different frame. If we use

π3(a) =
1

2

−1 −
√

3
√

3 −1

 and π3(b) =

1 0

0 −1


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and choose rows exactly as above, we obtain the tight frame


1 1 1 −1 −1 −1
√

2 −1/
√

2 −1/
√

2
√

2 −1/
√

2 −1/
√

2

0 −
√

3/2
√

3/2 0
√

3/2 −
√

3/2

 .

This time we used real representations, so we got a tight frame for R3.

4.53. Disjointness properties

Let H and K be separable Hilbert spaces carrying frames Φ = {fi}i∈I and Ψ =

{gi}i∈I , respectively. We say that Φ and Ψ are disjoint if {(fi, gi)}i∈I is a frame for

H⊕K. Disjoint frames were introduced independently by Balan [6] and by Han and

Larson [36]. For a detailed study of disjoint continuous frames, see [27]. The corollary

below says that K-frames from distinct isotypical components of ρ are always disjoint,

and that every K-frame can be decomposed into disjoint frames in this way. This will

be generalized for group frames with multiple generators in Corollary 4.6.10. Recall

thatMπ ⊆ Hρ denotes the isotypical component for π ∈ K̂, and that Pπ ∈ B(Hρ) is

orthogonal projection of Hρ onto Mπ.

Corollary 4.5.7. Fix a vector f ∈ Hρ and constants A and B with 0 < A ≤ B <∞.

The following are equivalent.

(i) {ρ(ξ)f}ξ∈K is a continuous frame for Hρ with bounds A,B.

(ii) For each π ∈ K̂, {ρ(ξ)Pπf}ξ∈K is a continuous frame forMπ with bounds A,B.
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Proof. For each π ∈ K̂ and each g ∈ Hρ, Proposition 4.4.8 shows that

[Pπf, Pπg](σ) = [Pπf, g](σ) =


[f, g](π), if σ = π

0, if σ 6= π.

(4.37)

Taking g = f above, we see that f satisfies condition (ii) of Theorem 4.4.3 if and

only if each Pπf does the same. It remains to show that 〈f〉 = Hρ if and only if

〈Pπf〉 =Mπ for each π ∈ K̂.

If 〈f〉 6= Hρ, then we can find a nonzero vector g ∈ Hρ with [f, g] = 0, by

Proposition 4.4.5(vi). Find π ∈ K̂ for which Pπg 6= 0. Then (4.37) shows that

[Pπf, Pπg] = 0, so that Pπg ⊥ 〈Pπf〉. Thus, 〈Pπf〉 6=Mπ.

Conversely, if there is some π ∈ K̂ for which 〈Pπf〉 6= Mπ, then there is a

nonzero vector g ∈ Mπ with 0 = [Pπf, g] = [f, Pπg] = [f, g]. Hence, g ⊥ 〈f〉, and

〈f〉 6= Hρ.

Recall that ρ is multiplicity free when all of its isotypical components are

irreducible. Equivalently, this means that mult(π, ρ) ∈ {0, 1} for all π ∈ K̂. Corollary

4.5.7 leads to an extension of Example 4.4.10 for multiplicity free representations.

Corollary 4.5.8. Suppose ρ is multiplicity free. Let E = {π ∈ K̂ : mult(π, ρ) 6= 0}.

For a nonzero vector f ∈ Hρ, the following are equivalent.

(i) {ρ(ξ)f}ξ∈K is a tight frame for Hρ.

(ii) For any π, σ ∈ E, ‖Pπf‖2 /dπ = ‖Pσf‖2 /dσ.

When this happens, the optimal frame bound is the common value of ‖Pπf‖2 /dπ for

π ∈ E.
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In the special case where K is finite, the equivalence of (i) and (ii) above can be

deduced from [58, Theorem 6.18].

We mention just one of a myriad applications for Corollary 4.5.7. An action of

a group G on a set X is called 2-transitive when the following holds: for every two

pairs (x, y), (w, z) ∈ X × X with x 6= y and w 6= z, there is a single group element

g ∈ G with g · x = w and g · y = z.

