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DISSERTATION ABSTRACT
David J. Steinberg
Doctor of Philosophy
Department of Mathematics
December 2016

Title: Homological Properties of Standard KLR Modules

Khovanov-Lauda-Rouquier algebras, or KLR algebras, are a family
of algebras known to categorify the upper half of the quantized
enveloping algebra of a given Lie algebra. In finite type, these algebras
come with a family of standard modules, which correspond to PBW
bases under this categorification. In this thesis, we show that there are
no non-zero homomorphisms between distinct standard modules and
that all non-zero endomorphisms of standard modules are injective.
We then apply this result to obtain applications to the modular
representation theory of KLR algebras. Restricting our attention to
finite type A, we are then able to compute explicit projective resolutions
of all standard modules. Finally, in finite type A when « is a positive
root, we let A be the direct sum of all distinct standard modules and
compute the algebra structure on Ext®(A, A).

This dissertation includes unpublished co-authored material.
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Chapter I

INTRODUCTION

This thesis contains unpublished material coauthored by the author
and his advisor, Alexander Kleshchev. In particular, Dr. Kleshchev has
contributed to Chapters [ and [[T]} The material from Chapter [[I] will

appear in a paper accepted by Compositio Mathematica.

1.1. Background

Let g be a complex semisimple Lie algebra and U,(g) its quantized
enveloping algebra, an associative Q(¢)-algebra for an indeterminate
q. Let U (g) C Uy(g) be the subalgebra corresponding to a maximal
nilpotent subalgebra of g. Then Uq+ (g) comes equipped with several
interesting bases. Among them are Lusztig’s canonical basis and various
PBW bases, one for each choice of convex order on ¢, the set of positive
roots. Dualizing with respect to Lusztig’s form on U, q+ (g) also gives rise
to Lusztig’s dual canonical basis and various dual PBW bases.

In 2008 Khovanov, Lauda, and Rouquier defined a family of
algebras, which have since been studied extensively and are now known
as KLR algebras. Letting () denote the Z>(-span of the positive roots
of g, for each 6 € @, there exists a corresponding KLR algebra Hy.
Their direct sum H := @9€Q+ Hy is a locally unital algebra. Khovanov,
Lauda, and Rouquier were able to show that the representation theory of
H provides a categorification of U (g). To be more precise, let Proj(H)

denote the category of finitely generated projective H-modules, and
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[Proj(H)]| its split Grothendieck group. Then, [Proj(H)]| is a Z|q, ¢ ']-
algebra, with multiplication induced by the induction product on H-
modules and the g-action induced by upward degree shift. Khovanov,
Lauda, and Rouquier’s categorification theorem states that there is a

unique algebra isomorphism

o U;(Q) — Q(Q> ®z(q,q-1] [PI‘OJ(H)], € — [Hai]7

where e; is the generator of UqJr (g) corresponding to the simple root «;,
and [H,,| is the class of the regular H,,-module. Moreover, in simply
laced types it is known that v maps Lusztig’s canonical basis to the
classes of the projective indecomposable modules [VV].

The categorification theorem above has led to much interest in
the representation theory of KLR algebras, see for example [BK2],
[BEKMJ, [Ka], [M], [VV]. In [BKM], KLR algebras are shown to possess
affine quasihereditary structures. Affine quasihereditary algebras are a
generalization of Cline, Parshall and Scott’s notion of quasihereditary
algebras [CPS| that include infinite dimensional algebras and share many
of their properties. In particular, KLR algebras come with distinguished
collections of standard modules and proper standard modules. Standard
modules are known to correspond to the PBW bases of UJf(g) under
(a generalization of) the categorification theorem [BKM], and proper
standard modules correspond to dual PBW bases. The standard
modules for Hy are labeled by Kostant partitions of 8. We denote the

set of Kostant partitions by KP(#), and for 7 € KP(#) we denote by



A(m) the corresponding standard module. The standard KLR modules

will be the primary objects of interest in this thesis.

1.2. Overview of Results

In Chapter [T we study homomorphisms between standard modules

in arbitrary finite Lie type. Theorem A is the main result from

Section [2.1]

Theorem A. Let A(w) and A(o) be standard Hy-modules. If m and o
are distinct, then

Hompy, (A(7), A(o)) = 0.
Moreover, every nonzero endomorphism of A(m) is injective.

It is a surprising result because this phenomenon seems to be
unique to the affine quasihereditary setting. For nonsemisimple, finite
dimensional quasihereditary algebras, there will always exist a nontrivial
homomorphism between some distinct standard modules. This result
might be compared with [BCGM]|, where something similar occurs in an
entirely different setting.

In Section [2.2| we turn our attention to the modular representation
theory of KLR algebras. Note that KLR algebras are defined over an
arbitrary base ring k, and when we wish to specify this base ring, we
use the notation Hyy. Using the p-modular system (F, R, K') with F' =
Z/pZ, R = Z, and K = Q,, we can reduce modulo p any finitely
generated H, x module. An application of Theorem A and the Universal

Coeflicient Theorem then yields the following result.
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Theorem B. Let 0 € Q4 and w,0 € KP(0). Then the R-module
Ext}feﬁR(A(w)R, A(o)R)
1s torsion-free. Moreover,
dim’ Exty, (A(T)r, Alo)r) = dim} Exty,  (A(m)k, A(o)k)

if and only if the R-module EXt%&R(A(W)R, A(o)R) is torsion-free.

An important problem in the study of modular representation
theory is to determine when the reductions modulo p of irreducible
modules remain irreducible. As a final application, for each = € KP(0)
we use a universal extension procedure to construct an R-form, Q(7)g,
of the projective indecomposable modules P(7). The following result

then gives a reformulation of this problem.

Theorem C. Let 0 € Q. Then reductions modulo p of all irreducible
H, ix-modules are irreducible if and only if one of the following equivalent

conditions holds:
(i) Q(m)r ®r F is a projective Hy p-module for all m € KP(6);
(ii) Ext}igyF(Q(W)R ®@r F,A(c)r) =0 for all m,0 € KP(0);
(i) Exty, (Q(m)r, Ao)R) is torsion-free for all m,0 € KP(0).
While the results in Chapter [[I] are valid for arbitrary finite Lie

type, in Chapters [[II| and [[V] we restrict our attention to the finite type

A case. In Chapter [[T]] we construct explicit projective resolutions of
4



all standard KLR modules. To achieve this, note that each 7 € KP(«)
can be written uniquely in the form = = (o™, 5", ...) for positive roots
a > > --- and integers m,n,... such that ma +ng + --- = 6. It
is shown in [BKM]| that A(7) can then be constructed as an induction

product
A(m) =~ A(@™) o A(f") o -+ .

Thus, many properties of arbitrary standard modules can be deduced
from properties of the semicuspidal standard modules A(a™). In
particular, it suffices to construct a projective resolution of A(a™™). This

is done in Chapter [T, where we construct a resolution of the form
. — Py ﬂ>Pn—>... — By — A(a™) — 0.

Each projective module P, in the resolution of the form P, =
D, Ay 47 H.mey for some explicitly defined degree shifts s, € Z and
idempotents ey, € H,m. These are indexed by certain compositions
A € A(n). Moreover, the differential d,, : P,.; — P, is given by right
multiplication with a A(n + 1) x A(n) matrix D = (d**) with entries
dgA € e, Hymey.

In Chapter [V} we demonstrate the usefulness of these resolutions
by way of example. By restricting our attention to the case H, for «
a positive root in type A, we are able to compute all extension groups
between standard modules. Moreover, setting A := @ﬂEKP(a) A(m), we
compute the algebra structure on Ext®(A,; A). For « of height [ and 7 €

KP(«), we define an explicit ideal J™ < klyi, ...,y and observe that



there is a natural refinement operation on the set of Kostant partitions.
For n € Z>, we define the notion of an n-refinement of any Kostant
partition 7 € KP(«a), and denote by Ref,, (7) C KP(«a) the collection of

all such n-refinements of 7. With this set up, we first prove the following;:

Theorem D. Let 7,0 € KP(a). Then, Exty; (A(r),A(o)) = 0 unless
o is an n-refinement of w. If o is an n-refinement of w, then there is a

graded vector space isomorphism

Exty (A(r),A(0)) ~ ¢ "Kklyr, ..., ul/J",

where each y; is of degree 2.

To compute the algebra structure on Ext®(A,A), we let A be
the vector space of KP(«) x KP(«) upper triangular matrices, M =
(for)omekp(a), With entries for € ¢ K[y, ..., ul/J™ if 0 € Ref,(7),
and f,. = 0 otherwise. We observe that for o € Ref,(7), there is a

natural surjection

Po,

Ky, ... ul/J” —= Klys,...,u]/J".

For o € Ref,(7) and 7 € Ref,,,(0), this allows us to define products by

the rule

fT,O'fO',W = (_1)mnpa,7r(f’r,a)fa,7r € q_(m+n)k[g/1a ce ayn]/‘]ﬂy

for any f., € ¢ "k[y1,...,ul/J° and f,, € ¢ "klyi,...,u)/J".

Extending this product to usual matrix multiplication then gives A the
6



structure of a graded, associative algebra. This allows us to state our

final result.

Theorem E. Let « be a positive root in type A. There is an isomorphism

of graded, associative algebras Ext®(A, A) ~ A.

1.3. Preliminaries

In this section we recall some known results and develop notational
conventions that will remain throughout the remainder of this thesis

unless otherwise stated.

1.3.1. KLR algebras

We follow closely the set up of [BKM]. In particular, ¢ is an
irreducible root system with simple roots {a; | @ € I} and the
corresponding set of positive roots .. Denote by @) the root lattice
and by Q1 C @ the set of Z>(-linear combinations of simple roots,
and write ht(0) = > . ;¢ for § = Y., ci; € Q4. The standard
symmetric bilinear form Q x @ — Z, («,f) — «a - is normalized so
that d; := (o - ;) /2 is equal to 1 for the short simple roots ;. We also
set dg := (- 3)/2 for all § € ®,. The Cartan matrix is C = (c¢; )i jer
with ¢; ; = (a; - ;) /d;.

Fix a commutative unital ring k and an element 6 € @), of height n.
The symmetric group &,, with simple transpositions s, := (r7+1) acts on
the set I = {i =iy ---i, € I" | 3.7 oy, = 0} by place permutations.

Choose signs ¢; ; for all 4, j € I with ¢;; < 0 so that ¢; je;, = —1. With



this data, Khovanov-Lauda [KLI [KL2] and Rouquier |[Ro| define the

k-algebra Hy with unit 14, called the KLR algebra, given by generators

(L 14T U{yr,...,uny U {1, ..., 00y}

subject only to the following relations:

® YrlYs = YslYr,

1,,;1_7' == (Si,jli and Ziele 11 = 19;

yrly = Liy, and Pl = 18r'iw7";

(yt¢r - ¢rysr(t))1i = 5ir,ir+1(5t,r+1 - 5t,r)1z’§

0 if 9, = 4,41,
21 _ e i :
o Y7l;, = Eirivin (yr il Zr+1ﬂr)1i if ¢4, <0,
1; otherwise;

b ¢T¢s = wswr if |T - 5| > 1;

hd (¢r+1¢r”¢r+1 - wTwTJrlwr)li =

r s . . .
Z Ciryiria yryr+21’i if Ciryirgyr < 0 and 7, = 1r42,

r+s=—1—Ci, i\

0 otherwise.

The last relation is called the braid relation. Note that Hy is graded
with deg1; =0, deg(yrlz) = 2d17‘ and deg(¢rlz) = Q4 Q-
For each element w € &, fix a reduced expression w = s,, - -- sy,

and set 1y, = ¥y, -+ -1, € Hy (this element depends in general on the

choice of a reduced decomposition).



Theorem 1.3.1. (Basis Theorem) [KL1, Theorem 2.5] The sets

{Wwyt -y iy and  {yi" -y i}, (3.1)

with w running over &,, a, running over Zsq, and i running over I,

are k-bases for Hy.

It follows that Hy is Noetherian if so is k, which we always assume
from now on. It also follows that for any 1 < r < n, the subalgebra
k[y.] € Hy, generated by y,, is isomorphic to the polynomial algebra
k[y]—this fact will be often used without further comment. Moreover,
for each 4 € IV, the subalgebra P(i) C 1;H,1; generated by {y.1; | 1 <
r < n} is isomorphic to a polynomial algebra in n variables. By defining

Py := D, 0 P(i), we obtain a linear action of &,, on Py given by

Wiy L= Yty Y L
for any w € &, 1 € I? and ay, ..., a, € Zsq. Setting A(0) := Py, we

have:
Theorem 1.3.2. [KL1, Theorem 2.9] A(0) is the center of Hy.

If H is a Noetherian graded k-algebra, we denote by H-mod
the category of finitely generated graded left H-modules.  The
morphisms in this category are all homogeneous degree zero H-module
homomorphisms, which we denote homy(—, —). For V' € H-mod, let
q?V denote its grading shift by d, so if V}, is the degree m component

of V, then (¢?V),, = Vju_q. More generally, for a Laurent polynomial
9



a = a(q) = Y ,aaq" € Z]q,q '] with non-negative coefficients, we set
WV = @,V
For U,V € H-mod, we set Homy(U,V) = @, Homgy(U,V)q,

where
Homy (U, V)4 := homy(¢*U, V) = homy (U, ¢ V).

We define ext}}(U,V) and Ext}(U,V) similarly. Since U is finitely
generated, Homy (U, V') can be identified in the obvious way with the set
of all H-module homomorphisms ignoring the gradings. A similar result
holds for Ext}; (U, V), since U has a resolution by finitely generated
projective modules. We use = to denote an isomorphism in H-mod and
~ an isomorphism up to a degree shift.

Let g be a variable, and Z((q)) be the ring of Laurent series. The
quantum integers [n] = (¢"—¢™")/(q—q~') and expressions like 1/(1—¢?)
are always interpreted as elements of Z((¢)). From now on until the end
of Section [2.1] we assume that k is a field. A graded k-vector space
V = @mEZ Vi is called Laurentian if the graded components V;, are
finite dimensional for all m € Z and and V,,, = 0 for m < 0. The graded

dimension of a Laurentian vector space V is

dim, V := ) ~(dim V;,,)¢™ € Z((q)).

meZ

We always work in the category Hy-mod. Note that Hjy is
Laurentian as a vector space. Therefore so is any V' € Hy-mod, and

then so are all 1;V for i € I°. The formal character of V € Hyg-mod is
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an element of @, ;s Z((q)) - ¢ defined as follows:

chy V=" (dim, 1,V) - 4.
iel?
Note that ch, (¢?V) = ¢%ch, (V), where the first ¢ means the degree
shift. We refer to 1;V as the z-weight space of V' and to its vectors as
vectors of weight 1.

There is an anti-automorphism of Hy which fixes all the generators.
Given V' € Hy-mod, we denote V® := Homy(V,k) viewed as a left Hyp-
module via this anti-automorphism. Note that in general V® is not
finitely generated as an Hyg-module, but we will apply ® only to finite
dimensional modules. In that case, we have ch, V¥ = m, where the
bar means the bar-involution, i.e. the automorphism of Z[q,¢™'] that
swaps ¢ and ¢! extended to @, ;0 Zlg,q¢7'] - 4.

Let v1,...,%m € Q4+ and 0 = v, + --- + 7,,,. Consider the set of

concatenations
= g gt e I dm e Iy C 1P

There is a natural (non-unital) algebra embedding

- H

W ® - ® Hy, = Hy, (3.2)

["Ylv"'"Ym

which sends the unit 1,, ® --- ® 1,,, to the idempotent

Ly == > 1;€ Hy. (3.3)



We have an exact induction functor

Ind’ :(H,, ® -+ ® H,, )-mod — Hp-mod

Y155 Ym

defined by Ind), = Hpl,, .. ®u, e-cm,, —
For Vi € H,,-mod,...,V,, € H, -mod, we denote by V1 X---XV,,
the vector space V; ® --- ® V,,, considered naturally as an (H,, ® --- ®

H

+m )-module, and set

Vio---oV, :=Ind’

Y1s--Ym

Vi - XV,.

1.3.2. Standard modules

The KLR algebras Hy are known to be affine quasihereditary in
the sense of [KI3|, see [Kal BKM, KIL]. Central to this theory is the
notion of standard modules, whose definition depends on a choice of a
certain partial order. We first fix a convex order on @, i.e. a total order
such that whenever «, 3, and a + ( all belong to ®,, a <  implies
a < a+ f < f. By [P], there is a one-to-one correspondence between
convex orders on ¢, and reduced decompositions of the longest element
in the corresponding Weyl group.

A Kostant partition of 0 € Q) is a tuple 7 = (my, ..., m,) of positive
roots m > my > --- > m, such that m + -+ 7w, = 6. Let KP(0)
denote the set of all Kostant partitions of # and for m as above define

T = Tr—m+1. Now, we have a bilexicographical partial order on KP(0),

12



also denoted by <, ie. if 71 = (m,...,7.),0 = (01,...,05) € KP(0)

then m < ¢ if and only if the following two conditions are satisfied:

e T =01,...,m_1 = 0,_1 and 1 < oy for some [;

/
m—1

o T =0,...,m =0 _,and 7, > o forsome m.

To every m € KP(6), McNamara [M| (cf. [KIRL, Theorem 7.2])
associates an absolutely irreducible finite dimensional ®-self-dual Hy-
module L(m) so that {L(mr) | 7 € KP(#)} is a complete, irredundant set
of irreducible Hy-modules, up to isomorphism and degree shift. Since
L(m) is ®-self-dual, its formal character is bar-invariant. The key special
case is where a € ®, and 7™ = («), in which case L(7) = L(«) is called
a cuspidal irreducible module. For m € Zo, we write (o) for the
Kostant partition («, ..., «) € KP(ma), where a appears m times. The

corresponding simple module L(a™) is called semicuspidal. The cuspidal

modules have the following nice property:

Lemma 1.3.3. [M, Lemma 3.4] (c¢f. [KIR, Lemma 6.6]). For any

a€ b and m € Zsg, we have L(a™) ~ L(a)°™.

If 7= (m,...,m.) € KP(0), the reduced standard module is defined
to be

A(r) == ¢™L(m) oo L(my,) (3.4)

for a specific degree shift s(m), whose description will not be important.
Note that the Grothendieck group of finite dimensional graded Hy-
modules can be considered as a Z[q, ¢~']-module with ¢[V] = [¢V]. By

[M, Theorem 3.1] (cf. [KIR) 7.2, 7.4]), the Hy-module A(7) has simple
13



head L(7), and in the Grothendieck group, we have

[A(m)] = [L(m] + ) dno[L(0)] (3:5)

o<t

for some coefficients d,, € Z[q, ¢ '], called the (graded) decomposition
numbers. The decomposition numbers depend on the characteristic of
the ground field k.

Let P(m) denote a projective cover of L(m) in Hy-mod. For V €

Hy-mod we define the (graded) composition multiplicity
[V : L(nm)], := dim, Hom(P(x),V) € Z((q))-

The standard module A(7) is defined as the largest quotient of P(r) all
of whose composition factors are of the form L(o) with o < 7, see [Kal,
Corollary 4.13], [BKM, Corollary 3.16], [KI3, (4.2)]. We note that while
the irreducible modules L(7) are all finite dimensional, the standard
modules A(7) are always infinite dimensional. The standard modules

have the usual nice properties:
Theorem 1.3.4. [BKM, §3] Let 0 € Q. and m,0 € KP(6).

(i) A(m) has a simple head L(m), and [A(rw) : L(o)], # 0 implies

o <.

(ii) We have Homp, (A(7), A(0)) = 0 unless m < 0.

(iii) Form > 1, we have Exty (A(r), A(o)) =0 unless 7 < 0.

14



(iv) The module P(m) has a finite filtration P(r) = Py D P, D -+ D
Py = 0 such that Py/P; = A(w) and forr = 1,2,...,N — 1 we

have P./P..1 ~ A(c")) for some o) > 7.
(v) Denoting the graded multiplicities of the factors in a A-filtration
of P(m) by (P(m) : A(0))y, we have (P(7) : A0)), = dor(q).

To construct the standard modules more explicitly, let us first
assume that o € &, and explain how to construct the cuspidal standard
module A(a). Put g, = ¢**/%2. By [BKM, Lemma 3.2], for each
m € Zsg, there exists a unique, up to isomorphism, indecomposable

H,-module A,,(«) such that there are short exact sequences

0— qz(mfl)L(a) = Ap(a) = Ayoi(a) = 0,

0— A, 1(a) = An(a) = L(a) — 0,
where we use the convention Ag(«) = 0. This yields an inverse system
s — AQ(O!) — Al(Oé) — Ao(a),

and we have A(«) = @Am(a), see [BKM, Corollary 3.16].
Let m € Z~o. An explicit endomorphism e,, € Endy,, (A(a)™)P

is defined in [BKM| Section 3.2], and then
Aa™) = gm=D2A(0)™e,,. (3.6)

Finally, for an arbitrary 6 € @, and 7 € KP(0), gather together the

equal parts of 7 to write 7 = (7{™, ..., 7%), with m > --- > m,. Then
15



by [BKM, (3.5)],

A(m) =2 A(r™) oo A(ml*). (3.7)

s

Thus, cuspidal standard modules are building blocks for arbitrary
standard modules. We will need some of their additional properties. Let
a € ;. If 7 € KP(«) is minimal such that 7 > («), then by [BKM,
Lemma 2.6], m = (3, ) for positive roots § > « > ~. In this case, (5,7)
is called a minimal pair for « and we write mp(«) for the set of all such.
The following result proved in [BKM, §§3.1,4.3] describes some of the

important properties of A(«).
Theorem 1.3.5. Let o« € &,. Then:
(i) [Ala) s L(a)]g = 1/(1 — ) and [A(e) : L(m)]g = 0 for m # ().

(ii) Let C, be the category of all modules in H,-mod all of whose
composition factors are >~ L(«). AnyV € C, is a finite direct sum
of copies of the indecomposable modules ~ A,,(a) and ~ A(a).

Moreover, A(«) is a projective cover of L(«) in C,. Furthermore,

Exty (A(a),V) =0 form>1andV € C,.
(11i) Endy, (A(«)) 2 Kkly] for y in degree 2d,,.
(iv) There is a short exact sequence 0 — ¢2A(a) = A(a) — L(a) — 0.

(v) For (8,7) € mp(«) there is a short exact sequence

0— ¢ P7A(B) 0 A(y) & A(y) 0o A(B) = [psy + 1]A() — 0,

16



where pg is the largest integer p such that 3 — py is a root.

Corollary 1.3.6. Let « € ®,. The dimensions of the graded
components A(a)g are 0 for d < 0 and are bounded above by some

N > 0 independent of d.

Proof. By Theorem [1.3.5(i), we have dim,A(a) = %5 dim, L(«),

1—q2

which implies the result since L(«) is finite dimensional. O

1.3.3. Endomorphisms of standard modules

We shall denote by y, the degree 2d,, endomorphism of A(«) which
corresponds to y under the algebra isomorphism Endy, (A(«)) = k[y]
in Theorem [I.3.5((iii).

Lemma 1.3.7. Let o € ®,. Then every non-zero H,-endomorphism of

A(a) is injective, and every submodule of A(«) is equal to y2(A(«x))

> A(a) for some s € Zsy.

Proof. Tt follows from the construction of y, in [BKM, Theorem 3.3]
that y, is injective and y,(A(a)) = ¢2A(«). This in particular implies
the first statement.

Let V. C A(«a) be a submodule and f : V. — A(a) be the
natural inclusion. First, assume that V is indecomposable. By
Theorem [1.3.5[(ii), up to degree shift, V' is isomorphic to A(a) or A,,(c)
for some m > 1. If V.~ A,,(a) then A(a)/V is infinite dimensional
and has a simple head, so by Theorem [1.3.5ii) again, A(a)/V ~ A(a).

Then the short exact sequence

0=V —=>Ala) = A(a)/V =0
17



splits by projectivity in Theorem M(ii), contradicting indecomposability

of A(a). If instead V' ~ A(«), consider the composition
Ale) =V L Aa).

This produces a graded endomorphism of A(«a), so that V = 35 (A(«))
for some s > 0. Since there are inclusions A(a) D y,A(a) D y2A(a) D
-+, the general case follows from the case when V' is indecomposable.

]

Let again o € ®,. We next consider the standard modules of
the form A(a™). By functoriality, the endomorphism id®" Y @y, @
id®™~" of the H®™-module A(a)®*™ induces an endomorohism Y,
of the H,,-module A(a)°™.  The endomorphisms Yi,...,Y,, €
Endy, (A(«a)°™) commute.  Moreover, in [BKM, Section 3.2,
some additional endomorphisms 0, ...,0,—1 € Endg,, (A(a)°™) are
constructed, and it is proved in [BKM) Lemmas 3.7-3.9] that the algebra
Endy,,  (A(a)°™) is isomorphic to the nilHecke algebra N H,,, with
O1,...,0n,_1 and (appropriately scaled) Y7, ...,Y,, corresponding to the
standard generators of N H,,. The element e,, used in is an explicit

idempotent in N H,,. Consider the algebra of symmetric functions

Ao =Kk[Y1,..., Y, = Z(NH,,),

18



with the variables Y; in degree 2d,. Note that dim, Ay, = 1/ ]2, (1 —

¢?"). Tt is known, see e.g. [KLM| Theorem 4.4(iii)], that

1

emNHmem = emNam = Nam. (3.8)

Theorem 1.3.8. Let o« € & and m € Z~y. Then:

(i) For any m € KP(ma), we have [A(a™) : L(m)], =

577,(01”1)/ H:nzl(l - qgf)'

(i) The module A(a™) is a projective cover of L(a™) in the category
of all modules in H,-mod all of whose composition factors are

~ L(a™).
(1ii) Endy, (A(«)) = Agm.-

(iv) Every submodule of A(a™) is isomorphic to ¢®A(a™) for some
d € Zso, and every non-zero Hp,-endomorphism of A(a™) is

mjective.

Proof. Part (i) is [BKM, Lemma 3.10], and part (ii) follows from [KI3|
Lemma 4.11], since (a™) is minimal in KP(«) by convexity. By (i) and
(ii), we have that dim, Endg,  (A(e™) =1/T]2, (1 — ¢2").

(iii)) We have that NH,, = Endg, _(A(«)°™)°P acts naturally on
A(a)°™ on the right, and so A, ., = Z(N H,,,) acts naturally on A(a™) =
A(a)°™e,,. This defines an embedding A, ,, — Endg,,  (A(a™)). This

embedding must be an isomorphism by dimensions.
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(iv) In view of Lemma [1.3.7, every non-zero

fekv,...,Y, € NH,, = Endg,, (A(«a)™)®

acts as an injective linear operator on A(«)°™. The result now follows

from (3.8)) and (ii). O

Finally, we consider a general case. Let § € @, and © =
(™, ..., m) € KP(#) with my > --- > 7. By functoriality of

» s

induction, we have a natural embedding

A7r1,m1®"'®A7rs,ms — Enng(A(ﬂ-))v fl®®fs — flo"'ofs~ (39)

Theorem 1.3.9. Let 0 € Q4 and 7 = (n{",...,70%) € KP(0) with

S

T > - >m,. Then

EndHe (A(W)) = A7r1,m1 - Aﬂs,ms

via , and every non-zero Hg-endomorphism of A(r) is injective.

Proof. 1t is easy to see from Theorem [1.3.8(iv) that every non-zero
endomorphism in the image of the embedding (3.9) is injective. To
see that there are no other endomorphisms, we first use adjointness of

End and Res to see that End g, (A()) is isomorphic to

Hompy,, . @-@Hy. ., (A7) K- RA(T™), Res?

M1T1,.. MmsTs

20



and then note that by the Mackey Theorem, as in [M|, Lemma 3.3|, we
we have Res’ A(m) =2 A(r™) K-+ K A(7). O

M1, M T
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Chapter 11

PROOF OF THEOREM A AND APPLICATIONS

This chapter contains material coauthored by the author and
his thesis advisor, Alexander Kleshchev. While both parties offered
significant contributions, it is impossible to distinguish their exact

inputs.

2.1. Proof of Theorem A

We give the proof of Theorem A based on the recent work of
Kashiwara-Park [KP]. Our original proof was different and relied on
some unpleasant computation for non-simply-laced types. For simply
laced types however, our original proof is very simple and elementary,

and so we give it later in this section, too.

2.1.1. Proof of Theorem A modulo a hypothesis

The following hypothesis concerns a fundamental property of

cuspidal standard modules and is probably true beyond finite Lie types:

Hypothesis 2.1.1. Let a be a positive root of height n and 1 < r < n.
Then upon restriction to the subalgebra k[y.] C H,, the module A(«)

is free of finite rank.

The goal of this subsection is to prove Theorem A assuming the

hypothesis. In §2.1.2] the hypothesis will be proved using results of
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Kashiwara and Park, while in §2.1.3] we will give a more elementary

proof for simply laced types.

Lemma 2.1.2. Hypothesis (2.1.1) is equivalent to the property that

Y, -, Yn act by injective linear operators on A(«).

Proof. The forward direction is clear. For the converse, assume that
Y, acts injectively on A(a). We construct a finite basis for 1;A(«a) as
a k[y,]-module for every ¢ € 1% Let m := deg(y.1;). For every a =
0,1,...,m—1, let d, be minimal with d, = a (mod m) and 1;A(«a)4, #

0. Pick a linear basis of @™ '1;A(a)g, and note that the k[y,]-module

generated by the elements of this basis is free. Factor out this k|y,]-
submodule, and repeat. The process will stop after finitely many steps,

thanks to Corollary O

While Hypothesis claims that every k[y,] acts freely on A(«),

no kly,, ys| does:

Lemma 2.1.3. Let o € @, be a root of height n > 1. Then, for every
vector v € A(a), and distinct r,s € {1,--- ,n}, there is a polynomial

f € Kk[z,y| such that f(y,,ys)v = 0.

Proof. We may assume v is a homogenous weight vector. By
Corollary the dimensions of the graded components of A(«)
are uniformly bounded. The result follows, as the number of linearly

independent degree d monomials in x,y grows without bound. ]

One can say more about the polynomial f in the lemma, see for
example Proposition [2.1.11
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Now, let 8 € @, be arbitrary of height n, and 7 = (7 > --+ >
m) € KP(#). Setting &, = Gyyir) X -+ X Gpyiry) C 6, integers
r,s € {1,...,n} are called m-equivalent, written r ~, s, if they belong

to the same orbit of the action of &, on {1,...,n}. Finally, recalling

the idempotents (3.3)), we set

Lemma 2.1.4. Let 0 € Q, n = ht(0), and m # o be elements of KP(6).
If w € &, satisfies 1,9,1, # 0 then there exists some 1 < r < n such

that v~ r+ 1, but w(r) £y w(r+1).

Proof. Write 7 = (my > -+ > m) and 0 = (07 > -+ > 0,,). The
assumption 1,¢,1, # 0 implies that ¢ = w - 27 for some 2" € [™™
and ¢7 € [70%n Write 4" = ] ---1; with ¢, € [™ for all a, and
17 :=1] -1, with ¢f € I for all b. Assume for a contradiction that
for every 1 < r < n we have r ~, r+1 implies that w™(r) ~, w™ (r+1).
Then there is a partition {1,...,l} = [ |, A, such that o, =3 4 Ta
for all b = 1,...,m. By convexity, cf. [BKM, Lemma 2.4], we have

min{r, | a € Ay} < 0, < max{nm, | a € Ay}. This implies 7 > o. O

Theorem 2.1.5. Let 6 € Q; and m,0 € KP(0). If m # o, then

Homp, (A(m), A(o)) = 0.
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Proof. Let n = ht(0) and write 7 = (my > -+ > m) and 0 = (o9 >

-+« > 0y,). It suffices to prove that
Hompy, (A(my) o -0 A(m),A(o1) 0 -+ 0 Ao,)) = 0.

If not, let ¢ be a nonzero homomorphism. By Theorem m(ii), we may
assume that m < 0. Using Lemma , pick a generator v € A(my) o
-+-0A(m) such that v = 1,v and for any r ~, r+ 1, there is a non-zero
polynomail f € kfz, 4] with f(gs,rs1)o = 0. Then £(g,. grs1)p(v) = 0
as well.

Denote by D7 the set of shortest length coset representatives for
6,/6,. Then, we can write ¢(v) = > cpo Vuw ® v, for some v, €
Ao1)®- - ®@A(0,,). Since p(v) = 1:¢(v) and 1,v,, = vy, we have that
1:Yw1l, # 0 whenever v, # 0. In particular, if u € D? is an element of
maximal length such that v, # 0, then by Lemma [2.1.4] r ~, r+ 1 and
uH(r) ¢y ut(r+1) for some 1 <r < n.

Now, we have:

f(yhyr-i-l)@(v) = f(yT’7 yr—i—l) Z 'wa X Uy

weD?

= f(yra errl)wu @ Vy + Z f(yr7 errl)ww & Vg
wH#u

= wu & f(yufl(r)a yufl(r—&-l))vu + (*)7

where (%) is a sum of elements of the form 1, @v!, withv!, € A(o1)®---®
A(o,,) and w € D7 \{u}. The last equality follows because in Hy for all
1 <t <nandw e &,, we have that 11, = VYyyw-1) + (¥*), where
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(xx) is a linear combination of elements of the form ¢, with y € &,
being Bruhat smaller than w.

Since u~!(r) %, u™'(r + 1), there are distinct integers a,b €
{1,...,m} and integers 1 < ¢ < ht(o,) and 1 < d < ht(o}) such that for
any pure tensor v =0'®---@v™ € A(01)®- - @ A(0y,), and s,t € Zso,

we have
Y1 () Y1 1)V = V' Q- @yt R @y’ @ @™

By Hypothesis[2. 1.1, f(4u-1()» Yu—1(r+1))0u 7 0. Hence f(yr, yri1)@(v) #

0 giving a contradiction. O

2.1.2. Proof of Hypothesis[2.1.1] using Kashiwara-Park Lemma

We begin with a key lemma which follows immediately from the

results of [KP):

Lemma 2.1.6. Let o« € &, n = ht(a) and i € I. Define

Piai= (TG[H y> 1;.

iele 1,n] =i
Then p; o A(a) # 0.

Proof. This follows from [KPl Definition 2.2(b)] and |[KPL Proposition

3.5). 0
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Theorem 2.1.7. Let o € @ have height n. Then, y™v # 0 for all 1 <
r <n, m € Zsg, and nonzero v € A(«). In particular, Hypothesis
holds.

Proof. The ‘in particular’ statement follows from Lemma

We may assume that v is a weight vector of some weight 2. Let i =
ir. The element p; o defined in Lemma [2.1.6]is central by Theorem [1.3.2]
By Lemma[2.1.6|and Theorem [1.3.9] the multiplication with p; o on A(a)
is injective, so multiplication with p}, is also injective. But p’, involves

Yrls, so 0 # piyv = hy;"v for some h € H,, and the theorem follows. [

2.1.3. Elementary proof of the Hypothesis for simply laced

types

Throughout this subsection, we assume that the root system & is
of (finite) ADF type. Let 0 = ajaq + -+ - + aqyoy € Q4 and n = ht(0) =
a; + -+ -+ a;. Pick a permutation (iy,...,4) of (1,...,1) with a;; > 0,
and define 4 := iy ---i," € I?. Then the stabilizer of 4 in &, is the

standard parabolic subgroup &; := &, X --- X Sail' Let D? be a set of

ail

coset representatives for &,,/&;. Then by Theorem [1.3.2] the element

Z = Z; = Z (yw(l) + -+ yw(ail))lwﬂ: (11)

weD?

is central of degree 2 in Hy. For any 1 < r < n, note that

Ui Yr = 2 — Z ((Ywy =)+ + (yw(ail) = ¥r)) Lws. (1.2)

weD?
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Let Hj be the subalgebra of Hy generated by

(L |ielu{g | 1<r<n}U{y, —yp1 | 1 <7 <n}.