Corollary 4.5.9. Let G be a finite group acting on a finite set X with an action that

is 2-transitive. Fix a nonzero vector f = (fx)x∈X ∈ `2(X). Then {(fg·x)x∈X : g ∈ G}

is a tight frame for `2(X) if and only if

∣∣∣∣∣∑
x∈X

fx

∣∣∣∣∣
2

=
∑
x∈X

|fx|2. (4.38)

Proof. The statement is trivial when X is a singleton, so we may assume that X has

more than one point. Let ρ be the unitary representation of G on `2(X) associated

with the action of G. Namely, for g ∈ G and ψ = (ψx)x∈X ∈ `2(X), we define

ρ(g)ψ = (ψg−1·x)x∈X . By [45, Corollary 29.10], ρ is multiplicity free with two isotypical

components,

M1 =
{

(ψx)x∈X ∈ `2(X) : ψx = ψy for all x, y ∈ X
}

and

M2 =

{
(ψx)x∈X ∈ `2(X) :

∑
x∈X

ψx = 0

}
.

Let Pj be orthogonal projection of `2(X) onto Mj, for j = 1, 2. If we denote

f =
1

|X|
∑
x∈X

fx,
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then P1f = (f)x∈X , and P2f = (fx − f)x∈X . In particular,

‖P1f‖2 =
1

|X|

∣∣∣∣∣∑
x∈X

fx

∣∣∣∣∣
2

.

By Corollary 4.5.8, the orbit of f under ρ is a tight frame for `2(X) if and only if

‖P1f‖2 = ‖P2f‖2 /(|X| − 1), if and only if |X| · ‖P1f‖2 = ‖P2f‖2 + ‖P1f‖2 = ‖f‖2,

if and only if ∣∣∣∣∣∑
x∈X

fx

∣∣∣∣∣
2

=
∑
x∈X

|fx|2.

The proof indicates a simple and universal method for constructing the

generating vector f . Let ϕ ∈ `2(X) be the all-ones vector. Fix any nonzero vector

ψ ∈ `2(X) with
∑

x∈X ψx = 0, and scale it so that ‖ψ‖2 = |X|2 − |X|. Then

f = ϕ+ψ generates a tight frame for `2(X), by Corollary 4.5.8. Up to scaling, every

vector satisfying (4.38) is produced in this way.

Example 4.5.10. The action of the symmetric group Sn on the set with n elements

is 2-transitive. Thus, Corollary 4.5.9 and the comment above explain how to make

a unit norm tight frame of n! vectors in Cn just by permuting the entries of a single

vector.

4.6. Group frames with multiple generators

The last two sections focused on frames generated by a single vector f ∈ Hρ. We

now consider frames with multiple generators. For a countable family A = {fj}j∈I ⊆

Hρ, this means that we will determine precise (and simple) conditions under which

the orbit {ρ(ξ)fj}j∈I,ξ∈K forms a continuous frame for Hρ. In the course of doing so,

we will classify the invariant subspaces of Hρ in terms of range functions.
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Despite significant interest in the problem, very little has been done in the area

of group frames with multiple generators. The most fruitful area has been frames

generated by translations, mostly with abelian groups [10, 11, 13, 14, 42, 49] but in

at least one case with nonabelian [19]. In the setting of discrete nonabelian groups,

Hernández and his collaborators [9] have recently developed an abstract machinery to

handle frames with multiple generators for a special class of unitary representations.

For finite groups and tight frames, Vale and Waldron [60] recently broke through the

single generator barrier, with a neat condition in terms of norms and orthogonality

of the generating vectors. These few papers provide the state of the art.

Our main result is a duality theorem unifying the work of Vale and Waldron

with classical duality of frames and Riesz sequences, simultaneously extending their

results to non-tight frames and actions by compact groups. Here we pull ahead of

the abelian setting. As far as the author knows, there is nothing of this kind in the

literature for LCA groups. Once again, we hope that by illuminating the situation for

nonabelian compact groups, we can set a path for further research on representations

of general locally compact groups.