For the reader’s convenience, we reprove a lemma from [BKI]

Lemma 3.1]:

Lemma 2.1.8. Let 0, ¢, and z be as above. Then:

(1) {(yr —y2)™ - (Yno1 — Yn)™ W0 li | My € Zsp,w € S0 € [9}

is a basis for Hy.

(i) If a;, - 1x # 0 in k, then there is an algebra isomorphism

Hy = H) @ kz]. (1.3)

Proof. In view of the basis (3.1), part (i) follows on checking that the
span of the given monomials is closed under multiplication, which follows
from the defining relations. For (ii), note using that the natural
multiplication map k(2] ® Hy — H, is surjective. It remains to observe

that the two algebras have the same graded dimension. O]

Let o now be a positive root. Then one can always find an index 2,
with a;, - 1x # 0, so in this case we always have for an appropriate
choice of 2. We always assume that this choice has been made. Following
[BK1], we can now present another useful description of the cuspidal
standard module A(«a). Denote by L'(«) the restriction of the cuspidal

irreducible module L(«) from H, to H,.

28



Lemma 2.1.9. Let a € P,.
(i) L'(«) is an irreducible H. -module.

(i) A(o) =2 Hy ®pr, L' ().
(iii) The element z acts on A(«) freely.

Proof. Note that z acts as zero on L(«), which implies (i) in view of
. Moreover, it is now easy to see that H, ®p: L'(cr) has a filtration
with the subfactors isomorphic to ¢**L(a) for d = 0,1, . ... Furthermore,
by Frobenius Reciprocity and (i), the module H, ®p: L'(«) has simple
head L(c). Now (ii) follows from Theorem [1.3.5(ii). Finally, (iii) follows

from (ii) and (1.3). O
Using the description of A(a) from Lemma [2.1.9(ii), we can now

establish Hypothesis [2.1.1}

Theorem 2.1.10. Let o € ¢ and {vy,...,vn} be a k-basis of L'(«).
Then the k[y,|-module A(«) is free with basis {1 @ v1,...,1 @ vyx}. In

particular, Hypothesis holds for simply laced types.
Proof. By (L.2)), we can write y, = -z + (%), where () is an element
i1

of H!. For each 1 <m < N, we have

1\?
yf(l@vm) = (—) zb®vm—|—(**),

ail

where (%) is a linear combination of terms of the form 2°®wv; with ¢ < b.

So{1®wvy,...,1®wvn} is a basis of the free k[y,]-module A(«). O
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The following strengthening of Lemma [2.1.3]is not needed for the

proof of Theorem A, but we include it for completeness.

Proposition 2.1.11. Let o« € &, and n = ht(«). For any 1 <r,s <n,

there is d € Zwo such that (y, — ys)¢ annihilates A(a).

Proof. Pick d such that (y, — y,)¢ annihilates L(a). Since A(a) =
H,®p: L'(a) is spanned by vectors of the form 2™ ®v’ with m € Z>( and
v' € L'(a), it suffices to note that (y, —ys)?(:™®@v') = 2" ® (y, —y,) W' =

0. ]

2.2. Reduction Modulo p

Let p be a fixed prime number, and F be the prime field of
characteristic p. We will use the p-modular system (F,R,K) with
R =7, and K = Q,. Note that R/pR = F.

From now on, we will work with different ground rings, so our
notation needs to become more elaborate. Recall that the KLR algebra
Hy is defined over an arbitrary commutative unital ring k, and to
emphasize which k we are working with, we will use the notation Hy
or Hyy. In all our notation we will now use the corresponding index.
For example, let k be a field. We now denote the irreducible cuspidal
modules over Hyy by L(0)x. We now write dim* V for the dimension of
a k-vector space V', and dim“;V for the graded dimension of a graded
k-vector space V.

If V is a finitely generated R-module, we write dfV =
dim™?R(V/pV), which, by Nakayama’s Lemma, equals the number of

generators in any minimal generating set of V. If V is a graded R-
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module with finitely generated graded components V,, such that V,,, =0

for m < 0, we set

g V=" (d"Vu)g™ € Z((q)).

meZ

Let k € {F,R,K}, and B be a connected positively graded k-
algebra, so that B/Bso = k. If V is a finitely generated graded B-

module we define
dy V= d7/%(V/BooV) € Zg.q7"].

By Nakayama’s Lemma, if {vq,...,v,} is a minimal set of homogeneous

generators of the B-module V', then df V = qleslvn) ...y gdes(vr),

2.2.1. Changing scalars

In this subsection we develop the usual formalism of modular
representation theory for KLR algebras.  There will be nothing
surprising here, but we need to exercise care since we work with infinite
dimensional algebras and often with infinite dimensional modules.

Recall from Section that for a left Noetherian graded algebra
R, we denote by R-mod the category of finitely generated graded R-
modules, for which we have the groups ext%(V, W) and Ext%(V,W).
To deal with change of scalars in Ext groups, we will use the following

version of the Universal Coeflicient Theorem:

Theorem 2.2.1. (Universal Coefficient Theorem) Let Vi, Wg be

modules in Hyp p-mod, free as R-modules, and k be an R-algebra. Then
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for every j € Z>q there is an exact sequence of (graded) k-modules

0 — Extyy, . (Va, Wr) @rk = Extly, (Ve ®rk, Wr Qg k)

RS

— Tor{" (Exty)" (Ve, W), k) = 0.
In particular,
Extyy, . (Ve, Wg) ©r K = Ext}, (Ve ©p K, Wg @5 K).

Proof. The standard proof for the ungraded modules works in our
setting. First, apply Homp, ,(—, Wg) to a free resolution of Vx to get a
complex C, of free (graded) R-modules with finitely many generators in
every graded degree. Then follow the proof of [Rl Theorem 8.22]. The

second statement follows from the first since K is a flat R-module. O

We need another standard result, whose proof is omitted.

Lemma 2.2.2. Let k = K or I, Vg, Wr € Hyp-mod be free as R-
modules, and

0= Wgr— Ep 25 Vz—0

be the extension corresponding to a class & € Ext}{eR(VR,WR).
Identifying Ext}%R(VR, Wgr) ®r k with a subgroup of Extbgk(VR ®Rr

k, Wr ®@r k), we have that

0—>WR®RH§L®£¥ER®RH§@>H(VR®RH§—>O

is the extension corresponding to a class E® 1y € Ext}ig Ve, Wr) @rk.
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Let k = K or F, and Vi be an Hyy-module. We say that an
Hy p-module Vg is an R-form of Vi if every graded component of Vz
is free of finite rank as an R-module and, identifying Hy p ®r k with
Hyy, we have Vg ®p k = Vi as Hypy-modules. If k = K, by a full
lattice in Vi we mean an R-submodule Vi of Vi such that every graded
component V;r of Vi is a finite rank free R-module which generates
the graded component V; x as a K-module. If Vg is an Hy g-invariant
full lattice in Vi, it is an R-form of V. Now we can see that every
Vi € Hpg-mod has an R-form: pick Hy g-generators vy, ..., v, and
define Vg := Hopp-vi+---+ Hpp-v1.

The projective indecomposable modules over Hy r have projective
R-forms. Indeed, any P(7)p is of the form Hy pe, p for some degree zero
idempotent e, p. By the Basis Theorem, the degree zero component
Hypo of Hgp is defined over R; more precisely, we have Hypyro =
Hyopo ®r k for k = K or F. Since Hyppo is finite dimensional,
by the classical theorem on lifting idempotents [CRl (6.7)], there
exists an idempotent er rp € Hppro such that e, p = e p ® 1p, and
P(m)g := Hprerr is an R-form of P(m)p. The notation P(m)p will
be reserved only for this specific R-form of P(m)r. Note that, while
the Hy g-module P(7)g is indecomposable, it is not in general true that
P(m)r ®@p K = P(7)g, see Lemma for more information.

Let Vx € Hy k-mod and Vi be an R-form of V. The Hy p-module
Vi ®g F is called a reduction modulo p of V. Reduction modulo p in

general depends on the choice of V. However, as usual, we have:
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Lemma 2.2.3. If Vx € Hy x-mod and Vg is an R-form of Vi, then for

any m € KP(0), we have
[V @r F : L(7)p], = dim) Homp, , (P(7)r ®r K, Vi).

In particular, the composition multiplicities Vg @r F : L(m)p|, are

independent of the choice of an R-form Vg.

Proof. We have [Vg ®g F : L(7)p], = dim} Homp, .(P(7)r, Vg ®@r F).

By the Universal Coefficient Theorem,
HOIIIHG’F(P(TF)F, VR ®R F) = HOIHHG’R(P(W)R, VR> ®R F.

Moreover, note that Homp, ,(P(7)g, Vr) is R-free of (graded) rank
equal to dimﬂg Homp, ,(P(7)r, Vr) ®r k for k = F or K. Now, by

the Universal Coefficient Theorem again, we have that
dlmf HOIHHH’R(P(TF)R, VR)®RK = dlmé{ HOIIlH{%K (P(?T)R@RK, VR®RK),

which completes the proof, since Vz @z K = V. O

Our main interest is in reduction modulo p of the irreducible Hy k-
modules L(m)g. Pick a non-zero homogeneous vector v € L(m)x and
define L(m)g := Hgpr-v. Then L(m)g is an Hy p-invariant full lattice
in L(m) g, and reducing modulo p, we get an Hy p-module L(7)g ®p F.
In general, L(m)gr ®p F' is not L(7)p, although this happens ‘often’, for

example for cuspidal modules:
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Lemma 2.2.4. [Kl1, Proposition 3.20] Let « € ®,. Then L(a)p®@pF =

L(a)F.

To generalize this lemma to irreducible modules of the form
L(a™), we need to observe that induction and restriction commute
with extension of scalars. More precisely, for v,..., v € Q4+, 0 =

Y1+ +Ym, and any ground ring k, we denote by H.,, . . the algebra

.....

H, x ®--- Qx H,, \ identified as usual with a (non-unital) subalgebra

of Hyx. Now, the following lemma is immediate:

Lemma 2.2.5. Let Vi € H,, .. .r-mod and Wxr € Hpr-mod. Then

.....

for any R-algebra k, there are natural isomorphisms of Hyy-modules
(Indj, . Ve)@rk=Ind) _ (Vi®rk)

and of H,, . -, .x-modules

o
(Res?,

Let « € &, and m € Z-o. If k is a field, by Lemma [1.3.3]
we have L(a™)x ~ L(a)p™. By Lemma 2.2.5] L(a™)r = (L(a)g)™
satisfies L(a™)r ®gk ~ L(a™)x for k = K or F. Taking into account

Lemmas [2.2.3] and [2.2.4] we get:

Lemma 2.2.6. Let o € &, and m € Z~y. Then reduction modulo p of

L(a™) is L(a™)p.

It was conjectured in [KIR, Conjecture 7.3] that reduction modulo

p of L(m)g is always L(m)r, but counterexamples are given in [Wi| (see
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also [BKM|, Example 2.16]). Still, it is important to understand when

we have L(m)gr ®r F = L(7)p:
Problem 2.2.7. Let 6 € Q..
(i) If 7 € KP(0), determine when L(7)g ®g F = L(7)p.

(i) We say that James” Conjecture has positive solution (for 0) if
the isomorphism in (i) holds for all 7 € KP(6). Determine the
minimal lower bound pg on p = char F' so that James’ Conjecture

has positive solution for all p > py.
At least, we always have:

Lemma 2.2.8. Let 0 € Q. and m € KP(0). Then in the Grothendieck

group of finite dimensional Hy p-modules we have

[L(m)r ®r F] = +Zam (2.1)

o<

for some bar-invariant Laurent polynomials a. , € Zlq,q']. Moreover,

Pl o K = Pl & D e P

o>T

Proof. Let k = K or F and consider the reduced standard module

)k, see (3.4). In view of (3.5)), we can write

[L(m)] = J+ Y iAo

o<

for some [y, € Z[q,q7']. Using Lemmas [2.2.5] and induction on

the bilexicographical order on KP(7), we now deduce that the equation
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(2.1) holds for some, not necessarily bar-invariant, coefficients a,, €

Zlq,q7']. Then we also have

ey (L(m)r ®r F) = chy (L(1)p) + ) anochy (L(0)r).

o<

Since reduction modulo p preserves formal characters, the left hand side
is bar-invariant. Moreover, every ch, (L(o)p) is bar-invariant. This
implies that the coefficients a,, are also bar-invariant, since by [KLIJ,
Theorem 3.17], the formal characters {ch, L(v)r | v € KP(#)} are
linearly independent.

Finally, for any o € KP(0), we have
g = dim} Homp, . (P(7)r ®r K, L(0) k),

thanks to by Lemma [2.2.3, This implies the second statement. O]

Remark 2.2.9. For k = K and F, denote by dﬂfr’a, the corresponding
decomposition numbers, see , and consider the decomposition
matrices D* := (d ,)xockp). Setting A := (Gro)rockp(), We have
DF = DX A. So the matrix A plays the role of the adjustment matriz
in the classical James’ Conjecture [J]. Note that James’ Conjecture has

positive solution in the sense of Problem if and only if A is the

identity matrix.

2.2.2. Integral forms of standard modules

Our next goal is to construct some special R-forms of standard

modules. We call an Hpz-module A(m)g a universal R-form of a
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standard module if it is an R form for both A(7m)x and A(w)r. We
show how to construct these for all 7.

By Theorem [1.3.4{i), for any field k and o € ®,, the standard
module A(a™)y has simple head L(a™)g. Pick a homogeneous generator
v € A(a™)k and consider the R-form A(a™)g := Hpar - v of Ala™)k.
Further, for any 0 € Q4 and 7 = (a7",...,77%) € KP(f) with m >

-+« > 7, we define the following R-form of A(7)x (cf. Lemma [2.2.5)):

Let 1(x),r = lmim,..mem;r- Then, for an appropriate set D™ of

.....

coset representatives in a symmetric group, we have that {¢,1n r | w €

-----

So

A()g = @ Vulm,r @ AT )R ® -+ @ A7) R.

weD(™)
In particular, choosing v; € A(m;") gk with A(7;")r = Hppymy.i - ¢ for all

1 <t < s andsetting v := 17 g @V ® - ® v,, we have
A(W)R = H97R 0 (22)

Now we show that A(7)g is a universal R-form:

Lemma 2.2.10. Let § € Q4+, and m € KP(#). Then A(m)gr ®p F =
A(ﬂ')p

Proof. In view of (3.7) and Lemma [2.2.5] we may assume that 7 is of

the form (™) for a positive root 5 so that § = mf. By Lemma [2.2.3]
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we have for any o € KP(0):
[A(Bm)R ®R F: L(O’)F]q == dlmf HOHIHQ’K(P(O')R ®R K, A(ﬂm)]{)

By convexity, (™) is a minimal element of KP(#). So Lemma m
implies that all composition factors of A(f™)r @ F are ~ L(f™)p.

Moreover,

[A(B™)RORE : L(B™)rlg = [AB™ )k : L(B™)klq = [A(B™)F : L(B™)Flg-

By construction, A(8™)g is cyclic, hence so is A(6™)g @r F. So,
A(f™)r®@g F' is a module with simple head and belongs to the category
of all modules in Hy p-mod with composition factors ~ L(5™)p. Since
(™) is minimal in KP(#), we have that A(5™) is the projective cover of
L(5™)F in this category, see [KI3, Lemma 4.11]. So there is a surjective
homomorphism from A(S™)r onto A(™)r ®g F. This has to be an
isomorphism since we have proved that the two modules have the same

composition multiplicities. O]

From now on, the notation A(7m)g is reserved for a universal R-
form. We begin with a rather obvious consequence of what we have

proved so far:
Proposition 2.2.11. Let 0 € Q4 and 7,0 € KP(0).

(i) If m # o, then Homp, ,(A(7)r, A(o)r) = 0.
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(ii) For any R-algebra k, we have

EndH@,R (A(W)R) ®R k = Enng’k (A(W)R ®R k)

(iii) If m £ o, then Ext‘Lg’R(A(ﬂ)R, A(o)r) =0 for all j > 1.

Proof. By the Universal Coefficient Theorem, for any 7 > 0, we can
embed Extjﬁm(A(ﬁ)R,A(a)R) ®g F into EXt%IO’F(A(W)F,A(O')F). So
(i) follows from Theorem A, and (iii) follows from Theorem [1.3.4(iii).
Now (ii) also follows from the Universal Coefficient Theorem, since
Ext}{M(A(W)R,A(W)R) = 0 by (iii), which makes the Tor;-term

trivial. O

It turns out that torsion in the Ext groups between A(7)g’s bears
some importance for Problem [2.2.7, see Remark 2.2.15] So we try to
make progress in understanding this torsion. Given an R-module V,
denote by V1% its torsion submodule. Of especial importance for us will
be the torsion in Ext-groups: EXtJI'_IgyR(A(ﬂ') Ry A(0)g)™*=. The following

result was surprising for us:

Theorem 2.2.12. Let § € Q4 and m,0 € KP(6). Then the R-module
EXt}_IGVR(A(ﬂ')R, A(o)R)

is torsion-free.
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Proof. By Proposition [2.2.11, we may assume that 7 < o. By the

Universal Coefficient Theorem, there is an exact sequence

0 — Homp, ,(A(7)r, A(0)r) ®r F — Homp, . (A(7)r, A(o)F)

— Torf(Ext}qe’R(A(ﬂ)R, A(o)g), F) — 0.
By Theorem A, the middle term vanishes, so the third term also

vanishes, which implies the theorem. O

We will need the following generalization:

Corollary 2.2.13. Let 6 € Q4, 0 € KP(0), and V' be an Hy gp-module
with a finite A-filtration, all of whose subfactors are of the form ~ A(mw)g

for ™ # o. Then the R-module Exty, (V,A(0)g) is torsion-free.

Proof. Apply induction on the length of the A-filtration, the induction
base coming from Theorem [2.2.12| If the filtration has length greater

than 1, we have an exact sequence
0—=-Vi—=V =V, =0,

such that the inductive assumption apples to Vi, V5. Then we get a long

exact sequence

Homp, , (V1,A(o)g) — EX’C}I&R (Va, A(o)R)

— EX‘C}{&R(V, A(o)g) — EXt}{(,,R (Vi, A(o)R).
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By Theorem A, the first term vanishes. By the inductive assumption,
the second and fourth terms are torsion-free. Hence so is the third

term. O

While we have just proved that there is no torsion in
Ext}JGR(A(W)R,A(J)R), the following result reveals the importance of

torsion in Ext?-groups.

Corollary 2.2.14. Let 6 € Q4 and m,0 € KP(6). We have

dimg Ext}igyF(A(ﬂ)F, Ao)r)

— dimf ExtjlggyK(A(W)K, Ao)g) + df Ext%{&R(A(W)R, A(o)g)™r.
In particular,
dimf; EXt}{&F(A(W)F, Ao)p) = dimf EXt}IQ,K (A(m) i, A(0) k)

if and only if the R-module EXt?qG’R(A(ﬂ)R, A(o)R) is torsion-free.

Proof. By the Universal Coefficient Theorem, there is an exact sequence

0— Ext}{g’R(A(ﬁ)R, A(o)g) @r F — Ext}ie’F (A(m)p, A(0)r)

— Torf“(Extfqe’R(A(ﬂ)R, A(o)r), F) —0
and an isomorphism

EXt}J@,R(A<7T)R’ A(o)g) ®r K = EXt}I&K(A(ﬂ')K, Ao) ).
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The last isomorphism and Theorem [2.2.12 imply
dimf Ext}{e’K (A(m)k, Alo)k) = dqR ExtllLIe’R(A(W)R, A(0)R).
On the other hand,
df EXt%Ie’R (A(m)p, A(0)g)™™ = dimé7 Torf(Ext%Ie’R(A(ﬂ)R, A(o)gr), F),

so the result now follows from the exactness of the first sequence. [

Remark 2.2.15. By Theorem [2.2.12] lack of torsion in the group
Ext?{m(A(ﬂ)R,A(a)R) is equivalent to the fact that the extension
groups Exty (A(r),A(0)) have the same graded dimension in
characteristic 0 and p. This is relevant for Problem However,
we do not understand the precise connection between Problem [2.2.7]
and lack of torsion in the groups Extfqm(A(w)R, A(o)g). For example,
we do not know if such lack of torsion for all 7, o implies (or is equivalent
to) James’ Conjecture having positive solution. In the next section we

establish a different statement of that nature. Set

Ak = @ A(?T)]k.

TeKP(6)

By the Universal Coefficient Theorem, all groups Extfqg’R (A(m)r, A(0)R)
are torsion free if and only if the dimension of the k-algebras

Exty, , (Ak, Ay) is the same for k = K and k = F, and

EXt;'IQ,k(Ak7 Ay) = EXt;{M(ARa Agr)®rk
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for k = K and F. We do not know if James’ Conjecture has positive
solution under the assumption that all groups ExtJI'JQR(A(W) r, A(0)R)

are torsion-free.

2.2.3. Integral forms of projective modules in characteristic

zero

Recall that by lifting idempotents, we have constructed projective
R-forms P(m)g of the projective indecomposable modules P(m)p. Our
next goal is to construct some interesting R-forms of the projective
modules P(7m)g. As we cannot denote them P(m)g, we will have to
use the notation Q(m)g. We will construct Q(m)r using the usual
‘universal extension procedure’ applied to universal R-forms of the
standard modules, but in our ‘infinite dimensional integral situation’

we need to be rather careful. We begin with some lemmas.

Lemma 2.2.16. Let k be a field and V' € Hyy-mod have the following

properties:
(i) V is indecomposable;
(ii) V' has a finite A-filtration with the top factor A(m)y;
(iii) Exty,, (V,A(0)x) =0 for all 0 € KP(6).
Then V = P(7).

Proof. We have a short exact sequence 0 - M — P — V — 0, where
P is a finite direct sum of indecomposable projective modules. By

K13l Corollary 7.10(i)], M has a finite A-filtration. Now, by property
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(iii), the short exact sequence splits. Hence V' is projective. As it is
indecomposable, it must be of the form ¢?P(s). By the property (ii),
m=o0 and d = 0. ]

For # € KP(f) and k € {F, K, R}, we denote by By the
endomorphism algebra Endg, , (A(7)x)°?. Then A(7)y is naturally a
right B x-module. We will need to know that this B, x-module is finitely
generated. In fact, we will prove that it is finite rank free. First of all,

this is known over a field:
Lemma 2.2.17. Let 7 € KP(0) and k be a field. Then:

(1) Brk is a commutative polynomial algebra in finitely many variables

of positive degrees.

(ii) Let Ny be the ideal in By spanned by all monomials of positive
degree, and M = A(7)xNyx. Then A(m)/M = A(r)y, see the
notation .

(iii) Let vy,...,vny € A(m)x be such that {vy + M,....,on + M} is a
k-basis of A(m)/M. Then {vi,..., o5} is a basis of A(7)y as a

B x-module.

Proof. For (i) see Theorem [1.3.9] For (ii) and (iii), see [KI3, Proposition

5.7). 0

The following general lemma, whose proof is omitted, will help us

to transfer the result of Lemma 2.2.17] from K and F to R:

Lemma 2.2.18. Let Br be an R-algebra and Vi be a Br-module.

Assume that Br and Vg are free as R-modules. If vy,..., vy € Vg are
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such that {v; @1y, ..., vy@1k} is a basis of VR@gk as a Br®gk-module

fork = K and F, then {vy,...,ux} is a basis of Vg as a Br-module.

Lemma 2.2.19. Let 7 € KP(6). As a By r-module, A(m)g is finite

rank free.

Proof. Let m = (x}", ..., ") for positive roots m; > -+ > m,. Choose
V= 1lmr ®v ® - @, as in (2.2). There is a submodule M C
A(rm)g with A(m)g/M = A(m)g. Pick hy,...,hy € Hyg such that
{hyv+ M, ... ,hyv+ M} is an R-basis of A(7)g = Hpp - (v+ M). By
Lemma , {hiv®1y, ..., hnv®1k} is a By x-basis of A(m) g @k for

k = K or F. Now apply Proposition [2.2.11{(ii) and Lemma [2.2.18, [

Corollary 2.2.20. Letk € {F, K, R}, V € Hgp-mod, m € KP(0) and

Jj € Z>o. Then Extfqe’k(v, A(m)k) is finitely generated as a By x-module.

Proof. Since Hpy is Noetherian, V' has a resolution by finite rank free
modules over Hyy. Applying Homp,,(—, A(7)x) to this resolution, we
get a complex with terms being finite direct sums of modules ~ A(7)y,

which are finite rank free over B, x, thanks to Lemmas[2.2.17|and [2.2.19]

As B, is Noetherian, the cohomology groups of the complex are finitely

generated B, x-modules. O

Remark 2.2.21. It is a more subtle issue to determine whether
Extjﬁgyk(A(W)k,V) is finitely generated as a B i-module. We do not

know if this is always true.

Lemma 2.2.22. (Universal Extension Procedure) Let k €
{F,K,R}, 0 € KP(#), and Vi be an indecomposable Hyy-module with a
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finite A-filtration, all of whose subfactors are of the form ~ A(m)y for
m 2 o. If k = R, assume in addition that Vg @g K is indecomposable.
Let

r(q) = dg=* Exty, (Vi A(0)x) € Zlg, ¢ '].

Then there exists an Hgg-module E(Vi,A(o)x) with the following

properties:
(i) E(Vi, A(o)k) is indecomposable;
(i) Extl,, (E(Vi A()2). Ao)s) = 0;
(ili) there is a short exact sequence

0—=71(q)A(0)x = E(Vi, Alo)x) — Vk — 0.

Proof. In this proof we drop Hpy from the indices and write Ext! for
Ext}{g’k, etc. Also, when this does not cause a confusion, we drop k from
the indices. Let &,...,&, be a minimal set of homogeneous generators
of Ext'(V,A(0)) as a B,-module, and d, := deg(&,) for s =1,...,r, so

that 7(¢) = >, ¢*. The extension
0—q¢"Aloc) = E, =V =0,
corresponding to &, yields the long exact sequence

Hom(q~“A(0), A(o)) -2 Ext!(V, A(0)) - Ext'(E1, A(e)) — 0.
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We have used that Ext' (¢~ A(c), A(o)) = 0, see Proposition (iii).
Note that ¢ A(o) = A(o) as Hg-modules but with degrees shifted
down by d;. So we can consider the identity map id : ¢""A(s) —
A(c), which has degree d;. The connecting homomorphism ¢ maps this
identity map to &. It follows that Ext'(E;,A(0)) is generated as a
B,-module by the elements & = (&), ..., & = ¥(&,). Repeating the

argument r — 1 more times, we get an extension
0= ¢ "Al0) & @& ¢ " A(0) =r(@)Al0) > B>V =0
such that in the corresponding long exact sequence

Hom(E, A(c)) =5 Hom(r(¢)A(0), A(o))

5 Ext!(V, A(o)) — Ext'(E, A(s)) — 0,

for all s = 1,...,7, we have ¢(ps) = &, where p, is the (degree d;)
projection onto the sth summand. In particular, ¢ is surjective, and
Ext'(E,A(0)) = 0.

It remains to prove that E is indecomposable. We first prove this
when k is a field. In that case, if E = E'@® E"”, then both E' and E” have
finite A-filtrations, see [KI3, Corollary 7.10]. Since Ext'(A(0), A(n)) =
0 for m # o, there is a partition J' U J” = {1,...,r} such that there are

submodules

M' = @jcpq"A(0) CE, M"=®;cmq"Ao) C E",
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and E'/M', M"/E" have A-filtrations. Since Hom(A(o),V) = 0, we
now deduce that V = E'/M' @ E"/M”. As V is indecomposable,
we may assume that E'/M’ = 0. Then some projection p; lifts to a
homomorphism F — A(c), which shows that this p, is in the image of
X, and hence in the kernel of ¢, which is a contradiction.

Now let k = R. Note that V' and E are free as R-modules since so
are all A(v)g’s. If ER is decomposable, then so is EFr ® K, so it suffices
to prove that Fr ® K is indecomposable. In view of Corollary [2.2.13]

the B, x-module

Eth(VR, A(O’)R) ®R K= Eth(VR ®R K, A(O’)K)

is minimally generated by & r ® 1k, ..., &.r ® 1. It follows, using
Lemma 2.2.2] that Fr ®r K = Ex, where Ey is constructed using the
universal extension procedure starting with the indecomposable module
Vi = VR®pgr K asin the first part of the proof of the lemma. By the field

case established in the previous paragraph, Ff is indecomposable. [l

Let 7 € KP(¢). For k € {R,K,F}, we construct a module
Q(m)x starting with A(7)g, and repeatedly applying the universal
extension procedure. To simplify notation we drop some of the indices
k if this does not lead to a confusion. Given Laurent polynomials
r0(q),71(q),---,rm(q) € Zlg,q~'] with non-negative coefficients and

Kostant partitions 7% 7! ... 7™ € KP(f), we will use the notation

V =ro(@A@) [ 1A |- | rm(@) A(n™)
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to indicate that the Hg-module V has a filtration V=V 2 V; D --- D
Vi1 = (0) such that Vi /Vi 1 = r(q)A(n®) for s =0,1...,m.

If Exty, (A(), A(o)) = 0 for all 0 € KP(6), we set Q(7)x := A(T)y.
Otherwise, let 7% € KP(#) be minimal with Exty, (A(r), A(x¥)) # 0.
Note that this 75 might indeed depend on the ground ring k, hence

the notation. Also notice 7' > 7. Let
E(r, 7)== B(A(7), A(7H9)),
see Lemma [2.2.22] By construction, we have
B, 7Y = Ar) | P @A),

where

B_1x

rig(q) = dg ™ Extyy, (A(m), A(r9)).
This Laurent polynomial might depend on k, hence the notation. If

EXt}{(, (E(m, Wl’k), A(o)) =0

for all o € KP(0), we set Q(m)y := E(m, 7)y. Otherwise, let 7%¥ €
KP(6) be minimal with Exty (E(r,7"%), A(7*¥)) # 0. Note that 7%* >

7 and 2% # bk Let
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By construction, we have
E(m, 7", 7% ) = A(m) | ri(@) AT) | rop(g) A(m>F),

where

B
Tz,k(q) = dq 2,k EthlLIG (E’(7T7 7Tl,lk)7 A(WQ’H‘)),

If Extyy, (E(m, ¥, 72%), A(o)) = 0 for all ¢ € KP(§), we set

Since on each step we will have to pick 7% > 7, which does not
belong to {m, 7tk ... wt=1%} the process will stop after finitely many

steps, and we will obtain a module

Bl w %, ) = A | Faa@AE) || P A,
where
B t —
rop(q) = dg ™" Bxty, (E(m,wb, 7t A(rt9)y) (2.3)

for all 1 <t < my, and such that
Exty, (E(m, @, ., 7™, A(o)x) =0
for all o € KP(6). We set

Q(m)y := E(m,wb%, . k),



Theorem 2.2.23. Let § € Q4 and m € KP(0).
(i) Fork= K or F, we have Q(m)x = P(m)k.

(ii) Fork = K or F, the Laurent polynomial ryx(q) from equals
the decomposition number dE‘;t,kﬂ for all 1 <t < my, and d“j,ﬂr =0

foro @ {7 1<t < my).

(iii) mp = mg; setting m = mp, we may choose THF =

abB ol = K and then vy r(q) = rik(q) for all 1 <t <

(iv) Q(m)r ®r K = P(m)k.

Proof. Part (i) follows from the construction and Lemma [2.2.16] Part
(ii) follows from part (i), the construction, and Theorem [1.3.4|v).

To show (iii) and (iv), we prove by induction on ¢ = 0,1,... that
R _ tK

we can choose 7 , n,R(q) = T’t,K(Q) and

E(r,nbB o pop K =2 E(r, 7V . o)k, (2.4)

The induction base is simply the statement A(7)gr ®r K = A(7) . For
the induction step, assume that ¢ > 0 and the claim has been proved for
all s < t.

Let &g, ...,& r be a minimal set of generators of the B ir p-

module

EXt}{e,R (E(T(, 7Tl7R, - ,ﬂ't*l’R)R’ A(?Tt’R)R>,
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so that

71,r(q) = deg(&1,r) + -+ - + deg(&r r)

Using Corollary [2.2.13] and the Universal Coefficient Theorem, we

deduce that 7% can be chosen to be "% and the Btz x-module
Ext'(A(m)g, A" g) ®r K =2 Ext' (Vg ®p K, A(r"™) )

is minimally generated by & g ® 1k, ..., & r ® 1k, so that 7 x(q) =

r¢ r(q). Finally (2.4) comes from Lemma [2.2.2] O

In view of Theorem [2.2.23(i), Q(7)g in general is not an R-form of

Q(m)r = P(m)p. For every m € KP(#), define the Hy p-module

Theorem 2.2.24. James’ Conjecture has positive solution for 6 if and

only if one of the following equivalent conditions holds:
(i) X () is projective;
(ii) X(m) = P(m)p for all m € KP(0);
(iii) Exty, . (X(7),A(0)r) =0 for all 7,0 € KP(6);
(iv) the R-module Ext%,e,R(Q(w)R, A(o)g) is torsion-free for all m,0 €
KP(#).

Proof. (i) and (ii) are equivalent by an argument involving formal

characters and Lemma [2.2.8, Furthermore, (i) and (iii) are equivalent
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by Lemma [2.2.16, Since since Exty, (Q(m)r, A(o)r) = 0 for all o,

(iii) is equivalent to (vi) by the Universal Coefficient Theorem. Finally,
we prove that (ii) is equivalent to James’ Conjecture having positive
solution. If X (7) = P(m)p for all m, then they have the same graded
dimension, so the R-modules Q(7)g and P(7)g have the same graded
R-rank, whence the K-modules P(7)x = Q(7)r ®r K and P(m)p ®r K
have the same graded dimension, therefore P(m)r®pr K = P(m)k for all
7, see Lemma [2.2.8 whence James’ Conjecture has positive solution.
Conversely, assume James’ Conjecture has positive solution. This
means that df = df_for all 0,7 € KP(#). By Theorem (ii),
on every step of our universal extension process, we are going to
have the same dimension of the Ext'-group over K and F, so, by
Theorem (iii), on every step of our universal extension process, we
are also going to have the same rank of the appropriate Ext!-groups over
R and F. Now, use Lemma as in the proof of Theorem [2.2.23|iv)
to show that Q(7m)gr ®r F = P(7)F. O

Remark 2.2.25. We conjecture that P(7)r has an X-filtration with
the top quotient X (7) and X (o) appearing a,.(q) times. On the level
of Grothendieck groups, this is true thanks to Lemma [2.2.8 But it

seems not obvious even that X (m) is a quotient of P(7)p.
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Chapter III

PROJECTIVE RESOLUTIONS

This chapter contains material coauthored by the author and
his thesis advisor, Alexander Kleshchev. While both parties offered
significant contributions, it is impossible to distinguish their exact

inputs.

3.1. Preliminaries

We begin by introucing notation and recalling some known results
that we rely on for the remainder of the chapter. For any 7,5 € I,
we fix a choice of signs ¢;; = sgn(j — i) in the definition of Hy for
concreteness. We also work only in finite type A throughout the chapter.
For d € Zxo, a composition of d is an element A = (A,--- | \y,) € ZZ,

with Y ;" | A, = d. For such A, we define the parabolic subgroup

GAZZG)\IX'--XgAmSGd.