Our notation and assumptions are as follows. Let K and ρ be as in the previous

sections. Since K is compact, it is always possible to decompose Hρ as a direct sum

of irreducible invariant subspaces. Our main assumption is that this has already been

done. For π ∈ K̂, we let mπ = mult(π, ρ). We write π⊕mπ for the direct sum of mπ

copies of π, which acts on H⊕mππ . Without loss of generalty, we may assume that

ρ =
⊕
π∈K̂

π⊕mπ ,
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and that

Hρ =
⊕
π∈K̂

H⊕mππ .

We warn that some of the multiplicities mπ may be infinite, but since Hρ is separable,

they must all be countable.

Fix the following notation. Let A = {fj}j∈I ⊆ Hρ be a countable family of

vectors. We write fj = (fπj )π∈K̂ ∈ Hρ, with fπj = (fπi,j)
mπ
i=1 ∈ H⊕mππ . We also denote

E(A ) = {ρ(ξ)fj}j∈I,ξ∈K

for the orbit of A under ρ. Formally, E(A ) should be interpreted as a set with

multiplicities, or more accurately, as a mapping I ×K → Hρ. Finally, we let

S(A ) = span{ρ(ξ)fj : j ∈ I, ξ ∈ K}

be the invariant subspace generated by A .

Our notation is meant to suggest that A is a kind of matrix. For each π ∈ K̂,

we define

A (π) = (fπi,j)1≤i≤mπ ,j∈I ,

which is a (possibly infinite) matrix with entries in Hπ. The number of rows equals

mπ, and the number of columns equals card(A ). For instance, if A were finite with

I = {1, . . . , N}, we would have

A (π) =


| | . . . |

fπ1 fπ2 . . . fπN

| | . . . |

 .
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If we now imagine the matrices A (π) stacked vertically, then the j-th column of the

resulting “matrix” precisely describes the direct sum decomposition of fj ∈ A .

We remind the reader that a Riesz sequence in a Hilbert space H is a sequence

of vectors {fi}i∈J ⊆ H for which there are constants 0 < A ≤ B < ∞ such that,

whenever (ci) ∈ `2(J) has finite support,

A
∑
i∈J

|ci|2 ≤

∥∥∥∥∥∑
i∈J

cifi

∥∥∥∥∥
2

≤ B
∑
i∈J

|ci|2.

Once this inequality holds for those (ci) ∈ `2(J) with finite support, it automatically

holds for arbitrary (ci) ∈ `2(J). Our main result, below, says that the frame properties

of the orbit of the “columns” of A can be read from the Riesz properties of the rows.

Theorem 4.6.1. The following are equivalent for constants A and B with 0 < A ≤

B <∞.

(i) The orbit E(A ) = {ρ(ξ)fj}j∈I,ξ∈K is a continuous frame for Hρ with bounds

A,B.

(ii) For every π ∈ K̂, the rows of A (π) belong to H⊕Iπ , where they form a Riesz

sequence with bounds dπA, dπB.

This will actually be a corollary of a more general theorem. Theorem 4.6.6 (infra)

gives conditions for E(A ) to form a continuous frame for a general invariant subspace

of Hρ.

Example 4.6.2. Here are four special cases of Theorem 4.6.1.

(1) When K is the trivial group and ρ is the trivial action of K on C, we recover

the usual duality theorem for frames and Riesz sequences, which says that the columns

of a matrix M ∈ Mm,n(C) form a frame for Cm if and only if the rows of M form a
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Riesz sequence in Cn. Moreover, the bounds of the frame and the Riesz sequence are

the same.

(2) When A has a single vector f and ρ is irreducible, there is only one matrix

A (π) to consider, namely A (ρ) = (f). Obviously its rows form a Riesz sequence

with upper and lower bounds both equal to ‖f‖2, so the orbit {ρ(ξ)f}ξ∈K is a tight

frame for Hρ with bound ‖f‖2 /(dimHρ). This is the conclusion of Example 4.4.10.