If p = {p,...,un} € Z%, is also a composition of d, then we set
DX to be a choice of minimal length double coset representatives
for &,\&4/G,. Similarly, we set D* and *D to be a choice of left
and right minimal length coset representatives for G,;/S, and &,\Sy,
respectively.

Given w € &, we denote by {(w) its length, i.e. the minimal ¢ € Z>q

such that there exists a reduced expression w = s;, ---s;,. We say that
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w € Sy is fully commutative if any reduced expression for w can be
obtained from any other by means of braid relations that only involve
commuting generators. Note that if w € G, is fully commutative and
6 € Q. has height d, then the element 1, € Hy is well defined and does
not depend on the choice of reduced expression for w. The following is

well-known and can be deduced from [DJ, Lemma 1.6].

Lemma 3.1.1. Let A\, u be compositions of d and w € *D. Then there

exist unique elements u € *D* and v € S, such that w = wv and

l(w) = L(u) + £(v).

For 6 € ), with height d and any 1 < r < s < d, we denote the
cycle (s,s —1,...,7) € &4 by (s — r) and consider the corresponding

element

,lvbs—w‘ = Q/)(sﬁw) = ¢s—1 cee ,QZ)T € Hy. (1]-)

Since cycles have unique reduced decompositions, s, is well defined.

The following lemma easily follows from the defining relations of Hy.

Lemma 3.1.2. Let 1 <r <s<d,t € (r,s), u € rs), and i € I°.

Then in Hy we have:
(1) 1iws%rwt = 11'%717?3%7« unless iy = 1;_1 =iy & 17'

(11) 1i¢s—>7’yu+1 = 1iyuws—>r unless s = ly-

Recalling the parabolic embeddings introduced in |3.2) we will also

need the following result, which is easily seen using this embedding along

with Theorem [[.3.1] and Lemma [B.1.11

Lemma 3.1.3. Let 0 € Q+ andt,j € 1°. Then, HgliOHnlj = H9+n1ij'
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3.1.1. Divided power idempotents

Fix 1 € [ and m € Z>( and denote by wy,, the longest element of

S,,. Also, set

m m
o r—1 / o m—r
o = i vhwm = ]ur ™
r=1 r=1

Lemma 3.1.4. We have:

(1) YwomYVuwo,m = 0 for any y € Flyi, ..., Ym] of degree less than
m(m —1)/2

(11) ¢w0,my0>m¢w0,m = wwo,m'
(111> djwo,myé,mwwo,m = <_1)m(m_1)/2¢w0,m
Proof. This is noted in [KL1, §2.2]. O

As in [KLI], taking onto account Lemma [3.1.4{ii), we have an

idempotent

1i(m) = ¢w0,my0,m S Hmai-

Let § € Q.. We define I, to be the set of all expressions
of the form z’§m1)---z£mr) with my,...,m, € Zso, i1,...,4, € I and
mya;, + -+ mya;, = 6. We refer to such expressions as divided power
words. We identify I? with the subset of 19, which consists of all divided

power words as above with all m; = 1. We use the same notation for

concatenation of divided power words as for concatenation of words.
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Fix 1 = igml) = I%,. We have the divided power idempotent

1i = 1i(m1)~--i(mT) = Lmlailan-»mr‘lim(li(ml) & 1i(mr)) S H@-
1 s 1 T

Define 4! := [m4]!- - - [m,]! and

() == mp(my, — 1)/2. (1.2)

Set

=i e I, (1.3)

Note that 1,1; = 1;1, = 1,. The following technical lemmas will be

needed in what is to follow.

Lemma 3.1.5. [KLIl §2.5] Let U (resp. W) be a left (resp. right) Hy-

module, free of finite rank as a Z-module. For i € IS, we have

dim, (1;U) = il¢"dim, (1;U) and dim, (W1;) = ilg~@dim, (W1;).

Lemma 3.1.6. Let « = oy + g1 + -+ ap € Oy be a positive root,

m € Zsg, 0 = ma, and i = a™ (a+ 1) ...p™ €[4 . Then
dimq 11,L(O[m) _ q—(b—a+1)m(m—1)/2.

Proof. We have that L(a)"™ = ¢™m~V/2[(a)°™, see [KIR) Lemma 6.6]
or [M, Lemma 3.4]. So the result follows from Lemma and [KI2,
Lemma 2.10]. O

Lemma 3.1.7. In the algebra H,,,,, we have
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(1) Lirgoitliomy = Liony if r + s+t =m.
(11) 1,L'(m)wm_>1].ii(m71) - wm_)l 1Z'i(m71) .

Proof. (i) follows from Lemma [3.1.4](ii) since we can write

]-z'(m) = Lroci,sai,tai<]-’r‘ai X wwo,s & 1tozi>¢uyo,m

for some u € G,,.

(ii) We have

Liom)Um—1¥m—2 - . Y11 50m-1)
=Lim) Um-1¥m—2 - - - V1la; (m—1)a; Loy @ Yusg 1 Y0.m—1)
=1;0m Vg bars, (m—1)as (Lo @ Yo,m—1)
=Puwg b (m—1)a; Loy @ Yom—1)
=Pm-1Vm—2 - V1ta, (m-1)a; Loy @ Vg 1 Yo,m—1)

:wm—l¢m—2 cee @01 1Z‘i(m*1)7

where we have used Lemma [3.1.4(ii) for the third equality. O]

3.1.2. Diagrammatic notation

Let # € Q4 with ht(d) = d. We will use the Khovanov-Lauda
[KL1] diagrammatic notation for elements of Hy. In particular, for ¢ =

i1---ig €1 1<r<dand1<s<d, we denote

i1 tr—1 ipirg1ir42. .. ig i

, Ly = || >< . Liys = || +

29

i1 @9 .- iqg +1 ... ig




We speak of deg(1;1),) as the degree of a crossing in the middle picture

above. In addition, we denote

.wo - : -
Yug g = (o), Yoa=:(Y% ) Liw= 1= =4 ).
(Yo )

For example, if d = 3, we have

1¢3¢w0== ;§<71i3y0:: H#,h(s):: §<

More generally, we denote

M S,
Limo_yomn) = ' (),
1 [d

3.2. Semicuspidal Resolution
Throughout the subsection, we fix m € Zg, a,b € Z with a < b,
and set [ :=b+ 2 — a, d := Im. We denote

o=+ -+ ap € Py

and 0 := ma. Note that [ = ht(a) and d = ht(d). Our goal is to

construct a resolution P, = P®" of the semicuspidal standard module

A(a™).
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3.2.1. Combinatorics

We consider the set of compositions
A=A ={A=Na,.. ., 0) | Aas. .., X € [0,m]}.
For A € A, we denote |A| := A\, + -+ + A, and for n € Z>, we set
A(n) = A" (n) == {A € A ||\ =n}.

Let a <17 <b. We set

with 1 in the ¢*® position.

Let A € A. Set

j)x = am—)\a (a + 1)m—)\a+1 . bm—Ab<b + 1)mb)\b . CLA“ c IG’

P = @ (@ 4 1) A pmeN) (g 1)) ) € T8

Note that 3% = 5. We also associate to A a composition wy of d with

2n + 1 non-negative parts:

wy = (m—Ag,m — Agity oo, M — Xy, My Apy Ayt -0, Ag).
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Let i € [a,b]. We denote

7 i—1

rr(A) =) (m=A), TN =d =) A, ) = () + 1

S=a S=a

where 7

a_1(A) is interpreted as 0, and rf;()\) is interpreted as d —

b
Y eea As- Moreover, denote

b
ma () s=d =Y A, b (A) =1 (A) = m A+ 1
Define

UF(\)

(2

) W] UiV == U7 () LU (N,

e A %

Up1(A) = [lo41(A), o1 (A)]-
Observe that for all j € [a, b+ 1], we have
Ui(\) = {s € [1.d] | 52 = j}.
We also consider the sets of multicompositions

A= (A" = {5 = (50,....60M) [ 60,60 € A°Y,

Aln):={8= (6D, ... 6y e A6+ + (6] =n}.

Note that by definition all 6" € {0,1}. For 1 <r <m and a < i < b,

we define €] € A(1) to be the multicomposition whose rth component
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is e; and whose other components are zero. For é € A, denote
A=W o sm e AL

Fix 6 = (6, ..., 8(™) € A. Define

3O =0 e

For i € [a,b] we define

UG = {(r—1) +ul|rel,m],ueU>EM)),

Ui(8) == U (6) L U (9),

Upir(8) = {I(r = 1) +u|rell,m], uec Uy (6"}
Observe that for any j € [a,b+ 1], we have
U ={s e [Ld]| =35} and [U7(N)] = [U7 ().
For A€ A, § € A, and i € [a,b], we define some signs:
sgny, = (~DESN, sy, o= (~1)EE BT
ts := Z 5§T)5](-s), Xs = (—1)",

1<r<s<m
a<j<i<b

b . s
= (D)= MAEDR = .
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Lemma 3.2.1. Let 6 = (6, ..., 6(M) € A, i € [a,b] and r € [1,m]. If

87 =0, then

r—1 ¢(s)
JR— 61
SgN\s.; X6 = XleregSgné;r,i(_l)z:6 ! :

Proof. Let A := A% and ~ := § + e]. Writing ‘=’ for ‘= (mod 2)’, we

have to prove

i—1
ST+ Y ol = 3T 40 +Z|§S)|+Zé”)+25(s
j=a

t<s, k>j t<s, k>j

Note that

Z ,th)%(s Z 50t 4 Z 5 + Z (58 (2.1)

t<s, k>j t<s, k>j s>r, j<i s<r, j>1i

so the required comparison boils down to

ZA = > 4 D6 +Zy(5<8|+257“+25f,

s>r, 7<i s<r, J>1

which is easy to see. O]

Lemma 3.2.2. Let v = (YW, ... ,4y™) € A, i € [a,b] and r € [1,m)].

If %(r) =1, then

m (-5)
g’ysgn)\‘r;i = Sgn'yfef;r,ig"/—e;(_1)25:T+1 K }
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Proof. Let pu:= X7, § := v —el, and A := \0. Writing ‘=’ for ‘=

77

(mod 2)’, we have to prove the comparison

> oA +Zug 1)/2+Zuj

t<s, k>j
—ZWHZNM > g SMZA /24 Y Y.
t<s, k>j s=r+1
Note that

b

Zu; /2= 3 N0 = 1/2= A,

Jj=a

So, using also (2.1]), the required comparison boils down to

DL 65)+Z>\ —Z|6(S|+25”+253

s>r, <1 s<r, J>1 s=r+1

which is easy to see. O

3.2.2. The resolution P,

Let A € A. Recalling divided power word i* € I, from §3.2.1} we

set

b
l —1
Sy = —%—f—(m—l—l)n—ZA?EZ,

i=a

ex =1, € Hy, Py= P := ¢ Hgey.

In particular, P is a projective left Hyp-module. Further, set for any

n e ZZ()I
- n
AeA(n)
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Note that P, = 0 for n > d —m. The projective resolution P, = P*" of

A(a™) will be of the form
...HPnJrldH"Pn—)...HPO—)A(Ozm)HO. (2.2)

To describe the boundary maps d,,, we first consider a more general
situation. Suppose we are given two sets of idempotents {e, | a € A}
and {f, | b € B} in an algebra H. An A x B matrix D := (d**),capen
with every d** € e,H f, then yields the homomorphism between the

projective H-modules

PD EB He, — @Hfb, (Ta€a)aca (Zrada’b)beB, (2.3)

a€A beB a€A

which we refer to as the right multiplication with D.
We now define a A(n + 1) x A(n) matrix D,, with entries d** €

e Hoex. Let A € A(n) and a < i < b be such that A\; < m. Recalling

(1.1]), define
Vi = %j(ﬂei)—ﬂ"{(k)'

Note that wk;ile = Linte; Y- Recalling the sign sgn,; from 93.2.1) we

now set

P - sgnmeuw;ig if W= A+ e, for some a < i < b,
n

0 otherwise.
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Diagrammatically, for © = A + e; as above, we have

am=>d) . [m=r=1 (i + )N+ (i— DN (g

di? =+

=) (g (G DA [ (G- DM (g

We now set the boundary map d,, to be the right multiplication
with D,,:

dn = pDn‘

Example 3.2.3. Let a = b= 1 and m = 2. Then the resolution P, is
d do _
0— H912(2)1(2) —l> H9112(2)1 —O> q 2H911(2)2(2) — A((Oé1+()é2)2) — 0,

where d; is a right multiplication with

Ly 1@ V31 li9e) =

and dy is a right multiplication with

Lio@ W3¢l @90 =

It is far from clear that kerd,, = imd,,; but at least the following

is easy to see:

Lemma 3.2.4. The homomorphisms d,, are homogeneous of degree 0

for all n.
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Proof. Let A € A(n) be such that \; < m for some a < i < b, so
that © := A+ e; € A(n + 1). The homomorphism d, = pp, is a
right multiplication with the matrix D,. Its (u, A)-component is a
homomorphism P, — P\ obtained by the right multiplication with
+e,niex. Recall that P, = ¢® Hpe, and P, = ¢°*Hypey. So we just
need to show that s, = s, +deg(e,¥ex). This is an easy computation

using the fact that by definition we have deg(e,¥yex) =m —2X;. O

3.2.3. The resolution (),

In order to check that P, is a resolution of A(a™), we show that
it is a direct summand of a known resolution Q, of ¢™(™~V/2A(a)™.
To describe the latter resolution, let us first consider the special case

m = 1.

Lemma 3.2.5. We have that P is a resolution of A(«).

Proof. This is a special case of [BKM| Theorem 4.12], corresponding to
the standard choice of (ajy1 + -+ + o, ;) as the minimal pair for an
arbitrary positive root a; + - - - 4+ o in the definition of 2, ,, see [BKM,

§4.5]. ]

Let Q, be the resolution ¢™™~1/2(P#)°™  To describe @, more
explicitly, let n € Zso and § = (6, ..., 6(™) € A(n). Recalling the

definitions of §3.2.1} we set

es =16 € Hyp, Qs := gt =D2 Hoes.
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Further for any n € Z>(, we set

Qn = @ Qé-
)

deA(n

The projective resolution @), is
= Q1 I Q — .. — Qo — ¢TI A ()™ — 0,

where ¢, is the right multiplication with the A(n + 1) x A(n) matrix
C = (c1°) defined as follows. If § + e/ € A for some r € [1,m] and

i €[a,b], ie. 6 =0, we set

.....

Recalling the signs defined in §3.2.1} for § € A(n) and v € A(n + 1),

we now define

8 sghs., CyVsrics ify=40+e] for 1 <r<manda<i<b,
n

0 otherwise.

The fact that @, is indeed isomorphic to the resolution
g V/2(PeYe™ s easily checked using the isomorphism Hges =

H@ljl;(l) 0---0 Hgljé(m), which comes from Lemma W

Example 3.2.6. Let a = b = 1 and m = 2. Then the resolution @, is

0— Q3H912121 S q2H912112 ©® q2H911221 0 qHpli910 —
qA(Otl -+ @2)02 — 0,
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where ¢; is a right multiplication with the matrix (—lo121%3 19121%1),

]-21121/)1

1122173

and ¢q is a right multiplication with the matrix

3.2.4. Comparison maps

We now construct what will end up being a pair of chain maps
f:P — Qe and g : Qy — P, with go f = id. As usual, f, and g,
will be given as right multiplications with certain matrices F,, and G,,,

respectively.
Let A € A. Recall the definitions of §3.2.1, We denote by w} the

longest element of the parabolic subgroup &,,, < &, . We also denote

y)\ = wa(l(mf/\a)aa X ® ]-(mf)\b)ocb ® Yo,m X 1>\b04b K- ® 1)\aoza)~

Let § = (6 ..., 6(™) € A. We define u(8) € &, as follows: for

all i = a,...,b, the permutation u(d) maps:
(i) the elements of U(\?) increasingly to the elements of U= (4);
(ii) the elements of Uy,1(\%) increasingly to the elements of Uy, ().

Set w(d) := w(d)"'. Then w(d) can also be characterized as the
element of &, which for all i = a,...,b, maps the elements of Ul-(i)(é)
increasingly to the elements of Ui(i)(A‘s) and the elements of Uy, (6)
increasingly to the elements of Uy, (\°).

Recall the signs xs and & defined in §3.2.1 We now define F,

as the A(n) x A(n)-matrix with the entries 2 defined for any A €
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A(n),d € A(n) as follows:

Ao Xoexpawsyes A=A,
0 otherwise.

We define G,, as the A(n) x A(n)-matrix with the entries g2 defined

for any 6 € A(n), A € A(n) as follows:

S . §5€5wu(5)y>\€)\ if A= )\5’

0 otherwise.
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Example 3.2.7. Let m = d = 2 as in Examples [3.2.3| and [3.2.6l Then:

F =

Gy =

Lemma 3.2.8. Let § € A(n) and A = \°. Then:

(i) deg(tw(s)es) = % —mn + Zb \?

i=a "1’

(if) deg(f?) = =3 4 mn — 370, X2

i=a "1’

(iil) deg(gl) = M —ymn 4 370, A2,
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Proof. (i) We prove this by induction on m. Denote the right hand side
by R(m) and the left hand side by L(m). If m = 1 then w(d) = 1, so

L(1) = 0. Moreover,

b b b
R(1) = —n + Z)xf = -—n+ Z(éfl)f =—n+ 261-(1) = 0.

Let m > 1. It suffices to prove that R(m) — R(m — 1) = L(m) —

L(m —1). Let 6™ = (g,,...,&). Then, since all &; are 0 or 1, we have

R(m) — R(m — 1) = m(m_zl)(l_l) —mn 3N

(m=1)(m=-2)(-1) -
2
+(m—1)(n - Zei) - Z(Ai —&)?

b b
=m-1(1-1)—n-m> &+2) N\

On the other hand, consider the Khovanov-Lauda diagram of
Yuws)es. The bottom positions of the diagram correspond to to the
letters of the word 3°, and so the rightmost [ bottom positions of
this diagram correspond to the letters of j5<m). In other words,
counting from the right, the sequence of colors of these positions is
ase, ..., b, b+ 1,b'7% ... a'~%«. Note that the strings which originate
in these positions do not intersect each other, so L(m)— L(m —1) equals

the sum of the degrees of the intersections of these strings with the other
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strings of the diagram, i.e.