(3) More generally, when ρ is multiplicity free, we can easily recover Corollary

4.5.8.

(4) Taking A = B in Theorem 4.6.1, we see that E(A ) is a tight frame for

Hρ with bound A if and only if the rows of each matrix A (π) form an orthogonal

sequence of vectors in H⊕Iπ , with each vector’s norm equal to
√
dπA. That is,

∑
j∈I

〈fπi1,j, f
π
i2,j
〉 = δi1,i2 · dπA.

In the case where K and A are both finite, this is a result of Vale and Waldron [60,

Theorem 2.8].

Remark 4.6.3. Neither the group K nor the representation ρ play a prominent role

in condition (ii) of Theorem 4.6.1, except to provide conditions on the direct sum

decomposition Hρ =
⊕

π∈K̂ H⊕mππ . Suppose, then, that G is another compact group

acting on Hρ with a representation η that admits the same decomposition of Hρ as a

direct sum of irreducible invariant subspaces. Then the orbit of A under the action

of ρ is a frame for Hρ if and only if the orbit under the action of η is, too. Moreover,

the frame bounds are the same in both cases.

While this may seem surprising at first, it is really an extension of a well-known

phenomenon. After all, any nonzero vector f ∈ Hρ generates a tight frame when ρ
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acts irreducibly, and this mild condition (f 6= 0) has nothing to do with K or the

particular irreducible representation ρ. As we have seen, this is a special case of

Theorem 4.6.1.

4.61. Classification of invariant subspaces

From a technical perspective, we can always find an encompassing group G ⊇ K

for which Hρ embeds into L2(G) as a K-invariant subspace, with ρ turning into left

translation. (See Theorem 4.4.6.) In this sense, Theorem 4.3.3 on frames generated by

translations already gives a complete characterization of group frames with multiple

generators. In practice, however, it may be tedious to unravel this characterization

through the embedding Hρ → L2(G). Instead of following that route, we will now

try to recreate the program of Sections 4.1–4.3 from scratch. Namely, we will give

a range function characterization of the invariant subspaces of Hρ, and then we will

use that characterization to deduce Theorem 4.6.1.

To begin our program, we need a substitute for the Zak transform. Fix π ∈

K̂, and associate each sequence Φ = (φi)
mπ
i=1 ∈ H⊕mππ with its analysis operator

TπΦ: Hπ → `2
mπ , which is given by

[TπΦ](ψ) = (〈ψ, φi〉)mπi=1 (ψ ∈ Hπ).

Then Tπ : H⊕mππ → HS(Hπ, `
2
mπ) is a conjugate-linear unitary. To see this, consider

the composition of isomorphisms

H⊕mππ
∼= Hπ ⊗ `2

mπ
∼= HS(Hπ, `

2
mπ),
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the last of which is conjugate linear (see [26, Section 7.3]). Letting π run through K̂,

we obtain a conjugate-linear unitary

T : Hρ →
⊕
π∈K̂

HS(Hπ, `
2
mπ)

given by

T (gπ)π∈K̂ = (Tπgπ)π∈K̂ ((gπ)π∈K̂ ∈
⊕
π∈K̂

H⊕mππ = Hρ).

If we write gπ = (gπi )mπi=1 ∈ H⊕mππ , then the simple formula 〈φ, π(ξ)gπi 〉 = 〈π(ξ−1)φ, gπi 〉

gives the key identity

(Tρ(ξ)g)(π) = (Tg)(π) · π(ξ−1) (g ∈ Hρ, ξ ∈ K, π ∈ K̂). (4.39)

This will serve as our substitute for the Zak transform’s translation property (4.8).

A careful reading of Section 4.2 shows that we used only two properties of the

Zak transform: the translation property (4.8), and the fact that Z is unitary. In the

current setting, we can therefore leverage the intertwining property (4.39) to classify

invariant subspaces of Hρ in terms of range functions. Let J be a range function in

{`2
mπ}π∈K̂ , and let

VJ = {(gπ)π∈K̂ ∈ Hρ : for each π ∈ K̂, ranTπgπ ⊆ J(π)}.

Equivalently,

TVJ =
⊕
π∈K̂

HS(Hπ, J(π)).
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By (4.39), VJ is an invariant subspace of Hρ. In fact, a trivial modification of the

proof of Theorem 4.2.2 shows that every invariant subspace of Hρ takes this form.

Explicitly, we have the following.

Theorem 4.6.4. The mapping J 7→ VJ is a bijection between range functions in

{`2
mπ}π∈K̂ and invariant subspaces of Hρ.

In further analogy with the range function analysis of Section 4.2, it is easy to

see that the correspondence J 7→ VJ preserves direct sum decompositions. This leads

to the following analogue of Theorem 4.2.9.

Theorem 4.6.5. Let J be a range function in {`2
mπ}π∈K̂. Choose an orthonormal

basis {eπi }i∈Iπ for each J(π), π ∈ K̂. For each π ∈ K̂ and i ∈ Iπ, let Vπ,i be the space

of (gσ)σ∈K̂ ∈ Hρ such that gσ = 0 for σ 6= π, and such that gπ = (gπj )mπj=1 satisfies

(〈φ, gπj 〉)mπj=1 = cφe
π
i for every φ ∈ Hπ, where cφ is a scalar. Then Vπ,i is an irreducible

invariant subspace of Hρ, and

VJ =
⊕
π∈K̂

⊕
i∈Iπ

Vπ,i.

Moreover, every decomposition of VJ as a direct sum of irreducible subspaces occurs

in this way.

When J is the range function with J(π) = `2
mπ for every π ∈ K̂, the theorem

above describes every possible decomposition of Hρ as a direct sum of irreducibles.

Remember that our operating assumption is that we can find one such decomposition.

Thus, knowing one decomposition is enough to describe them all (and very simply,

at that).

148



4.62. Duality for frames with multiple generators

Now we can prove our main theorem on group frames with multiple generators.

Remember our interpretation of A as a kind of matrix, with the vectors fj ∈ A

appearing as the “columns”. It turns out that the frame properties of the orbit of

the “columns” of A can be read from a Riesz-like property on the rows.

Theorem 4.6.6. Let J be a range function in {`2
mπ}π∈K̂, and assume that A ⊆ VJ .

For constants A and B with 0 < A ≤ B <∞, the following are equivalent.

(i) E(A ) is a continuous frame for VJ with bounds A,B. That is,

A ‖g‖2 ≤
∑
j∈I

∫
K

|〈g, ρ(ξ)fj〉|2 dξ ≤ B ‖g‖2 (g ∈ VJ).

(ii) For every π ∈ K̂ and every sequence (ci)
mπ
i=1 ∈ J(π) ⊆ `2

mπ ,

dπA
mπ∑
i=1

|ci|2 ≤
∑
j∈I

∥∥∥∥∥
mπ∑
i=1

cif
π
i,j

∥∥∥∥∥
2

≤ dπB
mπ∑
i=1

|ci|2.

Proof. Fix g, h ∈ Hρ. We will denote g = (gπ)π∈K̂ , with gπ ∈ H⊕mππ , and gπ = (gπi )mπi=1,

with gπi ∈ Hπ. We use a similar notation for h. For each π ∈ K̂, fix an orthonormal

basis eπ1 , . . . , e
π
dπ

for Hπ, and let πi,j ∈ C(K) be the corresponding matrix elements.

We are going to decompose Vhg ∈ L2(K) in the orthonormal basis {
√
dππi,j : π ∈

K̂, 1 ≤ i, j ≤ dπ}.