L(m)—L(m—1) = Z gi(Aic1 —€i-1) + Ao — &b

1=a+1

+ Y (I—e)(m—1-2(\—&)+ Aoy — 1)

i=a+1

+(1—eg)(im—1-=2(N\, —&4)),

which is easily seen to equal the expression for R(m)— R(m—1) obtained

above.
(ii) This follows from (i) since deg(f}°) = deg(Yuw(s)ea) +

deg(ext,) and
b
deg(exth,n) = —m(m — 1) = > (\(Ai = 1) + (m = Xi)(m — A — 1)).

i=a

(iii) This follows from (i) since

deg(g2*) = deg(estus)) + deg(y*) = deg(u@s)es) +m(m — 1),

]

Corollary 3.2.9. The homomorphisms f, and g, are homogeneous of

degree 0 for all n.

Proof. Let § € A(n) and A = X°. The homomorphism f, is a
right multiplication with the matrix F,. Its (A, d)-component is a
homomorphism Py — Qs obtained by the right multiplication with f.

Recall that Py = ¢® Hypey and Qs = ¢ D/2Hyes. So we just need
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to show that sy = n+m(m —1)/2+deg(f°), which easily follows from
Lemma [3.2.8{(ii).

The homomorphism g, is a right multiplication with the matrix G.,,.
Its (d, A)-component is a homomorphism Qs — P) obtained by the right
multiplication with g>*. So we just need to show that n+m(m—1)/2 =

sx + deg(g3*), which easily follows from Lemma [3.2.8](iii). O

Corollary 3.2.10. Suppose 8, € A(n) are such that \> = \°. Then

deg(Vu(syes) = deg(u(e)ee)-
3.2.5. Independence of reduced decompositions

Throughout this subsection we fix § € A(n) and set A := \°.

Recall that in general the element v, € Hy depends on a choice
of a reduced decomposition of w € G,4. While it is clear from the form
of the braid relations in the KLR algebra that e,\wwa does not depend
on a choice of a reduced decomposition of wy, it is not obvious that a
similar statement is true for 1,,(5)es and es1),5). So a priori the elements
o= Textnthws)es and g2* = testh, sy en might depend on choices
of reduced decompositions of w(d) and u(d). In this section we will prove
that this is not the case, and so in this sense the maps f,, and g, are
canonical.

Recall the composition wy and the words 57, 7° from §3.2.1]
Lemma 3.2.11. The element w(8) is the unique element of “> D™
with w(d) - j° = 5.

Proof. That w(8) € “>D") and w(d) - j° = 4 follows from the

definitions. To prove the uniqueness statement, let w € “» D) and
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w-3° = §*. Since w € “» D, it maps the elements of U, (8) increasingly

1) . 5(m)
o . 3%™ . For every

to the elements of Uy.1()\). By definition, j° = j
r € [1,m], the entries of j‘s(r) have the following properties: (1) each
i € [a,b+ 1] appears among them exactly once; (2) the entries that
precede b+ 1 appear in the increasing order; (3) the entries that succeed
b + 1 appear in the decreasing order. Since w € DU it maps the
positions corresponding to the entries in (2) to the positions which are
to the left of the positions occupied with b+ 1 in j*, and it maps the
positions corresponding to the entries in (3) to the positions which are
to the right of the positions occupied with b+ 1 in j*. In other words,
for all i € [a,b], the permutation w maps the elements of U*(8) to the
elements of U*(\). As w € “» D, it now follows that for every i € [a, b],

the permutation w maps the elements of U= (8) to the elements of U ()

increasingly. We have shown that w = w(d). O

Lemma 3.2.12. Let e,8 € A*, and j5 = w - §° for some w € &,. Then

either e = § and w = 1, or deg(Y,1;5) > 0.

Proof. Since every i € [a, b+ 1] appears in 4° exactly once, € = § implies
w = 1. On the other hand, if € # 9, let ¢ be maximal with ¢; # ;. Then
the strings colored ¢ and ¢ + 1 in the Khovanov-Lauda diagram D for
w1 s intersect (for any choice of a reduced decomposition of w), which
contributes a degree 1 crossing to D. On the other hand, since every
J € [a,b+ 1] appears in 4° exactly once, D has no same color crossings,
which are the only possible crossings of negative degree. The lemma

follows. O
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Lemma 3.2.13. Suppose that w € ™) D> and w - 5% is of the form

i a0 with 3V 4" e 1% Then w - 3> = j§° for some e € A
with \¢ = .
Proof. Ler r € [1,m]. By assumption, the entries igr), o ,il(r) of i

have the following properties: (1) each i € [a,b+ 1] appears among them
exactly once; (2) the entries that precede b+ 1 appear in the increasing
order; (3) the entries that succeed b+ 1 appear in the decreasing order.

The result follows. O
Lemma 3.2.14. Let P = {w € *D | w - 3° = 5*}. Then w(d) € P
and deg (1w s)€s5) < deg(Ywes) for any w € P\ {w(d)}.
Proof. 1t is clear that w(d) € P. On the other hand, by Lemma [3.1.1]
an arbitrary w € P can be written uniquely in the form w = xy with
€Dy € Symy and L(zy) = L(x) + L(y).

Since zy - j° = j*, we have y - j% = 21 - 5% As ! € (") D9 it
follows from Lemma that y - 7° = 21 - 5% is of the form j¢ for
some € € A with A\* = \. By Lemma [3.2.11] z = w(e). If w # w(d),

then y # 1 and we have

deg(d}weé) = deg(¢w(€)6€) + deg(l/’yeti)

= deg(¢w(syes) + deg(vyes) > deg(Vus)es),

where we have used Corollary [3.2.10] for the second equality and

Lemma [3.2.12 for the inequality. O]

Lemma 3.2.15. The element ffl"‘s = 6/\¢w3¢w(6)66 1s independent of the

choice of reduced expressions for w) and w(d).
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Proof. 1t is clear from the form of the braid relations in the KLLR algebra
that eM%g is independent of the choice of a reduced expression for
w()\. On the other hand, if t,s)es and @/)1’1)( 5)€6 correspond to different
reduced expressions of w(é), it follows from the defining relations of
the KLR algebra and Theorem that 45 — w;(s)eg is a linear
combination of elements of the form 1, yes with u € Sy, y € Zly1, ..., ydl
such that deg(y,yes) = deg(vw(syes) and uj® = 3*. We have to prove
6,\%)31%2165 = 0. Suppose otherwise.

Since we are using any preferred reduced decompositions for u, we
may assume in addition that u € “*D, since otherwise e,\wwéwu = 0.

Now by Lemma 3.2.14] deg(¢yes) > deg(ty(s)€s), whence deg(¢,yes) >

deg(Yw(s)€s), giving a contradiction. O

Lemma 3.2.16. The element g2* = 5565wu(5)y’\6)\ is independent of the

choice of a reduced expression for u(é).

Proof. The argument is similar to that of the previous lemma. If e51,s)
and e,;w;( 5) correspond to different reduced expressions of u(d), then
esVu(s) — es,, () is a linear combination of elements of the form egy,,
with w € &g, y € Z[y1, ..., ya| such that, deg(esy),,) = deg(estus))
and w'5° = 5. Moreover, in the Khovanov-Lauda dialgram of 1,1 i
the strings colored b+ 1 do not cross each other, since this was the case
for the diagram of ¢,s)1;1. Hence, if esywyen # 0, we may assume in
addition that w=! € “x D. Now, using Lemma , we conclude that

deg(esythy) > deg(esthu(s)), getting a contradiction. O
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3.2.6. Splitting

In this subsection, we aim to show that go f =id. We fix A € A(n)
throughout the subsection. We need to prove > s M0 = ey,

Since f = 0 unless A% = )\, this is equivalent to

Z I S
fn gn - 6)\.

SEA(n), A=)\

Let § € A(n) with A2 = X\. We say that § is initial if a preceeds a+1
in 5 forr € [1,m—\,] and a succeeds a+1 in 3° forr € (m—Aq, m].
In other words, & is initial if 6 = 0 for 7 € [1,m — A,] and 65" = 1 for
r € (m— A, m].

Let w € &4 and 1 < r,s < d. We say that (r,s) is an inversion

pair for wif r < s, w(r) > w(s), and j3 — j* = +1.

Lemma 3.2.17. Let § € A(n) be initial with \> = X\. Set & = g1 +

oot 0 =ma, A= Dagts M), Bi= Agg1 -+ Ny, and 6 =

(6W ..., 60 where 57 = (5((;21, . ,5£T)) for all r € [1,m]. Then

ffr/L\ﬁng = L(m—)\a)aa,é,)\aaa(1a(m_Aa) ® fr’i\ﬁ g7>\ & 1a()‘a)>' (24)

Proof. By definition,

b O\ —
F2g0h = (=) 2= MR, iy 5y Puie)yen-

Throughout the proof, ‘inversion pair’ means ‘inversion pair for w(d)’.

Recall that w(d) = u(d)~'. Since § is initial, in the Khovanov-Lauda
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diagram for t,,s) (for any choice of reduced expression) no strings of
color a cross each other. We want to apply quadratic relations on pairs
of strings, one of which has color a and the other has color a + 1. These
correspond to inversion pairs (r,s) with r € U, (\),s &€ U, (\) or s €
U (A),r € US(N).

Note that there are exactly r — 1 inversion pairs of the form (r, s)
when r € U, () and d — s inversion pairs of the form (r,s) when s €
Ul(M\). Applying the corresponding quadratic relations, we see that

falgn? equals

- W IR
(_1>>\a(>\a 1)/26>\¢w3‘L(m—)\a)aa,é,)\aaa (youm_)\a ® ff‘ n g ® y67>\a)y>\6)\ + (*)’
(2.5)

where (*) a sum of elements of the form
eAwwS‘[’(m—)\a)aaﬂ_,)\aaa (Yﬁ RX® Y/Jr)y)\e/\u

with X € Hy, Y* a polynomial in the variables y, with r € UF(\), and
degY ™ +deg Y™ < degyom—», +deg Yo, By Lemma W(l), we have
(*) = 0. So by Lemma [3.1.4[(iii), the expression (2.5)) equals the right

hand side of ([2.4)). O

Define 0, = (5&1), e ,5§\m)) to be the unique element of A(n) such

that for each a < 7 < b we have:
5(7)
e ipreceeds b+ 11in j for 1 <r <m — \;
.o
e ¢ succeeds b+ 1 1n.75A form—X\, <r<m.

Note that A>* = X\ but §,s in general differs from §.
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Lemma 3.2.18. Let § € A satisfy \> = \. Then

f)"‘sgé)‘ _ ex Zf(s - 6)\7
0 otherwise.

Proof. If § = ), the result follows by induction on ht(a) using
Lemma [3.2.17, If 6§ # 6,, we may assume, using Lemma [3.2.17]

that & is not initial. This implies that for some r € [1,m), we have
68 = 1 and 6"V = 0, i.e. the last entry of the word 5°" and the
first entry of the word jéwl) are both equal to a. It follows that 32

is a sub-diagram of a Khovanov-Lauda diagram for ¢w(5)¢u(5)y%,\, SO

2o = £exvybu)busytes = 0. O

Corollary 3.2.19. For any n € Z>,, we have g, o f, = id.

3.2.7. Proof of the main theorem, assuming f and g are chain

maps

In sections and [3.4) we will prove that f and g constructed
above are chain maps. The goal of this subsection is to demonstrate

that this is sufficient to establish out main result:

Theorem 3.2.20. If f and g are chain maps then P, = P%" is a

projective resolution of A(a™).

Proof. The modules are projective by construction. By Corollary|3.2.19]
P, is a complex, isomorphic to a direct summand of the complex @,.
Since @Q, is a resolution of ¢™™ D/2A(a)™ = [m]!A(a), it follows

from the assumptions that P, is exact in positive degrees, and its 0"
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cohomology is a direct summand of
qm(m—l)/QA(Oé)om ~ qm(m—l)/2 [m]|A<am)

We deduce that the 0" cohomology of P, is isomorphic to a direct sum
of modules of the form ¢*A(a™). To check that it is just A(a™), observe

that dim, Homp, (Fy, L(a™)) equals
dim, Homp, (q_lm(m_l)/QHe1a<m)...(b+1)(m), L(a™)).

Finally, Lemma implies

dim, HomHe(q_lm(m_l)/QHg1a(m),,,(b+1)(m), L(a™)) =

qlm(m—l)/?dimq 1a(m)m(b+1)(m)L(am) - 1,

completing the proof. O

3.3. Verification That f Is a Chain Map

We continue with the running assumptions of the previous section.
In addition, throughout the section we fix n € Zso, pt = (fa, ..., ) €
A(n+1)and § = (6M,...,60M) € A(n).

3.3.1. Special reduced expressions

Recall the notation of §3.2.1l Let A € A®™ and § € A® be such that

Ai=A—0€e A" Forie [a,b + 1], we denote by p; the position
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occupied by i in §° and set

I7(\) 1fz7éb+1and(52(1 0,
G =14 IF(\) ifi#b+1ands" =1, (3.1)

l(\) ifi=b+1.

Let Q := {qu,--.,qv11}. Note that {p,,...,pp1} = [1,1]. Define 2} €
Sy to be the permutation which maps p; to ¢; for all i € [a,b + 1], and
maps the elements of [l + 1, d| increasingly to the elements of [1,d] \ Q.

It is easy to see that x} is fully commutative, so w%x is well defined, and
Ippthay = Yaplyog.
Now let A := X% and r € [1,m]. Define

87 = (00, 00m) € (AT A= AT e AT
Define z(4,1) := 37?(1) € G4. More generally, define permutations
>r
x(6,r) = (16(T,1)l,x§(?>) €G-y X Gpmrg1y < Sy

forallr=1,....,m—1.
Recall the element w(d) € &, defined in §3.2.4 The following

lemma follows from definitions:

Lemma 3.3.1. We have w(6) = x(8,1)---z(6,m — 1) and {(w(4)) =
((x(8,1)) + - +L(x(6,m — 1)).
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In view of the lemma, when convenient, we will always choose

reduced decompositions so that

Yooy = Vu(s,1) - - - Vu(8,m—1)- (3.2)

By Lemma [3.2.15 we then have

2 = Xsextuy¥as) - - - Ya(m-1)- (3.3)

3.3.2. A commutation lemma

It will be convenient to use the following notation. Let A € A(n).

Consider the parabolic (non-unital) subalgebra
H* == H i) aa,....(m—Xp)as,maps1 Apapshaa = Ho-
We have
H =~ Him-aae @ Q@ Hin—xpay @ Hinayy © Hayay @ - @ Hya,-
The natural (unital) embeddings of the algebras

H(mf)\a)aaa cee 7H(mf)\b)ab> Hmab_Ha H)\boeba cee 7H)\aaa

into H* allow us to consider them as (non-unital) subalgebras of Hy.

We denote the corresponding (non-unital) algebra embeddings by

A XA A
Laimy e ooy by Loy s Loy -+ 5 Lg -
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For example, setting

1/1\10 (i; _> = L;;—(wwo;m*)\i%
1)1\;0(1.; +) = Lz?;—f—(,lvbwo;)\i)v

go(b +1):= Lb/\+1(¢wo;m>,
for all i € [a, b], we can write 1,31),y as a commuting product
Lty = Wiy (a; =) oy (b5 =), (b 1), (b +) g (a5 +). (3.4)
Lemma 3.3.2. Let i € [a,b] with p; >0, and X\ := u —e;. Then
Listxithuy = LipupPir (iy—i- )

Proof. We have

1j“¢)\;i¢w6‘ = 1j”¢)\;i 1j>\¢w3‘

= Tgetniting (0 +1) [T v, (s =), G +)
j€la,b]
- 1.7“1/}100 b+1 [ H ¢ J; 0(j;+)} %
Jj€lab\{i}
@Z)A;iqu)i\;o(i;_) zAuo(i;"")
= Lk (b+1) [ 1T ©4 G wo(j?—i_)]l/}l;r(u)—ﬂf()\)
j€la,b]

= L Pup Vi ()i o)
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where we have used (3.4)) for the second equality, Lemma |3.1.2(i) for the
third equality, and the definition of v, ; as an explicit cycle element for

the fourth equality. O]

3.3.3. Proof that f is a chain map

If A =M% let qu,..., Q1 be defined as in (3.1)). For j € [a,b+ 1],

we consider the cycle

vy () = 0 () if j #b+1and 8} =0,
G =9 ) =) i #b+Land 5V =1,

Tp+1 — lb_l'_l(A) lfj =b + 1.

Let ¢ be the commuting product of cycles:

C = CqCq+1:--Cht1-

Lemma 3.3.3. Suppose i € [a,b] is such that p; > 0 and X\ == p —
e =X, Set 0 = (m—Da, i :=pu—06Y, and X\ := X — 0N, Then

Lju 1/1A;i€>\¢w3 VYas,1) equals

1j“ww6‘wx(6+e},l)w5;l,i + 1j“wcwm;‘(1) La,é(la & 1jﬁw;\;ie;\wwé) Zf (51(1) = 0;

. 1
~Lphetpar | tag(la ® Ljnthsaext,) if 6, = 1.

Proof. By Lemma W(ii), we have exi,p = 1jt,». So using also

Lemma [3.3.2] we get

Lipxiextuptasny = Lipnil pup ey = L Vup i (- ) Ya(s,0)-
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As usual, we denote by p; the position occupied by j in M and q;
be defined as in (3.1). By Lemma [3.3.1] the permutation z(d,1) maps
p; to ¢; for all j € [a,b+ 1], and the elements of [l + 1, d] increasingly
to the elements of [1,d] \ Q. We consider two cases.