For any ξ ∈ K, we can use (4.39) and the fact that T is a conjugate-linear unitary

to write

〈g, ρ(ξ)h〉 = 〈Tρ(ξ)h, Tg〉 =
∑
π∈K̂

〈(Tπhπ)π(ξ−1), Tπgπ〉HS
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=
∑
π∈K̂

dπ∑
k=1

〈(Tπhπ)π(ξ−1)eπk , (Tπgπ)eπk〉 =
∑
π∈K̂

dπ∑
k=1

mπ∑
i=1

〈π(ξ−1)eπk , h
π
i 〉〈gπi , eπk〉

=
∑
π∈K̂

dπ∑
k=1

mπ∑
i=1

dπ∑
l=1

〈eπl , hπi 〉〈π(ξ−1)eπk , e
π
l 〉〈gπi , eπk〉

=
∑
π∈K̂

dπ∑
k=1

mπ∑
i=1

dπ∑
l=1

〈eπl , hπi 〉〈gπi , eπk〉πk,l(ξ).

By using the inequalities |〈eπl , hπi 〉|2 ≤ ‖hπi ‖
2, |〈gπi , eπk〉|2 ≤ ‖gπi ‖

2, and |πk,l(ξ)| ≤ 1,

one can easily show that

mπ∑
i=1

|〈eπl , hπi 〉〈gπi , eπk〉πk,l(ξ)| ≤ ‖hπ‖ ‖gπ‖ <∞ (π ∈ K̂; k, l = 1, . . . , dπ).

Thus, we can reorder the sum above to write

〈g, ρ(ξ)h〉 =
∑
π∈K̂

dπ∑
k,l=1

(
1√
dπ

mπ∑
i=1

〈eπl , hπi 〉〈gπi , eπk〉

)√
dπ πk,l(ξ).

We want to apply the Peter-Weyl Theorem to conclude that

∫
K

|〈g, ρ(ξ)h〉|2dξ =
∑
π∈K̂

1

dπ

dπ∑
k,l=1

∣∣∣∣∣
mπ∑
i=1

〈eπl , hπi 〉〈gπi , eπk〉

∣∣∣∣∣
2

. (4.40)

To justify (4.40), it suffices to prove the sum on the right is finite. To see this is the

case, first observe that for π ∈ K̂,

mπ∑
i=1

〈eπl , hπi 〉〈gπi , eπk〉 = 〈(Tπhπ)eπl , (Tπgπ)eπk〉 (k, l = 1, . . . , dπ).
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Denoting ‖·‖op for the operator norm, we have

1

dπ

dπ∑
k,l=1

|〈(Tπhπ)eπl , (Tπgπ)eπk〉|2 =
1

dπ

dπ∑
l=1

‖(Tπgπ)∗(Tπhπ)eπl ‖
2 ≤ ‖(Tπgπ)∗(Tπhπ)‖2

op

≤ ‖Tπgπ‖2
op ‖Tπhπ‖

2
op ≤ ‖Tπgπ‖

2
HS ‖Tπhπ‖

2
HS .

Since ‖g‖2 =
∑

π∈K̂ ‖Tπgπ‖
2
HS , there is some M > 0 such that ‖Tπgπ‖2

HS ≤M for all

π ∈ K̂. Hence,

∑
π∈K̂

1

dπ

dπ∑
k,l=1

∣∣∣∣∣
mπ∑
i=1

〈eπl , hπi 〉〈gπi , eπk〉

∣∣∣∣∣
2

≤
∑
π∈K̂

‖Tπgπ‖2
HS ‖Tπhπ‖

2
HS ≤M ‖h‖2 <∞.

This proves (4.40).

We continue by refining the expression on the right side of (4.40) even further.

For π ∈ K̂ and k ∈ {1, . . . , dπ}, we claim that

dπ∑
l=1

∣∣∣∣∣
mπ∑
i=1

〈eπl , hπi 〉〈gπi , eπk〉

∣∣∣∣∣
2

=

∥∥∥∥∥
mπ∑
i=1

〈eπk , gπi 〉hπi

∥∥∥∥∥
2

. (4.41)