Case 1: 52-(1) = 0. In this case we have ¢; = [; (A). So the KLR

diagram D of 1ju@/)l_+( (/\)@Z)x(,;,l) has an i-string S from the position

w)—l
p; in the bottom to the position [} (1) in the top, and the only (i,1)-
crossings in D will be the crossings of the string S with the m — pu; strings
which originate in the positions L; (u) in the top. The (i + 1)-string 7'
in D connecting p;,; in the bottom to ¢;11 in the top is to the right
of all (4,4) crossings. Pulling T" to the left produces error terms, which
arise from opening (i,7)-crossings, but all of them, except the last one,
amount to zero when multiplied on the left by 1;4¢,s. The last error
term is equal to w$:(1) lag(la ® wlj(ﬁ)ﬁl;@(;\))), and the result of pulling T’
past all (i,)-crossings gives 9, tel,1)¥s;1,- Multiplying on the left by

Ljutpyp, gives
LinYugPaisret ny¥oni + Lipug s tas(la ® Vi (mix)):

and it remains to observe using Lemma that

Vg, tai(la @ Vi o) = Lipdetbar | tas(la ® Latsaest,s).

Case 2: 6% = 1. Let D be the KLR diagram of
1j“wzj(#)—>l;(,\)¢m(5,l)~ Let S be the i-string originating in the position
I;(u) in the top row of D, and T be the (i + 1)-string originating in
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the position p;;; in the bottom row of D. The quadratic relation on
these strings produces a difference of two terms, one with a dot on S
and the other with a dot on 7. The term with a dot on T" equals 0 after
multiplying on the left by 1;u,x. The term with a dot on 5, when

multiplied on the left by 1;u1),, yields

_1j“ww6‘w$§(l> La,§<1a®wlj‘(p)—>l;(5\)) = _1j“wcwx§(l) La,§(1a®1jﬂ¢5\;i€5\¢wé)u

where we have used Lemma for the last equality. O

Corollary 3.3.4. If y; > 0 for some i € [a,b] and X\ := 1 —e; = \?,

then

r—1 ¢(s)
Lihsieatupue) = >, (=121 Lt pth(ser) Vsini-
re[l,m]: SET)ZO
(3.5)
Proof. The proof is by induction on m, the induction base m = 1 being

obvious. Let 6 := (6®,...,00™), 0§ = (m — Do, i == p — 6V, and

A= \—0W. By (3.2), we have
Lisyiexthupyuw@) = Liphxiexup ¥ue ) Vu,2) - - - Yu@m-1)-  (3.6)

Now we apply Lemma . We consider the case 51(1) = 0, the case
5(1)

./ = 1 being similar. Then we get the following expression for the
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right hand side of (3.6)):

( ”7%51% 5—}—91 1) w(S,l,l + 1]“¢wa ( ® 1]“¢A 16)\¢ ))
(Vo5,2) - - - Yu(@m—1))-

Opening parentheses, we get two summands S; + S3. Note that

S1 = 1J“ww5‘¢x(6+e 1 wé,l,zw:c(m wx(am 1)
= 1j”ww6‘¢x(5+e%,l)wx(6,2) ce wx(é,mfl)"ﬂé;l,i

= 1j”¢w5¢w(5+e})¢5;l,i-

Moreover, using the inductive assumption for the third equality below,

we see that Sy equals

“wcwm ( ® 13“¢A zeﬂﬂ )wx (6,2) - wx(é,m—l)
:13'“%%:(1) o, ( ® 1]“¢>\ zekw sz 8,1) wz 6,m— )
_1_7”77D077Z)x ( & 1g#¢/\ zekl/} Azﬁw(é))

rl(s

:1j”¢c¢zg(l)La,§<1a® Z ( 1)25 20 1 “¢ #¢w(5+er 1 ¢5r 11)

rel2,m): 620):0
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As (51-(1) =0, we have 3715 =516 g

s=2 "1 s=1 "1

r—1 (s)
La,§(1a® Z ( 1)25 20 1_7‘”7Z) #¢w(5+er 1 ¢6r 1$)

re[2,m): 55”:0

m—2
= > (-p¥= 10 (Lo ® Lt (H %(megl,t))%;rl,i)
t=1

rel2,m]: 510"):0

m—1
r—1 ¢(s)
— (1)1 15 (1o ® 1jath,) ( T vetoser )wm
t=2

re2,m]: 6§T>:O

Moreover,

m—1

m—1
wzg(l) H2 ¢x(6+eg,t) = wz(é—i-e:,l) r! wm((s-i-e;.r’t) = ww((s—l-e{).
t= t=

So Sy equals

m—1
Z (_1>Z; % SS) J“wcwa: ( ®1g”w )( H ¢ (6+el t )wérz
t=2

re[2,m]:
507=0

(3

r—1 5(s)
= Z (— 1)23 1971 8 P Y e ( H (= 6+eg,t))1/15;r,z'

rel2,m]: 5§T):

rl(s)

= Z ( 1)25 10 1”wwgww(6+e 1/}57‘7,7

re(2,m]: 610):0

where we have used Lemma M(l) to see the first equality. Thus S;+ S5

equals the right hand side of (3.5)). O

The following statement means that f is chain map:
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Proposition 3.3.5. Let u € A(n+1) and § € A(n). Then

§ : WA LA E WY Y,
dn fn - n+1cn .

XeA(n) ~YEA(n+1)

Proof. By definition, d** = (0 unless A = p — e; for some i € [a, b], and
2% = 0 unless A = A%, On the other hand, f*¥ = 0 unless pu = \7,
and ¢7® = 0, unless § = v — e/ for some i € [a,b] and r € [1,m]. So we
may assume that p = A\ for some i € [a,b] and 7 € [1,m] such that

(52(7") = 0. In this case, letting A := \?, we have to prove

A £A8 z : u,0+el d+el,d
dn fn - n+1 Cn .

rel[l,m]: 5§T):O

By definition of the elements involved, this means

(sgny;eutnien) (X5€/\¢w3¢w(5)66)

= ) (Xerer€uthuptuser)Corer) (S8 €6 ter Ubinis)-
re[l,m]: 6§T):0

Equivalently, we need to prove

Sgn)\-ix5€pw)\;i€)\¢w/\ ww(ts) = Xo+erSENs.. ieu¢w“¢w(5+er)w5;r,ia
) 0 k3 I 0 [3
re[l,m]: 657):0

which, in view of Corollary [3.3.4] is equivalent to the statement that

r:l é(s)
580y X6 = X6+e§Sgn5;r,i(_1)ZS*l ‘

for all r € [1,m] such that 6" = 0. But this is Lemma [3.2.1| O
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3.4. Verification That g Is a Chain Map

We continue with the running assumptions of Section [3.2 In
addition, throughout the section we fix n € Zsy, A € A(n) and

y=0",. ™) e Aln+1).

3.4.1. Special reduced expressions and a commutation lemma

Recall the notation of §3.2.1l Let p € A" and v € A% be such that

hi=p—E€ A" Fori e la, b+ 1], we denote

p' = (m — 1)l + (the position occupied by i in 5°), (4.1)
r; () ifi#b+1 and %-(m):(),
¢ = ri(p) ifi#b+1and fyz.(m) =1, (4.2)

)

rprr(p) ifi=0b+1.

Let Q := {q¢%,...,¢""'}. Note that {p®,...,p""} = (d—1,d].

Define 2] € &, to be the permutation which maps ¢ to p' for all
i € [a,b+ 1], and maps the elements of [1,d] \ @ increasingly to the
elements of [1,d — []. It is easy to see that 2z is fully commutative, so
Y.y is well defined, and ¢,y 10 = 1m0,

Now let i := A7, and r € [1,m]. Define

== (7(1), o) e AY ) pST = N e A
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Define z(y,m) = z,7/™ € &, More generally, define for all r =

2,...,m, the permutations
(r)
2(77T) = (SEZLSTJ 1G(m—r)l> € 67‘[ X G(m—r)lx S Gd‘

Recall the element u(y) € &, defined in §3.2.4, The following

lemma follows from definitions:

Lemma 3.4.1. We have u(y) = z(v,2)---z(y,m) and L(u(y)) =

((7, 1) + -+ (z(y,m)).

In view of the lemma, when convenient, we will always choose

reduced decompositions so that

Yu(y) = Va(v,2) - - Ya(y,m)- (4.3)

In view of Lemma [3.2.15] we have

ngl = f'ywz(—y,Q) . -¢z(7,m)yueu' (4'4)

Lemma 3.4.2. Let i € [a,b] with \; < m, and p:= X+ e;. Then

A
y“euw,\;i@\ = ¢A;i3/ €.
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Proof. Recalling the notation of §3.3.2 we have that y*e,iz;ex equals

[ H L?,f(ljwfﬂj))L;+(1j(“1>)} Lg+1(90,m1(b+1)(m>)@DA;Z'@)\
Jj€la,b]

Zbﬁ_(liww)Lﬁ+(1z~<w>)[ 11 L?,_(ljwfuj))bﬁ(ljwﬁ)}
jelabl\(i}

X L§+1(yo,m1(b+1)<m>)%;z@x

:L'Z—(lz‘(m*uz‘))LZJr(li(“i))w)\ﬂ'[ 11 L?-,_(%(m%))éﬁ(ljuj))]
jelabl\{i}

X Ll/)\-i-l(yO,m>[’l))\+1(1(b+1)<m)>€)\

=t (Liomn )Wy (L Jray ex = daayen,

where we have used Lemma for the second equality and

Lemma for the last equality. m

3.4.2. Proof that g is a chain map
Recall that we have fixed A € A(n) and v € A(n +1).

Lemma 3.4.3. Suppose that i € [a,b] is such that \; < m and p =
Ae; =X Set=(m—1)a, fi:=p—v", and \ :== X\ —~™. Then

¢Z(77m)yu€u¢)\;i€)\ equals

w 7em;m,iwz( —em,m)yAe)\
RAn ) 7€ » Zf W/Zm) — 17
4 —taa(yentnies @ L)Y ey e
A
Lg,a (yﬂeﬂd};\;iei ® 10&)¢Z7(m) y;z_:ll()\)eA Zf ’ylm) =0.
\ A
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Proof. Using Lemma |3.4.2) we get
wz(v,m)yueuw)\;ie)\ = wz('y,m)w/\;iy/\e)\-

Recalling (4.1)) and (4.2)), the permutation z(v,m) maps ¢/ to p’ for all

J € la,b+ 1], and the elements of [1,d] \ @ increasingly to the elements
of [1,d — l]. We consider two cases.

Case 1: v™ = 1. In this case we have ¢ = rj(\). So the KLR
diagram D of %(q,m)?/b\;ilﬁ has an i-string S from the position r; (\)
in the bottom to the position p’ in the top, and the only (4, 7)-crossings
in D will be the crossings of the string S with the \; strings which
originate in the positions H;"()\) in the bottom. The (i + 1)-string T'
in D originating in the position p;1 in the top is to the left of all (i, 1)
crossings. Pulling T to the right produces error terms, which arise from
opening (i,4)-crossings, but all of them, except the last one, amount
to zero, when multiplied on the right by y*ey. The last error term is
equal to —ig (15, ® 1a)¢zz<m), and the result of pulling 7" past all (7,1)-

Crossings gives 1y _em.m i (y—em m). Multiplying on the left by yey gives

_Lé,a(wi;i & 1a)wzy(M) y/\e)\ + w'yfeg";m,iwz(’y—e;”,m)y)\e)\-
A

It remains to observe, using Lemma [3.1.2] that

—15.a (U5 @ 1)V myer = —tg o (Y eptsiex ® L)yl yex
A A
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Case 2: %m) = 0. Let D be the KLR diagram of . (y,m)®¥xil .
Let S be the i-string originating in the position r; (\) in the bottom row
of D, and T be the (i + 1)-string originating in the position p"™ in the
top row of D. The quadratic relation on these strings produces a linear
combination of two diagrams, one with a dot on S and the other with
a dot on T'. The term containing a dot on 7" produces a term which is
zero after multiplying on the right by y*e*. The term containing a dot

on S, when multiplied on the right by y*e?*, yields

L§ o (’(/);\n- X 1a)1/JZ,Y(m> y)\e/\ = Léya(yﬂelﬂ/ﬁ\;i@j\ X 1a)¢z»y(m) y;;:lmem
A A

where we have used Lemmas [3.1.2] and [3.1.7] to deduce the last equality.

]

Corollary 3.4.4. Suppose that i € [a,b] is such that \; < m and p =

A+e;, =X Then

m (s)
Vum Y epthrien = Z (—1)2mraa Vry—eiriuly—eny er-

re[l,m]: 'y-(r)zl

k3

Proof. The proof is by induction on m, the induction base m = 1 being
obvious. Let 7 := (Y, ..., 4™ D), 0 = (m — 1)a, i := p — ™, and

A=\ —~™. By (4.3, we have
Vun Y euPnier = Vair2) - Yatym) ¥ euthria- (4.5)

Now we apply Lemma . We consider the case 7-(7”) = 1, the case

%(m) = 0 being similar. Then we get the following expression for the
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right hand side of (4.5)):

¢ (,2) - %; (v,m—1) (w'yfez";m,iwz('yfe;”,m)y/\e)\

_Lé,a(yﬂeﬂ¢x;i€5\ X 1a)r¢) a,(m> yrb e )6)\)-

Opening parentheses, we get two summands S; + S5. Note that

¢z(72 ¢z (y,m—1 w'y e mzwz —el y €
- ¢7 er;m, z¢z(72 ¢z (y,m—1) ¢z (y—e™ m)y €

_ A
= Py—erim,iPu(y—er)Y " Ex-
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Moreover, using the inductive assumption, for the third equality below,

Sy equals

—o(r2) - Vaym—1) .0 (Y Cas 65 @ 1a)1/121<m> AN

m—1

= — g a(wz (7,2) wz (,m—1) Yy e;ﬂh i€X ® 1 )wzz<m> yrb+1()\)e)‘
= — g0 (Yum) ¥ entnes ® 1 )djzw(m) y:Z:(X)e)‘
A

m—1 _(s) by
_ — Lé,a[ E_]_)Es:TJrl Y: @/}ﬁ_e;;hid)u(’?_e;)y)\@j\ ® 1Oc ¢ ’Y( )y"'b+1( )
re[l,m—1]:
7=1

m (s)
= Z (_1)25 T ¢7—e{;r,i¢z(7—ef,?) s wz('y—e;,m—l)
re[lm—1): 4{=1

X lg o |:y>\€5\ ® 1a] wz('yfef,m)y:z:ll(,\)e)\

m (s)
= Y PR ither) - Yrgmepm

re[tm—1): 4=1

m—1

X o0 [ykex ® 1a] y’"b+1()\)e)‘

m (s)
= Z (_1>Zs:1"+1 i 1/)7—e{;r,iwu(7—e§)y>\e>\‘

re[l,m—1]: 4{"=1

Thus S;+ S5 equals the right hand side of the expression in the corollary.
O

The following statement means that ¢ is chain map:

Proposition 3.4.5. Let A € A(n) and v € A(n+1). Then

Z g;/fldu’ = Z C%&ggA-

peA(n+1) SeA(n)
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Proof. By definition, d** = 0 unless u = \ + e; for some i € [a, b], and
gt = 0 unless 4 = 7. On the other hand, g2 = 0 unless A = A%, and
c1® =0, unless & = v — e for some i € [a,b] and 7 € [1,m]. So we may
assume that there exists i € [a,b] such that \Y = X\ + e;, in which case,

setting p := A7, we have to prove

Vobb g Z Yy—e; y—e;A
gn+1dn - Cn Zgn B

re€[l,m]: 'yfr>:1

By definition of the elements involved, this means

(EyeyYuiyyen) (sgny eutdnien)

A
= Z (Sgn—y—e’;;r,ie’vﬂjv—e{;T,ie"/—e{)(f’y—egew—e{@bu('y—e{)y ex)-

re[l,m]: 'y}r)zl

Equivalently, we need to prove

A
673gnA;iwu(7)yﬂeuwA;i€A = Z sgnﬂy—e{;r,ig‘yfe’;wvfef;r,iwu(v—e{)y €x,

re[l,m]:
(r)

Yi =1

which, in view of Corollary [3.4.4] is equivalent to the statement that

m (s)
&ysgn,,; = sgnw_eg;r’ig%e:(_1)Zszr+1yl

for all r € [1,m] such that 4" = 1. But this is Lemma [3.2.2] O

]
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Chapter IV

EXTENSION ALGEBRAS

Throughout this chapter we will assume that a = a, + - -+ 4+ Qpyq
is a positive root in finite type A of height [ :=b—a+2. Fori,j € I we
also fix a choice of signs ¢;; = sgn(j — ) for concreteness. In this
setting, we shall explicitly compute all extensions between standard
modules. Moreover, setting A := @WGKP(Q)A(W), we compute the

algebra structure on Ext*(A, A).

4.1. The Resolution P, ()

For i < j € Zsop and 8 := a; + i1 -+ + a; € &4, we define the

tuple 45 :=i(i +1)---j and corresponding idempotent e(3) := 1;,. For
arbitrary m = (my, - 7m,) € KP(a) with 7 > -+ > m, let 4, be the

concatenation &, := i, - - - i,, and also set e(7) :=1;_.

We now define a refinement operator on KP(a). Let 7 =
(m1, -+ mm) € KP(a), and suppose for some 1 < t < m we have
m =0+ --+ajfora<i<j<b+1 Then, foranyi < k < j
we define refy () := (01, ,0m11) € KP(a) to be the unique Kostant

partition such that:
e o, =m,for1 <s<t-—1;
® 0y =01+ -+ ajand oy = @ 4 -+ o

e o, =T, fort+2<s<m+1.
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In the case o = refy(m) as above, we also define s(o,7) = m —t € Zxy.
If instead, o = refy, refy, - - - refy, (7) for some n > 1, we will call o an
n-refinement of m and will write Ref,,(7) for the set of all n-refinements
of m. We call o a refinement of 7 if 0 € Ref,,(7) for some n > 0.