Indeed, we can write

dπ∑
l=1

∣∣∣∣∣
mπ∑
i=1

〈eπl , hπi 〉〈gπi , eπk〉

∣∣∣∣∣
2

=
dπ∑
l=1

mπ∑
i=1

mπ∑
j=1

〈eπl , hπi 〉〈gπi , eπk〉〈hπj , eπl 〉〈eπk , gπj 〉

=
mπ∑
i=1

mπ∑
j=1

〈gπi , eπk〉〈eπk , gπj 〉
dπ∑
l=1

〈eπl , hπi 〉〈hπj , eπl 〉 =
mπ∑
i=1

mπ∑
j=1

〈gπi , eπk〉〈eπk , gπj 〉〈hπj , hπi 〉

=
mπ∑
i=1

mπ∑
j=1

〈〈eπk , gπj 〉hπj , 〈eπk , gπi 〉hπi 〉.
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Since |〈eπk , gπi 〉|2 ≤ ‖gπi ‖
2, one can show that

∑mπ
i=1 ‖〈eπk , gπi 〉hπi ‖ ≤ ‖gπ‖ ‖hπ‖ < ∞.

Hence the sum
∑mπ

i=1〈eπk , gπi 〉hπi converges in Hπ. That means we can move the sums

inside the inner product above. This gives (4.41).

Combining (4.40) with (4.41), and letting h run through A , we obtain the critical

identity

∑
j∈I

∫
K

|〈g, ρ(ξ)fj〉|2dξ =
∑
π∈K̂

dπ∑
k=1

1

dπ

∑
j∈I

∥∥∥∥∥
mπ∑
i=1

〈eπk , gπi 〉fπi,j

∥∥∥∥∥
2

(g ∈ Hρ). (4.42)

Meanwhile,

‖g‖2 =
∑
π∈K̂

dπ∑
k=1

mπ∑
i=1

|〈eπk , gπi 〉|2 (g ∈ Hρ). (4.43)

The rest of the proof comes easily. If g ∈ VJ , then (〈eπk , gπi 〉)
mπ
i=1 ∈ ranTπgπ ⊆ J(π)

for every π ∈ K̂ and every k ∈ {1, . . . , dπ}. Thus, (ii) implies (i).

Now assume (i) holds. Fix π ∈ K̂, and let (ci)
mπ
i=1 ∈ J(π) be arbitrary. Define

g ∈ Hρ by

gσi =


cie

π
1 , if σ = π

0, if σ 6= π

(σ ∈ K̂, 1 ≤ i ≤ mσ).

Then

‖g‖2 =
mπ∑
i=1

|ci|2,

while (4.42) gives

∑
j∈I

∫
K

|〈g, ρ(ξ)fj〉|2dξ =
1

dπ

∑
j∈I

∥∥∥∥∥
mπ∑
i=1

cif
π
i,j

∥∥∥∥∥
2

.
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Since ran(Tg)(σ) ⊆ J(σ) for each σ ∈ K̂, (i) applies to tell us that

A
mπ∑
i=1

|ci|2 ≤
1

dπ

∑
j∈I

∥∥∥∥∥
mπ∑
i=1

cif
π
i,j

∥∥∥∥∥
2

≤ B
mπ∑
i=1

|ci|2.

This is (ii).

Corollary 4.6.7. If E(A ) is a continuous frame for S(A ), then every row of A (π)

belongs to H⊕Iπ , for every π ∈ K̂.

Proof. Fix π ∈ K̂. Let i0 ∈ {1, . . . ,mπ} when mπ < ∞ and i0 ∈ N when mπ = ∞.

Denote δi0 ∈ `2
mπ for the vector with a 1 in the i0-th coordinate and 0 in all others,

and let J be the range function given by

J(σ) =


span{δi0}, if σ = π

{0}, if σ 6= π.

Then VJ is the i0-th summand of H⊕mππ ⊆ Hρ. Let P : S(A )→ VJ be the restriction

to S(A ) of the orthogonal projection Hρ → VJ . Since VJ is an invariant subspace

of Hρ, P commutes with ρ(ξ) for every ξ ∈ K, and the range of P is an invariant

subspace of VJ .