For any m € KP(«), we define a projective resolution P, (7) — A(m)
as follows. We set P,(7) := €D, cpe, () 4" Hae(o). The boundary map
d, : Pyii(m) — P,(m) will be defined via right multiplication with
a matrix D as in 2.3] For 0,7 € KP(a), define w(o,7) € &; to be
the unique permutation with e(0)Yw(o,r) = Ywore(r). The matrix

D = (d%’T)UeRefn+l(ﬁ)’TGRefn(ﬂ-) is then defined via

(=1)*@ 450y, if T € Ref, () and o € Ref, (7);

g, T .__
&7 =

0 otherwise.

Remark 4.1.1. In the case 7 = («), the resolution P,(7) should not
be confused with the resolution P®" with m = 1 as defined in .
These resolutions are distinct, but it will be shown below that they are

isomorphic. We choose to work with P, («) since it will be convenient for

us when computing the algebra structure on Ext*(A, A) in Section .

Remark 4.1.2. If 7 = (my,--- ,7) € KP(a) with mp > -+ > 7, it
is easily seen that P,(7) is isomorphic to P,(m) o -+ o Py(m,,) using

isomorphisms from Lemma |3.1.3]

We will show the resolution P,(w) is isomorphic to the one
constructed in [BKM|, Theorem 4.12], whose definition we now recall.

To define the resolution from [BKM], let ¢ € KP(a) be minimal such
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that ¢ > («). By [BKM| 2.6], this implies ¢ = (3,7) with 5 > a > 7.
For ¢ € I and the empty tuple €, let 2,, . := ¢. Now suppose « has height
n > 2 and that v has height m. For € = (e1,...,6,-1) € {0,1}"71, let
lel =e1+ - en-1, €<m = (€15, Em—1) a0d €y = (i1, -y En1)-

Then, define %, € I* recursively from

Yy eemBiesms if £, = 0,

Besmlyecm) ife, =1

The resolution from [BKM] is then defined by

Qr = Qr(a) = @ qualia,g

ee{0,1}",le|=r

Moreover, the differential 0, : @Q,(a) — @Q,_1(«a) is given by right
multiplication with a matrix D' = (0. )jc|=r|s|=r—1- Fach Ol 5 is zero
unless the tuples € and § differ in just one entry. If € and ¢ differ in just

the ¢ entry, then

g,é = (_1)£1+...+Et_177bw(5,5)7

where w(e,d) € &; is the unique permutation with 1; 1)

VYuw(es)li, ;- Finally, for arbitrary 7 = (7,...,m) € KP(a), the
resolution QQ,(7) is given by the total complex of the tensor product
of the complexes Qo(m1), ..., Qe(m;). The following lemma follows from

the above definitions and an easy induction argument.
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Lemma 4.1.3. Leta < k <b and ¢ € {0,1}" for somen € Z>y. Then,

k appears to the right of (k+ 1) in the tuple i, if and only if e, = 1.

The following result shows that the complex P, (7) gives a resolution

of A(r) and should be compared to Lemma [3.2.5

Lemma 4.1.4. Let 71 € KP(«). There is an isomorphism of chain

complezes fo 1 Po(m) = Qo(T).

Proof. 1t follows from Remark and the definition of Q,(7) that it
suffices to prove the lemma in the case 7 = (a). For each r € Zs,
there is a bijection between Ref,(«) and the set {¢ € {0,1}'"1 | |¢| = r}
defined as follows. For a root 8 = o; 4+ --- + a; with ¢ < j, we define
tuples €5 := (07", 1) and €} = (0/~%). Note that e € {0,1}77*",
e € {0,117, |eg] = 1, and || = 0. Then, for any o = (01,...,0041) €
Ref,.(«) with oy > -+ > 0,11 we define the tuple ¢, to be the

concatenation &, := €4, 4, *** EqyE Note that ¢, € {0,1}"! and

-
since 0 € Ref,.(a), |e;|] = r. The assignment ¢ — ¢, then gives the
desired bijection. As an example for the reader, if « = a; +-- -+ a5 and
o= (a3 + a4 + as,a; + as), then €, = (0, 1,0,0).

Let w, € &; be the unique permutation so that e(o)y,, =
Y, li,., . Let a <t < b. It follows from definitions that ¢ will appear
to the right of (¢ + 1) in the tuple ¢, if and only if £,, = 1. Since we
are working in type A and « is a root, Lemma [4.1.3| implies that right
multiplication by 1, defines an isomorphism ¢"H.e(0) = ¢"H,1;, .-

We then define f, : P.(m) — Q.(m) so that its restriction to each

summand ¢"H,e(o) C P,(r) is given by right multiplication by .
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We still must show that f, is a chain map. Suppose o € Ref,(«)
and o = refy(7) for some 7 € Ref;_;(a). Since the braid relations
hold exactly in H,, we have e(0)Ywo,ne(T)¢r1;, .. = €(0)ty, where
w € G is the unique permutation with 15, = ,1;, . . Similarly,
LoVoliy . Yw(eyer)Lin..., = €(0)y. Also, signs have been defined so that
s(o, 1) = (=1)e1t*eor—1 Thus, f,_1d, = 0, f,, and this completes the

proof. O]

4.2. The Algebra Ext*(A, A)

Let m = (7, -+ ,7mm) € KP(a). If a <7, s < b+ 1, we call the pair
(r,s) m-equivalent if there is some 1 < n < m and i < r;s < j with
T = o + -+ + . We will call an element w € &; a 7m-shuffle if for
all m-equivalent pairs (r,s), r < s implies w(r) < w(s). The following

lemma is well known, but its proof is included for completeness.

Lemma 4.2.1. Let 7 = (my,--- ,7) € KP(«w). For each 1 <r <k, let
Cm be the minimal index with m, = a.,, +---. The H, module A(r)
15 cyclic, generated by a vector v, of degree zero and weight i, and has

basis
{wyel - yeke(m) - vr | w € & is a w-shuffle, a; € Zxg for 1 <i < k.
Moreover, if (i, j) is m-equivalent, then y; - vy = y; - Vg, and Py, - v, =0

for any w € &, that is not a mw-shuffle.

Proof. To simplify notation, we may assume o« = a; + - -+ + «y. First,

suppose m = (). Consider the surjection p* : Py(a) — A(a) provided
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by Lemma {.1.40 If v,y := p®(e(n)), then v, is a cyclic generator of
A(a) of degree zero and weight i,. Recall that Py(a) = H,e(m) has
basis

{wyi* - ye(m) | w € &, a; € Zso for 1 < i <[}

Choose any 1 < i < [, and let o := ref;(m). Consider the restriction

of the boundary map to

dy™ : qHuye(o) — Hye(m).

Let w; € &; be the unique permutation with e(o)v,, = ¥y,e(m). Then,

for any basis element ©,y]" - - -y, e(0) € qHye(0),

Ay (Vwytt - yte(0)) = Yoyt -y e(0) Yy,

= ¢w¢wiyzl(1) = -yf;l(l)e(w) € ker p©.

Since (4,7 + 1) is the unique pair of consecutive integers inverted by w;

and the braid relations hold exactly in H,, we have

T, (Yi — yiv1)e(m), if w inverts (i,4+ 1);
wwwwie(ﬂ) =

U, €(7), otherwise.

Now, let t € &, with ¢t # 1. If ¢ inverts (¢,7+ 1) then there exists w € &,

such that t = ww; and w does not invert (7,74 1). It follows that Im(dy)
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has basis

{i —yiz)yt" - ylte(m) |1 <i <1 —1,a; € Zxo}U

{hyi* - ylte(m) | 1 #£t € &,a; € Zsp}

In particular, this implies v - vo) = 0 for any 1 # t € &;. Since
A(m) ~ Hye(m)/Im(dy), it has basis

{w" 'U(a)’al € Zxo}

Finally, if 7 = (7, ..., m) € KP(«) is arbitrary, then since o €

Since we have already computed a basis for each A(;), the general case

follows. O

For ¢z € I* and M € H,-mod, recall that there is an isomorphism
Homy, (Ho1;, M) = 1;M. The Hom functor will also take maps defined
by right multiplication to their dual maps defined by left multiplication,
and will convert positive degree shifts to negative degree shifts. Applying

these observations to Lemma yields the following.

Lemma 4.2.2. Let 7 € KP(a), and M € H,-mod. Then,

Ext"(A(m), M) is the ™ cohomology group of the complex

0— e(m)M o, @ g '1,M Ly EB q 2 1,M = -
o€ Ref; () o€ Refy ()
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Here, the m' coboundary map d,, is given by left multiplication by the
matriz D = (d7°), where d7° : ¢ ™e(T)M — ¢ ™ le(o)M for T €
Ref,,(m) and o € Ref,, ,(m). Moreover, d];* is zero unless o € Ref,(7),

and in this case d,° is given by left multiplication by (—1)8(‘”)1&“,(077).

Now we turn our attention to the case where M = A(c). The

following lemmas are needed for the proof of Theorem [£.2.5]

Lemma 4.2.3. Let 0,7 € KP(«). Then, e(T)A(c) = 0 unless 0 €

Ref,(T) for some t € Z>.

Proof. Since ¢ and 7 are refinements of («), there are unique integers
r1y...,7 and sy, ...,8, such that m,n € Z-y are minimal with o =
ref, ---ref, o and 7 = refy, - - -ref; «. If 0 is not a refinement of 7 then
there is some k such that s # r; for all @ < ¢ < b. It follows that the
pair (k,k + 1) is og-equivalent but is not 7-equivalent. Let w(r,0) € &,
be the unique element such that e(7)Yw(r0e(c) # 0. Then, w(r,0) is

not a o-shuffle, and so the result follows from Lemma 4.2.1] O

Lemma 4.2.4. Let w,0,7 € KP(«a). Suppose that o € Ref,(m) for some

t >0 and that ™ = ref,. (1) for some 1 <r <. Then,

ww(ﬂ'ﬂ')ww(T,O‘)e(a) = ww(ﬂ,a) (yz - yj)e(a)a (21)

where i,5 € I* are given by (i,); =71, (t,); =1+ 1.

Proof. Since m = ref,(7), r and r + 1 are the only neighboring entries

of 2, that are permuted by w(m, 7). Since o € Ref;(7), the permutation
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w(T, o) also permutes the entries r and r + 1 in 4,. Since « is a root in
type A, the braid relations hold exactly in H, Moreover, for each ¢z € [

and 1 < k <[, we have the relation

21 (U = Yrs1) sy A i — | = 1,
kti —

1;, otherwise.

The left hand side of can be simplified using this relation and the
braid relations. Moreover, each of these simplifications can be made
using the relation ¥?1; = 1; except for exactly one, corresponding to
the permutation of the entries r and r+1. In this case, a factor (y; —v;)

is introduced, giving the result. O]

We introduce some temporary notation used in the proof of the
next theorem. Suppose 0,7 € KP(«) and ¢ = (04,...,0,). For each
1 <14,j <n we will write @ ~7 7 if there exist some ko, k1,...,k,, € Z

such that o; + o +op, + -+ + 0Ok, = Tky-

Theorem 4.2.5. Suppose « is a root of height | and m,0 € KP(«).
Then, Extly (A(m),A(o)) = 0 unless o is an r-refinement of w. If o is

an r-refinement of 7, then there is a graded vector space isomorphism

Extly, (A7), A(0)) ~ ¢ "Klys, ..., u]/J7,
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where each y; is of degree 2, and J” is the ideal generated by all y; — yy

such that j and k are m-equivalent. In particular,

0, if ™ # o,
Hompy, (A(7), A(o)) ~

k[yh s 7yl]/‘]7T7 Zfﬂ— = 0.

Proof. Again we may assume o = a1 + --- + «; for simplicity. Taking

M = A(o) in the Lemma [4.2.2] yields the sequence

0= e(mA@) S P ¢ leMA) S P g 2e(A) =
T€Ref; () TE€Refs ()

By Lemma [4.2.3] e(7)A(o) = 0 unless o is a refinement of 7.
If o is a refinement of 7, let w(r,0) € &; be the unique o-shuffle
with e(7)Vuw(re) = Yw(ro)e(0). Lemma implies there is a vector
space isomorphism e(7)A(o) =~ klyi,...,yn], where n is given by
o= (01,...,0,). The isomorphism is defined by sending a basis vector
Yu(royyel - yerly - v, € A(o) from Lemma to the monomial

n

Yty € klyn, ).

Now suppose that o is a refinement of both 7 and p, and that
p = refy(7). If 7 is an s-refinement of 7, we can consider the restriction

of the boundary map

di? g *e(T)A(0) = g~ e(p)A(0).
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By Lemma , it is defined by left multiplication by (—1)3(”’T)ww(p’7).

By Lemma |4.2.4] one has the equality

ww(p,T)’l/}w(T,a)e(o-) = z/}w(p,a) (yz - yj)e(a)7

where 4, j are defined by (4,); =1, (4,); =t + 1.
On the other hand, using the vector space isomorphism described

above we can now consider d* as a map
dgp : q_sk[yla ce 7yn} — q_(s—H)k[yla ce ayn]

Under this identification, d}” is multiplication by (—1)**) (yy, — yx,) if
ok, = oy + -+ and o, = ay41 + - -. Now, notice that if o € Ref,(7),
then there are exactly (") skew shapes, 7, such that 7 € Ref,,(7) and
o is a p-refinement of 7 for some p > 0. Thus, the above complex is

isomorphic to

r

0—=Kk[y1,.-.,ys] — qilk[yl, e Yn)® = q*Qk[yl, .. .yn]@@ — ..

— qirk[yla s 7yn] — 07

with maps as described above. Recognizing this complex as a Koszul

implies that Exty, (A(7), A(c)) = 0 for p # r, while

Extyy (A(7), A(0)) ~ ¢ "k[yr, -yl /J,
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where J is the ideal generated by all y, — yi, such that ky ~7 ks. Now

the result follows, since

qirk[yla e 7yn]/J = k[yh s >yl]/‘]ﬂ'

See [E, Corollary 17.12] for more details on Koszul complexes. O

Recall that A := D, ckp () A(7). To compute the algebra structure
on Ext*(A; A), it will be useful to recall an equivalent definition of the
Ext groups. Let R be any ring and M, N be R-modules. Choose
projective resolutions P, and (), of M and N, respectively. Then, we

define the graded vector space Hom(P,, Q) to have graded components

Hom'(P,, Q,) = @ Hompg (P, Qn_i)-

neN

Define a degree +1 boundary map 0 on Hom(P,,Q,) via Jd(g) =
dg — (—1)l9gd, where we abuse notation by allowing d to represent the
boundary maps on both P, and @,. It is well known [W], Cor. 10.7.5]
that

Ext' (M, N) ~ H"(Hom(P,,Q.,)). (2.2)

This isomorphism is defined by lifting an element f € Ext'(M, N) to a
map f : P, — Qo. This map then lifts to a cycle f, € Hom'(P,, Q.),
which is unique modulo the image of 0.

Let 0 and 7 be Kostant partitions of a. If ¢ is an s-refinement of m,

then ¢°P,(0) is naturally a graded subspace of Py(7). Let pZ : Po(m) —
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P,(0) be the natural surjection and define p7 : Py(7m) — P,(0) via

(—1)r==)pmif 5 is odd,

Dol Pom) =
Py, if s is even.
The signs have been chosen so that d(p%) = 0.
Given a polynomial f € Kk[yi,...,y], we may consider f as an
element of H, by identifying the variables yi,...,y; with the the
generators of H, with the same name. Likewise, each such f may be

considered an element of Hom®(P,(c), P,(0)) by defining

f

cHat ¢ Hylr = ¢"Hy s

to be given by right multiplication by f, for each r € Zs, and
7 € Ref,.(0). The composition f o pT is also a cycle belonging to
Hom*(P,(m), Po(0)). The following lemma follows directly from these

definitions.

Lemma 4.2.6. Let m,0,7 € KP(«a). Suppose that o € Ref,(m) and

TE Refr(o'), Then, pIpt = (_1)rspg_

T

Recall that we define A := €D, kp,) A(7). We are now ready to
compute the algebra structure on Ext®(A; A). Toward this end, recall
the ideals J™ from Theorem [{.2.5] and let A, be the vector space of
KP (o) x KP(«) upper triangular matrices, M = (f,)srekp(a), With

entries f, . € ¢ "Kk[y1,...,u]/J" if 0 € Ref, (7), and f,, = 0 otherwise.
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Notice that for o € Ref,(7), J7 C J7, and so there is a natural surjection

Kyr,. .0/ T ES Ky, .. )T

For o € Ref,(m) and 7 € Ref,,(0), this allows us to define products by

the rule

frofom = (1™ por(fro) for € T K[ys, ... yn]/ 7,

for any f., € ¢ "™k[yi,...,u]/J7 and f,. € q "k[y1,...,u]/J".
Extending this product to usual matrix multiplication then gives A,
the structure of a graded, associative algebra. This allows us to state

our final result.

Theorem 4.2.7. Let o be a positive root in type A. There is an

isomorphism of graded, associative algebras Ext®(A, A) ~ A,

Proof. By Theorem there is an obvious vector space isomorphism
Ext*(A,A) — A,. When o is an s-refinement of 7, it is defined by
sending an element f € Ext*(A(n),A(0)) ~ K[yi,...,u]/J" to the
corresponding element f, , € K[y1,...,u]/J" C A,. Itisleft to compute
the algebra structure on Ext®(A, A).

Indeed, let f € Ext®(A(r), A(0)) ~ K[y, ...,u]/J™ and lift f to a
polynomial f € K[y, ..., y]. Under the isomorphism from Equation ,
fpr € Hom*(P,(7), P.(0)) is a cochain representative of f. Similarly,
if 7 is an r-refinement of o, let § € Ext"(A(o),A(7)) and lift g to

gp? € Hom"(P,(0), Py(7)). Since the product on Ext®*(A, A) is induced
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by the composition, Lemma [4.2.6[ implies that

gf = gpZ o fpz = (—1)"gfpr € Ext"(A(w), A(7)).

This agrees with the product structure on A,, which completes the

proof. n
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