Since VJ is irreducible, one of two things must happen: either the range of P

is zero, or it is all of VJ . In the former case, we have fπi0,j = 0 for all j ∈ I, so

that the i0-th row of A (π) equals 0 ∈ H⊕Iπ . In the latter case, {Pρ(ξ)fj}j∈I,ξ∈K =

{ρ(ξ)Pfj}j∈I,ξ∈K is a continuous frame for VJ . Say the upper bound is B > 0.

Applying Theorem 4.6.6 with δi0 in place of (ci)
mπ
i=1, we find that

∑
j∈I

∥∥fπi0,j∥∥2 ≤ Bdπ <∞.
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Thus, (fi0,j)j∈I ∈ H⊕Iπ .

The work above assumes that A is countable and that our continuous frames

{ρ(ξ)fj}j∈I,ξ∈K are taken over the measure space I × K, where I is equipped with

counting measure. We have imposed this assumption only for the sake of clarity.

Our arguments work just as well (with obvious modifications) if we replace I with a

σ-finite measure space (X,µ), and allow A = {fx}x∈X to be a possibly uncountable

family of vectors. We have to assume, however, that the mapping x 7→ fx is weakly

measurable from X to Hρ. We also have to replace the direct sum H⊕Iπ with the direct

integral
∫ ⊕
X
Hπ. (See [26, §7.4] for a definition.) A standard measurability argument,

which we omit, proves the mapping X ×K → Hρ given by (x, ξ) 7→ ρ(ξ)fx is weakly

measurable. We denote E(A ) for this mapping. As in the countable case, we write

fx = (fπx )π∈K̂ with fπx = (fπi,x)
mπ
i=1 ∈ H⊕mππ and fπi,x ∈ Hπ. Strictly speaking,

A (π) := (fπi,x)1≤i≤mπ ,x∈X

is no longer a matrix, but a sequence of mappings X → Hρ, each given by x 7→ fπi,x

for some i. For the sake of analogy, we will still call these mappings rows of A (π).

Then we have the following results.

Theorem 4.6.8. Let J be a range function in {`2
mπ}π∈K̂, and assume that A ⊆ VJ .

For constants A and B with 0 < A ≤ B <∞, the following are equivalent.

(i) E(A ) is a continuous frame for VJ with bounds A,B. That is,

A ‖g‖2 ≤
∫
X

∫
K

|〈g, ρ(ξ)fx〉|2 dξ dx ≤ B ‖g‖2 (g ∈ VJ).
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(ii) For every π ∈ K̂ and every sequence (ci)
mπ
i=1 ∈ J(π) ⊆ `2

mπ ,

dπA

mπ∑
i=1

|ci|2 ≤
∫
X

∥∥∥∥∥
mπ∑
i=1

cif
π
i,x

∥∥∥∥∥
2

dx ≤ dπB
mπ∑
i=1

|ci|2.

Corollary 4.6.9. The following are equivalent for constants A and B with 0 < A ≤

B <∞.

(i) E(A ) is a continuous frame for Hρ with bounds A,B.

(ii) For every π ∈ K̂, the “rows” of A (π) belong to
∫ ⊕
X
Hπ, where they form a Riesz

sequence with bounds dπA, dπB.

We end with an application. Remember that Mπ ⊆ Hρ denotes the isotypical

component of π ∈ K̂ in ρ. In terms of our decomposition of Hρ,Mπ is the summand

H⊕mππ ⊆ Hρ. We write Pπ for orthogonal projection of Hρ onto Mπ. The result

below generalizes Corollary 4.5.7 for frames with multiple generators. It is a trivial

consequence of Corollary 4.6.9.

Corollary 4.6.10. Let A be as described in the paragraph above Theorem 4.6.8. The

following are equivalent for constants A and B with 0 < A ≤ B <∞.

(i) E(A ) is a continuous frame for Hρ with bounds A,B.

(ii) For each π ∈ K̂, the mapping X × K → Mπ given by (x, ξ) 7→ ρ(ξ)Pπfx is a

continuous frame for Mπ with bounds A,B.
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[63] A. Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964)
143–211.

160


